human/dist/tfjs.esm.js

8527 lines
1.2 MiB

/*
Human
homepage: <https://github.com/vladmandic/human>
author: <https://github.com/vladmandic>'
*/
var _G=Object.create;var QC=Object.defineProperty;var EG=Object.getOwnPropertyDescriptor;var $G=Object.getOwnPropertyNames;var RG=Object.getPrototypeOf,DG=Object.prototype.hasOwnProperty;var Kt=(r,e)=>()=>(e||r((e={exports:{}}).exports,e),e.exports),qe=(r,e)=>{for(var t in e)QC(r,t,{get:e[t],enumerable:!0})},AG=(r,e,t,o)=>{if(e&&typeof e=="object"||typeof e=="function")for(let n of $G(e))!DG.call(r,n)&&n!==t&&QC(r,n,{get:()=>e[n],enumerable:!(o=EG(e,n))||o.enumerable});return r};var zp=(r,e,t)=>(t=r!=null?_G(RG(r)):{},AG(e||!r||!r.__esModule?QC(t,"default",{value:r,enumerable:!0}):t,r));var U0=Kt((ple,W0)=>{W0.exports=kt;var ko=null;try{ko=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(r){}function kt(r,e,t){this.low=r|0,this.high=e|0,this.unsigned=!!t}kt.prototype.__isLong__;Object.defineProperty(kt.prototype,"__isLong__",{value:!0});function Wr(r){return(r&&r.__isLong__)===!0}kt.isLong=Wr;var A0={},F0={};function Fu(r,e){var t,o,n;return e?(r>>>=0,(n=0<=r&&r<256)&&(o=F0[r],o)?o:(t=Nt(r,(r|0)<0?-1:0,!0),n&&(F0[r]=t),t)):(r|=0,(n=-128<=r&&r<128)&&(o=A0[r],o)?o:(t=Nt(r,r<0?-1:0,!1),n&&(A0[r]=t),t))}kt.fromInt=Fu;function No(r,e){if(isNaN(r))return e?Au:To;if(e){if(r<0)return Au;if(r>=L0)return V0}else{if(r<=-O0)return Vr;if(r+1>=O0)return z0}return r<0?No(-r,e).neg():Nt(r%Qp|0,r/Qp|0,e)}kt.fromNumber=No;function Nt(r,e,t){return new kt(r,e,t)}kt.fromBits=Nt;var Zm=Math.pow;function cw(r,e,t){if(r.length===0)throw Error("empty string");if(r==="NaN"||r==="Infinity"||r==="+Infinity"||r==="-Infinity")return To;if(typeof e=="number"?(t=e,e=!1):e=!!e,t=t||10,t<2||36<t)throw RangeError("radix");var o;if((o=r.indexOf("-"))>0)throw Error("interior hyphen");if(o===0)return cw(r.substring(1),e,t).neg();for(var n=No(Zm(t,8)),s=To,a=0;a<r.length;a+=8){var i=Math.min(8,r.length-a),p=parseInt(r.substring(a,a+i),t);if(i<8){var u=No(Zm(t,i));s=s.mul(u).add(No(p))}else s=s.mul(n),s=s.add(No(p))}return s.unsigned=e,s}kt.fromString=cw;function As(r,e){return typeof r=="number"?No(r,e):typeof r=="string"?cw(r,e):Nt(r.low,r.high,typeof e=="boolean"?e:r.unsigned)}kt.fromValue=As;var P0=65536,r4=1<<24,Qp=P0*P0,L0=Qp*Qp,O0=L0/2,M0=Fu(r4),To=Fu(0);kt.ZERO=To;var Au=Fu(0,!0);kt.UZERO=Au;var Yp=Fu(1);kt.ONE=Yp;var B0=Fu(1,!0);kt.UONE=B0;var pw=Fu(-1);kt.NEG_ONE=pw;var z0=Nt(-1,2147483647,!1);kt.MAX_VALUE=z0;var V0=Nt(-1,-1,!0);kt.MAX_UNSIGNED_VALUE=V0;var Vr=Nt(0,-2147483648,!1);kt.MIN_VALUE=Vr;var de=kt.prototype;de.toInt=function(){return this.unsigned?this.low>>>0:this.low};de.toNumber=function(){return this.unsigned?(this.high>>>0)*Qp+(this.low>>>0):this.high*Qp+(this.low>>>0)};de.toString=function(e){if(e=e||10,e<2||36<e)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(Vr)){var t=No(e),o=this.div(t),n=o.mul(t).sub(this);return o.toString(e)+n.toInt().toString(e)}else return"-"+this.neg().toString(e);for(var s=No(Zm(e,6),this.unsigned),a=this,i="";;){var p=a.div(s),u=a.sub(p.mul(s)).toInt()>>>0,c=u.toString(e);if(a=p,a.isZero())return c+i;for(;c.length<6;)c="0"+c;i=""+c+i}};de.getHighBits=function(){return this.high};de.getHighBitsUnsigned=function(){return this.high>>>0};de.getLowBits=function(){return this.low};de.getLowBitsUnsigned=function(){return this.low>>>0};de.getNumBitsAbs=function(){if(this.isNegative())return this.eq(Vr)?64:this.neg().getNumBitsAbs();for(var e=this.high!=0?this.high:this.low,t=31;t>0&&!(e&1<<t);t--);return this.high!=0?t+33:t+1};de.isZero=function(){return this.high===0&&this.low===0};de.eqz=de.isZero;de.isNegative=function(){return!this.unsigned&&this.high<0};de.isPositive=function(){return this.unsigned||this.high>=0};de.isOdd=function(){return(this.low&1)===1};de.isEven=function(){return(this.low&1)===0};de.equals=function(e){return Wr(e)||(e=As(e)),this.unsigned!==e.unsigned&&this.high>>>31===1&&e.high>>>31===1?!1:this.high===e.high&&this.low===e.low};de.eq=de.equals;de.notEquals=function(e){return!this.eq(e)};de.neq=de.notEquals;de.ne=de.notEquals;de.lessThan=function(e){return this.comp(e)<0};de.lt=de.lessThan;de.lessThanOrEqual=function(e){return this.comp(e)<=0};de.lte=de.lessThanOrEqual;de.le=de.lessThanOrEqual;de.greaterThan=function(e){return this.comp(e)>0};de.gt=de.greaterThan;de.greaterThanOrEqual=function(e){return this.comp(e)>=0};de.gte=de.greaterThanOrEqual;de.ge=de.greaterThanOrEqual;de.compare=function(e){if(Wr(e)||(e=As(e)),this.eq(e))return 0;var t=this.isNegative(),o=e.isNegative();return t&&!o?-1:!t&&o?1:this.unsigned?e.high>>>0>this.high>>>0||e.high===this.high&&e.low>>>0>this.low>>>0?-1:1:this.sub(e).isNegative()?-1:1};de.comp=de.compare;de.negate=function(){return!this.unsigned&&this.eq(Vr)?Vr:this.not().add(Yp)};de.neg=de.negate;de.add=function(e){Wr(e)||(e=As(e));var t=this.high>>>16,o=this.high&65535,n=this.low>>>16,s=this.low&65535,a=e.high>>>16,i=e.high&65535,p=e.low>>>16,u=e.low&65535,c=0,l=0,m=0,d=0;return d+=s+u,m+=d>>>16,d&=65535,m+=n+p,l+=m>>>16,m&=65535,l+=o+i,c+=l>>>16,l&=65535,c+=t+a,c&=65535,Nt(m<<16|d,c<<16|l,this.unsigned)};de.subtract=function(e){return Wr(e)||(e=As(e)),this.add(e.neg())};de.sub=de.subtract;de.multiply=function(e){if(this.isZero())return To;if(Wr(e)||(e=As(e)),ko){var t=ko.mul(this.low,this.high,e.low,e.high);return Nt(t,ko.get_high(),this.unsigned)}if(e.isZero())return To;if(this.eq(Vr))return e.isOdd()?Vr:To;if(e.eq(Vr))return this.isOdd()?Vr:To;if(this.isNegative())return e.isNegative()?this.neg().mul(e.neg()):this.neg().mul(e).neg();if(e.isNegative())return this.mul(e.neg()).neg();if(this.lt(M0)&&e.lt(M0))return No(this.toNumber()*e.toNumber(),this.unsigned);var o=this.high>>>16,n=this.high&65535,s=this.low>>>16,a=this.low&65535,i=e.high>>>16,p=e.high&65535,u=e.low>>>16,c=e.low&65535,l=0,m=0,d=0,f=0;return f+=a*c,d+=f>>>16,f&=65535,d+=s*c,m+=d>>>16,d&=65535,d+=a*u,m+=d>>>16,d&=65535,m+=n*c,l+=m>>>16,m&=65535,m+=s*u,l+=m>>>16,m&=65535,m+=a*p,l+=m>>>16,m&=65535,l+=o*c+n*u+s*p+a*i,l&=65535,Nt(d<<16|f,l<<16|m,this.unsigned)};de.mul=de.multiply;de.divide=function(e){if(Wr(e)||(e=As(e)),e.isZero())throw Error("division by zero");if(ko){if(!this.unsigned&&this.high===-2147483648&&e.low===-1&&e.high===-1)return this;var t=(this.unsigned?ko.div_u:ko.div_s)(this.low,this.high,e.low,e.high);return Nt(t,ko.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?Au:To;var o,n,s;if(this.unsigned){if(e.unsigned||(e=e.toUnsigned()),e.gt(this))return Au;if(e.gt(this.shru(1)))return B0;s=Au}else{if(this.eq(Vr)){if(e.eq(Yp)||e.eq(pw))return Vr;if(e.eq(Vr))return Yp;var a=this.shr(1);return o=a.div(e).shl(1),o.eq(To)?e.isNegative()?Yp:pw:(n=this.sub(e.mul(o)),s=o.add(n.div(e)),s)}else if(e.eq(Vr))return this.unsigned?Au:To;if(this.isNegative())return e.isNegative()?this.neg().div(e.neg()):this.neg().div(e).neg();if(e.isNegative())return this.div(e.neg()).neg();s=To}for(n=this;n.gte(e);){o=Math.max(1,Math.floor(n.toNumber()/e.toNumber()));for(var i=Math.ceil(Math.log(o)/Math.LN2),p=i<=48?1:Zm(2,i-48),u=No(o),c=u.mul(e);c.isNegative()||c.gt(n);)o-=p,u=No(o,this.unsigned),c=u.mul(e);u.isZero()&&(u=Yp),s=s.add(u),n=n.sub(c)}return s};de.div=de.divide;de.modulo=function(e){if(Wr(e)||(e=As(e)),ko){var t=(this.unsigned?ko.rem_u:ko.rem_s)(this.low,this.high,e.low,e.high);return Nt(t,ko.get_high(),this.unsigned)}return this.sub(this.div(e).mul(e))};de.mod=de.modulo;de.rem=de.modulo;de.not=function(){return Nt(~this.low,~this.high,this.unsigned)};de.and=function(e){return Wr(e)||(e=As(e)),Nt(this.low&e.low,this.high&e.high,this.unsigned)};de.or=function(e){return Wr(e)||(e=As(e)),Nt(this.low|e.low,this.high|e.high,this.unsigned)};de.xor=function(e){return Wr(e)||(e=As(e)),Nt(this.low^e.low,this.high^e.high,this.unsigned)};de.shiftLeft=function(e){return Wr(e)&&(e=e.toInt()),(e&=63)===0?this:e<32?Nt(this.low<<e,this.high<<e|this.low>>>32-e,this.unsigned):Nt(0,this.low<<e-32,this.unsigned)};de.shl=de.shiftLeft;de.shiftRight=function(e){return Wr(e)&&(e=e.toInt()),(e&=63)===0?this:e<32?Nt(this.low>>>e|this.high<<32-e,this.high>>e,this.unsigned):Nt(this.high>>e-32,this.high>=0?0:-1,this.unsigned)};de.shr=de.shiftRight;de.shiftRightUnsigned=function(e){if(Wr(e)&&(e=e.toInt()),e&=63,e===0)return this;var t=this.high;if(e<32){var o=this.low;return Nt(o>>>e|t<<32-e,t>>>e,this.unsigned)}else return e===32?Nt(t,0,this.unsigned):Nt(t>>>e-32,0,this.unsigned)};de.shru=de.shiftRightUnsigned;de.shr_u=de.shiftRightUnsigned;de.toSigned=function(){return this.unsigned?Nt(this.low,this.high,!1):this};de.toUnsigned=function(){return this.unsigned?this:Nt(this.low,this.high,!0)};de.toBytes=function(e){return e?this.toBytesLE():this.toBytesBE()};de.toBytesLE=function(){var e=this.high,t=this.low;return[t&255,t>>>8&255,t>>>16&255,t>>>24,e&255,e>>>8&255,e>>>16&255,e>>>24]};de.toBytesBE=function(){var e=this.high,t=this.low;return[e>>>24,e>>>16&255,e>>>8&255,e&255,t>>>24,t>>>16&255,t>>>8&255,t&255]};kt.fromBytes=function(e,t,o){return o?kt.fromBytesLE(e,t):kt.fromBytesBE(e,t)};kt.fromBytesLE=function(e,t){return new kt(e[0]|e[1]<<8|e[2]<<16|e[3]<<24,e[4]|e[5]<<8|e[6]<<16|e[7]<<24,t)};kt.fromBytesBE=function(e,t){return new kt(e[4]<<24|e[5]<<16|e[6]<<8|e[7],e[0]<<24|e[1]<<16|e[2]<<8|e[3],t)}});var Ek=Kt(()=>{});var $k=Kt(()=>{});var o1=Kt((r1,Ww)=>{(function(r,e,t){function o(i){var p=this,u=a();p.next=function(){var c=2091639*p.s0+p.c*23283064365386963e-26;return p.s0=p.s1,p.s1=p.s2,p.s2=c-(p.c=c|0)},p.c=1,p.s0=u(" "),p.s1=u(" "),p.s2=u(" "),p.s0-=u(i),p.s0<0&&(p.s0+=1),p.s1-=u(i),p.s1<0&&(p.s1+=1),p.s2-=u(i),p.s2<0&&(p.s2+=1),u=null}function n(i,p){return p.c=i.c,p.s0=i.s0,p.s1=i.s1,p.s2=i.s2,p}function s(i,p){var u=new o(i),c=p&&p.state,l=u.next;return l.int32=function(){return u.next()*4294967296|0},l.double=function(){return l()+(l()*2097152|0)*11102230246251565e-32},l.quick=l,c&&(typeof c=="object"&&n(c,u),l.state=function(){return n(u,{})}),l}function a(){var i=4022871197,p=function(u){u=String(u);for(var c=0;c<u.length;c++){i+=u.charCodeAt(c);var l=.02519603282416938*i;i=l>>>0,l-=i,l*=i,i=l>>>0,l-=i,i+=l*4294967296}return(i>>>0)*23283064365386963e-26};return p}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.alea=s})(r1,typeof Ww=="object"&&Ww,typeof define=="function"&&define)});var s1=Kt((n1,Uw)=>{(function(r,e,t){function o(a){var i=this,p="";i.x=0,i.y=0,i.z=0,i.w=0,i.next=function(){var c=i.x^i.x<<11;return i.x=i.y,i.y=i.z,i.z=i.w,i.w^=i.w>>>19^c^c>>>8},a===(a|0)?i.x=a:p+=a;for(var u=0;u<p.length+64;u++)i.x^=p.charCodeAt(u)|0,i.next()}function n(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i}function s(a,i){var p=new o(a),u=i&&i.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var l=p.next()>>>11,m=(p.next()>>>0)/4294967296,d=(l+m)/(1<<21);while(d===0);return d},c.int32=p.next,c.quick=c,u&&(typeof u=="object"&&n(u,p),c.state=function(){return n(p,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor128=s})(n1,typeof Uw=="object"&&Uw,typeof define=="function"&&define)});var i1=Kt((a1,Gw)=>{(function(r,e,t){function o(a){var i=this,p="";i.next=function(){var c=i.x^i.x>>>2;return i.x=i.y,i.y=i.z,i.z=i.w,i.w=i.v,(i.d=i.d+362437|0)+(i.v=i.v^i.v<<4^(c^c<<1))|0},i.x=0,i.y=0,i.z=0,i.w=0,i.v=0,a===(a|0)?i.x=a:p+=a;for(var u=0;u<p.length+64;u++)i.x^=p.charCodeAt(u)|0,u==p.length&&(i.d=i.x<<10^i.x>>>4),i.next()}function n(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i.v=a.v,i.d=a.d,i}function s(a,i){var p=new o(a),u=i&&i.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var l=p.next()>>>11,m=(p.next()>>>0)/4294967296,d=(l+m)/(1<<21);while(d===0);return d},c.int32=p.next,c.quick=c,u&&(typeof u=="object"&&n(u,p),c.state=function(){return n(p,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorwow=s})(a1,typeof Gw=="object"&&Gw,typeof define=="function"&&define)});var p1=Kt((u1,Hw)=>{(function(r,e,t){function o(a){var i=this;i.next=function(){var u=i.x,c=i.i,l,m,d;return l=u[c],l^=l>>>7,m=l^l<<24,l=u[c+1&7],m^=l^l>>>10,l=u[c+3&7],m^=l^l>>>3,l=u[c+4&7],m^=l^l<<7,l=u[c+7&7],l=l^l<<13,m^=l^l<<9,u[c]=m,i.i=c+1&7,m};function p(u,c){var l,m,d=[];if(c===(c|0))m=d[0]=c;else for(c=""+c,l=0;l<c.length;++l)d[l&7]=d[l&7]<<15^c.charCodeAt(l)+d[l+1&7]<<13;for(;d.length<8;)d.push(0);for(l=0;l<8&&d[l]===0;++l);for(l==8?m=d[7]=-1:m=d[l],u.x=d,u.i=0,l=256;l>0;--l)u.next()}p(i,a)}function n(a,i){return i.x=a.x.slice(),i.i=a.i,i}function s(a,i){a==null&&(a=+new Date);var p=new o(a),u=i&&i.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var l=p.next()>>>11,m=(p.next()>>>0)/4294967296,d=(l+m)/(1<<21);while(d===0);return d},c.int32=p.next,c.quick=c,u&&(u.x&&n(u,p),c.state=function(){return n(p,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorshift7=s})(u1,typeof Hw=="object"&&Hw,typeof define=="function"&&define)});var l1=Kt((c1,Kw)=>{(function(r,e,t){function o(a){var i=this;i.next=function(){var u=i.w,c=i.X,l=i.i,m,d;return i.w=u=u+1640531527|0,d=c[l+34&127],m=c[l=l+1&127],d^=d<<13,m^=m<<17,d^=d>>>15,m^=m>>>12,d=c[l]=d^m,i.i=l,d+(u^u>>>16)|0};function p(u,c){var l,m,d,f,h,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),d=0,f=-32;f<x;++f)c&&(m^=c.charCodeAt((f+32)%c.length)),f===0&&(h=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,f>=0&&(h=h+1640531527|0,l=g[f&127]^=m+h,d=l==0?d+1:0);for(d>=128&&(g[(c&&c.length||0)&127]=-1),d=127,f=4*128;f>0;--f)m=g[d+34&127],l=g[d=d+1&127],m^=m<<13,l^=l<<17,m^=m>>>15,l^=l>>>12,g[d]=m^l;u.w=h,u.X=g,u.i=d}p(i,a)}function n(a,i){return i.i=a.i,i.w=a.w,i.X=a.X.slice(),i}function s(a,i){a==null&&(a=+new Date);var p=new o(a),u=i&&i.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var l=p.next()>>>11,m=(p.next()>>>0)/4294967296,d=(l+m)/(1<<21);while(d===0);return d},c.int32=p.next,c.quick=c,u&&(u.X&&n(u,p),c.state=function(){return n(p,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor4096=s})(c1,typeof Kw=="object"&&Kw,typeof define=="function"&&define)});var d1=Kt((m1,qw)=>{(function(r,e,t){function o(a){var i=this,p="";i.next=function(){var c=i.b,l=i.c,m=i.d,d=i.a;return c=c<<25^c>>>7^l,l=l-m|0,m=m<<24^m>>>8^d,d=d-c|0,i.b=c=c<<20^c>>>12^l,i.c=l=l-m|0,i.d=m<<16^l>>>16^d,i.a=d-c|0},i.a=0,i.b=0,i.c=-1640531527,i.d=1367130551,a===Math.floor(a)?(i.a=a/4294967296|0,i.b=a|0):p+=a;for(var u=0;u<p.length+20;u++)i.b^=p.charCodeAt(u)|0,i.next()}function n(a,i){return i.a=a.a,i.b=a.b,i.c=a.c,i.d=a.d,i}function s(a,i){var p=new o(a),u=i&&i.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var l=p.next()>>>11,m=(p.next()>>>0)/4294967296,d=(l+m)/(1<<21);while(d===0);return d},c.int32=p.next,c.quick=c,u&&(typeof u=="object"&&n(u,p),c.state=function(){return n(p,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.tychei=s})(m1,typeof qw=="object"&&qw,typeof define=="function"&&define)});var f1=Kt(()=>{});var g1=Kt((h1,Md)=>{(function(r,e,t){var o=256,n=6,s=52,a="random",i=t.pow(o,n),p=t.pow(2,s),u=p*2,c=o-1,l;function m(C,S,k){var _=[];S=S==!0?{entropy:!0}:S||{};var $=g(h(S.entropy?[C,b(e)]:C==null?x():C,3),_),R=new d(_),D=function(){for(var P=R.g(n),O=i,M=0;P<p;)P=(P+M)*o,O*=o,M=R.g(1);for(;P>=u;)P/=2,O/=2,M>>>=1;return(P+M)/O};return D.int32=function(){return R.g(4)|0},D.quick=function(){return R.g(4)/4294967296},D.double=D,g(b(R.S),e),(S.pass||k||function(P,O,M,L){return L&&(L.S&&f(L,R),P.state=function(){return f(R,{})}),M?(t[a]=P,O):P})(D,$,"global"in S?S.global:this==t,S.state)}function d(C){var S,k=C.length,_=this,$=0,R=_.i=_.j=0,D=_.S=[];for(k||(C=[k++]);$<o;)D[$]=$++;for($=0;$<o;$++)D[$]=D[R=c&R+C[$%k]+(S=D[$])],D[R]=S;(_.g=function(P){for(var O,M=0,L=_.i,B=_.j,z=_.S;P--;)O=z[L=c&L+1],M=M*o+z[c&(z[L]=z[B=c&B+O])+(z[B]=O)];return _.i=L,_.j=B,M})(o)}function f(C,S){return S.i=C.i,S.j=C.j,S.S=C.S.slice(),S}function h(C,S){var k=[],_=typeof C,$;if(S&&_=="object")for($ in C)try{k.push(h(C[$],S-1))}catch(R){}return k.length?k:_=="string"?C:C+"\0"}function g(C,S){for(var k=C+"",_,$=0;$<k.length;)S[c&$]=c&(_^=S[c&$]*19)+k.charCodeAt($++);return b(S)}function x(){try{var C;return l&&(C=l.randomBytes)?C=C(o):(C=new Uint8Array(o),(r.crypto||r.msCrypto).getRandomValues(C)),b(C)}catch(_){var S=r.navigator,k=S&&S.plugins;return[+new Date,r,k,r.screen,b(e)]}}function b(C){return String.fromCharCode.apply(0,C)}if(g(t.random(),e),typeof Md=="object"&&Md.exports){Md.exports=m;try{l=f1()}catch(C){}}else typeof define=="function"&&define.amd?define(function(){return m}):t["seed"+a]=m})(typeof self!="undefined"?self:h1,[],Math)});var jw=Kt((s1e,x1)=>{var Dq=o1(),Aq=s1(),Fq=i1(),Pq=p1(),Oq=l1(),Mq=d1(),Ku=g1();Ku.alea=Dq;Ku.xor128=Aq;Ku.xorwow=Fq;Ku.xorshift7=Pq;Ku.xor4096=Oq;Ku.tychei=Mq;x1.exports=Ku});var Vv=Kt(()=>{});var Wv=Kt(()=>{});var LB=Kt(()=>{});var BB=Kt(()=>{});var zB=Kt(()=>{});var VB=Kt((Wg,Gv)=>{var Uv=(()=>{var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(e){e=e||{};function t(){return oe.buffer!=He&&Tt(oe.buffer),lt}function o(){return oe.buffer!=He&&Tt(oe.buffer),it}function n(){return oe.buffer!=He&&Tt(oe.buffer),ht}function s(){return oe.buffer!=He&&Tt(oe.buffer),Lr}function a(){return oe.buffer!=He&&Tt(oe.buffer),Mt}function i(){return oe.buffer!=He&&Tt(oe.buffer),to}function p(){return oe.buffer!=He&&Tt(oe.buffer),rr}var u=typeof e!="undefined"?e:{},c,l;u.ready=new Promise(function(F,V){c=F,l=V});var m;typeof process!="undefined"&&process.listeners&&(m={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var d=Object.assign({},u),f=[],h="./this.program",g=(F,V)=>{throw V},x=typeof window=="object",b=typeof importScripts=="function",C=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",S=u.ENVIRONMENT_IS_PTHREAD||!1,k="";function _(F){return u.locateFile?u.locateFile(F,k):k+F}var $,R,D,P;function O(F){if(F instanceof ku)return;j("exiting due to exception: "+F)}if(C){var M=Vv(),L=Wv();b?k=L.dirname(k)+"/":k=__dirname+"/",$=(V,ue)=>(V=Fp(V)?new URL(V):L.normalize(V),M.readFileSync(V,ue?void 0:"utf8")),D=V=>{var ue=$(V,!0);return ue.buffer||(ue=new Uint8Array(ue)),ue},R=(V,ue,$e)=>{V=Fp(V)?new URL(V):L.normalize(V),M.readFile(V,function(Be,Le){Be?$e(Be):ue(Le.buffer)})},process.argv.length>1&&(h=process.argv[1].replace(/\\/g,"/")),f=process.argv.slice(2),process.on("uncaughtException",function(V){if(!(V instanceof ku))throw V}),process.on("unhandledRejection",function(V){throw V}),g=(V,ue)=>{if(Lo())throw process.exitCode=V,ue;O(ue),process.exit(V)},u.inspect=function(){return"[Emscripten Module object]"};let F;try{F=LB()}catch(V){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),V}global.Worker=F.Worker}else(x||b)&&(b?k=self.location.href:typeof document!="undefined"&&document.currentScript&&(k=document.currentScript.src),typeof r!="undefined"&&r&&(k=r),k.indexOf("blob:")!==0?k=k.substr(0,k.replace(/[?#].*/,"").lastIndexOf("/")+1):k="",C||($=F=>{var V=new XMLHttpRequest;return V.open("GET",F,!1),V.send(null),V.responseText},b&&(D=F=>{var V=new XMLHttpRequest;return V.open("GET",F,!1),V.responseType="arraybuffer",V.send(null),new Uint8Array(V.response)}),R=(F,V,ue)=>{var $e=new XMLHttpRequest;$e.open("GET",F,!0),$e.responseType="arraybuffer",$e.onload=()=>{if($e.status==200||$e.status==0&&$e.response){V($e.response);return}ue()},$e.onerror=ue,$e.send(null)}),P=F=>document.title=F);C&&typeof performance=="undefined"&&(global.performance=BB().performance);var B=console.log.bind(console),z=console.warn.bind(console);C&&(B=F=>M.writeSync(1,F+`
`),z=F=>M.writeSync(2,F+`
`));var U=u.print||B,j=u.printErr||z;Object.assign(u,d),d=null,u.arguments&&(f=u.arguments),u.thisProgram&&(h=u.thisProgram),u.quit&&(g=u.quit);var q=4,Y=Atomics.load,J=Atomics.store,re=Atomics.compareExchange,ne;u.wasmBinary&&(ne=u.wasmBinary);var ee=u.noExitRuntime||!0;typeof WebAssembly!="object"&&vu("no native wasm support detected");var oe,ie,le=!1,be;function _e(F,V){F||vu(V)}var ve=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function Fe(F,V,ue){V>>>=0;for(var $e=V+ue,Be=V;F[Be]&&!(Be>=$e);)++Be;if(Be-V>16&&F.buffer&&ve)return ve.decode(F.buffer instanceof SharedArrayBuffer?F.slice(V,Be):F.subarray(V,Be));for(var Le="";V<Be;){var ge=F[V++];if(!(ge&128)){Le+=String.fromCharCode(ge);continue}var Ne=F[V++]&63;if((ge&224)==192){Le+=String.fromCharCode((ge&31)<<6|Ne);continue}var Ft=F[V++]&63;if((ge&240)==224?ge=(ge&15)<<12|Ne<<6|Ft:ge=(ge&7)<<18|Ne<<12|Ft<<6|F[V++]&63,ge<65536)Le+=String.fromCharCode(ge);else{var so=ge-65536;Le+=String.fromCharCode(55296|so>>10,56320|so&1023)}}return Le}function Pe(F,V){return F>>>=0,F?Fe(o(),F,V):""}function st(F,V,ue,$e){if(ue>>>=0,!($e>0))return 0;for(var Be=ue,Le=ue+$e-1,ge=0;ge<F.length;++ge){var Ne=F.charCodeAt(ge);if(Ne>=55296&&Ne<=57343){var Ft=F.charCodeAt(++ge);Ne=65536+((Ne&1023)<<10)|Ft&1023}if(Ne<=127){if(ue>=Le)break;V[ue++>>>0]=Ne}else if(Ne<=2047){if(ue+1>=Le)break;V[ue++>>>0]=192|Ne>>6,V[ue++>>>0]=128|Ne&63}else if(Ne<=65535){if(ue+2>=Le)break;V[ue++>>>0]=224|Ne>>12,V[ue++>>>0]=128|Ne>>6&63,V[ue++>>>0]=128|Ne&63}else{if(ue+3>=Le)break;V[ue++>>>0]=240|Ne>>18,V[ue++>>>0]=128|Ne>>12&63,V[ue++>>>0]=128|Ne>>6&63,V[ue++>>>0]=128|Ne&63}}return V[ue>>>0]=0,ue-Be}function ct(F,V,ue){return st(F,o(),V,ue)}var He,lt,it,ht,gt,Lr,Mt,to,rr;S&&(He=u.buffer);function Tt(F){He=F,u.HEAP8=lt=new Int8Array(F),u.HEAP16=ht=new Int16Array(F),u.HEAP32=Lr=new Int32Array(F),u.HEAPU8=it=new Uint8Array(F),u.HEAPU16=gt=new Uint16Array(F),u.HEAPU32=Mt=new Uint32Array(F),u.HEAPF32=to=new Float32Array(F),u.HEAPF64=rr=new Float64Array(F)}var or=u.INITIAL_MEMORY||16777216;if(S)oe=u.wasmMemory,He=u.buffer;else if(u.wasmMemory)oe=u.wasmMemory;else if(oe=new WebAssembly.Memory({initial:or/65536,maximum:65536,shared:!0}),!(oe.buffer instanceof SharedArrayBuffer))throw j("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),C&&j("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and/or recent version)"),Error("bad memory");oe&&(He=oe.buffer),or=He.byteLength,Tt(He);var nr,ro=[],oo=[],fr=[],Va=!1;function Lo(){return ee}function Ks(){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)ol(u.preRun.shift());al(ro)}function Xt(){Va=!0,!S&&al(oo)}function Wa(){if(!S){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)d0(u.postRun.shift());al(fr)}}function ol(F){ro.unshift(F)}function nl(F){oo.unshift(F)}function d0(F){fr.unshift(F)}var ki=0,Ap=null,Ua=null;function Cy(F){ki++,u.monitorRunDependencies&&u.monitorRunDependencies(ki)}function wm(F){if(ki--,u.monitorRunDependencies&&u.monitorRunDependencies(ki),ki==0&&(Ap!==null&&(clearInterval(Ap),Ap=null),Ua)){var V=Ua;Ua=null,V()}}function vu(F){u.onAbort&&u.onAbort(F),F="Aborted("+F+")",j(F),le=!0,be=1,F+=". Build with -sASSERTIONS for more info.";var V=new WebAssembly.RuntimeError(F);throw l(V),V}var wy="data:application/octet-stream;base64,";function Sm(F){return F.startsWith(wy)}function Fp(F){return F.startsWith("file://")}var hr;hr="tfjs-backend-wasm-threaded-simd.wasm",Sm(hr)||(hr=_(hr));function Im(F){try{if(F==hr&&ne)return new Uint8Array(ne);if(D)return D(F);throw"both async and sync fetching of the wasm failed"}catch(V){vu(V)}}function Sy(){if(!ne&&(x||b)){if(typeof fetch=="function"&&!Fp(hr))return fetch(hr,{credentials:"same-origin"}).then(function(F){if(!F.ok)throw"failed to load wasm binary file at '"+hr+"'";return F.arrayBuffer()}).catch(function(){return Im(hr)});if(R)return new Promise(function(F,V){R(hr,function(ue){F(new Uint8Array(ue))},V)})}return Promise.resolve().then(function(){return Im(hr)})}function Iy(){var F={env:Om,wasi_snapshot_preview1:Om};function V(ge,Ne){var Ft=ge.exports;if(u.asm=Ft,Dy(u.asm._emscripten_tls_init),nr=u.asm.__indirect_function_table,nl(u.asm.__wasm_call_ctors),ie=Ne,!S){var so=Me.unusedWorkers.length;Me.unusedWorkers.forEach(function(Ha){Me.loadWasmModuleToWorker(Ha,function(){--so||wm("wasm-instantiate")})})}}S||Cy("wasm-instantiate");function ue(ge){V(ge.instance,ge.module)}function $e(ge){return Sy().then(function(Ne){return WebAssembly.instantiate(Ne,F)}).then(function(Ne){return Ne}).then(ge,function(Ne){j("failed to asynchronously prepare wasm: "+Ne),vu(Ne)})}function Be(){return!ne&&typeof WebAssembly.instantiateStreaming=="function"&&!Sm(hr)&&!Fp(hr)&&!C&&typeof fetch=="function"?fetch(hr,{credentials:"same-origin"}).then(function(ge){var Ne=WebAssembly.instantiateStreaming(ge,F);return Ne.then(ue,function(Ft){return j("wasm streaming compile failed: "+Ft),j("falling back to ArrayBuffer instantiation"),$e(ue)})}):$e(ue)}if(u.instantiateWasm)try{var Le=u.instantiateWasm(F,V);return Le}catch(ge){j("Module.instantiateWasm callback failed with error: "+ge),l(ge)}return Be().catch(l),{}}var f0,h0,vm={};function ku(F){this.name="ExitStatus",this.message="Program terminated with exit("+F+")",this.status=F}function vy(F){var V=Me.pthreads[F];delete Me.pthreads[F],V.terminate(),jC(F),Me.runningWorkers.splice(Me.runningWorkers.indexOf(V),1),V.pthread_ptr=0}function ky(F){var V=Me.pthreads[F];V.postMessage({cmd:"cancel"})}function sl(F){var V=Me.pthreads[F];_e(V),Me.returnWorkerToPool(V)}function Ny(F){var V=Me.getNewWorker();if(!V)return 6;Me.runningWorkers.push(V),Me.pthreads[F.pthread_ptr]=V,V.pthread_ptr=F.pthread_ptr;var ue={cmd:"run",start_routine:F.startRoutine,arg:F.arg,pthread_ptr:F.pthread_ptr};return V.runPthread=()=>{C&&V.ref(),V.postMessage(ue,F.transferList),delete V.runPthread},V.loaded&&V.runPthread(),0}var km={varargs:void 0,get:function(){km.varargs+=4;var F=s()[km.varargs-4>>>2];return F},getStr:function(F){var V=Pe(F);return V}};function Nm(F){if(S)return Ni(1,1,F);be=F,Lo()||(Me.terminateAllThreads(),u.onExit&&u.onExit(F),le=!0),g(F,new ku(F))}function Ty(F,V){if(be=F,!V&&S)throw _m(F),"unwind";Nm(F)}var Tm=Ty;function _y(F){if(F instanceof ku||F=="unwind")return be;g(1,F)}var Me={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],pthreads:{},init:function(){S?Me.initWorker():Me.initMainThread()},initMainThread:function(){for(var F=8;F--;)Me.allocateUnusedWorker()},initWorker:function(){ee=!1},setExitStatus:function(F){be=F},terminateAllThreads:function(){for(var F of Object.values(Me.pthreads))Me.returnWorkerToPool(F);for(var F of Me.unusedWorkers)F.terminate();Me.unusedWorkers=[]},returnWorkerToPool:function(F){var V=F.pthread_ptr;delete Me.pthreads[V],Me.unusedWorkers.push(F),Me.runningWorkers.splice(Me.runningWorkers.indexOf(F),1),F.pthread_ptr=0,C&&F.unref(),jC(V)},receiveObjectTransfer:function(F){},threadInitTLS:function(){Me.tlsInitFunctions.forEach(F=>F())},loadWasmModuleToWorker:function(F,V){F.onmessage=Le=>{var ge=Le.data,Ne=ge.cmd;if(F.pthread_ptr&&(Me.currentProxiedOperationCallerThread=F.pthread_ptr),ge.targetThread&&ge.targetThread!=Wm()){var Ft=Me.pthreads[ge.targetThread];Ft?Ft.postMessage(ge,ge.transferList):j('Internal error! Worker sent a message "'+Ne+'" to target pthread '+ge.targetThread+", but that thread no longer exists!"),Me.currentProxiedOperationCallerThread=void 0;return}Ne==="processProxyingQueue"?il(ge.queue):Ne==="spawnThread"?Ny(ge):Ne==="cleanupThread"?sl(ge.thread):Ne==="killThread"?vy(ge.thread):Ne==="cancelThread"?ky(ge.thread):Ne==="loaded"?(F.loaded=!0,C&&F.unref(),V&&V(F),F.runPthread&&F.runPthread()):Ne==="print"?U("Thread "+ge.threadId+": "+ge.text):Ne==="printErr"?j("Thread "+ge.threadId+": "+ge.text):Ne==="alert"?alert("Thread "+ge.threadId+": "+ge.text):ge.target==="setimmediate"?F.postMessage(ge):Ne==="callHandler"?u[ge.handler](...ge.args):Ne&&j("worker sent an unknown command "+Ne),Me.currentProxiedOperationCallerThread=void 0},F.onerror=Le=>{var ge="worker sent an error!";throw j(ge+" "+Le.filename+":"+Le.lineno+": "+Le.message),Le},C&&(F.on("message",function(Le){F.onmessage({data:Le})}),F.on("error",function(Le){F.onerror(Le)}),F.on("detachedExit",function(){}));var ue=[],$e=["onExit","onAbort","print","printErr"];for(var Be of $e)u.hasOwnProperty(Be)&&ue.push(Be);F.postMessage({cmd:"load",handlers:ue,urlOrBlob:u.mainScriptUrlOrBlob||r,wasmMemory:oe,wasmModule:ie})},allocateUnusedWorker:function(){var F,V=_("tfjs-backend-wasm-threaded-simd.worker.js");F=new Worker(V),Me.unusedWorkers.push(F)},getNewWorker:function(){return Me.unusedWorkers.length==0&&(Me.allocateUnusedWorker(),Me.loadWasmModuleToWorker(Me.unusedWorkers[0])),Me.unusedWorkers.pop()}};u.PThread=Me;function al(F){for(;F.length>0;)F.shift()(u)}function Ey(){var F=Wm(),V=s()[F+52>>>2],ue=s()[F+56>>>2],$e=V-ue;w0(V,$e),Um(V)}u.establishStackSpace=Ey;function _m(F){if(S)return Ni(2,0,F);try{Tm(F)}catch(V){_y(V)}}var Pp=[];function $y(F){var V=Pp[F];return V||(F>=Pp.length&&(Pp.length=F+1),Pp[F]=V=nr.get(F)),V}function Ry(F,V){var ue=$y(F)(V);Lo()?Me.setExitStatus(ue):C0(ue)}u.invokeEntryPoint=Ry;function Dy(F){Me.tlsInitFunctions.push(F)}function Ay(F){x0(F,!b,1,!x),Me.threadInitTLS()}function Fy(F){S?postMessage({cmd:"cleanupThread",thread:F}):sl(F)}function Em(F,V,ue,$e){return S?Ni(3,1,F,V,ue,$e):$m(F,V,ue,$e)}function $m(F,V,ue,$e){if(typeof SharedArrayBuffer=="undefined")return j("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var Be=[],Le=0;if(S&&(Be.length===0||Le))return Em(F,V,ue,$e);if(Le)return Le;var ge={startRoutine:ue,pthread_ptr:F,arg:$e,transferList:Be};return S?(ge.cmd="spawnThread",postMessage(ge,Be),0):Ny(ge)}function Py(){return 65536}var Oy=!0;function My(){return Oy}function il(F){Atomics.store(s(),F>>2,1),Wm()&&b0(F),Atomics.compareExchange(s(),F>>2,1,0)}u.executeNotifiedProxyingQueue=il;function Ly(F,V,ue,$e){if(F==V)setTimeout(()=>il($e));else if(S)postMessage({targetThread:F,cmd:"processProxyingQueue",queue:$e});else{var Be=Me.pthreads[F];if(!Be)return;Be.postMessage({cmd:"processProxyingQueue",queue:$e})}return 1}function By(F,V,ue){return-1}function zy(){vu("")}function Nu(F){Nu.shown||(Nu.shown={}),Nu.shown[F]||(Nu.shown[F]=1,C&&(F="warning: "+F),j(F))}function Vy(){C||b||Nu("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function Wy(){return Date.now()}function Rm(){return 4294901760}function Uy(){return Rm()}var ul;C?ul=()=>{var F=process.hrtime();return F[0]*1e3+F[1]/1e6}:ul=()=>performance.timeOrigin+performance.now();function Gy(F,V,ue){o().copyWithin(F>>>0,V>>>0,V+ue>>>0)}function Hy(){return C?zB().cpus().length:navigator.hardwareConcurrency}function Ky(F){var V=XC(),ue=F();return Um(V),ue}function Ni(F,V){var ue=arguments.length-2,$e=arguments;return Ky(()=>{for(var Be=ue,Le=Gm(Be*8),ge=Le>>3,Ne=0;Ne<ue;Ne++){var Ft=$e[2+Ne];p()[ge+Ne>>>0]=Ft}return y0(F,Be,Le,V)})}var pl=[];function qy(F,V,ue){pl.length=V;for(var $e=ue>>3,Be=0;Be<V;Be++)pl[Be]=p()[$e+Be>>>0];var Le=F<0,ge=Le?vm[-F-1]:rb[F];return ge.apply(null,pl)}function jy(F){try{return oe.grow(F-He.byteLength+65535>>>16),Tt(oe.buffer),1}catch(V){}}function Xy(F){var V=o().length;if(F=F>>>0,F<=V)return!1;var ue=Rm();if(F>ue)return!1;let $e=(Ft,so)=>Ft+(so-Ft%so)%so;for(var Be=1;Be<=4;Be*=2){var Le=V*(1+.2/Be);Le=Math.min(Le,F+100663296);var ge=Math.min(ue,$e(Math.max(F,Le),65536)),Ne=jy(ge);if(Ne)return!0}return!1}function Yy(){throw"unwind"}function Dm(F){return S?Ni(4,1,F):52}function Am(F,V,ue,$e,Be){return S?Ni(5,1,F,V,ue,$e,Be):70}var Qy=[null,[],[]];function Zy(F,V){var ue=Qy[F];V===0||V===10?((F===1?U:j)(Fe(ue,0)),ue.length=0):ue.push(V)}function Fm(F,V,ue,$e){if(S)return Ni(6,1,F,V,ue,$e);for(var Be=0,Le=0;Le<ue;Le++){var ge=a()[V>>>2],Ne=a()[V+4>>>2];V+=8;for(var Ft=0;Ft<Ne;Ft++)Zy(F,o()[ge+Ft>>>0]);Be+=Ne}return a()[$e>>>2]=Be,0}function Pm(F){var V=u["_"+F];return V}function Jy(F,V){t().set(F,V>>>0)}function eb(F,V,ue,$e,Be){var Le={string:Br=>{var Bp=0;if(Br!=null&&Br!==0){var v0=(Br.length<<2)+1;Bp=Gm(v0),ct(Br,Bp,v0)}return Bp},array:Br=>{var Bp=Gm(Br.length);return Jy(Br,Bp),Bp}};function ge(Br){return V==="string"?Pe(Br):V==="boolean"?!!Br:Br}var Ne=Pm(F),Ft=[],so=0;if($e)for(var Ha=0;Ha<$e.length;Ha++){var I0=Le[ue[Ha]];I0?(so===0&&(so=XC()),Ft[Ha]=I0($e[Ha])):Ft[Ha]=$e[Ha]}var YC=Ne.apply(null,Ft);function TG(Br){return so!==0&&Um(so),ge(Br)}return YC=TG(YC),YC}function tb(F,V,ue,$e){ue=ue||[];var Be=ue.every(ge=>ge==="number"||ge==="boolean"),Le=V!=="string";return Le&&Be&&!$e?Pm(F):function(){return eb(F,V,ue,arguments,$e)}}Me.init();var rb=[null,Nm,_m,Em,Dm,Am,Fm],Om={__emscripten_init_main_thread_js:Ay,__emscripten_thread_cleanup:Fy,__pthread_create_js:$m,_emscripten_default_pthread_stack_size:Py,_emscripten_get_now_is_monotonic:My,_emscripten_notify_task_queue:Ly,_emscripten_set_offscreencanvas_size:By,abort:zy,emscripten_check_blocking_allowed:Vy,emscripten_date_now:Wy,emscripten_get_heap_max:Uy,emscripten_get_now:ul,emscripten_memcpy_big:Gy,emscripten_num_logical_cores:Hy,emscripten_receive_on_main_thread_js:qy,emscripten_resize_heap:Xy,emscripten_unwind_to_js_event_loop:Yy,exit:Tm,fd_close:Dm,fd_seek:Am,fd_write:Fm,memory:oe||u.wasmMemory},g0=Iy(),ob=u.___wasm_call_ctors=function(){return(ob=u.___wasm_call_ctors=u.asm.__wasm_call_ctors).apply(null,arguments)},nb=u._init=function(){return(nb=u._init=u.asm.init).apply(null,arguments)},sb=u._init_with_threads_count=function(){return(sb=u._init_with_threads_count=u.asm.init_with_threads_count).apply(null,arguments)},ab=u._get_threads_count=function(){return(ab=u._get_threads_count=u.asm.get_threads_count).apply(null,arguments)},ib=u._register_tensor=function(){return(ib=u._register_tensor=u.asm.register_tensor).apply(null,arguments)},ub=u._dispose_data=function(){return(ub=u._dispose_data=u.asm.dispose_data).apply(null,arguments)},pb=u._dispose=function(){return(pb=u._dispose=u.asm.dispose).apply(null,arguments)},cb=u._Abs=function(){return(cb=u._Abs=u.asm.Abs).apply(null,arguments)},lb=u._Acos=function(){return(lb=u._Acos=u.asm.Acos).apply(null,arguments)},mb=u._Acosh=function(){return(mb=u._Acosh=u.asm.Acosh).apply(null,arguments)},db=u._Add=function(){return(db=u._Add=u.asm.Add).apply(null,arguments)},fb=u._AddN=function(){return(fb=u._AddN=u.asm.AddN).apply(null,arguments)},hb=u._All=function(){return(hb=u._All=u.asm.All).apply(null,arguments)},gb=u._Any=function(){return(gb=u._Any=u.asm.Any).apply(null,arguments)},xb=u._ArgMax=function(){return(xb=u._ArgMax=u.asm.ArgMax).apply(null,arguments)},yb=u._ArgMin=function(){return(yb=u._ArgMin=u.asm.ArgMin).apply(null,arguments)},bb=u._Asin=function(){return(bb=u._Asin=u.asm.Asin).apply(null,arguments)},Cb=u._Asinh=function(){return(Cb=u._Asinh=u.asm.Asinh).apply(null,arguments)},wb=u._Atan=function(){return(wb=u._Atan=u.asm.Atan).apply(null,arguments)},Sb=u._Atan2=function(){return(Sb=u._Atan2=u.asm.Atan2).apply(null,arguments)},Ib=u._Atanh=function(){return(Ib=u._Atanh=u.asm.Atanh).apply(null,arguments)},vb=u._AvgPool=function(){return(vb=u._AvgPool=u.asm.AvgPool).apply(null,arguments)},kb=u._AvgPool3D=function(){return(kb=u._AvgPool3D=u.asm.AvgPool3D).apply(null,arguments)},Nb=u._AvgPool3DGrad=function(){return(Nb=u._AvgPool3DGrad=u.asm.AvgPool3DGrad).apply(null,arguments)},Tb=u._AvgPoolGrad=function(){return(Tb=u._AvgPoolGrad=u.asm.AvgPoolGrad).apply(null,arguments)},_b=u._BatchMatMul=function(){return(_b=u._BatchMatMul=u.asm.BatchMatMul).apply(null,arguments)},Eb=u._Bincount=function(){return(Eb=u._Bincount=u.asm.Bincount).apply(null,arguments)},$b=u._BitwiseAnd=function(){return($b=u._BitwiseAnd=u.asm.BitwiseAnd).apply(null,arguments)},Rb=u._Ceil=function(){return(Rb=u._Ceil=u.asm.Ceil).apply(null,arguments)},Db=u._ClipByValue=function(){return(Db=u._ClipByValue=u.asm.ClipByValue).apply(null,arguments)},Ab=u._Conv2D=function(){return(Ab=u._Conv2D=u.asm.Conv2D).apply(null,arguments)},Fb=u._Conv2DBackpropInput=function(){return(Fb=u._Conv2DBackpropInput=u.asm.Conv2DBackpropInput).apply(null,arguments)},Pb=u._Conv3D=function(){return(Pb=u._Conv3D=u.asm.Conv3D).apply(null,arguments)},Ob=u._Conv3DBackpropFilterV2=function(){return(Ob=u._Conv3DBackpropFilterV2=u.asm.Conv3DBackpropFilterV2).apply(null,arguments)},Mb=u._Conv3DBackpropInputV2=function(){return(Mb=u._Conv3DBackpropInputV2=u.asm.Conv3DBackpropInputV2).apply(null,arguments)},Lb=u._Cos=function(){return(Lb=u._Cos=u.asm.Cos).apply(null,arguments)},Bb=u._Cosh=function(){return(Bb=u._Cosh=u.asm.Cosh).apply(null,arguments)},zb=u._CropAndResize=function(){return(zb=u._CropAndResize=u.asm.CropAndResize).apply(null,arguments)},Vb=u._Cumprod=function(){return(Vb=u._Cumprod=u.asm.Cumprod).apply(null,arguments)},Wb=u._Cumsum=function(){return(Wb=u._Cumsum=u.asm.Cumsum).apply(null,arguments)},Ub=u._DenseBincount=function(){return(Ub=u._DenseBincount=u.asm.DenseBincount).apply(null,arguments)},Gb=u._DepthToSpace=function(){return(Gb=u._DepthToSpace=u.asm.DepthToSpace).apply(null,arguments)},Hb=u._DepthwiseConv2dNative=function(){return(Hb=u._DepthwiseConv2dNative=u.asm.DepthwiseConv2dNative).apply(null,arguments)},Kb=u._Diag=function(){return(Kb=u._Diag=u.asm.Diag).apply(null,arguments)},qb=u._Dilation2D=function(){return(qb=u._Dilation2D=u.asm.Dilation2D).apply(null,arguments)},jb=u._Dilation2DBackpropFilter=function(){return(jb=u._Dilation2DBackpropFilter=u.asm.Dilation2DBackpropFilter).apply(null,arguments)},Xb=u._Dilation2DBackpropInput=function(){return(Xb=u._Dilation2DBackpropInput=u.asm.Dilation2DBackpropInput).apply(null,arguments)},Yb=u._Elu=function(){return(Yb=u._Elu=u.asm.Elu).apply(null,arguments)},Qb=u._EluGrad=function(){return(Qb=u._EluGrad=u.asm.EluGrad).apply(null,arguments)},Zb=u._Equal=function(){return(Zb=u._Equal=u.asm.Equal).apply(null,arguments)},Jb=u._Erf=function(){return(Jb=u._Erf=u.asm.Erf).apply(null,arguments)},eC=u._Exp=function(){return(eC=u._Exp=u.asm.Exp).apply(null,arguments)},tC=u._Expm1=function(){return(tC=u._Expm1=u.asm.Expm1).apply(null,arguments)},rC=u._FlipLeftRight=function(){return(rC=u._FlipLeftRight=u.asm.FlipLeftRight).apply(null,arguments)},oC=u._Floor=function(){return(oC=u._Floor=u.asm.Floor).apply(null,arguments)},nC=u._FloorDiv=function(){return(nC=u._FloorDiv=u.asm.FloorDiv).apply(null,arguments)},sC=u._FusedBatchNorm=function(){return(sC=u._FusedBatchNorm=u.asm.FusedBatchNorm).apply(null,arguments)},aC=u._FusedConv2D=function(){return(aC=u._FusedConv2D=u.asm.FusedConv2D).apply(null,arguments)},iC=u._FusedDepthwiseConv2D=function(){return(iC=u._FusedDepthwiseConv2D=u.asm.FusedDepthwiseConv2D).apply(null,arguments)},uC=u._Gather=function(){return(uC=u._Gather=u.asm.Gather).apply(null,arguments)},pC=u._GatherNd=function(){return(pC=u._GatherNd=u.asm.GatherNd).apply(null,arguments)},cC=u._Greater=function(){return(cC=u._Greater=u.asm.Greater).apply(null,arguments)},lC=u._GreaterEqual=function(){return(lC=u._GreaterEqual=u.asm.GreaterEqual).apply(null,arguments)},mC=u._IsFinite=function(){return(mC=u._IsFinite=u.asm.IsFinite).apply(null,arguments)},dC=u._IsInf=function(){return(dC=u._IsInf=u.asm.IsInf).apply(null,arguments)},fC=u._IsNan=function(){return(fC=u._IsNan=u.asm.IsNan).apply(null,arguments)},hC=u._LRN=function(){return(hC=u._LRN=u.asm.LRN).apply(null,arguments)},gC=u._LRNGrad=function(){return(gC=u._LRNGrad=u.asm.LRNGrad).apply(null,arguments)},xC=u._LeakyRelu=function(){return(xC=u._LeakyRelu=u.asm.LeakyRelu).apply(null,arguments)},yC=u._Less=function(){return(yC=u._Less=u.asm.Less).apply(null,arguments)},bC=u._LessEqual=function(){return(bC=u._LessEqual=u.asm.LessEqual).apply(null,arguments)},CC=u._LinSpace=function(){return(CC=u._LinSpace=u.asm.LinSpace).apply(null,arguments)},wC=u._Log=function(){return(wC=u._Log=u.asm.Log).apply(null,arguments)},SC=u._Log1p=function(){return(SC=u._Log1p=u.asm.Log1p).apply(null,arguments)},IC=u._LogicalAnd=function(){return(IC=u._LogicalAnd=u.asm.LogicalAnd).apply(null,arguments)},vC=u._LogicalNot=function(){return(vC=u._LogicalNot=u.asm.LogicalNot).apply(null,arguments)},kC=u._LogicalOr=function(){return(kC=u._LogicalOr=u.asm.LogicalOr).apply(null,arguments)},NC=u._LogicalXor=function(){return(NC=u._LogicalXor=u.asm.LogicalXor).apply(null,arguments)},TC=u._Max=function(){return(TC=u._Max=u.asm.Max).apply(null,arguments)},_C=u._MaxPool=function(){return(_C=u._MaxPool=u.asm.MaxPool).apply(null,arguments)},EC=u._MaxPool3D=function(){return(EC=u._MaxPool3D=u.asm.MaxPool3D).apply(null,arguments)},$C=u._MaxPool3DGrad=function(){return($C=u._MaxPool3DGrad=u.asm.MaxPool3DGrad).apply(null,arguments)},RC=u._MaxPoolGrad=function(){return(RC=u._MaxPoolGrad=u.asm.MaxPoolGrad).apply(null,arguments)},DC=u._MaxPoolWithArgmax=function(){return(DC=u._MaxPoolWithArgmax=u.asm.MaxPoolWithArgmax).apply(null,arguments)},AC=u._Maximum=function(){return(AC=u._Maximum=u.asm.Maximum).apply(null,arguments)},FC=u._Mean=function(){return(FC=u._Mean=u.asm.Mean).apply(null,arguments)},PC=u._Min=function(){return(PC=u._Min=u.asm.Min).apply(null,arguments)},OC=u._Minimum=function(){return(OC=u._Minimum=u.asm.Minimum).apply(null,arguments)},MC=u._MirrorPad=function(){return(MC=u._MirrorPad=u.asm.MirrorPad).apply(null,arguments)},LC=u._Mod=function(){return(LC=u._Mod=u.asm.Mod).apply(null,arguments)},BC=u._Multinomial=function(){return(BC=u._Multinomial=u.asm.Multinomial).apply(null,arguments)},zC=u._Multiply=function(){return(zC=u._Multiply=u.asm.Multiply).apply(null,arguments)},VC=u._Neg=function(){return(VC=u._Neg=u.asm.Neg).apply(null,arguments)},WC=u._NonMaxSuppressionV3=function(){return(WC=u._NonMaxSuppressionV3=u.asm.NonMaxSuppressionV3).apply(null,arguments)},UC=u._NonMaxSuppressionV4=function(){return(UC=u._NonMaxSuppressionV4=u.asm.NonMaxSuppressionV4).apply(null,arguments)},Mm=u._NonMaxSuppressionV5=function(){return(Mm=u._NonMaxSuppressionV5=u.asm.NonMaxSuppressionV5).apply(null,arguments)},Lm=u._NotEqual=function(){return(Lm=u._NotEqual=u.asm.NotEqual).apply(null,arguments)},cl=u._OneHot=function(){return(cl=u._OneHot=u.asm.OneHot).apply(null,arguments)},GC=u._PadV2=function(){return(GC=u._PadV2=u.asm.PadV2).apply(null,arguments)},HC=u._Pow=function(){return(HC=u._Pow=u.asm.Pow).apply(null,arguments)},Op=u._Prelu=function(){return(Op=u._Prelu=u.asm.Prelu).apply(null,arguments)},Bm=u._Prod=function(){return(Bm=u._Prod=u.asm.Prod).apply(null,arguments)},Mp=u._RealDiv=function(){return(Mp=u._RealDiv=u.asm.RealDiv).apply(null,arguments)},Lp=u._Reciprocal=function(){return(Lp=u._Reciprocal=u.asm.Reciprocal).apply(null,arguments)},KC=u._Relu=function(){return(KC=u._Relu=u.asm.Relu).apply(null,arguments)},K=u._Relu6=function(){return(K=u._Relu6=u.asm.Relu6).apply(null,arguments)},ae=u._ResizeBilinear=function(){return(ae=u._ResizeBilinear=u.asm.ResizeBilinear).apply(null,arguments)},Ee=u._ResizeBilinearGrad=function(){return(Ee=u._ResizeBilinearGrad=u.asm.ResizeBilinearGrad).apply(null,arguments)},at=u._ResizeNearestNeighbor=function(){return(at=u._ResizeNearestNeighbor=u.asm.ResizeNearestNeighbor).apply(null,arguments)},_t=u._ResizeNearestNeighborGrad=function(){return(_t=u._ResizeNearestNeighborGrad=u.asm.ResizeNearestNeighborGrad).apply(null,arguments)},Et=u._Reverse=function(){return(Et=u._Reverse=u.asm.Reverse).apply(null,arguments)},Qe=u._RotateWithOffset=function(){return(Qe=u._RotateWithOffset=u.asm.RotateWithOffset).apply(null,arguments)},Ke=u._Round=function(){return(Ke=u._Round=u.asm.Round).apply(null,arguments)},Ut=u._Rsqrt=function(){return(Ut=u._Rsqrt=u.asm.Rsqrt).apply(null,arguments)},no=u._ScatterNd=function(){return(no=u._ScatterNd=u.asm.ScatterNd).apply(null,arguments)},Ga=u._SearchSorted=function(){return(Ga=u._SearchSorted=u.asm.SearchSorted).apply(null,arguments)},zm=u._SelectV2=function(){return(zm=u._SelectV2=u.asm.SelectV2).apply(null,arguments)},ll=u._Selu=function(){return(ll=u._Selu=u.asm.Selu).apply(null,arguments)},qC=u._Sigmoid=function(){return(qC=u._Sigmoid=u.asm.Sigmoid).apply(null,arguments)},yr=u._Sign=function(){return(yr=u._Sign=u.asm.Sign).apply(null,arguments)},Ti=u._Sin=function(){return(Ti=u._Sin=u.asm.Sin).apply(null,arguments)},Vm=u._Sinh=function(){return(Vm=u._Sinh=u.asm.Sinh).apply(null,arguments)},XU=u._Softmax=function(){return(XU=u._Softmax=u.asm.Softmax).apply(null,arguments)},YU=u._Softplus=function(){return(YU=u._Softplus=u.asm.Softplus).apply(null,arguments)},QU=u._SparseFillEmptyRows=function(){return(QU=u._SparseFillEmptyRows=u.asm.SparseFillEmptyRows).apply(null,arguments)},ZU=u._SparseReshape=function(){return(ZU=u._SparseReshape=u.asm.SparseReshape).apply(null,arguments)},JU=u._SparseSegmentReduction=function(){return(JU=u._SparseSegmentReduction=u.asm.SparseSegmentReduction).apply(null,arguments)},eG=u._SparseToDense=function(){return(eG=u._SparseToDense=u.asm.SparseToDense).apply(null,arguments)},tG=u._Sqrt=function(){return(tG=u._Sqrt=u.asm.Sqrt).apply(null,arguments)},rG=u._Square=function(){return(rG=u._Square=u.asm.Square).apply(null,arguments)},oG=u._SquaredDifference=function(){return(oG=u._SquaredDifference=u.asm.SquaredDifference).apply(null,arguments)},nG=u._Step=function(){return(nG=u._Step=u.asm.Step).apply(null,arguments)},sG=u._StridedSlice=function(){return(sG=u._StridedSlice=u.asm.StridedSlice).apply(null,arguments)},aG=u._Sub=function(){return(aG=u._Sub=u.asm.Sub).apply(null,arguments)},iG=u._Sum=function(){return(iG=u._Sum=u.asm.Sum).apply(null,arguments)},uG=u._Tan=function(){return(uG=u._Tan=u.asm.Tan).apply(null,arguments)},pG=u._Tanh=function(){return(pG=u._Tanh=u.asm.Tanh).apply(null,arguments)},cG=u._TensorScatterUpdate=function(){return(cG=u._TensorScatterUpdate=u.asm.TensorScatterUpdate).apply(null,arguments)},lG=u._Tile=function(){return(lG=u._Tile=u.asm.Tile).apply(null,arguments)},mG=u._TopK=function(){return(mG=u._TopK=u.asm.TopK).apply(null,arguments)},dG=u._Transform=function(){return(dG=u._Transform=u.asm.Transform).apply(null,arguments)},fG=u._Transpose=function(){return(fG=u._Transpose=u.asm.Transpose).apply(null,arguments)},hG=u.__FusedMatMul=function(){return(hG=u.__FusedMatMul=u.asm._FusedMatMul).apply(null,arguments)},gG=u._malloc=function(){return(gG=u._malloc=u.asm.malloc).apply(null,arguments)},xG=u._free=function(){return(xG=u._free=u.asm.free).apply(null,arguments)},yG=u.__emscripten_tls_init=function(){return(yG=u.__emscripten_tls_init=u.asm._emscripten_tls_init).apply(null,arguments)},Wm=u._pthread_self=function(){return(Wm=u._pthread_self=u.asm.pthread_self).apply(null,arguments)},bG=u.___errno_location=function(){return(bG=u.___errno_location=u.asm.__errno_location).apply(null,arguments)},x0=u.__emscripten_thread_init=function(){return(x0=u.__emscripten_thread_init=u.asm._emscripten_thread_init).apply(null,arguments)},CG=u.__emscripten_thread_crashed=function(){return(CG=u.__emscripten_thread_crashed=u.asm._emscripten_thread_crashed).apply(null,arguments)},wG=u._emscripten_main_thread_process_queued_calls=function(){return(wG=u._emscripten_main_thread_process_queued_calls=u.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},SG=u._emscripten_main_browser_thread_id=function(){return(SG=u._emscripten_main_browser_thread_id=u.asm.emscripten_main_browser_thread_id).apply(null,arguments)},y0=u._emscripten_run_in_main_runtime_thread_js=function(){return(y0=u._emscripten_run_in_main_runtime_thread_js=u.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},IG=u._emscripten_dispatch_to_thread_=function(){return(IG=u._emscripten_dispatch_to_thread_=u.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},b0=u.__emscripten_proxy_execute_task_queue=function(){return(b0=u.__emscripten_proxy_execute_task_queue=u.asm._emscripten_proxy_execute_task_queue).apply(null,arguments)},jC=u.__emscripten_thread_free_data=function(){return(jC=u.__emscripten_thread_free_data=u.asm._emscripten_thread_free_data).apply(null,arguments)},C0=u.__emscripten_thread_exit=function(){return(C0=u.__emscripten_thread_exit=u.asm._emscripten_thread_exit).apply(null,arguments)},w0=u._emscripten_stack_set_limits=function(){return(w0=u._emscripten_stack_set_limits=u.asm.emscripten_stack_set_limits).apply(null,arguments)},XC=u.stackSave=function(){return(XC=u.stackSave=u.asm.stackSave).apply(null,arguments)},Um=u.stackRestore=function(){return(Um=u.stackRestore=u.asm.stackRestore).apply(null,arguments)},Gm=u.stackAlloc=function(){return(Gm=u.stackAlloc=u.asm.stackAlloc).apply(null,arguments)},vG=u.dynCall_iijjiiii=function(){return(vG=u.dynCall_iijjiiii=u.asm.dynCall_iijjiiii).apply(null,arguments)},kG=u.dynCall_jiji=function(){return(kG=u.dynCall_jiji=u.asm.dynCall_jiji).apply(null,arguments)};u.keepRuntimeAlive=Lo,u.wasmMemory=oe,u.cwrap=tb,u.ExitStatus=ku,u.PThread=Me;var Hm;Ua=function F(){Hm||S0(),Hm||(Ua=F)};function S0(F){if(F=F||f,ki>0)return;if(S){c(u),Xt(),startWorker(u);return}if(Ks(),ki>0)return;function V(){Hm||(Hm=!0,u.calledRun=!0,!le&&(Xt(),c(u),u.onRuntimeInitialized&&u.onRuntimeInitialized(),Wa()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),V()},1)):V()}if(u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();S0();var Km;m&&(Km={uncaughtException:process.listeners("uncaughtException").filter(function(F){return!m.uncaughtException.indexOf(F)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(F){return!m.unhandledRejection.indexOf(F)>-1})});var qm;if(typeof WasmBackendModule!="undefined")qm=WasmBackendModule;else if(typeof e!="undefined")qm=e;else throw new Error("Could not find wasm module in post.js");if(Km){var NG=qm._dispose;qm._dispose=function(){NG(),Km.uncaughtException.forEach(function(F){process.removeListener("uncaughtException",F)}),Km.unhandledRejection.forEach(function(F){process.removeListener("unhandledRejection",F)})}}return e.ready}})();typeof Wg=="object"&&typeof Gv=="object"?Gv.exports=Uv:typeof define=="function"&&define.amd?define([],function(){return Uv}):typeof Wg=="object"&&(Wg.WasmBackendModuleThreadedSimd=Uv)});var UB=Kt((e3t,WB)=>{WB.exports.wasmWorkerContents=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",data=>onmessage({data:data}));var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8")+"//# sourceURL="+f)},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}var initializedJS=false;var pendingNotifiedProxyingQueues=[];function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=(info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports};self.onunhandledrejection=e=>{throw e.reason??e};self.startWorker=instance=>{Module=instance;postMessage({"cmd":"loaded"})};self.onmessage=e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;for(const handler of e.data.handlers){Module[handler]=function(){postMessage({cmd:"callHandler",handler:handler,args:[...arguments]})}}Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob=="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module)}else if(e.data.cmd==="run"){Module["__emscripten_thread_init"](e.data.pthread_ptr,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInitTLS();if(!initializedJS){pendingNotifiedProxyingQueues.forEach(queue=>{Module["executeNotifiedProxyingQueue"](queue)});pendingNotifiedProxyingQueues=[];initializedJS=true}try{Module["invokeEntryPoint"](e.data.start_routine,e.data.arg)}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processProxyingQueue"){if(initializedJS){Module["executeNotifiedProxyingQueue"](e.data.queue)}else{pendingNotifiedProxyingQueues.push(e.data.queue)}}else if(e.data.cmd){err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}};`});var GB=Kt((Ug,Kv)=>{var Hv=(()=>{var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(e){e=e||{};var t=typeof e!="undefined"?e:{},o,n;t.ready=new Promise(function(K,ae){o=K,n=ae});var s;typeof process!="undefined"&&process.listeners&&(s={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var a=Object.assign({},t),i=[],p="./this.program",u=(K,ae)=>{throw ae},c=typeof window=="object",l=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",d="";function f(K){return t.locateFile?t.locateFile(K,d):d+K}var h,g,x,b;function C(K){if(K instanceof Ap)return;$("exiting due to exception: "+K)}if(m){var S=Vv(),k=Wv();l?d=k.dirname(d)+"/":d=__dirname+"/",h=(K,ae)=>(K=Ks(K)?new URL(K):k.normalize(K),S.readFileSync(K,ae?void 0:"utf8")),x=K=>{var ae=h(K,!0);return ae.buffer||(ae=new Uint8Array(ae)),ae},g=(K,ae,Ee)=>{K=Ks(K)?new URL(K):k.normalize(K),S.readFile(K,function(at,_t){at?Ee(at):ae(_t.buffer)})},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),i=process.argv.slice(2),process.on("uncaughtException",function(K){if(!(K instanceof Ap))throw K}),process.on("unhandledRejection",function(K){throw K}),u=(K,ae)=>{if(it())throw process.exitCode=K,ae;C(ae),process.exit(K)},t.inspect=function(){return"[Emscripten Module object]"}}else(c||l)&&(l?d=self.location.href:typeof document!="undefined"&&document.currentScript&&(d=document.currentScript.src),r&&(d=r),d.indexOf("blob:")!==0?d=d.substr(0,d.replace(/[?#].*/,"").lastIndexOf("/")+1):d="",h=K=>{var ae=new XMLHttpRequest;return ae.open("GET",K,!1),ae.send(null),ae.responseText},l&&(x=K=>{var ae=new XMLHttpRequest;return ae.open("GET",K,!1),ae.responseType="arraybuffer",ae.send(null),new Uint8Array(ae.response)}),g=(K,ae,Ee)=>{var at=new XMLHttpRequest;at.open("GET",K,!0),at.responseType="arraybuffer",at.onload=()=>{if(at.status==200||at.status==0&&at.response){ae(at.response);return}Ee()},at.onerror=Ee,at.send(null)},b=K=>document.title=K);var _=t.print||console.log.bind(console),$=t.printErr||console.warn.bind(console);Object.assign(t,a),a=null,t.arguments&&(i=t.arguments),t.thisProgram&&(p=t.thisProgram),t.quit&&(u=t.quit);var R=4,D;t.wasmBinary&&(D=t.wasmBinary);var P=t.noExitRuntime||!0;typeof WebAssembly!="object"&&fr("no native wasm support detected");var O,M=!1,L;function B(K,ae){K||fr(ae)}var z=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function U(K,ae,Ee){ae>>>=0;for(var at=ae+Ee,_t=ae;K[_t]&&!(_t>=at);)++_t;if(_t-ae>16&&K.buffer&&z)return z.decode(K.subarray(ae,_t));for(var Et="";ae<_t;){var Qe=K[ae++];if(!(Qe&128)){Et+=String.fromCharCode(Qe);continue}var Ke=K[ae++]&63;if((Qe&224)==192){Et+=String.fromCharCode((Qe&31)<<6|Ke);continue}var Ut=K[ae++]&63;if((Qe&240)==224?Qe=(Qe&15)<<12|Ke<<6|Ut:Qe=(Qe&7)<<18|Ke<<12|Ut<<6|K[ae++]&63,Qe<65536)Et+=String.fromCharCode(Qe);else{var no=Qe-65536;Et+=String.fromCharCode(55296|no>>10,56320|no&1023)}}return Et}function j(K,ae){return K>>>=0,K?U(ne,K,ae):""}function q(K,ae,Ee,at){if(Ee>>>=0,!(at>0))return 0;for(var _t=Ee,Et=Ee+at-1,Qe=0;Qe<K.length;++Qe){var Ke=K.charCodeAt(Qe);if(Ke>=55296&&Ke<=57343){var Ut=K.charCodeAt(++Qe);Ke=65536+((Ke&1023)<<10)|Ut&1023}if(Ke<=127){if(Ee>=Et)break;ae[Ee++>>>0]=Ke}else if(Ke<=2047){if(Ee+1>=Et)break;ae[Ee++>>>0]=192|Ke>>6,ae[Ee++>>>0]=128|Ke&63}else if(Ke<=65535){if(Ee+2>=Et)break;ae[Ee++>>>0]=224|Ke>>12,ae[Ee++>>>0]=128|Ke>>6&63,ae[Ee++>>>0]=128|Ke&63}else{if(Ee+3>=Et)break;ae[Ee++>>>0]=240|Ke>>18,ae[Ee++>>>0]=128|Ke>>12&63,ae[Ee++>>>0]=128|Ke>>6&63,ae[Ee++>>>0]=128|Ke&63}}return ae[Ee>>>0]=0,Ee-_t}function Y(K,ae,Ee){return q(K,ne,ae,Ee)}var J,re,ne,ee,oe,ie,le,be,_e;function ve(K){J=K,t.HEAP8=re=new Int8Array(K),t.HEAP16=ee=new Int16Array(K),t.HEAP32=ie=new Int32Array(K),t.HEAPU8=ne=new Uint8Array(K),t.HEAPU16=oe=new Uint16Array(K),t.HEAPU32=le=new Uint32Array(K),t.HEAPF32=be=new Float32Array(K),t.HEAPF64=_e=new Float64Array(K)}var Fe=t.INITIAL_MEMORY||16777216,Pe,st=[],ct=[],He=[],lt=!1;function it(){return P}function ht(){if(t.preRun)for(typeof t.preRun=="function"&&(t.preRun=[t.preRun]);t.preRun.length;)Mt(t.preRun.shift());Ua(st)}function gt(){lt=!0,Ua(ct)}function Lr(){if(t.postRun)for(typeof t.postRun=="function"&&(t.postRun=[t.postRun]);t.postRun.length;)rr(t.postRun.shift());Ua(He)}function Mt(K){st.unshift(K)}function to(K){ct.unshift(K)}function rr(K){He.unshift(K)}var Tt=0,or=null,nr=null;function ro(K){Tt++,t.monitorRunDependencies&&t.monitorRunDependencies(Tt)}function oo(K){if(Tt--,t.monitorRunDependencies&&t.monitorRunDependencies(Tt),Tt==0&&(or!==null&&(clearInterval(or),or=null),nr)){var ae=nr;nr=null,ae()}}function fr(K){t.onAbort&&t.onAbort(K),K="Aborted("+K+")",$(K),M=!0,L=1,K+=". Build with -sASSERTIONS for more info.";var ae=new WebAssembly.RuntimeError(K);throw n(ae),ae}var Va="data:application/octet-stream;base64,";function Lo(K){return K.startsWith(Va)}function Ks(K){return K.startsWith("file://")}var Xt;Xt="tfjs-backend-wasm.wasm",Lo(Xt)||(Xt=f(Xt));function Wa(K){try{if(K==Xt&&D)return new Uint8Array(D);if(x)return x(K);throw"both async and sync fetching of the wasm failed"}catch(ae){fr(ae)}}function ol(){if(!D&&(c||l)){if(typeof fetch=="function"&&!Ks(Xt))return fetch(Xt,{credentials:"same-origin"}).then(function(K){if(!K.ok)throw"failed to load wasm binary file at '"+Xt+"'";return K.arrayBuffer()}).catch(function(){return Wa(Xt)});if(g)return new Promise(function(K,ae){g(Xt,function(Ee){K(new Uint8Array(Ee))},ae)})}return Promise.resolve().then(function(){return Wa(Xt)})}function nl(){var K={env:sl,wasi_snapshot_preview1:sl};function ae(Qe,Ke){var Ut=Qe.exports;t.asm=Ut,O=t.asm.memory,ve(O.buffer),Pe=t.asm.__indirect_function_table,to(t.asm.__wasm_call_ctors),oo("wasm-instantiate")}ro("wasm-instantiate");function Ee(Qe){ae(Qe.instance)}function at(Qe){return ol().then(function(Ke){return WebAssembly.instantiate(Ke,K)}).then(function(Ke){return Ke}).then(Qe,function(Ke){$("failed to asynchronously prepare wasm: "+Ke),fr(Ke)})}function _t(){return!D&&typeof WebAssembly.instantiateStreaming=="function"&&!Lo(Xt)&&!Ks(Xt)&&!m&&typeof fetch=="function"?fetch(Xt,{credentials:"same-origin"}).then(function(Qe){var Ke=WebAssembly.instantiateStreaming(Qe,K);return Ke.then(Ee,function(Ut){return $("wasm streaming compile failed: "+Ut),$("falling back to ArrayBuffer instantiation"),at(Ee)})}):at(Ee)}if(t.instantiateWasm)try{var Et=t.instantiateWasm(K,ae);return Et}catch(Qe){$("Module.instantiateWasm callback failed with error: "+Qe),n(Qe)}return _t().catch(n),{}}var d0,ki;function Ap(K){this.name="ExitStatus",this.message="Program terminated with exit("+K+")",this.status=K}function Ua(K){for(;K.length>0;)K.shift()(t)}function Cy(){fr("")}function wm(){return 4294901760}function vu(){return wm()}function wy(K,ae,Ee){ne.copyWithin(K>>>0,ae>>>0,ae+Ee>>>0)}function Sm(K){try{return O.grow(K-J.byteLength+65535>>>16),ve(O.buffer),1}catch(ae){}}function Fp(K){var ae=ne.length;K=K>>>0;var Ee=wm();if(K>Ee)return!1;let at=(Ut,no)=>Ut+(no-Ut%no)%no;for(var _t=1;_t<=4;_t*=2){var Et=ae*(1+.2/_t);Et=Math.min(Et,K+100663296);var Qe=Math.min(Ee,at(Math.max(K,Et),65536)),Ke=Sm(Qe);if(Ke)return!0}return!1}var hr={varargs:void 0,get:function(){hr.varargs+=4;var K=ie[hr.varargs-4>>>2];return K},getStr:function(K){var ae=j(K);return ae}};function Im(K){return 52}function Sy(K,ae,Ee,at,_t){return 70}var Iy=[null,[],[]];function f0(K,ae){var Ee=Iy[K];ae===0||ae===10?((K===1?_:$)(U(Ee,0)),Ee.length=0):Ee.push(ae)}function h0(K,ae,Ee,at){for(var _t=0,Et=0;Et<Ee;Et++){var Qe=le[ae>>>2],Ke=le[ae+4>>>2];ae+=8;for(var Ut=0;Ut<Ke;Ut++)f0(K,ne[Qe+Ut>>>0]);_t+=Ke}return le[at>>>2]=_t,0}function vm(K){var ae=t["_"+K];return ae}function ku(K,ae){re.set(K,ae>>>0)}function vy(K,ae,Ee,at,_t){var Et={string:yr=>{var Ti=0;if(yr!=null&&yr!==0){var Vm=(yr.length<<2)+1;Ti=cl(Vm),Y(yr,Ti,Vm)}return Ti},array:yr=>{var Ti=cl(yr.length);return ku(yr,Ti),Ti}};function Qe(yr){return ae==="string"?j(yr):ae==="boolean"?!!yr:yr}var Ke=vm(K),Ut=[],no=0;if(at)for(var Ga=0;Ga<at.length;Ga++){var zm=Et[Ee[Ga]];zm?(no===0&&(no=Mm()),Ut[Ga]=zm(at[Ga])):Ut[Ga]=at[Ga]}var ll=Ke.apply(null,Ut);function qC(yr){return no!==0&&Lm(no),Qe(yr)}return ll=qC(ll),ll}function ky(K,ae,Ee,at){Ee=Ee||[];var _t=Ee.every(Qe=>Qe==="number"||Qe==="boolean"),Et=ae!=="string";return Et&&_t&&!at?vm(K):function(){return vy(K,ae,Ee,arguments,at)}}var sl={abort:Cy,emscripten_get_heap_max:vu,emscripten_memcpy_big:wy,emscripten_resize_heap:Fp,fd_close:Im,fd_seek:Sy,fd_write:h0},Ny=nl(),km=t.___wasm_call_ctors=function(){return(km=t.___wasm_call_ctors=t.asm.__wasm_call_ctors).apply(null,arguments)},Nm=t._init=function(){return(Nm=t._init=t.asm.init).apply(null,arguments)},Ty=t._init_with_threads_count=function(){return(Ty=t._init_with_threads_count=t.asm.init_with_threads_count).apply(null,arguments)},Tm=t._get_threads_count=function(){return(Tm=t._get_threads_count=t.asm.get_threads_count).apply(null,arguments)},_y=t._register_tensor=function(){return(_y=t._register_tensor=t.asm.register_tensor).apply(null,arguments)},Me=t._dispose_data=function(){return(Me=t._dispose_data=t.asm.dispose_data).apply(null,arguments)},al=t._dispose=function(){return(al=t._dispose=t.asm.dispose).apply(null,arguments)},Ey=t._Abs=function(){return(Ey=t._Abs=t.asm.Abs).apply(null,arguments)},_m=t._Acos=function(){return(_m=t._Acos=t.asm.Acos).apply(null,arguments)},Pp=t._Acosh=function(){return(Pp=t._Acosh=t.asm.Acosh).apply(null,arguments)},$y=t._Add=function(){return($y=t._Add=t.asm.Add).apply(null,arguments)},Ry=t._AddN=function(){return(Ry=t._AddN=t.asm.AddN).apply(null,arguments)},Dy=t._All=function(){return(Dy=t._All=t.asm.All).apply(null,arguments)},Ay=t._Any=function(){return(Ay=t._Any=t.asm.Any).apply(null,arguments)},Fy=t._ArgMax=function(){return(Fy=t._ArgMax=t.asm.ArgMax).apply(null,arguments)},Em=t._ArgMin=function(){return(Em=t._ArgMin=t.asm.ArgMin).apply(null,arguments)},$m=t._Asin=function(){return($m=t._Asin=t.asm.Asin).apply(null,arguments)},Py=t._Asinh=function(){return(Py=t._Asinh=t.asm.Asinh).apply(null,arguments)},Oy=t._Atan=function(){return(Oy=t._Atan=t.asm.Atan).apply(null,arguments)},My=t._Atan2=function(){return(My=t._Atan2=t.asm.Atan2).apply(null,arguments)},il=t._Atanh=function(){return(il=t._Atanh=t.asm.Atanh).apply(null,arguments)},Ly=t._AvgPool=function(){return(Ly=t._AvgPool=t.asm.AvgPool).apply(null,arguments)},By=t._AvgPool3D=function(){return(By=t._AvgPool3D=t.asm.AvgPool3D).apply(null,arguments)},zy=t._AvgPool3DGrad=function(){return(zy=t._AvgPool3DGrad=t.asm.AvgPool3DGrad).apply(null,arguments)},Nu=t._AvgPoolGrad=function(){return(Nu=t._AvgPoolGrad=t.asm.AvgPoolGrad).apply(null,arguments)},Vy=t._BatchMatMul=function(){return(Vy=t._BatchMatMul=t.asm.BatchMatMul).apply(null,arguments)},Wy=t._Bincount=function(){return(Wy=t._Bincount=t.asm.Bincount).apply(null,arguments)},Rm=t._BitwiseAnd=function(){return(Rm=t._BitwiseAnd=t.asm.BitwiseAnd).apply(null,arguments)},Uy=t._Ceil=function(){return(Uy=t._Ceil=t.asm.Ceil).apply(null,arguments)},ul=t._ClipByValue=function(){return(ul=t._ClipByValue=t.asm.ClipByValue).apply(null,arguments)},Gy=t._Conv2D=function(){return(Gy=t._Conv2D=t.asm.Conv2D).apply(null,arguments)},Hy=t._Conv2DBackpropInput=function(){return(Hy=t._Conv2DBackpropInput=t.asm.Conv2DBackpropInput).apply(null,arguments)},Ky=t._Conv3D=function(){return(Ky=t._Conv3D=t.asm.Conv3D).apply(null,arguments)},Ni=t._Conv3DBackpropFilterV2=function(){return(Ni=t._Conv3DBackpropFilterV2=t.asm.Conv3DBackpropFilterV2).apply(null,arguments)},pl=t._Conv3DBackpropInputV2=function(){return(pl=t._Conv3DBackpropInputV2=t.asm.Conv3DBackpropInputV2).apply(null,arguments)},qy=t._Cos=function(){return(qy=t._Cos=t.asm.Cos).apply(null,arguments)},jy=t._Cosh=function(){return(jy=t._Cosh=t.asm.Cosh).apply(null,arguments)},Xy=t._CropAndResize=function(){return(Xy=t._CropAndResize=t.asm.CropAndResize).apply(null,arguments)},Yy=t._Cumprod=function(){return(Yy=t._Cumprod=t.asm.Cumprod).apply(null,arguments)},Dm=t._Cumsum=function(){return(Dm=t._Cumsum=t.asm.Cumsum).apply(null,arguments)},Am=t._DenseBincount=function(){return(Am=t._DenseBincount=t.asm.DenseBincount).apply(null,arguments)},Qy=t._DepthToSpace=function(){return(Qy=t._DepthToSpace=t.asm.DepthToSpace).apply(null,arguments)},Zy=t._DepthwiseConv2dNative=function(){return(Zy=t._DepthwiseConv2dNative=t.asm.DepthwiseConv2dNative).apply(null,arguments)},Fm=t._Diag=function(){return(Fm=t._Diag=t.asm.Diag).apply(null,arguments)},Pm=t._Dilation2D=function(){return(Pm=t._Dilation2D=t.asm.Dilation2D).apply(null,arguments)},Jy=t._Dilation2DBackpropFilter=function(){return(Jy=t._Dilation2DBackpropFilter=t.asm.Dilation2DBackpropFilter).apply(null,arguments)},eb=t._Dilation2DBackpropInput=function(){return(eb=t._Dilation2DBackpropInput=t.asm.Dilation2DBackpropInput).apply(null,arguments)},tb=t._Elu=function(){return(tb=t._Elu=t.asm.Elu).apply(null,arguments)},rb=t._EluGrad=function(){return(rb=t._EluGrad=t.asm.EluGrad).apply(null,arguments)},Om=t._Equal=function(){return(Om=t._Equal=t.asm.Equal).apply(null,arguments)},g0=t._Erf=function(){return(g0=t._Erf=t.asm.Erf).apply(null,arguments)},ob=t._Exp=function(){return(ob=t._Exp=t.asm.Exp).apply(null,arguments)},nb=t._Expm1=function(){return(nb=t._Expm1=t.asm.Expm1).apply(null,arguments)},sb=t._FlipLeftRight=function(){return(sb=t._FlipLeftRight=t.asm.FlipLeftRight).apply(null,arguments)},ab=t._Floor=function(){return(ab=t._Floor=t.asm.Floor).apply(null,arguments)},ib=t._FloorDiv=function(){return(ib=t._FloorDiv=t.asm.FloorDiv).apply(null,arguments)},ub=t._FusedBatchNorm=function(){return(ub=t._FusedBatchNorm=t.asm.FusedBatchNorm).apply(null,arguments)},pb=t._FusedConv2D=function(){return(pb=t._FusedConv2D=t.asm.FusedConv2D).apply(null,arguments)},cb=t._FusedDepthwiseConv2D=function(){return(cb=t._FusedDepthwiseConv2D=t.asm.FusedDepthwiseConv2D).apply(null,arguments)},lb=t._Gather=function(){return(lb=t._Gather=t.asm.Gather).apply(null,arguments)},mb=t._GatherNd=function(){return(mb=t._GatherNd=t.asm.GatherNd).apply(null,arguments)},db=t._Greater=function(){return(db=t._Greater=t.asm.Greater).apply(null,arguments)},fb=t._GreaterEqual=function(){return(fb=t._GreaterEqual=t.asm.GreaterEqual).apply(null,arguments)},hb=t._IsFinite=function(){return(hb=t._IsFinite=t.asm.IsFinite).apply(null,arguments)},gb=t._IsInf=function(){return(gb=t._IsInf=t.asm.IsInf).apply(null,arguments)},xb=t._IsNan=function(){return(xb=t._IsNan=t.asm.IsNan).apply(null,arguments)},yb=t._LRN=function(){return(yb=t._LRN=t.asm.LRN).apply(null,arguments)},bb=t._LRNGrad=function(){return(bb=t._LRNGrad=t.asm.LRNGrad).apply(null,arguments)},Cb=t._LeakyRelu=function(){return(Cb=t._LeakyRelu=t.asm.LeakyRelu).apply(null,arguments)},wb=t._Less=function(){return(wb=t._Less=t.asm.Less).apply(null,arguments)},Sb=t._LessEqual=function(){return(Sb=t._LessEqual=t.asm.LessEqual).apply(null,arguments)},Ib=t._LinSpace=function(){return(Ib=t._LinSpace=t.asm.LinSpace).apply(null,arguments)},vb=t._Log=function(){return(vb=t._Log=t.asm.Log).apply(null,arguments)},kb=t._Log1p=function(){return(kb=t._Log1p=t.asm.Log1p).apply(null,arguments)},Nb=t._LogicalAnd=function(){return(Nb=t._LogicalAnd=t.asm.LogicalAnd).apply(null,arguments)},Tb=t._LogicalNot=function(){return(Tb=t._LogicalNot=t.asm.LogicalNot).apply(null,arguments)},_b=t._LogicalOr=function(){return(_b=t._LogicalOr=t.asm.LogicalOr).apply(null,arguments)},Eb=t._LogicalXor=function(){return(Eb=t._LogicalXor=t.asm.LogicalXor).apply(null,arguments)},$b=t._Max=function(){return($b=t._Max=t.asm.Max).apply(null,arguments)},Rb=t._MaxPool=function(){return(Rb=t._MaxPool=t.asm.MaxPool).apply(null,arguments)},Db=t._MaxPool3D=function(){return(Db=t._MaxPool3D=t.asm.MaxPool3D).apply(null,arguments)},Ab=t._MaxPool3DGrad=function(){return(Ab=t._MaxPool3DGrad=t.asm.MaxPool3DGrad).apply(null,arguments)},Fb=t._MaxPoolGrad=function(){return(Fb=t._MaxPoolGrad=t.asm.MaxPoolGrad).apply(null,arguments)},Pb=t._MaxPoolWithArgmax=function(){return(Pb=t._MaxPoolWithArgmax=t.asm.MaxPoolWithArgmax).apply(null,arguments)},Ob=t._Maximum=function(){return(Ob=t._Maximum=t.asm.Maximum).apply(null,arguments)},Mb=t._Mean=function(){return(Mb=t._Mean=t.asm.Mean).apply(null,arguments)},Lb=t._Min=function(){return(Lb=t._Min=t.asm.Min).apply(null,arguments)},Bb=t._Minimum=function(){return(Bb=t._Minimum=t.asm.Minimum).apply(null,arguments)},zb=t._MirrorPad=function(){return(zb=t._MirrorPad=t.asm.MirrorPad).apply(null,arguments)},Vb=t._Mod=function(){return(Vb=t._Mod=t.asm.Mod).apply(null,arguments)},Wb=t._Multinomial=function(){return(Wb=t._Multinomial=t.asm.Multinomial).apply(null,arguments)},Ub=t._Multiply=function(){return(Ub=t._Multiply=t.asm.Multiply).apply(null,arguments)},Gb=t._Neg=function(){return(Gb=t._Neg=t.asm.Neg).apply(null,arguments)},Hb=t._NonMaxSuppressionV3=function(){return(Hb=t._NonMaxSuppressionV3=t.asm.NonMaxSuppressionV3).apply(null,arguments)},Kb=t._NonMaxSuppressionV4=function(){return(Kb=t._NonMaxSuppressionV4=t.asm.NonMaxSuppressionV4).apply(null,arguments)},qb=t._NonMaxSuppressionV5=function(){return(qb=t._NonMaxSuppressionV5=t.asm.NonMaxSuppressionV5).apply(null,arguments)},jb=t._NotEqual=function(){return(jb=t._NotEqual=t.asm.NotEqual).apply(null,arguments)},Xb=t._OneHot=function(){return(Xb=t._OneHot=t.asm.OneHot).apply(null,arguments)},Yb=t._PadV2=function(){return(Yb=t._PadV2=t.asm.PadV2).apply(null,arguments)},Qb=t._Pow=function(){return(Qb=t._Pow=t.asm.Pow).apply(null,arguments)},Zb=t._Prelu=function(){return(Zb=t._Prelu=t.asm.Prelu).apply(null,arguments)},Jb=t._Prod=function(){return(Jb=t._Prod=t.asm.Prod).apply(null,arguments)},eC=t._RealDiv=function(){return(eC=t._RealDiv=t.asm.RealDiv).apply(null,arguments)},tC=t._Reciprocal=function(){return(tC=t._Reciprocal=t.asm.Reciprocal).apply(null,arguments)},rC=t._Relu=function(){return(rC=t._Relu=t.asm.Relu).apply(null,arguments)},oC=t._Relu6=function(){return(oC=t._Relu6=t.asm.Relu6).apply(null,arguments)},nC=t._ResizeBilinear=function(){return(nC=t._ResizeBilinear=t.asm.ResizeBilinear).apply(null,arguments)},sC=t._ResizeBilinearGrad=function(){return(sC=t._ResizeBilinearGrad=t.asm.ResizeBilinearGrad).apply(null,arguments)},aC=t._ResizeNearestNeighbor=function(){return(aC=t._ResizeNearestNeighbor=t.asm.ResizeNearestNeighbor).apply(null,arguments)},iC=t._ResizeNearestNeighborGrad=function(){return(iC=t._ResizeNearestNeighborGrad=t.asm.ResizeNearestNeighborGrad).apply(null,arguments)},uC=t._Reverse=function(){return(uC=t._Reverse=t.asm.Reverse).apply(null,arguments)},pC=t._RotateWithOffset=function(){return(pC=t._RotateWithOffset=t.asm.RotateWithOffset).apply(null,arguments)},cC=t._Round=function(){return(cC=t._Round=t.asm.Round).apply(null,arguments)},lC=t._Rsqrt=function(){return(lC=t._Rsqrt=t.asm.Rsqrt).apply(null,arguments)},mC=t._ScatterNd=function(){return(mC=t._ScatterNd=t.asm.ScatterNd).apply(null,arguments)},dC=t._SearchSorted=function(){return(dC=t._SearchSorted=t.asm.SearchSorted).apply(null,arguments)},fC=t._SelectV2=function(){return(fC=t._SelectV2=t.asm.SelectV2).apply(null,arguments)},hC=t._Selu=function(){return(hC=t._Selu=t.asm.Selu).apply(null,arguments)},gC=t._Sigmoid=function(){return(gC=t._Sigmoid=t.asm.Sigmoid).apply(null,arguments)},xC=t._Sign=function(){return(xC=t._Sign=t.asm.Sign).apply(null,arguments)},yC=t._Sin=function(){return(yC=t._Sin=t.asm.Sin).apply(null,arguments)},bC=t._Sinh=function(){return(bC=t._Sinh=t.asm.Sinh).apply(null,arguments)},CC=t._Softmax=function(){return(CC=t._Softmax=t.asm.Softmax).apply(null,arguments)},wC=t._Softplus=function(){return(wC=t._Softplus=t.asm.Softplus).apply(null,arguments)},SC=t._SparseFillEmptyRows=function(){return(SC=t._SparseFillEmptyRows=t.asm.SparseFillEmptyRows).apply(null,arguments)},IC=t._SparseReshape=function(){return(IC=t._SparseReshape=t.asm.SparseReshape).apply(null,arguments)},vC=t._SparseSegmentReduction=function(){return(vC=t._SparseSegmentReduction=t.asm.SparseSegmentReduction).apply(null,arguments)},kC=t._SparseToDense=function(){return(kC=t._SparseToDense=t.asm.SparseToDense).apply(null,arguments)},NC=t._Sqrt=function(){return(NC=t._Sqrt=t.asm.Sqrt).apply(null,arguments)},TC=t._Square=function(){return(TC=t._Square=t.asm.Square).apply(null,arguments)},_C=t._SquaredDifference=function(){return(_C=t._SquaredDifference=t.asm.SquaredDifference).apply(null,arguments)},EC=t._Step=function(){return(EC=t._Step=t.asm.Step).apply(null,arguments)},$C=t._StridedSlice=function(){return($C=t._StridedSlice=t.asm.StridedSlice).apply(null,arguments)},RC=t._Sub=function(){return(RC=t._Sub=t.asm.Sub).apply(null,arguments)},DC=t._Sum=function(){return(DC=t._Sum=t.asm.Sum).apply(null,arguments)},AC=t._Tan=function(){return(AC=t._Tan=t.asm.Tan).apply(null,arguments)},FC=t._Tanh=function(){return(FC=t._Tanh=t.asm.Tanh).apply(null,arguments)},PC=t._TensorScatterUpdate=function(){return(PC=t._TensorScatterUpdate=t.asm.TensorScatterUpdate).apply(null,arguments)},OC=t._Tile=function(){return(OC=t._Tile=t.asm.Tile).apply(null,arguments)},MC=t._TopK=function(){return(MC=t._TopK=t.asm.TopK).apply(null,arguments)},LC=t._Transform=function(){return(LC=t._Transform=t.asm.Transform).apply(null,arguments)},BC=t._Transpose=function(){return(BC=t._Transpose=t.asm.Transpose).apply(null,arguments)},zC=t.__FusedMatMul=function(){return(zC=t.__FusedMatMul=t.asm._FusedMatMul).apply(null,arguments)},VC=t._malloc=function(){return(VC=t._malloc=t.asm.malloc).apply(null,arguments)},WC=t._free=function(){return(WC=t._free=t.asm.free).apply(null,arguments)},UC=t.___errno_location=function(){return(UC=t.___errno_location=t.asm.__errno_location).apply(null,arguments)},Mm=t.stackSave=function(){return(Mm=t.stackSave=t.asm.stackSave).apply(null,arguments)},Lm=t.stackRestore=function(){return(Lm=t.stackRestore=t.asm.stackRestore).apply(null,arguments)},cl=t.stackAlloc=function(){return(cl=t.stackAlloc=t.asm.stackAlloc).apply(null,arguments)},GC=t.dynCall_iijjiiii=function(){return(GC=t.dynCall_iijjiiii=t.asm.dynCall_iijjiiii).apply(null,arguments)},HC=t.dynCall_jiji=function(){return(HC=t.dynCall_jiji=t.asm.dynCall_jiji).apply(null,arguments)};t.cwrap=ky;var Op;nr=function K(){Op||Bm(),Op||(nr=K)};function Bm(K){if(K=K||i,Tt>0||(ht(),Tt>0))return;function ae(){Op||(Op=!0,t.calledRun=!0,!M&&(gt(),o(t),t.onRuntimeInitialized&&t.onRuntimeInitialized(),Lr()))}t.setStatus?(t.setStatus("Running..."),setTimeout(function(){setTimeout(function(){t.setStatus("")},1),ae()},1)):ae()}if(t.preInit)for(typeof t.preInit=="function"&&(t.preInit=[t.preInit]);t.preInit.length>0;)t.preInit.pop()();Bm();var Mp;s&&(Mp={uncaughtException:process.listeners("uncaughtException").filter(function(K){return!s.uncaughtException.indexOf(K)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(K){return!s.unhandledRejection.indexOf(K)>-1})});var Lp;if(typeof e!="undefined")Lp=e;else if(typeof WasmBackendModuleThreadedSimd!="undefined")Lp=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(Mp){var KC=Lp._dispose;Lp._dispose=function(){KC(),Mp.uncaughtException.forEach(function(K){process.removeListener("uncaughtException",K)}),Mp.unhandledRejection.forEach(function(K){process.removeListener("unhandledRejection",K)})}}return e.ready}})();typeof Ug=="object"&&typeof Kv=="object"?Kv.exports=Hv:typeof define=="function"&&define.amd?define([],function(){return Hv}):typeof Ug=="object"&&(Ug.WasmBackendModule=Hv)});var Bo=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},ao=class{refCount(e){return zr("refCount")}incRef(e){return zr("incRef")}timerAvailable(){return!0}time(e){return zr("time")}read(e){return zr("read")}readSync(e){return zr("readSync")}readToGPU(e,t){return zr("readToGPU")}numDataIds(){return zr("numDataIds")}disposeData(e,t){return zr("disposeData")}write(e,t,o){return zr("write")}move(e,t,o,n,s){return zr("move")}createTensorFromGPUData(e,t,o){return zr("createTensorFromGPUData")}memory(){return zr("memory")}floatPrecision(){return zr("floatPrecision")}epsilon(){return this.floatPrecision()===32?1e-7:1e-4}dispose(){return zr("dispose")}};function zr(r){throw new Error(`'${r}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function k0(r){let e=r.length,t=0;for(;e>0;)t=Math.random()*e|0,e--,jm(r,e,t)}function FG(r,e){if(r.length!==e.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${r.length}Second array length was ${e.length}`);let t=r.length,o=0;for(;t>0;)o=Math.random()*t|0,t--,jm(r,t,o),jm(e,t,o)}function Vp(r,e,t){return Math.max(r,Math.min(e,t))}function PG(r){return r%2===0?r:r+1}function jm(r,e,t){let o=r[e];r[e]=r[t],r[t]=o}function OG(r){let e=0;for(let t=0;t<r.length;t++)e+=r[t];return e}function MG(r,e){let t=Math.random();return e*t+(1-t)*r}function LG(r,e){let t=0;for(let o=0;o<r.length;o++){let n=Number(r[o])-Number(e[o]);t+=n*n}return t}function E(r,e){if(!r)throw new Error(typeof e=="string"?e:e())}function xt(r,e,t=""){E(br(r,e),()=>t+` Shapes ${r} and ${e} must match`)}function io(r){E(r!=null,()=>"The input to the tensor constructor must be a non-null value.")}function ze(r){if(r.length===0)return 1;let e=r[0];for(let t=1;t<r.length;t++)e*=r[t];return e}function BG(r){return r.length===0}function ZC(r,e){if(r===e)return!0;if(r==null||e==null||r.length!==e.length)return!1;for(let t=0;t<r.length;t++)if(r[t]!==null&&e[t]!==null&&r[t]!==e[t])return!1;return!0}function br(r,e){if(r===e)return!0;if(r==null||e==null||r.length!==e.length)return!1;for(let t=0;t<r.length;t++)if(r[t]!==e[t])return!1;return!0}function Ka(r){return r%1===0}function zG(r){if(Math.tanh!=null)return Math.tanh(r);if(r===1/0)return 1;if(r===-1/0)return-1;{let e=Math.exp(2*r);return(e-1)/(e+1)}}function VG(r){let e=Math.ceil(Math.sqrt(r));return[e,Math.ceil(r/e)]}function WG(r){let e=new Uint32Array(r);for(let t=0;t<r;++t)e[t]=t;return k0(e),e}function _u(r,e){return e<=r.length?r:r+" ".repeat(e-r.length)}function UG(r,e=n=>0,t,o){return new Promise((n,s)=>{let a=0,i=()=>{if(r()){n();return}a++;let p=e(a);if(t!=null&&a>=t){s();return}o!=null?o(i,p):setTimeout(i,p)};i()})}function GG(r,e){let t=1,o=-1;for(let s=0;s<r.length;++s)if(r[s]>=0)t*=r[s];else if(r[s]===-1){if(o!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${o} and dim ${s}`);o=s}else if(r[s]<0)throw Error(`Shapes can not be < 0. Found ${r[s]} at dim ${s}`);if(o===-1){if(e>0&&e!==t)throw Error(`Size(${e}) must match the product of shape ${r}`);return r}if(t===0)throw Error(`Cannot infer the missing size in [${r}] when there are 0 elements`);if(e%t!==0)throw Error(`The implicit shape can't be a fractional number. Got ${e} / ${t}`);let n=r.slice();return n[o]=e/t,n}function _i(r,e){let t=e.length;return r=r==null?e.map((o,n)=>n):[].concat(r),E(r.every(o=>o>=-t&&o<t),()=>`All values in axis param must be in range [-${t}, ${t}) but got axis ${r}`),E(r.every(o=>Ka(o)),()=>`All values in axis param must be integers but got axis ${r}`),r.map(o=>o<0?t+o:o)}function JC(r,e){let t=[],o=[],n=e!=null&&Array.isArray(e)&&e.length===0,s=e==null||n?null:_i(e,r).sort(),a=0;for(let i=0;i<r.length;++i){if(s!=null){if(s[a]===i&&r[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${r[i]}' is not 1`);(s[a]==null||s[a]>i)&&r[i]===1&&(t.push(r[i]),o.push(i)),s[a]<=i&&a++}r[i]!==1&&(t.push(r[i]),o.push(i))}return{newShape:t,keptDims:o}}function ew(r,e){return Xm(r,e)}function Xm(r,e){let t=null;if(r==null||r==="float32")t=new Float32Array(e);else if(r==="int32")t=new Int32Array(e);else if(r==="bool")t=new Uint8Array(e);else if(r==="string")t=new Array(e);else throw new Error(`Unknown data type ${r}`);return t}function tw(r,e){for(let t=0;t<r.length;t++){let o=r[t];if(isNaN(o)||!isFinite(o))throw Error(`A tensor of type ${e} being uploaded contains ${o}.`)}}function rw(r){return r==="bool"||r==="complex64"||r==="float32"||r==="int32"||r==="string"}function HG(r,e){return!(e==="complex64"||e==="float32"&&r!=="complex64"||e==="int32"&&r!=="float32"&&r!=="complex64"||e==="bool"&&r==="bool")}function Wp(r){if(r==="float32"||r==="int32")return 4;if(r==="complex64")return 8;if(r==="bool")return 1;throw new Error(`Unknown dtype ${r}`)}function ow(r){if(r==null)return 0;let e=0;return r.forEach(t=>e+=t.length),e}function zo(r){return typeof r=="string"||r instanceof String}function N0(r){return typeof r=="boolean"}function T0(r){return typeof r=="number"}function Ei(r){return Array.isArray(r)?Ei(r[0]):r instanceof Float32Array?"float32":r instanceof Int32Array||r instanceof Uint8Array||r instanceof Uint8ClampedArray?"int32":T0(r)?"float32":zo(r)?"string":N0(r)?"bool":"float32"}function qs(r){return!!(r&&r.constructor&&r.call&&r.apply)}function Up(r,e){for(let t=e;t<r;++t)if(r%t===0)return t;return r}function js(r){let e=r.length;if(e<2)return[];let t=new Array(e-1);t[e-2]=r[e-1];for(let o=e-3;o>=0;--o)t[o]=t[o+1]*r[o+1];return t}function _0(r,e,t,o=!1){let n=new Array;if(e.length===1){let s=e[0]*(o?2:1);for(let a=0;a<s;a++)n[a]=t[r+a]}else{let s=e[0],a=e.slice(1),i=a.reduce((p,u)=>p*u)*(o?2:1);for(let p=0;p<s;p++)n[p]=_0(r+p*i,a,t,o)}return n}function Tu(r,e,t=!1){if(r.length===0)return e[0];let o=r.reduce((n,s)=>n*s)*(t?2:1);if(o===0)return[];if(o!==e.length)throw new Error(`[${r}] does not match the input size ${e.length}${t?" for a complex tensor":""}.`);return _0(0,r,e,t)}function KG(r,e){if(Array.isArray(r))return r;if(e==="float32")return r instanceof Float32Array?r:new Float32Array(r);if(e==="int32")return r instanceof Int32Array?r:new Int32Array(r);if(e==="bool"||e==="string")return Uint8Array.from(new Int32Array(r));throw new Error(`Unknown dtype ${e}`)}function ml(r,e){let t=Gp(r,e);for(let o=0;o<t.length;o++)t[o]=1;return t}function Gp(r,e){if(e==null||e==="float32"||e==="complex64")return new Float32Array(r);if(e==="int32")return new Int32Array(r);if(e==="bool")return new Uint8Array(r);throw new Error(`Unknown data type ${e}`)}function qG(r,e){let t=r.reduce((o,n)=>o*n,1);if(e==null||e==="float32")return Tu(r,new Float32Array(t));if(e==="int32")return Tu(r,new Int32Array(t));if(e==="bool")return Tu(r,new Uint8Array(t));throw new Error(`Unknown data type ${e}`)}function Ct(r){r.forEach(e=>{E(Number.isInteger(e)&&e>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${r}].`)})}function jG(r,e,t){if(e===0)return 0;if(e===1)return r[0];let o=r[r.length-1];for(let n=0;n<r.length-1;++n)o+=t[n]*r[n];return o}function XG(r,e,t){if(e===0)return[];if(e===1)return[r];let o=new Array(e);for(let n=0;n<o.length-1;++n)o[n]=Math.floor(r/t[n]),r-=o[n]*t[n];return o[o.length-1]=r,o}function Eu(r){return r&&r.then&&typeof r.then=="function"}var E0="tfjsflags",dl=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=QG,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(A().getBool("IS_TEST")||A().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${e}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,o){if(this.flagRegistry[e]={evaluationFn:t,setHook:o},this.urlFlags[e]!=null){let n=this.urlFlags[e];A().getBool("IS_TEST")||A().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${n}.`),this.set(e,n)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Eu(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getString(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);E0 in e&&e[E0].split(",").forEach(o=>{let[n,s]=o.split(":");this.urlFlags[n]=JG(n,s)})}};function QG(r){let e={};return r.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(t,...o)=>(ZG(e,o[0],o[1]),o.join("="))),e}function ZG(r,e,t){r[decodeURIComponent(e)]=decodeURIComponent(t||"")}function JG(r,e){let t=e.toLowerCase();return t==="true"||t==="false"?t==="true":`${+t}`===t?+t:e}function A(){return nw}var nw=null;function $0(r){nw=r}var sw;function aw(){if(sw==null){let r;if(typeof window!="undefined")r=window;else if(typeof global!="undefined")r=global;else if(typeof process!="undefined")r=process;else if(typeof self!="undefined")r=self;else throw new Error("Could not find a global object");sw=r}return sw}function e4(){let r=aw();return r._tfGlobals==null&&(r._tfGlobals=new Map),r._tfGlobals}function fl(r,e){let t=e4();if(t.has(r))return t.get(r);{let o=e();return t.set(r,o),t.get(r)}}var Xs="Abs",Vo="Acos",Wo="Acosh",uo="Add",Uo="AddN",Go="All",Ho="Any",Ys="ArgMax",Qs="ArgMin",Ko="Asin",qo="Asinh",jo="Atan",Xo="Atanh",Yo="Atan2",Qo="AvgPool",$i="AvgPoolGrad",Zs="AvgPool3D",Ri="AvgPool3DGrad",Zo="BatchMatMul",Js="BatchToSpaceND",Jo="Bincount",qa="BitwiseAnd",qce="BroadcastTo",ea="BroadcastArgs",yo="Cast",en="Ceil",bo="ClipByValue",Di="Complex",Ai="ComplexAbs",ta="Concat",tn="Conv2D",Fi="Conv2DBackpropFilter",rn="Conv2DBackpropInput",on="Conv3D",ja="Conv3DBackpropFilterV2",nn="Conv3DBackpropInputV2",sn="Cos",an="Cosh",un="Cumprod",pn="Cumsum",cn="CropAndResize",ra="DenseBincount",ln="DepthToSpace",mn="DepthwiseConv2dNative",Pi="DepthwiseConv2dNativeBackpropFilter",Oi="DepthwiseConv2dNativeBackpropInput",oa="Diag",dn="Dilation2D",Mi="Dilation2DBackpropInput",Li="Dilation2DBackpropFilter",$u="Draw",fn="RealDiv",Bi="Einsum",hn="Elu",Xa="EluGrad",gn="Erf",xn="Equal",yn="Exp",na="ExpandDims",bn="Expm1",zi="FFT",sa="Fill",Cn="FlipLeftRight",wn="Floor",Sn="FloorDiv",In="FusedBatchNorm",aa="GatherV2",vn="GatherNd",kn="Greater",Nn="GreaterEqual",Co="Identity",Vi="IFFT",Wi="Imag",Tn="IsFinite",_n="IsInf",En="IsNan",$n="LeakyRelu",Rn="Less",Dn="LessEqual",An="LinSpace",Fn="Log",Pn="Log1p",On="LogicalAnd",Mn="LogicalNot",Ln="LogicalOr",R0="LogicalXor",jce="LogSoftmax",Xce="LowerBound",Bn="LRN",Ya="LRNGrad",Yce="MatrixBandPart",zn="Max",Vn="Maximum",Wn="MaxPool",Ui="MaxPoolGrad",ia="MaxPool3D",Gi="MaxPool3DGrad",ua="MaxPoolWithArgmax",Un="Mean",Gn="Min",Hn="Minimum",Kn="MirrorPad",qn="Mod",jn="Multinomial",Xn="Multiply",pa="Neg",Yn="NotEqual",Qn="NonMaxSuppressionV3",Qa="NonMaxSuppressionV4",Zn="NonMaxSuppressionV5",ca="OnesLike",Jn="OneHot",la="Pack",es="PadV2",Qce="Pool",ts="Pow",rs="Prelu",os="Prod",Hp="RaggedGather",Kp="RaggedRange",qp="RaggedTensorToTensor",ma="Range",Hi="Real",ns="Reciprocal",ss="Relu",da="Reshape",as="ResizeNearestNeighbor",Za="ResizeNearestNeighborGrad",is="ResizeBilinear",Ja="ResizeBilinearGrad",us="Relu6",ps="Reverse",cs="Round",ls="Rsqrt",ms="ScatterNd",ds="TensorScatterUpdate",fs="SearchSorted",fa="Select",hs="Selu",ha="Slice",gs="Sin",xs="Sinh",ys="Sign",bs="Sigmoid",Cs="Softplus",ws="Sqrt",Ss="Sum",ga="SpaceToBatchND",xa="SplitV",Is="Softmax",Ki="SparseFillEmptyRows",ei="SparseReshape",ya="SparseSegmentMean",ba="SparseSegmentSum",vs="SparseToDense",ks="SquaredDifference",qi="Square",Ru="StaticRegexReplace",Ns="StridedSlice",Ca="StringNGrams",ji="StringSplit",Xi="StringToHashBucketFast",Ts="Sub",_s="Tan",Es="Tanh",po="Tile",$s="TopK",Rs="Transform",co="Transpose",Yi="Unique",wa="Unpack",Qi="UnsortedSegmentSum",Zce="UpperBound",Sa="ZerosLike",wo="Step",Du="FromPixels",Ds="RotateWithOffset",So="_FusedMatMul",Io="FusedConv2D",vo="FusedDepthwiseConv2D";function Ia(...r){A().getBool("IS_TEST")||A().getBool("PROD")||console.warn(...r)}function t4(...r){A().getBool("IS_TEST")||A().getBool("PROD")||console.log(...r)}var jp=fl("kernelRegistry",()=>new Map),hl=fl("gradRegistry",()=>new Map);function Xp(r,e){let t=uw(r,e);return jp.get(t)}function iw(r){return hl.get(r)}function Ym(r){let e=jp.entries(),t=[];for(;;){let{done:o,value:n}=e.next();if(o)break;let[s,a]=n,[i]=s.split("_");i===r&&t.push(a)}return t}function ti(r){let{kernelName:e,backendName:t}=r,o=uw(e,t);jp.has(o)&&Ia(`The kernel '${e}' for backend '${t}' is already registered`),jp.set(o,r)}function ole(r){let{kernelName:e}=r;hl.has(e)&&A().getBool("DEBUG")&&Ia(`Overriding the gradient for '${e}'`),hl.set(e,r)}function nle(r,e){let t=uw(r,e);if(!jp.has(t))throw new Error(`The kernel '${r}' for backend '${e}' is not registered`);jp.delete(t)}function sle(r){if(!hl.has(r))throw new Error(`The gradient '${r}' for backend is not registered`);hl.delete(r)}function ale(r,e){Ym(r).forEach(o=>{let n=Object.assign({},o,{backendName:e});ti(n)})}function uw(r,e){return`${e}_${r}`}var y={};qe(y,{arraysEqual:()=>br,arraysEqualWithNull:()=>ZC,assert:()=>E,assertNonNegativeIntegerDimensions:()=>Ct,assertNonNull:()=>io,assertShapesMatch:()=>xt,bytesFromStringArray:()=>ow,bytesPerElement:()=>Wp,checkConversionForErrors:()=>tw,clamp:()=>Vp,computeStrides:()=>js,convertBackendValuesAndArrayBuffer:()=>KG,createScalarValue:()=>u4,createShuffledIndices:()=>WG,decodeString:()=>Jp,distSquared:()=>LG,encodeString:()=>Ji,fetch:()=>c4,fingerPrint64:()=>i4,flatten:()=>Fs,getArrayFromDType:()=>Xm,getTypedArrayFromDType:()=>ew,hasEncodingLoss:()=>HG,hexToLong:()=>gl,indexToLoc:()=>XG,inferDtype:()=>Ei,inferFromImplicitShape:()=>GG,isBoolean:()=>N0,isFunction:()=>qs,isInt:()=>Ka,isNumber:()=>T0,isPromise:()=>Eu,isScalarShape:()=>BG,isString:()=>zo,isTypedArray:()=>Pt,isValidDtype:()=>rw,locToIndex:()=>jG,makeOnesTypedArray:()=>ml,makeZerosNestedTypedArray:()=>qG,makeZerosTypedArray:()=>Gp,nearestDivisor:()=>Up,nearestLargerEven:()=>PG,now:()=>Mu,parseAxisParam:()=>_i,randUniform:()=>MG,repeatedTry:()=>UG,rightPad:()=>_u,shuffle:()=>k0,shuffleCombo:()=>FG,sizeFromShape:()=>ze,sizeToSquarishShape:()=>VG,squeezeShape:()=>JC,sum:()=>OG,swap:()=>jm,tanh:()=>zG,toNestedArray:()=>Tu,toTypedArray:()=>Zp});function Qm(r){return r instanceof Float32Array||r instanceof Int32Array||r instanceof Uint8Array||r instanceof Uint8ClampedArray}var mw=zp(U0());var Ou=mw.default||mw;function gl(r){return Ou.fromString(r,!0,16)}var H0=gl("c3a5c85c97cb3127"),Pu=gl("b492b66fbe98f273"),Cr=gl("9ae16a3b2f90404f");function lw(r){return r.xor(r.shru(47))}function K0(r,e,t){let o=r.slice(e,e+t);return Ou.fromBytes(Array.from(o),!0,!0)}function wt(r,e){return K0(r,e,8)}function G0(r,e){return K0(r,e,4)}function Yt(r,e){return e===0?r:r.shru(e).or(r.shl(64-e))}function Zi(r,e,t=gl("9ddfea08eb382d69")){let o=r.xor(e).mul(t);o=o.xor(o.shru(47));let n=e.xor(o).mul(t);return n=n.xor(n.shru(47)),n=n.mul(t),n}function o4(r,e,t,o,n,s){n=n.add(r),s=Yt(s.add(n).add(o),21);let a=n;return n=n.add(e),n=n.add(t),s=s.add(Yt(n,44)),[n.add(o),s.add(a)]}function Jm(r,e,t,o){return o4(wt(r,e),wt(r,e+8),wt(r,e+16),wt(r,e+24),t,o)}function n4(r,e=r.length){if(e>=8){let t=Cr.add(e*2),o=wt(r,0).add(Cr),n=wt(r,e-8),s=Yt(n,37).mul(t).add(o),a=Yt(o,25).add(n).mul(t);return Zi(s,a,t)}if(e>=4){let t=Cr.add(e*2),o=G0(r,0);return Zi(o.shl(3).add(e),G0(r,e-4),t)}if(e>0){let t=r[0],o=r[e>>1],n=r[e-1],s=t+(o<<8),a=e+(n<<2);return lw(Cr.mul(s).xor(H0.mul(a))).mul(Cr)}return Cr}function s4(r,e=r.length){let t=Cr.add(e*2),o=wt(r,0).mul(Pu),n=wt(r,8),s=wt(r,e-8).mul(t),a=wt(r,e-16).mul(Cr);return Zi(Yt(o.add(n),43).add(Yt(s,30)).add(a),o.add(Yt(n.add(Cr),18)).add(s),t)}function a4(r,e=r.length){let t=Cr.add(e*2),o=wt(r,0).mul(Cr),n=wt(r,8),s=wt(r,e-8).mul(t),a=wt(r,e-16).mul(Cr),i=Yt(o.add(n),43).add(Yt(s,30)).add(a),p=Zi(i,o.add(Yt(n.add(Cr),18)).add(s),t),u=wt(r,16).mul(t),c=wt(r,24),l=i.add(wt(r,e-32)).mul(t),m=p.add(wt(r,e-24)).mul(t);return Zi(Yt(u.add(c),43).add(Yt(l,30)).add(m),u.add(Yt(c.add(o),18)).add(l),t)}function i4(r,e=r.length){let t=Ou.fromNumber(81,!0);if(e<=32)return e<=16?n4(r,e):s4(r,e);if(e<=64)return a4(r,e);let o=t,n=t.mul(Pu).add(113),s=lw(n.mul(Cr).add(113)).mul(Cr),a=[Ou.UZERO,Ou.UZERO],i=[Ou.UZERO,Ou.UZERO];o=o.mul(Cr).add(wt(r,0));let p=0,u=(e-1>>6)*64,c=u+(e-1&63)-63;do o=Yt(o.add(n).add(a[0]).add(wt(r,p+8)),37).mul(Pu),n=Yt(n.add(a[1]).add(wt(r,p+48)),42).mul(Pu),o=o.xor(i[1]),n=n.add(a[0]).add(wt(r,p+40)),s=Yt(s.add(i[0]),33).mul(Pu),a=Jm(r,p,a[1].mul(Pu),o.add(i[0])),i=Jm(r,p+32,s.add(i[1]),n.add(wt(r,p+16))),[s,o]=[o,s],p+=64;while(p!==u);let l=Pu.add(s.and(255).shl(1));return p=c,i[0]=i[0].add(e-1&63),a[0]=a[0].add(i[0]),i[0]=i[0].add(a[0]),o=Yt(o.add(n).add(a[0]).add(wt(r,p+8)),37).mul(l),n=Yt(n.add(a[1]).add(wt(r,p+48)),42).mul(l),o=o.xor(i[1].mul(9)),n=n.add(a[0].mul(9).add(wt(r,p+40))),s=Yt(s.add(i[0]),33).mul(l),a=Jm(r,p,a[1].mul(l),o.add(i[0])),i=Jm(r,p+32,s.add(i[1]),n.add(wt(r,p+16))),[s,o]=[o,s],Zi(Zi(a[0],i[0],l).add(lw(n).mul(H0)).add(s),Zi(a[1],i[1],l).add(o),l)}function u4(r,e){return e==="string"?Ji(r):Zp([r],e)}function p4(r,e){return r instanceof Float32Array&&e==="float32"||r instanceof Int32Array&&e==="int32"||r instanceof Uint8Array&&e==="bool"}function Zp(r,e){if(e==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(r)&&(r=Fs(r)),A().getBool("DEBUG")&&tw(r,e),p4(r,e))return r;if(e==null||e==="float32"||e==="complex64")return new Float32Array(r);if(e==="int32")return new Int32Array(r);if(e==="bool"){let t=new Uint8Array(r.length);for(let o=0;o<t.length;++o)Math.round(r[o])!==0&&(t[o]=1);return t}else throw new Error(`Unknown data type ${e}`)}function Mu(){return A().platform.now()}function c4(r,e){return A().platform.fetch(r,e)}function Ji(r,e="utf-8"){return e=e||"utf-8",A().platform.encode(r,e)}function Jp(r,e="utf-8"){return e=e||"utf-8",A().platform.decode(r,e)}function Pt(r){return A().platform.isTypedArray!=null?A().platform.isTypedArray(r):Qm(r)}function Fs(r,e=[],t=!1){if(e==null&&(e=[]),typeof r=="boolean"||typeof r=="number"||typeof r=="string"||Eu(r)||r==null||Pt(r)&&t)e.push(r);else if(Array.isArray(r)||Pt(r))for(let o=0;o<r.length;++o)Fs(r[o],e,t);else{let o=-1;for(let n of Object.keys(r))/^([1-9]+[0-9]*|0)$/.test(n)&&(o=Math.max(o,Number(n)));for(let n=0;n<=o;n++)Fs(r[n],e,t)}return e}var ed=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new dw)}profileKernel(e,t,o){let n,s=()=>{n=o()},a,i=Mu();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(s);else{s();for(let u of n)u.dataSync();a=Promise.resolve({kernelMs:Mu()-i})}if(A().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let u=0;u<n.length;u++){let c=n[u];c.data().then(l=>{l4(l,c.dtype,e)})}return{kernelName:e,outputs:n,inputs:t,timeMs:a.then(u=>u.kernelMs),extraInfo:a.then(u=>u.getExtraProfileInfo!=null?u.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:o,timeMs:n,inputs:s,extraInfo:a}=e;o.forEach(i=>{Promise.all([i.data(),n,a]).then(p=>{this.logger.logKernelProfile(t,i,p[0],p[1],s,p[2])})})}};function l4(r,e,t){if(e!=="float32")return!1;for(let o=0;o<r.length;o++){let n=r[o];if(isNaN(n)||!isFinite(n))return console.warn(`Found ${n} in the result of '${t}'`),!0}return!1}var dw=class{logKernelProfile(e,t,o,n,s,a){let i=typeof n=="number"?_u(`${n}ms`,9):n.error,p=_u(e,25),u=t.rank,c=t.size,l=_u(t.shape.toString(),14),m="";for(let d in s){let f=s[d];if(f!=null){let h=f.shape||t.shape,g=h.length;m+=`${d}: ${g}D ${g>0?h:""} `}}console.log(`%c${p} %c${i} %c${u}D ${l} %c${c} %c${m} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function q0(r,e,t){let o={},n={};for(let p=0;p<e.length;p++)o[e[p].id]=!0;for(let p=0;p<r.length;p++){let u=r[p],c=u.inputs;for(let l in c){let m=c[l],d=!1;for(let f=0;f<e.length;f++)if(o[m.id]){u.outputs.forEach(h=>o[h.id]=!0),d=!0,n[u.id]=!0;break}if(d)break}}let s={};s[t.id]=!0;let a={};for(let p=r.length-1;p>=0;p--){let u=r[p],c=u.inputs;for(let l=0;l<u.outputs.length;l++)if(s[u.outputs[l].id]){for(let m in c)s[c[m].id]=!0,a[u.id]=!0;break}}let i=[];for(let p=0;p<r.length;p++){let u=r[p];if(n[u.id]&&a[u.id]){let c={};for(let m in u.inputs){let d=u.inputs[m];o[d.id]&&(c[m]=d)}let l=Object.assign({},u);l.inputs=c,l.outputs=u.outputs,i.push(l)}}return i}function j0(r,e,t,o){for(let n=e.length-1;n>=0;n--){let s=e[n],a=[];if(s.outputs.forEach(p=>{let u=r[p.id];u!=null?a.push(u):a.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let i=s.gradient(a);for(let p in s.inputs){if(!(p in i))throw new Error(`Cannot backprop through input ${p}. Available gradients found: ${Object.keys(i)}.`);let u=t(()=>i[p]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${p} must have 'float32' dtype, but has '${u.dtype}'`);let c=s.inputs[p];if(!br(u.shape,c.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${p}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(r[c.id]==null)r[c.id]=u;else{let l=r[c.id];r[c.id]=o(l,u),l.dispose()}}}}var X0=20,xl=3,fw=7;function Y0(r,e,t,o){let n=js(e),s=m4(r,e,t,n),a=e.length,i=td(r,e,t,n,s),p=["Tensor"];return o&&(p.push(` dtype: ${t}`),p.push(` rank: ${a}`),p.push(` shape: [${e}]`),p.push(" values:")),p.push(i.map(u=>" "+u).join(`
`)),p.join(`
`)}function m4(r,e,t,o){let n=ze(e),s=o[o.length-1],a=new Array(s).fill(0),i=e.length,p=t==="complex64"?bl(r):r;if(i>1)for(let u=0;u<n/s;u++){let c=u*s;for(let l=0;l<s;l++)a[l]=Math.max(a[l],yl(p[c+l],0,t).length)}return a}function yl(r,e,t){let o;return Array.isArray(r)?o=`${parseFloat(r[0].toFixed(fw))} + ${parseFloat(r[1].toFixed(fw))}j`:zo(r)?o=`'${r}'`:t==="bool"?o=Q0(r):o=parseFloat(r.toFixed(fw)).toString(),_u(o,e)}function Q0(r){return r===0?"false":"true"}function td(r,e,t,o,n,s=!0){let a=t==="complex64"?2:1,i=e[0],p=e.length;if(p===0){if(t==="complex64"){let h=bl(r);return[yl(h[0],0,t)]}return t==="bool"?[Q0(r[0])]:[r[0].toString()]}if(p===1){if(i>X0){let g=xl*a,x=Array.from(r.slice(0,g)),b=Array.from(r.slice((i-xl)*a,i*a));return t==="complex64"&&(x=bl(x),b=bl(b)),["["+x.map((C,S)=>yl(C,n[S],t)).join(", ")+", ..., "+b.map((C,S)=>yl(C,n[i-xl+S],t)).join(", ")+"]"]}return["["+(t==="complex64"?bl(r):Array.from(r)).map((g,x)=>yl(g,n[x],t)).join(", ")+"]"]}let u=e.slice(1),c=o.slice(1),l=o[0]*a,m=[];if(i>X0){for(let h=0;h<xl;h++){let g=h*l,x=g+l;m.push(...td(r.slice(g,x),u,t,c,n,!1))}m.push("...");for(let h=i-xl;h<i;h++){let g=h*l,x=g+l;m.push(...td(r.slice(g,x),u,t,c,n,h===i-1))}}else for(let h=0;h<i;h++){let g=h*l,x=g+l;m.push(...td(r.slice(g,x),u,t,c,n,h===i-1))}let d=p===2?",":"";m[0]="["+(i>0?m[0]+d:"");for(let h=1;h<m.length-1;h++)m[h]=" "+m[h]+d;let f=`,
`;for(let h=2;h<p;h++)f+=`
`;return m[m.length-1]=" "+m[m.length-1]+"]"+(s?"":f),m}function bl(r){let e=[];for(let t=0;t<r.length;t+=2)e.push([r[t],r[t+1]]);return e}var tt=class{constructor(e,t,o){if(this.dtype=t,this.shape=e.slice(),this.size=ze(e),o!=null){let n=o.length;E(n===this.size,()=>`Length of values '${n}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=o||Xm(t,this.size),this.strides=js(e)}set(e,...t){t.length===0&&(t=[0]),E(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let o=this.locToIndex(t);this.values[o]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let n of e){if(n<0||n>=this.shape[t]){let s=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(s)}t++}let o=e[e.length-1];for(let n=0;n<e.length-1;++n)o+=this.strides[n]*e[n];return this.values[o]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let o=0;o<e.length-1;++o)t+=this.strides[o]*e[o];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let o=0;o<t.length-1;++o)t[o]=Math.floor(e/this.strides[o]),e-=t[o]*this.strides[o];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Ps().makeTensor(this.values,this.shape,this.dtype)}},Ps=null,ec=null,d4=null;function Z0(r){Ps=r}function J0(r){ec=r}function ek(r){d4=r}var mt=class{constructor(e,t,o,n){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=ze(e),this.strides=js(e),this.dataId=o,this.id=n,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return ec.buffer(this.shape,this.dtype,e)}bufferSync(){return ec.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Tu(this.shape,e,this.dtype==="complex64")}arraySync(){return Tu(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=Ps().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(o=>Jp(o))}catch(o){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),Ps().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=Ps().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Jp(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Ps().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(this.kerasMask&&this.kerasMask.dispose(),Ps().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return ec.print(this,e)}clone(){return this.throwIfDisposed(),ec.clone(this)}toString(e=!1){let t=this.dataSync();return Y0(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),ec.cast(this,e)}variable(e=!0,t,o){return this.throwIfDisposed(),Ps().makeVariable(this,e,t,o)}};Object.defineProperty(mt,Symbol.hasInstance,{value:r=>!!r&&r.data!=null&&r.dataSync!=null&&r.throwIfDisposed!=null});function hw(){return fl("Tensor",()=>mt)}hw();var ri=class extends mt{constructor(e,t,o,n){super(e.shape,e.dtype,e.dataId,n),this.trainable=t,this.name=o}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!br(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Ps().disposeTensor(this),this.dataId=e.dataId,Ps().incRef(this,null)}dispose(){Ps().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(ri,Symbol.hasInstance,{value:r=>r instanceof mt&&r.assign!=null&&r.assign instanceof Function});var rk={};qe(rk,{assertTypesMatch:()=>ww,getTensorsInContainer:()=>Cl,isTensorInList:()=>h4,makeTypesMatch:()=>Oe});var gw;(function(r){r.R0="R0",r.R1="R1",r.R2="R2",r.R3="R3",r.R4="R4",r.R5="R5",r.R6="R6"})(gw||(gw={}));var xw;(function(r){r.float32="float32",r.int32="int32",r.bool="int32",r.complex64="complex64"})(xw||(xw={}));var yw;(function(r){r.float32="float32",r.int32="int32",r.bool="bool",r.complex64="complex64"})(yw||(yw={}));var bw;(function(r){r.float32="float32",r.int32="float32",r.bool="float32",r.complex64="complex64"})(bw||(bw={}));var Cw;(function(r){r.float32="complex64",r.int32="complex64",r.bool="complex64",r.complex64="complex64"})(Cw||(Cw={}));var f4={float32:bw,int32:xw,bool:yw,complex64:Cw};function dt(r,e){if(r==="string"||e==="string"){if(r==="string"&&e==="string")return"string";throw new Error(`Can not upcast ${r} with ${e}`)}return f4[r][e]}function oi(r){return dt(r,"int32")}function rd(r){return r!=null&&typeof r=="object"&&"texture"in r&&r.texture instanceof WebGLTexture}function od(r){return typeof GPUBuffer!="undefined"&&r!=null&&typeof r=="object"&&"buffer"in r&&r.buffer instanceof GPUBuffer}function Oe(r,e){if(r.dtype===e.dtype)return[r,e];let t=dt(r.dtype,e.dtype);return[r.cast(t),e.cast(t)]}function ww(r,e){E(r.dtype===e.dtype,()=>`The dtypes of the first(${r.dtype}) and second(${e.dtype}) input must match`)}function h4(r,e){return e.some(t=>t.id===r.id)}function Cl(r){let e=[];return tk(r,e,new Set),e}function tk(r,e,t){if(r==null)return;if(r instanceof mt){e.push(r);return}if(!g4(r))return;let o=r;for(let n in o){let s=o[n];t.has(s)||(t.add(s),tk(s,e,t))}}function g4(r){return Array.isArray(r)||typeof r=="object"}function Sw(r){return r.kernelName!=null}var nd=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},wl=class r{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new nd}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let o=e[t];if(await this.initializeBackend(o).success){await this.setBackend(o);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,o=1){return e in this.registryFactory?(Ia(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:o},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:o}=this.initializeBackend(e);if(!(o?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new ed(this.backendInstance),!0}setupRegisteredKernels(){Ym(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Ym(e).forEach(o=>{o.disposeFunc!=null&&o.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let o=t.factory();if(o&&!(o instanceof ao)&&typeof o.then=="function"){let n=++this.pendingBackendInitId,s=o.then(a=>n<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(n<this.pendingBackendInitId||(this.pendingBackendInit=null,Ia(`Initialization of backend ${e} failed`),Ia(a.stack||a.message)),!1));return this.pendingBackendInit=s,{success:s,asyncInit:!0}}else return this.registry[e]=o,{success:!0,asyncInit:!1}}catch(o){return Ia(`Initialization of backend ${e} failed`),Ia(o.stack||o.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let o=e[t],{success:n,asyncInit:s}=this.initializeBackend(o);if(s||n)return{name:o,asyncInit:s}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let o=this.state.tensorInfo.get(t),n=o.backend,s=this.readSync(t),a=n.refCount(t);n.disposeData(t,!0),o.backend=e,e.move(t,s,o.shape,o.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let o=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");o=e}let n;return this.scopedRun(()=>this.startScope(o),()=>this.endScope(n),()=>(n=t(),n instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),n))}scopedRun(e,t,o){e();try{let n=o();return t(),n}catch(n){throw t(),n}}nextTensorId(){return r.nextTensorId++}nextVariableId(){return r.nextVariableId++}clone(e){let t=T.runKernel(Co,{x:e}),o={x:e},n=a=>({x:()=>{let i="float32",p={x:a},u={dtype:i};return T.runKernel(yo,p,u)}}),s=[];return this.addTapeNode(this.state.activeScope.name,o,[t],n,s,{}),t}runKernel(e,t,o){if(this.backendName==null&&this.backend,!(Xp(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:o})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,o){let n=this.backend.numDataIds(),s=0;o.forEach(p=>{s+=p.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=n-t-s-a;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,o=[],n=this.isTapeOn(),s=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let p,u=Sw(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Sw(e)){let{kernelName:f,inputs:h,attrs:g}=e;this.backendName==null&&this.backend;let x=Xp(f,this.backendName);E(x!=null,()=>`Cannot find registered kernel '${f}' for backend '${this.backendName}'`),i=()=>{let b=this.backend.numDataIds();p=x.kernelFunc({inputs:h,attrs:g,backend:this.backend});let C=Array.isArray(p)?p:[p];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(f,b,C);let S=C.map(k=>k.rank!=null?k:this.makeTensorFromTensorInfo(k));if(n){let k=this.getTensorsForGradient(f,h,S);o=this.saveTensorsForBackwardMode(k)}return S}}else{let{forwardFunc:f}=e,h=g=>{n&&(o=g.map(x=>this.keep(this.clone(x))))};i=()=>{let g=this.backend.numDataIds();p=this.tidy(()=>f(this.backend,h));let x=Array.isArray(p)?p:[p];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(u,g,x),x}}let{inputs:c,attrs:l}=e,m=Sw(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(u,c,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),n&&this.addTapeNode(u,c,t,m,o,l),this.state.profiling&&this.state.activeProfile.kernels.push({name:u,bytesAdded:this.state.numBytes-s,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(f=>c[f]!=null?c[f].shape:null),outputShapes:t.map(f=>f.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(p)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(o=>this.keep(this.clone(o)))}getTensorsForGradient(e,t,o){let n=iw(e);if(n!=null){let s=n.inputsToSave||[],a=n.outputsToSave||[],i;n.saveAllInputs?(E(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(u=>t[u])):i=s.map(u=>t[u]);let p=o.filter((u,c)=>a[c]);return i.concat(p)}return[]}makeTensor(e,t,o,n){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");o=o||"float32",n=n||this.backend;let s=e;o==="string"&&zo(e[0])&&(s=e.map(p=>Ji(p)));let a=n.write(s,t,o),i=new mt(t,o,a,this.nextTensorId());if(this.trackTensor(i,n),o==="string"){let p=this.state.tensorInfo.get(a),u=ow(s);this.state.numBytes+=u-p.bytes,p.bytes=u}return i}makeTensorFromDataId(e,t,o,n){o=o||"float32";let s={dataId:e,shape:t,dtype:o};return this.makeTensorFromTensorInfo(s,n)}makeTensorFromTensorInfo(e,t){let{dataId:o,shape:n,dtype:s}=e,a=new mt(n,s,o,this.nextTensorId());return this.trackTensor(a,t),a}makeVariable(e,t=!0,o,n){o=o||this.nextVariableId().toString(),n!=null&&n!==e.dtype&&(e=e.cast(n));let s=new ri(e,t,o,this.nextTensorId());if(this.state.registeredVariables[s.name]!=null)throw new Error(`Variable with name ${s.name} was already registered`);return this.state.registeredVariables[s.name]=s,this.incRef(s,this.backend),s}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let o=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(o=e.size*Wp(e.dtype)),this.state.numBytes+=o,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:o})),e instanceof ri||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let o=e.size*Wp(e.dtype);this.state.numBytes-=o}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,o=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(n=>n.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-o;for(let n of this.state.activeProfile.kernels)n.kernelTimeMs=await n.kernelTimeMs,n.extraInfo=await n.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,o,n,s,a){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:o,saved:s},p=iw(e);p!=null&&(n=p.gradFunc),n!=null&&(i.gradient=u=>(u=u.map((c,l)=>{if(c==null){let m=o[l],d=Gp(m.size,m.dtype);return this.makeTensor(d,m.shape,m.dtype)}return c}),n(u.length>1?u:u[0],s,a))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Cl(e),o=new Set(t.map(s=>s.id));for(let s=0;s<this.state.activeScope.track.length;s++){let a=this.state.activeScope.track[s];!a.kept&&!o.has(a.id)&&a.dispose()}let n=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(s=>{!s.kept&&s.scopeId===n.id&&this.track(s)})}gradients(e,t,o,n=!1){if(E(t.length>0,()=>"gradients() received an empty list of xs."),o!=null&&o.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${o.dtype}'`);let s=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));E(s instanceof mt,()=>"The result y returned by f() must be a tensor.");let a=q0(this.state.activeTape,t,s);if(!n&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[s.id]=o==null?x4(s.shape):o,j0(i,a,u=>this.tidy(u),y4);let p=t.map(u=>i[u.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(u=>{for(let c of u.saved)c.dispose()}),this.state.activeTape=null),{value:s,grads:p}})}customGrad(e){return E(qs(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{E(t.every(i=>i instanceof mt),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let o,n={};t.forEach((i,p)=>{n[p]=i});let s=(i,p)=>(o=e(...t,p),E(o.value instanceof mt,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),E(qs(o.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),o.value),a=(i,p)=>{let u=o.gradFunc(i,p),c=Array.isArray(u)?u:[u];E(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),E(c.every(m=>m instanceof mt),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let l={};return c.forEach((m,d)=>{l[d]=()=>m}),l};return this.runKernelFunc({forwardFunc:s,backwardsFunc:a,inputs:n})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=Mu(),o=await this.backend.time(e);return o.wallMs=Mu()-t,o}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new nd;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};wl.nextTensorId=0;wl.nextVariableId=0;function x4(r){let e=ml(ze(r),"float32");return T.makeTensor(e,r,"float32")}function Iw(){let r=aw();if(r._tfengine==null){let e=new dl(r);r._tfengine=new wl(e)}return $0(r._tfengine.ENV),Z0(()=>r._tfengine),r._tfengine}var T=Iw();function y4(r,e){let t={a:r,b:e};return T.runKernel(uo,t)}var eu={};qe(eu,{isBrowser:()=>kw,isMobile:()=>w4,mockIsMobile:()=>C4});function b4(){return typeof navigator!="undefined"&&navigator!=null}var vw;function C4(r){vw=r}function w4(r){if(vw!==void 0)return vw;if(r||b4()){if(r||(r=navigator),r.product==="ReactNative")return!0;let e=r.userAgent||r.vendor||(typeof window!="undefined"?window.opera:"");if(!e){let t=r;return t.userAgentData&&t.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(e)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(e.substr(0,4))}return!1}function kw(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var _r=A();_r.registerFlag("DEBUG",()=>!1,r=>{r&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});_r.registerFlag("IS_BROWSER",()=>kw());_r.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");_r.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));_r.registerFlag("IS_SAFARI",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Safari/.test(navigator.userAgent)&&/Apple/.test(navigator.vendor));_r.registerFlag("PROD",()=>!1);_r.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>_r.getBool("DEBUG"));_r.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);_r.registerFlag("IS_TEST",()=>!1);_r.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>_r.getBool("DEBUG"));_r.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);_r.registerFlag("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU",()=>!1);_r.registerFlag("USE_SETTIMEOUTCUSTOM",()=>!1);function sr(r,e){let t=r;if(Pt(r))return e==="string"?[]:[r.length];if(rd(r)){let n=r.channels||"RGBA";return[r.height,r.width*n.length]}else if(od(r))return[r.buffer.size/(e==null?4:Wp(e))];if(!Array.isArray(r))return[];let o=[];for(;Array.isArray(t)||Pt(t)&&e!=="string";)o.push(t.length),t=t[0];return Array.isArray(r)&&A().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&nk(r,o,[]),o}function nk(r,e,t){if(t=t||[],!Array.isArray(r)&&!Pt(r)){E(e.length===0,()=>`Element arr[${t.join("][")}] is a primitive, but should be an array/TypedArray of ${e[0]} elements`);return}E(e.length>0,()=>`Element arr[${t.join("][")}] should be a primitive, but is an array of ${r.length} elements`),E(r.length===e[0],()=>`Element arr[${t.join("][")}] should have ${e[0]} elements, but has ${r.length} elements`);let o=e.slice(1);for(let n=0;n<r.length;++n)nk(r[n],o,t.concat(n))}function ok(r,e,t,o){if(r!=="string_or_numeric"){if(r==null)throw new Error("Expected dtype cannot be null.");if(r!=="numeric"&&r!==e||r==="numeric"&&e==="string")throw new Error(`Argument '${t}' passed to '${o}' must be ${r} tensor, but got ${e} tensor`)}}function v(r,e,t,o="numeric"){if(r instanceof hw())return ok(o,r.dtype,e,t),r;let n=Ei(r);if(n!=="string"&&["bool","int32","float32"].indexOf(o)>=0&&(n=o),ok(o,n,e,t),r==null||!Pt(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string"){let p=r==null?"null":r.constructor.name;throw new Error(`Argument '${e}' passed to '${t}' must be a Tensor or TensorLike, but got '${p}'`)}let s=sr(r,n);!Pt(r)&&!Array.isArray(r)&&(r=[r]);let i=n!=="string"?Zp(r,n):Fs(r,[],!0);return T.makeTensor(i,s,n)}function ni(r,e,t,o="numeric"){if(!Array.isArray(r))throw new Error(`Argument ${e} passed to ${t} must be a \`Tensor[]\` or \`TensorLike[]\``);return r.map((s,a)=>v(s,`${e}[${a}]`,t,o))}var Nw="__op";function N(r){let e=Object.keys(r);if(e.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${e.length} keys.`);let t=e[0],o=r[t];t.endsWith("_")&&(t=t.substring(0,t.length-1)),t=t+Nw;let n=(...s)=>{T.startScope(t);try{let a=o(...s);return Eu(a)&&console.error("Cannot return a Promise inside of tidy."),T.endScope(a),a}catch(a){throw T.endScope(null),a}};return Object.defineProperty(n,"name",{value:t,configurable:!0}),n}function S4(r,e){let t=v(r,"real","complex"),o=v(e,"imag","complex");xt(t.shape,o.shape,`real and imag shapes, ${t.shape} and ${o.shape}, must match in call to tf.complex().`);let n={real:t,imag:o};return T.runKernel(Di,n)}var Er=N({complex_:S4});function wr(r,e,t,o){if(o==null)o=Ei(r);else if(o==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(od(r)||rd(r)){if(o!=="float32"&&o!=="int32")throw new Error(`Creating tensor from GPU data only supports 'float32'|'int32' dtype, while the dtype is ${o}.`);return T.backend.createTensorFromGPUData(r,e||t,o)}if(!Pt(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(e!=null){Ct(e);let n=ze(e),s=ze(t);E(n===s,()=>`Based on the provided shape, [${e}], the tensor should have ${n} values but has ${s}`);for(let a=0;a<t.length;++a){let i=t[a],p=a===t.length-1?i!==ze(e.slice(a)):!0;E(t[a]===e[a]||!p,()=>`Error creating a new Tensor. Inferred shape (${t}) does not match the provided shape (${e}). `)}}return!Pt(r)&&!Array.isArray(r)&&(r=[r]),e=e||t,r=o!=="string"?Zp(r,o):Fs(r,[],!0),T.makeTensor(r,e,o)}function ar(r,e,t){let o=sr(r,t);return wr(r,e,o,t)}var si={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8};var ir=class r{static join(e){return new r(e).slice()}constructor(e){if(this.shards=[],this.previousShardIndex=0,e==null||(e instanceof Array||(e=[e]),e=e.map(o=>Pt(o)?o.buffer:o),e.length===0))return;this.bufferUniformSize=e[0].byteLength;let t=0;for(let o=0;o<e.length;o++){let n=e[o];o!==e.length-1&&n.byteLength!==this.bufferUniformSize&&(this.bufferUniformSize=void 0);let s=t+n.byteLength;this.shards.push({buffer:n,start:t,end:s}),t=s}this.shards.length===0&&(this.byteLength=0),this.byteLength=this.shards[this.shards.length-1].end}slice(e=0,t=this.byteLength){if(this.shards.length===0)return new ArrayBuffer(0);if(e=isNaN(Number(e))?0:e,t=isNaN(Number(t))?0:t,e=Math.max(0,e),t=Math.min(this.byteLength,t),t<=e)return new ArrayBuffer(0);let o=this.findShardForByte(e);if(o===-1)throw new Error(`Could not find start shard for byte ${e}`);let n=t-e,s=new ArrayBuffer(n),a=new Uint8Array(s),i=0;for(let p=o;p<this.shards.length;p++){let u=this.shards[p],l=e+i-u.start,m=i,f=Math.min(t,u.end)-u.start,h=new Uint8Array(u.buffer,l,f-l);if(a.set(h,m),i+=h.length,t<u.end)break}return s}findShardForByte(e){if(this.shards.length===0||e<0||e>=this.byteLength)return-1;if(this.bufferUniformSize!=null)return this.previousShardIndex=Math.floor(e/this.bufferUniformSize),this.previousShardIndex;function t(n){return e<n.start?-1:e>=n.end?1:0}if(t(this.shards[this.previousShardIndex])===0)return this.previousShardIndex;let o=I4(this.shards,t);return o===-1?-1:(this.previousShardIndex=o,this.previousShardIndex)}};function I4(r,e){let t=0,o=r.length;for(;t<=o;){let n=Math.floor((o-t)/2)+t,s=e(r[n]);if(s===0)return n;s<0?o=n:t=n+1}return-1}function hme(){A().set("PROD",!0)}function gme(){A().set("DEBUG",!0)}function xme(){A().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Tw(r){A().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(r+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}ek(Tw);function yme(){T.disposeVariables()}function ur(){return T}function bme(){return T.memory()}function Cme(r){return T.profile(r)}function De(r,e){return T.tidy(r,e)}function Ot(r){Cl(r).forEach(t=>t.dispose())}function $r(r){return T.keep(r)}function wme(r){return T.time(r)}function Sme(r){return T.setBackend(r)}function Ime(){return T.ready()}function sk(){return T.backendName}function vme(r){T.removeBackend(r)}function kme(r){return T.findBackend(r)}function Nme(r){return T.findBackendFactory(r)}function tu(r,e,t=1){return T.registerBackend(r,e,t)}function ak(){return T.backend}function Tme(r,e){A().setPlatform(r,e)}var ru=4;async function pk(r,e){let t=[],o=[],n=Array.isArray(r)?r.map(a=>a.name):Object.keys(r);for(let a=0;a<n.length;++a){let i=n[a],p=Array.isArray(r)?r[a].tensor:r[i];if(p.dtype!=="float32"&&p.dtype!=="int32"&&p.dtype!=="bool"&&p.dtype!=="string"&&p.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${p.dtype}`);let u={name:i,shape:p.shape,dtype:p.dtype};if(p.dtype==="string"){let c=new Promise(async l=>{let m=await p.bytes(),d=m.reduce((g,x)=>g+x.length,0)+ru*m.length,f=new Uint8Array(d),h=0;for(let g=0;g<m.length;g++){let x=m[g],b=new Uint8Array(new Uint32Array([x.length]).buffer);f.set(b,h),h+=ru,f.set(x,h),h+=x.length}l(f)});o.push(c)}else o.push(p.data());e!=null&&(u.group=e),t.push(u)}let s=await Promise.all(o);return{data:N4(s),specs:t}}function sd(r,e){let t=new ir(r),o={},n=0;for(let s of e){let a=v4(s,(i,p)=>t.slice(n+i,n+p));o[s.name]=ck(s,t.slice(n,n+a)),n+=a}return o}function v4(r,e){let t=ze(r.shape),o;if("quantization"in r){let n=r.quantization;o=si[n.dtype]}else if(r.dtype==="string"){let n=0;for(let s=0;s<t;s++)n+=ru+new Uint32Array(e(n,n+ru))[0];return n}else o=si[r.dtype];return t*o}async function k4(r,e){let t=ze(r.shape),o;if("quantization"in r){let n=r.quantization;o=si[n.dtype]}else if(r.dtype==="string"){let n=0;for(let s=0;s<t;s++)n+=ru+new Uint32Array(await e(n,n+ru))[0];return n}else o=si[r.dtype];return t*o}function ck(r,e){let t=r.name,o=r.dtype,n=r.shape,s=ze(n),a,i=0;if("quantization"in r){let p=r.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${r.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${r.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${r.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let u=si[p.dtype],c=p.dtype==="uint8"?new Uint8Array(e):new Uint16Array(e);if(o==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){a=new Float32Array(c.length);for(let l=0;l<c.length;l++){let m=c[l];a[l]=m*p.scale+p.min}}else if(p.dtype==="float16")a=$4()(c);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(o==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);a=new Int32Array(c.length);for(let l=0;l<c.length;l++){let m=c[l];a[l]=Math.round(m*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${t}': ${o}`);i+=s*u}else if(o==="string"){let p=ze(r.shape);a=[];for(let u=0;u<p;u++){let c=new Uint32Array(e.slice(i,i+ru))[0];i+=ru;let l=new Uint8Array(e.slice(i,i+c));a.push(l),i+=c}}else{let p=si[o];if(o==="float32")a=new Float32Array(e);else if(o==="int32")a=new Int32Array(e);else if(o==="bool")a=new Uint8Array(e);else if(o==="complex64"){a=new Float32Array(e);let u=new Float32Array(a.length/2),c=new Float32Array(a.length/2);for(let f=0;f<u.length;f++)u[f]=a[f*2],c[f]=a[f*2+1];let l=ar(u,n,"float32"),m=ar(c,n,"float32"),d=Er(l,m);return l.dispose(),m.dispose(),d}else throw new Error(`Unsupported dtype in weight '${t}': ${o}`);i+=s*p}return ar(a,n,o)}async function ik(r,e,t){let o=new Uint8Array(e);for(;o.byteLength<t;){let{done:n,value:s}=await r.read();if(n&&s==null){let i=t-o.byteLength;throw new Error(`Reader is done but ${i} bytes are still expected`)}let a=new Uint8Array(o.length+s.byteLength);a.set(o,0),a.set(new Uint8Array(s),o.length),o=a}return o.buffer}async function ad(r,e){let t={},o=r.getReader(),n=new ArrayBuffer(0);for(let s of e){let a=await k4(s,async(u,c)=>(n=await ik(o,n,c),n.slice(u,c)));n=await ik(o,n,a);let i=n.slice(0,a);n=n.slice(a);let p=ck(s,i);if(t[s.name]=p,sk()==="webgpu"){let u=ak();"uploadToGPU"in u&&ze(p.shape)>=A().get("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD")&&u.uploadToGPU(p.dataId)}}return t}function N4(r){if(r===null)throw new Error(`Invalid input value: ${JSON.stringify(r)}`);let e=0,t=[];r.forEach(s=>{if(e+=s.byteLength,t.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let o=new Uint8Array(e),n=0;return t.forEach(s=>{o.set(new Uint8Array(s.buffer),n),n+=s.byteLength}),o.buffer}var _w=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function uk(r){return _w?Buffer.byteLength(r,"utf8"):new Blob([r]).size}function lk(r){if(_w)return Buffer.from(r).toString("base64");let e=new Uint8Array(r),t="";for(let o=0,n=e.length;o<n;o++)t+=String.fromCharCode(e[o]);return btoa(t)}function mk(r){if(_w){let o=Buffer.from(r,"base64");return o.buffer.slice(o.byteOffset,o.byteOffset+o.byteLength)}let e=atob(r),t=new Uint8Array(e.length);for(let o=0;o<e.length;++o)t.set([e.charCodeAt(o)],o);return t.buffer}function dk(r){return ir.join(r)}function Ew(r){let e="/";for(r=r.trim();r.endsWith(e);)r=r.slice(0,r.length-1);let t=r.split(e);return t[t.length-1]}function id(r,e){let t={modelTopology:r.modelTopology,format:r.format,generatedBy:r.generatedBy,convertedBy:r.convertedBy,weightsManifest:e};return r.signature!=null&&(t.signature=r.signature),r.userDefinedMetadata!=null&&(t.userDefinedMetadata=r.userDefinedMetadata),r.modelInitializer!=null&&(t.modelInitializer=r.modelInitializer),r.initializerSignature!=null&&(t.initializerSignature=r.initializerSignature),r.trainingConfig!=null&&(t.trainingConfig=r.trainingConfig),t}function $w(r,e,t){let o={modelTopology:r.modelTopology,format:r.format,generatedBy:r.generatedBy,convertedBy:r.convertedBy};if(r.trainingConfig!=null&&(o.trainingConfig=r.trainingConfig),r.weightsManifest!=null){if(!e)throw new Error("modelJSON has weightsManifest but weightSpecs is null");if(!t)throw new Error("modelJSON has weightsManifest but weightData is null");o.weightSpecs=e,o.weightData=t}return r.signature!=null&&(o.signature=r.signature),r.userDefinedMetadata!=null&&(o.userDefinedMetadata=r.userDefinedMetadata),r.modelInitializer!=null&&(o.modelInitializer=r.modelInitializer),r.initializerSignature!=null&&(o.initializerSignature=r.initializerSignature),o}async function tc(r,e){let t,o;return r.weightsManifest!=null&&([t,o]=await e(r.weightsManifest)),$w(r,t,o)}function va(r){if(r.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:r.modelTopology==null?0:uk(JSON.stringify(r.modelTopology)),weightSpecsBytes:r.weightSpecs==null?0:uk(JSON.stringify(r.weightSpecs)),weightDataBytes:r.weightData==null?0:new ir(r.weightData).byteLength}}function Sl(r){let e=[];for(let t of r)e.push(...t.weights);return e}function T4(){let r=t=>{let o=t<<13,n=0;for(;!(o&8388608);)n-=8388608,o<<=1;return o&=-8388609,n+=947912704,o|n},e=new Uint32Array(2048);e[0]=0;for(let t=1;t<1024;t++)e[t]=r(t);for(let t=1024;t<2048;t++)e[t]=939524096+(t-1024<<13);return e}function _4(){let r=new Uint32Array(64);r[0]=0,r[31]=1199570944,r[32]=2147483648,r[63]=3347054592;for(let e=1;e<31;e++)r[e]=e<<23;for(let e=33;e<63;e++)r[e]=2147483648+(e-32<<23);return r}function E4(){let r=new Uint32Array(64);for(let e=0;e<64;e++)r[e]=1024;return r[0]=r[32]=0,r}function $4(){let r=T4(),e=_4(),t=E4();return o=>{let n=new ArrayBuffer(4*o.length),s=new Uint32Array(n);for(let a=0;a<o.length;a++){let i=o[a],p=r[t[i>>10]+(i&1023)]+e[i>>10];s[a]=p}return new Float32Array(n)}}var qt=class r{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return r.instance==null&&(r.instance=new r),r.instance}static registerSaveRouter(e){r.getInstance().saveRouters.push(e)}static registerLoadRouter(e){r.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return r.getHandlers(e,"save")}static getLoadHandlers(e,t){return r.getHandlers(e,"load",t)}static getHandlers(e,t,o){let n=[];return(t==="load"?r.getInstance().loadRouters:r.getInstance().saveRouters).forEach(a=>{let i=a(e,o);i!==null&&n.push(i)}),n}},fk=r=>qt.registerSaveRouter(r),hk=r=>qt.registerLoadRouter(r),gk=r=>qt.getSaveHandlers(r),xk=(r,e)=>qt.getLoadHandlers(r,e);var Rw="tensorflowjs",Dw=1,Lu="models_store",ou="model_info_store";function yk(){if(!A().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let r=typeof window=="undefined"?self:window,e=r.indexedDB||r.mozIndexedDB||r.webkitIndexedDB||r.msIndexedDB||r.shimIndexedDB;if(e==null)throw new Error("The current browser does not appear to support IndexedDB.");return e}function Aw(r){let e=r.result;e.createObjectStore(Lu,{keyPath:"modelPath"}),e.createObjectStore(ou,{keyPath:"modelPath"})}var ka=class{constructor(e){if(this.indexedDB=yk(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((o,n)=>{let s=this.indexedDB.open(Rw,Dw);s.onupgradeneeded=()=>Aw(s),s.onsuccess=()=>{let a=s.result;if(t==null){let i=a.transaction(Lu,"readonly"),u=i.objectStore(Lu).get(this.modelPath);u.onsuccess=()=>{if(u.result==null)return a.close(),n(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));o(u.result.modelArtifacts)},u.onerror=c=>(a.close(),n(u.error)),i.oncomplete=()=>a.close()}else{t.weightData=ir.join(t.weightData);let i=va(t),p=a.transaction(ou,"readwrite"),u=p.objectStore(ou),c;try{c=u.put({modelPath:this.modelPath,modelArtifactsInfo:i})}catch(m){return n(m)}let l;c.onsuccess=()=>{l=a.transaction(Lu,"readwrite");let m=l.objectStore(Lu),d;try{d=m.put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i})}catch(f){return n(f)}d.onsuccess=()=>o({modelArtifactsInfo:i}),d.onerror=f=>{u=p.objectStore(ou);let h=u.delete(this.modelPath);h.onsuccess=()=>(a.close(),n(d.error)),h.onerror=g=>(a.close(),n(d.error))}},c.onerror=m=>(a.close(),n(c.error)),p.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}}},s.onerror=a=>n(s.error)})}};ka.URL_SCHEME="indexeddb://";var bk=r=>A().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(ka.URL_SCHEME)?R4(r.slice(ka.URL_SCHEME.length)):null;qt.registerSaveRouter(bk);qt.registerLoadRouter(bk);function R4(r){return new ka(r)}function D4(r){return r.startsWith(ka.URL_SCHEME)?r.slice(ka.URL_SCHEME.length):r}var ud=class{constructor(){this.indexedDB=yk()}async listModels(){return new Promise((e,t)=>{let o=this.indexedDB.open(Rw,Dw);o.onupgradeneeded=()=>Aw(o),o.onsuccess=()=>{let n=o.result,s=n.transaction(ou,"readonly"),i=s.objectStore(ou).getAll();i.onsuccess=()=>{let p={};for(let u of i.result)p[u.modelPath]=u.modelArtifactsInfo;e(p)},i.onerror=p=>(n.close(),t(i.error)),s.oncomplete=()=>n.close()},o.onerror=n=>t(o.error)})}async removeModel(e){return e=D4(e),new Promise((t,o)=>{let n=this.indexedDB.open(Rw,Dw);n.onupgradeneeded=()=>Aw(n),n.onsuccess=()=>{let s=n.result,a=s.transaction(ou,"readwrite"),i=a.objectStore(ou),p=i.get(e),u;p.onsuccess=()=>{if(p.result==null)return s.close(),o(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),l=()=>{u=s.transaction(Lu,"readwrite");let d=u.objectStore(Lu).delete(e);d.onsuccess=()=>t(p.result.modelArtifactsInfo),d.onerror=f=>o(p.error)};c.onsuccess=l,c.onerror=m=>(l(),s.close(),o(p.error))}},p.onerror=c=>(s.close(),o(p.error)),a.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}},n.onerror=s=>o(n.error)})}};var ai="/",rc="tensorflowjs_models",Ck="info",A4="model_topology",F4="weight_specs",P4="weight_data",O4="model_metadata";function wk(r){return{info:[rc,r,Ck].join(ai),topology:[rc,r,A4].join(ai),weightSpecs:[rc,r,F4].join(ai),weightData:[rc,r,P4].join(ai),modelMetadata:[rc,r,O4].join(ai)}}function Sk(r){for(let e of Object.values(r))window.localStorage.removeItem(e)}function M4(r){let e=r.split(ai);if(e.length<3)throw new Error(`Invalid key format: ${r}`);return e.slice(1,e.length-1).join(ai)}function L4(r){return r.startsWith(Na.URL_SCHEME)?r.slice(Na.URL_SCHEME.length):r}var Na=class{constructor(e){if(!A().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=wk(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),o=JSON.stringify(e.weightSpecs),n=va(e),s=ir.join(e.weightData);try{this.LS.setItem(this.keys.info,JSON.stringify(n)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,o),this.LS.setItem(this.keys.weightData,lk(s));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,initializerSignature:e.initializerSignature!=null?e.initializerSignature:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:n}}catch(a){throw Sk(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${n.modelTopologyBytes}, weightSpecsBytes=${n.weightSpecsBytes}, weightDataBytes=${n.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},o=JSON.parse(this.LS.getItem(this.keys.topology));if(o==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=o;let n=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(n==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=n;let s=this.LS.getItem(this.keys.modelMetadata);if(s!=null){let i=JSON.parse(s);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer),i.initializerSignature!=null&&(t.initializerSignature=i.initializerSignature),i.trainingConfig!=null&&(t.trainingConfig=i.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=mk(a),t}};Na.URL_SCHEME="localstorage://";var Ik=r=>A().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(Na.URL_SCHEME)?B4(r.slice(Na.URL_SCHEME.length)):null;qt.registerSaveRouter(Ik);qt.registerLoadRouter(Ik);function B4(r){return new Na(r)}var pd=class{constructor(){E(A().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),E(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=rc+ai,o=ai+Ck;for(let n=0;n<this.LS.length;++n){let s=this.LS.key(n);if(s.startsWith(t)&&s.endsWith(o)){let a=M4(s);e[a]=JSON.parse(this.LS.getItem(s))}}return e}async removeModel(e){e=L4(e);let t=wk(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let o=JSON.parse(this.LS.getItem(t.info));return Sk(t),o}};var oc="://",Os=class r{constructor(){this.managers={}}static getInstance(){return r.instance==null&&(r.instance=new r),r.instance}static registerManager(e,t){E(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(oc)&&(e=e.slice(0,e.indexOf(oc))),E(e.length>0,()=>"scheme must not be an empty string.");let o=r.getInstance();E(o.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),o.managers[e]=t}static getManager(e){let t=r.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(r.getInstance().managers)}};function cd(r){if(r.indexOf(oc)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Os.getSchemes().join(",")}`);return{scheme:r.split(oc)[0],path:r.split(oc)[1]}}async function vk(r,e,t=!1){E(r!==e,()=>`Old path and new path are the same: '${r}'`);let o=qt.getLoadHandlers(r);E(o.length>0,()=>`Copying failed because no load handler is found for source URL ${r}.`),E(o.length<2,()=>`Copying failed because more than one (${o.length}) load handlers for source URL ${r}.`);let n=o[0],s=qt.getSaveHandlers(e);E(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${e}.`),E(s.length<2,()=>`Copying failed because more than one (${o.length}) save handlers for destination URL ${e}.`);let a=s[0],i=cd(r).scheme,p=cd(r).path,u=i===cd(r).scheme,c=await n.load();t&&u&&await Os.getManager(i).removeModel(p);let l=await a.save(c);return t&&!u&&await Os.getManager(i).removeModel(p),l.modelArtifactsInfo}async function kk(){let r=Os.getSchemes(),e={};for(let t of r){let o=await Os.getManager(t).listModels();for(let n in o){let s=t+oc+n;e[s]=o[n]}}return e}async function Nk(r){let e=cd(r);return Os.getManager(e.scheme).removeModel(e.path)}async function Tk(r,e){return vk(r,e,!1)}async function _k(r,e){return vk(r,e,!0)}var Fw=class{constructor(){this.messageName="setTimeoutCustom",this.functionRefs=[],this.handledMessageCount=0,this.hasEventListener=!1}fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}setTimeoutCustom(e,t){if(typeof window=="undefined"||!A().getBool("USE_SETTIMEOUTCUSTOM")){setTimeout(e,t);return}this.functionRefs.push(e),setTimeout(()=>{window.postMessage({name:this.messageName,index:this.functionRefs.length-1},"*")},t),this.hasEventListener||(this.hasEventListener=!0,window.addEventListener("message",o=>{if(o.source===window&&o.data.name===this.messageName){o.stopPropagation();let n=this.functionRefs[o.data.index];n(),this.handledMessageCount++,this.handledMessageCount===this.functionRefs.length&&(this.functionRefs=[],this.handledMessageCount=0)}},!0))}isTypedArray(e){return Qm(e)}};if(A().get("IS_BROWSER")){A().setPlatform("browser",new Fw);try{Os.registerManager(Na.URL_SCHEME,new pd)}catch(r){}try{Os.registerManager(ka.URL_SCHEME,new ud)}catch(r){}}var z4={importFetch:()=>Ek()},Pw;var Ow=class{constructor(){this.util=$k(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return A().global.fetch!=null?A().global.fetch(e,t):(Pw==null&&(Pw=z4.importFetch()),Pw(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}isTypedArray(e){return this.util.types.isFloat32Array(e)||this.util.types.isInt32Array(e)||this.util.types.isUint8Array(e)||this.util.types.isUint8ClampedArray(e)}};A().get("IS_NODE")&&!A().get("IS_BROWSER")&&A().setPlatform("node",new Ow);function me(r,e="float32",t){return e=e||"float32",Ct(r),new tt(r,e,t)}function V4(r,e){let t=v(r,"x","cast");if(!rw(e))throw new Error(`Failed to cast to unknown dtype ${e}`);if(e==="string"&&t.dtype!=="string"||e!=="string"&&t.dtype==="string")throw new Error("Only strings can be casted to strings");let o={x:t},n={dtype:e};return T.runKernel(yo,o,n)}var Ue=N({cast_:V4});function W4(r){let t={x:v(r,"x","clone","string_or_numeric")};return T.runKernel(Co,t)}var Ur=N({clone_:W4});function ld(r,e=!1){console.log(r.toString(e))}Iw();var U4={buffer:me,cast:Ue,clone:Ur,print:ld};J0(U4);function G4(r,e){let t=v(r,"a","add"),o=v(e,"b","add");[t,o]=Oe(t,o);let n={a:t,b:o};return T.runKernel(uo,n)}var Ce=N({add_:G4});function H4(r,e){let t=v(r,"a","floorDiv"),o=v(e,"b","floorDiv");[t,o]=Oe(t,o);let n={a:t,b:o};return T.runKernel(Sn,n)}var md=N({floorDiv_:H4});function K4(r,e){let t=v(r,"a","div"),o=v(e,"b","div");if([t,o]=Oe(t,o),t.dtype==="int32"&&o.dtype==="int32")return md(t,o);let n={a:t,b:o},s={};return T.runKernel(fn,n,s)}var je=N({div_:K4});function q4(r,e){let t=v(r,"a","mul"),o=v(e,"b","mul");[t,o]=Oe(t,o);let n={a:t,b:o};return T.runKernel(Xn,n)}var se=N({mul_:q4});function j4(r){let e=v(r,"x","abs");if(e.dtype==="complex64"){let t={x:e};return T.runKernel(Ai,t)}else{let t={x:e};return T.runKernel(Xs,t)}}var Qt=N({abs_:j4});function X4(r){let t={x:v(r,"x","acos")};return T.runKernel(Vo,t)}var Rk=N({acos_:X4});function Y4(r){let t={x:v(r,"x","acosh")};return T.runKernel(Wo,t)}var Dk=N({acosh_:Y4});function Q4(r){E(Array.isArray(r),()=>"The argument passed to tf.addN() must be a list of tensors"),E(r.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${r.length}`);let e=r.map((n,s)=>v(n,`tensors${s}`,"addN")),t=e[0];e.forEach(n=>{if(n.dtype!==t.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),e.forEach(n=>{if(!br(n.shape,t.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let o=e;return T.runKernel(Uo,o)}var Ak=N({addN_:Q4});function Z4(r,e=null,t=!1){let n={x:v(r,"x","all","bool")},s={axis:e,keepDims:t};return T.runKernel(Go,n,s)}var Fk=N({all_:Z4});function J4(r,e=null,t=!1){let n={x:v(r,"x","any","bool")},s={axis:e,keepDims:t};return T.runKernel(Ho,n,s)}var Pk=N({any_:J4});function eH(r,e=0){let o={x:v(r,"x","argMax")},n={axis:e};return T.runKernel(Ys,o,n)}var Ok=N({argMax_:eH});function tH(r,e=0){let o={x:v(r,"x","argMin")},n={axis:e};return T.runKernel(Qs,o,n)}var Mk=N({argMin_:tH});function rH(r){let t={x:v(r,"x","asin")};return T.runKernel(Ko,t)}var Lk=N({asin_:rH});function oH(r){let t={x:v(r,"x","asinh")};return T.runKernel(qo,t)}var Bk=N({asinh_:oH});function nH(r){let t={x:v(r,"x","atan")};return T.runKernel(jo,t)}var zk=N({atan_:nH});function sH(r,e){let t=v(r,"a","atan2"),o=v(e,"b","atan2");[t,o]=Oe(t,o);let n={a:t,b:o};return T.runKernel(Yo,n)}var Vk=N({atan2_:sH});function aH(r){let t={x:v(r,"x","atanh")};return T.runKernel(Xo,t)}var Wk=N({atanh_:aH});function iH(r,e,t,o,n="NHWC",s){let a=r[3],i=[...e,a],p=Gk(n);return zu(r,i,t,s,o,null,null,p)}function Lw(r,e,t,o,n,s,a="channelsLast"){let[i,p]=Il(e),u;if(a==="channelsLast")u=[i,p,r[3],r[3]];else if(a==="channelsFirst")u=[i,p,r[1],r[1]];else throw new Error(`Unknown dataFormat ${a}`);return zu(r,u,t,o,n,s,!1,a)}function uH(r,e,t,o,n,s,a="NDHWC"){let[i,p,u]=Mw(e),c,l;if(a==="NDHWC")l="channelsLast",c=[i,p,u,r[4],r[4]];else if(a==="NCDHW")l="channelsFirst",c=[i,p,u,r[1],r[1]];else throw new Error(`Unknown dataFormat ${a}`);return Uk(r,c,t,o,n,!1,l,s)}function zu(r,e,t,o,n,s,a=!1,i="channelsLast"){let[p,u,c,l]=[-1,-1,-1,-1];if(i==="channelsLast")[p,u,c,l]=r;else if(i==="channelsFirst")[p,l,u,c]=r;else throw new Error(`Unknown dataFormat ${i}`);let[m,d,,f]=e,[h,g]=Il(t),[x,b]=Il(o),C=nc(m,x),S=nc(d,b),{padInfo:k,outHeight:_,outWidth:$}=lH(n,u,c,h,g,C,S,s,i),R=a?f*l:f,D;return i==="channelsFirst"?D=[p,R,_,$]:i==="channelsLast"&&(D=[p,_,$,R]),{batchSize:p,dataFormat:i,inHeight:u,inWidth:c,inChannels:l,outHeight:_,outWidth:$,outChannels:R,padInfo:k,strideHeight:h,strideWidth:g,filterHeight:m,filterWidth:d,effectiveFilterHeight:C,effectiveFilterWidth:S,dilationHeight:x,dilationWidth:b,inShape:r,outShape:D,filterShape:e}}function Uk(r,e,t,o,n,s=!1,a="channelsLast",i){let[p,u,c,l,m]=[-1,-1,-1,-1,-1];if(a==="channelsLast")[p,u,c,l,m]=r;else if(a==="channelsFirst")[p,m,u,c,l]=r;else throw new Error(`Unknown dataFormat ${a}`);let[d,f,h,,g]=e,[x,b,C]=Mw(t),[S,k,_]=Mw(o),$=nc(d,S),R=nc(f,k),D=nc(h,_),{padInfo:P,outDepth:O,outHeight:M,outWidth:L}=mH(n,u,c,l,x,b,C,$,R,D,i),B=s?g*m:g,z;return a==="channelsFirst"?z=[p,B,O,M,L]:a==="channelsLast"&&(z=[p,O,M,L,B]),{batchSize:p,dataFormat:a,inDepth:u,inHeight:c,inWidth:l,inChannels:m,outDepth:O,outHeight:M,outWidth:L,outChannels:B,padInfo:P,strideDepth:x,strideHeight:b,strideWidth:C,filterDepth:d,filterHeight:f,filterWidth:h,effectiveFilterDepth:$,effectiveFilterHeight:R,effectiveFilterWidth:D,dilationDepth:S,dilationHeight:k,dilationWidth:_,inShape:r,outShape:z,filterShape:e}}function pH(r,e,t,o,n){o==null&&(o=Bw(r,e,t));let s=r[0],a=r[1],i=vl((s-e+2*o)/t+1,n),p=vl((a-e+2*o)/t+1,n);return[i,p]}function cH(r,e,t,o,n,s){n==null&&(n=Bw(r,e[0],o[0]));let a=[0,0,0,t];for(let i=0;i<3;i++)r[i]+2*n>=e[i]&&(a[i]=vl((r[i]-e[i]+2*n)/o[i]+1,s));return a}function Bw(r,e,t,o=1){let n=nc(e,o);return Math.floor((r[0]*(t-1)-t+n)/2)}function Il(r){return typeof r=="number"?[r,r,r]:r.length===2?[r[0],r[1],1]:r}function Mw(r){return typeof r=="number"?[r,r,r]:r}function nc(r,e){return e<=1?r:r+(r-1)*(e-1)}function lH(r,e,t,o,n,s,a,i,p){let u,c,l;if(typeof r=="number"){u={top:r,bottom:r,left:r,right:r,type:r===0?"VALID":"NUMBER"};let d=pH([e,t],s,o,r,i);c=d[0],l=d[1]}else if(r==="same"){c=Math.ceil(e/o),l=Math.ceil(t/n);let m=Math.max(0,(c-1)*o+s-e),d=Math.max(0,(l-1)*n+a-t),f=Math.floor(m/2),h=m-f,g=Math.floor(d/2),x=d-g;u={top:f,bottom:h,left:g,right:x,type:"SAME"}}else if(r==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((e-s+1)/o),l=Math.ceil((t-a+1)/n);else if(typeof r=="object"){let m=p==="channelsLast"?r[1][0]:r[2][0],d=p==="channelsLast"?r[1][1]:r[2][1],f=p==="channelsLast"?r[2][0]:r[3][0],h=p==="channelsLast"?r[2][1]:r[3][1];u={top:m,bottom:d,left:f,right:h,type:m===0&&d===0&&f===0&&h===0?"VALID":"EXPLICIT"},c=vl((e-s+m+d)/o+1,i),l=vl((t-a+f+h)/n+1,i)}else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:u,outHeight:c,outWidth:l}}function mH(r,e,t,o,n,s,a,i,p,u,c){let l,m,d,f;if(r==="valid"&&(r=0),typeof r=="number"){l={top:r,bottom:r,left:r,right:r,front:r,back:r,type:r===0?"VALID":"NUMBER"};let g=cH([e,t,o,1],[i,p,u],1,[n,s,a],r,c);m=g[0],d=g[1],f=g[2]}else if(r==="same"){m=Math.ceil(e/n),d=Math.ceil(t/s),f=Math.ceil(o/a);let h=(m-1)*n+i-e,g=(d-1)*s+p-t,x=(f-1)*a+u-o,b=Math.floor(h/2),C=h-b,S=Math.floor(g/2),k=g-S,_=Math.floor(x/2),$=x-_;l={top:S,bottom:k,left:_,right:$,front:b,back:C,type:"SAME"}}else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:l,outDepth:m,outHeight:d,outWidth:f}}function vl(r,e){if(!e)return Math.trunc(r);switch(e){case"round":return Math.round(r);case"ceil":return Math.ceil(r);case"floor":return Math.floor(r);default:throw new Error(`Unknown roundingMode ${e}`)}}function Bu(r){let[e,t,o]=Il(r);return e===1&&t===1&&o===1}function gr(r,e){return Bu(r)||Bu(e)}function Ta(r){return Il(r).every(e=>e>0)}function Gk(r){if(r==="NHWC")return"channelsLast";if(r==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${r}`)}function Lt(r,e,t){if(t!=null){if(typeof e=="string")throw Error(`Error in ${r}: pad must be an integer when using dimRoundingMode ${t} but got pad ${e}.`);if(typeof e=="number")E(Ka(e),()=>`Error in ${r}: pad must be an integer when using dimRoundingMode ${t} but got pad ${e}.`);else if(typeof e=="object")e.forEach(o=>{o.forEach(n=>{E(Ka(n),()=>`Error in ${r}: pad must be an integer when using dimRoundingMode ${t} but got pad ${n}.`)})});else throw Error(`Error in ${r}: Unknown padding parameter: ${e}`)}}function dH(r,e){let o={x:v(r,"x","reshape","string_or_numeric")},n={shape:e};return T.runKernel(da,o,n)}var W=N({reshape_:dH});function fH(r,e,t,o,n){let s=v(r,"x","avgPool","float32"),a=1;E(gr(t,a),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${t} and dilations '${a}'`);let i=s,p=!1;s.rank===3&&(p=!0,i=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),E(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),Lt("avgPool",o,n);let u={x:i},c={filterSize:e,strides:t,pad:o,dimRoundingMode:n},l=T.runKernel(Qo,u,c);return l=Ue(l,s.dtype),p?W(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var dd=N({avgPool_:fH});function hH(r,e,t,o,n,s="NDHWC"){let a=v(r,"x","avgPool3d","float32"),i=a,p=!1;a.rank===4&&(p=!0,i=W(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),E(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),E(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),E(typeof t=="number"&&t>0||Array.isArray(t)&&t[0]>0&&t[1]>0&&t[2]>0,()=>`Error in avgPool3d: Stride must be > 0, but got '${t}'`),Lt("avgPool3d",o,n);let u={x:i},c={filterSize:e,strides:t,pad:o,dimRoundingMode:n,dataFormat:s},l=T.runKernel(Zs,u,c);return l=Ue(l,i.dtype),p?W(l,[l.shape[1],l.shape[2],l.shape[3],l.shape[4]]):l}var Hk=N({avgPool3d_:hH});function gH(r,e=0){E(r.length>=1,()=>"Pass at least one tensor to concat");let t=ni(r,"tensors","concat","string_or_numeric");if(t[0].dtype==="complex64"&&t.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${s.dtype}. `)}),t.length===1)return Ur(t[0]);let o=t,n={axis:e};return T.runKernel(ta,o,n)}var yt=N({concat_:gH});function xH(r,e,t=!1,o=!1){let n=v(r,"a","matMul"),s=v(e,"b","matMul");[n,s]=Oe(n,s);let a={a:n,b:s},i={transposeA:t,transposeB:o};return T.runKernel(Zo,a,i)}var Ze=N({matMul_:xH});function yH(r){let t={x:v(r,"x","sigmoid","float32")};return T.runKernel(bs,t)}var Ea=N({sigmoid_:yH});function bH(r,e,t){let o=v(r,"x","slice","string_or_numeric");if(o.rank===0)throw new Error("Slicing scalar is not possible");let n={x:o},s={begin:e,size:t};return T.runKernel(ha,n,s)}var Xe=N({slice_:bH});function CH(r){let t={x:v(r,"x","tanh","float32")};return T.runKernel(Es,t)}var kl=N({tanh_:CH});function wH(r,e,t,o,n,s){let a=v(r,"forgetBias","basicLSTMCell"),i=v(e,"lstmKernel","basicLSTMCell"),p=v(t,"lstmBias","basicLSTMCell"),u=v(o,"data","basicLSTMCell"),c=v(n,"c","basicLSTMCell"),l=v(s,"h","basicLSTMCell"),m=yt([u,l],1),d=Ze(m,i),f=Ce(d,p),h=f.shape[0],g=f.shape[1]/4,x=[h,g],b=Xe(f,[0,0],x),C=Xe(f,[0,g],x),S=Xe(f,[0,g*2],x),k=Xe(f,[0,g*3],x),_=Ce(se(Ea(b),kl(C)),se(c,Ea(Ce(a,S)))),$=se(kl(_),Ea(k));return[_,$]}var Kk=N({basicLSTMCell_:wH});function SH(r,e,t){let o=v(r,"x","batchToSpaceND"),n=e.reduce((i,p)=>i*p);E(o.rank>=1+e.length,()=>`input rank is ${o.rank} but should be > than blockShape.length ${e.length}`),E(t.length===e.length,()=>`crops.length is ${t.length} but should be equal to blockShape.length ${e.length}`),E(o.shape[0]%n===0,()=>`input tensor batch is ${o.shape[0]} but is not divisible by the product of the elements of blockShape ${e.join(" * ")} === ${n}`);let s={x:o},a={blockShape:e,crops:t};return T.runKernel(Js,s,a)}var fd=N({batchToSpaceND_:SH});function qk(r){let e;return r.rank===0||r.rank===1?e=W(r,[1,1,1,r.size]):r.rank===2?e=W(r,[1,1,r.shape[0],r.shape[1]]):r.rank===3?e=W(r,[1,r.shape[0],r.shape[1],r.shape[2]]):e=r,e}function IH(r,e,t,o,n,s){s==null&&(s=.001);let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),p=v(t,"variance","batchNorm"),u;n!=null&&(u=v(n,"scale","batchNorm"));let c;o!=null&&(c=v(o,"offset","batchNorm")),E(i.rank===p.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),E(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),E(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let m={x:qk(a),scale:u,offset:c,mean:i,variance:p},d={varianceEpsilon:s},f=T.runKernel(In,m,d);return W(f,a.shape)}var nu=N({batchNorm_:IH});function vH(r,e,t,o,n,s){let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),p=v(t,"variance","batchNorm"),u;n!=null&&(u=v(n,"scale","batchNorm"));let c;return o!=null&&(c=v(o,"offset","batchNorm")),E(a.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${a.rank}.`),E(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),E(p.rank===2||p.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${p.rank}.`),u!=null&&E(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&E(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),nu(a,i,p,c,u,s)}var jk=N({batchNorm2d_:vH});function kH(r,e,t,o,n,s){let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),p=v(t,"variance","batchNorm"),u;n!=null&&(u=v(n,"scale","batchNorm"));let c;return o!=null&&(c=v(o,"offset","batchNorm")),E(a.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${a.rank}.`),E(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),E(p.rank===3||p.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${p.rank}.`),u!=null&&E(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&E(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),nu(a,i,p,c,u,s)}var Xk=N({batchNorm3d_:kH});function NH(r,e,t,o,n,s){let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),p=v(t,"variance","batchNorm"),u;n!=null&&(u=v(n,"scale","batchNorm"));let c;return o!=null&&(c=v(o,"offset","batchNorm")),E(a.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${a.rank}.`),E(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),E(p.rank===4||p.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${p.rank}.`),u!=null&&E(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&E(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),nu(a,i,p,c,u,s)}var Yk=N({batchNorm4d_:NH});function TH(r,e,t){let o=v(r,"x","bincount"),n=v(e,"weights","bincount");E(o.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${o.dtype}`),E(t>=0,()=>`size must be non-negative, but got ${t}.`),E(n.size===o.size||n.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${o.shape}, weights shape: ${n.shape}.`);let s={x:o,weights:n},a={size:t};return T.runKernel(Jo,s,a)}var hd=N({bincount_:TH});function _H(r,e){let t=v(r,"x","bitwiseAnd"),o=v(e,"y","bitwiseAnd");if(!br(t.shape,o.shape))throw new Error(`BitwiseAnd: Tensors must have the same shape. x: ${t.shape}, y: ${o.shape}`);if(t.dtype!=="int32"||o.dtype!=="int32")throw new Error(`BitwiseAnd: Only supports 'int32' values in tensor, found type of x: ${t.dtype} and type of y: ${o.dtype}`);let n={a:t,b:o};return T.runKernel(qa,n)}var Qk=N({bitwiseAnd_:_H});function EH(r,e){let t=v(r,"s0","broadcastArgs","int32"),o=v(e,"s1","broadcastArgs","int32");if(t.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${t.rank}`);if(o.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${o.rank}`);let n={s0:t,s1:o};return T.runKernel(ea,n)}var Zk=N({broadcastArgs_:EH});function $H(r,e){let t=v(r,"broadcastTo","x"),o=t.shape;if(Ct(e),e.length<t.rank)throw new Error(`broadcastTo(): shape.length=${e.length} < input.rank=${t.rank}.`);if(e.length>t.rank){let u=t.shape.slice();for(;u.length<e.length;)u.unshift(1);t=W(t,u)}let n=t.shape,s=Array.from(e);for(let u=e.length-1;u>=0;u--)if(n[u]===e[u])s[u]=1;else if(t.shape[u]!==1)throw new Error(`broadcastTo(): [${o}] cannot be broadcast to [${e}].`);if(s.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return Ur(t);let i={x:t},p={reps:s};return T.runKernel(po,i,p)}var su=N({broadcastTo_:$H});function RH(r){let t={x:v(r,"x","ceil","float32")};return T.runKernel(en,t)}var Jk=N({ceil_:RH});function $a(r,e,t){Ct(r),t=t||Ei(e);let o={shape:r,value:e,dtype:t};return T.runKernel(sa,{},o)}function DH(r,e,t){let o=v(r,"x","clipByValue");if(E(e<=t,()=>`Error in clip: min (${e}) must be less than or equal to max (${t}).`),e===t)return $a(o.shape,e,o.dtype);let n={x:o},s={clipValueMin:e,clipValueMax:t};return T.runKernel(bo,n,s)}var e2=N({clipByValue_:DH});function AH(r){return yt(r,0)}var t2=N({concat1d_:AH});function FH(r,e){return yt(r,e)}var r2=N({concat2d_:FH});function PH(r,e){return yt(r,e)}var o2=N({concat3d_:PH});function OH(r,e){return yt(r,e)}var n2=N({concat4d_:OH});function MH(r,e,t,o,n="NHWC",s=[1,1],a){let i=v(r,"x","conv2d","float32"),p=v(e,"filter","conv2d","float32"),u=i,c=!1;i.rank===3&&(c=!0,u=W(i,[1,i.shape[0],i.shape[1],i.shape[2]])),E(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),E(p.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${p.rank}.`),Lt("conv2d",o,a);let l=n==="NHWC"?u.shape[3]:u.shape[1];E(l===p.shape[2],()=>`Error in conv2d: depth of input (${l}) must match input depth for filter ${p.shape[2]}.`),E(gr(t,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),E(Ta(s),()=>"Error in conv2D: Dilated rates should be larger than 0."),E(Ta(t),()=>"Error in conv2D: Strides should be larger than 0.");let m={x:u,filter:p},d={strides:t,pad:o,dataFormat:n,dilations:s,dimRoundingMode:a},f=T.runKernel(tn,m,d);return c?W(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var au=N({conv2d_:MH});function LH(r,e,t,o,n="NWC",s=1,a){let i=v(r,"x","conv1d"),p=v(e,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=W(i,[1,i.shape[0],i.shape[1]])),E(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),E(p.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${p.rank}.`),Lt("conv1d",o,a),E(u.shape[2]===p.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${p.shape[1]}.`),E(gr(t,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${t} and dilation '${s}'`),E(Ta(s),()=>"Error in conv1D: Dilated rates should be larger than 0."),E(Ta(t),()=>"Error in conv1D: Stride should be larger than 0."),E(n==="NWC",()=>`Error in conv1d: got dataFormat of ${n} but only NWC is currently supported.`);let l=W(p,[1,p.shape[0],p.shape[1],p.shape[2]]),m=W(u,[u.shape[0],1,u.shape[1],u.shape[2]]),g=au(m,l,[1,t],o,"NHWC",[1,s],a);return c?W(g,[g.shape[2],g.shape[3]]):W(g,[g.shape[0],g.shape[2],g.shape[3]])}var s2=N({conv1d_:LH});function BH(r,e,t,o,n,s="NHWC",a){E(r.length===e.rank,()=>`Length of inShape (${r.length}) and rank of dy (${e.rank}) must match`);let i=r,p=e,u=!1;e.rank===3&&(u=!0,p=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]),i=[1,r[0],r[1],r[2]]),E(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),E(p.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${p.rank}`),E(t.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${t.rank}`);let c=s==="NHWC"?i[3]:i[1],l=s==="NHWC"?p.shape[3]:p.shape[1];E(c===t.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${t.shape[2]}.`),E(l===t.shape[3],()=>`Error in conv2dDerInput: depth of output (${l}) must match output depth for filter ${t.shape[3]}.`),Lt("conv2dDerInput",n,a);let m={dy:p,filter:t},d={strides:o,pad:n,dataFormat:s,dimRoundingMode:a,inputShape:i},f=T.runKernel(rn,m,d);return u?W(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var gd=N({conv2DBackpropInput_:BH});function zH(r,e,t,o,n,s){let a=v(r,"x","conv2dTranspose"),i=v(e,"filter","conv2dTranspose");return gd(t,a,i,o,n,"NHWC",s)}var a2=N({conv2dTranspose_:zH});function VH(r,e,t,o,n="NDHWC",s=[1,1,1]){let a=v(r,"x","conv3d"),i=v(e,"filter","conv3d"),p=a,u=!1;a.rank===4&&(u=!0,p=W(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),E(p.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${p.rank}.`),E(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),E(p.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${p.shape[4]}) must match input depth for filter ${i.shape[3]}.`),E(gr(t,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),E(n==="NDHWC",()=>`Error in conv3d: got dataFormat of ${n} but only NDHWC is currently supported.`),E(Ta(s),()=>"Error in conv3D: Dilated rates should be larger than 0."),E(Ta(t),()=>"Error in conv3D: Strides should be larger than 0.");let c={x:p,filter:i},l={strides:t,pad:o,dataFormat:n,dilations:s},m=T.runKernel(on,c,l);return u?W(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var i2=N({conv3d_:VH});function WH(r,e,t,o,n){E(r.length===e.rank,()=>`Length of inShape (${r.length}) and rank of dy (${e.rank}) must match`);let s=r,a=e,i=!1;e.rank===4&&(i=!0,a=W(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]),s=[1,r[0],r[1],r[2],r[3]]);let p=s[4],u=a.shape[4];E(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),E(a.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${a.rank}`),E(t.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${t.rank}`),E(p===t.shape[3],()=>`Error in conv3dDerInput: depth of input (${p}) must match input depth for filter ${t.shape[3]}.`),E(u===t.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${t.shape[4]}.`);let c={dy:a,filter:t},l={pad:n,strides:o,inputShape:s},m=T.runKernel(nn,c,l);return i?W(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var u2=N({conv3DBackpropInput_:WH});function UH(r,e,t,o,n){let s=v(r,"x","conv3dTranspose"),a=v(e,"filter","conv3dTranspose");return u2(t,s,a,o,n)}var p2=N({conv3dTranspose_:UH});function GH(r){let t={x:v(r,"x","cos","float32")};return T.runKernel(sn,t)}var c2=N({cos_:GH});function HH(r){let t={x:v(r,"x","cosh","float32")};return T.runKernel(an,t)}var l2=N({cosh_:HH});function KH(r,e=0,t=!1,o=!1){let s={x:v(r,"x","cumprod")},a={axis:e,exclusive:t,reverse:o};return T.runKernel(un,s,a)}var m2=N({cumprod_:KH});function qH(r,e=0,t=!1,o=!1){let s={x:v(r,"x","cumsum")},a={axis:e,exclusive:t,reverse:o};return T.runKernel(pn,s,a)}var d2=N({cumsum_:qH});function jH(r,e,t,o=!1){let n=v(r,"x","denseBincount"),s=v(e,"weights","denseBincount");E(n.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${n.dtype}`),E(n.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${n.rank}.`),E(t>=0,()=>`size must be non-negative, but got ${t}.`),E(s.size===n.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${n.shape}, weights shape: ${s.shape}.`);let a={x:n,weights:s},i={size:t,binaryOutput:o};return T.runKernel(ra,a,i)}var f2=N({denseBincount_:jH});function XH(r,e,t="NHWC"){let o=v(r,"x","depthToSpace","float32"),n=t==="NHWC"?o.shape[1]:o.shape[2],s=t==="NHWC"?o.shape[2]:o.shape[3],a=t==="NHWC"?o.shape[3]:o.shape[1];E(e>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${e}`),E(n*e>=0,()=>`Negative dimension size caused by overflow when multiplying
${n} and ${e} for depthToSpace with input shape
${o.shape}`),E(s*e>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${e} for depthToSpace with input shape
${o.shape}`),E(a%(e*e)===0,()=>`Dimension size must be evenly divisible by ${e*e} but is ${a} for depthToSpace with input shape ${o.shape}`);let i={x:o},p={blockSize:e,dataFormat:t};return T.runKernel(ln,i,p)}var h2=N({depthToSpace_:XH});function YH(r,e,t,o,n="NHWC",s=[1,1],a){let i=v(r,"x","depthwiseConv2d","float32"),p=v(e,"filter","depthwiseConv2d","float32"),u=i,c=!1;i.rank===3&&(c=!0,u=W(i,[1,i.shape[0],i.shape[1],i.shape[2]])),E(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),E(p.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${p.rank}.`);let l=n==="NHWC"?u.shape[3]:u.shape[1];E(l===p.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${l}) must match the inChannels dimension in filter ${p.shape[2]}.`),Lt("depthwiseConv2d",o,a);let m={x:u,filter:p},d={strides:t,pad:o,dataFormat:n,dilations:s,dimRoundingMode:a},f=T.runKernel(mn,m,d);return c?W(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var sc=N({depthwiseConv2d_:YH});function QH(r){let t={x:v(r,"x","diag")};return T.runKernel(oa,t)}var g2=N({diag_:QH});function ZH(r,e,t,o,n=[1,1],s="NHWC"){let a=v(r,"x","dilation2d"),i=v(e,"filter","dilation2d");E(a.rank===3||a.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${a.rank}.`),E(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),E(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let p=a,u=!1;a.rank===3&&(p=W(a,[1,a.shape[0],a.shape[1],a.shape[2]]),u=!0),E(p.shape[3]===i.shape[2],()=>`Error in dilation2d: input and filter must have the same depth: ${p.shape[3]} vs ${i.shape[2]}`);let c={x:p,filter:i},l={strides:t,pad:o,dilations:n},m=T.runKernel(dn,c,l);return u?W(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var x2=N({dilation2d_:ZH});var Sr={};qe(Sr,{assertAndGetBroadcastShape:()=>rt,getBroadcastDims:()=>y2,getReductionAxes:()=>xd});function y2(r,e){let t=r.length,o=[];for(let n=0;n<t;n++){let s=t-1-n,a=r[s]||1;(e[e.length-1-n]||1)>1&&a===1&&o.unshift(s)}return o}function xd(r,e){let t=[];for(let o=0;o<e.length;o++){let n=r[r.length-o-1],s=e.length-o-1,a=e[s];(n==null||n===1&&a>1)&&t.unshift(s)}return t}function rt(r,e){let t=Math.max(r.length,e.length),o=new Array(t);for(let n=0;n<t;n++){let s=r[r.length-n-1];s==null&&(s=1);let a=e[e.length-n-1];if(a==null&&(a=1),s===1)o[t-n-1]=a;else if(a===1)o[t-n-1]=s;else if(s!==a){let i=`Operands could not be broadcast together with shapes ${r} and ${e}.`;throw Error(i)}else o[t-n-1]=s}return o}function JH(r,e){let t=v(r,"a","equal","string_or_numeric"),o=v(e,"b","equal","string_or_numeric");[t,o]=Oe(t,o),rt(t.shape,o.shape);let n={a:t,b:o};return T.runKernel(xn,n)}var yd=N({equal_:JH});function eK(r,e,t){let o=v(e,"a","where"),n=v(t,"b","where"),s=v(r,"condition","where","bool"),a=rt(rt(s.shape,o.shape),n.shape),i=su(s,a),p=su(o,a),u=su(n,a),c={condition:i,t:p,e:u};return T.runKernel(fa,c)}var lo=N({where_:eK});function tK(r){let t={x:v(r,"x","zerosLike")};return T.runKernel(Sa,t)}var Gt=N({zerosLike_:tK});function rK(r,e){let t=v(r,"a","div"),o=v(e,"b","div");[t,o]=Oe(t,o);let n=je(t,o),s=Gt(n),a=yd(o,s);return lo(a,s,n)}var b2=N({divNoNan_:rK});function oK(r,e){let t=v(r,"t1","dot"),o=v(e,"t2","dot");E((t.rank===1||t.rank===2)&&(o.rank===1||o.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${t.rank} and ${o.rank}.`);let n=t.rank===1?t.size:t.shape[1],s=o.rank===1?o.size:o.shape[0];if(E(n===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${n} and ${s}.`),t.rank===1&&o.rank===1){let a=W(t,[1,-1]),i=W(o,[-1,1]),p=Ze(a,i);return W(p,[])}else if(t.rank===1&&o.rank===2){let a=W(t,[1,-1]),i=W(o,[o.shape[0],o.shape[1]]),p=Ze(a,i);return W(p,[p.size])}else if(t.rank===2&&o.rank===1){let a=W(o,[-1,1]),i=Ze(t,a);return W(i,[i.size])}else{let a=W(o,[o.shape[0],o.shape[1]]);return Ze(t,a)}}var C2=N({dot_:oK});function nK(r,...e){let t=e.map((n,s)=>v(n,`tensors${s}`,"einsum")),o={equation:r};return T.runKernel(Bi,t,o)}var iu=N({einsum_:nK});function sK(r){let t={x:v(r,"x","elu","float32")};return T.runKernel(hn,t)}var bd=N({elu_:sK});function aK(r,e){let t=v(r,"x","ensureShape","string_or_numeric");if(!ZC(t.shape,e))throw new Error(`EnsureShape: Shape of tensor ${t.shape} is not compatible with expected shape ${e}`);return r}var w2=N({ensureShape_:aK});function iK(r){let e=v(r,"x","erf");E(e.dtype==="int32"||e.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),e.dtype==="int32"&&(e=Ue(e,"float32"));let t={x:e};return T.runKernel(gn,t)}var S2=N({erf_:iK});function zw(r,e){for(let t=0;t<r.length;++t)if(r[r.length-t-1]!==e-1-t)return!1;return!0}function I2(r,e,t){let o=r.length+e.length,n=[],s=0,a=0;for(let i=0;i<o;i++)t.indexOf(i)===-1?n.push(r[s++]):n.push(e[a++]);return n}function uK(r,e){let t=[],o=r.length;for(let s=0;s<o;s++)e.indexOf(s)===-1&&t.push(r[s]);let n=e.map(s=>r[s]);return[t,n]}function ii(r,e){let t=e.map(o=>1);return I2(r,t,e)}function pK(r,e,t){E(zw(e,t),()=>`${r} supports only inner-most axes for now. Got axes ${e} and rank-${t} input.`)}function cK(r,e){if(zw(r,e))return null;let t=[];for(let o=0;o<e;++o)r.indexOf(o)===-1&&t.push(o);return r.forEach(o=>t.push(o)),t}function lK(r){return r.map((e,t)=>[t,e]).sort((e,t)=>e[1]-t[1]).map(e=>e[0])}function mK(r,e){let t=[];for(let o=e-r;o<e;++o)t.push(o);return t}function fK(r,e=null,t=!1){let n={x:v(r,"x","max")},s={reductionIndices:e,keepDims:t};return T.runKernel(zn,n,s)}var Ra=N({max_:fK});function hK(r,e=null,t=!1){let n={x:v(r,"x","min")},s={axis:e,keepDims:t};return T.runKernel(Gn,n,s)}var Nl=N({min_:hK});function gK(r,e){let t=v(r,"base","pow"),o=v(e,"exp","pow");[t,o]=Oe(t,o);let n={a:t,b:o};return T.runKernel(ts,n)}var ui=N({pow_:gK});function ke(r,e){if((Pt(r)&&e!=="string"||Array.isArray(r))&&e!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(e==="string"&&Pt(r)&&!(r instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return wr(r,[],[],e)}function xK(r){let t={x:v(r,"x","sqrt","float32")};return T.runKernel(ws,t)}var Rr=N({sqrt_:xK});function yK(r){let e=v(r,"x","square"),t={};return T.runKernel("Square",{x:e},t)}var Zt=N({square_:yK});function bK(r,e=null,t=!1){let o=v(r,"x","sum");o.dtype==="bool"&&(o=Ue(o,"int32"));let n={x:o},s={axis:e,keepDims:t};return T.runKernel(Ss,n,s)}var ot=N({sum_:bK});function CK(r,e="euclidean",t=null,o=!1){r=v(r,"x","norm");let n=v2(r,e,t),s=n.shape;if(o){let a=_i(t,r.shape);s=ii(n.shape,a)}return W(n,s)}function v2(r,e,t=null){if(r.rank===0)return Qt(r);if(r.rank!==1&&t===null)return v2(W(r,[-1]),e,t);if(r.rank===1||typeof t=="number"||Array.isArray(t)&&t.length===1){if(e===1)return ot(Qt(r),t);if(e===1/0)return Ra(Qt(r),t);if(e===-1/0)return Nl(Qt(r),t);if(e==="euclidean"||e===2)return Rr(ot(ui(Qt(r),ke(2,"int32")),t));throw new Error(`Error in norm: invalid ord value: ${e}`)}if(Array.isArray(t)&&t.length===2){if(e===1)return Ra(ot(Qt(r),t[0]),t[1]-1);if(e===1/0)return Ra(ot(Qt(r),t[1]),t[0]);if(e===-1/0)return Nl(ot(Qt(r),t[1]),t[0]);if(e==="fro"||e==="euclidean")return Rr(ot(Zt(r),t));throw new Error(`Error in norm: invalid ord value: ${e}`)}throw new Error(`Error in norm: invalid axis: ${t}`)}var Vu=N({norm_:CK});function wK(r,e=null,t=!1){return Vu(r,"euclidean",e,t)}var k2=N({euclideanNorm_:wK});function SK(r){let t={x:v(r,"x","exp")};return T.runKernel(yn,t)}var _o=N({exp_:SK});function IK(r,e=0){let t=v(r,"x","expandDims","string_or_numeric");E(e<=t.rank,()=>"Axis must be <= rank of the tensor");let o={input:t},n={dim:e};return T.runKernel(na,o,n)}var Ms=N({expandDims_:IK});function vK(r){let t={x:v(r,"x","expm1")};return T.runKernel(bn,t)}var N2=N({expm1_:vK});function kK(r,e){let t=v(r,"x","tile","string_or_numeric");E(t.rank===e.length,()=>`Error in transpose: rank of input ${t.rank} must match length of reps ${e}.`);let o={x:t},n={reps:e};return T.runKernel(po,o,n)}var uu=N({tile_:kK});function NK(r,e,t,o="float32"){e==null&&(e=r);let n=me([r,e],o),s=r<=e?r:e;for(let i=0;i<s;++i)n.set(1,i,i);let a=W(n.toTensor(),[r,e]);if(t==null)return a;if(t.length===1)return uu(Ms(a,0),[t[0],1,1]);if(t.length===2)return uu(Ms(Ms(a,0),0),[t[0],t[1],1,1]);if(t.length===3)return uu(Ms(Ms(Ms(a,0),0),0),[t[0],t[1],t[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${t.length}D.`)}var Cd=N({eye_:NK});function TK(r){let t={x:v(r,"x","floor","float32")};return T.runKernel(wn,t)}var wd=N({floor_:TK});function _K(r,e,t=0,o=0){let n=v(r,"x","gather"),s=v(e,"indices","gather","int32"),a={x:n,indices:s},i={axis:t,batchDims:o};return T.runKernel(aa,a,i)}var Sd=N({gather_:_K});function EK(r,e){let t=v(r,"a","greater","string_or_numeric"),o=v(e,"b","greater","string_or_numeric");[t,o]=Oe(t,o),rt(t.shape,o.shape);let n={a:t,b:o};return T.runKernel(kn,n)}var Wu=N({greater_:EK});function $K(r,e){let t=v(r,"a","greaterEqual","string_or_numeric"),o=v(e,"b","greaterEqual","string_or_numeric");[t,o]=Oe(t,o),rt(t.shape,o.shape);let n={a:t,b:o};return T.runKernel(Nn,n)}var Id=N({greaterEqual_:$K});function RK(r){let t={input:v(r,"input","imag")};return T.runKernel(Wi,t)}var pu=N({imag_:RK});function DK(r){let t={x:v(r,"x","isFinite")};return T.runKernel(Tn,t)}var T2=N({isFinite_:DK});function AK(r){let t={x:v(r,"x","isInf")};return T.runKernel(_n,t)}var _2=N({isInf_:AK});function FK(r){let t={x:v(r,"x","isNaN")};return T.runKernel(En,t)}var E2=N({isNaN_:FK});function PK(r,e=.2){let o={x:v(r,"x","leakyRelu")},n={alpha:e};return T.runKernel($n,o,n)}var vd=N({leakyRelu_:PK});function OK(r,e){let t=v(r,"a","less","string_or_numeric"),o=v(e,"b","less","string_or_numeric");[t,o]=Oe(t,o),rt(t.shape,o.shape);let n={a:t,b:o};return T.runKernel(Rn,n)}var Tl=N({less_:OK});function MK(r,e){let t=v(r,"a","lessEqual","string_or_numeric"),o=v(e,"b","lessEqual","string_or_numeric");[t,o]=Oe(t,o),rt(t.shape,o.shape);let n={a:t,b:o};return T.runKernel(Dn,n)}var ac=N({lessEqual_:MK});function $2(r,e,t){if(t<=0)throw new Error("The number of values should be positive.");let o={start:r,stop:e,num:t};return T.runKernel(An,{},o)}function LK(r,e=5,t=1,o=1,n=.5){let s=v(r,"x","localResponseNormalization");E(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${s.rank}.`),E(Ka(e),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${e}.`);let a=s,i=!1;s.rank===3&&(i=!0,a=W(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let p={x:a},u={depthRadius:e,bias:t,alpha:o,beta:n},c=T.runKernel(Bn,p,u);return i?W(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var R2=N({localResponseNormalization_:LK});function BK(r){let t={x:v(r,"x","log","float32")};return T.runKernel(Fn,t)}var pi=N({log_:BK});function zK(r){let t={x:v(r,"x","log1p")};return T.runKernel(Pn,t)}var kd=N({log1p_:zK});function VK(r){return E(qs(r),()=>"The f passed in grad(f) must be a function"),(e,t)=>{let o=v(e,"x","tf.grad","string_or_numeric"),n=t!=null?v(t,"dy","tf.grad"):null;return T.tidy(()=>{let{value:s,grads:a}=T.gradients(()=>r(o),[o],n);return n!=null&&xt(s.shape,n.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Nd(a),a[0]})}}function WK(r){return E(qs(r),()=>"The f passed in grads(f) must be a function"),(e,t)=>{E(Array.isArray(e),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let o=ni(e,"args","tf.grads","string_or_numeric"),n=t!=null?v(t,"dy","tf.grads"):null;return T.tidy(()=>{let{value:s,grads:a}=T.gradients(()=>r(...o),o,n);return n!=null&&xt(s.shape,n.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Nd(a),a})}}function UK(r){return E(qs(r),()=>"The f passed in valueAndGrad(f) must be a function"),(e,t)=>{E(e instanceof mt,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),E(t==null||t instanceof mt,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:o,value:n}=T.gradients(()=>r(e),[e],t);return Nd(o),{grad:o[0],value:n}}}function GK(r){return E(qs(r),()=>"The f passed in valueAndGrads(f) must be a function"),(e,t)=>{E(Array.isArray(e)&&e.every(n=>n instanceof mt),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),E(t==null||t instanceof mt,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let o=T.gradients(()=>r(...e),e,t);return t!=null&&xt(o.value.shape,t.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Nd(o.grads),o}}function Vw(r,e){E(qs(r),()=>"The f passed in variableGrads(f) must be a function"),E(e==null||Array.isArray(e)&&e.every(u=>u instanceof ri),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let t=e!=null;if(!t){e=[];for(let u in T.registeredVariables)e.push(T.registeredVariables[u])}let o=t?e.filter(u=>!u.trainable):null,n=e.length;e=e.filter(u=>u.trainable),E(e.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${n} variables is trainable.`);let s=!0,{value:a,grads:i}=T.gradients(r,e,null,s);E(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),E(a.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${a.rank} tensor`);let p={};return e.forEach((u,c)=>{i[c]!=null&&(p[u.name]=i[c])}),o!=null&&o.forEach(u=>p[u.name]=null),{value:a,grads:p}}function Ir(r){return T.customGrad(r)}function Nd(r){if(r.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function HK(r){let t={x:v(r,"x","neg")};return T.runKernel(pa,t)}var pr=N({neg_:HK});function KK(r){let t={x:v(r,"x","softplus")};return T.runKernel(Cs,t)}var Td=N({softplus_:KK});function qK(r){let e=v(r,"x","logSigmoid");return Ir(o=>({value:pr(Td(pr(o))),gradFunc:a=>se(a,Ea(pr(o)))}))(e)}var D2=N({logSigmoid_:qK});function jK(r,e){let t=v(r,"a","sub"),o=v(e,"b","sub");[t,o]=Oe(t,o);let n={a:t,b:o};return T.runKernel(Ts,n)}var Te=N({sub_:jK});function XK(r,e=-1){let t=v(r,"logits","logSoftmax");if(e===-1&&(e=t.rank-1),e!==t.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${t.rank} and axis was ${e}`);return Ir((n,s)=>{let i=Ra(n,e,!0),p=Te(n,i),u=Te(Ue(p,"float32"),pi(ot(_o(p),e,!0)));return s([u]),{value:u,gradFunc:(l,m)=>{let[d]=m,f=!0,h=_o(d);return Te(l,se(ot(l,e,f),h))}}})(t)}var A2=N({logSoftmax_:XK});function YK(r,e=null,t=!1){let o=v(r,"x","logSumExp"),n=_i(e,o.shape),s=Ra(o,n,!0),a=Te(o,s),i=_o(a),p=ot(i,n),u=pi(p),c=Ce(W(s,u.shape),u);if(t){let l=ii(c.shape,n);return W(c,l)}return c}var _d=N({logSumExp_:YK});function QK(r,e){let t=v(r,"a","logicalAnd","bool"),o=v(e,"b","logicalAnd","bool");rt(t.shape,o.shape);let n={a:t,b:o};return T.runKernel(On,n)}var Uu=N({logicalAnd_:QK});function ZK(r){let t={x:v(r,"x","logicalNot","bool")};return T.runKernel(Mn,t)}var Ed=N({logicalNot_:ZK});function JK(r,e){let t=v(r,"a","logicalOr","bool"),o=v(e,"b","logicalOr","bool");rt(t.shape,o.shape);let n={a:t,b:o};return T.runKernel(Ln,n)}var $d=N({logicalOr_:JK});function eq(r,e){let t=v(r,"a","logicalXor","bool"),o=v(e,"b","logicalXor","bool");return rt(t.shape,o.shape),Uu($d(r,e),Ed(Uu(r,e)))}var F2=N({logicalXor_:eq});var Rd=2147483648;function tq(r,e,t="left"){let o=v(r,"sortedSequence","searchSorted"),n=v(e,"values","searchSorted"),s=o.shape[o.shape.length-1],a=n.shape[n.shape.length-1],i=W(o,[-1,s]),p=W(n,[-1,a]);if(i.rank<2)throw new Error("Sorted input argument must be at least 2-dimensional");if(i.shape[0]!==p.shape[0])throw new Error("Leading dimension of 'sortedSequence' and 'values' must match.");if(ze(p.shape)>=Rd)throw new Error(`values tensor size must less than ${Rd}`);if(i.shape[1]>=Rd)throw new Error(`trailing dim_size must less than ${Rd} for int32 output type, was ${i.shape[1]}`);let u={sortedSequence:i,values:p},c={side:t};return T.runKernel(fs,u,c)}var _l=N({searchSorted_:tq});function P2(r,e){return _l(r,e,"left")}function rq(r,e,t,o,n){let s=v(r,"x","maxPool"),a=1,i=s,p=!1;s.rank===3&&(p=!0,i=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),E(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),E(gr(t,a),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${t} and dilations '${a}'`),Lt("maxPool",o,n);let u={x:i},c={filterSize:e,strides:t,pad:o,dimRoundingMode:n},l=T.runKernel(Wn,u,c);return p?W(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var Dd=N({maxPool_:rq});function oq(r,e=[1,1,1],t,o,n,s="NDHWC"){let a=v(r,"x","maxPool3d"),i=a,p=!1;a.rank===4&&(p=!0,i=W(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),E(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),E(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Lt("maxPool3d",o,n);let u={x:i},c={filterSize:e,strides:t,pad:o,dimRoundingMode:n,dataFormat:s},l=T.runKernel(ia,u,c);return p?W(l,[l.shape[1],l.shape[2],l.shape[3],l.shape[4]]):l}var O2=N({maxPool3d_:oq});function nq(r,e,t,o,n=!1){let a={x:v(r,"x","maxPoolWithArgmax")},i={filterSize:e,strides:t,pad:o,includeBatchInIndex:n},p=T.runKernel(ua,a,i);return{result:p[0],indexes:p[1]}}var M2=N({maxPoolWithArgmax_:nq});function sq(r,e){let t=v(r,"a","maximum"),o=v(e,"b","maximum");[t,o]=Oe(t,o),t.dtype==="bool"&&(t=Ue(t,"int32"),o=Ue(o,"int32")),rt(t.shape,o.shape);let n={a:t,b:o};return T.runKernel(Vn,n)}var Ad=N({maximum_:sq});function aq(r,e=null,t=!1){let n={x:v(r,"x","mean")},s={axis:e,keepDims:t};return T.runKernel(Un,n,s)}var Gu=N({mean_:aq});function Gr(r,e="float32"){if(Ct(r),e==="complex64"){let o=Gr(r,"float32"),n=Gr(r,"float32");return Er(o,n)}let t=Gp(ze(r),e);return T.makeTensor(t,r,e)}function Da(r,e="float32"){if(Ct(r),e==="complex64"){let o=Da(r,"float32"),n=Gr(r,"float32");return Er(o,n)}let t=ml(ze(r),e);return T.makeTensor(t,r,e)}function L2(r,e,{indexing:t="xy"}={}){if(t!=="xy"&&t!=="ij")throw new TypeError(`${t} is not a valid third argument to meshgrid`);if(r===void 0)return[];let o=v(r,"x","meshgrid",r instanceof mt?r.dtype:"float32");if(e===void 0)return[o];let n=v(e,"y","meshgrid",e instanceof mt?e.dtype:"float32"),s=ze(o.shape),a=ze(n.shape);return t==="xy"?(o=W(o,[1,-1]),n=W(n,[-1,1]),[Ze(Da([a,1],o.dtype),o),Ze(n,Da([1,s],n.dtype))]):(o=W(o,[-1,1]),n=W(n,[1,-1]),[Ze(o,Da([1,a],o.dtype)),Ze(Da([s,1],n.dtype),n)])}function iq(r,e){let t=v(r,"a","minimum"),o=v(e,"b","minimum");[t,o]=Oe(t,o),t.dtype==="bool"&&(t=Ue(t,"int32"),o=Ue(o,"int32")),rt(t.shape,o.shape);let n={a:t,b:o};return T.runKernel(Hn,n)}var Hu=N({minimum_:iq});function uq(r,e,t){E(t==="reflect"||t==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${t}.`);let o=v(r,"x","mirrorPad");if(o.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");E(e.length===o.rank,()=>`Padding doesn't match input. Must be ${o.rank}. Got ${e.length}.`);let n=t==="reflect"?1:0;for(let i=0;i<o.rank;i++)E(e[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),E(e[i][0]>=0&&e[i][0]<=o.shape[i]-n&&e[i][1]>=0&&e[i][1]<=o.shape[i]-n,()=>`Padding in dimension ${i} cannot be greater than or equal to ${o.shape[i]-n} or less than 0 for input of shape ${o.shape}`);let s={paddings:e,mode:t},a={x:o};return T.runKernel(Kn,a,s)}var B2=N({mirrorPad_:uq});function pq(r,e){let t=v(r,"a","mod"),o=v(e,"b","mod");[t,o]=Oe(t,o);let n={a:t,b:o};return T.runKernel(qn,n)}var z2=N({mod_:pq});function cq(r,e=null,t=!1){r=v(r,"x","moments");let o=_i(e,r.shape),n=Gu(r,o,t),s=n.shape;t||(s=ii(n.shape,o));let a=Zt(Te(Ue(r,"float32"),W(n,s))),i=Gu(a,o,t);return{mean:n,variance:i}}var V2=N({moments_:cq});function lq(r,e,t,o){let n=v(e,"data","multiRNNCell"),s=ni(t,"c","multiRNNCell"),a=ni(o,"h","multiRNNCell"),i=n,p=[];for(let l=0;l<r.length;l++){let m=r[l](i,s[l],a[l]);p.push(m[0]),p.push(m[1]),i=m[1]}let u=[],c=[];for(let l=0;l<p.length;l+=2)u.push(p[l]),c.push(p[l+1]);return[u,c]}var W2=N({multiRNNCell_:lq});function mq(r,e,t,o=!1){let n=v(r,"logits","multinomial"),s=n.size,a=n.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(a>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${a}`);t=t||Math.random();let p={logits:a===1?W(n,[1,-1]):n},u={numSamples:e,seed:t,normalized:o},c=T.runKernel(jn,p,u);return a===1?W(c,[c.size]):c}var U2=N({multinomial_:mq});function dq(r,e){let t=v(r,"a","notEqual","string_or_numeric"),o=v(e,"b","notEqual","string_or_numeric");[t,o]=Oe(t,o),rt(t.shape,o.shape);let n={a:t,b:o};return T.runKernel(Yn,n)}var Fd=N({notEqual_:dq});function fq(r,e,t=1,o=0,n="int32"){if(e<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${e}`);let a={indices:v(r,"indices","oneHot","int32")},i={dtype:n,depth:e,onValue:t,offValue:o};return T.runKernel(Jn,a,i)}var El=N({oneHot_:fq});function hq(r){let t={x:v(r,"x","onesLike")};return T.runKernel(ca,t)}var G2=N({onesLike_:hq});function gq(r,e){let t=v(r,"v1","outerProduct"),o=v(e,"v2","outerProduct");E(t.rank===1&&o.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${t.rank} and ${o.rank}.`);let n=W(t,[-1,1]),s=W(o,[1,-1]);return Ze(n,s)}var H2=N({outerProduct_:gq});function xq(r,e,t=0){let o=v(r,"x","pad");if(o.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let n={paddings:e,constantValue:t},s={x:o};return T.runKernel(es,s,n)}var Aa=N({pad_:xq});function yq(r,e,t=0){return E(e.length===2,()=>"Invalid number of paddings. Must be length of 2."),Aa(r,[e],t)}var K2=N({pad1d_:yq});function bq(r,e,t=0){return E(e.length===2&&e[0].length===2&&e[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Aa(r,e,t)}var q2=N({pad2d_:bq});function Cq(r,e,t=0){return E(e.length===3&&e[0].length===2&&e[1].length===2&&e[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Aa(r,e,t)}var j2=N({pad3d_:Cq});function wq(r,e,t=0){return E(e.length===4&&e[0].length===2&&e[1].length===2&&e[2].length===2&&e[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Aa(r,e,t)}var X2=N({pad4d_:wq});function Sq(r,e,t){let o=v(r,"x","spaceToBatchND");E(o.rank>=1+e.length,()=>`input rank ${o.rank} should be > than [blockShape] ${e.length}`),E(t.length===e.length,()=>`paddings.shape[0] ${t.length} must be equal to [blockShape] ${e.length}`),E(o.shape.reduce((a,i,p)=>p>0&&p<=e.length?a&&(i+t[p-1][0]+t[p-1][1])%e[p-1]===0:a,!0),()=>`input spatial dimensions ${o.shape.slice(1)} with paddings ${t.toString()} must be divisible by blockShapes ${e.toString()}`);let n={x:o},s={blockShape:e,paddings:t};return T.runKernel(ga,n,s)}var Pd=N({spaceToBatchND_:Sq});function Iq(r,e,t,o,n,s,a){n==null&&(n=[1,1]),s==null&&(s=1),o===0&&(o="valid");let i=v(r,"x","maxPool"),p=i,u=!1;i.rank===3&&(u=!0,p=W(i,[1,i.shape[0],i.shape[1],i.shape[2]])),E(gr(s,n),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${n}'`);let c=Lw(p.shape,e,s,n,o),l=[c.dilationHeight,c.dilationWidth],m;o==="same"?m=kq([c.filterHeight,c.filterWidth],l):m=[[0,0],[0,0]];let d=l[0]===1&&l[1]===1,[f,h]=vq([c.inHeight,c.inWidth],l,m),g=d?o:"valid",x=d?p:Pd(p,l,f),C=(t==="avg"?()=>dd(x,e,s,g,a):()=>Dd(x,e,s,g,a))(),S=d?C:fd(C,l,h);return u?W(S,[S.shape[1],S.shape[2],S.shape[3]]):S}function vq(r,e,t){let o=t.map(c=>c[0]),n=t.map(c=>c[1]),s=r.concat(o,n),a=e.map((c,l)=>(c-s[l]%c)%c),i=n.map((c,l)=>c+a[l]),p=e.map((c,l)=>[o[l],i[l]]),u=e.map((c,l)=>[0,a[l]]);return[p,u]}function kq(r,e){let o=r.map((a,i)=>a+(a-1)*(e[i]-1)).map(a=>a-1),n=o.map(a=>Math.floor(a/2)),s=o.map((a,i)=>a-n[i]);return o.map((a,i)=>[n[i],s[i]])}var Y2=N({pool_:Iq});function Nq(r,e){let t=v(r,"x","prelu"),o=v(e,"alpha","prelu"),n={x:t,alpha:o};return T.runKernel(rs,n)}var Od=N({prelu_:Nq});function Tq(r,e=null,t=!1){let o=v(r,"x","prod");o.dtype==="bool"&&(o=Ue(o,"int32"));let n={x:o},s={axis:e,keepDims:t};return T.runKernel(os,n,s)}var Q2=N({prod_:Tq});function _q(r,e,t,o){let n=r.map((c,l)=>v(c,`tensors${l}`,"raggedGather","int32")),s=v(e,"paramsDenseValues","raggedGather"),a=v(t,"indices","raggedGather","int32"),i={paramsNestedSplits:n,paramsDenseValues:s,indices:a},p={outputRaggedRank:o},u=T.runKernel(Hp,i,p);return{outputNestedSplits:u.slice(0,u.length-1),outputDenseValues:u[u.length-1]}}var Z2=N({raggedGather_:_q});function Eq(r,e,t){let o=v(r,"starts","raggedRange"),n=v(e,"limits","raggedRange",o.dtype),s=v(t,"deltas","raggedRange",o.dtype),a={starts:o,limits:n,deltas:s},i=T.runKernel(Kp,a);return{rtNestedSplits:i[0],rtDenseValues:i[1]}}var J2=N({raggedRange_:Eq});function $q(r,e,t,o,n){let s=v(r,"shape","raggedTensorToTensor","int32"),a=v(e,"values","raggedTensorToTensor"),i=v(t,"defaultValue","raggedTensorToTensor",a.dtype),p=o.map((l,m)=>v(l,`tensors${m}`,"raggedTensorToTensor","int32")),u={shape:s,values:a,defaultValue:i,rowPartitionTensors:p},c={rowPartitionTypes:n};return T.runKernel(qp,u,c)}var e1=N({raggedTensorToTensor_:$q});function Rq(r,e,t){Ct(r);let o=ze(r),n=null;if(t==null||t==="float32")n=new Float32Array(o);else if(t==="int32")n=new Int32Array(o);else if(t==="bool")n=new Uint8Array(o);else throw new Error(`Unknown data type ${t}`);for(let s=0;s<o;s++)n[s]=e();return T.makeTensor(n,r,t)}var t1=N({rand_:Rq});var Vd=zp(jw());var w1={};qe(w1,{TEST_EPSILON_FLOAT16:()=>y1,createVideoElement:()=>Gq,encodeStrings:()=>C1,expectArrayBuffersEqual:()=>Uq,expectArraysClose:()=>Bq,expectArraysEqual:()=>Vq,expectNumbersClose:()=>b1,expectPromiseToFail:()=>zq,expectValuesInRange:()=>Wq,play:()=>Hq,testEpsilon:()=>Ld});var Lq=.001,y1=.1;function Bq(r,e,t){return t==null&&(t=Ld()),Xw(r,e,(o,n)=>Yw(o,n,t))}function Ld(){return T.backend.floatPrecision()===32?Lq:y1}function Xw(r,e,t){let o=!0;if((Pt(r)||Pt(e))&&(o=!1),Pt(r)&&Pt(e)&&(o=!0),o){let a=r.constructor.name,i=e.constructor.name;if(a!==i)throw new Error(`Arrays are of different type. Actual: ${a}. Expected: ${i}`)}if(Array.isArray(r)&&Array.isArray(e)){let a=sr(r),i=sr(e);if(!br(a,i))throw new Error(`Arrays have different shapes. Actual: [${a}]. Expected: [${i}]`)}let n=Pt(r)?r:Fs(r),s=Pt(e)?e:Fs(e);if(n.length!==s.length)throw new Error(`Arrays have different lengths actual: ${n.length} vs expected: ${s.length}.
Actual: ${n}.
Expected: ${s}.`);for(let a=0;a<s.length;++a){let i=n[a],p=s[a];if(!t(i,p))throw new Error(`Arrays differ: actual[${a}] = ${i}, expected[${a}] = ${p}.
Actual: ${n}.
Expected: ${s}.`)}typeof expect!="undefined"&&expect().nothing()}function zq(r,e){r().then(()=>e.fail(),()=>e()),typeof expect!="undefined"&&expect().nothing()}function Vq(r,e){let t=typeof e=="string"||typeof e=="number"||typeof e=="boolean"?[e]:e;return zo(r)||zo(r[0])||zo(e)||zo(e[0])?Xw(r,t,(o,n)=>o==n):Xw(r,e,(o,n)=>Yw(o,n,0))}function b1(r,e,t){if(t==null&&(t=Ld()),!Yw(r,e,t))throw new Error(`Numbers differ: actual === ${r}, expected === ${e}`);typeof expect!="undefined"&&expect().nothing()}function Yw(r,e,t){return!isFinite(r)&&!isFinite(e)?!0:!(isNaN(r)||isNaN(e)||Math.abs(r-e)>t)}function Wq(r,e,t){for(let o=0;o<r.length;o++)if(r[o]<e||r[o]>t)throw new Error(`Value out of range:${r[o]} low: ${e}, high: ${t}`)}function Uq(r,e){let t=new Float32Array(r),o=new Float32Array(e);if(t.length!==o.length)throw new Error(`Expected ArrayBuffer to be of length ${o.length}, but it was ${t.length}`);for(let n=0;n<o.length;n++)if(t[n]!==o[n])throw new Error(`Expected ArrayBuffer value at ${n} to be ${o[n]} but got ${t[n]} instead`)}function C1(r){for(let e=0;e<r.length;e++){let t=r[e];Array.isArray(t)?C1(t):r[e]=Ji(t)}return r}function Gq(r){let e=document.createElement("video");return"playsInline"in e&&(e.playsInline=!0),e.muted=!0,e.loop=!0,e.style.position="fixed",e.style.left="0px",e.style.top="0px",e.preload="auto",e.appendChild(r),new Promise(t=>{e.addEventListener("loadeddata",o=>t(e)),e.load()})}async function Hq(r){await r.play(),"requestVideoFrameCallback"in r&&await new Promise(e=>{r.requestVideoFrameCallback(e)})}var qu=class{constructor(e,t,o,n,s){this.mean=e,this.stdDev=t,this.dtype=o,this.nextVal=NaN,this.truncated=n,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=s||Math.random();this.random=Vd.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let n=this.nextVal;return this.nextVal=NaN,n}let e,t,o=!1;for(;!o;){let n,s,a;do n=2*this.random()-1,s=2*this.random()-1,a=n*n+s*s;while(a>=1||a===0);let i=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*n*i,t=this.mean+this.stdDev*s*i,(!this.truncated||this.isValidTruncated(e))&&(o=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},Bd=class{constructor(e,t,o,n){this.alpha=e,this.beta=1/t,this.dtype=o;let s=n||Math.random();this.randu=Vd.alea(s.toString()),this.randn=new qu(0,1,o,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,o,n,s,a;for(;;){do n=this.randn.nextValue(),a=1+this.c*n;while(a<=0);if(a*=a*a,e=n*n,t=1-.331*e*e,o=.5*e+this.d*(1-a+Math.log(a)),s=this.randu(),s<t||Math.log(s)<o)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},zd=class{constructor(e=0,t=1,o,n){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=o,n==null&&(n=Math.random()),typeof n=="number"&&(n=n.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Vd.alea(n)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function Kq(r,e,t=1,o="float32",n){if(Ct(r),t==null&&(t=1),o==null&&(o="float32"),o!=="float32"&&o!=="int32")throw new Error(`Unsupported data type ${o}`);let s=new Bd(e,t,o,n),a=me(r,o);for(let i=0;i<a.values.length;i++)a.values[i]=s.nextValue();return a.toTensor()}var S1=N({randomGamma_:Kq});function qq(r,e=0,t=1,o,n){if(Ct(r),o!=null&&o==="bool")throw new Error(`Unsupported data type ${o}`);let s=new qu(e,t,o,!1,n),a=me(r,o);for(let i=0;i<a.values.length;i++)a.values[i]=s.nextValue();return a.toTensor()}var Wd=N({randomNormal_:qq});function jq(r,e,t){if(e!=null&&e==="bool")throw new Error(`Unsupported data type ${e}`);return Wd(r,0,1,e,t)}var I1=N({randomStandardNormal_:jq});function Xq(r,e=0,t=1,o="float32",n){Ct(r);let s=me(r,o),a=new zd(e,t,null,n);for(let i=0;i<s.values.length;i++)s.values[i]=a.nextValue();return s.toTensor()}var ic=N({randomUniform_:Xq});function Yq(r,e,t,o){return ic(r,e,t,"int32",o)}var v1=N({randomUniformInt_:Yq});function cu(r,e,t=1,o="float32"){if(t===0)throw new Error("Cannot have a step of zero");let n={start:r,stop:e,step:t,dtype:o};return T.runKernel(ma,{},n)}function Qq(r){let t={input:v(r,"input","real")};return T.runKernel(Hi,t)}var ci=N({real_:Qq});function Zq(r){let t={x:v(r,"x","reciprocal")};return T.runKernel(ns,t)}var k1=N({reciprocal_:Zq});function Jq(r){let t={x:v(r,"x","relu")};return T.runKernel(ss,t)}var lu=N({relu_:Jq});function e6(r){let t={x:v(r,"x","relu6")};return T.runKernel(us,t)}var Ud=N({relu6_:e6});function t6(r,e){let o={x:v(r,"x","reverse")},n={dims:e};return T.runKernel(ps,o,n)}var mo=N({reverse_:t6});function r6(r){let e=v(r,"x","reverse");return E(e.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${e.rank}.`),mo(e,0)}var N1=N({reverse1d_:r6});function o6(r,e){let t=v(r,"x","reverse");return E(t.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${t.rank}.`),mo(t,e)}var T1=N({reverse2d_:o6});function n6(r,e){let t=v(r,"x","reverse");return E(t.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${t.rank}.`),mo(t,e)}var _1=N({reverse3d_:n6});function s6(r,e){let t=v(r,"x","reverse");return E(t.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${t.rank}.`),mo(t,e)}var E1=N({reverse4d_:s6});function a6(r){let t={x:v(r,"x","round")};return T.runKernel(cs,t)}var Gd=N({round_:a6});function i6(r){let t={x:v(r,"x","rsqrt","float32")};return T.runKernel(ls,t)}var $1=N({rsqrt_:i6});function u6(r){let t={x:v(r,"x","selu")};return T.runKernel(hs,t)}var R1=N({selu_:u6});function p6(r,e,t,o,n,s=[1,1],a="NHWC"){let i=v(r,"x","separableConv2d"),p=v(e,"depthwiseFilter","separableConv2d"),u=v(t,"pointwiseFilter","separableConv2d"),c=i,l=!1;if(i.rank===3&&(l=!0,c=W(i,[1,i.shape[0],i.shape[1],i.shape[2]])),a==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");E(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),E(p.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${p.rank}.`),E(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${p.rank}.`),E(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),E(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let m=p.shape[2],d=p.shape[3];E(u.shape[2]===m*d,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${m*d}, but got ${u.shape[2]}.`);let f=sc(c,p,o,n,a,s),g=au(f,u,1,"valid",a);return l?W(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var D1=N({separableConv2d_:p6});async function c6(r,e){let t=v(r,"x","setdiff1d"),o=v(e,"y","setdiff1d");E(t.dtype===o.dtype,()=>`x and y should have the same dtype, but got x (${t.dtype}) and y (${o.dtype}).`),E(t.rank===1,()=>`x should be 1D tensor, but got x (${t.shape}).`),E(o.rank===1,()=>`y should be 1D tensor, but got y (${o.shape}).`);let n=await t.data(),s=await o.data(),a=new Set(s),i=0;for(let c=0;c<n.length;c++)a.has(n[c])||i++;let p=new tt([i],t.dtype),u=new tt([i],"int32");for(let c=0,l=0;c<n.length;c++)a.has(n[c])||(p.values[l]=n[c],u.values[l]=c,l++);return[p.toTensor(),u.toTensor()]}var A1=c6;function l6(r){let t={x:v(r,"x","sign")};return T.runKernel(ys,t)}var F1=N({sign_:l6});function m6(r){let t={x:v(r,"x","sin","float32")};return T.runKernel(gs,t)}var P1=N({sin_:m6});function d6(r){let t={x:v(r,"x","sinh")};return T.runKernel(xs,t)}var O1=N({sinh_:d6});function f6(r,e,t){let o=v(r,"x","slice1d");return E(o.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${o.rank} tensor`),Xe(o,[e],[t])}var M1=N({slice1d_:f6});function h6(r,e,t){let o=v(r,"x","slice2d");return E(o.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${o.rank} tensor`),Xe(o,e,t)}var L1=N({slice2d_:h6});function g6(r,e,t){let o=v(r,"x","slice3d");return E(o.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${o.rank} tensor`),Xe(o,e,t)}var B1=N({slice3d_:g6});function x6(r,e,t){let o=v(r,"x","slice4d");return E(o.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${o.rank} tensor`),Xe(o,e,t)}var z1=N({slice4d_:x6});function y6(r,e=-1){let t=v(r,"logits","softmax","float32");if(e===-1&&(e=t.rank-1),e!==t.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${t.rank} and dim was ${e}`);let o={logits:t},n={dim:e};return T.runKernel(Is,o,n)}var V1=N({softmax_:y6});function b6(r){E(r.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${r.dtype}.`);let e={input:r};return T.runKernel(zi,e)}var uc=N({fft_:b6});function C6(r){E(r.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${r.dtype}.`);let e={input:r};return T.runKernel(Vi,e)}var ju=N({ifft_:C6});function w6(r){let e=r.shape[r.shape.length-1],t=r.size/e,o;if(e<=2){let n=W(r,[t,e]);o=ju(n)}else{let n=[t,2*(e-1)],s=W(ci(r),[t,e]),a=W(pu(r),[t,e]),i=mo(Xe(s,[0,1],[t,e-2]),1),p=se(mo(Xe(a,[0,1],[t,e-2]),1),ke(-1)),u=yt([s,i],1),c=yt([a,p],1),l=W(Er(u,c),[n[0],n[1]]);o=ju(l)}if(o=ci(o),r.rank===3&&r.shape[0]!==0){let n=o,s=r.shape[0];o=W(o,[s,o.shape[0]/s,o.shape[1]]),n.dispose()}return o}var Hd=N({irfft_:w6});function S6(r,e,t=0){let n={x:v(r,"x","split")},s={numOrSizeSplits:e,axis:t};return T.runKernel(xa,n,s)}var li=N({split_:S6});function I6(r,e){E(r.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${r.dtype}`);let t=r.shape[r.shape.length-1],o=r.size/t,n;if(e!=null&&e<t){let f=r.shape.map(g=>0),h=r.shape.map(g=>g);h[r.shape.length-1]=e,n=Xe(r,f,h),t=e}else if(e!=null&&e>t){let f=r.shape.map(h=>h);f[r.shape.length-1]=e-t,n=yt([r,Gr(f)],r.shape.length-1),t=e}else n=r;let s=Gt(n),a=W(Er(n,s),[o,t]),i=uc(a),p=Math.floor(t/2)+1,u=ci(i),c=pu(i),l=li(u,[p,t-p],u.shape.length-1),m=li(c,[p,t-p],c.shape.length-1),d=n.shape.slice();return d[n.shape.length-1]=p,W(Er(l[0],m[0]),d)}var pc=N({rfft_:I6});function v6(r,e){let t=v(r,"a","squaredDifference"),o=v(e,"b","squaredDifference");[t,o]=Oe(t,o),rt(t.shape,o.shape);let n={a:t,b:o},s={};return T.runKernel(ks,n,s)}var Kd=N({squaredDifference_:v6});function k6(r,e){let t=v(r,"x","squeeze","string_or_numeric");return W(t,JC(t.shape,e).newShape)}var cc=N({squeeze_:k6});function N6(r,e=0){let t=ni(r,"tensors","stack","string_or_numeric");E(t.length>=1,()=>"Pass at least one tensor to tf.stack"),t.length>0&&E(e<=t[0].rank,()=>"Axis must be <= rank of the tensor");let o=t,n={axis:e};return T.runKernel(la,o,n)}var vr=N({stack_:N6});function T6(r,e=0){let o={x:v(r,"x","step")},n={alpha:e};return T.runKernel(wo,o,n)}var qd=N({step_:T6});function _6(r,e,t,o,n=0,s=0,a=0,i=0,p=0){let c={x:v(r,"x","stridedSlice","string_or_numeric")},l={begin:e,end:t,strides:o,beginMask:n,endMask:s,ellipsisMask:a,newAxisMask:i,shrinkAxisMask:p};return T.runKernel(Ns,c,l)}var W1=N({stridedSlice_:_6});function E6(r){let t={x:v(r,"x","tan","float32")};return T.runKernel(_s,t)}var U1=N({tan_:E6});function Jt(r,e){io(r);let t=sr(r,e);if(t.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return wr(r,null,t,e)}function mu(r,e,t){if(io(r),e!=null&&e.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let o=sr(r,t);if(o.length!==2&&o.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return wr(r,e,o,t)}function jd(r,e,t){if(io(r),e!=null&&e.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let o=sr(r,t);if(o.length!==3&&o.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return wr(r,e,o,t)}function G1(r,e,t){if(io(r),e!=null&&e.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let o=sr(r,t);if(o.length!==4&&o.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return wr(r,e,o,t)}function H1(r,e,t){if(io(r),e!=null&&e.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let o=sr(r,t);if(o.length!==5&&o.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return wr(r,e,o,t)}function K1(r,e,t){if(io(r),e!=null&&e.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let o=sr(r,t);if(o.length!==6&&o.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return e=e||o,wr(r,e,o,t)}var du={};qe(du,{calculateShapes:()=>q1,validateInput:()=>lc,validateUpdateShape:()=>Qw});function Qw(r,e,t){let o=e.rank>1?e.shape[e.rank-1]:1,n=e.rank>1?e.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${t.shape}, indices.shape: ${e.shape}, shape: ${r}, sliceDim: ${o}, and batchDim: ${n}.`;if(t.rank<n)throw new Error(s+` update.rank < ${n}. `);if(r.length<o+(t.rank-n))throw new Error(s+` Output shape length < ${o+(t.rank-n)}`);if(t.rank!==n+r.length-o)throw new Error(s+` update.rank != ${n+r.length-o}`);for(let a=0;a<n;++a)if(t.shape[a]!==e.shape[a])throw new Error(s+` updates.shape[${a}] (${t.shape[a]}) != indices.shape[${a}] (${e.shape[a]}).`);for(let a=0;a<t.rank-n;++a)if(t.shape[a+n]!==r[a+o])throw new Error(s+` updates.shape[${a+n}] (${t.shape[a+n]}) != shape[${a+n}] (${r[a+n]})`)}function lc(r,e,t){if(e.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${e.rank}.`);if(r.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${r.rank}.`);if(e.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${e.dtype}`);if(t.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${t}`);if(t.length===0){if(e.size===0)throw new Error(`Indices specified for empty output. indices shape: ${e.shape}`);if(r.size===0)throw new Error(`Updates specified for empty output. updates shape: ${r.shape}`)}Qw(t,e,r)}function q1(r,e,t){let o=e.shape.length,n=o>1?e.shape[o-1]:1,s=t.length,a=1;for(let l=n;l<s;++l)a*=t[l];let i=n<1?1:n,p=ze(e.shape)/i,u=[...js(t.slice(0,n)),1],c=ze(t);return{sliceRank:n,numUpdates:p,sliceSize:a,strides:u,outputSize:c}}function $6(r,e,t){let o=v(r,"tensor","tensorScatterupdate"),n=v(e,"indices","tensorScatterupdate","int32"),s=v(t,"updates","tensorScatterupdate");if(lc(s,n,o.shape),o.dtype!==s.dtype)throw new Error(`tensor and updates must have the same dtype, instead they are ${o.dtype} and ${s.dtype}.`);let a={tensor:o,indices:n,updates:s},i={};return T.runKernel(ds,a,i)}var j1=N({tensorScatterUpdate_:$6});function R6(r,e=1,t=!0){let o=v(r,"x","topk");if(o.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let n=o.shape[o.shape.length-1];if(e<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${e}`);if(e>n)throw new Error(`'k' passed to topk() must be <= the last dimension (${n}) but got ${e}`);let s={x:o},a={k:e,sorted:t},[i,p]=T.runKernel($s,s,a);return{values:i,indices:p}}var X1=N({topk_:R6});function D6(r,e=0,t=1,o,n){if(Ct(r),o!=null&&o==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new qu(e,t,o,!0,n),a=me(r,o);for(let i=0;i<a.values.length;i++)a.values[i]=s.nextValue();return a.toTensor()}var Y1=N({truncatedNormal_:D6});function A6(r,e=0){let t=v(r,"x","unique","string_or_numeric");E(t.rank>0,()=>"The input tensor must be at least 1D");let o={x:t},n={axis:e},[s,a]=T.runKernel(Yi,o,n);return{values:s,indices:a}}var Q1=N({unique_:A6});function F6(r,e,t){let o=v(r,"x","unsortedSegmentSum"),n=v(e,"segmentIds","unsortedSegmentSum","int32");E(Ka(t),()=>"numSegments must be of dtype int");let s={x:o,segmentIds:n},a={numSegments:t};return T.runKernel(Qi,s,a)}var Z1=N({unsortedSegmentSum_:F6});function P6(r,e=0){let t=v(r,"x","unstack","string_or_numeric");E(e>=-t.shape.length&&e<t.shape.length,()=>`Axis = ${e} is not in [-${t.shape.length}, ${t.shape.length})`);let o={value:t},n={axis:e};return T.runKernel(wa,o,n)}var fo=N({unstack_:P6});function J1(r,e){return _l(r,e,"right")}function eN(r,e=!0,t,o){return T.makeVariable(r,e,t,o)}function Xd(r,e){let t=[];for(let s=0;s<e.length;s++)e[s]&&t.push(s);let o=me(r,"int32"),n=me([t.length,r.length],"int32");for(let s=0;s<t.length;s++){let a=o.indexToLoc(t[s]),i=s*r.length;n.values.set(a,i)}return n.toTensor()}async function O6(r){let e=v(r,"condition","whereAsync","bool"),t=await e.data(),o=Xd(e.shape,t);return r!==e&&e.dispose(),o}var Yd=O6;async function M6(r,e,t){let o=v(r,"tensor","boolMask"),n=v(e,"mask","boolMask","bool"),s=t==null?0:t,a=n.rank,i=o.shape;E(a>0,()=>"mask cannot be scalar"),xt(i.slice(s,s+a),n.shape,"mask's shape must match the first K dimensions of tensor's shape,");let p=1;for(let h=s;h<s+a;h++)p*=i[h];let u=i.slice(0,s).concat([p],i.slice(s+a)),c=W(o,u),l=W(n,[-1]),m=await Yd(l),d=cc(m,[1]),f=Sd(c,d,s);return r!==o&&o.dispose(),e!==n&&n.dispose(),d.dispose(),c.dispose(),l.dispose(),m.dispose(),f}var L6=M6;function B6(r,e,t){let o=v(r,"x","transpose");if(e==null&&(e=o.shape.map((a,i)=>i).reverse()),E(o.rank===e.length,()=>`Error in transpose: rank of input ${o.rank} must match length of perm ${e}.`),e.forEach(a=>{E(a>=0&&a<o.rank,()=>`All entries in 'perm' must be between 0 and ${o.rank-1} but got ${e}`)}),o.rank<=1)return o.clone();let n={x:o},s={perm:e};return o.dtype==="complex64"?De(()=>{let a=ci(o),i=pu(o);return a=T.runKernel(co,{x:a},s),i=T.runKernel(co,{x:i},s),t&&(i=pr(i)),Er(a,i)}):T.runKernel(co,n,s)}var mc=N({transpose_:B6});function z6(r,e,t,o,n=!0){let s=v(r,"v","movingAverage"),a=v(e,"x","movingAverage"),i=v(t,"decay","movingAverage");ww(s,a),E(br(s.shape,a.shape),()=>"Shape mismatch in v and x");let p=ke(1),u=Te(p,i),c=se(Te(a,s),u);if(n){E(o!=null,()=>"When using zeroDebias: true, step is required.");let l=v(o,"step","movingAverage");c=je(c,Te(p,ui(i,l)))}return Ce(s,c)}var V6=N({movingAverage_:z6});function W6(r,e,t){Ct(t);let o=v(r,"indices","scatterND","int32"),n=v(e,"updates","scatterND");lc(n,o,t);let s={indices:o,updates:n},a={shape:t};return T.runKernel(ms,s,a)}var U6=N({scatterND_:W6});function tN(r,e,t,o){if(r.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${r.dtype}.`);if(r.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${r.shape}.`);let n=r.rank>0?r.shape[0]:1,s=r.rank>1?r.shape[1]:1;if(t.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${t.length}, should be: ${s}.`);let a=e.size;if(!(e.rank===0||e.rank===1&&a===n))throw new Error(`sparseValues has incorrect shape ${e.shape}, should be [] or [${n}]`);if(e.dtype!==o.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function H6(r,e,t,o=0){Ct(t);let n=v(r,"sparseIndices","sparseToDense","int32"),s=v(e,"sparseValues","sparseToDense","string_or_numeric"),a=v(o,"defaultValue","sparseToDense",s.dtype);tN(n,s,t,a);let i={sparseIndices:n,sparseValues:s,defaultValue:a},p={outputShape:t};return T.runKernel(vs,i,p)}var K6=N({sparseToDense_:H6});function q6(r,e){let t=v(e,"indices","gatherND","int32"),n={params:v(r,"x","gatherND","string_or_numeric"),indices:t};return T.runKernel(vn,n)}var j6=N({gatherND_:q6});function rN(r,e){if(e==null)return r.shape.slice();if(br(r.shape,e))return e;if(r.shape.length===e.length){let t=[];for(let o=0;o<r.shape.length;o++)e[o]==null&&r.shape[o]!=null?t.push(r.shape[o]):t.push(e[o]);return t}return e}function X6(r,e,t,o){let n=v(r,"x","dropout");if(E(n.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${n.dtype} tensor instead.`),E(e>=0&&e<1,()=>`rate must be a float in the range [0, 1), but got ${e}.`),e===0)return r instanceof mt?n.clone():n;let s=rN(n,t),a=1-e,i=je(wd(Ce(ic(s,0,1,"float32",o),a)),a);return se(n,i)}var Y6=N({dropout_:X6});function Zw(r){return Math.floor(Math.pow(2,Math.ceil(Math.log(r)/Math.log(2))))}function $l(r,e,t){let o=1-r%2,n=new Float32Array(r);for(let s=0;s<r;++s){let a=2*Math.PI*s/(r+o-1);n[s]=e-t*Math.cos(a)}return Jt(n,"float32")}async function Q6(r,e,t=1){let o=v(r,"predictions","inTopK"),n=v(e,"targets","inTopK");E(o.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${o.rank}`),E(o.rank-1===n.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${o.rank} and targets rank ${n.rank}`),xt(o.shape.slice(0,o.shape.length-1),n.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=o.shape[o.shape.length-1];E(t>0&&t<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${t}`);let a=await o.data(),i=await n.data(),[p,u]=[a.length/s,s],c=ew("bool",p);for(let l=0;l<p;l++){let m=l*u,d=a.subarray(m,m+u),f=[];for(let h=0;h<d.length;h++)f.push({value:d[h],index:h});f.sort((h,g)=>g.value-h.value),c[l]=0;for(let h=0;h<t;h++)if(f[h].index===i[l]){c[l]=1;break}}return r!==o&&o.dispose(),e!==n&&n.dispose(),ar(c,n.shape,"bool")}var Z6=Q6;var Jw={};qe(Jw,{conv2d:()=>nN,depthwiseConv2d:()=>iN,matMul:()=>uN});function J6(r,e,t,o,n,s="NHWC",a){let i=r;r.rank===3&&(i=W(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let p=e;p.rank===3&&(p=W(e,[1,e.shape[0],e.shape[1],e.shape[2]])),E(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),E(p.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${p.shape}.`),E(t.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${t}.`);let u=s==="NHWC"?i.shape[3]:i.shape[1],c=s==="NHWC"?p.shape[3]:p.shape[1];E(u===t[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${t[2]}.`),E(c===t[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${t[3]}).`),Lt("conv2dDerFilter",n,a);let l={x:i,dy:p},m={strides:o,pad:n,dataFormat:s,dimRoundingMode:a,filterShape:t};return T.runKernel(Fi,l,m)}var oN=N({conv2DBackpropFilter_:J6});function Xu(r,e,t){if(t==null||t==="linear")return r;if(t==="relu")return se(r,qd(e));throw new Error(`Cannot compute gradient for fused activation ${t}.`)}function Yu(r,e){let t=e,o=xd(r.shape,e.shape);return o.length>0&&(t=ot(t,o)),W(t,r.shape)}function Qu(r,e,t,o){if(e==="linear")return r;if(e==="relu")return lu(r);if(e==="elu")return bd(r);if(e==="relu6")return Ud(r);if(e==="prelu")return Od(r,t);if(e==="leakyrelu")return vd(r,o);if(e==="sigmoid")return Ea(r);throw new Error(`Unknown fused activation ${e}.`)}var Zu=(r,e)=>!(r>0)||e==="linear";function ej({x:r,filter:e,strides:t,pad:o,dataFormat:n="NHWC",dilations:s=[1,1],dimRoundingMode:a,bias:i,activation:p="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(p=p||"linear",Zu(T.state.gradientDepth,p)===!1){E(n==="NHWC",()=>`Error in fused conv2d: got dataFormat of ${n} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let _=au(r,e,t,o,n,s,a);return i!=null&&(_=Ce(_,i)),Qu(_,p,u,c)}let l=v(r,"x","conv2d","float32"),m=v(e,"filter","conv2d","float32"),d=l,f=!1;l.rank===3&&(f=!0,d=W(l,[1,l.shape[0],l.shape[1],l.shape[2]])),E(d.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${d.rank}.`),E(m.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${m.rank}.`),Lt("fused conv2d",o,a);let h=n==="NHWC"?d.shape[3]:d.shape[1];E(m.shape[2]===h,()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${m.shape[2]}.`),E(gr(t,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`);let g=zu(d.shape,m.shape,t,s,o,a),x;i!=null&&(x=v(i,"bias","fused conv2d"),[x]=Oe(x,l),n==="NHWC"?rt(g.outShape,x.shape):(E(x.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${x.shape.length}.`),E(x.shape.length===0||x.shape[0]===g.outChannels||x.shape[0]===1,()=>`Error in fused conv2d: bias shape (${x.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let b;if(u!=null){let _=u.shape;if(E(_.length<=1||_.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${_.length}.`),_.length===1)E(_[0]===1||_[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${_}) is not compatible with the number of output channels (${g.outChannels}).`);else if(_.length===3)try{rt(_,g.outShape)}catch($){let R=`Error in fused conv2d: PReLU activation weights (${_}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error(R)}b=v(u,"prelu weights","fused conv2d")}let C=(_,$)=>{E(n==="NHWC",()=>`Error in gradient of fused conv2D: got dataFormat of ${n} but only NHWC is currently supported.`);let[R,D,P,O]=$,M=Xu(_,P,p);E(Bu(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let L=gd(D.shape,M,R,t,o),B=oN(D,M,R.shape,t,o),z=[L,B];if(O!=null){let U=Yu(O,M);z.push(U)}return z},S={x:d,filter:m,bias:x,preluActivationWeights:b},k={strides:t,pad:o,dataFormat:n,dilations:s,dimRoundingMode:a,activation:p,leakyreluAlpha:c};return i==null?Ir(($,R,D)=>{let P=T.runKernel(Io,S,k);return D([R,$,P]),f&&(P=W(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:C}})(d,m):Ir(($,R,D,P)=>{let O=T.runKernel(Io,S,k);return P([R,$,O,D]),f&&(O=W(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:C}})(d,m,x)}var nN=N({fusedConv2d_:ej});function tj(r,e,t,o,n,s=[1,1],a){let i=r;r.rank===3&&(i=W(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let p=e;p.rank===3&&(p=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u={x:i,dy:p},c={strides:o,pad:n,dimRoundingMode:a,dilations:s,filterShape:t};return T.runKernel(Pi,u,c)}var sN=N({depthwiseConv2dNativeBackpropFilter_:tj});function rj(r,e,t,o,n,s=[1,1],a){let i=e,p=!1;e.rank===3&&(p=!0,i=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u={dy:i,filter:t},c={strides:o,pad:n,dimRoundingMode:a,dilations:s,inputShape:r},l=T.runKernel(Oi,u,c);return p?W(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var aN=N({depthwiseConv2dNativeBackpropInput_:rj});function oj({x:r,filter:e,strides:t,pad:o,dataFormat:n="NHWC",dilations:s=[1,1],dimRoundingMode:a,bias:i,activation:p="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(Zu(T.state.gradientDepth,p)===!1){let k=sc(r,e,t,o,n,s,a);return i!=null&&(k=Ce(k,i)),Qu(k,p,u,c)}let l=v(r,"x","depthwiseConv2d","float32"),m=v(e,"filter","depthwiseConv2d","float32"),d=l,f=!1;l.rank===3&&(f=!0,d=W(l,[1,l.shape[0],l.shape[1],l.shape[2]])),E(d.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${d.rank}.`),E(m.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${m.rank}.`),E(d.shape[3]===m.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${d.shape[3]}) must match the inChannels dimension in filter ${m.shape[2]}.`),s==null&&(s=[1,1]),E(gr(t,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),Lt("fused depthwiseConv2d",o,a);let h=zu(d.shape,m.shape,t,s,o,a,!0),g;i!=null&&(g=v(i,"bias","fused conv2d"),[g]=Oe(g,l),rt(h.outShape,g.shape));let x;u!=null&&(x=v(u,"prelu weights","fused depthwiseConv2d"));let b=(k,_)=>{E(Bu(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[$,R,D,P]=_,O=Xu(k,D,p),M=aN(R.shape,O,$,t,o,s,a),L=sN(R,O,$.shape,t,o,s,a);if(P!=null){let B=Yu(g,O);return[M,L,B]}return[M,L]},C={x:d,filter:m,bias:g,preluActivationWeights:x},S={strides:t,pad:o,dataFormat:n,dilations:s,dimRoundingMode:a,activation:p,leakyreluAlpha:c};return i==null?Ir((_,$,R)=>{let D=T.runKernel(vo,C,S);return R([$,_,D]),f&&(D=W(D,[D.shape[1],D.shape[2],D.shape[3]])),{value:D,gradFunc:b}})(d,m):Ir((_,$,R,D)=>{let P=T.runKernel(vo,C,S);return D([$,_,P,R]),f&&(P=W(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:b}})(d,m,g)}var iN=N({fusedDepthwiseConv2d_:oj});function nj({a:r,b:e,transposeA:t=!1,transposeB:o=!1,bias:n,activation:s="linear",preluActivationWeights:a,leakyreluAlpha:i=.2}){if(Zu(T.state.gradientDepth,s)===!1){let O=Ze(r,e,t,o);return n!=null&&(O=Ce(O,n)),Qu(O,s,a,i)}let p=v(r,"a","fused matMul"),u=v(e,"b","fused matMul");[p,u]=Oe(p,u);let c=t?p.shape[p.rank-2]:p.shape[p.rank-1],l=o?u.shape[u.rank-1]:u.shape[u.rank-2],m=t?p.shape[p.rank-1]:p.shape[p.rank-2],d=o?u.shape[u.rank-2]:u.shape[u.rank-1],f=p.shape.slice(0,-2),h=u.shape.slice(0,-2),g=ze(f),x=ze(h);E(c===l,()=>`Error in fused matMul: inner shapes (${c}) and (${l}) of Tensors with shapes ${p.shape} and ${u.shape} and transposeA=${t} and transposeB=${o} must match.`);let C=rt(p.shape.slice(0,-2),u.shape.slice(0,-2)).concat([m,d]),S=t?W(p,[g,c,m]):W(p,[g,m,c]),k=o?W(u,[x,d,l]):W(u,[x,l,d]),_;n!=null&&(_=v(n,"bias","fused matMul"),[_]=Oe(_,p),rt(C,_.shape));let $;a!=null&&($=v(a,"prelu weights","fused matMul"));let R=(O,M)=>{let[L,B,z,U]=M,j=Xu(W(O,z.shape),z,s),q,Y;if(!t&&!o?(q=Ze(j,B,!1,!0),Y=Ze(L,j,!0,!1)):!t&&o?(q=Ze(j,B,!1,!1),Y=Ze(j,L,!0,!1)):t&&!o?(q=Ze(B,j,!1,!0),Y=Ze(L,j,!1,!1)):(q=Ze(B,j,!0,!0),Y=Ze(j,L,!0,!0)),n!=null){let J=Yu(U,j);return[q,Y,J]}else return[q,Y]},D={a:S,b:k,bias:_,preluActivationWeights:$},P={transposeA:t,transposeB:o,activation:s,leakyreluAlpha:i};return n==null?Ir((M,L,B)=>{let z=T.runKernel(So,D,P);return B([M,L,z]),{value:W(z,C),gradFunc:R}})(S,k):Ir((M,L,B,z)=>{let U=T.runKernel(So,D,P);return z([M,L,U,B]),{value:W(U,C),gradFunc:R}})(S,k,_)}var uN=N({fusedMatMul_:nj});function sj(r){return $l(r,.54,.46)}var pN=N({hammingWindow_:sj});function aj(r){return $l(r,.5,.5)}var Qd=N({hannWindow_:aj});function ij(r,e,t,o=!1,n=0){let s=0,a=[];for(;s+e<=r.size;)a.push(Xe(r,s,e)),s+=t;if(o)for(;s<r.size;){let i=s+e-r.size,p=yt([Xe(r,s,e-i),$a([i],n)]);a.push(p),s+=t}return a.length===0?mu([],[0,e]):W(yt(a),[a.length,e])}var Zd=N({frame_:ij});function uj(r,e,t,o,n=Qd){o==null&&(o=Zw(e));let s=Zd(r,e,t),a=se(s,n(e));return pc(a,o)}var cN=N({stft_:uj});function pj(r,e,t,o,n="bilinear",s=0){let a=v(r,"image","cropAndResize"),i=v(e,"boxes","cropAndResize","float32"),p=v(t,"boxInd","cropAndResize","int32"),u=i.shape[0];E(a.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${a.rank}.`),E(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),E(p.rank===1&&p.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),E(o.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${o.length}.`),E(o[0]>=1&&o[1]>=1,()=>`cropSize must be atleast [1,1], but was ${o}`),E(n==="bilinear"||n==="nearest",()=>`method must be bilinear or nearest, but was ${n}`);let c={image:a,boxes:i,boxInd:p},l={method:n,extrapolationValue:s,cropSize:o};return T.runKernel(cn,c,l)}var lN=N({cropAndResize_:pj});function cj(r){let e=v(r,"image","flipLeftRight","float32");E(e.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${e.rank}.`);let t={image:e};return T.runKernel(Cn,t,{})}var mN=N({flipLeftRight_:cj});function lj(r){let e=v(r,"image","grayscaleToRGB"),t=e.rank-1,o=e.shape[t];E(e.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${e.rank}.`),E(o===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${o}.`);let n=new Array(e.rank);return n.fill(1,0,t),n[t]=3,uu(e,n)}var dN=N({grayscaleToRGB_:lj});function mj(r){let e=v(r,"image","RGBToGrayscale"),t=e.rank-1,o=e.shape[t];E(e.rank>=2,()=>`Error in RGBToGrayscale: images must be at least rank 2, but got rank ${e.rank}.`),E(o===3,()=>`Error in RGBToGrayscale: last dimension of an RGB image should be size 3, but got size ${o}.`);let n=e.dtype,s=Ue(e,"float32"),a=Jt([.2989,.587,.114]),i;switch(e.rank){case 2:i=iu("ij,j->i",s,a);break;case 3:i=iu("ijk,k->ij",s,a);break;case 4:i=iu("ijkl,l->ijk",s,a);break;case 5:i=iu("ijklm,m->ijkl",s,a);break;case 6:i=iu("ijklmn,n->ijklm",s,a);break;default:throw new Error("Not a valid tensor rank.")}return i=Ms(i,-1),Ue(i,n)}var fN=N({rgbToGrayscale_:mj});function dj(r,e,t=0,o=.5){let n=v(r,"image","rotateWithOffset","float32");E(n.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${n.rank}.`);let s={image:n},a={radians:e,fillValue:t,center:o};return T.runKernel(Ds,s,a)}var hN=N({rotateWithOffset_:dj});function Eo(r,e,t,o,n,s){o==null&&(o=.5),n==null&&(n=Number.NEGATIVE_INFINITY),s==null&&(s=0);let a=r.shape[0];return t=Math.min(t,a),E(0<=o&&o<=1,()=>`iouThreshold must be in [0, 1], but was '${o}'`),E(r.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${r.rank}'`),E(r.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${r.shape[1]}`),E(e.rank===1,()=>"scores must be a 1D tensor"),E(e.shape[0]===a,()=>`scores has incompatible shape with boxes. Expected ${a}, but was ${e.shape[0]}`),E(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:t,iouThreshold:o,scoreThreshold:n,softNmsSigma:s}}function fj(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY){let s=v(r,"boxes","nonMaxSuppression","float32"),a=v(e,"scores","nonMaxSuppression","float32"),i=Eo(s,a,t,o,n);t=i.maxOutputSize,o=i.iouThreshold,n=i.scoreThreshold;let p={maxOutputSize:t,iouThreshold:o,scoreThreshold:n};return T.runKernel(Qn,{boxes:s,scores:a},p)}var gN=N({nonMaxSuppression_:fj});function xN(r,e,t){let o=hj(r,e,t),n=o<0?-(o+1):o;r.splice(n,0,e)}function hj(r,e,t){return xj(r,e,t||gj)}function gj(r,e){return r>e?1:r<e?-1:0}function xj(r,e,t){let o=0,n=r.length,s=0,a=!1;for(;o<n;){s=o+(n-o>>>1);let i=t(e,r[s]);i>0?o=s+1:(n=s,a=!i)}return a?o:-o-1}function Jd(r,e,t,o,n){return eS(r,e,t,o,n,0)}function ef(r,e,t,o,n,s){return eS(r,e,t,o,n,0,!1,s,!0)}function tf(r,e,t,o,n,s){return eS(r,e,t,o,n,s,!0)}function eS(r,e,t,o,n,s,a=!1,i=!1,p=!1){let u=[];for(let g=0;g<e.length;g++)e[g]>n&&u.push({score:e[g],boxIndex:g,suppressBeginIndex:0});u.sort(yN);let c=s>0?-.5/s:0,l=[],m=[];for(;l.length<t&&u.length>0;){let g=u.pop(),{score:x,boxIndex:b,suppressBeginIndex:C}=g;if(x<n)break;let S=!1;for(let k=l.length-1;k>=C;--k){let _=yj(r,b,l[k]);if(_>=o){S=!0;break}if(g.score=g.score*bj(o,c,_),g.score<=n)break}g.suppressBeginIndex=l.length,S||(g.score===x?(l.push(b),m.push(g.score)):g.score>n&&xN(u,g,yN))}let d=l.length,f=t-d;i&&f>0&&(l.push(...new Array(f).fill(0)),m.push(...new Array(f).fill(0)));let h={selectedIndices:l};return a&&(h.selectedScores=m),p&&(h.validOutputs=d),h}function yj(r,e,t){let o=r.subarray(e*4,e*4+4),n=r.subarray(t*4,t*4+4),s=Math.min(o[0],o[2]),a=Math.min(o[1],o[3]),i=Math.max(o[0],o[2]),p=Math.max(o[1],o[3]),u=Math.min(n[0],n[2]),c=Math.min(n[1],n[3]),l=Math.max(n[0],n[2]),m=Math.max(n[1],n[3]),d=(i-s)*(p-a),f=(l-u)*(m-c);if(d<=0||f<=0)return 0;let h=Math.max(s,u),g=Math.max(a,c),x=Math.min(i,l),b=Math.min(p,m),C=Math.max(x-h,0)*Math.max(b-g,0);return C/(d+f-C)}function bj(r,e,t){let o=Math.exp(e*t*t);return t<=r?o:0}function yN(r,e){return r.score-e.score||r.score===e.score&&e.boxIndex-r.boxIndex}async function Cj(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY){let s=v(r,"boxes","nonMaxSuppressionAsync"),a=v(e,"scores","nonMaxSuppressionAsync"),i=Eo(s,a,t,o,n);t=i.maxOutputSize,o=i.iouThreshold,n=i.scoreThreshold;let p=await Promise.all([s.data(),a.data()]),u=p[0],c=p[1],{selectedIndices:l}=Jd(u,c,t,o,n);return s!==r&&s.dispose(),a!==e&&a.dispose(),Jt(l,"int32")}var bN=Cj;function wj(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY,s=0){let a=v(r,"boxes","nonMaxSuppression"),i=v(e,"scores","nonMaxSuppression"),p=Eo(a,i,t,o,n,s);t=p.maxOutputSize,o=p.iouThreshold,n=p.scoreThreshold,s=p.softNmsSigma;let u={boxes:a,scores:i},c={maxOutputSize:t,iouThreshold:o,scoreThreshold:n,softNmsSigma:s},l=T.runKernel(Zn,u,c);return{selectedIndices:l[0],selectedScores:l[1]}}var CN=N({nonMaxSuppressionWithScore_:wj});async function Sj(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY,s=0){let a=v(r,"boxes","nonMaxSuppressionAsync"),i=v(e,"scores","nonMaxSuppressionAsync"),p=Eo(a,i,t,o,n,s);t=p.maxOutputSize,o=p.iouThreshold,n=p.scoreThreshold,s=p.softNmsSigma;let u=await Promise.all([a.data(),i.data()]),c=u[0],l=u[1],{selectedIndices:m,selectedScores:d}=tf(c,l,t,o,n,s);return a!==r&&a.dispose(),i!==e&&i.dispose(),{selectedIndices:Jt(m,"int32"),selectedScores:Jt(d)}}var wN=Sj;function Ij(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY,s=!1){let a=v(r,"boxes","nonMaxSuppression"),i=v(e,"scores","nonMaxSuppression"),p=Eo(a,i,t,o,n,null),u=p.maxOutputSize,c=p.iouThreshold,l=p.scoreThreshold,m={boxes:a,scores:i},d={maxOutputSize:u,iouThreshold:c,scoreThreshold:l,padToMaxOutputSize:s},f=T.runKernel(Qa,m,d);return{selectedIndices:f[0],validOutputs:f[1]}}var SN=N({nonMaxSuppressionPadded_:Ij});async function vj(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY,s=!1){let a=v(r,"boxes","nonMaxSuppressionAsync"),i=v(e,"scores","nonMaxSuppressionAsync"),p=Eo(a,i,t,o,n,null),u=p.maxOutputSize,c=p.iouThreshold,l=p.scoreThreshold,[m,d]=await Promise.all([a.data(),i.data()]),{selectedIndices:f,validOutputs:h}=ef(m,d,u,c,l,s);return a!==r&&a.dispose(),i!==e&&i.dispose(),{selectedIndices:Jt(f,"int32"),validOutputs:ke(h,"int32")}}var IN=vj;function kj(r,e,t=!1,o=!1){let n=v(r,"images","resizeBilinear");E(n.rank===3||n.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${n.rank}.`),E(e.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${e}.`),E(o===!1||t===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=n,a=!1;n.rank===3&&(a=!0,s=W(n,[1,n.shape[0],n.shape[1],n.shape[2]]));let[]=e,i={images:s},p={alignCorners:t,halfPixelCenters:o,size:e},u=T.runKernel(is,i,p);return a?W(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var vN=N({resizeBilinear_:kj});function Nj(r,e,t=!1,o=!1){let n=v(r,"images","resizeNearestNeighbor");E(n.rank===3||n.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${n.rank}.`),E(e.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${e}.`),E(n.dtype==="float32"||n.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),E(o===!1||t===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=n,a=!1;n.rank===3&&(a=!0,s=W(n,[1,n.shape[0],n.shape[1],n.shape[2]]));let[]=e,i={images:s},p={alignCorners:t,halfPixelCenters:o,size:e},u=T.runKernel(as,i,p);return a?W(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var kN=N({resizeNearestNeighbor_:Nj});function Tj(r,e="binary",t=!1,o=.5){let n=v(r,"image","threshold"),s=.2989,a=.587,i=.114,p=n.shape[0]*n.shape[1],u=se(Jt([o]),255),c,l,m,d;if(E(n.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${n.rank}.`),E(n.shape[2]===3||n.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${n.shape[2]}.`),E(n.dtype==="int32"||n.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${n.dtype}.`),E(e==="otsu"||e==="binary",()=>`Method must be binary or otsu, but was ${e}`),n.shape[2]===3){[c,l,m]=li(n,[1,1,1],-1);let g=se(c,s),x=se(l,a),b=se(m,i);d=Ce(Ce(g,x),b)}else d=r;if(e==="otsu"){let g=hd(Ue(Gd(d),"int32"),ar([]),256);u=_j(g,p)}let f=t?ac(d,u):Wu(d,u);return Ue(se(f,255),"int32")}function _j(r,e){let t=Jt([-1]),o=Jt([0]),n=Jt([0]),s,a,i,p,u,c;for(let l=0;l<r.size-1;l++){s=Xe(r,0,l+1),a=Xe(r,l+1),u=je(ot(s),e),c=je(ot(a),e);let m=ot(se(s,cu(0,s.size)));i=je(m,ot(s));let d=$a(a.shape,s.size),f=Ce(cu(0,a.size),d),h=se(a,f);p=je(ot(h),ot(a));let g=Te(i,p),x=Te(i,p),b=se(u,c);n=se(se(b,g),x);let C=Wu(n,o);o=lo(C,n,o),t=lo(C,Jt([l]),t)}return t}var NN=N({threshold_:Tj});function Ej(r,e,t="nearest",o="constant",n=0,s){let a=v(r,"image","transform","float32"),i=v(e,"transforms","transform","float32");E(a.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${a.rank}.`),E(i.rank===2&&(i.shape[0]===a.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),E(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let p={image:a,transforms:i},u={interpolation:t,fillMode:o,fillValue:n,outputShape:s};return T.runKernel(Rs,p,u)}var TN=N({transform_:Ej});function $j(r,e,t){let o=v(r,"a","bandPart");E(o.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${o.rank}.`);let n=o.shape,[s,a]=o.shape.slice(-2),i,p;typeof e=="number"?(E(e%1===0,()=>`bandPart(): numLower must be an integer, got ${e}.`),E(e<=s,()=>`bandPart(): numLower (${e}) must not be greater than the number of rows (${s}).`),i=v(e<0?s:e,"numLower","bandPart")):(E(e.dtype==="int32",()=>"bandPart(): numLower's dtype must be an int32."),i=lo(Tl(e,0),s,Hu(e,s))),typeof t=="number"?(E(t%1===0,()=>`bandPart(): numUpper must be an integer, got ${t}.`),E(t<=a,()=>`bandPart(): numUpper (${t}) must not be greater than the number of columns (${a}).`),p=v(t<0?a:t,"numUpper","bandPart")):(E(t.dtype==="int32",()=>"bandPart(): numUpper's dtype must be an int32."),p=lo(Tl(t,0),a,Hu(t,a)));let u=W(cu(0,s,1,"int32"),[-1,1]),c=cu(0,a,1,"int32"),l=Te(u,c),m=Uu(ac(l,i),Id(l,pr(p))),d=Gr([s,a],o.dtype);return W(vr(fo(W(o,[-1,s,a])).map(f=>lo(m,f,d))),n)}var _N=N({bandPart_:$j});function Rj(r){let e;if(Array.isArray(r)){e=!1,E(r!=null&&r.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let n=r[0].shape[0];for(let s=1;s<r.length;++s)E(r[s].shape[0]===n,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${r[s].shape[0]} vs. ${n})`)}else e=!0,r=li(r,r.shape[0],0).map(n=>cc(n,[0]));E(r.length<=r[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${r.length}) exceeds number of dimensions (${r[0].shape[0]}).`);let t=[],o=r;for(let n=0;n<r.length;++n)t.push(T.tidy(()=>{let s=o[n];if(n>0)for(let a=0;a<n;++a){let i=se(ot(se(t[a],s)),t[a]);s=Te(s,i)}return je(s,Vu(s,"euclidean"))}));return e?vr(t,0):t}var EN=N({gramSchmidt_:Rj});function Dj(r,e=!1){if(E(r.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${r.rank}`),r.rank===2)return $N(r,e);{let t=r.shape.slice(0,r.shape.length-2).reduce((p,u)=>p*u),o=fo(W(r,[t,r.shape[r.shape.length-2],r.shape[r.shape.length-1]]),0),n=[],s=[];o.forEach(p=>{let[u,c]=$N(p,e);n.push(u),s.push(c)});let a=W(vr(n,0),r.shape),i=W(vr(s,0),r.shape);return[a,i]}}function $N(r,e=!1){return T.tidy(()=>{E(r.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${r.shape.length}D Tensor.`);let t=r.shape[0],o=r.shape[1],n=Cd(t),s=Ur(r),a=mu([[1]],[1,1]),i=Ur(a),p=t>=o?o:t;for(let u=0;u<p;++u){let c=s,l=i,m=n;[i,s,n]=T.tidy(()=>{let d=Xe(s,[u,u],[t-u,1]),f=Vu(d),h=Xe(s,[u,u],[1,1]),g=lo(Wu(h,0),mu([[-1]]),mu([[1]])),x=Te(h,se(g,f)),b=je(d,x);b.shape[0]===1?i=Ur(a):i=yt([a,Xe(b,[1,0],[b.shape[0]-1,b.shape[1]])],0);let C=pr(je(Ze(g,x),f)),S=Xe(s,[u,0],[t-u,o]),k=se(C,i),_=mc(i);if(u===0)s=Te(S,Ze(k,Ze(_,S)));else{let D=Te(S,Ze(k,Ze(_,S)));s=yt([Xe(s,[0,0],[u,o]),D],0)}let $=mc(k),R=Xe(n,[0,u],[t,n.shape[1]-u]);if(u===0)n=Te(R,Ze(Ze(R,i),$));else{let D=Te(R,Ze(Ze(R,i),$));n=yt([Xe(n,[0,0],[t,u]),D],1)}return[i,s,n]}),Ot([c,l,m])}return!e&&t>o&&(n=Xe(n,[0,0],[t,o]),s=Xe(s,[0,0],[o,o])),[n,s]})}var RN=N({qr_:Dj});var $t;(function(r){r[r.NONE=0]="NONE",r[r.MEAN=1]="MEAN",r[r.SUM=2]="SUM",r[r.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})($t||($t={}));function Aj(r,e,t=$t.SUM_BY_NONZERO_WEIGHTS){let o=v(r,"losses","computeWeightedLoss"),n=null;e!=null&&(n=v(e,"weights","computeWeightedLoss"));let s=n==null?o:se(o,n);if(t===$t.NONE)return s;if(t===$t.SUM)return ot(s);if(t===$t.MEAN){if(n==null)return Gu(s);{let a=o.size/n.size,i=je(ot(s),ot(n));return a>1?je(i,ke(a)):i}}if(t===$t.SUM_BY_NONZERO_WEIGHTS){if(n==null)return je(ot(s),ke(o.size));{let a=se(n,Da(o.shape)),i=Ue(ot(Fd(a,ke(0))),"float32");return je(ot(s),i)}}throw Error(`Unknown reduction: ${t}`)}var cr=N({computeWeightedLoss_:Aj});function Fj(r,e,t,o=$t.SUM_BY_NONZERO_WEIGHTS){let n=v(r,"labels","absoluteDifference"),s=v(e,"predictions","absoluteDifference"),a=null;t!=null&&(a=v(t,"weights","absoluteDifference")),xt(n.shape,s.shape,"Error in absoluteDifference: ");let i=Qt(Te(n,s));return cr(i,a,o)}var DN=N({absoluteDifference_:Fj});function Pj(r,e,t,o,n=$t.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"labels","cosineDistance"),a=v(e,"predictions","cosineDistance"),i=null;o!=null&&(i=v(o,"weights","cosineDistance")),xt(s.shape,a.shape,"Error in cosineDistance: ");let p=ke(1),u=Te(p,ot(se(s,a),t,!0));return cr(u,i,n)}var AN=N({cosineDistance_:Pj});function Oj(r,e,t,o=$t.SUM_BY_NONZERO_WEIGHTS){let n=v(r,"labels","hingeLoss"),s=v(e,"predictions","hingeLoss"),a=null;t!=null&&(a=v(t,"weights","hingeLoss")),xt(n.shape,s.shape,"Error in hingeLoss: ");let i=ke(1);n=Te(se(ke(2),n),i);let p=lu(Te(i,se(n,s)));return cr(p,a,o)}var FN=N({hingeLoss_:Oj});function Mj(r,e,t,o=1,n=$t.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"labels","huberLoss"),a=v(e,"predictions","huberLoss"),i=null;t!=null&&(i=v(t,"weights","huberLoss")),xt(s.shape,a.shape,"Error in huberLoss: ");let p=ke(o),u=Qt(Te(a,s)),c=Hu(u,p),l=Te(u,c),m=Ce(se(ke(.5),Zt(c)),se(p,l));return cr(m,i,n)}var PN=N({huberLoss_:Mj});function Lj(r,e,t,o=1e-7,n=$t.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"labels","logLoss"),a=v(e,"predictions","logLoss"),i=null;t!=null&&(i=v(t,"weights","logLoss")),xt(s.shape,a.shape,"Error in logLoss: ");let p=ke(1),u=ke(o),c=pr(se(s,pi(Ce(a,u)))),l=se(Te(p,s),pi(Ce(Te(p,a),u))),m=Te(c,l);return cr(m,i,n)}var ON=N({logLoss_:Lj});function Bj(r,e,t,o=$t.SUM_BY_NONZERO_WEIGHTS){let n=v(r,"labels","meanSquaredError"),s=v(e,"predictions","meanSquaredError"),a=null;t!=null&&(a=v(t,"weights","meanSquaredError")),xt(n.shape,s.shape,"Error in meanSquaredError: ");let i=Kd(n,s);return cr(i,a,o)}var MN=N({meanSquaredError_:Bj});function zj(r,e){let t=v(r,"labels","sigmoidCrossEntropyWithLogits"),o=v(e,"logits","sigmoidCrossEntropyWithLogits");xt(t.shape,o.shape,"Error in sigmoidCrossEntropyWithLogits: ");let n=lu(o),s=se(o,t),a=kd(_o(pr(Qt(o))));return Ce(Te(n,s),a)}function Vj(r,e,t,o=0,n=$t.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"multiClassLabels","sigmoidCrossEntropy"),a=v(e,"logits","sigmoidCrossEntropy"),i=null;if(t!=null&&(i=v(t,"weights","sigmoidCrossEntropy")),xt(s.shape,a.shape,"Error in sigmoidCrossEntropy: "),o>0){let u=ke(o),c=ke(1),l=ke(.5);s=Ce(se(s,Te(c,u)),se(l,u))}let p=zj(s,a);return cr(p,i,n)}var LN=N({sigmoidCrossEntropy_:Vj});function Wj(r,e,t=-1){if(t===-1&&(t=e.rank-1),t!==e.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${e.rank} and dim was ${t}`);return Ir((n,s,a)=>{let p=_d(s,[t],!0),u=Te(Ue(s,"float32"),p);a([n,u]);let c=pr(se(u,n));return{value:ot(c,[t]),gradFunc:(d,f)=>{let[h,g]=f,x=ii(d.shape,[t]);return[se(W(d,x),Te(Ue(h,"float32"),_o(g))),se(W(d,x),Te(_o(g),Ue(h,"float32")))]}}})(r,e)}function Uj(r,e,t,o=0,n=$t.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"onehotLabels","softmaxCrossEntropy"),a=v(e,"logits","softmaxCrossEntropy"),i=null;if(t!=null&&(i=v(t,"weights","softmaxCrossEntropy")),xt(s.shape,a.shape,"Error in softmaxCrossEntropy: "),o>0){let u=ke(o),c=ke(1),l=ke(s.shape[1]);s=Ce(se(s,Te(c,u)),je(u,l))}let p=Wj(s,a);return cr(p,i,n)}var BN=N({softmaxCrossEntropy_:Uj});function Gj(r,e,t,o){let n=v(r,"indices","sparseFillEmptyRows","int32"),s=v(e,"values","sparseFillEmptyRows"),a=v(t,"denseShape","sparseFillEmptyRows","int32"),i=v(o,"defaultValue","sparseFillEmptyRows",s.dtype);if(n.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
${n.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(a.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${a.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let p={indices:n,values:s,denseShape:a,defaultValue:i},u=T.runKernel(Ki,p);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var zN=N({sparseFillEmptyRows_:Gj});function Hj(r,e,t){let o=v(r,"inputIndices","sparseReshape","int32"),n=v(e,"inputShape","sparseReshape","int32"),s=v(t,"newShape","sparseReshape","int32");if(o.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
${o.shape}`);if(n.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${n.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let a={inputIndices:o,inputShape:n,newShape:s},i=T.runKernel(ei,a);return{outputIndices:i[0],outputShape:i[1]}}var VN=N({sparseReshape_:Hj});function Kj(r,e,t){let o=v(r,"data","sparseSegmentMean"),n=v(e,"indices","sparseSegmentMean","int32"),s=v(t,"segmentIds","sparseSegmentMean","int32");if(o.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(n.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${n.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${s.shape}`);let a={data:o,indices:n,segmentIds:s};return T.runKernel(ya,a)}var WN=N({sparseSegmentMean_:Kj});function qj(r,e,t){let o=v(r,"data","sparseSegmentSum"),n=v(e,"indices","sparseSegmentSum","int32"),s=v(t,"segmentIds","sparseSegmentSum","int32");if(o.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(n.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${n.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${s.shape}`);let a={data:o,indices:n,segmentIds:s};return T.runKernel(ba,a)}var UN=N({sparseSegmentSum_:qj});function jj(r,e,t,o,n,s,a,i){let p=v(r,"data","stringNGrams","string");if(p.dtype!=="string")throw new Error("Data must be of datatype string");if(p.shape.length!==1)throw new Error(`Data must be a vector, saw: ${p.shape}`);let u=v(e,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let c={separator:t,nGramWidths:o,leftPad:n,rightPad:s,padWidth:a,preserveShortSequences:i},l={data:p,dataSplits:u},m=T.runKernel(Ca,l,c);return{nGrams:m[0],nGramsSplits:m[1]}}var GN=N({stringNGrams_:jj});function Xj(r,e,t=!0){let o=v(r,"input","stringSplit","string"),n=v(e,"delimiter","stringSplit","string");if(o.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${o.shape}`);if(n.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${n.shape}`);let s={skipEmpty:t},a={input:o,delimiter:n},i=T.runKernel(ji,a,s);return{indices:i[0],values:i[1],shape:i[2]}}var HN=N({stringSplit_:Xj});function Yj(r,e){let t=v(r,"input","stringToHashBucketFast","string"),o={numBuckets:e};if(e<=0)throw new Error("Number of buckets must be at least 1");let n={input:t};return T.runKernel(Xi,n,o)}var KN=N({stringToHashBucketFast_:Yj});function Qj(r,e,t,o=!0){let n=v(r,"input","staticRegexReplace","string"),s={pattern:e,rewrite:t,replaceGlobal:o};return T.runKernel(Ru,{x:n},s)}var qN=N({staticRegexReplace_:Qj});var Zj={fft:uc,ifft:ju,rfft:pc,irfft:Hd},Jj={hammingWindow:pN,hannWindow:Qd,frame:Zd,stft:cN},eX={flipLeftRight:mN,grayscaleToRGB:dN,resizeNearestNeighbor:kN,resizeBilinear:vN,rgbToGrayscale:fN,rotateWithOffset:hN,cropAndResize:lN,nonMaxSuppression:gN,nonMaxSuppressionAsync:bN,nonMaxSuppressionWithScore:CN,nonMaxSuppressionWithScoreAsync:wN,nonMaxSuppressionPadded:SN,nonMaxSuppressionPaddedAsync:IN,threshold:NN,transform:TN},tX={bandPart:_N,gramSchmidt:EN,qr:RN},rX={absoluteDifference:DN,computeWeightedLoss:cr,cosineDistance:AN,hingeLoss:FN,huberLoss:PN,logLoss:ON,meanSquaredError:MN,sigmoidCrossEntropy:LN,softmaxCrossEntropy:BN},oX={sparseFillEmptyRows:zN,sparseReshape:VN,sparseSegmentMean:WN,sparseSegmentSum:UN},nX={stringNGrams:GN,stringSplit:HN,stringToHashBucketFast:KN,staticRegexReplace:qN};var jN={};qe(jN,{Serializable:()=>Rl,SerializationMap:()=>rf,getRegisteredName:()=>aX,registerClass:()=>rS});var sX=new Map,tS=new Map,Rl=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},rf=class r{constructor(){this.classNameMap={}}static getMap(){return r.instance==null&&(r.instance=new r),r.instance}static register(e){r.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function rS(r,e,t){E(r.className!=null,()=>"Class being registered does not have the static className property defined."),E(typeof r.className=="string",()=>"className is required to be a string, but got type "+typeof r.className),E(r.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),typeof e=="undefined"&&(e="Custom"),typeof t=="undefined"&&(t=r.className);let o=t,n=e+">"+o;return rf.register(r),sX.set(n,r),tS.set(r,n),r}function aX(r){return tS.has(r)?tS.get(r):r.className}var kr=class extends Rl{minimize(e,t=!1,o){let{value:n,grads:s}=this.computeGradients(e,o);if(o!=null){let a=o.map(i=>({name:i.name,tensor:s[i.name]}));this.applyGradients(a)}else this.applyGradients(s);return Ot(s),t?n:(n.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Vw(e,t)}dispose(){this.iterations_!=null&&Ot(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ke(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(kr,Symbol.hasInstance,{value:r=>r.minimize!=null&&r.computeGradients!=null&&r.applyGradients!=null});var Ju=class extends kr{static get className(){return"Adadelta"}constructor(e,t,o=null){super(),this.learningRate=e,this.rho=t,this.epsilon=o,this.accumulatedGrads=[],this.accumulatedUpdates=[],o==null&&(this.epsilon=T.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=T.registeredVariables[o],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${o}/accum_grad`,variable:De(()=>Gt(s).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${o}/accum_var`,variable:De(()=>Gt(s).variable(a))});let i=Array.isArray(e)?e[n].tensor:e[o];if(i==null)return;let p=this.accumulatedGrads[n].variable,u=this.accumulatedUpdates[n].variable;De(()=>{let c=Ce(se(p,this.rho),se(Zt(i),1-this.rho)),l=se(je(Rr(Ce(u,this.epsilon)),Rr(Ce(p,this.epsilon))),i),m=Ce(se(u,this.rho),se(Zt(l),1-this.rho));p.assign(c),u.assign(m);let d=Ce(se(l,-this.learningRate),s);s.assign(d)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Ot(this.accumulatedGrads.map(e=>e.variable)),Ot(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,o=!1;this.accumulatedGrads=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})),this.accumulatedUpdates=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(o)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};var ep=class extends kr{static get className(){return"Adagrad"}constructor(e,t=.1){super(),this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=T.registeredVariables[o];this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${o}/accumulator`,variable:De(()=>$a(s.shape,this.initialAccumulatorValue).variable(!1))});let a=Array.isArray(e)?e[n].tensor:e[o];if(a==null)return;let i=this.accumulatedGrads[n].variable;De(()=>{let p=Ce(i,Zt(a));i.assign(p);let u=Ce(se(je(a,Rr(Ce(p,T.backend.epsilon()))),-this.learningRate),s);s.assign(u)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Ot(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(o=>({originalName:o.name,variable:o.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};var tp=class extends kr{static get className(){return"Adam"}constructor(e,t,o,n=null){super(),this.learningRate=e,this.beta1=t,this.beta2=o,this.epsilon=n,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],De(()=>{this.accBeta1=ke(t).variable(),this.accBeta2=ke(o).variable()}),n==null&&(this.epsilon=T.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);De(()=>{let o=Te(1,this.accBeta1),n=Te(1,this.accBeta2);t.forEach((s,a)=>{let i=T.registeredVariables[s],p=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:De(()=>Gt(i).variable(p))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${s}/v`,variable:De(()=>Gt(i).variable(p))});let u=Array.isArray(e)?e[a].tensor:e[s];if(u==null)return;let c=this.accumulatedFirstMoment[a].variable,l=this.accumulatedSecondMoment[a].variable,m=Ce(se(c,this.beta1),se(u,1-this.beta1)),d=Ce(se(l,this.beta2),se(Zt(u),1-this.beta2)),f=je(m,o),h=je(d,n);c.assign(m),l.assign(d);let g=Ce(se(je(f,Ce(Rr(h),this.epsilon)),-this.learningRate),i);i.assign(g)}),this.accBeta1.assign(se(this.accBeta1,this.beta1)),this.accBeta2.assign(se(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Ot(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Ot(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),De(()=>{this.accBeta1.assign(ui(this.beta1,this.iterations_+1)),this.accBeta2.assign(ui(this.beta2,this.iterations_+1))});let t=e.length/2,o=!1;this.accumulatedFirstMoment=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(o)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};var rp=class extends kr{static get className(){return"Adamax"}constructor(e,t,o,n=null,s=0){super(),this.learningRate=e,this.beta1=t,this.beta2=o,this.epsilon=n,this.decay=s,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],De(()=>{this.iteration=ke(0).variable(),this.accBeta1=ke(t).variable()}),n==null&&(this.epsilon=T.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);De(()=>{let o=Te(1,this.accBeta1),n=je(-this.learningRate,Ce(se(this.iteration,this.decay),1));t.forEach((s,a)=>{let i=T.registeredVariables[s],p=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:Gt(i).variable(p)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${s}/v`,variable:Gt(i).variable(p)});let u=Array.isArray(e)?e[a].tensor:e[s];if(u==null)return;let c=this.accumulatedFirstMoment[a].variable,l=this.accumulatedWeightedInfNorm[a].variable,m=Ce(se(c,this.beta1),se(u,1-this.beta1)),d=se(l,this.beta2),f=Qt(u),h=Ad(d,f);c.assign(m),l.assign(h);let g=Ce(se(je(n,o),je(m,Ce(h,this.epsilon))),i);i.assign(g)}),this.iteration.assign(Ce(this.iteration,1)),this.accBeta1.assign(se(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Ot(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Ot(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};var mi=class extends kr{static get className(){return"SGD"}constructor(e){super(),this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=Array.isArray(e)?e[n].tensor:e[o];if(s==null)return;let a=T.registeredVariables[o];De(()=>{let i=Ce(se(this.c,s),a);a.assign(i)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=$r(ke(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};var op=class extends mi{static get className(){return"Momentum"}constructor(e,t,o=!1){super(e),this.learningRate=e,this.momentum=t,this.useNesterov=o,this.accumulations=[],this.m=ke(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=T.registeredVariables[o];this.accumulations[n]==null&&(this.accumulations[n]={originalName:`${o}/momentum`,variable:De(()=>Gt(s).variable(!1))});let a=this.accumulations[n].variable,i=Array.isArray(e)?e[n].tensor:e[o];i!=null&&De(()=>{let p,u=Ce(se(this.m,a),i);this.useNesterov?p=Ce(se(this.c,Ce(i,se(u,this.m))),s):p=Ce(se(this.c,u),s),a.assign(u),s.assign(p)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Ot(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(o=>({originalName:o.name,variable:o.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};var np=class extends kr{static get className(){return"RMSProp"}constructor(e,t=.9,o=0,n=null,s=!1){if(super(),this.learningRate=e,this.decay=t,this.momentum=o,this.epsilon=n,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=s,n==null&&(this.epsilon=T.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=T.registeredVariables[o],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${o}/rms`,variable:De(()=>Gt(s).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${o}/momentum`,variable:De(()=>Gt(s).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${o}/mg`,variable:De(()=>Gt(s).variable(a))});let i=Array.isArray(e)?e[n].tensor:e[o];if(i==null)return;let p=this.accumulatedMeanSquares[n].variable,u=this.accumulatedMoments[n].variable;De(()=>{let c=Ce(se(p,this.decay),se(Zt(i),1-this.decay));if(this.centered){let l=this.accumulatedMeanGrads[n].variable,m=Ce(se(l,this.decay),se(i,1-this.decay)),d=je(se(i,this.learningRate),Rr(Te(c,Ce(Zt(m),this.epsilon)))),f=Ce(se(u,this.momentum),d);p.assign(c),l.assign(m),u.assign(f);let h=Te(s,f);s.assign(h)}else{let l=Ce(se(p,this.decay),se(Zt(i),1-this.decay)),m=Ce(se(u,this.momentum),je(se(i,this.learningRate),Rr(Ce(l,this.epsilon))));p.assign(l),u.assign(m);let d=Te(s,m);s.assign(d)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Ot(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Ot(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Ot(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,o=!1;this.accumulatedMeanSquares=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})),this.accumulatedMoments=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};var iX=[Ju,ep,tp,rp,op,np,mi];function XN(){for(let r of iX)rS(r)}var di={};qe(di,{CompositeArrayBuffer:()=>ir,browserFiles:()=>QN,browserHTTPRequest:()=>tT,concatenateArrayBuffers:()=>dk,copyModel:()=>Tk,decodeWeights:()=>sd,decodeWeightsStream:()=>ad,encodeWeights:()=>pk,fromMemory:()=>rT,fromMemorySync:()=>uS,getLoadHandlers:()=>xk,getModelArtifactsForJSON:()=>tc,getModelArtifactsForJSONSync:()=>$w,getModelArtifactsInfoForJSON:()=>va,getSaveHandlers:()=>gk,getWeightSpecs:()=>Sl,http:()=>nf,isHTTPScheme:()=>of,listModels:()=>kk,loadWeights:()=>JN,moveModel:()=>_k,registerLoadRouter:()=>hk,registerSaveRouter:()=>fk,removeModel:()=>Nk,weightsLoaderFactory:()=>aS,withSaveHandler:()=>oT,withSaveHandlerSync:()=>nT});var uX="model",pX=".json",cX=".weights.bin";function YN(r){return new Promise(e=>setTimeout(e)).then(r)}var dc=class r{constructor(e){if(!A().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(r.URL_SCHEME)&&(e=e.slice(r.URL_SCHEME.length)),(e==null||e.length===0)&&(e=uX),this.modelJsonFileName=e+pX,this.weightDataFileName=e+cX}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=ir.join(e.weightData),o=window.URL.createObjectURL(new Blob([t],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=id(e,n),a=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),i=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(i.download=this.modelJsonFileName,i.href=a,await YN(()=>i.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let p=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;p.download=this.weightDataFileName,p.href=o,await YN(()=>p.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:va(e)}}}};dc.URL_SCHEME="downloads://";var oS=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let o=new FileReader;o.onload=n=>{let s=JSON.parse(n.target.result),a=s.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(s.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let p=tc(s,u=>this.loadWeights(u));e(p)},o.onerror=n=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),o.readAsText(this.jsonFile)})}loadWeights(e){let t=[],o=[];for(let a of e)t.push(...a.weights),o.push(...a.paths);let n=this.checkManifestAndWeightFiles(e),s=o.map(a=>this.loadWeightsFile(a,n[a]));return Promise.all(s).then(a=>[t,a])}loadWeightsFile(e,t){return new Promise((o,n)=>{let s=new FileReader;s.onload=a=>{let i=a.target.result;o(i)},s.onerror=a=>n(`Failed to weights data from file of path '${e}'.`),s.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],o=this.weightsFiles.map(s=>Ew(s.name)),n={};for(let s of e)s.paths.forEach(a=>{let i=Ew(a);if(t.indexOf(i)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${i}'`);if(t.push(i),o.indexOf(i)===-1)throw new Error(`Weight file with basename '${i}' is not provided.`);n[a]=this.weightsFiles[o.indexOf(i)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return n}},lX=r=>A().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(dc.URL_SCHEME)?mX(r.slice(dc.URL_SCHEME.length)):null;qt.registerSaveRouter(lX);function mX(r="model"){return new dc(r)}function QN(r){return new oS(r)}function nS(r,e,t,o){a(r),t=t==null?0:t,o=o==null?1:o,i(t,o);let n=0,s=p=>(p.then(u=>{let c=t+ ++n/r.length*(o-t);return e(c),u}),p);function a(p){E(p!=null&&Array.isArray(p)&&p.length>0,()=>"promises must be a none empty array")}function i(p,u){E(p>=0&&p<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${p}`),E(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),E(u>=p,()=>`startFraction must be no more than endFraction, but got startFraction ${p} and endFraction ${u}`)}return Promise.all(r.map(s))}async function sS(r,e){e==null&&(e={});let t=e.fetchFunc==null?A().platform.fetch:e.fetchFunc,o=r.map(l=>t(l,e.requestInit,{isBinary:!0})),i=(e.onProgress==null?await Promise.all(o):await nS(o,e.onProgress,0,.5)).map(l=>l.arrayBuffer());return e.onProgress==null?await Promise.all(i):await nS(i,e.onProgress,.5,1)}function ZN(r,e){var t;let o=e.fetchFunc==null?A().platform.fetch:e.fetchFunc,n=0,s;return(t=e.onProgress)===null||t===void 0||t.call(e,0),new ReadableStream({pull:async a=>{for(var i;n<r.length;){s||(s=(await o(r[n],e.requestInit,{isBinary:!0})).body.getReader());let{done:p,value:u}=await s.read();if(p){n++,s=void 0,(i=e.onProgress)===null||i===void 0||i.call(e,n/r.length);continue}a.enqueue(u);return}a.close()}})}async function JN(r,e="",t,o){return aS(a=>sS(a,{requestInit:o}))(r,e,t)}function aS(r){return async(e,t="",o)=>{let n=e.map(()=>!1),s={},a=o!=null?o.map(()=>!1):[],i=[];if(e.forEach((d,f)=>{let h=0;d.weights.forEach(g=>{let x="quantization"in g?g.quantization.dtype:g.dtype,b=si[x]*ze(g.shape),C=()=>{n[f]=!0,s[f]==null&&(s[f]=[]),s[f].push({manifestEntry:g,groupOffset:h,sizeBytes:b})};o!=null?o.forEach((S,k)=>{S===g.name&&(C(),a[k]=!0)}):C(),i.push(g.name),h+=b})}),!a.every(d=>d)){let d=o.filter((f,h)=>!a[h]);throw new Error(`Could not find weights in manifest with names: ${d.join(", ")}.
Manifest JSON has weights with names: ${i.join(", ")}.`)}let p=n.reduce((d,f,h)=>(f&&d.push(h),d),[]),u=[];p.forEach(d=>{e[d].paths.forEach(f=>{let h=t+(t.endsWith("/")?"":"/")+f;u.push(h)})});let c=await r(u),l={},m=0;return p.forEach(d=>{let f=e[d].paths.length,h=new ir(c.slice(m,m+f));s[d].forEach(x=>{let b=h.slice(x.groupOffset,x.groupOffset+x.sizeBytes),C=sd(b,[x.manifestEntry]);for(let S in C)l[S]=C[S]}),m+=f}),l}}var dX="application/octet-stream",fX="application/json",Dl=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(E(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=A().platform.fetch,E(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&E(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{},this.loadOptions=t}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let o=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],n=id(e,o);if(t.body.append("model.json",new Blob([JSON.stringify(n)],{type:fX}),"model.json"),e.weightData!=null){let a=ir.join(e.weightData);t.body.append("model.weights.bin",new Blob([a],{type:dX}),"model.weights.bin")}let s=await this.fetch(this.path,t);if(s.ok)return{modelArtifactsInfo:va(e),responses:[s]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${s.status}.`)}async loadModelJSON(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(s){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let o=t.modelTopology,n=t.weightsManifest;if(o==null&&n==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return t}async load(){if(this.loadOptions.streamWeights)return this.loadStream();let e=await this.loadModelJSON();return tc(e,t=>this.loadWeights(t))}async loadStream(){let e=await this.loadModelJSON(),t=await this.getWeightUrls(e.weightsManifest),o=Sl(e.weightsManifest),n=()=>ZN(t,this.loadOptions);return Object.assign(Object.assign({},e),{weightSpecs:o,getWeightStream:n})}async getWeightUrls(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[o,n]=hX(t),s=this.weightPathPrefix||o,a=[],i=[];for(let p of e)for(let u of p.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(u)):a.push(s+u+n);return this.weightUrlConverter&&a.push(...await Promise.all(i)),a}async loadWeights(e){let t=await this.getWeightUrls(e),o=Sl(e),n=await sS(t,this.loadOptions);return[o,n]}};Dl.URL_SCHEME_REGEX=/^https?:\/\//;function hX(r){let e=r.lastIndexOf("/"),t=r.lastIndexOf("?"),o=r.substring(0,e),n=t>e?r.substring(t):"";return[o+"/",n]}function of(r){return r.match(Dl.URL_SCHEME_REGEX)!=null}var eT=(r,e)=>{if(typeof fetch=="undefined"&&(e==null||e.fetchFunc==null))return null;{let t=!0;if(Array.isArray(r)?t=r.every(o=>of(o)):t=of(r),t)return nf(r,e)}return null};qt.registerSaveRouter(eT);qt.registerLoadRouter(eT);function nf(r,e){return new Dl(r,e)}function tT(r,e){return nf(r,e)}var Al=class{constructor(e){this.modelArtifacts=e}load(){return this.modelArtifacts}},sf=class{constructor(e){this.saveHandler=e}save(e){return this.saveHandler(e)}},iS=class{constructor(e){e.load&&(this.load=()=>Promise.resolve(e.load())),e.save&&(this.save=t=>Promise.resolve(e.save(t)))}};function rT(r,e,t,o){let n=arguments;return new iS(uS(...n))}function uS(r,e,t,o){return arguments.length===1?r.modelTopology!=null||r.weightSpecs!=null?new Al(r):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Al({modelTopology:r})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Al({modelTopology:r,weightSpecs:e,weightData:t,trainingConfig:o}))}function oT(r){return new sf(r)}function nT(r){return new sf(r)}var aT={};qe(aT,{confusionMatrix:()=>sT});function gX(r,e,t){let o=v(r,"labels","confusionMatrix"),n=v(e,"predictions","confusionMatrix");E(t==null||t>0&&Number.isInteger(t),()=>`If provided, numClasses must be a positive integer, but got ${t}`),E(o.rank===1,()=>`Expected the rank of labels to be 1, but got ${o.rank}`),E(n.rank===1,()=>`Expected the rank of predictions to be 1, but got ${n.rank}`),E(o.shape[0]===n.shape[0],()=>`Mismatch in the number of examples: ${o.shape[0]} vs. ${n.shape[0]}. Labels and predictions should have the same number of elements.`),E(t>0&&Number.isInteger(t),()=>`numClasses is required to be a positive integer, but got ${t}`);let s=El(Ue(o,"int32"),t),a=El(Ue(n,"int32"),t),i=mc(s),p=Ze(i,a);return Ue(p,"int32")}var sT=N({confusionMatrix_:gX});var cT={};qe(cT,{draw:()=>vX,fromPixels:()=>kX,fromPixelsAsync:()=>wX,toPixels:()=>IX});var sp,iT=!1;function uT(r,e=3){if(e>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let t=!1,o=!1,n=!1,s=!1,a=!1,i=!1;if(r.data instanceof Uint8Array)t=!0;else if(typeof ImageData!="undefined"&&r instanceof ImageData)o=!0;else if(typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement)n=!0;else if(typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement)s=!0;else if(r.getContext!=null)a=!0;else if(typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${r.constructor.name}`);if(Xp(Du,T.backendName)!=null){let f={pixels:r},h={numChannels:e};return T.runKernel(Du,f,h)}let[u,c]=n?[r.videoWidth,r.videoHeight]:[r.width,r.height],l;if(a)l=r.getContext("2d").getImageData(0,0,u,c).data;else if(o||t)l=r.data;else if(s||n||i){if(sp==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")sp=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else sp=document.createElement("canvas").getContext("2d",{willReadFrequently:!0});sp.canvas.width=u,sp.canvas.height=c,sp.drawImage(r,0,0,u,c),l=sp.getImageData(0,0,u,c).data}let m;if(e===4)m=new Int32Array(l);else{let f=u*c;m=new Int32Array(f*e);for(let h=0;h<f;h++)for(let g=0;g<e;++g)m[h*e+g]=l[h*4+g]}return jd(m,[c,u,e],"int32")}function xX(r){return r!=null&&r.data instanceof Uint8Array}function yX(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function bX(r){return r!=null&&r.width!==0&&r.height!==0}function CX(r){return yX()&&!(r instanceof ImageBitmap)&&bX(r)&&!xX(r)}async function wX(r,e=3){let t=null;if(A().getBool("WRAP_TO_IMAGEBITMAP")&&CX(r)){let o;try{o=await createImageBitmap(r,{premultiplyAlpha:"none"})}catch(n){o=null}o!=null&&o.width===r.width&&o.height===r.height?t=o:t=r}else t=r;return uT(t,e)}function pT(r){if(r.rank!==2&&r.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${r.rank}.`);let e=r.rank===2?1:r.shape[2];if(e>4||e===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${e}`);if(r.dtype!=="float32"&&r.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${r.dtype}. Please use float32 or int32 tensors.`)}function SX(r){let e=(r==null?void 0:r.alpha)||1;if(e>1||e<0)throw new Error(`Alpha value ${e} is suppoed to be in range [0 - 1].`)}async function IX(r,e){let t=v(r,"img","toPixels");if(!(r instanceof mt)){let u=t;t=Ue(u,"int32"),u.dispose()}pT(t);let[o,n]=t.shape.slice(0,2),s=t.rank===2?1:t.shape[2],a=await t.data(),i=t.dtype==="float32"?255:1,p=new Uint8ClampedArray(n*o*4);for(let u=0;u<o*n;++u){let c=[0,0,0,255];for(let m=0;m<s;m++){let d=a[u*s+m];if(t.dtype==="float32"){if(d<0||d>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${d}.`)}else if(t.dtype==="int32"&&(d<0||d>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${d}.`);s===1?(c[0]=d*i,c[1]=d*i,c[2]=d*i):c[m]=d*i}let l=u*4;p[l+0]=Math.round(c[0]),p[l+1]=Math.round(c[1]),p[l+2]=Math.round(c[2]),p[l+3]=Math.round(c[3])}if(e!=null){iT||Xp($u,T.backendName)!=null&&(console.warn("tf.browser.toPixels is not efficient to draw tensor on canvas. Please try tf.browser.draw instead."),iT=!0),e.width=n,e.height=o;let u=e.getContext("2d"),c=new ImageData(p,n,o);u.putImageData(c,0,0)}return t!==r&&t.dispose(),p}function vX(r,e,t){let o=v(r,"img","draw");if(!(r instanceof mt)){let a=o;o=Ue(a,"int32"),a.dispose()}pT(o),SX(t==null?void 0:t.imageOptions);let n={image:o},s={canvas:e,options:t};T.runKernel($u,n,s)}var kX=N({fromPixels_:uT});var af={};qe(af,{prepareAndValidate:()=>lT});function lT(r,e){let t=r.shape.length,o=e.shape.length;if(t<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${t}.`);if(o<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${o}.`);if(e.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.shape[o-1]>t)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${e.shape[o-1]} vs. ${t}`);if(ze(r.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${r.shape}.`);let n=e.shape,s=n[n.length-1],a=1;for(let l=0;l<n.length-1;++l)a*=n[l];let i=r.shape,p=n.slice();p.pop();let u=1;for(let l=s;l<t;++l)u*=i[l],p.push(i[l]);let c=[...js(r.shape).map(l=>l/u),1].slice(0,s);return[p,a,u,c]}var pt={};qe(pt,{assertParamsValid:()=>TX,computeFlatOffset:()=>DX,computeOutShape:()=>EX,getNormalizedAxes:()=>$X,isSliceContinous:()=>RX,maskToAxes:()=>_X,parseSliceParams:()=>AX,sliceInfo:()=>FX,startForAxis:()=>bT,startIndicesWithElidedDims:()=>gT,stopForAxis:()=>CT,stopIndicesWithElidedDims:()=>xT,stridesForAxis:()=>yT,stridesWithElidedDims:()=>dT});var pS=-2,NX=-1;function TX(r,e,t){let o=r.shape.length;E(o===e.length,()=>`Error in slice${o}D: Length of begin ${e} must match the rank of the array (${o}).`),E(o===t.length,()=>`Error in slice${o}D: Length of size ${t} must match the rank of the array (${o}).`);for(let n=0;n<o;++n)E(e[n]+t[n]<=r.shape[n],()=>`Error in slice${o}D: begin[${n}] + size[${n}] (${e[n]+t[n]}) would overflow input.shape[${n}] (${r.shape[n]})`)}function _X(r){let e=[],t=0;for(;r>0;)r&1&&e.push(t),r/=2,t++;return e}function EX(r,e,t){let o=[];for(let n=0;n<r.length;n++)o[n]=Math.ceil((e[n]-r[n])/t[n]);return o}function dT(r,e,t,o){let n=[...r];for(let s=n.length;s<o.length;s++)n.push(1);for(let s=0;s<t;s++)s===0?n[e]=1:(n.splice(e,0,1),n.pop());return n}function fT(r,e,t){return t<=r?t:t-(e-1)}function hT(r,e){let t=[];for(let o=0;o<r;o++)t.push(e+o);return t}function $X(r,e,t,o,n,s,a,i,p){let u=r.length,c=new Array(u),l=new Array(u),m=new Array(u);if(e.length&&t>0){let d=e[0],f=t+1;c=gT(a,d,f,o,r),l=xT(i,d,f,n,r),m=dT(s,d,f,r)}else for(let d=0;d<u;d++)c[d]=bT(a,o,s,r,d,p),l[d]=CT(i,n,s,r,d,p),m[d]=yT(s,d,p);return{begin:c,end:l,strides:m}}function gT(r,e,t,o,n){let s=[...n],a=hT(t,e);for(let i=0;i<s.length;i++)if(a.indexOf(i)>-1)s[i]=0;else{let p=fT(e,t,i),u=o[p];r&1<<p&&(u=0),s[i]=u}return s}function xT(r,e,t,o,n){let s=[...n],a=hT(t,e);for(let i=0;i<s.length;i++)if(a.indexOf(i)>-1)s[i]=Number.MAX_SAFE_INTEGER;else{let p=fT(e,t,i),u=o[p];r&1<<p&&(u=Number.MAX_SAFE_INTEGER),s[i]=u}for(let i=0;i<s.length;i++){let p=n[i];s[i]<0&&(s[i]+=p),s[i]=Vp(0,s[i],n[i])}return s}function yT(r,e,t){let o=r[e];return(t&1<<e||o==null)&&(o=1),o}function bT(r,e,t,o,n,s){let a=e[n],i=t[n]||1;(r&1<<n||s&1<<n||a==null)&&(i>0?a=Number.MIN_SAFE_INTEGER:a=Number.MAX_SAFE_INTEGER);let p=o[n];return a<0&&(a+=p),a=Vp(0,a,p-1),a}function CT(r,e,t,o,n,s){let a=e[n],i=t[n]||1;(r&1<<n||s&1<<n||a==null)&&(i>0?a=Number.MAX_SAFE_INTEGER:a=Number.MIN_SAFE_INTEGER);let p=o[n];return a<0&&(a+=p),i>0?a=Vp(0,a,p):a=Vp(-1,a,p-1),a}function RX(r,e,t){let o=t.length;for(let n=0;n<t.length;n++)if(t[n]>1){o=n;break}for(let n=o+1;n<t.length;n++)if(e[n]>0||t[n]!==r[n])return!1;return!0}function DX(r,e){let t=r.length>0?r[r.length-1]:1;for(let o=0;o<r.length-1;o++)t+=r[o]*e[o];return t}function AX(r,e,t){let o,n=r.shape.length;typeof e=="number"?o=[e,...new Array(n-1).fill(0)]:e.length<n?o=e.concat(new Array(n-e.length).fill(0)):o=e.slice(),o.forEach(a=>{E(a!==-1,()=>"slice() does not support negative begin indexing.")});let s;return t==null?s=new Array(n).fill(-1):typeof t=="number"?s=[t,...new Array(n-1).fill(-1)]:t.length<n?s=t.concat(new Array(n-t.length).fill(-1)):s=t,s=s.map((a,i)=>a>=0?a:(E(a===-1,()=>`Negative size values should be exactly -1 but got ${a} for the slice() size at index ${i}.`),r.shape[i]-o[i])),[o,s]}function FX(r,e,t,o,n,s,a,i,p){let u;if(o==null?(u=new Array(e.length),u.fill(1)):u=o,a!=null&&a&a-1)throw new Error("Multiple ellipses in slice is not allowed.");let c=!1,l={dims:u.length,numAddAxisAfterEllipsis:0,begin:e.slice(),end:t.slice(),strides:u.slice(),beginMask:n,endMask:s,ellipsisMask:a,newAxisMask:i,shrinkAxisMask:p};for(let C=0;C<l.dims;C++)c&&1<<C&i&&l.numAddAxisAfterEllipsis++,1<<C&a&&(c=!0);c||(l.ellipsisMask|=1<<l.dims,l.dims++);let m={dims:r.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};PX(l,m);let d=!0,f=!0,h=!0,g=[],x=[];for(let C=0;C<r.length;++C){if(m.strides[C]===0)throw Error(`strides[${C}] must be non-zero`);let S=!!(m.shrinkAxisMask&1<<C),k=r[C];if(k===-1){g.push(S?1:-1);continue}let _=[m.beginMask&1<<C,m.endMask&1<<C],$=[m.strides[C]>0?0:-1,m.strides[C]>0?k:k-1];if(S&&m.strides[C]<=0)throw Error("only stride 1 allowed on non-range indexing.");h=h&&m.strides[C]===1;let R=!!(m.beginMask&1<<C&&m.endMask&1<<C);if(m.beginValid&&m.endValid){if(S){let M=m.begin[C]<0?k+m.begin[C]:m.begin[C];if(m.begin[C]=M,m.end[C]=m.begin[C]+1,M<0||M>=k)throw Error(`slice index ${m.begin[C]} of dimension ${C} out of bounds.`)}else m.begin[C]=mT(m.begin[C],0,m.strides[C],k,_,$),m.end[C]=mT(m.end[C],1,m.strides[C],k,_,$);let O=m.strides[C]===1&&m.begin[C]===0&&m.end[C]===k;d=d&&O,f=f&&(C===0&&m.strides[C]===1||O)}else d=d&&m.strides[C]===1&&R,f=f&&(C===0&&m.strides[C]===1||R);let D,P=!1;if(m.beginValid&&m.endValid?(D=m.end[C]-m.begin[C],P=!0):S?(D=1,P=!0):R&&k>=0&&(m.strides[C]<0?D=-k:D=k,P=!0),P){let O;D===0||D<0!=m.strides[C]<0?O=0:O=Math.trunc(D/m.strides[C])+(D%m.strides[C]!==0?1:0),g.push(O)}else g.push(-1)}for(let C=0;C<m.finalShapeGatherIndices.length;++C){let S=m.finalShapeGatherIndices[C];S>=0?x.push(g[S]):S===pS&&x.push(1)}return{finalShapeSparse:x.filter((C,S)=>m.finalShapeGatherIndices[S]!==pS),finalShape:x,isIdentity:d,sliceDim0:f,isSimpleSlice:h,begin:m.begin,end:m.end,strides:m.strides}}function PX(r,e){e.beginMask=0,e.endMask=0,e.shrinkAxisMask=0;let t=0;e.beginValid=r.begin!=null,e.endValid=r.end!=null,e.begin=new Array(e.dims),e.end=new Array(e.dims),e.strides=new Array(e.dims),e.finalShapeGatherIndices=[],e.finalShapeGatherIndicesSparse=[],e.inputShapeGatherIndicesSparse=new Array(e.dims);for(let o=0;o<r.dims;o++)if(1<<o&r.ellipsisMask){let n=Math.min(e.dims-(r.dims-o)+1+r.numAddAxisAfterEllipsis,e.dims);for(;t<n;t++)e.begin[t]=0,e.end[t]=0,e.strides[t]=1,e.beginMask|=1<<t,e.endMask|=1<<t,e.finalShapeGatherIndices.push(t),e.finalShapeGatherIndicesSparse.push(-1),e.inputShapeGatherIndicesSparse[t]=o}else if(1<<o&r.newAxisMask)e.finalShapeGatherIndices.push(pS),e.finalShapeGatherIndicesSparse.push(-1);else{if(t===e.begin.length)throw Error(`Index out of range using input dim ${t}; input has only ${e.dims} dims, ${e.begin.length}.`);r.begin!=null&&(e.begin[t]=r.begin[o]),r.end!=null&&(e.end[t]=r.end[o]),e.strides[t]=r.strides[o],r.beginMask&1<<o&&(e.beginMask|=1<<t),r.endMask&1<<o&&(e.endMask|=1<<t),r.shrinkAxisMask&1<<o?(e.finalShapeGatherIndices.push(NX),e.finalShapeGatherIndicesSparse.push(-1),e.shrinkAxisMask|=1<<t):(e.finalShapeGatherIndices.push(t),e.finalShapeGatherIndicesSparse.push(o)),e.inputShapeGatherIndicesSparse[t]=o,t++}}function mT(r,e,t,o,n,s){if(n[e])return t>0?s[e]:s[e+1&1];{let a=r<0?o+r:r;return a<s[0]?s[0]:a>s[1]?s[1]:a}}var OX="4.22.0";var Fl=class{static sgd(e){return new mi(e)}static momentum(e,t,o=!1){return new op(e,t,o)}static rmsprop(e,t=.9,o=0,n=null,s=!1){return new np(e,t,o,n,s)}static adam(e=.001,t=.9,o=.999,n=null){return new tp(e,t,o,n)}static adadelta(e=.001,t=.95,o=null){return new Ju(e,t,o)}static adamax(e=.002,t=.9,o=.999,n=null,s=0){return new rp(e,t,o,n,s)}static adagrad(e,t=.1){return new ep(e,t)}};var OGe=Fl;var MX=typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:r=>r();function cS(){return new Promise(r=>MX(()=>r()))}var w={};qe(w,{ERF_A1:()=>e5,ERF_A2:()=>t5,ERF_A3:()=>r5,ERF_A4:()=>o5,ERF_A5:()=>n5,ERF_P:()=>JX,PARALLELIZE_THRESHOLD:()=>uf,RowPartitionType:()=>Fa,SELU_SCALE:()=>ZX,SELU_SCALEALPHA:()=>QX,applyActivation:()=>Qu,assertAndGetBroadcastShape:()=>rt,assertAxesAreInnerMostDims:()=>pK,assertParamsConsistent:()=>LX,assignToTypedArray:()=>c5,axesAreInnerMostDims:()=>zw,calculateShapes:()=>q1,checkEinsumDimSizes:()=>g5,checkPadOnDimRoundingMode:()=>Lt,combineLocations:()=>I2,combineRaggedTensorToTensorShapes:()=>zX,complexWithEvenIndex:()=>i5,complexWithOddIndex:()=>u5,computeConv2DInfo:()=>zu,computeConv3DInfo:()=>Uk,computeDefaultPad:()=>Bw,computeDilation2DInfo:()=>iH,computeOptimalWindowSize:()=>GX,computeOutAndReduceShapes:()=>uK,computeOutShape:()=>BX,computePool2DInfo:()=>Lw,computePool3DInfo:()=>uH,convertConv2DDataFormat:()=>Gk,decodeEinsumEquation:()=>f5,eitherStridesOrDilationsAreOne:()=>gr,expandShapeToKeepDim:()=>ii,exponent:()=>m5,exponents:()=>l5,fromStringArrayToUint8:()=>M5,fromUint8ToStringArray:()=>O5,getAxesPermutation:()=>cK,getBroadcastDims:()=>y2,getComplexWithIndex:()=>p5,getEinsumComputePath:()=>x5,getEinsumPermutation:()=>h5,getFusedBiasGradient:()=>Yu,getFusedDyActivation:()=>Xu,getImageCenter:()=>HX,getInnerMostAxes:()=>mK,getPermuted:()=>qX,getRaggedRank:()=>WX,getReductionAxes:()=>xd,getReshaped:()=>KX,getReshapedPermuted:()=>jX,getRowPartitionTypesHelper:()=>VX,getSliceBeginCoords:()=>XX,getSliceSize:()=>YX,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>w5,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>S5,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>I5,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>N5,getSparseReshapeInputOutputMismatchErrorMessage:()=>_5,getSparseReshapeInputOutputMultipleErrorMessage:()=>T5,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>v5,getSparseReshapeNegativeOutputDimErrorMessage:()=>k5,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>D5,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>E5,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>$5,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>R5,getUndoAxesPermutation:()=>lK,isIdentityPermutation:()=>y5,log:()=>t4,mergeRealAndImagArrays:()=>s5,prepareAndValidate:()=>lT,prepareSplitSize:()=>C5,segment_util:()=>mS,shouldFuse:()=>Zu,slice_util:()=>pt,splitRealAndImagArrays:()=>a5,stridesOrDilationsArePositive:()=>Ta,tupleValuesAreOne:()=>Bu,upcastType:()=>dt,validateDefaultValueShape:()=>UX,validateInput:()=>lc,validateUpdateShape:()=>Qw,warn:()=>Ia});function LX(r,e){let t=r[0].length;r.forEach((n,s)=>{E(n.length===t,()=>`Error in concat${t}D: rank of tensors[${s}] must be the same as the rank of the rest (${t})`)}),E(e>=0&&e<t,()=>`Error in concat${t}D: axis must be between 0 and ${t-1}.`);let o=r[0];r.forEach((n,s)=>{for(let a=0;a<t;a++)E(a===e||n[a]===o[a],()=>`Error in concat${t}D: Shape of tensors[${s}] (${n}) does not match the shape of the rest (${o}) along the non-concatenated axis ${s}.`)})}function BX(r,e){let t=r[0].slice();for(let o=1;o<r.length;o++)t[e]+=r[o][e];return t}var Fa;(function(r){r[r.FIRST_DIM_SIZE=0]="FIRST_DIM_SIZE",r[r.VALUE_ROWIDS=1]="VALUE_ROWIDS",r[r.ROW_LENGTHS=2]="ROW_LENGTHS",r[r.ROW_SPLITS=3]="ROW_SPLITS",r[r.ROW_LIMITS=4]="ROW_LIMITS",r[r.ROW_STARTS=5]="ROW_STARTS"})(Fa||(Fa={}));function zX(r,e,t){let o=new Array;if(t==null&&e==null)return o;if(e==null)for(;o.length<r+t.length;)o.push(-1);else o=e.slice();if(t==null)return o;if(r+t.length!==o.length)throw new Error(`rt input.shape and shape=${e} are incompatible: rt input.rank = ${r+t.length}, but shape.rank = ${o.length}`);for(let n=1;n<t.length;++n){let s=t[n],a=o[o.length-t.length+n],i=o[a];if(s>=0)if(i>=0){if(i!==s)throw new Error(`rt input.shape and shape=${e} are incompatible: rt input.shape[${n+r}] = ${s} but shape[${n+r}] = ${i}`)}else o[a]=s}return o}function VX(r){let e={FIRST_DIM_SIZE:Fa.FIRST_DIM_SIZE,VALUE_ROWIDS:Fa.VALUE_ROWIDS,ROW_LENGTHS:Fa.ROW_LENGTHS,ROW_SPLITS:Fa.ROW_SPLITS,ROW_LIMITS:Fa.ROW_LIMITS,ROW_STARTS:Fa.ROW_STARTS},t=[];for(let o of r)if(o in e)t.push(e[o]);else break;return t}function WX(r){return r.length===0?0:r[0]===Fa.FIRST_DIM_SIZE?r.length-1:r.length}function UX(r,e){if(r==null||e==null)return;let t=r.length,o=e.length;if(t>=o)throw new Error(`defaultValue.shape=${r} and ragged tensor flatValues.shape=${e}, are incompatible: defaultValue.rank = ${t} must be less than ragged tensor input flatValues.rank = ${o})`);for(let n=0;n<Math.min(t,o-1);++n){let s=r[n],a=e[n+1];if(s>=0&&a>=0&&s!==1&&s!==a)throw new Error(`defaultValue.shape=${r}, and ragged tensor input flatValues.shape=${e} are incompatible: defaultValue.shape[${n-r.length}] = ${s} but ragged tensor input.flatValues.shape[${n-r.length}] = ${a}`)}}var uf=30;function GX(r){return r<=uf?r:Up(r,Math.floor(Math.sqrt(r)))}function HX(r,e,t){let o=t*(typeof r=="number"?r:r[0]),n=e*(typeof r=="number"?r:r[1]);return[o,n]}function KX(r,e,t,o=!0){let n=[];if(o)n=n.concat(e.slice(0)),n.push(r[0]/t),n=n.concat(r.slice(1));else{n=n.concat(r[0]);let s=e.length;for(let a=0;a<s;++a)n=n.concat([r[a+1]/e[a],e[a]]);n=n.concat(r.slice(s+1))}return n}function qX(r,e,t=!0){let o=[];if(t){o.push(e);for(let n=e+1;n<r;++n)n<=2*e?(o.push(n),o.push(n-(e+1))):o.push(n)}else{let n=[],s=[];for(let a=1;a<r;++a)a>=e*2+1||a%2===1?s.push(a):n.push(a);o.push(...n),o.push(0),o.push(...s)}return o}function jX(r,e,t,o=!0){let n=[];o?n.push(r[0]/t):n.push(r[0]*t);for(let s=1;s<r.length;++s)s<=e.length?o?n.push(e[s-1]*r[s]):n.push(r[s]/e[s-1]):n.push(r[s]);return n}function XX(r,e){let t=[0];for(let o=0;o<e;++o)t.push(r[o][0]);return t}function YX(r,e,t){let o=r.slice(0,1);for(let n=0;n<t;++n)o.push(r[n+1]-e[n][0]-e[n][1]);return o}var QX=1.7580993408473768,ZX=1.0507009873554805;var JX=.3275911,e5=.254829592,t5=-.284496736,r5=1.421413741,o5=-1.453152027,n5=1.061405429;function s5(r,e){if(r.length!==e.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${r.length}, imag: ${e.length}.`);let t=new Float32Array(r.length*2);for(let o=0;o<t.length;o+=2)t[o]=r[o/2],t[o+1]=e[o/2];return t}function a5(r){let e=new Float32Array(r.length/2),t=new Float32Array(r.length/2);for(let o=0;o<r.length;o+=2)e[o/2]=r[o],t[o/2]=r[o+1];return{real:e,imag:t}}function i5(r){let e=Math.ceil(r.length/4),t=new Float32Array(e),o=new Float32Array(e);for(let n=0;n<r.length;n+=4)t[Math.floor(n/4)]=r[n],o[Math.floor(n/4)]=r[n+1];return{real:t,imag:o}}function u5(r){let e=Math.floor(r.length/4),t=new Float32Array(e),o=new Float32Array(e);for(let n=2;n<r.length;n+=4)t[Math.floor(n/4)]=r[n],o[Math.floor(n/4)]=r[n+1];return{real:t,imag:o}}function p5(r,e){let t=r[e*2],o=r[e*2+1];return{real:t,imag:o}}function c5(r,e,t,o){r[o*2]=e,r[o*2+1]=t}function l5(r,e){let t=new Float32Array(r/2),o=new Float32Array(r/2);for(let n=0;n<Math.ceil(r/2);n++){let s=(e?2:-2)*Math.PI*(n/r);t[n]=Math.cos(s),o[n]=Math.sin(s)}return{real:t,imag:o}}function m5(r,e,t){let o=(t?2:-2)*Math.PI*(r/e),n=Math.cos(o),s=Math.sin(o);return{real:n,imag:s}}var lS="->",d5=/->/g,wT=",",ST="...";function f5(r,e){r=r.replace(/\s/g,"");let t=(r.length-r.replace(d5,"").length)/lS.length;if(t<1)throw new Error("Equations without an arrow are not supported.");if(t>1)throw new Error(`Equation must contain exactly one arrow ("${lS}").`);let[o,n]=r.split(lS);E(o.indexOf(ST)===-1,()=>`The ellipsis notation ("${ST}") is not supported yet.`);let s=o.split(wT),a=s.length;if(e!==a)throw new Error(`Expected ${a} input tensors, received ${e}`);if(a>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let m=0;m<n.length;++m){let d=n[m];if(!s.some(f=>f.indexOf(d)!==-1))throw new Error(`Output subscripts contain the label ${d} not present in the input subscripts.`);i.indexOf(d)===-1&&i.push(d)}for(let m=0;m<o.length;++m){let d=o[m];i.indexOf(d)===-1&&d!==wT&&i.push(d)}let p=new Array(s.length);for(let m=0;m<a;++m){if(new Set(s[m].split("")).size!==s[m].length)throw new Error(`Found duplicate axes in input component ${s[m]}. Support for duplicate axes in input is not implemented yet.`);p[m]=[];for(let d=0;d<s[m].length;++d)p[m].push(i.indexOf(s[m][d]))}let u=i.length,c=n.length,l=[];for(let m=c;m<u;++m)l.push(m);return{allDims:i,summedDims:l,idDims:p}}function h5(r,e){let t=new Array(r);t.fill(-1);for(let n=0;n<e.length;++n)t[e[n]]=n;let o=[];for(let n=0;n<r;++n)t[n]===-1&&o.push(n);return t=t.filter(n=>n!==-1),{permutationIndices:t,expandDims:o}}function g5(r,e,t){let o=new Array(r);for(let n=0;n<t.length;++n){let s=t[n].shape;for(let a=0;a<e[n].length;++a)o[e[n][a]]===void 0?o[e[n][a]]=s[a]:E(o[e[n][a]]===s[a],()=>`Expected dimension ${o[e[n][a]]} at axis ${a} of input shaped ${JSON.stringify(s)}, but got dimension ${s[a]}`)}}function x5(r,e){let t=r,o=[],n=0;r.length===0&&t.push(-1),n=r.length+1;for(let a=0;a<n;++a)o.push([]);let s=[];for(let a=0;a<t.length;++a){let i=t[a],p=b5(e,i);for(let u of p)s.indexOf(u)===-1&&(o[a].push(u),s.push(u))}return{path:t,steps:o}}function y5(r){return r.every((e,t)=>e===t)}function b5(r,e){let t=[];for(let o=0;o<r.length;++o)(r[o].length===0||r[o].indexOf(e)!==-1||e===-1)&&t.push(o);return t}function C5(r,e,t=0){let o=[];if(typeof e=="number")E(r.shape[t]%e===0,()=>"Number of splits must evenly divide the axis."),o=new Array(e).fill(r.shape[t]/e);else{let n=e.reduce((a,i)=>(i===-1&&(a+=1),a),0);E(n<=1,()=>"There should be only one negative value in split array.");let s=e.indexOf(-1);if(s!==-1){let a=e.reduce((i,p)=>p>0?i+p:i);e[s]=r.shape[t]-a}E(r.shape[t]===e.reduce((a,i)=>a+i),()=>"The sum of sizes must match the size of the axis dimension."),o=e}return o}function w5(r){return`Received SparseTensor with denseShape[0] = 0 but
indices.shape[0] = ${r}`}function S5(r,e){return`indices(${r}, 0) is invalid: ${e} < 0`}function I5(r,e,t){return`indices(${r}, 0) is invalid: ${e} >= ${t}`}function v5(r,e){return`only one output dimension may be -1, not both ${r} and ${e}`}function k5(r,e){return`size ${r} must be non-negative, not ${e}`}function N5(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function T5(r,e){let t=ze(r),o=ze(e);return`Input to reshape is a SparseTensor with ${t}
dense values, but the requested shape requires a multiple of ${o}. inputShape=${r} outputShape= ${e}`}function _5(r,e){let t=ze(r),o=ze(e);return`Input to reshape is a tensor with ${t} dense values, but the requested shape has ${o}. inputShape=${r} outputShape=${e}`}function E5(){return"segment ids must be >= 0"}function $5(){return"segment ids are not increasing"}function R5(r,e){return`Segment id ${r} out of range [0, ${e}), possibly because segmentIds input is not sorted.`}function D5(r,e,t){return`Bad: indices[${r}] == ${e} out of range [0, ${t})`}var mS={};qe(mS,{collectGatherOpShapeInfo:()=>P5,computeOutShape:()=>F5,segOpComputeOptimalWindowSize:()=>A5});function A5(r,e){let t=!1,o;for(r<=uf?(o=r,t=!0):o=Up(r,Math.floor(Math.sqrt(r)));!t;)o>e||o===r?t=!0:o=Up(r,o+1);return o}function F5(r,e,t){let o=[],n=r.length;for(let s=0;s<n;s++)s!==e?o.push(r[s]):o.push(t);return o}function P5(r,e,t,o){let n=e.shape.length,s=r.shape.length;if(o!==0&&(o<-n||o>n))throw new Error(`Expect batchDims in the range of [-${n}, ${n}], but got ${o}`);if(o<0&&(o+=n),o>s)throw new Error(`batchDims (${o}) must be less than rank(x) (
${s}).`);if(t<o)throw new Error(`batchDims (${o}) must be less than or equal to axis (${t}).`);for(let l=0;l<o;++l)if(r.shape[l]!==e.shape[l])throw new Error(`x.shape[${l}]: ${r.shape[l]} should be equal to indices.shape[${l}]: ${e.shape[l]}.`);let a=r.shape[t],i=[],p=1,u=1,c=1;for(let l=0;l<o;++l)i.push(r.shape[l]),p*=r.shape[l];for(let l=o;l<t;l++)i.push(r.shape[l]),u*=r.shape[l];for(let l=o;l<n;l++)i.push(e.shape[l]);for(let l=t+1;l<s;l++)i.push(r.shape[l]),c*=r.shape[l];return{batchSize:p,sliceSize:c,outerSize:u,dimSize:a,outputShape:i}}function O5(r){try{return r.map(e=>Jp(e))}catch(e){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${e}`)}}function M5(r){return r.map(e=>Ji(e))}var Vt={};qe(Vt,{nonMaxSuppressionV3Impl:()=>Jd,nonMaxSuppressionV4Impl:()=>ef,nonMaxSuppressionV5Impl:()=>tf,whereImpl:()=>Xd});XN();var L5=A();L5.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,r=>{r&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var Dr;(function(r){r[r.DT_INVALID=0]="DT_INVALID",r[r.DT_FLOAT=1]="DT_FLOAT",r[r.DT_DOUBLE=2]="DT_DOUBLE",r[r.DT_INT32=3]="DT_INT32",r[r.DT_UINT8=4]="DT_UINT8",r[r.DT_INT16=5]="DT_INT16",r[r.DT_INT8=6]="DT_INT8",r[r.DT_STRING=7]="DT_STRING",r[r.DT_COMPLEX64=8]="DT_COMPLEX64",r[r.DT_INT64=9]="DT_INT64",r[r.DT_BOOL=10]="DT_BOOL",r[r.DT_QINT8=11]="DT_QINT8",r[r.DT_QUINT8=12]="DT_QUINT8",r[r.DT_QINT32=13]="DT_QINT32",r[r.DT_BFLOAT16=14]="DT_BFLOAT16",r[r.DT_QINT16=15]="DT_QINT16",r[r.DT_QUINT16=16]="DT_QUINT16",r[r.DT_UINT16=17]="DT_UINT16",r[r.DT_COMPLEX128=18]="DT_COMPLEX128",r[r.DT_HALF=19]="DT_HALF",r[r.DT_RESOURCE=20]="DT_RESOURCE",r[r.DT_VARIANT=21]="DT_VARIANT",r[r.DT_UINT32=22]="DT_UINT32",r[r.DT_UINT64=23]="DT_UINT64",r[r.DT_FLOAT_REF=101]="DT_FLOAT_REF",r[r.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",r[r.DT_INT32_REF=103]="DT_INT32_REF",r[r.DT_UINT8_REF=104]="DT_UINT8_REF",r[r.DT_INT16_REF=105]="DT_INT16_REF",r[r.DT_INT8_REF=106]="DT_INT8_REF",r[r.DT_STRING_REF=107]="DT_STRING_REF",r[r.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",r[r.DT_INT64_REF=109]="DT_INT64_REF",r[r.DT_BOOL_REF=110]="DT_BOOL_REF",r[r.DT_QINT8_REF=111]="DT_QINT8_REF",r[r.DT_QUINT8_REF=112]="DT_QUINT8_REF",r[r.DT_QINT32_REF=113]="DT_QINT32_REF",r[r.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",r[r.DT_QINT16_REF=115]="DT_QINT16_REF",r[r.DT_QUINT16_REF=116]="DT_QUINT16_REF",r[r.DT_UINT16_REF=117]="DT_UINT16_REF",r[r.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",r[r.DT_HALF_REF=119]="DT_HALF_REF",r[r.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",r[r.DT_VARIANT_REF=121]="DT_VARIANT_REF",r[r.DT_UINT32_REF=122]="DT_UINT32_REF",r[r.DT_UINT64_REF=123]="DT_UINT64_REF"})(Dr||(Dr={}));var IT;(function(r){let e;(function(t){t[t.LEGACY=0]="LEGACY",t[t.V1=1]="V1",t[t.V2=2]="V2"})(e=r.CheckpointFormatVersion||(r.CheckpointFormatVersion={}))})(IT||(IT={}));var fS={};function z5(r,e){let t={tfOpName:r,category:"custom",inputs:[],attrs:[],customExecutor:e};fS[r]=t}function pf(r){return fS[r]}function V5(r){delete fS[r]}function I(r,e,t,o,n){let s=e.inputParams[r];if(s&&s.inputIndexStart!==void 0){let i=s.inputIndexStart,p=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?i+1:s.inputIndexEnd,u=i<0?e.inputNames.length+i:i;if(s.type==="tensor")return Bt(e.inputNames[u],t,o,n);if(s.type==="tensors"){let m=e.inputs.slice(i,p);return e.inputNames.slice(i,p).filter((f,h)=>{var g;return((g=m[h])===null||g===void 0?void 0:g.op)!=="NoOp"}).map(f=>Bt(f,t,o,n))}let c=Bt(e.inputNames[u],t,o,n),l=c.dataSync();return s.type==="number"?l[0]:y.toNestedArray(c.shape,l)}let a=e.attrParams[r];return a&&a.value}function Bt(r,e,t,o){let[n,s]=Nr(r,t);if(o!=null){let i=o.getHashTableHandleByName(n);if(i!=null)return i}let a=t.currentContextIds.find(i=>!!e[cf(n,i)]);return a!==void 0?e[cf(n,a)][s]:void 0}function hS(r,e,t){return e[cf(r,t.currentContextId)]}function Ls(r,e){let[t,o,n]=Nr(r,e);return[cf(t,e&&e.currentContextId),o,n]}function cf(r,e){return e?`${r}-${e}`:r}function Nr(r,e){if(r==="")return["",0,void 0];let t=e!=null&&e.parseNodeNameCache!=null;if(t){let s=e.parseNodeNameCache.get(r);if(s!=null)return s}let o=r.split(":"),n;if(o.length===1)n=[r,0,void 0];else{let s=o[0],a=o.length===3?o[1]:void 0,i=Number(o[o.length-1]);n=[s,i,a]}return t&&e.parseNodeNameCache.set(r,n),n}function Pl(r,e,t){let o=I("pad",r,e,t);if(o==="explicit"){o=I("explicitPaddings",r,e,t);let n=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)n[s][0]=o[s*2],n[s][1]=o[s*2+1];return n}return o}function Bs(r){return r.kept?r:Ur(r)}var gS={};qe(gS,{json:()=>W5});var W5=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var xS={};qe(xS,{json:()=>U5});var U5=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsFinite",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsInf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var yS={};qe(yS,{json:()=>G5});var G5=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcatV2",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}];var bS={};qe(bS,{json:()=>H5});var H5=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}];var CS={};qe(CS,{json:()=>K5});var K5=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomStandardNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"RandomUniformInt",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number"},{tfName:"maxval",name:"maxval",type:"number"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}];var wS={};qe(wS,{json:()=>q5});var q5=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var SS={};qe(SS,{json:()=>j5});var j5=[{tfOpName:"LowerBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"UpperBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}];var IS={};qe(IS,{json:()=>X5});var X5=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}];var vS={};qe(vS,{json:()=>Y5});var Y5=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"InitializeTable",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}]},{tfOpName:"InitializeTableV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}]}];var kS={};qe(kS,{json:()=>Q5});var Q5=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}];var NS={};qe(NS,{json:()=>Z5});var Z5=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BitwiseAnd",category:"logical",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}]}];var TS={};qe(TS,{json:()=>J5});var J5=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"MatrixBandPart",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"numLower",type:"tensor"},{start:1,name:"numUpper",type:"tensor"}]}];var _S={};qe(_S,{json:()=>e8});var e8=[{tfOpName:"EuclideanNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",defaultValue:!1}]},{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]}];var ES={};qe(ES,{json:()=>t8});var t8=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}];var $S={};qe($S,{json:()=>r8});var r8=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]},{tfOpName:"TensorScatterUpdate",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"values",type:"tensor"}]}];var RS={};qe(RS,{json:()=>o8});var o8=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}];var DS={};qe(DS,{json:()=>n8});var n8=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}];var AS={};qe(AS,{json:()=>s8});var s8=[{tfOpName:"StaticRegexReplace",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"pattern",name:"pattern",type:"string"},{tfName:"rewrite",name:"rewrite",type:"string"},{tfName:"replace_global",name:"replaceGlobal",type:"bool"}]},{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}];var FS={};qe(FS,{json:()=>a8});var a8=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"EnsureShape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}];var Ol=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[gS,xS,yS,bS,CS,wS,SS,IS,vS,kS,NS,TS,_S,ES,$S,RS,DS,AS,FS],t=[].concat(...e.map(o=>o.json));this.opMappers=t.reduce((o,n)=>(o[n.tfOpName]=n,o),{})}transformGraph(e,t={}){let o=e.node,n=[],s=[],a=[],i=o.reduce((h,g)=>(h[g.name]=this.mapNode(g),g.op.startsWith("Placeholder")?n.push(h[g.name]):g.op==="Const"?s.push(h[g.name]):(g.input==null||g.input.length===0)&&a.push(h[g.name]),h),{}),p=[],u=[],c={},l={};t!=null&&(c=this.mapSignatureEntries(t.inputs),l=this.mapSignatureEntries(t.outputs));let m=Object.keys(i);m.forEach(h=>{let g=i[h];g.inputNames.forEach((x,b)=>{let[C,,S]=Ls(x),k=i[C];if(k.outputs!=null){let _=k.outputs.indexOf(S);if(_!==-1){let $=`${C}:${_}`;g.inputNames[b]=$}}g.inputs.push(k),k.children.push(g)})}),Object.keys(l).length===0?m.forEach(h=>{let g=i[h];g.children.length===0&&u.push(g)}):Object.keys(l).forEach(h=>{let[g]=Ls(h),x=i[g];x!=null&&(x.signatureKey=l[h],u.push(x))}),Object.keys(c).length>0?Object.keys(c).forEach(h=>{let[g]=Ls(h),x=i[g];x&&(x.signatureKey=c[h],p.push(x))}):p=n;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((h,g)=>(h[g.signature.name]=this.mapFunction(g),h),{}));let f={nodes:i,inputs:p,outputs:u,weights:s,placeholders:n,signature:t,functions:d};return a.length>0&&(f.initNodes=a),f}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,o)=>(t[e[o].name]=o,t),{})}mapNode(e){let t=pf(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let o={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(n=>n.startsWith("^")?n.slice(1):n),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(o.inputParams=t.inputs.reduce((n,s)=>(n[s.name]={type:s.type,inputIndexStart:s.start,inputIndexEnd:s.end},n),{})),t.attrs!=null&&(o.attrParams=t.attrs.reduce((n,s)=>{let a=s.type,i;switch(s.type){case"string":i=lf(e.attr,s.tfName,s.defaultValue),i===void 0&&s.tfDeprecatedName&&(i=lf(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"string[]":i=yf(e.attr,s.tfName,s.defaultValue),i===void 0&&s.tfDeprecatedName&&(i=yf(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number":i=df(e.attr,s.tfName,s.defaultValue||0),i===void 0&&s.tfDeprecatedName&&(i=df(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number[]":i=xf(e.attr,s.tfName,s.defaultValue),i===void 0&&s.tfDeprecatedName&&(i=xf(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool":i=mf(e.attr,s.tfName,s.defaultValue),i===void 0&&s.tfDeprecatedName&&(i=mf(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool[]":i=Cf(e.attr,s.tfName,s.defaultValue),i===void 0&&s.tfDeprecatedName&&(i=Cf(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape":i=gf(e.attr,s.tfName,s.defaultValue),i===void 0&&s.tfDeprecatedName&&(i=gf(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape[]":i=bf(e.attr,s.tfName,s.defaultValue),i===void 0&&s.tfDeprecatedName&&(i=bf(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype":i=ff(e.attr,s.tfName,s.defaultValue),i===void 0&&s.tfDeprecatedName&&(i=ff(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype[]":i=hf(e.attr,s.tfName,s.defaultValue),i===void 0&&s.tfDeprecatedName&&(i=hf(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"func":i=vT(e.attr,s.tfName,s.defaultValue),i===void 0&&s.tfDeprecatedName&&(i=vT(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${s.type} for op: ${e.op}`)}return n[s.name]={value:i,type:a},n},{})),o}mapFunction(e){let t=e.nodeDef,o=[],n=[],s={};t!=null&&(s=t.reduce((l,m)=>(l[m.name]=this.mapNode(m),m.op==="Const"&&n.push(l[m.name]),l),{}));let a=[],i=[];e.signature.inputArg.forEach(l=>{let[m]=Ls(l.name),d={name:m,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:PS(l.type),type:"dtype"}},children:[]};d.signatureKey=l.name,a.push(d),s[m]=d}),Object.keys(s).forEach(l=>{let m=s[l];m.inputNames.forEach((d,f)=>{let[h,,g]=Ls(d),x=s[h];if(x.outputs!=null){let b=x.outputs.indexOf(g);if(b!==-1){let C=`${h}:${b}`;m.inputNames[f]=C}}m.inputs.push(x),x.children.push(m)})});let u=e.ret;e.signature.outputArg.forEach(l=>{let[m,d]=Ls(u[l.name]),f=s[m];f!=null&&(f.defaultOutput=d,i.push(f))});let c=this.mapArgsToSignature(e);return{nodes:s,inputs:a,outputs:i,weights:n,placeholders:o,signature:c}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,o)=>(t[o.name]=this.mapArgToTensorInfo(o),t),{}),outputs:e.signature.outputArg.reduce((t,o)=>(t[o.name]=this.mapArgToTensorInfo(o,e.ret),t),{})}}mapArgToTensorInfo(e,t){let o=e.name;return t!=null&&(o=t[o]),{name:o,dtype:e.type}}};function i8(r){let e=A().global;if(typeof e.atob!="undefined")return e.atob(r);if(typeof Buffer!="undefined")return new Buffer(r,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function kT(r,e){let t=Array.isArray(r)?String.fromCharCode.apply(null,r):i8(r);return e?t:t.toLowerCase()}function lf(r,e,t,o=!1){let n=r[e];return n!=null?kT(n.s,o):t}function mf(r,e,t){let o=r[e];return o?o.b:t}function df(r,e,t){let o=r[e]||{},n=o.i!=null?o.i:o.f!=null?o.f:t;return typeof n=="number"?n:parseInt(n,10)}function PS(r){switch(typeof r=="string"&&(r=Dr[r]),r){case Dr.DT_FLOAT:case Dr.DT_HALF:return"float32";case Dr.DT_INT32:case Dr.DT_INT64:case Dr.DT_INT8:case Dr.DT_UINT8:return"int32";case Dr.DT_BOOL:return"bool";case Dr.DT_DOUBLE:return"float32";case Dr.DT_STRING:return"string";case Dr.DT_COMPLEX64:case Dr.DT_COMPLEX128:return"complex64";default:return null}}function vT(r,e,t){let o=r[e];return o&&o.func?o.func.name:t}function ff(r,e,t){let o=r[e];return o&&o.type?PS(o.type):t}function hf(r,e,t){let o=r[e];return o&&o.list&&o.list.type?o.list.type.map(n=>PS(n)):t}function NT(r){if(!r.unknownRank)return r.dim!=null?r.dim.map(e=>typeof e.size=="number"?e.size:parseInt(e.size,10)):[]}function gf(r,e,t){let o=r[e];return o&&o.shape?NT(o.shape):t}function xf(r,e,t){let o=r[e];return o?((o.list.f&&o.list.f.length?o.list.f:o.list.i)||[]).map(n=>typeof n=="number"?n:parseInt(n,10)):t}function yf(r,e,t,o=!1){let n=r[e];return n&&n.list&&n.list.s?n.list.s.map(s=>kT(s,o)):t}function bf(r,e,t){let o=r[e];return o&&o.list&&o.list.shape?o.list.shape.map(n=>NT(n)):t}function Cf(r,e,t){let o=r[e];return o&&o.list&&o.list.b?o.list.b:t}var wf=class{constructor(e,t,o){this.node=e,this.tensorMap=t,this.context=o,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(n=>this.getInput(n)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((n,s)=>(n[s]=this.getAttr(s),n),{}))}getInput(e){return Bt(e,this.tensorMap,this.context)}getAttr(e,t){let o=this.node.rawAttrs[e];if(o.tensor!=null)return Bt(e,this.tensorMap,this.context);if(o.i!=null||o.f!=null)return df(this.node.rawAttrs,e,t);if(o.s!=null)return lf(this.node.rawAttrs,e,t);if(o.b!=null)return mf(this.node.rawAttrs,e,t);if(o.shape!=null)return gf(this.node.rawAttrs,e,t);if(o.type!=null)return ff(this.node.rawAttrs,e,t);if(o.list!=null){if(o.list.i!=null||o.list.f!=null)return xf(this.node.rawAttrs,e,t);if(o.list.s!=null)return yf(this.node.rawAttrs,e,t);if(o.list.shape!=null)return bf(this.node.rawAttrs,e,t);if(o.list.b!=null)return Cf(this.node.rawAttrs,e,t);if(o.list.type!=null)return hf(this.node.rawAttrs,e,t)}return t}};var Je={};qe(Je,{OP_SCOPE_SUFFIX:()=>Nw,abs:()=>Qt,acos:()=>Rk,acosh:()=>Dk,add:()=>Ce,addN:()=>Ak,all:()=>Fk,any:()=>Pk,argMax:()=>Ok,argMin:()=>Mk,asin:()=>Lk,asinh:()=>Bk,atan:()=>zk,atan2:()=>Vk,atanh:()=>Wk,avgPool:()=>dd,avgPool3d:()=>Hk,basicLSTMCell:()=>Kk,batchNorm:()=>nu,batchNorm2d:()=>jk,batchNorm3d:()=>Xk,batchNorm4d:()=>Yk,batchToSpaceND:()=>fd,bincount:()=>hd,bitwiseAnd:()=>Qk,booleanMaskAsync:()=>L6,broadcastArgs:()=>Zk,broadcastTo:()=>su,buffer:()=>me,cast:()=>Ue,ceil:()=>Jk,clipByValue:()=>e2,clone:()=>Ur,complex:()=>Er,concat:()=>yt,concat1d:()=>t2,concat2d:()=>r2,concat3d:()=>o2,concat4d:()=>n2,conv1d:()=>s2,conv2d:()=>au,conv2dTranspose:()=>a2,conv3d:()=>i2,conv3dTranspose:()=>p2,cos:()=>c2,cosh:()=>l2,cosineWindow:()=>$l,cumprod:()=>m2,cumsum:()=>d2,denseBincount:()=>f2,depthToSpace:()=>h2,depthwiseConv2d:()=>sc,diag:()=>g2,dilation2d:()=>x2,div:()=>je,divNoNan:()=>b2,dot:()=>C2,dropout:()=>Y6,einsum:()=>iu,elu:()=>bd,enclosingPowerOfTwo:()=>Zw,ensureShape:()=>w2,equal:()=>yd,erf:()=>S2,euclideanNorm:()=>k2,exp:()=>_o,expandDims:()=>Ms,expm1:()=>N2,eye:()=>Cd,fft:()=>uc,fill:()=>$a,floor:()=>wd,floorDiv:()=>md,fused:()=>Jw,gather:()=>Sd,gatherND:()=>j6,greater:()=>Wu,greaterEqual:()=>Id,ifft:()=>ju,imag:()=>pu,image:()=>eX,inTopKAsync:()=>Z6,irfft:()=>Hd,isFinite:()=>T2,isInf:()=>_2,isNaN:()=>E2,leakyRelu:()=>vd,less:()=>Tl,lessEqual:()=>ac,linalg:()=>tX,linspace:()=>$2,localResponseNormalization:()=>R2,log:()=>pi,log1p:()=>kd,logSigmoid:()=>D2,logSoftmax:()=>A2,logSumExp:()=>_d,logicalAnd:()=>Uu,logicalNot:()=>Ed,logicalOr:()=>$d,logicalXor:()=>F2,losses:()=>rX,lowerBound:()=>P2,matMul:()=>Ze,max:()=>Ra,maxPool:()=>Dd,maxPool3d:()=>O2,maxPoolWithArgmax:()=>M2,maximum:()=>Ad,mean:()=>Gu,meshgrid:()=>L2,min:()=>Nl,minimum:()=>Hu,mirrorPad:()=>B2,mod:()=>z2,moments:()=>V2,movingAverage:()=>V6,mul:()=>se,multiRNNCell:()=>W2,multinomial:()=>U2,neg:()=>pr,norm:()=>Vu,notEqual:()=>Fd,oneHot:()=>El,ones:()=>Da,onesLike:()=>G2,op:()=>N,outerProduct:()=>H2,pad:()=>Aa,pad1d:()=>K2,pad2d:()=>q2,pad3d:()=>j2,pad4d:()=>X2,pool:()=>Y2,pow:()=>ui,prelu:()=>Od,print:()=>ld,prod:()=>Q2,raggedGather:()=>Z2,raggedRange:()=>J2,raggedTensorToTensor:()=>e1,rand:()=>t1,randomGamma:()=>S1,randomNormal:()=>Wd,randomStandardNormal:()=>I1,randomUniform:()=>ic,randomUniformInt:()=>v1,range:()=>cu,real:()=>ci,reciprocal:()=>k1,relu:()=>lu,relu6:()=>Ud,reshape:()=>W,reverse:()=>mo,reverse1d:()=>N1,reverse2d:()=>T1,reverse3d:()=>_1,reverse4d:()=>E1,rfft:()=>pc,round:()=>Gd,rsqrt:()=>$1,scalar:()=>ke,scatterND:()=>U6,searchSorted:()=>_l,selu:()=>R1,separableConv2d:()=>D1,setdiff1dAsync:()=>A1,sigmoid:()=>Ea,sign:()=>F1,signal:()=>Jj,sin:()=>P1,sinh:()=>O1,slice:()=>Xe,slice1d:()=>M1,slice2d:()=>L1,slice3d:()=>B1,slice4d:()=>z1,softmax:()=>V1,softplus:()=>Td,spaceToBatchND:()=>Pd,sparse:()=>oX,sparseToDense:()=>K6,spectral:()=>Zj,split:()=>li,sqrt:()=>Rr,square:()=>Zt,squaredDifference:()=>Kd,squeeze:()=>cc,stack:()=>vr,step:()=>qd,stridedSlice:()=>W1,string:()=>nX,sub:()=>Te,sum:()=>ot,tan:()=>U1,tanh:()=>kl,tensor:()=>ar,tensor1d:()=>Jt,tensor2d:()=>mu,tensor3d:()=>jd,tensor4d:()=>G1,tensor5d:()=>H1,tensor6d:()=>K1,tensorScatterUpdate:()=>j1,tile:()=>uu,topk:()=>X1,transpose:()=>mc,truncatedNormal:()=>Y1,unique:()=>Q1,unsortedSegmentSum:()=>Z1,unstack:()=>fo,upperBound:()=>J1,variable:()=>eN,where:()=>lo,whereAsync:()=>Yd,zeros:()=>Gr,zerosLike:()=>Gt});var TT=(r,e,t,o=Je)=>{switch(r.op){case"BiasAdd":case"AddV2":case"Add":return[o.add(I("a",r,e,t),I("b",r,e,t))];case"AddN":return[o.addN(I("tensors",r,e,t))];case"FloorMod":case"Mod":return[o.mod(I("a",r,e,t),I("b",r,e,t))];case"Mul":return[o.mul(I("a",r,e,t),I("b",r,e,t))];case"RealDiv":case"Div":return[o.div(I("a",r,e,t),I("b",r,e,t))];case"DivNoNan":return[o.divNoNan(I("a",r,e,t),I("b",r,e,t))];case"FloorDiv":return[o.floorDiv(I("a",r,e,t),I("b",r,e,t))];case"Sub":return[o.sub(I("a",r,e,t),I("b",r,e,t))];case"Minimum":return[o.minimum(I("a",r,e,t),I("b",r,e,t))];case"Maximum":return[o.maximum(I("a",r,e,t),I("b",r,e,t))];case"Pow":return[o.pow(I("a",r,e,t),I("b",r,e,t))];case"SquaredDifference":return[o.squaredDifference(I("a",r,e,t),I("b",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var _T=(r,e,t,o=Je)=>{switch(r.op){case"Abs":case"ComplexAbs":return[o.abs(I("x",r,e,t))];case"Acos":return[o.acos(I("x",r,e,t))];case"Acosh":return[o.acosh(I("x",r,e,t))];case"Asin":return[o.asin(I("x",r,e,t))];case"Asinh":return[o.asinh(I("x",r,e,t))];case"Atan":return[o.atan(I("x",r,e,t))];case"Atan2":return[o.atan2(I("x",r,e,t),I("y",r,e,t))];case"Atanh":return[o.atanh(I("x",r,e,t))];case"Ceil":return[o.ceil(I("x",r,e,t))];case"Complex":return[o.complex(I("real",r,e,t),I("imag",r,e,t))];case"Cos":return[o.cos(I("x",r,e,t))];case"Cosh":return[o.cosh(I("x",r,e,t))];case"Elu":return[o.elu(I("x",r,e,t))];case"Erf":return[o.erf(I("x",r,e,t))];case"Exp":return[o.exp(I("x",r,e,t))];case"Expm1":return[o.expm1(I("x",r,e,t))];case"Floor":return[o.floor(I("x",r,e,t))];case"Log":return[o.log(I("x",r,e,t))];case"Log1p":return[o.log1p(I("x",r,e,t))];case"Imag":return[o.imag(I("x",r,e,t))];case"Neg":return[o.neg(I("x",r,e,t))];case"Reciprocal":return[o.reciprocal(I("x",r,e,t))];case"Real":return[o.real(I("x",r,e,t))];case"Relu":return[o.relu(I("x",r,e,t))];case"Round":return[o.round(I("x",r,e,t))];case"Selu":return[o.selu(I("x",r,e,t))];case"Sigmoid":return[o.sigmoid(I("x",r,e,t))];case"Sin":return[o.sin(I("x",r,e,t))];case"Sign":return[o.sign(I("x",r,e,t))];case"Sinh":return[o.sinh(I("x",r,e,t))];case"Softplus":return[o.softplus(I("x",r,e,t))];case"Sqrt":return[o.sqrt(I("x",r,e,t))];case"Square":return[o.square(I("x",r,e,t))];case"Tanh":return[o.tanh(I("x",r,e,t))];case"Tan":return[o.tan(I("x",r,e,t))];case"ClipByValue":return[o.clipByValue(I("x",r,e,t),I("clipValueMin",r,e,t),I("clipValueMax",r,e,t))];case"Relu6":return[o.relu6(I("x",r,e,t))];case"Rsqrt":return[o.rsqrt(Bt(r.inputNames[0],e,t))];case"LeakyRelu":return[o.leakyRelu(I("x",r,e,t),I("alpha",r,e,t))];case"Prelu":return[o.prelu(I("x",r,e,t),I("alpha",r,e,t))];case"IsNan":return[o.isNaN(Bt(r.inputNames[0],e,t))];case"IsInf":return[o.isInf(Bt(r.inputNames[0],e,t))];case"IsFinite":return[o.isFinite(Bt(r.inputNames[0],e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function Hr(r,e,t=""){if(!(typeof r=="number"||typeof e=="number")){y.assert(r.length===e.length,()=>t+` Shapes ${r} and ${e} must match`);for(let o=0;o<r.length;o++){let n=r[o],s=e[o];y.assert(n<0||s<0||n===s,()=>t+` Shapes ${r} and ${e} must match`)}}}function ET(r){return!(typeof r=="number"||r.some(e=>e<0))}function fc(r,e,t){let o=Sf(r,t),n=!ET(o);if(n&&e.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${o}`);if(n&&e.forEach(s=>{o=Sf(s.shape,o)}),!ET(o))throw new Error(`Non-fully-defined elementShape: ${o}`);return o}function Sf(r,e){if(typeof r=="number")return e;if(typeof e=="number")return r;if(r.length!==e.length)throw new Error(`Incompatible ranks during merge: ${r} vs. ${e}`);let t=[];for(let o=0;o<r.length;++o){let n=r[o],s=e[o];if(n>=0&&s>=0&&n!==s)throw new Error(`Incompatible shape during merge: ${r} vs. ${e}`);t[o]=n>=0?n:s}return t}var If=class{constructor(e,t,o,n,s,a,i){this.name=e,this.dtype=t,this.maxSize=o,this.elementShape=n,this.identicalElementShapes=s,this.dynamicSize=a,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=ke(0),$r(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let o=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Hr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),o.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(o.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);o.tensor=t,$r(t),o.written=!0,this.tensors[e]=o}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((o,n)=>this.write(o,t[n]))}gather(e,t){if(t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let n=0;n<this.size();n++)e.push(n)}if(e.length===0)return ar([],[0].concat(this.elementShape));let o=this.readMany(e);return Hr(this.elementShape,o[0].shape,"TensorArray shape mismatch: "),vr(o,0)}concat(e){if(e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return ar([],[0].concat(this.elementShape));let t=[];for(let n=0;n<this.size();n++)t.push(n);let o=this.readMany(t);return Hr(this.elementShape,o[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${o[0].shape})`),yt(o,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let o=Math.max(...e);if(!this.dynamicSize&&o>=this.maxSize)throw new Error(`Max index must be < array size (${o} vs. ${this.maxSize})`);this.writeMany(e,fo(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let o=0,n=e.map(p=>(o+=p,o));if(o!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${o}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let s=o===0?0:t.size/o,a=[];De(()=>{t=W(t,[1,o,s]);for(let p=0;p<e.length;++p){let c=[0,p===0?0:n[p-1],0],l=[1,e[p],s];a[p]=W(Xe(t,c,l),this.elementShape)}return a});let i=[];for(let p=0;p<e.length;p++)i[p]=p;this.writeMany(i,a)}};var hc=class r{get id(){return this.idTensor.id}constructor(e,t,o,n=-1){this.tensors=e,this.elementShape=t,this.elementDtype=o,e!=null&&e.forEach(s=>{if(o!==s.dtype)throw new Error(`Invalid data types; op elements ${o}, but list elements ${s.dtype}`);Hr(t,s.shape,"TensorList shape mismatch: "),$r(s)}),this.idTensor=ke(0),this.maxNumElements=n,$r(this.idTensor)}copy(){return new r([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,o=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(o!==-1&&this.tensors.length!==o)throw new Error(`Operation expected a list with ${o} elements but got a list with ${this.tensors.length} elements.`);Hr(e,this.elementShape,"TensorList shape mismatch: ");let n=fc(this.elementShape,this.tensors,e);return De(()=>{let s=this.tensors.map(a=>W(a,n));return vr(s,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let o=fc(this.elementShape,this.tensors,e),n=this.tensors.pop();return n.kept=!1,Hr(n.shape,e,"TensorList shape mismatch: "),W(n,o)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Hr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");$r(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);let t=new r([],this.elementShape,this.elementDtype,this.maxNumElements);t.tensors.length=e;for(let o=0;o<Math.min(this.tensors.length,e);++o)t.tensors[o]=this.tensors[o];return t}getItem(e,t,o){if(o!==this.elementDtype)throw new Error(`Invalid data types; op elements ${o}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Hr(this.tensors[e].shape,t,"TensorList shape mismatch: ");let n=fc(this.elementShape,this.tensors,t);return W(this.tensors[e],n)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Hr(this.elementShape,t.shape,"TensorList shape mismatch: "),$r(t),this.tensors[e]!=null&&(this.tensors[e].kept=!1),this.tensors[e]=t}gather(e,t,o){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Hr(this.elementShape,o,"TensorList shape mismatch: "),e=e.slice(0,this.size());let n=fc(this.elementShape,this.tensors,o);return e.length===0?ar([],[0].concat(n)):De(()=>{let s=e.map(a=>W(this.tensors[a],n));return vr(s,0)})}concat(e,t){if(e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Hr(this.elementShape,t,"TensorList shape mismatch: ");let o=fc(this.elementShape,this.tensors,t);return this.size()===0?ar([],[0].concat(o)):De(()=>{let n=this.tensors.map(s=>W(s,o));return yt(n,0)})}};function $T(r,e,t){let o=r.dtype;if(r.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${r.shape}`);if(r.dtype!==t)throw new Error(`Invalid data types; op elements ${r.dtype}, but list elements ${t}`);let n=r.shape.slice(1);Hr(n,e,"TensorList shape mismatch: ");let s=fo(r);return new hc(s,e,o)}function RT(r,e,t,o){return new hc([],r,e,o)}function DT(r,e,t,o){if(e.length!==r.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${r.shape[0]}`);let n=Math.max(...e);if(o!=null&&o!==-1&&n>=o)throw new Error(`Max index must be < array size (${n} vs. ${o})`);let s=new hc([],t,r.dtype,o),a=fo(r,0);return e.forEach((i,p)=>{s.setItem(i,a[p])}),s}function AT(r,e,t){let o=0,n=e.map(c=>(o+=c,o));if(o!==r.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${o}, and tensor's shape is: ${r.shape}`);let s=r.shape.slice(1),a=Sf(s,t),i=o===0?0:r.size/o,p=De(()=>{let c=[];r=W(r,[1,o,i]);for(let l=0;l<e.length;++l){let d=[0,l===0?0:n[l-1],0],f=[1,e[l],i];c[l]=W(Xe(r,d,f),a)}return r.dispose(),c}),u=new hc([],t,r.dtype,e.length);for(let c=0;c<p.length;c++)u.setItem(c,p[c]);return u}var FT=async(r,e,t)=>{switch(r.op){case"If":case"StatelessIf":{let o=I("thenBranch",r,e,t),n=I("elseBranch",r,e,t),s=I("cond",r,e,t),a=I("args",r,e,t);return(await s.data())[0]?t.functionMap[o].executeFunctionAsync(a,t.tensorArrayMap,t.tensorListMap):t.functionMap[n].executeFunctionAsync(a,t.tensorArrayMap,t.tensorListMap)}case"While":case"StatelessWhile":{let o=I("body",r,e,t),n=I("cond",r,e,t),s=I("args",r,e,t),a=await t.functionMap[n].executeFunctionAsync(s,t.tensorArrayMap,t.tensorListMap),i=s.map(c=>c.id),p=await a[0].data();a.forEach(c=>{!c.kept&&i.indexOf(c.id)===-1&&c.dispose()});let u=s;for(;p[0];){let c=u;u=await t.functionMap[o].executeFunctionAsync(u,t.tensorArrayMap,t.tensorListMap);let l=u.map(d=>d.id);c.forEach(d=>{!d.kept&&i.indexOf(d.id)===-1&&l.indexOf(d.id)===-1&&d.dispose()});let m=await t.functionMap[n].executeFunctionAsync(u,t.tensorArrayMap,t.tensorListMap);p=await m[0].data(),m.forEach(d=>{!d.kept&&i.indexOf(d.id)===-1&&l.indexOf(d.id)===-1&&d.dispose()})}return u}case"LoopCond":{let o=I("pred",r,e,t);return[Bs(o)]}case"Switch":{let o=I("pred",r,e,t),n=I("data",r,e,t);return n.kept||(n=Bs(n)),(await o.data())[0]?[void 0,n]:[n,void 0]}case"Merge":{let o=r.inputNames.find(n=>Bt(n,e,t)!==void 0);if(o){let n=Bt(o,e,t);return[Bs(n)]}return}case"Enter":{let o=I("frameName",r,e,t),n=I("tensor",r,e,t);return t.enterFrame(o),[Bs(n)]}case"Exit":{let o=I("tensor",r,e,t);return t.exitFrame(),[Bs(o)]}case"NextIteration":{let o=I("tensor",r,e,t);return t.nextIteration(),[Bs(o)]}case"TensorArrayV3":{let o=I("size",r,e,t),n=I("dtype",r,e,t),s=I("elementShape",r,e,t),a=I("dynamicSize",r,e,t),i=I("clearAfterRead",r,e,t),p=I("identicalElementShapes",r,e,t),u=I("name",r,e,t),c=new If(u,n,o,s,p,a,i);return t.addTensorArray(c),[c.idTensor,ke(1)]}case"TensorArrayWriteV3":{let o=I("tensorArrayId",r,e,t),n=I("index",r,e,t),s=I("tensor",r,e,t),a=t.getTensorArray(o.id);return a.write(n,s),[a.idTensor]}case"TensorArrayReadV3":{let o=I("tensorArrayId",r,e,t),n=I("index",r,e,t);return[t.getTensorArray(o.id).read(n)]}case"TensorArrayGatherV3":{let o=I("tensorArrayId",r,e,t),n=I("indices",r,e,t),s=I("dtype",r,e,t);return[t.getTensorArray(o.id).gather(n,s)]}case"TensorArrayScatterV3":{let o=I("tensorArrayId",r,e,t),n=I("indices",r,e,t),s=I("tensor",r,e,t),a=t.getTensorArray(o.id);return a.scatter(n,s),[a.idTensor]}case"TensorArrayConcatV3":{let o=I("tensorArrayId",r,e,t),n=t.getTensorArray(o.id),s=I("dtype",r,e,t);return[n.concat(s)]}case"TensorArraySplitV3":{let o=I("tensorArrayId",r,e,t),n=I("tensor",r,e,t),s=I("lengths",r,e,t),a=t.getTensorArray(o.id);return a.split(s,n),[a.idTensor]}case"TensorArraySizeV3":{let o=I("tensorArrayId",r,e,t),n=t.getTensorArray(o.id);return[ke(n.size(),"int32")]}case"TensorArrayCloseV3":{let o=I("tensorArrayId",r,e,t),n=t.getTensorArray(o.id);return n.clearAndClose(),[n.idTensor]}case"TensorListSetItem":{let o=I("tensorListId",r,e,t),n=I("index",r,e,t),s=I("tensor",r,e,t),a=t.getTensorList(o.id);return a.setItem(n,s),[a.idTensor]}case"TensorListGetItem":{let o=I("tensorListId",r,e,t),n=I("index",r,e,t),s=I("elementShape",r,e,t),a=I("elementDType",r,e,t);return[t.getTensorList(o.id).getItem(n,s,a)]}case"TensorListScatterV2":case"TensorListScatter":{let o=I("indices",r,e,t),n=I("tensor",r,e,t),s=I("elementShape",r,e,t),a=I("numElements",r,e,t),i=DT(n,o,s,a);return t.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let o=I("elementShape",r,e,t),n=I("elementDType",r,e,t),s;r.op==="TensorListReserve"?s="numElements":s="maxNumElements";let a=I(s,r,e,t),i=r.op==="TensorListReserve"?-1:a,p=RT(o,n,a,i);return t.addTensorList(p),[p.idTensor]}case"TensorListGather":{let o=I("tensorListId",r,e,t),n=I("indices",r,e,t),s=I("elementShape",r,e,t),a=I("elementDType",r,e,t);return[t.getTensorList(o.id).gather(n,a,s)]}case"TensorListStack":{let o=I("tensorListId",r,e,t),n=I("elementShape",r,e,t),s=I("elementDType",r,e,t),a=I("numElements",r,e,t);return[t.getTensorList(o.id).stack(n,s,a)]}case"TensorListFromTensor":{let o=I("tensor",r,e,t),n=I("elementShape",r,e,t),s=I("elementDType",r,e,t),a=$T(o,n,s);return t.addTensorList(a),[a.idTensor]}case"TensorListConcat":case"TensorListConcatV2":{let o=I("tensorListId",r,e,t),n=t.getTensorList(o.id),s=I("dtype",r,e,t),a=I("elementShape",r,e,t);return[n.concat(s,a)]}case"TensorListPushBack":{let o=I("tensorListId",r,e,t),n=I("tensor",r,e,t),s=t.getTensorList(o.id);return s.pushBack(n),[s.idTensor]}case"TensorListPopBack":{let o=I("tensorListId",r,e,t),n=I("elementShape",r,e,t),s=I("elementDType",r,e,t);return[t.getTensorList(o.id).popBack(n,s)]}case"TensorListSplit":{let o=I("tensor",r,e,t),n=I("elementShape",r,e,t),s=I("lengths",r,e,t),a=AT(o,s,n);return t.addTensorList(a),[a.idTensor]}case"TensorListLength":{let o=I("tensorListId",r,e,t),n=t.getTensorList(o.id);return[ke(n.size(),"int32")]}case"TensorListResize":{let o=I("tensorListId",r,e,t),n=I("size",r,e,t),a=t.getTensorList(o.id).resize(n);return t.addTensorList(a),[a.idTensor]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};function PT(r,e,t){let[o,n]=I("fusedOps",r,e,t),s=o==="biasadd",a=!s,i=n==="prelu",p=o==="fusedbatchnorm",u=I("numArgs",r,e,t);if(s){if(i&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&s&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(p)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=I("strides",r,e,t),l=Pl(r,e,t),m=I("dataFormat",r,e,t).toUpperCase(),d=I("dilations",r,e,t),[f,h]=I("args",r,e,t);a&&(h=f,f=void 0);let g=I("leakyreluAlpha",r,e,t);return{stride:c,pad:l,dataFormat:m,dilations:d,biasArg:f,preluArg:h,activationFunc:n,leakyreluAlpha:g}}var OT=(r,e,t,o=Je)=>{switch(r.op){case"Conv1D":{let n=I("stride",r,e,t),s=I("pad",r,e,t),a=I("dataFormat",r,e,t).toUpperCase(),i=I("dilation",r,e,t);return[o.conv1d(I("x",r,e,t),I("filter",r,e,t),n,s,a,i)]}case"Conv2D":{let n=I("strides",r,e,t),s=Pl(r,e,t),a=I("dataFormat",r,e,t).toUpperCase(),i=I("dilations",r,e,t);return[o.conv2d(I("x",r,e,t),I("filter",r,e,t),[n[1],n[2]],s,a,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:n,pad:s,dataFormat:a,dilations:i,biasArg:p,preluArg:u,activationFunc:c,leakyreluAlpha:l}=PT(r,e,t);return[o.fused.conv2d({x:I("x",r,e,t),filter:I("filter",r,e,t),strides:[n[1],n[2]],pad:s,dataFormat:a,dilations:[i[1],i[2]],bias:p,activation:c,preluActivationWeights:u,leakyreluAlpha:l})]}case"FusedDepthwiseConv2dNative":{let{stride:n,pad:s,dataFormat:a,dilations:i,biasArg:p,preluArg:u,activationFunc:c,leakyreluAlpha:l}=PT(r,e,t);return[o.fused.depthwiseConv2d({x:I("x",r,e,t),filter:I("filter",r,e,t),strides:[n[1],n[2]],pad:s,dataFormat:a,dilations:[i[1],i[2]],bias:p,activation:c,preluActivationWeights:u,leakyreluAlpha:l})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let n=I("outputShape",r,e,t),s=I("strides",r,e,t),a=Pl(r,e,t);return[o.conv2dTranspose(I("x",r,e,t),I("filter",r,e,t),n,[s[1],s[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let n=I("strides",r,e,t),s=Pl(r,e,t),a=I("dilations",r,e,t),i=I("dataFormat",r,e,t).toUpperCase();return[o.depthwiseConv2d(I("input",r,e,t),I("filter",r,e,t),[n[1],n[2]],s,i,[a[1],a[2]])]}case"Conv3D":{let n=I("strides",r,e,t),s=I("pad",r,e,t),a=I("dataFormat",r,e,t).toUpperCase(),i=I("dilations",r,e,t);return[o.conv3d(I("x",r,e,t),I("filter",r,e,t),[n[1],n[2],n[3]],s,a,[i[1],i[2],i[3]])]}case"AvgPool":{let n=I("strides",r,e,t),s=I("pad",r,e,t),a=I("kernelSize",r,e,t);return[o.avgPool(I("x",r,e,t),[a[1],a[2]],[n[1],n[2]],s)]}case"MaxPool":{let n=I("strides",r,e,t),s=I("pad",r,e,t),a=I("kernelSize",r,e,t);return[o.maxPool(I("x",r,e,t),[a[1],a[2]],[n[1],n[2]],s)]}case"MaxPoolWithArgmax":{let n=I("strides",r,e,t),s=I("pad",r,e,t),a=I("kernelSize",r,e,t),i=I("includeBatchInIndex",r,e,t),{result:p,indexes:u}=o.maxPoolWithArgmax(I("x",r,e,t),[a[1],a[2]],[n[1],n[2]],s,i);return[p,u]}case"AvgPool3D":{let n=I("strides",r,e,t),s=I("pad",r,e,t),a=I("kernelSize",r,e,t);return[o.avgPool3d(I("x",r,e,t),[a[1],a[2],a[3]],[n[1],n[2],n[3]],s)]}case"MaxPool3D":{let n=I("strides",r,e,t),s=I("pad",r,e,t),a=I("kernelSize",r,e,t);return[o.maxPool3d(I("x",r,e,t),[a[1],a[2],a[3]],[n[1],n[2],n[3]],s)]}case"Dilation2D":{let n=I("strides",r,e,t),s=I("pad",r,e,t),a=I("dilations",r,e,t),i=n[1],p=n[2],u=a[1],c=a[2];return[o.dilation2d(I("x",r,e,t),I("filter",r,e,t),[i,p],s,[u,c],"NHWC")]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var MT=(r,e,t,o=Je)=>{switch(r.op){case"Fill":{let n=I("shape",r,e,t),s=I("dtype",r,e,t),a=I("value",r,e,t);return[o.fill(n,a,s)]}case"LinSpace":{let n=I("start",r,e,t),s=I("stop",r,e,t),a=I("num",r,e,t);return[o.linspace(n,s,a)]}case"Multinomial":{let n=I("logits",r,e,t),s=I("numSamples",r,e,t),a=I("seed",r,e,t);return[o.multinomial(n,s,a)]}case"OneHot":{let n=I("indices",r,e,t),s=I("depth",r,e,t),a=I("onValue",r,e,t),i=I("offValue",r,e,t),p=I("dtype",r,e,t);return[o.oneHot(n,s,a,i,p)]}case"Ones":return[o.ones(I("shape",r,e,t),I("dtype",r,e,t))];case"OnesLike":return[o.onesLike(I("x",r,e,t))];case"RandomStandardNormal":return[o.randomStandardNormal(I("shape",r,e,t),I("dtype",r,e,t),I("seed",r,e,t))];case"RandomUniform":return[o.randomUniform(I("shape",r,e,t),I("minval",r,e,t),I("maxval",r,e,t),I("dtype",r,e,t))];case"RandomUniformInt":return[o.randomUniformInt(I("shape",r,e,t),I("minval",r,e,t),I("maxval",r,e,t),I("seed",r,e,t))];case"Range":{let n=I("start",r,e,t),s=I("stop",r,e,t),a=I("step",r,e,t);return[o.range(n,s,a,I("dtype",r,e,t))]}case"TruncatedNormal":{let n=I("shape",r,e,t),s=I("mean",r,e,t),a=I("stdDev",r,e,t),i=I("seed",r,e,t);return[o.truncatedNormal(n,s,a,I("dtype",r,e,t),i)]}case"Zeros":return[o.zeros(I("shape",r,e,t),I("dtype",r,e,t))];case"ZerosLike":return[o.zerosLike(I("x",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function OS(r,e,t){let o=I("boxes",r,e,t),n=I("scores",r,e,t),s=I("maxOutputSize",r,e,t),a=I("iouThreshold",r,e,t),i=I("scoreThreshold",r,e,t),p=I("softNmsSigma",r,e,t);return{boxes:o,scores:n,maxOutputSize:s,iouThreshold:a,scoreThreshold:i,softNmsSigma:p}}var LT=async(r,e,t,o,n=Je)=>{switch(r.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:a,maxOutputSize:i,iouThreshold:p,scoreThreshold:u,softNmsSigma:c}=OS(r,e,t),l=await n.image.nonMaxSuppressionWithScoreAsync(s,a,i,p,u,c);return[l.selectedIndices,l.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:a,maxOutputSize:i,iouThreshold:p,scoreThreshold:u}=OS(r,e,t),c=I("padToMaxOutputSize",r,e,t),l=await n.image.nonMaxSuppressionPaddedAsync(s,a,i,p,u,c);return[l.selectedIndices,l.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:a,maxOutputSize:i,iouThreshold:p,scoreThreshold:u}=OS(r,e,t);return[await n.image.nonMaxSuppressionAsync(s,a,i,p,u)]}case"Where":{let s=n.cast(I("condition",r,e,t),"bool"),a=[await n.whereAsync(s)];return s.dispose(),a}case"ListDiff":return n.setdiff1dAsync(I("x",r,e,t),I("y",r,e,t));default:throw TypeError(`Node type ${r.op} is not implemented`)}};var BT=(r,e,t,o=Je)=>{switch(r.op){case"LowerBound":{let n=I("sortedSequence",r,e,t),s=I("values",r,e,t);return[o.lowerBound(n,s)]}case"TopKV2":{let n=I("x",r,e,t),s=I("k",r,e,t),a=I("sorted",r,e,t),i=o.topk(n,s,a);return[i.values,i.indices]}case"UpperBound":{let n=I("sortedSequence",r,e,t),s=I("values",r,e,t);return[o.upperBound(n,s)]}case"Unique":{let n=I("x",r,e,t),s=o.unique(n);return[s.values,s.indices]}case"UniqueV2":{let n=I("x",r,e,t),s=I("axis",r,e,t),a=o.unique(n,s);return[a.values,a.indices]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var zT=(r,e,t,o=Je)=>{switch(r.op){case"Const":return e[r.name];case"PlaceholderWithDefault":let n=I("default",r,e,t);return[Bt(r.name,e,t)||n];case"Placeholder":return[Bt(r.name,e,t)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=I("x",r,e,t);return[Bs(c)]}case"IdentityN":return I("x",r,e,t).map(c=>Bs(c));case"Snapshot":let s=I("x",r,e,t);return[Bs(s)];case"Shape":return[o.tensor1d(I("x",r,e,t).shape,"int32")];case"ShapeN":return I("x",r,e,t).map(c=>o.tensor1d(c.shape));case"Size":return[o.scalar(I("x",r,e,t).size,"int32")];case"Rank":return[o.scalar(I("x",r,e,t).rank,"int32")];case"NoOp":return[o.scalar(1)];case"Print":let a=I("x",r,e,t),i=I("data",r,e,t),p=I("message",r,e,t),u=I("summarize",r,e,t);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(p);for(let c=0;c<i.length;c++)console.log(Array.prototype.slice.call(i[c].dataSync()).slice(0,u));return[a];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var vf=class{get id(){return this.handle.id}constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=ke(0),this.tensorMap=new Map,$r(this.handle)}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return ke(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let o=await e.data();return this.tensorMap.forEach(n=>n.dispose()),this.tensorMap.clear(),De(()=>{let n=fo(t),s=o.length,a=n.length;y.assert(s===a,()=>`The number of elements doesn't match, keys has ${s} elements, the values has ${a} elements.`);for(let i=0;i<s;i++){let p=o[i],u=n[i];$r(u),this.tensorMap.set(p,u)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let o=await e.data();return De(()=>{let n=[];for(let s=0;s<o.length;s++){let a=o[s],i=this.findWithDefault(a,t);n.push(i)}return vr(n)})}findWithDefault(e,t){let o=this.tensorMap.get(e);return o!=null?o:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}};var VT=async(r,e,t,o)=>{switch(r.op){case"HashTable":case"HashTableV2":{let n=o.getHashTableHandleByName(r.name);if(n!=null)return[n];{let s=I("keyDType",r,e,t),a=I("valueDType",r,e,t),i=new vf(s,a);return o.addHashTable(r.name,i),[i.handle]}}case"InitializeTable":case"InitializeTableV2":case"LookupTableImport":case"LookupTableImportV2":{let n=I("tableHandle",r,e,t,o),s=I("keys",r,e,t),a=I("values",r,e,t);return[await o.getHashTableById(n.id).import(s,a)]}case"LookupTableFind":case"LookupTableFindV2":{let n=I("tableHandle",r,e,t,o),s=I("keys",r,e,t),a=I("defaultValue",r,e,t);return[await o.getHashTableById(n.id).find(s,a)]}case"LookupTableSize":case"LookupTableSizeV2":{let n=I("tableHandle",r,e,t,o);return[o.getHashTableById(n.id).tensorSize()]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var WT=(r,e,t,o=Je)=>{switch(r.op){case"ResizeBilinear":{let n=I("images",r,e,t),s=I("size",r,e,t),a=I("alignCorners",r,e,t),i=I("halfPixelCenters",r,e,t);return[o.image.resizeBilinear(n,[s[0],s[1]],a,i)]}case"ResizeNearestNeighbor":{let n=I("images",r,e,t),s=I("size",r,e,t),a=I("alignCorners",r,e,t),i=I("halfPixelCenters",r,e,t);return[o.image.resizeNearestNeighbor(n,[s[0],s[1]],a,i)]}case"CropAndResize":{let n=I("image",r,e,t),s=I("boxes",r,e,t),a=I("boxInd",r,e,t),i=I("cropSize",r,e,t),p=I("method",r,e,t),u=I("extrapolationValue",r,e,t);return[o.image.cropAndResize(n,s,a,i,p,u)]}case"ImageProjectiveTransformV3":{let n=I("images",r,e,t),s=I("transforms",r,e,t),a=I("outputShape",r,e,t),i=I("fillValue",r,e,t),p=I("interpolation",r,e,t),u=I("fillMode",r,e,t);return[o.image.transform(n,s,p.toLowerCase(),u.toLowerCase(),i,a)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var UT=(r,e,t,o=Je)=>{switch(r.op){case"Equal":return[o.equal(I("a",r,e,t),I("b",r,e,t))];case"NotEqual":return[o.notEqual(I("a",r,e,t),I("b",r,e,t))];case"Greater":return[o.greater(I("a",r,e,t),I("b",r,e,t))];case"GreaterEqual":return[o.greaterEqual(I("a",r,e,t),I("b",r,e,t))];case"Less":return[o.less(I("a",r,e,t),I("b",r,e,t))];case"LessEqual":return[o.lessEqual(I("a",r,e,t),I("b",r,e,t))];case"LogicalAnd":return[o.logicalAnd(I("a",r,e,t),I("b",r,e,t))];case"LogicalNot":return[o.logicalNot(I("a",r,e,t))];case"LogicalOr":return[o.logicalOr(I("a",r,e,t),I("b",r,e,t))];case"Select":case"SelectV2":return[o.where(I("condition",r,e,t),I("a",r,e,t),I("b",r,e,t))];case"BitwiseAnd":return[o.bitwiseAnd(I("a",r,e,t),I("b",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var GT=(r,e,t,o=Je)=>{switch(r.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[o.matMul(I("a",r,e,t),I("b",r,e,t),I("transposeA",r,e,t),I("transposeB",r,e,t))];case"Einsum":return[o.einsum(I("equation",r,e,t),...I("tensors",r,e,t))];case"Transpose":return[o.transpose(I("x",r,e,t),I("perm",r,e,t))];case"_FusedMatMul":let[n,s]=I("fusedOps",r,e,t),a=n==="biasadd",i=s==="prelu",p=I("numArgs",r,e,t),u=I("leakyreluAlpha",r,e,t);if(a){if(i&&p!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&p!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,l]=I("args",r,e,t);return[o.fused.matMul({a:I("a",r,e,t),b:I("b",r,e,t),transposeA:I("transposeA",r,e,t),transposeB:I("transposeB",r,e,t),bias:c,activation:s,preluActivationWeights:l,leakyreluAlpha:u})];case"MatrixBandPart":return[o.linalg.bandPart(I("a",r,e,t),I("numLower",r,e,t),I("numUpper",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var HT=(r,e,t,o=Je)=>{switch(r.op){case"EuclideanNorm":return[o.euclideanNorm(I("x",r,e,t),I("axis",r,e,t),I("keepDims",r,e,t))];case"FusedBatchNorm":case"FusedBatchNormV2":return[o.batchNorm(I("x",r,e,t),I("mean",r,e,t),I("variance",r,e,t),I("offset",r,e,t),I("scale",r,e,t),I("epsilon",r,e,t))];case"FusedBatchNormV3":return[o.batchNorm(I("x",r,e,t),I("mean",r,e,t),I("variance",r,e,t),I("offset",r,e,t),I("scale",r,e,t),I("epsilon",r,e,t))];case"LRN":return[o.localResponseNormalization(I("x",r,e,t),I("radius",r,e,t),I("bias",r,e,t),I("alpha",r,e,t),I("beta",r,e,t))];case"Softmax":return[o.softmax(I("x",r,e,t))];case"LogSoftmax":return[o.logSoftmax(I("x",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var KT=(r,e,t,o=Je)=>{switch(r.op){case"RaggedGather":{let{outputNestedSplits:n,outputDenseValues:s}=o.raggedGather(I("paramsNestedSplits",r,e,t),I("paramsDenseValues",r,e,t),I("indices",r,e,t),I("outputRaggedRank",r,e,t));return n.concat(s)}case"RaggedRange":{let{rtNestedSplits:n,rtDenseValues:s}=o.raggedRange(I("starts",r,e,t),I("limits",r,e,t),I("splits",r,e,t));return[n,s]}case"RaggedTensorToTensor":return[o.raggedTensorToTensor(I("shape",r,e,t),I("values",r,e,t),I("defaultValue",r,e,t),I("rowPartitionTensors",r,e,t),I("rowPartitionTypes",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var qT=(r,e,t,o=Je)=>{switch(r.op){case"Max":{let i=I("axis",r,e,t),p=I("keepDims",r,e,t);return[o.max(I("x",r,e,t),i,p)]}case"Mean":{let i=I("axis",r,e,t),p=I("keepDims",r,e,t);return[o.mean(I("x",r,e,t),i,p)]}case"Min":{let i=I("axis",r,e,t),p=I("keepDims",r,e,t);return[o.min(I("x",r,e,t),i,p)]}case"Sum":{let i=I("axis",r,e,t),p=I("keepDims",r,e,t);return[o.sum(I("x",r,e,t),i,p)]}case"All":{let i=I("axis",r,e,t),p=I("keepDims",r,e,t);return[o.all(I("x",r,e,t),i,p)]}case"Any":{let i=I("axis",r,e,t),p=I("keepDims",r,e,t);return[o.any(I("x",r,e,t),i,p)]}case"ArgMax":{let i=I("axis",r,e,t);return[o.argMax(I("x",r,e,t),i)]}case"ArgMin":{let i=I("axis",r,e,t);return[o.argMin(I("x",r,e,t),i)]}case"Prod":{let i=I("axis",r,e,t),p=I("keepDims",r,e,t);return[o.prod(I("x",r,e,t),i,p)]}case"Cumprod":{let i=I("axis",r,e,t),p=I("exclusive",r,e,t),u=I("reverse",r,e,t);return[o.cumprod(I("x",r,e,t),i,p,u)]}case"Cumsum":{let i=I("axis",r,e,t),p=I("exclusive",r,e,t),u=I("reverse",r,e,t);return[o.cumsum(I("x",r,e,t),i,p,u)]}case"Bincount":let n=I("x",r,e,t),s=I("weights",r,e,t),a=I("size",r,e,t);return[o.bincount(n,s,a)];case"DenseBincount":{let i=I("x",r,e,t),p=I("weights",r,e,t),u=I("size",r,e,t),c=I("binaryOutput",r,e,t);return[o.denseBincount(i,p,u,c)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var jT=(r,e,t,o=Je)=>{switch(r.op){case"ConcatV2":case"Concat":{let n=I("n",r,e,t),s=I("axis",r,e,t),a=I("tensors",r,e,t);return a=a.slice(0,n),[o.concat(a,s)]}case"Gather":{let n=I("x",r,e,t),s=I("indices",r,e,t);return[o.gather(n,o.cast(s,"int32"),0)]}case"GatherV2":{let n=I("axis",r,e,t),s=I("batchDims",r,e,t),a=I("x",r,e,t),i=I("indices",r,e,t);return[o.gather(a,o.cast(i,"int32"),n,s)]}case"Reverse":{let n=I("dims",r,e,t),s=[];for(let i=0;i<n.length;i++)n[i]&&s.push(i);let a=I("x",r,e,t);return[o.reverse(a,s)]}case"ReverseV2":{let n=I("axis",r,e,t),s=I("x",r,e,t);return[o.reverse(s,n)]}case"Slice":{let n=I("begin",r,e,t),s=I("size",r,e,t);return[o.slice(I("x",r,e,t),n,s)]}case"StridedSlice":{let n=I("begin",r,e,t),s=I("end",r,e,t),a=I("strides",r,e,t),i=I("beginMask",r,e,t),p=I("endMask",r,e,t),u=I("ellipsisMask",r,e,t),c=I("newAxisMask",r,e,t),l=I("shrinkAxisMask",r,e,t),m=I("x",r,e,t);return[o.stridedSlice(m,n,s,a,i,p,u,c,l)]}case"Pack":return De(()=>{let n=I("axis",r,e,t),s=I("tensors",r,e,t),a=s[0].shape,i=o.squeeze(s[0]).shape,p=s.map(u=>{let c=y.arraysEqual(u.shape,a);if(!c&&!y.arraysEqual(o.squeeze(u).shape,i))throw new Error("the input tensors shape does not match");return c?u:o.reshape(u,a)});return[o.stack(p,n)]});case"Unpack":{let n=I("axis",r,e,t),s=I("tensor",r,e,t);return o.unstack(s,n)}case"Tile":{let n=I("reps",r,e,t);return[o.tile(I("x",r,e,t),n)]}case"Split":case"SplitV":{let n=I("axis",r,e,t),s=I("numOrSizeSplits",r,e,t),a=I("x",r,e,t);return o.split(a,s,n)}case"ScatterNd":{let n=I("indices",r,e,t),s=I("values",r,e,t),a=I("shape",r,e,t);return[o.scatterND(n,s,a)]}case"GatherNd":{let n=I("x",r,e,t),s=I("indices",r,e,t);return[o.gatherND(n,s)]}case"SparseToDense":{let n=I("sparseIndices",r,e,t),s=I("outputShape",r,e,t),a=I("sparseValues",r,e,t),i=I("defaultValue",r,e,t);return[o.sparseToDense(n,a,s,a.dtype===i.dtype?i:o.cast(i,a.dtype))]}case"TensorScatterUpdate":{let n=I("indices",r,e,t),s=I("values",r,e,t),a=I("tensor",r,e,t);return[o.tensorScatterUpdate(a,n,s)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var XT=(r,e,t,o=Je)=>{switch(r.op){case"SparseFillEmptyRows":{let{outputIndices:n,outputValues:s,emptyRowIndicator:a,reverseIndexMap:i}=o.sparse.sparseFillEmptyRows(I("indices",r,e,t),I("values",r,e,t),I("denseShape",r,e,t),I("defaultValue",r,e,t));return[n,s,a,i]}case"SparseReshape":{let{outputIndices:n,outputShape:s}=o.sparse.sparseReshape(I("inputIndices",r,e,t),I("inputShape",r,e,t),I("newShape",r,e,t));return[n,s]}case"SparseSegmentMean":return[o.sparse.sparseSegmentMean(I("data",r,e,t),I("indices",r,e,t),I("segmentIds",r,e,t))];case"SparseSegmentSum":return[o.sparse.sparseSegmentSum(I("data",r,e,t),I("indices",r,e,t),I("segmentIds",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var YT=(r,e,t,o=Je)=>{switch(r.op){case"FFT":return[o.fft(I("x",r,e,t))];case"IFFT":return[o.ifft(I("x",r,e,t))];case"RFFT":return[o.rfft(I("x",r,e,t))];case"IRFFT":return[o.irfft(I("x",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var QT=(r,e,t,o=Je)=>{switch(r.op){case"StaticRegexReplace":return[o.string.staticRegexReplace(I("input",r,e,t),I("pattern",r,e,t),I("rewrite",r,e,t),I("replaceGlobal",r,e,t))];case"StringNGrams":{let{nGrams:n,nGramsSplits:s}=o.string.stringNGrams(I("data",r,e,t),I("dataSplits",r,e,t),I("separator",r,e,t),I("nGramWidths",r,e,t),I("leftPad",r,e,t),I("rightPad",r,e,t),I("padWidth",r,e,t),I("preserveShortSequences",r,e,t));return[n,s]}case"StringSplit":{let{indices:n,values:s,shape:a}=o.string.stringSplit(I("input",r,e,t),I("delimiter",r,e,t),I("skipEmpty",r,e,t));return[n,s,a]}case"StringToHashBucketFast":return[o.string.stringToHashBucketFast(I("input",r,e,t),I("numBuckets",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var ZT=(r,e,t,o=Je)=>{switch(r.op){case"Cast":return[o.cast(I("x",r,e,t),I("dtype",r,e,t))];case"ExpandDims":{let n=I("axis",r,e,t);return[o.expandDims(I("x",r,e,t),n)]}case"Squeeze":{let n=I("axis",r,e,t);return[o.squeeze(I("x",r,e,t),n)]}case"Reshape":return[o.reshape(I("x",r,e,t),I("shape",r,e,t))];case"EnsureShape":return[o.ensureShape(I("x",r,e,t),I("shape",r,e,t))];case"MirrorPad":return[o.mirrorPad(I("x",r,e,t),I("padding",r,e,t),I("mode",r,e,t))];case"PadV2":case"Pad":return[o.pad(I("x",r,e,t),I("padding",r,e,t),I("constantValue",r,e,t))];case"SpaceToBatchND":{let n=I("blockShape",r,e,t),s=I("paddings",r,e,t);return[o.spaceToBatchND(I("x",r,e,t),n,s)]}case"BatchToSpaceND":{let n=I("blockShape",r,e,t),s=I("crops",r,e,t);return[o.batchToSpaceND(I("x",r,e,t),n,s)]}case"DepthToSpace":{let n=I("blockSize",r,e,t),s=I("dataFormat",r,e,t).toUpperCase();return[o.depthToSpace(I("x",r,e,t),n,s)]}case"BroadcastTo":return[o.broadcastTo(I("x",r,e,t),I("shape",r,e,t))];case"BroadcastArgs":return[o.broadcastArgs(I("s0",r,e,t),I("s1",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function MS(r,e,t,o,n=De){let s=((a,i,p)=>{switch(a.category){case"arithmetic":return n(()=>TT(a,i,p));case"basic_math":return n(()=>_T(a,i,p));case"control":return FT(a,i,p);case"convolution":return n(()=>OT(a,i,p));case"creation":return n(()=>MT(a,i,p));case"dynamic":return LT(a,i,p);case"evaluation":return n(()=>BT(a,i,p));case"image":return n(()=>WT(a,i,p));case"graph":return n(()=>zT(a,i,p));case"logical":return n(()=>UT(a,i,p));case"matrices":return n(()=>GT(a,i,p));case"normalization":return n(()=>HT(a,i,p));case"ragged":return n(()=>KT(a,i,p));case"reduction":return n(()=>qT(a,i,p));case"slice_join":return n(()=>jT(a,i,p));case"sparse":return n(()=>XT(a,i,p));case"spectral":return n(()=>YT(a,i,p));case"string":return n(()=>QT(a,i,p));case"transformation":return n(()=>ZT(a,i,p));case"hash_table":return VT(a,i,p,o);case"custom":let u=pf(a.op);if(u&&u.customExecutor)return u.customExecutor(new wf(a,i,p));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(r,e,t);return y.isPromise(s)?s.then(a=>[].concat(a)):[].concat(s)}var Ml=class{constructor(e={},t={},o={},n={},s){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=o,this.functionMap=n,this.parseNodeNameCache=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let o=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(o))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function LS(r,e,t,o){let n=new Set,s=[],a=null,i=null,p=new Set,u=new Set(Object.keys(r).map(m=>Nr(m)[0]));o=o||[];let c=new Set(o.map(m=>Nr(m.name)[0])),l=[...e];for(;l.length>0;){let m=l.pop();if((fu(m)||A8(m)||F8(m))&&a==null&&(a=m,i=a.children.map(d=>d.name).filter(d=>n.has(d))),n.add(m.name),t[m.name]==null&&!u.has(m.name)&&!c.has(m.name)){if(m.inputs.length===0){s.push(m.name);continue}m.inputs.forEach(d=>{p.has(d.name)||(p.add(d.name),l.push(d))})}}return{inputs:r,outputs:e,usedNodes:n,missingInputs:s,dynamicNode:a,syncInputs:i}}function JT(r,e){let{usedNodes:t,inputs:o}=e,n=Object.keys(o).map(g=>Nr(g)[0]).map(g=>r.nodes[g]),s=r.initNodes||[],a=g=>t.has(typeof g=="string"?g:g.name);function i(g){return[...new Map(g.map(x=>[x.name,x])).values()]}let p=i([...n,...r.weights,...s]).filter(a),u=i([...p,...Object.values(r.nodes)]).filter(a),c=new Map(u.map(g=>[g.name,g])),l={};for(let g of u){l[g.name]=l[g.name]||0;for(let x of g.children)a(x)||(l[x.name]=Number.POSITIVE_INFINITY),l[x.name]=(l[x.name]||0)+1}let m=Object.entries(l).filter(([,g])=>g===0).map(([g])=>g),d=[...m];for(;m.length>0;){let g=m.pop(),x=c.get(g);for(let b of x.children.filter(a))--l[b.name]===0&&(d.push(b.name),m.push(b.name))}let f=d.map(g=>c.get(g)),h=_8(f,p);return E8(h,p),h}function _8(r,e){let t=new Map(r.map(a=>[a.name,a])),o=e.map(a=>a.name),n=new Set(o);for(;o.length>0;){let a=o.pop(),i=t.get(a);for(let p of i.children)!t.has(p.name)||n.has(p.name)||(n.add(p.name),o.push(p.name))}return r.filter(a=>n.has(a.name))}var gc=class extends Error{constructor(e){super(`NodesExecutionOrderError: ${e}`)}};function E8(r,e){let t=new Map(r.map((i,p)=>[i.name,p])),o=new Set(e.map(i=>i.name)),n=i=>o.has(typeof i=="string"?i:i.name),s=new Set(r.map(i=>i.name)),a=i=>s.has(typeof i=="string"?i:i.name);for(let i of r){for(let p of i.children.filter(a)){if(!t.has(p.name))throw new gc(`Child ${p.name} of node ${i.name} is unreachable.`);if(t.get(i.name)>t.get(p.name))throw new gc(`Node ${i.name} is scheduled to run after its child ${p.name}.`)}if(!n(i))for(let p of i.inputs){if(!t.has(p.name))throw new gc(`Input ${p.name} of node ${i.name} is unreachable.`);if(t.get(p.name)>t.get(i.name))throw new gc(`Node ${i.name} is scheduled to run before its input ${p.name}.`)}}}function e_(r){let e=new Map(r.map((i,p)=>[i.name,p])),t=Number.MAX_SAFE_INTEGER,o=r.map((i,p)=>fu(i)?t:p),n=i=>{let p=o[e.get(i.name)];return p==null?-1:p},s=r.map((i,p)=>i.children.map(n).reduce((u,c)=>Math.max(u,c),o[p])),a=new Map;for(let i=0;i<r.length;++i){let p=s[i];if(p===t)continue;let u=r[i],c=r[p];a.has(c.name)||a.set(c.name,[]),a.get(c.name).push(u)}return a}var $8=new Set(["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"]),R8=new Set(["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"]),D8=new Set(["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"]);function fu(r){return $8.has(r.op)}function A8(r){return R8.has(r.op)}function F8(r){return D8.has(r.op)}var Ll=class r{get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(o=>e[o].map(n=>n.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this.parseNodeNameCache=new Map,this._weightMap={},this.SEPARATOR=",",this._functions={},this._functionExecutorMap={},this.keepIntermediateTensors=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(o=>{this._functionExecutorMap[o]=new r(e.functions[o],this)})}getCompilationKey(e,t){let o=e.map(s=>s.name).sort(),n=t.map(s=>s.name).sort();return o.join(this.SEPARATOR)+"--"+n.join(this.SEPARATOR)}compile(e,t){let o=LS(e,t,this.weightMap,this._initNodes),{missingInputs:n,dynamicNode:s,syncInputs:a}=o;if(s!=null)throw new Error(`This execution contains the node '${s.name}', which has the dynamic op '${s.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(n.length>0){let u=t.map(l=>l.name),c=Object.keys(e);throw new Error(`Cannot compute the outputs [${u}] from the provided inputs [${c}]. Missing the following inputs: [${n}]`)}let i=JT(this.graph,o),p=e_(i);return{orderedNodes:i,nodeLiveUntilMap:p}}cloneAndKeepTensor(e){if(e==null)return null;let t=e.clone();return $r(t),t}cloneTensorList(e){return e?e.map(o=>this.cloneAndKeepTensor(o)):null}cloneTensorMap(e){return Object.fromEntries(Object.entries(e).map(([t,o])=>[t,this.cloneTensorList(o)]))}execute(e,t){this.disposeIntermediateTensors(),e=this.mapInputs(e);let o=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let n=o.map(m=>this.graph.nodes[Nr(m)[0]]),s=t.map(m=>Nr(m)[0]),a=new Set(s),i=s.map(m=>this.graph.nodes[m]);i.length===0&&(i=this._outputs);let p=this.getCompilationKey(n,i),u=this.compiledMap.get(p);u==null&&(u=this.compile(e,i),this.compiledMap.set(p,u));try{this.keepIntermediateTensors=A().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(m){this.keepIntermediateTensors=!1,console.warn(m.message)}let c={},l={};return De(()=>{let m=new Ml(this.weightMap,c,l,this.functionExecutorMap,this.parseNodeNameCache),d=Object.assign({},this.weightMap);this.keepIntermediateTensors&&(this.clonedTensorsMap=this.cloneTensorMap(this.weightMap)),Object.keys(e).forEach(x=>{let[b,C]=Nr(x,m),S=[];S[C]=e[x],d[b]=S,this.keepIntermediateTensors&&(this.clonedTensorsMap[b]=this.cloneTensorList(S))});let f=this.getFrozenTensorIds(d),{orderedNodes:h,nodeLiveUntilMap:g}=u;for(let x of h){if(d[x.name])continue;let b=MS(x,d,m,this._resourceManager);if(y.isPromise(b))throw new Error(`The execution of the op '${x.op}' returned a promise. Please use model.executeAsync() instead.`);d[x.name]=b,this.keepIntermediateTensors&&(this.clonedTensorsMap[x.name]=this.cloneTensorList(b)),this.checkTensorForDisposalWithNodeLiveUntilInfo(x,d,m,f,a,g.get(x.name))}return this.parent==null&&m.dispose(f),t.map(x=>Bt(x,d,m))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(o=>e[o]).map(o=>o.map(n=>n.id)));return new Set(t)}checkTensorForDisposal(e,t,o,n,s,a,i){if(!(fu(t)||a.has(e))){for(let p of o[e])p!=null&&(i[p.id]=(i[p.id]||0)+t.children.length);for(let p of t.inputs){if(fu(p))continue;let u=hS(p.name,o,n);if(u!=null)for(let c of u){if(!c||c.kept||s.has(c.id))continue;let l=i[c.id];l===1?(c.dispose(),delete i[c.id]):l!=null&&i[c.id]--}}}}checkTensorForDisposalWithNodeLiveUntilInfo(e,t,o,n,s,a){function i(p){return fu(p)||s.has(p.name)}if(!(fu(e)||a==null))for(let p of a){if(i(p))continue;let u=hS(p.name,t,o);for(let c of u)!c||c.kept||n.has(c.id)||c.dispose()}}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){this.clonedTensorsMap&&(Object.values(this.clonedTensorsMap).forEach(e=>{for(let t of e)t&&!t.isDisposed&&t.dispose()}),this.clonedTensorsMap=null)}getIntermediateTensors(){return this.clonedTensorsMap}async _executeAsync(e,t,o=!1,n={},s={}){this.disposeIntermediateTensors(),o||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepIntermediateTensors=A().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(m){this.keepIntermediateTensors=!1,console.warn(m.message)}let a=new Ml(this.weightMap,n,s,this.functionExecutorMap,this.parseNodeNameCache);this.keepIntermediateTensors&&(this.clonedTensorsMap=this.cloneTensorMap(this.weightMap));let i=await this.executeWithControlFlow(e,a,t,o),p=t.map(m=>Bt(m,i,a)),u=p.map(m=>m.id),c=Object.keys(e).map(m=>e[m].id),l=new Set([...u,...c,...this.weightIds]);return Object.values(i).forEach(m=>{m.forEach(d=>{d&&!d.isDisposed&&!l.has(d.id)&&d.dispose()})}),this.parent==null&&a.dispose(l),p}async executeFunctionAsync(e,t,o){let n=e.reduce((s,a,i)=>(s[this.inputs[i].name]=a,s),{});return this._executeAsync(n,this.outputNodes,!0,t,o)}async executeWithControlFlow(e,t,o,n){let s=Object.keys(e),a=s.map(S=>this.graph.nodes[Nr(S)[0]]),i=o.map(S=>Nr(S)[0]),p=new Set(i),u=i.map(S=>this.graph.nodes[S]);u.length===0&&(u=this._outputs);let{usedNodes:c,missingInputs:l,dynamicNode:m,syncInputs:d}=LS(e,u,this.weightMap,this._initNodes),f=[...a,...this.graph.weights,...this._initNodes||[]].map(S=>({node:S,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(S=>{let[k,_]=Nr(S),$=[];$[_]=e[S],h[k]=$});let g={},x=this.getFrozenTensorIds(h),b={};for(;f.length>0;){let S=this.processStack(a,f,t,h,b,x,p,g,c);await Promise.all(S)}m==null&&!n&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let C=u.filter(S=>!fu(S)&&!Bt(S.name,h,t)).map(S=>S.name);if(C.length>0){let S="";throw m!=null&&(S=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${C}] from the provided inputs [${s}]. Consider providing the following inputs: [${l}]. ${S}`)}return h}processStack(e,t,o,n,s,a,i,p,u){let c=[];for(;t.length>0;){let l=t.pop();o.currentContext=l.contexts;let m="";if(l.node.op==="Enter"&&I("isConstant",l.node,n,o)&&([m]=Ls(l.node.name,o)),n[l.node.name]==null){let d=MS(l.node,n,o,this._resourceManager);m||([m]=Ls(l.node.name,o));let f=o.currentContext;y.isPromise(d)?c.push(d.then(h=>(n[m]=h,this.keepIntermediateTensors&&(this.clonedTensorsMap[m]=this.cloneTensorList(h)),o.currentContext=f,this.checkTensorForDisposal(m,l.node,n,o,a,i,p),this.processChildNodes(l.node,t,o,n,s,u),h))):(n[m]=d,this.keepIntermediateTensors&&(this.clonedTensorsMap[m]=this.cloneTensorList(d)),this.checkTensorForDisposal(m,l.node,n,o,a,i,p),this.processChildNodes(l.node,t,o,n,s,u))}else this.processChildNodes(l.node,t,o,n,s,u)}return c}processChildNodes(e,t,o,n,s,a){e.children.forEach(i=>{let[p]=Ls(i.name,o);s[p]||!a.has(i.name)||(i.op==="Merge"?i.inputNames.some(u=>!!Bt(u,n,o))&&(s[p]=!0,t.push({contexts:o.currentContext,node:i})):i.inputNames.every(u=>!!Bt(u,n,o))&&(s[p]=!0,t.push({contexts:o.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let o=e[t],[n]=Nr(t),s=this.graph.nodes[n];if(s.attrParams.shape&&s.attrParams.shape.value){let a=s.attrParams.shape.value,i=a.length===o.shape.length&&o.shape.every((p,u)=>a[u]===-1||a[u]===p);y.assert(i,()=>`The shape of dict['${s.name}'] provided in model.execute(dict) must be [${a}], but was [${o.shape}]`)}s.attrParams.dtype&&s.attrParams.dtype.value&&y.assert(o.dtype===s.attrParams.dtype.value,()=>`The dtype of dict['${s.name}'] provided in model.execute(dict) must be ${s.attrParams.dtype.value}, but was ${o.dtype}`)})}mapInputs(e){var t,o;let n={};for(let s in e){let a=(o=(t=this._signature)===null||t===void 0?void 0:t.inputs)===null||o===void 0?void 0:o[s];a!=null?n[a.name]=e[s]:n[s]=e[s]}return n}checkInputs(e){let t=Object.keys(e).filter(o=>{let[n]=Nr(o);return this.graph.nodes[n]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>{var o,n;let s=(n=(o=this._signature)===null||o===void 0?void 0:o.outputs)===null||n===void 0?void 0:n[t];return s!=null?s.name:t},{})}checkOutputs(e){e.forEach(t=>{let[o]=Nr(t);if(!this.graph.nodes[o])throw new Error(`The output '${t}' is not found in the graph`)})}};var kf=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}};var P8="?tfjs-format=file",O8="model.json",Bl=class{get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}get modelStructuredOutputKeys(){return this.structuredOutputKeys}constructor(e,t={},o=di){this.modelUrl=e,this.loadOptions=t,this.version="n/a",this.io=o,t==null&&(this.loadOptions={}),this.resourceManager=new kf}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=this.io.browserHTTPRequest(e,this.loadOptions);else{let t=this.io.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(this.io.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=this.handler.load();return y.isPromise(e)?e.then(t=>t.getWeightStream==null?this.loadSync(t):this.loadStreaming(t)):this.loadSync(e)}loadSync(e){let t=this.io.decodeWeights(e.weightData,e.weightSpecs);return this.loadWithWeightMap(e,t)}async loadStreaming(e){if(e.getWeightStream==null)throw new Error("Model artifacts missing streamWeights function");let t=await ad(e.getWeightStream(),e.weightSpecs);return this.loadWithWeightMap(e,t)}loadWithWeightMap(e,t){this.artifacts=e;let o=this.artifacts.modelTopology,n=this.artifacts.signature;if(this.artifacts.userDefinedMetadata!=null){let s=this.artifacts.userDefinedMetadata;s.signature!=null&&(n=s.signature),s.structuredOutputKeys!=null&&(this.structuredOutputKeys=s.structuredOutputKeys)}if(this.signature=n,this.version=`${o.versions.producer}.${o.versions.minConsumer}`,this.executor=new Ll(Ol.Instance.transformGraph(o,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(t),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let s=Ol.Instance.transformGraph(e.modelInitializer);this.initializer=new Ll(s),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializerSignature=e.initializerSignature}return!0}async save(e,t){if(typeof e=="string"){let o=this.io.getSaveHandlers(e);if(o.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(o.length>1)throw new Error(`Found more than one (${o.length}) save handlers for URL '${e}'`);e=o[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}addStructuredOutputNames(e){if(this.structuredOutputKeys){let t=e instanceof mt?[e]:e,o={};return t.forEach((n,s)=>o[this.structuredOutputKeys[s]]=n),o}return e}predict(e,t){let o=this.execute(e,this.outputNodes);return this.addStructuredOutputNames(o)}async predictAsync(e,t){let o=await this.executeAsync(e,this.outputNodes);return this.addStructuredOutputNames(o)}normalizeInputs(e){var t;if(!(e instanceof mt)&&!Array.isArray(e)){let s=(t=this.signature)===null||t===void 0?void 0:t.inputs;if(s!=null)for(let a in s){let i=s[a];i.resourceId!=null&&(e[a]=this.resourceIdToCapturedInput[i.resourceId])}return e}e=Array.isArray(e)?e:[e];let o=Object.keys(this.resourceIdToCapturedInput).length;if(e.length+o!==this.inputNodes.length)throw new Error(`Input tensor count mismatch, the graph model has ${this.inputNodes.length-o} non-resource placeholders, while there are ${e.length} input tensors provided.`);let n=0;return this.inputNodes.reduce((s,a)=>{var i,p,u;let c=(u=(p=(i=this.signature)===null||i===void 0?void 0:i.inputs)===null||p===void 0?void 0:p[a])===null||u===void 0?void 0:u.resourceId;return c!=null?s[a]=this.resourceIdToCapturedInput[c]:s[a]=e[n++],s},{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}executeInitializerGraph(){return this.initializer==null?[]:this.initializerSignature==null?this.initializer.execute({},[]):this.initializer.execute({},Object.keys(this.initializerSignature.outputs))}async executeInitializerGraphAsync(){return this.initializer==null?[]:this.initializerSignature==null?this.initializer.executeAsync({},[]):this.initializer.executeAsync({},Object.keys(this.initializerSignature.outputs))}setResourceIdToCapturedInput(e){if(this.resourceIdToCapturedInput={},this.initializerSignature){let t=this.initializerSignature.outputs,o=Object.keys(t);for(let n=0;n<o.length;n++){let s=o[n],a=t[s];this.resourceIdToCapturedInput[a.resourceId]=e[n]}}}execute(e,t){this.resourceIdToCapturedInput==null&&this.setResourceIdToCapturedInput(this.executeInitializerGraph()),e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let o=this.executor.execute(e,t);return o.length>1?o:o[0]}async executeAsync(e,t){this.resourceIdToCapturedInput==null&&this.setResourceIdToCapturedInput(await this.executeInitializerGraphAsync()),e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let o=await this.executor.executeAsync(e,t);return o.length>1?o:o[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,o)=>(t[o]=[e[o]],t),{})}dispose(){this.executor.dispose(),this.initializer&&(this.initializer.dispose(),this.resourceIdToCapturedInput&&Ot(this.resourceIdToCapturedInput)),this.resourceManager.dispose()}};async function M8(r,e={},t=di){if(r==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");e==null&&(e={}),e.fromTFHub&&typeof r=="string"&&(r=B8(r));let o=new Bl(r,e,t);return await o.load(),o}function L8(r){if(r==null)throw new Error("modelUrl in loadGraphModelSync() cannot be null. Please provide model artifacts or an IOHandler that loads the model");let e;if(r instanceof Array){let[o,n]=r;if(!o)throw new Error("modelJSON must be the first element of the array");if(!n||!(n instanceof ArrayBuffer))throw new Error("An ArrayBuffer of weights must be the second element of the array");if(!("modelTopology"in o))throw new Error("Model JSON is missing 'modelTopology'");if(!("weightsManifest"in o))throw new Error("Model JSON is missing 'weightsManifest'");let s=di.getWeightSpecs(o.weightsManifest),a=di.getModelArtifactsForJSONSync(o,s,n);e=di.fromMemorySync(a)}else if("load"in r)e=r;else if("modelTopology"in r&&"weightSpecs"in r&&"weightData"in r)e=di.fromMemorySync(r);else throw new Error("Unknown model format");let t=new Bl(e);return t.load(),t}function B8(r){return r.endsWith("/")||(r=r+"/"),`${r}${O8}${P8}`}var z8="4.22.0";function Q(r,e){Array.isArray(r)||(r=[r]),r.forEach(t=>{t!=null&&y.assert(t.dtype!=="complex64",()=>`${e} does not support complex64 tensors in the CPU backend.`)})}var V8=Vt.whereImpl,xc=class r extends ao{nextDataId(){return r.nextDataId++}constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new Bo(this,ur())}write(e,t,o){this.firstUse&&(this.firstUse=!1,A().get("IS_NODE")&&w.warn(`
============================
Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let n={id:this.nextDataId()};return this.data.set(n,{values:e,dtype:o,refCount:1}),n}makeTensorInfo(e,t,o){let n;if(t==="string"&&o!=null&&o.length>0&&y.isString(o[0])){let s=o.map(a=>y.encodeString(a));n=this.write(s,e,t)}else n=this.write(o,e,t);return{dataId:n,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,o,n,s){this.data.set(e,{values:t,dtype:n,refCount:s})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:o}=this.data.get(e);if(t==="complex64"){let n=this.readSync(o.real.dataId),s=this.readSync(o.imag.dataId);return w.mergeRealAndImagArrays(n,s)}return y.convertBackendValuesAndArrayBuffer(this.data.get(e).values,t)}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let o=t.map(n=>y.decodeString(n));return me(e.shape,e.dtype,o)}catch(o){throw new Error("Failed to decode encoded string bytes into utf-8")}return me(e.shape,e.dtype,t)}makeOutput(e,t,o){return ur().makeTensorFromTensorInfo(this.makeTensorInfo(t,o,e),this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:o}=this.data.get(e);o!=null&&(this.disposeData(o.real.dataId,!0),this.disposeData(o.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=y.now();return e(),{kernelMs:y.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Q([e],"where");let t=this.readSync(e.dataId);return V8(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};xc.nextDataId=0;var Ic={};qe(Ic,{addImpl:()=>VS,bincountImpl:()=>Cc,bincountReduceImpl:()=>Nf,bitwiseAndImpl:()=>WS,castImpl:()=>zS,ceilImpl:()=>US,concatImpl:()=>ap,equalImpl:()=>GS,expImpl:()=>KS,expm1Impl:()=>jS,floorDivImpl:()=>YS,floorImpl:()=>XS,gatherNdImpl:()=>Tf,gatherV2Impl:()=>_f,greaterEqualImpl:()=>ZS,greaterImpl:()=>QS,lessEqualImpl:()=>eI,lessImpl:()=>JS,linSpaceImpl:()=>Ef,logImpl:()=>tI,maxImpl:()=>$f,maximumImpl:()=>rI,minimumImpl:()=>oI,multiplyImpl:()=>zl,negImpl:()=>nI,notEqualImpl:()=>sI,prodImpl:()=>aI,raggedGatherImpl:()=>Rf,raggedRangeImpl:()=>Df,raggedTensorToTensorImpl:()=>Af,rangeImpl:()=>up,rsqrtImpl:()=>uI,scatterImpl:()=>zs,sigmoidImpl:()=>R_,simpleAbsImpl:()=>BS,sliceImpl:()=>pp,sparseFillEmptyRowsImpl:()=>Ff,sparseReshapeImpl:()=>Pf,sparseSegmentReductionImpl:()=>Sc,sqrtImpl:()=>F_,squaredDifferenceImpl:()=>cI,staticRegexReplaceImpl:()=>lI,stridedSliceImpl:()=>Of,stringNGramsImpl:()=>cp,stringSplitImpl:()=>lp,stringToHashBucketFastImpl:()=>mp,subImpl:()=>dI,tileImpl:()=>Mf,topKImpl:()=>Lf,transposeImpl:()=>wc,uniqueImpl:()=>dp});function BS(r){let e=new Float32Array(r.length);for(let t=0;t<r.length;++t)e[t]=Math.abs(r[t]);return e}var W8=r=>{let{x:e}=r.inputs,t=r.backend;Q(e,"abs");let o=new Float32Array(y.sizeFromShape(e.shape)),n=t.data.get(e.dataId).values;return o=BS(n),t.makeOutput(o,e.shape,e.dtype)},t_={kernelName:Xs,backendName:"cpu",kernelFunc:W8};function Ve(r){return(e,t,o,n,s)=>{let a=w.assertAndGetBroadcastShape(e,t),i=a.length,p=y.computeStrides(a),u=y.sizeFromShape(a),c=y.getTypedArrayFromDType(s,u),l=e.length,m=t.length,d=y.computeStrides(e),f=y.computeStrides(t),h=w.getBroadcastDims(e,a),g=w.getBroadcastDims(t,a);if(h.length+g.length===0)for(let x=0;x<c.length;++x)c[x]=r(o[x%o.length],n[x%n.length]);else for(let x=0;x<c.length;++x){let b=y.indexToLoc(x,i,p),C=b.slice(-l);h.forEach($=>C[$]=0);let S=y.locToIndex(C,l,d),k=b.slice(-m);g.forEach($=>k[$]=0);let _=y.locToIndex(k,m,f);c[x]=r(o[S],n[_])}return[c,a]}}function Ht(r){let{inputs:e,backend:t}=r,{real:o,imag:n}=e,s=t.data.get(o.dataId).values,a=t.data.get(n.dataId).values,i=t.makeTensorInfo(o.shape,"complex64"),p=t.data.get(i.dataId);return p.complexTensorInfos={real:t.makeTensorInfo(o.shape,"float32",s),imag:t.makeTensorInfo(n.shape,"float32",a)},i}var r_={kernelName:Di,backendName:"cpu",kernelFunc:Ht};function yc(r,e,t="float32"){if(t==="complex64"){let n=yc(r,e,"float32"),s=yc(r,e,"float32");return Ht({inputs:{real:n,imag:s},backend:r})}let o=y.makeZerosTypedArray(y.sizeFromShape(e),t);return r.makeTensorInfo(e,t,o)}function lr(r){let{inputs:e,backend:t}=r,{x:o}=e;return t.incRef(o.dataId),{dataId:o.dataId,shape:o.shape,dtype:o.dtype}}var o_={kernelName:Co,backendName:"cpu",kernelFunc:lr};function $o(r){let{inputs:e,backend:t}=r,{input:o}=e,n=t.data.get(o.dataId).complexTensorInfos.real,s=t.data.get(n.dataId).values;return t.makeTensorInfo(n.shape,n.dtype,s)}var n_={kernelName:Hi,backendName:"cpu",kernelFunc:$o};function zS(r,e,t,o){if(o==="int32"){let n=Int32Array.from(r);return[e,"int32",n]}if(o==="bool"){let n=y.toTypedArray([0],t),[s,a]=Ve((i,p)=>i!==p?1:0)(e,[],r,n,"bool");return[a,"bool",s]}throw new Error(`Error in Cast: failed to cast ${t} to ${o}`)}function Ro(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dtype:s}=o;if(s==="complex64"){if(n.dtype==="complex64")return lr({inputs:{x:n},backend:t});let c=yc(t,n.shape,n.dtype),l=Ro({inputs:{x:n},backend:t,attrs:{dtype:"float32"}}),m=Ht({inputs:{real:l,imag:c},backend:t});return t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(l),m}if(n.dtype==="complex64"){let c=$o({inputs:{input:n},backend:t}),l=Ro({inputs:{x:c},backend:t,attrs:{dtype:s}});return t.disposeIntermediateTensorInfo(c),l}if(!y.hasEncodingLoss(n.dtype,s)){let c=lr({inputs:{x:n},backend:t});return{dataId:c.dataId,shape:c.shape,dtype:s}}let a=t.data.get(n.dataId).values,[i,p,u]=zS(a,n.shape,n.dtype,s);return t.makeTensorInfo(i,p,u)}var s_={kernelName:yo,backendName:"cpu",kernelFunc:Ro};function Ye(r,e,t,o){return t==null?({inputs:n,backend:s})=>{let{a,b:i}=n,p=s;Q([a,i],r);let u=p.data.get(a.dataId).values,c=p.data.get(i.dataId).values,l=a.dtype==="string"?w.fromUint8ToStringArray(u):u,m=a.dtype==="string"?w.fromUint8ToStringArray(c):c,d=o||a.dtype,[f,h]=e(a.shape,i.shape,l,m,d);return p.makeTensorInfo(h,d,f)}:({inputs:n,backend:s})=>{let{a,b:i}=n,p=s;if(a.dtype==="complex64"||i.dtype==="complex64"){let u=Ro({inputs:{x:a},backend:p,attrs:{dtype:"complex64"}}),c=p.data.get(u.dataId),l=c.complexTensorInfos.real,m=c.complexTensorInfos.imag,d=p.data.get(l.dataId).values,f=p.data.get(m.dataId).values,h=Ro({inputs:{x:i},backend:p,attrs:{dtype:"complex64"}}),g=p.data.get(h.dataId),x=g.complexTensorInfos.real,b=g.complexTensorInfos.imag,C=p.data.get(x.dataId).values,S=p.data.get(b.dataId).values,[k,_,$]=t(a.shape,i.shape,d,f,C,S),R=p.makeTensorInfo($,"float32",k),D=p.makeTensorInfo($,"float32",_),P=Ht({inputs:{real:R,imag:D},backend:p});return p.disposeIntermediateTensorInfo(u),p.disposeIntermediateTensorInfo(h),p.disposeIntermediateTensorInfo(R),p.disposeIntermediateTensorInfo(D),P}else{let u=p.data.get(a.dataId).values,c=p.data.get(i.dataId).values,l=o||a.dtype,[m,d]=e(a.shape,i.shape,u,c,l);return p.makeTensorInfo(d,l,m)}}}function bc(r){return(e,t,o,n,s,a)=>{let i=w.assertAndGetBroadcastShape(e,t),p=y.sizeFromShape(i),u=i.length,c=y.computeStrides(i),l=y.getTypedArrayFromDType("float32",p),m=y.getTypedArrayFromDType("float32",p),d=w.getBroadcastDims(e,i),f=w.getBroadcastDims(t,i),h=w.mergeRealAndImagArrays(o,n),g=w.mergeRealAndImagArrays(s,a),x=e.length,b=y.computeStrides(e),C=t.length,S=y.computeStrides(t);if(d.length+f.length===0)for(let k=0;k<l.length;k++){let _=k%h.length,$=k%g.length,R=r(h[_*2],h[_*2+1],g[$*2],g[$*2+1]);l[k]=R.real,m[k]=R.imag}else for(let k=0;k<l.length;k++){let _=y.indexToLoc(k,u,c),$=_.slice(-x);d.forEach(M=>$[M]=0);let R=y.locToIndex($,x,b),D=_.slice(-C);f.forEach(M=>D[M]=0);let P=y.locToIndex(D,C,S),O=r(h[R*2],h[R*2+1],g[P*2],g[P*2+1]);l[k]=O.real,m[k]=O.imag}return[l,m,i]}}var VS=Ve((r,e)=>r+e),U8=bc((r,e,t,o)=>({real:r+t,imag:e+o})),Pa=Ye(uo,VS,U8),a_={kernelName:uo,backendName:"cpu",kernelFunc:Pa};function Cc(r,e,t,o,n){let s=y.sizeFromShape(o),a=y.makeZerosTypedArray(n,t);for(let i=0;i<r.length;i++){let p=r[i];if(p<0)throw new Error("Input x must be non-negative!");p>=n||(s>0?a[p]+=e[i]:a[p]+=1)}return a}function Nf(r,e,t,o=!1){let n=r.shape[0],s=r.shape[1],a=me([n,t],e.dtype);for(let i=0;i<n;i++)for(let p=0;p<s;p++){let u=r.get(i,p);if(u<0)throw new Error("Input x must be non-negative!");u>=t||(o?a.set(1,i,u):e.size>0?a.set(a.get(i,u)+e.get(i,p),i,u):a.set(a.get(i,u)+1,i,u))}return a}var WS=Ve((r,e)=>r&e),G8=Ye(qa,WS),i_={kernelName:qa,backendName:"cpu",kernelFunc:G8};function jt(r){return(e,t,o)=>{let n=y.getArrayFromDType(t,e.length);for(let s=0;s<e.length;++s)n[s]=r(e[s],o);return n}}function Ie(r,e,t){let o=jt(e);return Ar(r,o,t)}function Ar(r,e,t){return({inputs:o,attrs:n,backend:s})=>{let{x:a}=o;Q(a,r);let i=s,p=i.data.get(a.dataId).values,u;if(a.dtype==="string"){if(!Array.isArray(p))throw new Error("String tensor's value was not an instance of Array");u=w.fromUint8ToStringArray(p)}else u=p;let c=t||a.dtype,l=e(u,c,n);return i.makeTensorInfo(a.shape,c,l)}}var US=jt(r=>Math.ceil(r)),H8=Ar(en,US),u_={kernelName:en,backendName:"cpu",kernelFunc:H8};function ap(r,e,t,o){let n=y.getArrayFromDType(t,y.sizeFromShape(e));if(o&&t!=="string"){let s=0;r.forEach(a=>{let i=y.sizeFromShape(a.shape);n.set(a.vals,s),s+=i})}else{let s=0;r.forEach(a=>{let i=t==="string"?w.fromUint8ToStringArray(a.vals):a.vals,p=0;for(let u=0;u<a.shape[0];++u){let c=u*e[1]+s;for(let l=0;l<a.shape[1];++l)n[c+l]=i[p++]}s+=a.shape[1]})}return n}var GS=Ve((r,e)=>r===e?1:0),HS=Ye(xn,GS,null,"bool"),p_={kernelName:xn,backendName:"cpu",kernelFunc:HS};var KS=jt(r=>Math.exp(r)),qS=Ar(yn,KS,"float32"),c_={kernelName:yn,backendName:"cpu",kernelFunc:qS};var jS=jt(r=>Math.expm1(r)),K8=Ar(bn,jS),l_={kernelName:bn,backendName:"cpu",kernelFunc:K8};var XS=jt(r=>Math.floor(r)),q8=Ar(wn,XS),m_={kernelName:wn,backendName:"cpu",kernelFunc:q8};var YS=Ve((r,e)=>Math.floor(r/e)),j8=Ye(Sn,YS,null,"int32"),d_={kernelName:Sn,backendName:"cpu",kernelFunc:j8};function Tf(r,e,t,o,n,s,a,i,p){let u=me([o,s],t);for(let c=0;c<o;c++){let l=[],m=0;for(let d=0;d<n;d++){let f=r[c*n+d];m+=f*a[d],l.push(f)}if(m<0||m>=p/s)throw new Error(`Invalid indices: ${l} does not index into ${i}`);for(let d=0;d<s;d++)u.values[c*s+d]=e.get(...e.indexToLoc(m*s+d))}return u}function _f(r,e,t){let o=me(t,r.dtype);for(let n=0;n<o.size;++n){let a=o.indexToLoc(n).slice(),i=a[0],p=a[2],u=e.locToIndex([i,p]);a[2]=e.values[u];let c=r.locToIndex(a);0<=c&&c<r.values.length&&(o.values[n]=r.values[c])}return o}var QS=Ve((r,e)=>r>e?1:0),X8=Ye(kn,QS,null,"bool"),f_={kernelName:kn,backendName:"cpu",kernelFunc:X8};var ZS=Ve((r,e)=>r>=e?1:0),Y8=Ye(Nn,ZS,null,"bool"),h_={kernelName:Nn,backendName:"cpu",kernelFunc:Y8};var JS=Ve((r,e)=>r<e?1:0),Q8=Ye(Rn,JS,null,"bool"),g_={kernelName:Rn,backendName:"cpu",kernelFunc:Q8};var eI=Ve((r,e)=>r<=e?1:0),Z8=Ye(Dn,eI,null,"bool"),x_={kernelName:Dn,backendName:"cpu",kernelFunc:Z8};function Ef(r,e,t){let o=(e-r)/(t-1),n=y.makeZerosTypedArray(t,"float32");n[0]=r;for(let s=1;s<n.length;s++)n[s]=n[s-1]+o;return n}var tI=jt(r=>Math.log(r)),J8=Ar(Fn,tI),y_={kernelName:Fn,backendName:"cpu",kernelFunc:J8};function $f(r,e,t,o){let n=y.getTypedArrayFromDType(o,y.sizeFromShape(t));for(let s=0;s<n.length;++s){let a=s*e,i=r[a];for(let p=0;p<e;++p){let u=r[a+p];(Number.isNaN(u)||u>i)&&(i=u)}n[s]=i}return n}var rI=Ve((r,e)=>Math.max(r,e)),eY=Ye(Vn,rI),b_={kernelName:Vn,backendName:"cpu",kernelFunc:eY};var oI=Ve((r,e)=>Math.min(r,e)),tY=Ye(Hn,oI),C_={kernelName:Hn,backendName:"cpu",kernelFunc:tY};var zl=Ve((r,e)=>r*e),rY=bc((r,e,t,o)=>({real:r*t-e*o,imag:r*o+e*t})),ip=Ye(Xn,zl,rY),w_={kernelName:Xn,backendName:"cpu",kernelFunc:ip};function nI(r,e,t){let o=y.createScalarValue(-1,t);return zl([],e,o,r,t)}function oY(r){let{inputs:e,backend:t}=r,{x:o}=e;Q(o,"neg");let n=t.data.get(o.dataId).values,[s,a]=nI(n,o.shape,o.dtype);return t.makeTensorInfo(a,o.dtype,s)}var S_={kernelName:pa,backendName:"cpu",kernelFunc:oY};var sI=Ve((r,e)=>r!==e?1:0),nY=Ye(Yn,sI,null,"bool"),I_={kernelName:Yn,backendName:"cpu",kernelFunc:nY};function wc(r,e,t,o,n){let s=e.length,a=y.sizeFromShape(e),i=y.computeStrides(e),p=y.computeStrides(n),u=y.getTypedArrayFromDType(t,y.sizeFromShape(n));for(let c=0;c<a;++c){let l=y.indexToLoc(c,s,i),m=new Array(l.length);for(let f=0;f<m.length;f++)m[f]=l[o[f]];let d=y.locToIndex(m,s,p);u[d]=r[c]}return u}function St(r){let{inputs:e,attrs:t,backend:o}=r,{x:n}=e,{perm:s}=t;Q(n,"transpose");let a=n.shape.length,i=new Array(a);for(let l=0;l<i.length;l++)i[l]=n.shape[s[l]];let p=o.data.get(n.dataId).values,u=wc(p,n.shape,n.dtype,s,i);return{dataId:o.write(u,i,n.dtype),shape:i,dtype:n.dtype}}var v_={kernelName:co,backendName:"cpu",kernelFunc:St};function aI(r,e,t,o){let[n,s]=w.computeOutAndReduceShapes(r,o),a=dt(e,"int32"),i=y.makeZerosTypedArray(y.sizeFromShape(n),a),p=y.sizeFromShape(s);for(let u=0;u<i.length;++u){let c=u*p,l=1;for(let m=0;m<p;++m)l*=t[c+m];i[u]=l}return{outVals:i,outShape:n,outDtype:a}}function sY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;Q(n,"prod");let i=n.shape.length,p=y.parseAxisParam(s,n.shape),u=w.getAxesPermutation(p,i),c=p,l=n,m=[];u!=null&&(l=St({inputs:{x:n},backend:t,attrs:{perm:u}}),m.push(l),c=w.getInnerMostAxes(c.length,i));let d=t.data.get(l.dataId).values,{outVals:f,outShape:h,outDtype:g}=aI(l.shape,l.dtype,d,c),x=h;return a&&(x=w.expandShapeToKeepDim(h,p)),m.forEach(b=>t.disposeIntermediateTensorInfo(b)),t.makeTensorInfo(x,g,f)}var k_={kernelName:os,backendName:"cpu",kernelFunc:sY};function aY(r,e,t){r.forEach((o,n)=>{if(o<0||o>=t){let s=y.indexToLoc(n,e.length,y.computeStrides(e)).join(",");throw new Error(`indices[${s}] = ${o} is not in [0, ${t})`)}})}function iY(r,e){for(let t=0;t<r.length;++t){let o=r[t],n=t===r.length-1?e:r[t+1].length;if(o.length===0)throw new Error("Ragged splits may not be empty");if(o[0]<0)throw new Error("Ragged splits must be non-negative");if(o[o.length-1]>n)throw new Error("Ragged splits must not point past values");for(let s=1;s<o.length;++s)if(o[s-1]>o[s])throw new Error("Ragged splits must be sorted in ascending order")}}function uY(r,e,t,o){let n=[],s=0,a=e.length-1+t.length,i=new Array(a).fill(null).map(()=>[0]);iY(t,o);let p=1;for(let u=0;u<e.length-1;++u){p*=e[u];let c=e[u+1];for(let l=1;l<p+1;++l)i[u].push(l*c)}for(let u=0;u<r.length;++u){let c=r[u],l=r[u]+1;for(let m=0;m<t.length;++m){let d=t[m],f=m+e.length-1;if(f>=0){let h=i[f],g=h[h.length-1]-d[c];for(let x=c;x<l;++x)i[f].push(d[x+1]+g)}c=d[c],l=d[l]}l!==c&&(n.push([c,l]),s+=l-c)}return{outSplits:i,valueSlices:n,numValues:s}}function pY(r){let e=[];for(let t=0;t<r.length;++t){let o=r[t].length,n=y.getArrayFromDType("int32",o);e.push(n),r[t].forEach((s,a)=>n[a]=s)}return e}function N_(r,e){let t=r.slice(0,e);for(;t.length<e;)t.push(1);for(let o=e;o<r.length;o++)t[e-1]*=r[o];return t}function cY(r,e,t,o,n,s){let a=N_(e,2)[1],i=N_(s,2)[1],p=0;for(let u of t)for(let c=u[0];c<u[1];++c){for(let l=0;l<o;++l)n[p*i+l]=r[c*a+l];++p}}function lY(r,e,t,o,n){let s=e.slice();s[0]=n;let a=y.getArrayFromDType(t,y.sizeFromShape(s)),i=r.length,p=i===0?0:i/e[0];return cY(r,e,o,p,a,s),[a,s]}function Rf(r,e,t,o,n,s,a,i){if(r.length===0)throw new Error("paramsNestedSplits must be non empty");if(e[0].length===0)throw new Error("Split tensors must not be scalars");let p=e[0][0]-1;if(aY(s,a,p),o.length===0)throw new Error("params.rank must be nonzero");let u=o[0],{outSplits:c,valueSlices:l,numValues:m}=uY(s,a,r,u),d=pY(c),f=lY(t,o,n,l,m);return[d,f[0],f[1]]}var T_=2147483647;function Df(r,e,t,o,n,s,a){if(e.length>1)throw new Error("starts must be a scalar or vector");if(n.length>1)throw new Error("limits must be a scalar or vector");if(a.length>1)throw new Error("deltas must be a scalar or vector");let i=e.length===0,p=n.length===0,u=a.length===0,c=[];i||c.push(e[0]),p||c.push(n[0]),u||c.push(a[0]);for(let g=1;g<c.length;++g)if(c[g]!==c[g-1])throw new Error("starts, limits, and deltas must have the same shape");let l=c.length===0?1:c[0],m=y.getArrayFromDType("int32",l+1);m[0]=0;for(let g=0;g<l;++g){let x=i?r[0]:r[g],b=p?o[0]:o[g],C=u?s[0]:s[g];if(C===0)throw new Error("Requires delta != 0");let S;if(C>0&&b<x||C<0&&b>x)S=0;else if(S=Math.ceil(Math.abs((b-x)/C)),S>T_)throw new Error(`Requires ((limit - start) / delta) <= ${T_}`);m[g+1]=m[g]+S}let d=m[l],f=y.getArrayFromDType(t,d),h=0;for(let g=0;g<l;++g){let x=m[g+1]-m[g],b=i?r[0]:r[g],C=u?s[0]:s[g];for(let S=0;S<x;++S)f[h++]=b,b+=C}return[m,f]}var Do=w.RowPartitionType,iI=class r{constructor(e,t,o,n,s,a,i,p,u,c){this.shape=e,this.shapeShape=t,this.values=o,this.valuesShape=n,this.valuesDType=s,this.defaultValue=a,this.defaultValueShape=i,this.rowPartitionValues=p,this.rowPartitionValuesShapes=u,this.rowPartitionTypes=w.getRowPartitionTypesHelper(c),this.raggedRank=w.getRaggedRank(this.rowPartitionTypes)}getRowPartitionTypeByDimension(e){return this.rowPartitionTypes[0]===Do.FIRST_DIM_SIZE?this.rowPartitionTypes[e+1]:this.rowPartitionTypes[e]}getRowPartitionTensor(e){return this.rowPartitionTypes[0]===Do.FIRST_DIM_SIZE?this.rowPartitionValues[e+1]:this.rowPartitionValues[e]}getMaxWidth(e){let t=this.getRowPartitionTensor(e-1);switch(this.getRowPartitionTypeByDimension(e-1)){case Do.VALUE_ROWIDS:return r.getMaxWidthValueRowID(t);case Do.ROW_SPLITS:return r.getMaxWidthRowSplit(t);default:throw new Error(`Cannot handle partition type ${Do[this.getRowPartitionTypeByDimension(e-1)]}`)}}static getMaxWidthRowSplit(e){let t=e.length;if(t===0||t===1)return 0;let o=0;for(let n=0;n<t-1;++n){let s=e[n+1]-e[n];s>o&&(o=s)}return o}static getMaxWidthValueRowID(e){let t=e.length;if(t===0)return 0;let o=0,n=e[0],s=0;for(let a=1;a<t;++a){let i=e[a];i!==n&&(n=i,s=Math.max(a-o,s),o=a)}return Math.max(t-o,s)}tensorShapeFromTensor(e,t,o=!0){if(t.length===0){if(e[0]===-1)return[];throw new Error("The only valid scalar shape tensor is the fully unknown shape specified as -1.")}return E_(e,o)}calculateOutputSize(e){let t=this.valuesShape,o=this.defaultValueShape;w.validateDefaultValueShape(o,t);let n=this.tensorShapeFromTensor(this.shape,this.shapeShape),a=w.combineRaggedTensorToTensorShapes(this.raggedRank,n,t);a[0]<0&&(a[0]=e);for(let i=1;i<=this.raggedRank;++i)a[i]<0&&(a[i]=this.getMaxWidth(i));return a}calculateFirstParentOutputIndex(e,t,o){let n=Math.min(e,o),s=[],a=0;for(let i=0;i<n;++i,a+=t)s.push(a);for(let i=n;i<e;++i)s.push(-1);return y.assert(s.length===e,()=>"Final length of result must be equal to firstDimension."),s}calculateOutputIndexRowSplit(e,t,o,n){let s=e.length,a=[];for(let i=0;i<s-1;++i){let p=e[i+1]-e[i],u=Math.min(n,p),c=t[i];c===-1&&(u=0);for(let l=0;l<u;++l)a.push(c),c+=o;for(let l=0;l<p-u;++l)a.push(-1)}if(s>0&&a.length!==e[s-1])throw new Error("Invalid row split size.");return a}calculateOutputIndexValueRowID(e,t,o,n){let s=e.length,a=[];if(s===0)return[];let i=0,p=e[0];if(p>=t.length)throw new Error(`Got currentValueRowId=${p}, which is not less than ${t.length}`);let u=t[p];a.push(u);for(let c=1;c<s;++c){let l=e[c];if(l===p)u>=0&&(++i,i<n?u+=o:u=-1);else{if(i=0,p=l,l>=t.length)throw new Error(`Got nextValueRowId=${l} which is not less than ${t.length}`);u=t[l]}a.push(u)}if(a.length!==e.length)throw new Error("Invalid row ids.");return a}calculateOutputIndex(e,t,o,n){let s=this.getRowPartitionTensor(e),a=this.getRowPartitionTypeByDimension(e);switch(a){case Do.VALUE_ROWIDS:return this.calculateOutputIndexValueRowID(s,t,o,n);case Do.ROW_SPLITS:if(s.length-1>t.length)throw new Error(`Row partition size is greater than output size: ${s.length-1} > ${t.length}`);return this.calculateOutputIndexRowSplit(s,t,o,n);default:throw new Error(`Unsupported partition type: ${Do[a]}`)}}getFirstDimensionSize(){let e=this.rowPartitionValues[0];if(this.rowPartitionTypes.length===0)throw new Error("No row_partition_types given.");let t=this.rowPartitionTypes[0];switch(t){case Do.FIRST_DIM_SIZE:return e[0];case Do.VALUE_ROWIDS:throw new Error("Cannot handle VALUE_ROWIDS in first dimension.");case Do.ROW_SPLITS:return this.rowPartitionValuesShapes[0][0]-1;default:throw new Error(`Cannot handle type ${Do[t]}`)}}compute(){if(this.rowPartitionValues[0].length<=0)throw new Error("Invalid first partition input. Tensor requires at least one element.");let t=this.getFirstDimensionSize(),o=this.calculateOutputSize(t),n=new Array(this.raggedRank+1);n[n.length-1]=1;for(let p=n.length-2;p>=0;--p)n[p]=n[p+1]*o[p+1];let s=E_(o,!1),a=y.getArrayFromDType(this.valuesDType,y.sizeFromShape(s));if(n[0]*o[0]>0){let p=this.calculateFirstParentOutputIndex(t,n[0],o[0]);for(let u=1;u<=this.raggedRank;++u)p=this.calculateOutputIndex(u-1,p,n[u],o[u]);this.setOutput(this.raggedRank,p,a,s)}return[s,a]}setOutput(e,t,o,n){if(o.length===0)return;let s=this.values,a=o,i=n.slice();i=i.slice(e+1);let p=y.sizeFromShape(i),u=t.length,c=this.defaultValue;if(c.length!==p&&c.length!==1){let f=this.defaultValueShape;De(()=>{let h=W(c,f);c=su(h,i).dataSync()})}let l=0,m=0,d=0;for(let f=0;f<=u;++f){let h=f<u?t[f]:-1;if(h===d){++d;continue}if(m<d){let g=s.subarray(l*p),x=a.subarray(m*p),b=(d-m)*p;__(x,g,b)}if(f>=u){let g=o.length;h=Math.floor(g/p)}if(h>d)if(this.defaultValue.length===1)a.subarray(d*p,h*p).fill(this.defaultValue[0]),d=h;else for(;h>d;){let g=a.slice(d*p);__(g,c,p),++d}h<0?(l=f+1,m=d):(l=f,m=d,d=m+1)}}};function __(r,e,t){for(let o=0;o<t;o++)r[o]=e[o]}function E_(r,e){let t=[];for(let o of r){if(o<0){if(!e)throw new Error(`Dimension ${o} must be >= 0`);if(o<-1)throw new Error(`Dimension ${o} must be >= -1`);o=-1}t.push(o)}return t}function Af(r,e,t,o,n,s,a,i,p,u){return new iI(r,e,t,o,n,s,a,i,p,u).compute()}function up(r,e,t,o){let n=r===e,s=r<e&&t<0,a=e<r&&t>1;if(n||s||a)return y.makeZerosTypedArray(0,o);let i=Math.abs(Math.ceil((e-r)/t)),p=y.makeZerosTypedArray(i,o);e<r&&t===1&&(t=-1),p[0]=r;for(let u=1;u<p.length;u++)p[u]=p[u-1]+t;return p}var uI=jt(r=>1/Math.sqrt(r)),mY=Ar(ls,uI),$_={kernelName:ls,backendName:"cpu",kernelFunc:mY};function zs(r,e,t,o,n,s,a,i,p,u){let c=[o/n,n],l=r.values,m=e.values;if(o===0)return me(t,e.dtype);let d=p instanceof tt?p:me(c,e.dtype);typeof p=="string"||typeof p=="number"?d.values.fill(p):typeof p=="boolean"&&d.values.fill(+p);for(let f=0;f<s;f++){let h=[],g=0;for(let x=0;x<a;x++){let b=l[f*a+x];h.push(b),g+=b*i[x]}if(g<0||g>=o/n)throw new Error(`Invalid indices: ${h} does not index into ${t}`);for(let x=0;x<n;x++)u?d.values[g*n+x]+=m[f*n+x]:d.values[g*n+x]=e.rank===0?m[0]:m[f*n+x]}return d}var R_=jt(r=>1/(1+Math.exp(-r))),pI=Ie(bs,r=>1/(1+Math.exp(-r))),D_={kernelName:bs,backendName:"cpu",kernelFunc:pI};function pp(r,e,t,o,n){let s=pt.isSliceContinous(o,e,t),a=y.sizeFromShape(t),i=y.computeStrides(o);if(s){let l=pt.computeFlatOffset(e,i);return n==="string"?r.slice(l,l+a):r.subarray(l,l+a)}let p=n==="string"?w.fromUint8ToStringArray(r):r,u=me(o,n,p),c=me(t,n);for(let l=0;l<c.size;++l){let m=c.indexToLoc(l),d=m.map((f,h)=>f+e[h]);c.set(u.get(...d),...m)}return n==="string"?w.fromStringArrayToUint8(c.values):c.values}function Ao(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{begin:s,size:a}=o;Q(n,"slice");let[i,p]=pt.parseSliceParams(n,s,a);pt.assertParamsValid(n,i,p);let u=t.data.get(n.dataId).values,c=pp(u,i,p,n.shape,n.dtype);return t.makeTensorInfo(p,n.dtype,c)}var A_={kernelName:ha,backendName:"cpu",kernelFunc:Ao};function Ff(r,e,t,o,n,s,a){let i=e[0],p=s[0],u=new Array(p),c=new Array(i),l=e[1];if(p===0){if(i!==0)throw new Error(w.getSparseFillEmptyRowsIndicesDenseShapeMismatch(i));let g=y.getArrayFromDType(t,0),x=y.getArrayFromDType(n,0);return[g,[0,l],x,u,c]}let m=!0,d=0,f=new Array(p).fill(0);for(let g=0;g<i;++g){let x=r[g*l];if(x<0)throw new Error(w.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,x));if(x>=p)throw new Error(w.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,x,p));++f[x],m=m&&x>=d,d=x}let h=!0;for(let g=0;g<p;++g){let x=f[g]===0;u[g]=x,h=h&&!x,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(h&&m){let g=r,x=o;for(let b=0;b<i;++b)c[b]=b;return[g,[i,l],x,u,c]}else{let g=f[p-1],x=y.getArrayFromDType(t,g*l),b=y.getArrayFromDType(n,g),C=new Array(p).fill(0);for(let S=0;S<i;++S){let k=r[S*l],_=C[k],$=(k===0?0:f[k-1])+_;C[k]++;for(let R=0;R<l;++R)x[$*l+R]=r[S*l+R];b[$]=o[S],c[S]=$}for(let S=0;S<p;++S)if(C[S]===0){let _=S===0?0:f[S-1];x[_*l+0]=S;for(let $=1;$<l;++$)x[_*l+$]=0;b[_]=a}return[x,[g,l],b,u,c]}}function Pf(r,e,t,o,n){let s=y.sizeFromShape(o),a=e[0],i=n.length,p=[],u=1,c=-1;for(let g=0;g<i;++g){let x=n[g];if(x===-1){if(c!==-1)throw new Error(w.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(c,g));c=g,p.push(1)}else{if(x<0)throw new Error(w.getSparseReshapeNegativeOutputDimErrorMessage(g,x));u*=x,p.push(x)}}if(c!==-1){if(u<=0)throw new Error(w.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let g=Math.trunc(s/u);if(u*g!==s)throw new Error(w.getSparseReshapeInputOutputMultipleErrorMessage(o,p));p[c]=g}if(y.sizeFromShape(p)!==s)throw new Error(w.getSparseReshapeInputOutputMismatchErrorMessage(o,p));let m=o.length,d=[];if(m>0){d[m-1]=1;for(let g=m-2;g>=0;--g)d[g]=d[g+1]*o[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*p[g+1]}let h=y.getArrayFromDType(t,a*i);for(let g=0;g<a;++g){let x=0;for(let b=0;b<m;++b)x+=r[g*m+b]*d[b];for(let b=0;b<i;++b)h[g*i+b]=Math.trunc(x/f[b]),x%=f[b]}return[h,[a,i],p]}function Sc(r,e,t,o,n,s=!1,a=0){let i=o.length,p=[e[0],r.length/e[0]],u=p[1],l=i>0?n[i-1]+1:0;if(l<0)throw new Error(w.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=e.slice();m[0]=l;let d=m.reduce((C,S)=>C*S,1),f=y.getArrayFromDType(t,d);if(i===0)return l>0&&f.fill(a),[f,m];if(l<=0)throw new Error(w.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let h=0,g=1,x=0,b=n[h];for(;;){let C=0;if(g<i){if(C=n[g],b===C){++g;continue}if(b>=C)throw new Error(w.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(b<0||b>=l)throw new Error(w.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(b,l));b>x&&f.fill(a,x*u,b*u);for(let S=h;S<g;++S){let k=o[S];if(k<0||k>=p[0])throw new Error(w.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(S,o[S],p[0]));for(let _=0;_<u;_++)f[b*u+_]+=r[k*u+_]}if(s)for(let S=0;S<u;S++)f[b*u+S]/=g-h;if(h=g,++g,x=b+1,b=C,g>i)break}return x<l&&f.fill(a,x*u,l*u),[f,m]}var F_=jt(r=>Math.sqrt(r)),dY=Ie(ws,r=>Math.sqrt(r)),P_={kernelName:ws,backendName:"cpu",kernelFunc:dY};var cI=Ve((r,e)=>{let t=r-e;return t*t}),fY=Ye(ks,cI),O_={kernelName:ks,backendName:"cpu",kernelFunc:fY};var lI=jt((r,e)=>{let{pattern:t,replaceGlobal:o,rewrite:n}=e;return r.replace(new RegExp(t,o?"g":""),n)}),hY=Ar(Ru,lI),M_={kernelName:Ru,backendName:"cpu",kernelFunc:hY};function Of(r,e,t,o){let n=me(r,e.dtype);for(let s=0;s<n.size;s++){let a=n.indexToLoc(s),i=new Array(a.length);for(let p=0;p<i.length;p++)i[p]=a[p]*t[p]+o[p];n.set(e.get(...i),...a)}return n}var mI=class{constructor(e,t,o,n,s,a){this.separator=y.encodeString(e),this.nGramWidths=t,this.leftPad=y.encodeString(o),this.rightPad=y.encodeString(n),this.padWidth=s,this.preserveShort=a}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let o=this.getPadWidth(t);return Math.max(0,e+2*o-t+1)}createNGrams(e,t,o,n,s,a){for(let i=0;i<s;++i){let p=this.getPadWidth(a),u=Math.max(0,p-i),c=Math.max(0,p-(s-(i+1))),l=a-(u+c),m=t+(u>0?0:i-p),d=0;d+=u*this.leftPad.length;for(let b=0;b<l;++b)d+=e[m+b].length;d+=c*this.rightPad.length;let f=u+c+l-1;d+=f*this.separator.length,o[n+i]=new Uint8Array(d);let h=o[n+i],g=0,x=b=>b.forEach(C=>h[g++]=C);for(let b=0;b<u;++b)x(this.leftPad),x(this.separator);for(let b=0;b<l-1;++b)x(e[m+b]),x(this.separator);if(l>0){x(e[m+l-1]);for(let b=0;b<c;++b)x(this.separator),x(this.rightPad)}else{for(let b=0;b<c-1;++b)x(this.rightPad),x(this.separator);x(this.rightPad)}}}compute(e,t){let o=e.length,n=t.length;if(n>0){let p=t[0];if(p!==0)throw new Error(`First split value must be 0, got ${p}`);for(let u=1;u<n;++u){let c=t[u]>=p;if(c=c&&t[u]<=o,!c)throw new Error(`Invalid split value ${t[u]}, must be in [${p}, ${o}]`);p=t[u]}if(p!==o)throw new Error(`Last split value must be data size. Expected ${o}, got ${p}`)}let s=n-1,a=y.getArrayFromDType("int32",n);if(o===0||n===0){let p=new Array(o);for(let u=0;u<=s;++u)a[u]=0;return[p,a]}a[0]=0;for(let p=1;p<=s;++p){let u=t[p]-t[p-1],c=0;this.nGramWidths.forEach(l=>{c+=this.getNumNGrams(u,l)}),this.preserveShort&&u>0&&c===0&&(c=1),a[p]=a[p-1]+c}let i=new Array(a[s]);for(let p=0;p<s;++p){let u=t[p],c=a[p];if(this.nGramWidths.forEach(l=>{let m=t[p+1]-t[p],d=this.getNumNGrams(m,l);this.createNGrams(e,u,i,c,d,l),c+=d}),this.preserveShort&&c===a[p]){let l=t[p+1]-t[p];if(l===0)continue;let m=l+2*this.padWidth;this.createNGrams(e,u,i,c,1,m)}}return[i,a]}};function cp(r,e,t,o,n,s,a,i){return new mI(t,o,n,s,a,i).compute(r,e)}function gY(r,e,t,o){if(!r.length)return;if(e.length===0){for(let s=0;s<r.length;++s)o.push(r.subarray(s,s+1));return}if(e.length===1){let s=e[0],a=r.indexOf(s);for(;a!==-1;){let i=r.subarray(0,a);(!t||i.length!==0)&&o.push(i),r=r.subarray(a+1),a=r.indexOf(s)}(!t||r.length!==0)&&o.push(r);return}let n=0;for(let s=0;s<r.length+1;s++)if(s===r.length||e.indexOf(r[s])!==-1){let a=r.subarray(n,s);(!t||a.length!==0)&&o.push(a),n=s+1}}function lp(r,e,t){let o=r.length,n=[],s=0,a=0,i=new Array(o);for(let m=0;m<o;++m){let d=n.length;gY(r[m],e,t,n);let f=n.length-d;i[m]=f,s+=f,a=Math.max(a,f)}let p=y.getArrayFromDType("int32",s*2),u=new Array(s),c=[o,a],l=0;for(let m=0;m<o;++m)for(let d=0;d<i[m];++d)p[l*2]=m,p[l*2+1]=d,u[l]=n[l],++l;return[p,u,c]}function mp(r,e){let t=y.getArrayFromDType("int32",r.length);for(let o=0;o<r.length;++o)t[o]=y.fingerPrint64(r[o]).modulo(e).getLowBitsUnsigned();return t}var dI=Ve((r,e)=>r-e),xY=bc((r,e,t,o)=>({real:r-t,imag:e-o})),Vl=Ye(Ts,dI,xY),L_={kernelName:Ts,backendName:"cpu",kernelFunc:Vl};function Mf(r,e){let t=new Array(r.rank);for(let n=0;n<t.length;n++)t[n]=r.shape[n]*e[n];let o=me(t,r.dtype);for(let n=0;n<o.values.length;++n){let s=o.indexToLoc(n),a=new Array(r.rank);for(let p=0;p<a.length;p++)a[p]=s[p]%r.shape[p];let i=r.locToIndex(a);o.values[n]=r.values[i]}return o}var Wl=(r,e)=>{let t=e.value-r.value;return t===0?r.index-e.index:t};function B_(r,e,t=0,o=r.length-1){for(;o>t;){if(o-t>600){let i=o-t+1,p=e-t+1,u=Math.log(i),c=.5*Math.exp(2*u/3),l=.5*Math.sqrt(u*c*(i-c)/i)*Math.sign(p-i/2),m=Math.max(t,Math.floor(e-p*c/i+l)),d=Math.min(o,Math.floor(e+(i-p)*c/i+l));B_(r,e,m,d)}let n=r[e],s=t,a=o;for(y.swap(r,t,e),Wl(r[o],n)>0&&y.swap(r,t,o);s<a;){for(y.swap(r,s,a),s++,a--;Wl(r[s],n)<0;)s=s+1;for(;Wl(r[a],n)>0;)a=a-1}Wl(r[t],n)===0?y.swap(r,t,a):(a=a+1,y.swap(r,a,o)),a<=e&&(t=a+1),e<=a&&(o=a-1)}}function Lf(r,e,t,o,n){let s=e[e.length-1],[a,i]=[r.length/s,s],p=y.getTypedArrayFromDType(t,a*o),u=y.getTypedArrayFromDType("int32",a*o);for(let l=0;l<a;l++){let m=l*i,d=r.subarray(m,m+i),f=new Array(d.length);d.forEach((b,C)=>f[C]={value:b,index:C}),o<f.length&&(B_(f,o),f=f.slice(0,o)),n&&f.sort(Wl);let h=l*o,g=p.subarray(h,h+o),x=u.subarray(h,h+o);for(let b=0;b<o;b++)g[b]=f[b].value,x[b]=f[b].index}let c=e.slice();return c[c.length-1]=o,[me(c,t,p),me(c,"int32",u)]}function dp(r,e,t,o){let n=y.parseAxisParam(e,t)[0],s=[1,t[0],1];for(let f=0;f<n;f++)s[0]*=t[f];s[1]=t[n];for(let f=n+1;f<t.length;f++)s[2]*=t[f];let a=new Map,i=new Int32Array(t[n]),p=new tt(s,o,r),u=[],c=s[0]===1&&s[2]===1;for(let f=0;f<t[n];f++){let h;if(c)h=r[f].toString();else{let x=[];for(let b=0;b<s[0];b++)for(let C=0;C<s[2];C++)x.push(p.get(b,f,C));h=x.join(",")}let g=a.get(h);if(g!=null)i[f]=g;else{let x=a.size;a.set(h,x),i[f]=x,u.push(f)}}let l=s.slice();l[1]=a.size;let m=new tt(l,o);u.forEach((f,h)=>{for(let g=0;g<s[0];g++)for(let x=0;x<s[2];x++)m.set(p.get(g,f,x),g,h,x)});let d=t.slice();return d[n]=l[1],{outputValues:m.values,outputShape:d,indices:i}}var yY="4.22.0";tu("cpu",()=>new xc,1);var fI=Ie(hn,r=>r>=0?r:Math.exp(r)-1),z_={kernelName:hn,backendName:"cpu",kernelFunc:fI};function hI(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{alpha:s}=o;Q([n],"leakyRelu");let a=y.sizeFromShape(n.shape),i=t.data.get(n.dataId).values,p=y.getTypedArrayFromDType("float32",a);for(let u=0;u<i.length;u++)p[u]=i[u]<0?s*i[u]:i[u];return t.makeTensorInfo(n.shape,"float32",p)}var V_={kernelName:$n,backendName:"cpu",kernelFunc:hI};var bY=Ve((r,e)=>r<0?e*r:r);function gI(r){let{inputs:e,backend:t}=r,{x:o,alpha:n}=e;Q([o,n],"prelu");let s=t.data.get(o.dataId).values,a=t.data.get(n.dataId).values,[i,p]=bY(o.shape,n.shape,s,a,"float32");return t.makeTensorInfo(p,"float32",i)}var W_={kernelName:rs,backendName:"cpu",kernelFunc:gI};var xI=Ie(ss,r=>Math.max(0,r)),U_={kernelName:ss,backendName:"cpu",kernelFunc:xI};var yI=Ie(us,r=>Math.min(Math.max(0,r),6)),G_={kernelName:us,backendName:"cpu",kernelFunc:yI};function fp(r,e,t,o,n){if(t==="linear")return lr({inputs:{x:e},backend:r});if(t==="relu")return xI({inputs:{x:e},backend:r});if(t==="elu")return fI({inputs:{x:e},backend:r});if(t==="relu6")return yI({inputs:{x:e},backend:r});if(t==="prelu")return gI({inputs:{x:e,alpha:o},backend:r});if(t==="leakyrelu")return hI({inputs:{x:e},backend:r,attrs:{alpha:n}});if(t==="sigmoid")return pI({inputs:{x:e},backend:r});throw new Error(`Activation ${t} has not been implemented for the CPU backend.`)}function We(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{shape:s}=o,a=y.sizeFromShape(n.shape),i=y.inferFromImplicitShape(s,a),p=y.sizeFromShape(i);y.assert(a===p,()=>`The new shape (${i}) has ${p} elements and the old shape (${n.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),t.incRef(n.dataId);let u=t.data.get(n.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,l=u.complexTensorInfos.imag;c.shape=i,l.shape=i}return{dataId:n.dataId,shape:i,dtype:n.dtype}}var H_={kernelName:da,backendName:"cpu",kernelFunc:We};function bI(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s}=e,{transposeA:a,transposeB:i}=o;Q([n,s],"matMul");let p=n.shape.length,u=s.shape.length,c=a?n.shape[p-2]:n.shape[p-1],l=i?s.shape[u-1]:s.shape[u-2],m=a?n.shape[p-1]:n.shape[p-2],d=i?s.shape[u-2]:s.shape[u-1],f=n.shape.slice(0,-2),h=s.shape.slice(0,-2),g=y.sizeFromShape(f),x=y.sizeFromShape(h),C=Sr.assertAndGetBroadcastShape(n.shape.slice(0,-2),s.shape.slice(0,-2)).concat([m,d]);y.assert(c===l,()=>`Error in matMul: inner shapes (${c}) and (${l}) of Tensors with shapes ${n.shape} and ${s.shape} and transposeA=${a} and transposeB=${i} must match.`);let S=a?[g,c,m]:[g,m,c],k=i?[x,d,l]:[x,l,d],_=We({inputs:{x:n},backend:t,attrs:{shape:S}}),$=We({inputs:{x:s},backend:t,attrs:{shape:k}}),R=a?_.shape[1]:_.shape[2],D=a?_.shape[2]:_.shape[1],P=i?$.shape[1]:$.shape[2],O=Math.max(g,x),M=t.data.get(_.dataId).values,L=t.data.get($.dataId).values,B=y.computeStrides(_.shape),z=y.computeStrides($.shape),[U,j,q]=a?[B[0],1,B[1]]:[B[0],B[1],1],[Y,J,re]=i?[1,z[1],z[0]]:[z[1],1,z[0]],ne=D*P,ee=me([O,D,P],_.dtype),oe=ee.values,ie=t.blockSize;for(let le=0;le<O;le++){let be=le%g,_e=le%x;for(let ve=0;ve<D;ve+=ie){let Fe=Math.min(ve+ie,D);for(let Pe=0;Pe<P;Pe+=ie){let st=Math.min(Pe+ie,P);for(let ct=0;ct<R;ct+=ie){let He=Math.min(ct+ie,R);for(let lt=ve;lt<Fe;lt++)for(let it=Pe;it<st;it++){let ht=0;for(let gt=ct;gt<He;gt++){let Lr=M[be*U+lt*j+gt*q],Mt=L[gt*Y+it*J+_e*re];ht+=Lr*Mt}oe[le*ne+(lt*P+it)]+=ht}}}}}return t.disposeIntermediateTensorInfo(_),t.disposeIntermediateTensorInfo($),t.makeTensorInfo(C,ee.dtype,ee.values)}var K_={kernelName:Zo,backendName:"cpu",kernelFunc:bI};function CY(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s,bias:a,preluActivationWeights:i}=e,{transposeA:p,transposeB:u,activation:c,leakyreluAlpha:l}=o,m,d,f,h=[];m=bI({inputs:{a:n,b:s},attrs:{transposeA:p,transposeB:u},backend:t}),a&&(d=Pa({inputs:{a:m,b:a},backend:t}),h.push(m),m=d),c&&(f=fp(t,m,c,i,l),h.push(m),m=f);for(let x of h)t.disposeIntermediateTensorInfo(x);return m}var q_={kernelName:So,backendName:"cpu",kernelFunc:CY};var wY=Ie(Vo,r=>Math.acos(r)),j_={kernelName:Vo,backendName:"cpu",kernelFunc:wY};var SY=Ie(Wo,r=>Math.acosh(r)),X_={kernelName:Wo,backendName:"cpu",kernelFunc:SY};function IY(r){let{inputs:e,backend:t}=r,o=e;Q(e,"addN");let n=o.map(i=>t.data.get(i.dataId).values),s=me(o[0].shape,o[0].dtype),a=s.values;for(let i=0;i<o.length;i++){let p=n[i];for(let u=0;u<a.length;u++)a[u]+=p[u]}return t.makeTensorInfo(s.shape,s.dtype,s.values)}var Y_={kernelName:Uo,backendName:"cpu",kernelFunc:IY};function vY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;Q(n,"all");let i=y.parseAxisParam(s,n.shape),p=i,u=w.getAxesPermutation(p,n.shape.length),c=n;u!=null&&(c=St({inputs:{x:n},backend:t,attrs:{perm:u}}),p=w.getInnerMostAxes(p.length,n.shape.length)),w.assertAxesAreInnerMostDims("all",p,c.shape.length);let[l,m]=w.computeOutAndReduceShapes(c.shape,p),d=y.sizeFromShape(m),f=y.makeZerosTypedArray(y.sizeFromShape(l),c.dtype),h=t.data.get(c.dataId).values;for(let x=0;x<f.length;++x){let b=x*d,C=h[b];for(let S=0;S<d;++S){let k=h[b+S];C=C&&k}f[x]=C}u!=null&&t.disposeIntermediateTensorInfo(c);let g=t.makeTensorInfo(l,c.dtype,f);if(a){let x=w.expandShapeToKeepDim(l,i),b=We({inputs:{x:g},backend:t,attrs:{shape:x}});return t.disposeIntermediateTensorInfo(g),b}return g}var Q_={kernelName:Go,backendName:"cpu",kernelFunc:vY};function kY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;Q(n,"any");let i=y.parseAxisParam(s,n.shape),p=i,u=w.getAxesPermutation(p,n.shape.length),c=n;u!=null&&(c=St({inputs:{x:n},backend:t,attrs:{perm:u}}),p=w.getInnerMostAxes(p.length,n.shape.length)),w.assertAxesAreInnerMostDims("any",p,c.shape.length);let[l,m]=w.computeOutAndReduceShapes(c.shape,p),d=y.sizeFromShape(m),f=y.makeZerosTypedArray(y.sizeFromShape(l),c.dtype),h=t.data.get(c.dataId).values;for(let x=0;x<f.length;++x){let b=x*d,C=h[b];for(let S=0;S<d;++S){let k=h[b+S];C=C||k}f[x]=C}u!=null&&t.disposeIntermediateTensorInfo(c);let g=t.makeTensorInfo(l,c.dtype,f);if(a){let x=w.expandShapeToKeepDim(l,i),b=We({inputs:{x:g},backend:t,attrs:{shape:x}});return t.disposeIntermediateTensorInfo(g),b}return g}var Z_={kernelName:Ho,backendName:"cpu",kernelFunc:kY};function NY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s}=o;Q(n,"argMax");let a=y.parseAxisParam(s,n.shape),i=w.getAxesPermutation(a,n.shape.length),p=n,u=[];i!=null&&(p=St({inputs:{x:n},backend:t,attrs:{perm:i}}),u.push(p),a=w.getInnerMostAxes(a.length,p.shape.length)),a=[a[0]],w.assertAxesAreInnerMostDims("argMax",a,p.shape.length);let[c,l]=w.computeOutAndReduceShapes(p.shape,a),m=y.sizeFromShape(c),d=y.makeZerosTypedArray(m,"int32"),f=y.sizeFromShape(l),h=t.data.get(p.dataId).values;for(let g=0;g<d.length;++g){let x=g*f,b=h[x],C=0;for(let S=0;S<f;++S){let k=h[x+S];k>b&&(b=k,C=S)}d[g]=C}return u.forEach(g=>t.disposeIntermediateTensorInfo(g)),t.makeTensorInfo(c,"int32",d)}var J_={kernelName:Ys,backendName:"cpu",kernelFunc:NY};function TY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s}=o;Q(n,"argMin");let a=y.parseAxisParam(s,n.shape),i=w.getAxesPermutation(a,n.shape.length),p=n,u=[];i!=null&&(p=St({inputs:{x:n},backend:t,attrs:{perm:i}}),u.push(p),a=w.getInnerMostAxes(a.length,p.shape.length)),a=[a[0]],w.assertAxesAreInnerMostDims("argMin",a,p.shape.length);let[c,l]=w.computeOutAndReduceShapes(p.shape,a),m=y.sizeFromShape(c),d=y.makeZerosTypedArray(m,"int32"),f=y.sizeFromShape(l),h=t.data.get(p.dataId).values;for(let g=0;g<d.length;++g){let x=g*f,b=h[x],C=0;for(let S=0;S<f;++S){let k=h[x+S];k<b&&(b=k,C=S)}d[g]=C}return u.forEach(g=>t.disposeIntermediateTensorInfo(g)),t.makeTensorInfo(c,"int32",d)}var eE={kernelName:Qs,backendName:"cpu",kernelFunc:TY};var _Y=Ie(Ko,r=>Math.asin(r)),tE={kernelName:Ko,backendName:"cpu",kernelFunc:_Y};var EY=Ie(qo,r=>Math.asinh(r)),rE={kernelName:qo,backendName:"cpu",kernelFunc:EY};var $Y=Ie(jo,r=>Math.atan(r)),oE={kernelName:jo,backendName:"cpu",kernelFunc:$Y};var RY=Ve((r,e)=>Math.atan2(r,e)),DY=Ye(Yo,RY),nE={kernelName:Yo,backendName:"cpu",kernelFunc:DY};var AY=Ie(Xo,r=>Math.atanh(r)),sE={kernelName:Xo,backendName:"cpu",kernelFunc:AY};function vc(r,e,t,o,n,s){let a=n.strideHeight,i=n.strideWidth,p=n.dilationHeight,u=n.dilationWidth,c=n.effectiveFilterHeight,l=n.effectiveFilterWidth,m=n.padInfo.top,d=n.padInfo.left,f=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,h=me(n.outShape,t),g=h.values,x=n.outShape[1]*n.outShape[2]*n.outShape[3],b=n.outShape[2]*n.outShape[3],C=n.outShape[3];for(let S=0;S<n.batchSize;++S){let k=S*x,_=S*o[0];for(let $=0;$<n.inChannels;++$)for(let R=0;R<n.outHeight;++R){let D=R*a-m,P=Math.max(0,D),O=Math.min(n.inHeight,c+D),M=k+R*b;for(let L=0;L<n.outWidth;++L){let B=L*i-d,z=Math.max(0,B),U=Math.min(n.inWidth,l+B),j=f,q=0,Y=0;for(let re=P;re<O;re+=p){let ne=_+re*o[1];for(let ee=z;ee<U;ee+=u){let oe=ne+ee*o[2],ie=r[oe+$];s==="max"&&ie>j?j=ie:s==="avg"&&(q+=ie,Y++)}if(isNaN(j))break}let J=M+L*C+$;g[J]=s==="avg"?q/Y:j}}}return h}function Bf(r,e,t,o,n=!1,s=!1){let a=me(o.outShape,"int32"),i=o.strideHeight,p=o.strideWidth,u=o.dilationHeight,c=o.dilationWidth,l=o.effectiveFilterHeight,m=o.effectiveFilterWidth,d=o.padInfo.top,f=o.padInfo.left,h=me(e,t,r);for(let g=0;g<o.batchSize;++g)for(let x=0;x<o.inChannels;++x)for(let b=0;b<o.outHeight;++b){let C=b*i-d,S=C;for(;S<0;)S+=u;let k=Math.min(o.inHeight,l+C);for(let _=0;_<o.outWidth;++_){let $=_*p-f,R=$;for(;R<0;)R+=c;let D=Math.min(o.inWidth,m+$),P=Number.NEGATIVE_INFINITY,O=-1;for(let M=S;M<k;M+=u){let L=M-C;for(let B=R;B<D;B+=c){let z=B-$,U=h.get(g,M,B,x);U>P&&(P=U,n?O=s?((g*o.inHeight+M)*o.inWidth+B)*o.inChannels+x:(M*o.inWidth+B)*o.inChannels+x:O=L*m+z)}}a.set(O,g,b,_,x)}}return a}function zf(r,e,t,o,n,s){let a=n.strideDepth,i=n.strideHeight,p=n.strideWidth,u=n.dilationDepth,c=n.dilationHeight,l=n.dilationWidth,m=n.effectiveFilterDepth,d=n.effectiveFilterHeight,f=n.effectiveFilterWidth,h=n.padInfo.front,g=n.padInfo.top,x=n.padInfo.left,b=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,C=me(n.outShape,t),S=C.values,k=n.outShape[1]*n.outShape[2]*n.outShape[3]*n.outShape[4],_=n.outShape[2]*n.outShape[3]*n.outShape[4],$=n.outShape[3]*n.outShape[4],R=n.outShape[4];for(let D=0;D<n.batchSize;++D){let P=D*k,O=D*o[0];for(let M=0;M<n.inChannels;++M)for(let L=0;L<n.outDepth;++L){let B=L*a-h,z=B;for(;z<0;)z+=u;let U=Math.min(n.inDepth,m+B),j=P+L*_;for(let q=0;q<n.outHeight;++q){let Y=q*i-g,J=Y;for(;J<0;)J+=c;let re=Math.min(n.inHeight,d+Y),ne=j+q*$;for(let ee=0;ee<n.outWidth;++ee){let oe=ee*p-x,ie=oe;for(;ie<0;)ie+=l;let le=Math.min(n.inWidth,f+oe),be=ne+ee*R,_e=b,ve=0,Fe=0;for(let st=z;st<U;st+=u){let ct=O+st*o[1];for(let He=J;He<re;He+=c){let lt=ct+He*o[2];for(let it=ie;it<le;it+=l){let ht=lt+it*o[3],gt=r[ht+M];if(s==="max"&&gt>_e?_e=gt:s==="avg"&&(ve+=gt,Fe++),isNaN(_e))break}if(isNaN(_e))break}if(isNaN(_e))break}let Pe=be+M;S[Pe]=s==="avg"?ve/Math.max(Fe,1):_e}}}}return C}function aE(r,e){let t=me(e.outShape,"int32"),o=e.strideDepth,n=e.strideHeight,s=e.strideWidth,a=e.dilationDepth,i=e.dilationHeight,p=e.dilationWidth,u=e.effectiveFilterDepth,c=e.effectiveFilterHeight,l=e.effectiveFilterWidth,m=e.padInfo.front,d=e.padInfo.top,f=e.padInfo.left;for(let h=0;h<e.batchSize;++h)for(let g=0;g<e.inChannels;++g)for(let x=0;x<e.outDepth;++x){let b=x*o-m,C=b;for(;C<0;)C+=a;let S=Math.min(e.inDepth,u+b);for(let k=0;k<e.outHeight;++k){let _=k*n-d,$=_;for(;$<0;)$+=i;let R=Math.min(e.inHeight,c+_);for(let D=0;D<e.outWidth;++D){let P=D*s-f,O=P;for(;O<0;)O+=p;let M=Math.min(e.inWidth,l+P),L=Number.NEGATIVE_INFINITY,B=-1;for(let z=C;z<S;z+=a){let U=z-b;for(let j=$;j<R;j+=i){let q=j-_;for(let Y=O;Y<M;Y+=p){let J=Y-P,re=r.get(h,z,j,Y,g);re>=L&&(L=re,B=U*c*l+q*c+J)}}}t.set(B,h,x,k,D,g)}}}return t}function FY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e;Q(n,"avgPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:p}=o,u=1;y.assert(w.eitherStridesOrDilationsAreOne(a,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=w.computePool2DInfo(n.shape,s,a,u,i,p),l;if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))l=lr({inputs:{x:n},backend:t});else{let m=t.data.get(n.dataId).values,d=y.computeStrides(n.shape),f=vc(m,n.shape,n.dtype,d,c,"avg");l=t.makeTensorInfo(c.outShape,n.dtype,f.values)}return l}var iE={kernelName:Qo,backendName:"cpu",kernelFunc:FY};function PY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:p,dataFormat:u}=o;Q(n,"avgPool3d");let c=w.computePool3DInfo(n.shape,s,a,1,i,p,u),l=t.data.get(n.dataId).values,m=zf(l,n.shape,n.dtype,y.computeStrides(n.shape),c,"avg");return t.makeTensorInfo(m.shape,"float32",m.values)}var uE={kernelName:Zs,backendName:"cpu",kernelFunc:PY};function OY(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,{filterSize:a,strides:i,pad:p,dimRoundingMode:u}=o;Q([n,s],"avgPool3DGrad");let c=w.computePool3DInfo(s.shape,a,i,1,p,u),l=c.strideDepth,m=c.strideHeight,d=c.strideWidth,f=c.filterDepth,h=c.filterHeight,g=c.filterWidth,x=c.dilationDepth,b=c.dilationHeight,C=c.dilationWidth,S=c.effectiveFilterDepth,k=c.effectiveFilterHeight,_=c.effectiveFilterWidth,$=S-1-c.padInfo.front,R=_-1-c.padInfo.left,D=k-1-c.padInfo.top,P=me(s.shape,"float32"),O=1/(f*h*g),M=t.bufferSync(n);for(let L=0;L<c.batchSize;++L)for(let B=0;B<c.inChannels;++B)for(let z=0;z<c.inDepth;++z)for(let U=0;U<c.inHeight;++U)for(let j=0;j<c.inWidth;++j){let q=z-$,Y=U-D,J=j-R,re=0;for(let ne=0;ne<S;ne+=x){let ee=(q+ne)/l;if(!(ee<0||ee>=c.outDepth||Math.floor(ee)!==ee))for(let oe=0;oe<k;oe+=b){let ie=(Y+oe)/m;if(!(ie<0||ie>=c.outHeight||Math.floor(ie)!==ie))for(let le=0;le<_;le+=C){let be=(J+le)/d;if(be<0||be>=c.outWidth||Math.floor(be)!==be)continue;let _e=M.get(L,ee,ie,be,B);re+=_e}}}P.set(re*O,L,z,U,j,B)}return t.makeTensorInfo(P.shape,P.dtype,P.values)}var pE={kernelName:Ri,backendName:"cpu",kernelFunc:OY};function MY(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s;Q([n,s],"avgPoolGrad");let{filterSize:i,strides:p,pad:u}=o,c=w.computePool2DInfo(a.shape,i,p,1,u),l=c.strideHeight,m=c.strideWidth,d=c.filterHeight,f=c.filterWidth,h=c.dilationHeight,g=c.dilationWidth,x=c.effectiveFilterHeight,b=c.effectiveFilterWidth,C=b-1-c.padInfo.left,S=x-1-c.padInfo.top,k=me(a.shape,"float32"),_=1/(d*f),$=t.data.get(n.dataId).values,R=me(n.shape,"float32",$);for(let D=0;D<c.batchSize;++D)for(let P=0;P<c.inChannels;++P)for(let O=0;O<c.inHeight;++O)for(let M=0;M<c.inWidth;++M){let L=O-S,B=M-C,z=0;for(let U=0;U<x;U+=h){let j=(L+U)/l;if(!(j<0||j>=c.outHeight||Math.floor(j)!==j))for(let q=0;q<b;q+=g){let Y=(B+q)/m;if(Y<0||Y>=c.outWidth||Math.floor(Y)!==Y)continue;let J=R.get(D,j,Y,P);z+=J}}k.set(z*_,D,O,M,P)}return t.makeTensorInfo(k.shape,k.dtype,k.values)}var cE={kernelName:$i,backendName:"cpu",kernelFunc:MY};function LY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,scale:s,offset:a,mean:i,variance:p}=e;y.assert(i.shape.length===p.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),y.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),y.assert(s==null||i.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Q([n,i,p,s,a],"batchNorm");let{varianceEpsilon:u}=o;u==null&&(u=.001);let c=t.data.get(n.dataId).values,l=t.data.get(i.dataId).values,m=t.data.get(p.dataId).values,d=s?t.data.get(s.dataId).values:new Float32Array([1]),f=a?t.data.get(a.dataId).values:new Float32Array([0]),h=new Float32Array(c.length),g=f.length,x=d.length,b=m.length,C=l.length,S=0,k=0,_=0,$=0;for(let R=0;R<c.length;++R)h[R]=f[S++]+(c[R]-l[k++])*d[_++]/Math.sqrt(m[$++]+u),S>=g&&(S=0),k>=C&&(k=0),_>=x&&(_=0),$>=b&&($=0);return t.makeTensorInfo(n.shape,n.dtype,h)}var lE={kernelName:In,backendName:"cpu",kernelFunc:LY};function BY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,crops:a}=o;Q([n],"batchToSpaceND");let i=s.reduce((x,b)=>x*b),p=w.getReshaped(n.shape,s,i),u=w.getPermuted(p.length,s.length),c=w.getReshapedPermuted(n.shape,s,i),l=w.getSliceBeginCoords(a,s.length),m=w.getSliceSize(c,a,s.length),d=We({inputs:{x:n},backend:t,attrs:{shape:p}}),f=St({inputs:{x:d},backend:t,attrs:{perm:u}}),h=We({inputs:{x:f},backend:t,attrs:{shape:c}}),g=Ao({inputs:{x:h},backend:t,attrs:{begin:l,size:m}});return t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(h),g}var mE={kernelName:Js,backendName:"cpu",kernelFunc:BY};function zY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,weights:s}=e,{size:a}=o,i=t.data.get(n.dataId).values,p=t.data.get(s.dataId).values,u=Cc(i,p,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,u)}var dE={kernelName:Jo,backendName:"cpu",kernelFunc:zY};function VY(r){let{inputs:e,backend:t}=r,{s0:o,s1:n}=e,s=t.data.get(o.dataId).values,a=t.data.get(n.dataId).values,i=w.assertAndGetBroadcastShape(Array.from(s),Array.from(a));return t.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var fE={kernelName:ea,backendName:"cpu",kernelFunc:VY};var WY=Ie(bo,(r,e)=>{let t=e;return r>t.clipValueMax?t.clipValueMax:r<t.clipValueMin?t.clipValueMin:r}),hE={kernelName:bo,backendName:"cpu",kernelFunc:WY};var UY=r=>{let{x:e}=r.inputs,t=r.backend,o=new Float32Array(y.sizeFromShape(e.shape)),n=t.data.get(e.dataId),s=n.complexTensorInfos.real,a=n.complexTensorInfos.imag,i=t.data.get(s.dataId).values,p=t.data.get(a.dataId).values;for(let u=0;u<i.length;u++){let c=i[u],l=p[u];o[u]=Math.hypot(c,l)}return t.makeOutput(o,e.shape,"float32")},gE={kernelName:Ai,backendName:"cpu",kernelFunc:UY};function Oa(r){let{inputs:e,backend:t}=r,{input:o}=e,n=t.data.get(o.dataId).complexTensorInfos.imag,s=t.data.get(n.dataId).values;return t.makeTensorInfo(n.shape,n.dtype,s)}var xE={kernelName:Wi,backendName:"cpu",kernelFunc:Oa};function hu(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o,s=y.parseAxisParam(n,e[0].shape)[0],a=e.map(h=>h.shape);w.assertParamsConsistent(a,s);let i=w.computeOutShape(e.map(h=>h.shape),s);if(y.sizeFromShape(i)===0)return t.makeTensorInfo(i,e[0].dtype,[]);let p=e.filter(h=>y.sizeFromShape(h.shape)>0);if(p.length===1)return lr({inputs:{x:p[0]},backend:t});if(p[0].dtype==="complex64"){let h=p.map(S=>$o({inputs:{input:S},backend:t})),g=p.map(S=>Oa({inputs:{input:S},backend:t})),x=hu({inputs:h,backend:t,attrs:{axis:s}}),b=hu({inputs:g,backend:t,attrs:{axis:s}}),C=Ht({inputs:{real:x,imag:b},backend:t});return h.forEach(S=>t.disposeIntermediateTensorInfo(S)),g.forEach(S=>t.disposeIntermediateTensorInfo(S)),t.disposeIntermediateTensorInfo(x),t.disposeIntermediateTensorInfo(b),C}let u=p.map(h=>{let x=[-1,y.sizeFromShape(h.shape.slice(s))];return We({inputs:{x:h},backend:t,attrs:{shape:x}})}),c=u.map(h=>({vals:t.data.get(h.dataId).values,shape:h.shape}));i=w.computeOutShape(u.map(h=>h.shape),1);let l=u[0].shape[0]===1,m=ap(c,i,e[0].dtype,l),d=w.computeOutShape(p.map(h=>h.shape),s),f=t.makeTensorInfo(d,e[0].dtype,m);return u.forEach(h=>t.disposeIntermediateTensorInfo(h)),f}var yE={kernelName:ta,backendName:"cpu",kernelFunc:hu};function CI(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dataFormat:p,dilations:u,dimRoundingMode:c}=o;Q([n,s],"conv2d");let l=w.convertConv2DDataFormat(p),m=w.computeConv2DInfo(n.shape,s.shape,a,u,i,c,!1,l),d=m.filterHeight,f=m.filterWidth,h=m.dilationHeight,g=m.dilationWidth,x=m.padInfo.left,b=m.padInfo.top,C=m.dataFormat==="channelsLast",S=new tt(m.outShape,n.dtype),k=y.computeStrides(n.shape),_=y.computeStrides(s.shape),$=k[0],R=C?k[1]:k[2],D=C?k[2]:1,P=C?1:k[1],O=S.strides[0],M=C?S.strides[1]:S.strides[2],L=C?S.strides[2]:1,B=C?1:S.strides[1],z=t.data.get(n.dataId).values,U=t.data.get(s.dataId).values,j=S.values;for(let q=0;q<m.batchSize;++q){let Y=q*$,J=q*O;for(let re=0;re<m.outHeight;++re){let ne=J+re*M,ee=re*m.strideHeight-b;for(let oe=0;oe<d;++oe){let ie=ee+oe*h;if(ie<0||ie>=m.inHeight)continue;let le=oe*_[0],be=Y+ie*R;for(let _e=0;_e<m.outWidth;++_e){let ve=ne+_e*L,Fe=_e*m.strideWidth-x;for(let Pe=0;Pe<f;++Pe){let st=Fe+Pe*g;if(st<0||st>=m.inWidth)continue;let ct=le+Pe*_[1],He=be+st*D,lt=ct;for(let it=0;it<m.inChannels;++it){let ht=z[He+it*P];for(let gt=0;gt<m.outChannels;++gt)j[ve+gt*B]+=ht*U[lt+gt];lt+=m.outChannels}}}}}}return t.makeTensorInfo(S.shape,S.dtype,j)}var bE={kernelName:tn,backendName:"cpu",kernelFunc:CI};function GY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,pad:i,dataFormat:p,dimRoundingMode:u,filterShape:c}=o;Q([n,s],"conv2dBackpropFilter");let l=w.convertConv2DDataFormat(p),m=w.computeConv2DInfo(n.shape,c,a,1,i,u,!1,l),{strideHeight:d,strideWidth:f,filterHeight:h,filterWidth:g}=m,x=m.dataFormat==="channelsLast",b=new tt(m.filterShape,"float32"),C=m.padInfo.left,S=m.padInfo.top,k=t.data.get(n.dataId).values,_=t.data.get(s.dataId).values,$=new tt(n.shape,n.dtype,k),R=new tt(s.shape,s.dtype,_);for(let D=0;D<h;++D){let P=Math.max(0,Math.ceil((S-D)/d)),O=Math.min(m.outHeight,(m.inHeight+S-D)/d);for(let M=0;M<g;++M){let L=Math.max(0,Math.ceil((C-M)/f)),B=Math.min(m.outWidth,(m.inWidth+C-M)/f);for(let z=0;z<m.inChannels;++z)for(let U=0;U<m.outChannels;++U){let j=0;for(let q=0;q<m.batchSize;++q)for(let Y=P;Y<O;++Y){let J=D+Y*d-S;for(let re=L;re<B;++re){let ne=M+re*f-C;x?j+=$.get(q,J,ne,z)*R.get(q,Y,re,U):j+=$.get(q,z,J,ne)*R.get(q,U,Y,re)}}b.set(j,D,M,z,U)}}}return t.makeTensorInfo(b.shape,b.dtype,b.values)}var CE={kernelName:Fi,backendName:"cpu",kernelFunc:GY};function HY(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{inputShape:a,strides:i,pad:p,dataFormat:u,dimRoundingMode:c}=o;Q([n,s],"conv2dBackpropInput");let l=y.computeStrides(s.shape),m=y.computeStrides(n.shape),d=w.convertConv2DDataFormat(u),f=w.computeConv2DInfo(a,s.shape,i,1,p,c,!1,d),h=new tt(f.inShape,"float32"),g=h.values,x=t.data.get(n.dataId).values,b=t.data.get(s.dataId).values,[C,S,k]=l,{batchSize:_,filterHeight:$,filterWidth:R,inChannels:D,inHeight:P,inWidth:O,outChannels:M,outHeight:L,outWidth:B,strideHeight:z,strideWidth:U}=f;d=f.dataFormat;let j=$-1-f.padInfo.top,q=R-1-f.padInfo.left,Y=d==="channelsLast",J=h.strides[0],re=Y?h.strides[1]:h.strides[2],ne=Y?h.strides[2]:1,ee=Y?1:h.strides[1],oe=m[0],ie=Y?m[1]:m[2],le=Y?m[2]:1,be=Y?1:m[1];for(let _e=0;_e<_;++_e)for(let ve=0;ve<D;++ve)for(let Fe=0;Fe<P;++Fe){let Pe=Fe-j,st=Math.max(0,Math.ceil(Pe/z)),ct=Math.min(L,($+Pe)/z);for(let He=0;He<O;++He){let lt=He-q,it=Math.max(0,Math.ceil(lt/U)),ht=Math.min(B,(R+lt)/U),gt=0;for(let Mt=st;Mt<ct;++Mt){let to=Mt*z-Pe;for(let rr=it;rr<ht;++rr){let Tt=rr*U-lt,or=oe*_e+ie*Mt+le*rr,nr=C*($-1-to)+S*(R-1-Tt)+k*ve;for(let ro=0;ro<M;++ro){let oo=x[or+be*ro],fr=b[nr+ro];gt+=oo*fr}}}let Lr=J*_e+re*Fe+ne*He+ee*ve;g[Lr]=gt}}return t.makeTensorInfo(h.shape,h.dtype,h.values)}var wE={kernelName:rn,backendName:"cpu",kernelFunc:HY};function KY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:p}=o;Q([n,s],"conv3d");let u=w.computeConv3DInfo(n.shape,s.shape,a,p,i),{filterDepth:c,filterHeight:l,filterWidth:m,dilationDepth:d,dilationHeight:f,dilationWidth:h,padInfo:g}=u,x=g.front,b=g.left,C=g.top,S=new tt(u.outShape,n.dtype),k=t.data.get(n.dataId).values,_=t.data.get(s.dataId).values,$=S.values,R=y.computeStrides(n.shape),D=y.computeStrides(s.shape);for(let P=0;P<u.batchSize;++P){let O=P*R[0],M=P*S.strides[0];for(let L=0;L<u.outDepth;++L){let B=M+L*S.strides[1],z=L*u.strideDepth-x;for(let U=0;U<c;++U){let j=z+U*d;if(j<0||j>=u.inDepth)continue;let q=U*D[0],Y=O+j*R[1];for(let J=0;J<u.outHeight;++J){let re=B+J*S.strides[2],ne=J*u.strideHeight-C;for(let ee=0;ee<l;++ee){let oe=ne+ee*f;if(oe<0||oe>=u.inHeight)continue;let ie=q+ee*D[1],le=Y+oe*R[2];for(let be=0;be<u.outWidth;++be){let _e=re+be*u.outChannels,ve=be*u.strideWidth-b;for(let Fe=0;Fe<m;++Fe){let Pe=ve+Fe*h;if(Pe<0||Pe>=u.inWidth)continue;let st=ie+Fe*D[2],ct=le+Pe*u.inChannels,He=st;for(let lt=0;lt<u.inChannels;++lt){let it=k[ct+lt];for(let ht=0;ht<u.outChannels;++ht)$[_e+ht]+=it*_[He+ht];He+=u.outChannels}}}}}}}}return t.makeTensorInfo(S.shape,S.dtype,S.values)}var SE={kernelName:on,backendName:"cpu",kernelFunc:KY};function qY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,pad:i,filterShape:p}=o;Q([n,s],"conv3dBackpropFilterV2");let u=y.computeStrides(n.shape),c=y.computeStrides(s.shape),l=w.computeConv3DInfo(n.shape,p,a,1,i),m=l.strideDepth,d=l.strideHeight,f=l.strideWidth,h=l.filterDepth,g=l.filterHeight,x=l.filterWidth,b=new tt(l.filterShape,"float32"),C=b.values,[S,k,_,$]=b.strides,R=t.data.get(s.dataId).values,[D,P,O,M]=c,L=t.data.get(n.dataId).values,[B,z,U,j]=u,q=l.padInfo.front,Y=l.padInfo.left,J=l.padInfo.top;for(let re=0;re<h;++re){let ne=Math.max(0,Math.ceil((q-re)/m)),ee=Math.min(l.outDepth,(l.inDepth+q-re)/m),oe=re*S;for(let ie=0;ie<g;++ie){let le=Math.max(0,Math.ceil((J-ie)/d)),be=Math.min(l.outHeight,(l.inHeight+J-ie)/d),_e=ie*k+oe;for(let ve=0;ve<x;++ve){let Fe=Math.max(0,Math.ceil((Y-ve)/f)),Pe=Math.min(l.outWidth,(l.inWidth+Y-ve)/f),st=ve*_+_e;for(let ct=0;ct<l.inChannels;++ct){let He=ct*$+st;for(let lt=0;lt<l.outChannels;++lt){let it=0;for(let ht=0;ht<l.batchSize;++ht){let gt=ht*B,Lr=ht*D;for(let Mt=ne;Mt<ee;++Mt){let rr=(re+Mt*m-q)*z+gt,Tt=Mt*P+Lr;for(let or=le;or<be;++or){let ro=(ie+or*d-J)*U+rr,oo=or*O+Tt;for(let fr=Fe;fr<Pe;++fr){let Lo=(ve+fr*f-Y)*j+ro,Ks=fr*M+oo;it+=L[Lo+ct]*R[Ks+lt]}}}}C[He+lt]=it}}}}}return t.makeTensorInfo(b.shape,b.dtype,b.values)}var IE={kernelName:ja,backendName:"cpu",kernelFunc:qY};function jY(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{pad:a,strides:i,inputShape:p}=o;Q([n],"conv3dBackpropInputV2");let u=y.computeStrides(n.shape),c=y.computeStrides(s.shape),l=w.computeConv3DInfo(p,s.shape,i,1,a),m=new tt(l.inShape,"float32"),d=m.values,[f,h,g,x]=m.strides,b=t.data.get(n.dataId).values,[C,S,k,_]=u,$=t.data.get(s.dataId).values,[R,D,P,O]=c,{batchSize:M,filterDepth:L,filterHeight:B,filterWidth:z,inChannels:U,inDepth:j,inHeight:q,inWidth:Y,outChannels:J,outDepth:re,outHeight:ne,outWidth:ee,strideDepth:oe,strideHeight:ie,strideWidth:le}=l,be=L-1-l.padInfo.front,_e=B-1-l.padInfo.top,ve=z-1-l.padInfo.left;for(let Fe=0;Fe<M;++Fe)for(let Pe=0;Pe<U;++Pe)for(let st=0;st<j;++st){let ct=st-be,He=Math.max(0,Math.ceil(ct/oe)),lt=Math.min(re,(L+ct)/oe);for(let it=0;it<q;++it){let ht=it-_e,gt=Math.max(0,Math.ceil(ht/ie)),Lr=Math.min(ne,(B+ht)/ie);for(let Mt=0;Mt<Y;++Mt){let to=Mt-ve,rr=Math.max(0,Math.ceil(to/le)),Tt=Math.min(ee,(z+to)/le),or=0;for(let nr=He;nr<lt;++nr){let ro=nr*oe-ct;for(let oo=gt;oo<Lr;++oo){let fr=oo*ie-ht;for(let Va=rr;Va<Tt;++Va){let Lo=Va*le-to,Ks=C*Fe+S*nr+k*oo+_*Va,Xt=R*(L-1-ro)+D*(B-1-fr)+P*(z-1-Lo)+O*Pe;for(let Wa=0;Wa<J;++Wa){let ol=b[Ks+Wa],nl=$[Xt+Wa];or+=ol*nl}}}}d[f*Fe+h*st+g*it+x*Mt+Pe]=or}}}return t.makeTensorInfo(m.shape,m.dtype,m.values)}var vE={kernelName:nn,backendName:"cpu",kernelFunc:jY};var XY=Ie(sn,r=>Math.cos(r)),kE={kernelName:sn,backendName:"cpu",kernelFunc:XY};var YY=Ie(an,r=>Math.cosh(r)),NE={kernelName:an,backendName:"cpu",kernelFunc:YY};function QY(r){let{inputs:e,backend:t,attrs:o}=r,{image:n,boxes:s,boxInd:a}=e,{cropSize:i,method:p,extrapolationValue:u}=o,[c,l,m,d]=n.shape,f=s.shape[0],[h,g]=i,x=me([f,h,g,d],"float32"),b=t.data.get(s.dataId).values,C=t.data.get(a.dataId).values,S=t.data.get(n.dataId).values,k=y.computeStrides(n.shape),_=y.computeStrides(x.shape);for(let $=0;$<f;$++){let R=$*4,D=b[R],P=b[R+1],O=b[R+2],M=b[R+3],L=C[$];if(L>=c)continue;let B=h>1?(O-D)*(l-1)/(h-1):0,z=g>1?(M-P)*(m-1)/(g-1):0;for(let U=0;U<h;U++){let j=h>1?D*(l-1)+U*B:.5*(D+O)*(l-1);if(j<0||j>l-1){for(let q=0;q<g;q++)for(let Y=0;Y<d;Y++){let J=Y+q*_[2]+U*_[1]+$*_[0];x.values[J]=u}continue}if(p==="bilinear"){let q=Math.floor(j),Y=Math.ceil(j),J=j-q;for(let re=0;re<g;re++){let ne=g>1?P*(m-1)+re*z:.5*(P+M)*(m-1);if(ne<0||ne>m-1){for(let le=0;le<d;le++){let be=le+re*_[2]+U*_[1]+$*_[0];x.values[be]=u}continue}let ee=Math.floor(ne),oe=Math.ceil(ne),ie=ne-ee;for(let le=0;le<d;le++){let be=le+ee*k[2]+q*k[1]+L*k[0],_e=S[be];be=le+oe*k[2]+q*k[1]+L*k[0];let ve=S[be];be=le+ee*k[2]+Y*k[1]+L*k[0];let Fe=S[be];be=le+oe*k[2]+Y*k[1]+L*k[0];let Pe=S[be],st=_e+(ve-_e)*ie,ct=Fe+(Pe-Fe)*ie;be=le+re*_[2]+U*_[1]+$*_[0],x.values[be]=st+(ct-st)*J}}}else for(let q=0;q<g;++q){let Y=g>1?P*(m-1)+q*z:.5*(P+M)*(m-1);if(Y<0||Y>m-1){for(let ne=0;ne<d;ne++){let ee=ne+q*_[2]+U*_[1]+$*_[0];x.values[ee]=u}continue}let J=Math.round(Y),re=Math.round(j);for(let ne=0;ne<d;ne++){let ee=ne+J*k[2]+re*k[1]+L*k[0],oe=ne+q*_[2]+U*_[1]+$*_[0];x.values[oe]=S[ee]}}}}return t.makeTensorInfo(x.shape,x.dtype,x.values)}var TE={kernelName:cn,backendName:"cpu",kernelFunc:QY};function ZY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,exclusive:a,reverse:i}=o;Q(n,"cumprod");let p=w.getAxesPermutation([s],n.shape.length),u=n;p!=null&&(u=St({inputs:{x:n},backend:t,attrs:{perm:p}}));let c=w.getInnerMostAxes(1,n.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let l=dt(u.dtype,"int32"),m=y.makeOnesTypedArray(y.sizeFromShape(u.shape),l),d=t.data.get(u.dataId).values,f=u.shape[u.shape.length-1],h=i?(x,b)=>x+f-b-1:(x,b)=>x+b;for(let x=0;x<d.length;x+=f)for(let b=0;b<f;b++){let C=h(x,b);if(b===0)m[C]=a?1:d[C];else{let S=h(x,b-1);m[C]=a?d[S]*m[S]:d[C]*m[S]}}let g=t.makeTensorInfo(u.shape,l,m);if(p!=null){let x=w.getUndoAxesPermutation(p),b=St({inputs:{x:g},backend:t,attrs:{perm:x}});return t.disposeIntermediateTensorInfo(g),t.disposeIntermediateTensorInfo(u),b}return g}var _E={kernelName:un,backendName:"cpu",kernelFunc:ZY};function JY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,exclusive:a,reverse:i}=o;Q(n,"cumsum");let p=w.getAxesPermutation([s],n.shape.length),u=n;p!=null&&(u=St({inputs:{x:n},backend:t,attrs:{perm:p}}));let c=w.getInnerMostAxes(1,n.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let l=dt(u.dtype,"int32"),m=y.makeZerosTypedArray(y.sizeFromShape(u.shape),l),d=t.data.get(u.dataId).values,f=u.shape[u.shape.length-1],h=i?(x,b)=>x+f-b-1:(x,b)=>x+b;for(let x=0;x<d.length;x+=f)for(let b=0;b<f;b++){let C=h(x,b);if(b===0)m[C]=a?0:d[C];else{let S=h(x,b-1);m[C]=a?d[S]+m[S]:d[C]+m[S]}}let g=t.makeTensorInfo(u.shape,l,m);if(p!=null){let x=w.getUndoAxesPermutation(p),b=St({inputs:{x:g},backend:t,attrs:{perm:x}});return t.disposeIntermediateTensorInfo(g),t.disposeIntermediateTensorInfo(u),b}return g}var EE={kernelName:pn,backendName:"cpu",kernelFunc:JY};function eQ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,weights:s}=e,{size:a,binaryOutput:i}=o;if(n.shape.length===1){let p=t.data.get(n.dataId).values,u=t.data.get(s.dataId).values,c=Cc(p,u,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,c)}else if(n.shape.length===2){let p=t.bufferSync(n),u=t.bufferSync(s),c=Nf(p,u,a,i);return t.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${n.shape.length}.`)}var $E={kernelName:ra,backendName:"cpu",kernelFunc:eQ};function tQ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockSize:s,dataFormat:a}=o;y.assert(a==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${a}`);let i=n.shape[0],p=n.shape[1],u=n.shape[2],c=n.shape[3],l=p*s,m=u*s,d=c/(s*s),f=t.data.get(n.dataId).values,h=new Float32Array(i*l*m*d),g=0;for(let x=0;x<i;++x)for(let b=0;b<l;++b){let C=Math.floor(b/s),S=b%s;for(let k=0;k<m;++k){let _=Math.floor(k/s),$=k%s,R=(S*s+$)*d;for(let D=0;D<d;++D){let O=D+R+c*(_+u*(C+p*x));h[g++]=f[O]}}}return t.makeTensorInfo([i,l,m,d],n.dtype,h)}var RE={kernelName:ln,backendName:"cpu",kernelFunc:tQ};function wI(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:p,dimRoundingMode:u}=o;Q([n,s],"depthwiseConv2DNative");let c=y.computeStrides(n.shape),l=y.computeStrides(s.shape),m=p;m==null&&(m=[1,1]),y.assert(w.eitherStridesOrDilationsAreOne(a,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${m}'`);let d=w.computeConv2DInfo(n.shape,s.shape,a,m,i,u,!0),{filterHeight:f,filterWidth:h,dilationHeight:g,dilationWidth:x,padInfo:b}=d,C=b.left,S=b.top,k=d.outChannels/d.inChannels,_=new tt(d.outShape,n.dtype),$=t.data.get(n.dataId).values,R=t.data.get(s.dataId).values,D=_.values;for(let P=0;P<d.batchSize;++P){let O=P*c[0],M=P*_.strides[0];for(let L=0;L<d.outHeight;++L){let B=M+L*_.strides[1],z=L*d.strideHeight-S;for(let U=0;U<f;++U){let j=z+U*g;if(j<0||j>=d.inHeight)continue;let q=U*l[0],Y=O+j*c[1];for(let J=0;J<d.outWidth;++J){let re=B+J*_.strides[2],ne=J*d.strideWidth-C;for(let ee=0;ee<h;++ee){let oe=ne+ee*x;if(oe<0||oe>=d.inWidth)continue;let ie=q+ee*l[1],le=Y+oe*d.inChannels,be=re,_e=ie;for(let ve=0;ve<d.inChannels;++ve){let Fe=$[le+ve];for(let Pe=0;Pe<k;++Pe)D[be+Pe]+=Fe*R[_e+Pe];be+=k,_e+=k}}}}}}return t.makeTensorInfo(_.shape,_.dtype,_.values)}var DE={kernelName:mn,backendName:"cpu",kernelFunc:wI};function rQ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,dilations:i,pad:p,dimRoundingMode:u,filterShape:c}=o;Q([n,s],"depthwiseConv2dNativeBackpropFilter");let l=w.computeConv2DInfo(n.shape,c,a,i,p,u,!0),{strideHeight:m,strideWidth:d,filterHeight:f,filterWidth:h}=l,g=new tt(l.filterShape,"float32"),x=l.padInfo.left,b=l.padInfo.top,C=l.outChannels/l.inChannels,S=t.data.get(n.dataId).values,k=new tt(n.shape,n.dtype,S),_=t.data.get(s.dataId).values,$=new tt(s.shape,s.dtype,_);for(let R=0;R<f;++R){let D=Math.max(0,Math.ceil((b-R)/m)),P=Math.min(l.outHeight,(l.inHeight+b-R)/m);for(let O=0;O<h;++O){let M=Math.max(0,Math.ceil((x-O)/d)),L=Math.min(l.outWidth,(l.inWidth+x-O)/d);for(let B=0;B<l.outChannels;++B){let z=Math.trunc(B/C),U=B%C,j=0;for(let q=0;q<l.batchSize;++q)for(let Y=D;Y<P;++Y){let J=R+Y*m-b;for(let re=M;re<L;++re){let ne=O+re*d-x;j+=k.get(q,J,ne,z)*$.get(q,Y,re,B)}}g.set(j,R,O,z,U)}}}return t.makeTensorInfo(g.shape,g.dtype,g.values)}var AE={kernelName:Pi,backendName:"cpu",kernelFunc:rQ};function oQ(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{strides:a,dilations:i,pad:p,dimRoundingMode:u,inputShape:c}=o;Q([n,s],"depthwiseConv2DNativeBackpropInput");let l=y.computeStrides(n.shape),m=y.computeStrides(s.shape),d=w.computeConv2DInfo(c,s.shape,a,i,p,u,!0),f=new tt(d.inShape,"float32"),h=f.values,[g,x,b]=f.strides,C=t.data.get(n.dataId).values,[S,k,_]=l,$=t.data.get(s.dataId).values,[R,D,P]=m,{batchSize:O,filterHeight:M,filterWidth:L,inChannels:B,inHeight:z,inWidth:U,outChannels:j,outHeight:q,outWidth:Y,strideHeight:J,strideWidth:re}=d,ne=M-1-d.padInfo.top,ee=L-1-d.padInfo.left,oe=j/B;for(let ie=0;ie<O;++ie)for(let le=0;le<B;++le)for(let be=0;be<z;++be){let _e=be-ne,ve=Math.max(0,Math.ceil(_e/J)),Fe=Math.min(q,(M+_e)/J);for(let Pe=0;Pe<U;++Pe){let st=Pe-ee,ct=Math.max(0,Math.ceil(st/re)),He=Math.min(Y,(L+st)/re),lt=0;for(let it=ve;it<Fe;++it){let ht=it*J-_e;for(let gt=ct;gt<He;++gt){let Lr=gt*re-st,Mt=S*ie+k*it+_*gt,to=R*(M-1-ht)+D*(L-1-Lr)+P*le;for(let rr=0;rr<oe;++rr){let Tt=le*oe+rr,or=C[Mt+Tt],nr=$[to+rr];lt+=or*nr}}}h[g*ie+x*be+b*Pe+le]=lt}}return t.makeTensorInfo(f.shape,f.dtype,f.values)}var FE={kernelName:Oi,backendName:"cpu",kernelFunc:oQ};function nQ(r){let{inputs:e,backend:t}=r,{x:o}=e,n=y.sizeFromShape(o.shape),s=t.data.get(o.dataId).values,a=me([n,n],o.dtype),i=a.values;for(let u=0;u<s.length;u++)i[u*n+u]=s[u];let p=[...o.shape,...o.shape];return t.makeTensorInfo(p,a.dtype,a.values)}var PE={kernelName:oa,backendName:"cpu",kernelFunc:nQ};var OE={kernelName:dn,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:o,filter:n}=r,{strides:s,pad:a,dilations:i}=t,p=e,u=p.data.get(o.dataId).values,c=o.shape.length,l=p.data.get(n.dataId).values,m=n.shape.length,{batchSize:d,inHeight:f,inWidth:h,inChannels:g,outHeight:x,outWidth:b,padInfo:C,strideHeight:S,strideWidth:k,filterHeight:_,filterWidth:$,dilationHeight:R,dilationWidth:D,outShape:P}=w.computeDilation2DInfo(o.shape,n.shape,s,a,"NHWC",i),O=y.sizeFromShape(P),M=P.length,L=y.getArrayFromDType(o.dtype,O);for(let z=0;z<d;++z)for(let U=0;U<x;++U){let j=U*S-C.top;for(let q=0;q<b;++q){let Y=q*k-C.left;for(let J=0;J<g;++J){let re=Number.MIN_SAFE_INTEGER;for(let ee=0;ee<_;++ee){let oe=j+ee*R;if(oe>=0&&oe<f)for(let ie=0;ie<$;++ie){let le=Y+ie*D;if(le>=0&&le<h){let be=y.locToIndex([z,oe,le,J],c,y.computeStrides(o.shape)),_e=y.locToIndex([ee,ie,J],m,y.computeStrides(n.shape)),ve=u[be]+l[_e];ve>re&&(re=ve)}}}let ne=y.locToIndex([z,U,q,J],M,y.computeStrides(P));L[ne]=re}}}return{dataId:p.write(y.toTypedArray(L,o.dtype),P,o.dtype),shape:P,dtype:o.dtype}}};var ME={kernelName:Li,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:o,filter:n,dy:s}=r,{strides:a,pad:i,dilations:p}=t,u=e,c=y.toNestedArray(o.shape,u.data.get(o.dataId).values),l=y.toNestedArray(n.shape,u.data.get(n.dataId).values),{batchSize:m,inHeight:d,inWidth:f,inChannels:h,outHeight:g,outWidth:x,padInfo:b,strideHeight:C,strideWidth:S,filterHeight:k,filterWidth:_,dilationHeight:$,dilationWidth:R,outShape:D}=w.computeDilation2DInfo(o.shape,n.shape,a,i,"NHWC",p);y.assert(s.rank===D.length,()=>`Error in ${Li}, dy must have the same rank as output ${D.length}, but got ${s.rank}`);let P=y.toNestedArray(D,u.data.get(s.dataId).values),O=y.makeZerosNestedTypedArray(n.shape,n.dtype);for(let L=0;L<m;++L)for(let B=0;B<g;++B){let z=B*C-b.top;for(let U=0;U<x;++U){let j=U*S-b.left;for(let q=0;q<h;++q){let Y=Number.MIN_SAFE_INTEGER,J=0,re=0;for(let ne=0;ne<k;++ne){let ee=z+ne*$;if(ee>=0&&ee<d)for(let oe=0;oe<_;++oe){let ie=j+oe*R;if(ie>=0&&ie<f){let le=c[L][ee][ie][q]+l[ne][oe][q];le>Y&&(Y=le,J=ne,re=oe)}}}O[J][re][q]+=P[L][B][U][q]}}}return{dataId:u.write(y.toTypedArray(O,o.dtype),n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};var LE={kernelName:Mi,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:o,filter:n,dy:s}=r,{strides:a,pad:i,dilations:p}=t,u=e,c=y.toNestedArray(o.shape,u.data.get(o.dataId).values),l=y.toNestedArray(n.shape,u.data.get(n.dataId).values),{batchSize:m,inHeight:d,inWidth:f,inChannels:h,outHeight:g,outWidth:x,padInfo:b,strideHeight:C,strideWidth:S,filterHeight:k,filterWidth:_,dilationHeight:$,dilationWidth:R,outShape:D}=w.computeDilation2DInfo(o.shape,n.shape,a,i,"NHWC",p);y.assert(s.rank===D.length,()=>`Error in ${Mi}, dy must have the same rank as output ${D.length}, but got ${s.rank}`);let P=y.toNestedArray(D,u.data.get(s.dataId).values),O=y.makeZerosNestedTypedArray(o.shape,o.dtype);for(let L=0;L<m;++L)for(let B=0;B<g;++B){let z=B*C-b.top;for(let U=0;U<x;++U){let j=U*S-b.left;for(let q=0;q<h;++q){let Y=Number.MIN_SAFE_INTEGER,J=z<0?0:z,re=j<0?0:j;for(let ne=0;ne<k;++ne){let ee=z+ne*$;if(ee>=0&&ee<d)for(let oe=0;oe<_;++oe){let ie=j+oe*R;if(ie>=0&&ie<f){let le=c[L][ee][ie][q]+l[ne][oe][q];le>Y&&(Y=le,J=ee,re=ie)}}}O[L][J][re][q]+=P[L][B][U][q]}}}return{dataId:u.write(y.toTypedArray(O,o.dtype),o.shape,o.dtype),shape:o.shape,dtype:o.dtype}}};function sQ(r){let{inputs:e,backend:t,attrs:o}=r,{image:n}=e,{canvas:s,options:a}=o,{contextOptions:i,imageOptions:p}=a||{},u=(p==null?void 0:p.alpha)||1,c=(i==null?void 0:i.contextType)||"2d";if(c!=="2d")throw new Error(`Context type ${i.contextType} is not supported by the CPU backend.`);let l=s.getContext(c,(i==null?void 0:i.contextAttributes)||{});if(l==null)throw new Error(`Could not get the context with ${c} type.`);let[m,d]=n.shape.slice(0,2),f=n.shape.length===2?1:n.shape[2],h=t.data.get(n.dataId).values,g=n.dtype==="float32"?255:1,x=new Uint8ClampedArray(d*m*4);for(let C=0;C<m*d;++C){let S=[0,0,0,255*u];for(let _=0;_<f;_++){let $=h[C*f+_];if(n.dtype==="float32"){if($<0||$>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${$}.`)}else if(n.dtype==="int32"&&($<0||$>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${$}.`);f===1?(S[0]=$*g,S[1]=$*g,S[2]=$*g):S[_]=$*g}let k=C*4;x[k+0]=Math.round(S[0]),x[k+1]=Math.round(S[1]),x[k+2]=Math.round(S[2]),x[k+3]=Math.round(S[3])}s.width=d,s.height=m;let b=new ImageData(x,d,m);return l.putImageData(b,0,0),n}var BE={kernelName:$u,backendName:"cpu",kernelFunc:sQ};function fi(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;Q(n,"sum");let i;n.dtype==="bool"?i=Ro({inputs:{x:n},backend:t,attrs:{dtype:"int32"}}):i=lr({inputs:{x:n},backend:t});let p=i.shape.length,u=y.parseAxisParam(s,i.shape),c=w.getAxesPermutation(u,p),l=u,m=i;c!=null&&(m=St({inputs:{x:i},backend:t,attrs:{perm:c}}),l=w.getInnerMostAxes(l.length,p)),w.assertAxesAreInnerMostDims("sum",l,m.shape.length);let[d,f]=w.computeOutAndReduceShapes(m.shape,l),h=w.upcastType(m.dtype,"int32"),g=yc(t,d,h),x=y.sizeFromShape(f),b=t.data.get(g.dataId).values,C=t.data.get(m.dataId).values;for(let S=0;S<b.length;++S){let k=S*x,_=0;for(let $=0;$<x;++$)_+=C[k+$];b[S]=_}if(a){let S=w.expandShapeToKeepDim(g.shape,u),k=g;g=We({inputs:{x:g},backend:t,attrs:{shape:S}}),t.disposeIntermediateTensorInfo(k)}return t.disposeIntermediateTensorInfo(i),c!=null&&t.disposeIntermediateTensorInfo(m),g}var zE={kernelName:Ss,backendName:"cpu",kernelFunc:fi};function aQ(r){let{inputs:e,backend:t,attrs:o}=r,{equation:n}=o,s=e,{allDims:a,summedDims:i,idDims:p}=w.decodeEinsumEquation(n,s.length);w.checkEinsumDimSizes(a.length,p,s);let{path:u,steps:c}=w.getEinsumComputePath(i,p),l=c.length,m=null,d=a.length,f=[];for(let h=0;h<l;++h){for(let g of c[h]){let{permutationIndices:x,expandDims:b}=w.getEinsumPermutation(d,p[g]),C;w.isIdentityPermutation(x)?C=s[g]:(C=St({inputs:{x:s[g]},backend:t,attrs:{perm:x}}),f.push(C));let S=C.shape.slice();for(let k=0;k<b.length;++k)S.splice(b[k],0,1);y.arraysEqual(C.shape,S)||(C=We({inputs:{x:C},backend:t,attrs:{shape:S}}),f.push(C)),m===null?m=C:(m=ip({inputs:{a:C,b:m},backend:t}),f.push(m))}h<l-1&&(u[h]>=0&&(m=fi({inputs:{x:m},backend:t,attrs:{axis:u[h]-(a.length-d),keepDims:!1}}),f.push(m)),d--)}for(let h of f)h!==m&&t.disposeIntermediateTensorInfo(h);return m}var VE={kernelName:Bi,backendName:"cpu",kernelFunc:aQ};function iQ(r){let{inputs:e,backend:t}=r,{dy:o,y:n}=e;Q([o,n],"eluGrad");let s=new Float32Array(y.sizeFromShape(n.shape)),a=t.data.get(n.dataId).values,i=t.data.get(o.dataId).values;for(let p=0;p<a.length;++p){let u=a[p];u>=0?s[p]=i[p]:s[p]=i[p]*(u+1)}return t.makeTensorInfo(n.shape,"float32",s)}var WE={kernelName:Xa,backendName:"cpu",kernelFunc:iQ};var uQ=w.ERF_P,pQ=w.ERF_A1,cQ=w.ERF_A2,lQ=w.ERF_A3,mQ=w.ERF_A4,dQ=w.ERF_A5,fQ=Ie(gn,r=>{let e=Math.sign(r),t=Math.abs(r),o=1/(1+uQ*t);return e*(1-((((dQ*o+mQ)*o+lQ)*o+cQ)*o+pQ)*o*Math.exp(-t*t))}),UE={kernelName:gn,backendName:"cpu",kernelFunc:fQ};function kc(r){let{inputs:e,backend:t,attrs:o}=r,{input:n}=e,{dim:s}=o,a=n.shape.length,i=n.shape.slice(),p=s;return s<0&&(y.assert(-(a+1)<=s,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),p=a+s+1),i.splice(p,0,1),We({inputs:{x:n},backend:t,attrs:{shape:i}})}var GE={kernelName:na,backendName:"cpu",kernelFunc:kc};var hQ=Ve((r,e)=>r/e),Ul=Ye(fn,hQ),Gl={kernelName:fn,backendName:"cpu",kernelFunc:Ul};function Vf(r,e,t){let o=r.shape,n=o[0],s=o[1],a=t.data.get(r.dataId),i=a.complexTensorInfos.real,p=a.complexTensorInfos.imag,u=[n,s],c=y.sizeFromShape(u),l=y.getTypedArrayFromDType("float32",c),m=y.getTypedArrayFromDType("float32",c);for(let g=0;g<n;g++){let x=Ao({inputs:{x:i},backend:t,attrs:{begin:[g,0],size:[1,s]}}),b=Ao({inputs:{x:p},backend:t,attrs:{begin:[g,0],size:[1,s]}}),C=Ht({inputs:{real:x,imag:b},backend:t}),{real:S,imag:k}=gQ(C,e,t),_=w.mergeRealAndImagArrays(S,k);for(let $=0;$<s;$++){let R=w.getComplexWithIndex(_,$);l[g*s+$]=R.real,m[g*s+$]=R.imag}t.disposeIntermediateTensorInfo(x),t.disposeIntermediateTensorInfo(b),t.disposeIntermediateTensorInfo(C)}let d=t.makeTensorInfo(u,"float32",l),f=t.makeTensorInfo(u,"float32",m),h=Ht({inputs:{real:d,imag:f},backend:t});return t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(f),h}function gQ(r,e,t){let o=y.sizeFromShape(r.shape),n=t.data.get(r.dataId),s=t.data.get(n.complexTensorInfos.real.dataId).values,a=t.data.get(n.complexTensorInfos.imag.dataId).values;if(xQ(o)){let i=SI(s,a,o,e,t),p=[r.shape[0],r.shape[1]];if(e){let u=t.makeTensorInfo(p,"float32",i.real),c=t.makeTensorInfo(p,"float32",i.imag),l=t.makeTensorInfo([],"float32",y.createScalarValue(o,"float32")),m=lr({inputs:{x:l},backend:t}),d=Gl.kernelFunc({inputs:{a:u,b:l},backend:t}),f=Gl.kernelFunc({inputs:{a:c,b:m},backend:t}),h=t.data.get(d.dataId).values,g=t.data.get(f.dataId).values;return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(l),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(f),{real:h,imag:g}}return i}else{let i=w.mergeRealAndImagArrays(s,a),p=yQ(i,o,e);return w.splitRealAndImagArrays(p)}}function xQ(r){return(r&r-1)===0}function SI(r,e,t,o,n){if(t===1)return{real:r,imag:e};let s=w.mergeRealAndImagArrays(r,e),a=t/2,i=w.complexWithEvenIndex(s),p=i.real,u=i.imag,c=[p.length],l=n.makeTensorInfo(c,"float32",p),m=n.makeTensorInfo(c,"float32",u),d=Ht({inputs:{real:l,imag:m},backend:n}),f=w.complexWithOddIndex(s),h=f.real,g=f.imag,x=[h.length],b=n.makeTensorInfo(x,"float32",h),C=n.makeTensorInfo(x,"float32",g),S=Ht({inputs:{real:b,imag:C},backend:n}),k=SI(p,u,a,o,n),_=k.real,$=k.imag,R=[_.length],D=n.makeTensorInfo(R,"float32",_),P=n.makeTensorInfo(R,"float32",$),O=Ht({inputs:{real:D,imag:P},backend:n}),M=SI(h,g,a,o,n),L=M.real,B=M.imag,z=[L.length],U=n.makeTensorInfo(z,"float32",L),j=n.makeTensorInfo(z,"float32",B),q=Ht({inputs:{real:U,imag:j},backend:n}),Y=w.exponents(t,o),J=[Y.real.length],re=n.makeTensorInfo(J,"float32",Y.real),ne=n.makeTensorInfo(J,"float32",Y.imag),ee=Ht({inputs:{real:re,imag:ne},backend:n}),oe=ip({inputs:{a:ee,b:q},backend:n}),ie=Pa({inputs:{a:O,b:oe},backend:n}),le=Vl({inputs:{a:O,b:oe},backend:n}),be=$o({inputs:{input:ie},backend:n}),_e=$o({inputs:{input:le},backend:n}),ve=Oa({inputs:{input:ie},backend:n}),Fe=Oa({inputs:{input:le},backend:n}),Pe=hu({inputs:[be,_e],backend:n,attrs:{axis:0}}),st=hu({inputs:[ve,Fe],backend:n,attrs:{axis:0}}),ct=n.data.get(Pe.dataId).values,He=n.data.get(st.dataId).values;return n.disposeIntermediateTensorInfo(l),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(C),n.disposeIntermediateTensorInfo(S),n.disposeIntermediateTensorInfo(D),n.disposeIntermediateTensorInfo(P),n.disposeIntermediateTensorInfo(O),n.disposeIntermediateTensorInfo(U),n.disposeIntermediateTensorInfo(j),n.disposeIntermediateTensorInfo(q),n.disposeIntermediateTensorInfo(re),n.disposeIntermediateTensorInfo(ne),n.disposeIntermediateTensorInfo(ee),n.disposeIntermediateTensorInfo(oe),n.disposeIntermediateTensorInfo(ie),n.disposeIntermediateTensorInfo(le),n.disposeIntermediateTensorInfo(be),n.disposeIntermediateTensorInfo(ve),n.disposeIntermediateTensorInfo(_e),n.disposeIntermediateTensorInfo(Fe),n.disposeIntermediateTensorInfo(Pe),n.disposeIntermediateTensorInfo(st),{real:ct,imag:He}}function yQ(r,e,t){let o=new Float32Array(e*2);for(let n=0;n<e;n++){let s=0,a=0;for(let i=0;i<e;i++){let p=w.exponent(n*i,e,t),u=w.getComplexWithIndex(r,i);s+=u.real*p.real-u.imag*p.imag,a+=u.real*p.imag+u.imag*p.real}t&&(s/=e,a/=e),w.assignToTypedArray(o,s,a,n)}return o}function bQ(r){let{inputs:e,backend:t}=r,{input:o}=e,n=y.sizeFromShape(o.shape),s=o.shape[o.shape.length-1],a=n/s,i=We({inputs:{x:o},backend:t,attrs:{shape:[a,s]}}),p=Vf(i,!1,t),u=We({inputs:{x:p},backend:t,attrs:{shape:o.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(p),u}var HE={kernelName:zi,backendName:"cpu",kernelFunc:bQ};function Hl(r){let{backend:e,attrs:t}=r,{shape:o,value:n,dtype:s}=t,a=s||y.inferDtype(n),i=y.getArrayFromDType(a,y.sizeFromShape(o));return CQ(i,n,a),e.makeTensorInfo(o,a,i)}var KE={kernelName:sa,backendName:"cpu",kernelFunc:Hl};function CQ(r,e,t){r.fill(e)}var qE={kernelName:Cn,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:o}=r,n=t,s=y.getTypedArrayFromDType(o.dtype,y.sizeFromShape(o.shape)),[a,i,p,u]=o.shape,c=n.data.get(o.dataId).values;for(let m=0;m<a;m++){let d=m*p*i*u;for(let f=0;f<i;f++){let h=f*(p*u);for(let g=0;g<p;g++){let x=g*u;for(let b=0;b<u;b++){let C=Math.round(p-g-1),S=d+h+x+b,k=c[S];if(C>=0&&C<p){let _=C*u,$=d+h+_+b;k=c[$]}s[S]=k}}}}return{dataId:n.write(s,o.shape,o.dtype),shape:o.shape,dtype:o.dtype}}};function wQ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:p,pad:u,dataFormat:c,dilations:l,dimRoundingMode:m,activation:d,leakyreluAlpha:f}=o,h=CI({inputs:{x:n,filter:s},backend:t,attrs:{strides:p,pad:u,dataFormat:c,dilations:l,dimRoundingMode:m}});if(a){let g=h;if(c==="NCHW"&&a.shape.length===1&&a.shape[0]!==1){let x=We({inputs:{x:a},backend:t,attrs:{shape:[a.shape[0],1,1]}});h=Pa({inputs:{a:h,b:x},backend:t}),t.disposeIntermediateTensorInfo(x)}else h=Pa({inputs:{a:h,b:a},backend:t});t.disposeIntermediateTensorInfo(g)}if(d){let g=h;if(c==="NCHW"&&d==="prelu"&&i.shape.length===1&&i.shape[0]!==1){let x=We({inputs:{x:i},backend:t,attrs:{shape:[i.shape[0],1,1]}});h=fp(t,h,d,x,f),t.disposeIntermediateTensorInfo(x)}else h=fp(t,h,d,i,f);t.disposeIntermediateTensorInfo(g)}return h}var jE={kernelName:Io,backendName:"cpu",kernelFunc:wQ};function SQ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:p,pad:u,dataFormat:c,dilations:l,dimRoundingMode:m,activation:d,leakyreluAlpha:f}=o,h=wI({inputs:{x:n,filter:s},backend:t,attrs:{strides:p,pad:u,dataFormat:c,dilations:l,dimRoundingMode:m}});if(a){let g=h;h=Pa({inputs:{a:h,b:a},backend:t}),t.disposeIntermediateTensorInfo(g)}if(d){let g=h;h=fp(t,h,d,i,f),t.disposeIntermediateTensorInfo(g)}return h}var XE={kernelName:vo,backendName:"cpu",kernelFunc:SQ};function IQ(r){let{inputs:e,backend:t}=r,{params:o,indices:n}=e,s=y.sizeFromShape(o.shape),a=n.shape,i=a[a.length-1],[p,u,c,l]=w.prepareAndValidate(o,n);if(u===0)return t.makeTensorInfo(p,o.dtype,[]);let m=t.data.get(n.dataId).values,d=t.bufferSync(o),f=Tf(m,d,o.dtype,u,i,c,l,o.shape,s);return t.makeTensorInfo(p,o.dtype,f.values)}var YE={kernelName:vn,backendName:"cpu",kernelFunc:IQ};function vQ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,indices:s}=e,{axis:a,batchDims:i}=o;Q([n,s],"gatherV2");let p=y.parseAxisParam(a,n.shape)[0],u=t.data.get(s.dataId).values,c=n.shape[p];for(let S=0;S<u.length;++S){let k=u[S];y.assert(k<=c-1&&k>=0,()=>`GatherV2: the index value ${k} is not in [0, ${c-1}]`)}let l=i;i==null&&(l=0);let m=y.sizeFromShape(s.shape),d=w.segment_util.collectGatherOpShapeInfo(n,s,p,l),f=We({inputs:{x:n},backend:t,attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]}}),h=We({inputs:{x:s},backend:t,attrs:{shape:[d.batchSize,m/d.batchSize]}}),g=[d.batchSize,d.outerSize,m/d.batchSize,d.sliceSize],x=t.bufferSync(h),b=t.bufferSync(f),C=_f(b,x,g);return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(h),t.makeTensorInfo(d.outputShape,C.dtype,C.values)}var QE={kernelName:aa,backendName:"cpu",kernelFunc:vQ};function kQ(r){let{inputs:e,backend:t}=r,{input:o}=e,n=y.sizeFromShape(o.shape),s=o.shape[o.shape.length-1],a=n/s,i=We({inputs:{x:o},backend:t,attrs:{shape:[a,s]}}),p=Vf(i,!0,t),u=We({inputs:{x:p},backend:t,attrs:{shape:o.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(p),u}var ZE={kernelName:Vi,backendName:"cpu",kernelFunc:kQ};var NQ=Ie(Tn,r=>Number.isFinite(r)?1:0,"bool"),JE={kernelName:Tn,backendName:"cpu",kernelFunc:NQ};var TQ=Ie(_n,r=>Math.abs(r)===1/0?1:0,"bool"),e$={kernelName:_n,backendName:"cpu",kernelFunc:TQ};var _Q=Ie(En,r=>Number.isNaN(r)?1:0,"bool"),t$={kernelName:En,backendName:"cpu",kernelFunc:_Q};function EQ(r){let{backend:e,attrs:t}=r,{start:o,stop:n,num:s}=t,a=Ef(o,n,s);return e.makeTensorInfo([a.length],"float32",a)}var r$={kernelName:An,backendName:"cpu",kernelFunc:EQ};var $Q=Ie(Pn,r=>Math.log1p(r)),o$={kernelName:Pn,backendName:"cpu",kernelFunc:$Q};var RQ=Ve((r,e)=>r&&e),DQ=Ye(On,RQ,null,"bool"),n$={kernelName:On,backendName:"cpu",kernelFunc:DQ};var AQ=Ie(Mn,r=>r?0:1,"bool"),s$={kernelName:Mn,backendName:"cpu",kernelFunc:AQ};var FQ=Ve((r,e)=>r||e),PQ=Ye(Ln,FQ,null,"bool"),a$={kernelName:Ln,backendName:"cpu",kernelFunc:PQ};function OQ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{depthRadius:s,bias:a,alpha:i,beta:p}=o;Q(n,"LRN");let u=n.shape[3],c=u-1,l=t.data.get(n.dataId).values,m=y.sizeFromShape(n.shape),d=new Float32Array(m);function f(h){let g=h%u,x=h-g+Math.max(0,g-s),b=h-g+Math.min(g+s,c),C=0;for(;x<=b;x++){let S=l[x];C+=S*S}return C}for(let h=0;h<m;h++){let g=f(h),x=l[h]*Math.pow(a+i*g,-p);d[h]=x}return t.makeTensorInfo(n.shape,n.dtype,d)}var i$={kernelName:Bn,backendName:"cpu",kernelFunc:OQ};function MQ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,y:s,dy:a}=e,{depthRadius:i,bias:p,alpha:u,beta:c}=o;Q(a,"LRNGrad");let l=y.sizeFromShape(a.shape),m=a.shape[3],d=t.data.get(a.dataId).values,f=t.data.get(n.dataId).values,h=t.data.get(s.dataId).values,g=new Float32Array(l),x=l;for(let b=0;b<x;b++){let C=b%m,S=b-C+Math.max(0,C-i),k=b-C+Math.min(m,C+i+1),_=0;for(let $=S;$<k;$++)_+=Math.pow(f[$],2);_=u*_+p;for(let $=S;$<k;$++){let R=-2*u*c*f[$]*h[b]/_;b===$&&(R+=Math.pow(_,-c)),R*=d[b],g[$]+=R}}return t.makeTensorInfo(a.shape,n.dtype,g)}var u$={kernelName:Ya,backendName:"cpu",kernelFunc:MQ};function II(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{reductionIndices:s,keepDims:a}=o,i=t,p=n.shape,u=p.length,c=y.parseAxisParam(s,p),l=c,m=w.getAxesPermutation(l,u),d=i.data.get(n.dataId).values;if(m!=null){let S=new Array(u);for(let k=0;k<S.length;k++)S[k]=p[m[k]];d=wc(d,p,n.dtype,m,S),l=w.getInnerMostAxes(l.length,u),p=S}Q(n,"max"),w.assertAxesAreInnerMostDims("max",l,u);let[f,h]=w.computeOutAndReduceShapes(p,l),g=y.sizeFromShape(h),x=$f(d,g,f,n.dtype),b=i.write(x,f,n.dtype),C=f;return a&&(C=w.expandShapeToKeepDim(f,c)),{dataId:b,shape:C,dtype:n.dtype}}var p$={kernelName:zn,backendName:"cpu",kernelFunc:II};function LQ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e;Q(n,"maxPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:p}=o,u=1;y.assert(w.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=w.computePool2DInfo(n.shape,s,a,u,i,p),l;if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))l=lr({inputs:{x:n},backend:t});else{let m=t.data.get(n.dataId).values,d=y.computeStrides(n.shape),f=vc(m,n.shape,n.dtype,d,c,"max");l=t.makeTensorInfo(c.outShape,n.dtype,f.values)}return l}var c$={kernelName:Wn,backendName:"cpu",kernelFunc:LQ};function BQ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:p,dataFormat:u}=o;Q(n,"maxPool3d");let c=w.computePool3DInfo(n.shape,s,a,1,i,p,u),l=t.data.get(n.dataId).values,m=zf(l,n.shape,n.dtype,y.computeStrides(n.shape),c,"max");return t.makeTensorInfo(m.shape,"float32",m.values)}var l$={kernelName:ia,backendName:"cpu",kernelFunc:BQ};function zQ(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,{filterSize:a,strides:i,pad:p,dimRoundingMode:u}=o;Q([n,s],"maxPool3DGrad");let c=w.computePool3DInfo(s.shape,a,i,1,p,u),l=t.bufferSync(s),m=aE(l,c),d=c.strideDepth,f=c.strideHeight,h=c.strideWidth,g=c.dilationDepth,x=c.dilationHeight,b=c.dilationWidth,C=c.effectiveFilterDepth,S=c.effectiveFilterHeight,k=c.effectiveFilterWidth,_=C-1-c.padInfo.front,$=k-1-c.padInfo.left,R=S-1-c.padInfo.top,D=me(s.shape,"float32"),P=t.bufferSync(n);for(let O=0;O<c.batchSize;++O)for(let M=0;M<c.inChannels;++M)for(let L=0;L<c.inDepth;++L)for(let B=0;B<c.inHeight;++B)for(let z=0;z<c.inWidth;++z){let U=L-_,j=B-R,q=z-$,Y=0;for(let J=0;J<C;J+=g){let re=(U+J)/d;if(!(re<0||re>=c.outDepth||Math.floor(re)!==re))for(let ne=0;ne<S;ne+=x){let ee=(j+ne)/f;if(!(ee<0||ee>=c.outHeight||Math.floor(ee)!==ee))for(let oe=0;oe<k;oe+=b){let ie=(q+oe)/h;if(ie<0||ie>=c.outWidth||Math.floor(ie)!==ie)continue;let le=C*S*k-1-m.get(O,re,ee,ie,M),be=J*S*k+ne*k+oe,_e=le===be?1:0;if(_e===0)continue;let ve=P.get(O,re,ee,ie,M);Y+=ve*_e}}}D.set(Y,O,L,B,z,M)}return t.makeTensorInfo(D.shape,D.dtype,D.values)}var m$={kernelName:Gi,backendName:"cpu",kernelFunc:zQ};function VQ(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s,output:a}=e,i=s;Q([s,a],"maxPoolGrad");let{filterSize:p,strides:u,pad:c,dimRoundingMode:l}=o,m=w.computePool2DInfo(i.shape,p,u,1,c,l),d=t.data.get(i.dataId).values,f=me(m.outShape,i.dtype,Bf(d,i.shape,i.dtype,m).values),h=m.strideHeight,g=m.strideWidth,x=m.dilationHeight,b=m.dilationWidth,C=m.effectiveFilterHeight,S=m.effectiveFilterWidth,k=S-1-m.padInfo.left,_=C-1-m.padInfo.top,$=me(i.shape,"float32"),R=t.data.get(n.dataId).values,D=me(n.shape,"float32",R);for(let P=0;P<m.batchSize;++P)for(let O=0;O<m.inChannels;++O)for(let M=0;M<m.inHeight;++M)for(let L=0;L<m.inWidth;++L){let B=M-_,z=L-k,U=0;for(let j=0;j<C;j+=x){let q=(B+j)/h;if(!(q<0||q>=m.outHeight||Math.floor(q)!==q))for(let Y=0;Y<S;Y+=b){let J=(z+Y)/g;if(J<0||J>=m.outWidth||Math.floor(J)!==J)continue;let re=C*S-1-f.get(P,q,J,O),ne=j*S+Y,ee=re===ne?1:0;if(ee===0)continue;let oe=D.get(P,q,J,O);U+=oe*ee}}$.set(U,P,M,L,O)}return t.makeTensorInfo($.shape,$.dtype,$.values)}var d$={kernelName:Ui,backendName:"cpu",kernelFunc:VQ};function f$(r,e,t,o,n){let s=y.computeStrides(e),a=vc(r,e,t,s,n,"max"),i=Bf(r,e,t,n,!0,o);return[a.values,i.values]}var h$={kernelName:ua,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:o}=r,{filterSize:n,strides:s,pad:a,includeBatchInIndex:i}=e,p=t;Q(o,"MaxPoolWithArgmax");let u=p.data.get(o.dataId).values,c=w.computePool2DInfo(o.shape,n,s,[1,1],a),[l,m]=f$(u,o.shape,o.dtype,i,c),d=p.write(l,c.outShape,o.dtype),f=p.write(m,c.outShape,o.dtype);return[{dataId:d,shape:c.outShape,dtype:o.dtype},{dataId:f,shape:c.outShape,dtype:"int32"}]}};function WQ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=y.parseAxisParam(s,n.shape),u=w.computeOutAndReduceShapes(n.shape,i)[1],c=y.sizeFromShape(u),l=[],m=t.makeTensorInfo([],"float32",new Float32Array([c]));l.push(m);let d=Ro({inputs:{x:n},backend:t,attrs:{dtype:"float32"}});l.push(d);let f=Ul({inputs:{a:d,b:m},backend:t});l.push(f);let h=fi({inputs:{x:f},backend:t,attrs:{axis:s,keepDims:a}});return l.forEach(g=>t.disposeIntermediateTensorInfo(g)),h}var g$={kernelName:Un,backendName:"cpu",kernelFunc:WQ};function UQ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;Q(n,"min");let i=y.parseAxisParam(s,n.shape),p=i,u=w.getAxesPermutation(p,n.shape.length),c=n;u!=null&&(c=St({inputs:{x:n},backend:t,attrs:{perm:u}}),p=w.getInnerMostAxes(p.length,n.shape.length)),w.assertAxesAreInnerMostDims("min",p,c.shape.length);let[l,m]=w.computeOutAndReduceShapes(c.shape,p),d=y.sizeFromShape(m),f=y.makeZerosTypedArray(y.sizeFromShape(l),c.dtype),h=t.data.get(c.dataId).values;for(let x=0;x<f.length;++x){let b=x*d,C=h[b];for(let S=0;S<d;++S){let k=h[b+S];(Number.isNaN(k)||k<C)&&(C=k)}f[x]=C}u!=null&&t.disposeIntermediateTensorInfo(c);let g=t.makeTensorInfo(l,c.dtype,f);if(a){let x=w.expandShapeToKeepDim(l,i),b=We({inputs:{x:g},backend:t,attrs:{shape:x}});return t.disposeIntermediateTensorInfo(g),b}return g}var x$={kernelName:Gn,backendName:"cpu",kernelFunc:UQ};function GQ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{paddings:s,mode:a}=o;Q(n,"mirrorPad");let i=s.map((C,S)=>C[0]+n.shape[S]+C[1]),p=s.map(C=>C[0]),u=s.map((C,S)=>C[0]+n.shape[S]),c=a==="reflect"?0:1,l=t.data.get(n.dataId).values,m=n.shape.length,d=y.computeStrides(n.shape),f=y.sizeFromShape(i),h=i.length,g=y.computeStrides(i),x=y.getTypedArrayFromDType(n.dtype,f);for(let C=0;C<f;C++){let S=y.indexToLoc(C,h,g);for(let _=0;_<h;_++)S[_]<p[_]?S[_]=p[_]*2-S[_]-c:S[_]>=u[_]&&(S[_]=(u[_]-1)*2-S[_]+c);S=S.map((_,$)=>_-p[$]);let k=y.locToIndex(S,m,d);x[C]=l[k]}return{dataId:t.write(x,i,n.dtype),shape:i,dtype:n.dtype}}var y$={kernelName:Kn,backendName:"cpu",kernelFunc:GQ};var HQ=Ve((r,e)=>{let t=r%e;return r<0&&e<0||r>=0&&e>=0?t:(t+e)%e}),KQ=Ye(qn,HQ),b$={kernelName:qn,backendName:"cpu",kernelFunc:KQ};var w$=zp(jw());function vI(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{dim:s}=o,a=n.shape.length,i=s;if(i===-1&&(i=a-1),i!==a-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${a} and dim was ${i}`);let p=y.parseAxisParam([i],n.shape),u=II({inputs:{x:n},backend:t,attrs:{reductionIndices:p,keepDims:!1}}),c=w.expandShapeToKeepDim(u.shape,p),l=We({inputs:{x:u},backend:t,attrs:{shape:c}}),m=Vl({inputs:{a:n,b:l},backend:t}),d=qS({inputs:{x:m},backend:t}),f=fi({inputs:{x:d},backend:t,attrs:{axis:p,keepDims:!1}}),h=We({inputs:{x:f},backend:t,attrs:{shape:c}}),g=Ul({inputs:{a:d,b:h},backend:t});return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(l),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(h),g}var C$={kernelName:Is,backendName:"cpu",kernelFunc:vI};function qQ(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{numSamples:s,seed:a,normalized:i}=o;Q(n,"multinomial");let p=i?n:vI({inputs:{logits:n},backend:t,attrs:{dim:-1}}),u=p.shape[0],c=p.shape[1],l=t.data.get(p.dataId).values,m=[u,s],d=y.makeZerosTypedArray(y.sizeFromShape(m),"int32");for(let f=0;f<u;++f){let h=f*c,g=new Float32Array(c-1);g[0]=l[h];for(let C=1;C<g.length;++C)g[C]=g[C-1]+l[h+C];let x=w$.alea(a.toString()),b=f*s;for(let C=0;C<s;++C){let S=x();d[b+C]=g.length;for(let k=0;k<g.length;k++)if(S<g[k]){d[b+C]=k;break}}}return i||t.disposeIntermediateTensorInfo(p),t.makeTensorInfo(m,"int32",d)}var S$={kernelName:jn,backendName:"cpu",kernelFunc:qQ};var jQ=Vt.nonMaxSuppressionV3Impl;function XQ(r){let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:p}=o;Q(n,"NonMaxSuppression");let u=t.data.get(n.dataId).values,c=t.data.get(s.dataId).values,{selectedIndices:l}=jQ(u,c,a,i,p);return t.makeTensorInfo([l.length],"int32",new Int32Array(l))}var I$={kernelName:Qn,backendName:"cpu",kernelFunc:XQ};var YQ=Vt.nonMaxSuppressionV4Impl;function QQ(r){let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:p,padToMaxOutputSize:u}=o;Q(n,"NonMaxSuppressionPadded");let c=t.data.get(n.dataId).values,l=t.data.get(s.dataId).values,{selectedIndices:m,validOutputs:d}=YQ(c,l,a,i,p,u);return[t.makeTensorInfo([m.length],"int32",new Int32Array(m)),t.makeTensorInfo([],"int32",new Int32Array([d]))]}var v$={kernelName:Qa,backendName:"cpu",kernelFunc:QQ};var ZQ=Vt.nonMaxSuppressionV5Impl;function JQ(r){let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:p,softNmsSigma:u}=o;Q(n,"NonMaxSuppressionWithScore");let c=t.data.get(n.dataId).values,l=t.data.get(s.dataId).values,m=a,d=i,f=p,h=u,{selectedIndices:g,selectedScores:x}=ZQ(c,l,m,d,f,h);return[t.makeTensorInfo([g.length],"int32",new Int32Array(g)),t.makeTensorInfo([x.length],"float32",new Float32Array(x))]}var k$={kernelName:Zn,backendName:"cpu",kernelFunc:JQ};function e7(r){let{inputs:e,backend:t,attrs:o}=r,{indices:n}=e,{dtype:s,depth:a,onValue:i,offValue:p}=o;Q(n,"oneHot");let u=y.sizeFromShape(n.shape),c=new Float32Array(u*a);c.fill(p);let l=t.data.get(n.dataId).values;for(let m=0;m<u;++m)l[m]>=0&&l[m]<a&&(c[m*a+l[m]]=i);return t.makeTensorInfo([...n.shape,a],s,c)}var N$={kernelName:Jn,backendName:"cpu",kernelFunc:e7};function Kl(r){let{inputs:e,backend:t}=r,{x:o}=e;if(o.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(o.dtype==="complex64"){let n=$o({inputs:{input:o},backend:t}),s=Kl({inputs:{x:n},backend:t}),a=Oa({inputs:{input:o},backend:t}),i=Kl({inputs:{x:a},backend:t}),p=Ht({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(n),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),p}else return Hl({backend:t,attrs:{shape:o.shape,value:0,dtype:o.dtype}})}var T$={kernelName:Sa,backendName:"cpu",kernelFunc:Kl};function _$(r){let{inputs:e,backend:t}=r,{x:o}=e;if(o.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(o.dtype==="complex64"){let n=$o({inputs:{input:o},backend:t}),s=_$({inputs:{x:n},backend:t}),a=Oa({inputs:{input:o},backend:t}),i=Kl({inputs:{x:a},backend:t}),p=Ht({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(n),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),p}else return Hl({backend:t,attrs:{shape:o.shape,value:1,dtype:o.dtype}})}var E$={kernelName:ca,backendName:"cpu",kernelFunc:_$};function kI(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o;if(e.length===1)return kc({inputs:{input:e[0]},backend:t,attrs:{dim:n}});let s=e[0].shape,a=e[0].dtype;e.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],p=e.map(c=>{let l=kc({inputs:{input:c},backend:t,attrs:{dim:n}});return i.push(l),l}),u=hu({inputs:p,backend:t,attrs:{axis:n}});return i.forEach(c=>t.disposeIntermediateTensorInfo(c)),u}var $$={kernelName:la,backendName:"cpu",kernelFunc:kI};function t7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{paddings:s,constantValue:a}=o;Q(n,"pad");let i=s.map((b,C)=>b[0]+n.shape[C]+b[1]),p=s.map(b=>b[0]),u=t.data.get(n.dataId).values,c=y.sizeFromShape(n.shape),l=n.shape.length,m=y.computeStrides(n.shape),d=y.sizeFromShape(i),f=i.length,h=y.computeStrides(i),g=y.getTypedArrayFromDType(n.dtype,d);a!==0&&g.fill(a);for(let b=0;b<c;b++){let S=y.indexToLoc(b,l,m).map((_,$)=>_+p[$]),k=y.locToIndex(S,f,h);g[k]=u[b]}return{dataId:t.write(g,i,n.dtype),shape:i,dtype:n.dtype}}var Wf={kernelName:es,backendName:"cpu",kernelFunc:t7};var r7=Ve((r,e)=>Math.pow(r,e)),o7=Ye(ts,r7),R$={kernelName:ts,backendName:"cpu",kernelFunc:o7};function n7(r){let{inputs:e,backend:t,attrs:o}=r,{paramsNestedSplits:n,paramsDenseValues:s,indices:a}=e,{outputRaggedRank:i}=o,p=n.map(x=>t.data.get(x.dataId).values),u=n.map(x=>x.shape),c=t.data.get(s.dataId).values,l=t.data.get(a.dataId).values,[m,d,f]=Rf(p,u,c,s.shape,s.dtype,l,a.shape,i),h=m.map(x=>t.makeTensorInfo([x.length],"int32",x)),g=t.makeTensorInfo(f,s.dtype,d);return h.concat([g])}var D$={kernelName:Hp,backendName:"cpu",kernelFunc:n7};function s7(r){let{inputs:e,backend:t}=r,{starts:o,limits:n,deltas:s}=e,a=t.data.get(o.dataId).values,i=t.data.get(n.dataId).values,p=t.data.get(s.dataId).values,[u,c]=Df(a,o.shape,o.dtype,i,n.shape,p,s.shape),l=t.makeTensorInfo([u.length],"int32",u),m=t.makeTensorInfo([c.length],o.dtype,c);return[l,m]}var A$={kernelName:Kp,backendName:"cpu",kernelFunc:s7};function a7(r){let{inputs:e,backend:t,attrs:o}=r,{shape:n,values:s,defaultValue:a,rowPartitionTensors:i}=e,{rowPartitionTypes:p}=o,u=t.data.get(n.dataId).values,c=t.data.get(s.dataId).values,l=t.data.get(a.dataId).values,m=i.map(g=>t.data.get(g.dataId).values),d=i.map(g=>g.shape),[f,h]=Af(u,n.shape,c,s.shape,s.dtype,l,a.shape,m,d,p);return t.makeTensorInfo(f,s.dtype,h)}var F$={kernelName:qp,backendName:"cpu",kernelFunc:a7};function i7(r){let{backend:e,attrs:t}=r,{start:o,stop:n,dtype:s,step:a}=t,i=up(o,n,a,s);return e.makeTensorInfo([i.length],s,i)}var P$={kernelName:ma,backendName:"cpu",kernelFunc:i7};var u7=Ie(ns,r=>1/r),O$={kernelName:ns,backendName:"cpu",kernelFunc:u7};function p7(r){let{inputs:e,backend:t,attrs:o}=r,{images:n}=e,{alignCorners:s,halfPixelCenters:a,size:i}=o;Q(n,"resizeBilinear");let p=y.computeStrides(n.shape),[u,c]=i,[l,m,d,f]=n.shape,h=t.data.get(n.dataId).values,g=new Float32Array(y.sizeFromShape([l,u,c,f])),x=[s&&u>1?m-1:m,s&&c>1?d-1:d],b=[s&&u>1?u-1:u,s&&c>1?c-1:c],C=0,S=x[0]/b[0],k=x[1]/b[1];for(let _=0;_<l;_++)for(let $=0;$<u;$++){let R;a?R=S*($+.5)-.5:R=S*$;let D=Math.max(0,Math.floor(R)),P=R-D,O=Math.min(m-1,Math.ceil(R)),M=_*p[0]+D*p[1],L=_*p[0]+O*p[1];for(let B=0;B<c;B++){let z;a?z=k*(B+.5)-.5:z=k*B;let U=Math.max(0,Math.floor(z)),j=z-U,q=Math.min(d-1,Math.ceil(z)),Y=M+U*p[2],J=L+U*p[2],re=M+q*p[2],ne=L+q*p[2];for(let ee=0;ee<f;ee++){let oe=h[Y+ee],ie=h[J+ee],le=h[re+ee],be=h[ne+ee],_e=oe+(le-oe)*j,ve=ie+(be-ie)*j,Fe=_e+(ve-_e)*P;g[C++]=Fe}}}return t.makeTensorInfo([l,u,c,f],"float32",g)}var M$={kernelName:is,backendName:"cpu",kernelFunc:p7};function c7(r){let{inputs:e,backend:t,attrs:o}=r,{images:n,dy:s}=e,{alignCorners:a}=o;Q([s,n],"resizeBilinearGrad");let i=y.computeStrides(n.shape),[p,u,c,l]=n.shape,[,m,d]=s.shape,f=new Float32Array(p*u*c*l),h=[a&&m>1?u-1:u,a&&d>1?c-1:c],g=[a&&m>1?m-1:m,a&&d>1?d-1:d],x=h[0]/g[0],b=h[1]/g[1],C=t.data.get(s.dataId).values,S=0;for(let k=0;k<p;k++){let _=k*i[0];for(let $=0;$<m;$++){let R=$*x,D=Math.floor(R),P=Math.min(Math.ceil(R),u-1),O=_+D*i[1],M=_+P*i[1],L=R-D,B=1-L;for(let z=0;z<d;z++){let U=z*b,j=Math.floor(U),q=Math.min(Math.ceil(U),c-1),Y=U-j,J=1-Y,re=O+j*i[2],ne=O+q*i[2],ee=M+j*i[2],oe=M+q*i[2],ie=B*J,le=B*Y,be=L*J,_e=L*Y;for(let ve=0;ve<l;ve++){let Fe=C[S++];f[re+ve]+=Fe*ie,f[ne+ve]+=Fe*le,f[ee+ve]+=Fe*be,f[oe+ve]+=Fe*_e}}}}return t.makeTensorInfo([p,c,u,l],"float32",f)}var L$={kernelName:Ja,backendName:"cpu",kernelFunc:c7};function l7(r){let{inputs:e,backend:t,attrs:o}=r,{images:n}=e,{alignCorners:s,halfPixelCenters:a,size:i}=o;Q(n,"resizeNearestNeighbor");let p=y.computeStrides(n.shape),[u,c]=i,[l,m,d,f]=n.shape,h=t.data.get(n.dataId).values,g=new Float32Array(l*u*c*f),x=[s&&u>1?m-1:m,s&&c>1?d-1:d],b=[s&&u>1?u-1:u,s&&c>1?c-1:c],C=x[0]/b[0],S=x[1]/b[1],k=0;for(let _=0;_<l;_++){let $=_*p[0];for(let R=0;R<u;R++){let D=a?C*(R+.5):C*R,P=Math.min(m-1,s?Math.round(D):Math.floor(D));a&&(P=Math.max(0,P));let O=$+P*p[1];for(let M=0;M<c;M++){let L=a?S*(M+.5):S*M,B=Math.min(d-1,s?Math.round(L):Math.floor(L));a&&(B=Math.max(0,B));let z=O+B*p[2];for(let U=0;U<f;U++){let j=h[z+U];g[k++]=j}}}}return t.makeTensorInfo([l,u,c,f],n.dtype,g)}var B$={kernelName:as,backendName:"cpu",kernelFunc:l7};function m7(r){let{inputs:e,backend:t,attrs:o}=r,{images:n,dy:s}=e,{alignCorners:a}=o;Q([s,n],"resizeNearestNeighborGrad");let i=y.computeStrides(n.shape),p=y.computeStrides(s.shape),[u,c,l,m]=n.shape,[,d,f]=s.shape,h=new Float32Array(u*c*l*m),g=t.data.get(s.dataId).values,x=[a&&d>1?c-1:c,a&&f>1?l-1:l],b=[a&&d>1?d-1:d,a&&f>1?f-1:f],C=x[0]/b[0],S=x[1]/b[1],k=1/C,_=1/S,$=Math.ceil(k)*2+2,R=Math.ceil(_)*2+2;for(let D=0;D<u;D++){let P=D*i[0];for(let O=0;O<c;O++){let M=P+O*i[1],L=Math.floor(O*k),B=Math.floor(L-$/2);for(let z=0;z<l;z++){let U=M+z*i[2],j=Math.floor(z*_),q=Math.floor(j-R/2);for(let Y=0;Y<m;Y++){let J=0;for(let re=0;re<$;re++){let ne=re+B;if(ne<0||ne>=d)continue;let ee=P+ne*p[1],oe=ne*C,ie=Math.min(c-1,a?Math.round(oe):Math.floor(oe));if(O===ie)for(let le=0;le<R;le++){let be=le+q;if(be<0||be>=f)continue;let _e=ee+be*p[2],ve=be*S,Fe=Math.min(l-1,a?Math.round(ve):Math.floor(ve));z===Fe&&(J+=g[_e+Y])}}h[U+Y]=J}}}}return t.makeTensorInfo(n.shape,n.dtype,h)}var z$={kernelName:Za,backendName:"cpu",kernelFunc:m7};function d7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dims:s}=o;Q(n,"reverse");let a=n.shape.length,i=y.parseAxisParam(s,n.shape);if(a===0)return lr({inputs:{x:n},backend:t});let p=new tt(n.shape,n.dtype),u=t.bufferSync(n);for(let c=0;c<p.size;c++){let l=p.indexToLoc(c),m=l.slice();i.forEach(d=>m[d]=n.shape[d]-1-m[d]),p.set(u.get(...m),...l)}return t.makeTensorInfo(p.shape,p.dtype,p.values)}var V$={kernelName:ps,backendName:"cpu",kernelFunc:d7};var W$={kernelName:Ds,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:o}=r,{radians:n,fillValue:s,center:a}=e,i=t,p=y.getTypedArrayFromDType(o.dtype,y.sizeFromShape(o.shape)),[u,c,l,m]=o.shape,[d,f]=w.getImageCenter(a,c,l),h=255,g=Math.sin(n),x=Math.cos(n),b=i.data.get(o.dataId).values;for(let S=0;S<u;S++){let k=S*l*c*m;for(let _=0;_<c;_++){let $=_*(l*m);for(let R=0;R<l;R++){let D=R*m;for(let P=0;P<m;P++){let O=[u,_,R,P],M=O[2],L=O[1],B=(M-d)*x-(L-f)*g,z=(M-d)*g+(L-f)*x;B=Math.round(B+d),z=Math.round(z+f);let U=s;if(typeof s!="number"&&(P===3?U=h:U=s[P]),B>=0&&B<l&&z>=0&&z<c){let q=z*(l*m),Y=B*m,J=k+q+Y+P;U=b[J]}let j=k+$+D+P;p[j]=U}}}}return{dataId:i.write(p,o.shape,o.dtype),shape:o.shape,dtype:o.dtype}}};var f7=Ie(cs,r=>{let e=Math.floor(r);return r-e<.5?Math.floor(r):r-e>.5?Math.ceil(r):e%2===0?e:e+1}),U$={kernelName:cs,backendName:"cpu",kernelFunc:f7};function h7(r){let{inputs:e,backend:t,attrs:o}=r,{indices:n,updates:s}=e,{shape:a}=o,{sliceRank:i,numUpdates:p,sliceSize:u,strides:c,outputSize:l}=w.calculateShapes(s,n,a),m=!0,d=t.bufferSync(n),f=t.bufferSync(s),h=zs(d,f,a,l,u,p,i,c,0,m);return t.makeTensorInfo(a,h.dtype,h.values)}var G$={kernelName:ms,backendName:"cpu",kernelFunc:h7};function g7(r,e){let t=0,o=r.length,n=0;for(;t<o;)n=Math.floor((t+o)/2),r[n]<e?t=n+1:o=n;return o}function x7(r,e){let t=0,o=r.length,n=0;for(;t<o;)n=Math.floor((t+o)/2),r[n]<=e?t=n+1:o=n;return o}function H$(r,e,t,o,n,s){let a=y.getArrayFromDType("int32",t*n);for(let i=0;i<t;++i){let p=r.slice(i*o,(i+1)*o),u=i*n;for(let c=0;c<n;++c)a[u+c]=s==="left"?g7(p,e[c+u]):x7(p,e[c+u])}return a}function y7(r){let{inputs:e,backend:t,attrs:o}=r,{sortedSequence:n,values:s}=e,{side:a}=o,i=t.data.get(n.dataId).values,p=t.data.get(s.dataId).values,u=H$(i,p,n.shape[0],n.shape[1],s.shape[1],a);return t.makeTensorInfo(s.shape,"int32",u)}var K$={kernelName:fs,backendName:"cpu",kernelFunc:y7};function b7(r){let{inputs:e,backend:t}=r,{condition:o,t:n,e:s}=e;Q([o,n,s],"select");let a=o.shape.length,i=t.data.get(o.dataId).values,p=t.data.get(n.dataId).values,u=t.data.get(s.dataId).values,c=dt(n.dtype,s.dtype),l=y.makeZerosTypedArray(y.sizeFromShape(n.shape),c),m=0,d=a===0||a>1||n.shape.length===1?1:y.sizeFromShape(n.shape.slice(1));for(let f=0;f<i.length;f++)for(let h=0;h<d;h++)i[f]===1?l[m++]=p[f]:l[m++]=u[f];return t.makeTensorInfo(n.shape,c,l)}var q$={kernelName:fa,backendName:"cpu",kernelFunc:b7};var C7=w.SELU_SCALEALPHA,w7=w.SELU_SCALE,S7=Ie(hs,r=>r>=0?w7*r:C7*(Math.exp(r)-1)),j$={kernelName:hs,backendName:"cpu",kernelFunc:S7};var I7=Ie(ys,r=>r<0?-1:r>0?1:0),X$={kernelName:ys,backendName:"cpu",kernelFunc:I7};var v7=Ie(gs,r=>Math.sin(r)),Y$={kernelName:gs,backendName:"cpu",kernelFunc:v7};var k7=Ie(xs,r=>Math.sinh(r)),Q$={kernelName:xs,backendName:"cpu",kernelFunc:k7};var N7=11920928955078125e-23,Z$=Math.log(N7)+2,T7=Ie(Cs,r=>{let e=r>-Z$,t=r<Z$,o=Math.exp(r),n;return t?n=o:e?n=r:n=Math.log(1+o),n}),J$={kernelName:Cs,backendName:"cpu",kernelFunc:T7};function _7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,paddings:a}=o;Q([n],"spaceToBatchND");let i=y.sizeFromShape(s),p=[[0,0]];p.push(...a);for(let _=1+s.length;_<n.shape.length;++_)p.push([0,0]);let u=Wf.kernelFunc({inputs:{x:n},backend:t,attrs:{paddings:p,constantValue:0}}),c=w.getReshaped(u.shape,s,i,!1),l=w.getPermuted(c.length,s.length,!1),m=w.getReshapedPermuted(u.shape,s,i,!1),h=We({inputs:{x:u},backend:t,attrs:{shape:c}}),b=St({inputs:{x:h},backend:t,attrs:{perm:l}}),k=We({inputs:{x:b},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(b),k}var eR={kernelName:ga,backendName:"cpu",kernelFunc:_7};function E7(r){let{inputs:e,backend:t}=r,{indices:o,values:n,denseShape:s,defaultValue:a}=e;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${s.shape}`);if(o.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${o.shape}`);if(n.shape.length!==1)throw new Error(`Values must be a vector, saw:
${n.shape}`);if(a.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${a.shape}`);let i=t.data.get(o.dataId).values,p=t.data.get(n.dataId).values,u=t.data.get(s.dataId).values,c=t.data.get(a.dataId).values[0],[l,m,d,f,h]=Ff(i,o.shape,o.dtype,p,n.dtype,u,c);return[t.makeTensorInfo(m,o.dtype,l),t.makeTensorInfo([m[0]],n.dtype,d),t.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),t.makeTensorInfo([h.length],o.dtype,new Int32Array(h))]}var tR={kernelName:Ki,backendName:"cpu",kernelFunc:E7};function $7(r){let{inputs:e,backend:t}=r,{inputIndices:o,inputShape:n,newShape:s}=e;if(o.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${o.shape}`);if(n.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${n.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let a=Array.from(t.data.get(n.dataId).values),i=t.data.get(o.dataId).values,p=Array.from(t.data.get(s.dataId).values),[u,c,l]=Pf(i,o.shape,o.dtype,a,p);return[t.makeTensorInfo(c,o.dtype,u),t.makeTensorInfo([l.length],s.dtype,new Int32Array(l))]}var rR={kernelName:ei,backendName:"cpu",kernelFunc:$7};function R7(r){let{inputs:e,backend:t}=r,{data:o,indices:n,segmentIds:s}=e;if(o.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(n.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${n.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);if(n.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let a=t.data.get(o.dataId).values,i=t.data.get(n.dataId).values,p=t.data.get(s.dataId).values,[u,c]=Sc(a,o.shape,o.dtype,i,p,!0);return t.makeTensorInfo(c,o.dtype,u)}var oR={kernelName:ya,backendName:"cpu",kernelFunc:R7};function D7(r){let{inputs:e,backend:t}=r,{data:o,indices:n,segmentIds:s}=e;if(o.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(n.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${n.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);if(n.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let a=t.data.get(o.dataId).values,i=t.data.get(n.dataId).values,p=t.data.get(s.dataId).values,[u,c]=Sc(a,o.shape,o.dtype,i,p);return t.makeTensorInfo(c,o.dtype,u)}var nR={kernelName:ba,backendName:"cpu",kernelFunc:D7};function A7(r){let{inputs:e,backend:t,attrs:o}=r,{sparseIndices:n,sparseValues:s,defaultValue:a}=e,{outputShape:i}=o,{sliceRank:p,numUpdates:u,sliceSize:c,strides:l,outputSize:m}=w.calculateShapes(s,n,i),d=!1,f=t.bufferSync(n),h;switch(s.dtype){case"bool":{let g=t.bufferSync(s),x=!!t.data.get(a.dataId).values[0];h=zs(f,g,i,m,c,u,p,l,x,d);break}case"float32":{let g=t.bufferSync(s),x=t.data.get(a.dataId).values[0];h=zs(f,g,i,m,c,u,p,l,x,d);break}case"int32":{let g=t.bufferSync(s),x=t.data.get(a.dataId).values[0];h=zs(f,g,i,m,c,u,p,l,x,d);break}case"string":{let g=t.bufferSync(s),x=y.decodeString(t.data.get(a.dataId).values[0]);h=zs(f,g,i,m,c,u,p,l,x,d);break}default:throw new Error(`Unsupported type ${s.dtype}`)}return t.makeTensorInfo(i,h.dtype,h.values)}var sR={kernelName:vs,backendName:"cpu",kernelFunc:A7};function F7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{numOrSizeSplits:s,axis:a}=o,i=y.parseAxisParam(a,n.shape)[0],p=w.prepareSplitSize(n,s,i),u=new Array(n.shape.length).fill(0),c=n.shape.slice();return p.map(l=>{let m=[...c];m[i]=l;let d=Ao({inputs:{x:n},backend:t,attrs:{begin:u,size:m}});return u[i]+=l,d})}var aR={kernelName:xa,backendName:"cpu",kernelFunc:F7};var iR={kernelName:qi,backendName:"cpu",kernelFunc:({inputs:r,backend:e})=>{let{x:t}=r,o=e;Q(t,"square");let n=o.data.get(t.dataId).values,s=new Float32Array(n.length);for(let i=0;i<n.length;++i){let p=n[i];s[i]=p*p}return{dataId:o.write(s,t.shape,t.dtype),shape:t.shape,dtype:t.dtype}}};var P7=Ie(wo,(r,e)=>{let t=e;return isNaN(r)?NaN:r>0?1:t.alpha}),uR={kernelName:wo,backendName:"cpu",kernelFunc:P7};function O7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{begin:s,end:a,strides:i,beginMask:p,endMask:u,ellipsisMask:c,newAxisMask:l,shrinkAxisMask:m}=o;Q(n,"stridedSlice");let{finalShapeSparse:d,finalShape:f,isIdentity:h,sliceDim0:g,isSimpleSlice:x,begin:b,end:C,strides:S}=pt.sliceInfo(n.shape,s,a,i,p,u,c,l,m),k;if(h)k=We({inputs:{x:n},backend:t,attrs:{shape:f}});else if(g||x){y.assert(n.shape.length>=1,()=>`Input must have rank at least 1, got: ${n.shape.length}`);let _=pt.computeOutShape(b,C,S),$=Ao({inputs:{x:n},backend:t,attrs:{begin:b,size:_}});k=We({inputs:{x:$},backend:t,attrs:{shape:f}}),t.disposeIntermediateTensorInfo($)}else{let _=t.bufferSync(n),$=Of(d,_,S,b);k=t.makeTensorInfo(f,$.dtype,$.values)}return k}var pR={kernelName:Ns,backendName:"cpu",kernelFunc:O7};function M7(r){let{inputs:e,backend:t,attrs:o}=r,{separator:n,nGramWidths:s,leftPad:a,rightPad:i,padWidth:p,preserveShortSequences:u}=o,{data:c,dataSplits:l}=e,m=t.data.get(c.dataId).values,d=t.data.get(l.dataId).values,[f,h]=cp(m,d,n,s,a,i,p,u);return[t.makeTensorInfo([f.length],"string",f),t.makeTensorInfo(l.shape,"int32",h)]}var cR={kernelName:Ca,backendName:"cpu",kernelFunc:M7};function L7(r){let{inputs:e,backend:t,attrs:o}=r,{skipEmpty:n}=o,{input:s,delimiter:a}=e;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(a.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${a.shape}`);let i=t.data.get(s.dataId).values,p=t.data.get(a.dataId).values[0],[u,c,l]=lp(i,p,n),m=c.length;return[t.makeTensorInfo([m,2],"int32",u),t.makeTensorInfo([m],"string",c),t.makeTensorInfo([2],"int32",new Int32Array(l))]}var lR={kernelName:ji,backendName:"cpu",kernelFunc:L7};function B7(r){let{inputs:e,backend:t,attrs:o}=r,{numBuckets:n}=o,{input:s}=e;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(n<=0)throw new Error("Number of buckets must be at least 1");let a=t.data.get(s.dataId).values,i=mp(a,n);return t.makeTensorInfo(s.shape,"int32",i)}var mR={kernelName:Xi,backendName:"cpu",kernelFunc:B7};var z7=Ie(_s,r=>Math.tan(r)),dR={kernelName:_s,backendName:"cpu",kernelFunc:z7};var V7=Ie(Es,r=>Math.tanh(r)),fR={kernelName:Es,backendName:"cpu",kernelFunc:V7};function W7(r){let{inputs:e,backend:t}=r,{tensor:o,indices:n,updates:s}=e,{sliceRank:a,numUpdates:i,sliceSize:p,strides:u,outputSize:c}=w.calculateShapes(s,n,o.shape),l=!1,m=t.bufferSync(n),d=t.bufferSync(s),f=t.bufferSync(o),h=zs(m,d,o.shape,c,p,i,a,u,f,l);return t.makeTensorInfo(o.shape,h.dtype,h.values)}var hR={kernelName:ds,backendName:"cpu",kernelFunc:W7};function U7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{reps:s}=o;Q(n,"tile");let a=Mf(t.bufferSync(n),s);return t.makeTensorInfo(a.shape,a.dtype,a.values)}var gR={kernelName:po,backendName:"cpu",kernelFunc:U7};function G7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{k:s,sorted:a}=o;Q(n,"topk");let i=t.data.get(n.dataId).values,[p,u]=Lf(i,n.shape,n.dtype,s,a);return[t.makeTensorInfo(p.shape,p.dtype,p.values),t.makeTensorInfo(u.shape,u.dtype,u.values)]}var xR={kernelName:$s,backendName:"cpu",kernelFunc:G7};function H7(r){let{inputs:e,attrs:t,backend:o}=r,{image:n,transforms:s}=e,{interpolation:a,fillMode:i,fillValue:p,outputShape:u}=t,[c,l,m,d]=n.shape,[f,h]=u!=null?u:[l,m],g=[c,f,h,d],x=y.computeStrides(n.shape),b=x[0],C=x[1],S=x[2],k=y.computeStrides(g),_=k[0],$=k[1],R=k[2],D=y.getTypedArrayFromDType(n.dtype,y.sizeFromShape(g));D.fill(p);let P=o.data.get(n.dataId).values,O=o.data.get(s.dataId).values;for(let L=0;L<c;++L){let B=s.shape[0]===1?O:O.subarray(L*8,L*8+8);for(let z=0;z<f;++z)for(let U=0;U<h;++U)for(let j=0;j<d;++j){let q,Y=B[6]*U+B[7]*z+1;if(Y===0)continue;let J=(B[0]*U+B[1]*z+B[2])/Y,re=(B[3]*U+B[4]*z+B[5])/Y,ne=yR(J,m,i),ee=yR(re,l,i);switch(a){case"nearest":q=Y7(P,l,m,b,C,S,L,ee,ne,j,p);break;case"bilinear":q=Q7(P,l,m,b,C,S,L,ee,ne,j,p);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${a}`)}let oe=L*_+z*$+U*R+j;D[oe]=q}return o.makeTensorInfo(g,n.dtype,D)}return{dataId:o.write(D,g,n.dtype),shape:n.shape,dtype:n.dtype}}var bR={kernelName:Rs,backendName:"cpu",kernelFunc:H7};function yR(r,e,t){switch(t){case"reflect":return K7(r,e);case"wrap":return q7(r,e);case"nearest":return X7(r,e);case"constant":default:return j7(r,e)}}function K7(r,e){let t=r;if(t<0)if(e<=1)t=0;else{let o=2*e;t<o&&(t=o*Math.trunc(-t/o)+t),t=t<-e?t+o:-t-1}else if(t>e-1)if(e<=1)t=0;else{let o=2*e;t-=o*Math.trunc(t/o),t>=e&&(t=o-t-1)}return y.clamp(0,t,e-1)}function q7(r,e){let t=r;if(t<0)if(e<=1)t=0;else{let o=e-1;t+=e*(Math.trunc(-t/o)+1)}else if(t>e-1)if(e<=1)t=0;else{let o=e-1;t-=e*Math.trunc(t/o)}return y.clamp(0,t,e-1)}function j7(r,e){return r}function X7(r,e){return y.clamp(0,r,e-1)}function ql(r,e,t,o,n,s,a,i,p,u,c){let l=a*o+i*n+p*s+u;return 0<=i&&i<e&&0<=p&&p<t?r[l]:c}function Y7(r,e,t,o,n,s,a,i,p,u,c){let l=Math.round(i),m=Math.round(p);return ql(r,e,t,o,n,s,a,l,m,u,c)}function Q7(r,e,t,o,n,s,a,i,p,u,c){let l=Math.floor(i),m=Math.floor(p),d=l+1,f=m+1,h=(f-p)*ql(r,e,t,o,n,s,a,l,m,u,c)+(p-m)*ql(r,e,t,o,n,s,a,l,f,u,c),g=(f-p)*ql(r,e,t,o,n,s,a,d,m,u,c)+(p-m)*ql(r,e,t,o,n,s,a,d,f,u,c);return(d-i)*h+(i-l)*g}function Z7(r){let{inputs:e,attrs:t,backend:o}=r,{axis:n}=t,{x:s}=e;Q(s,"unique");let a=o.data.get(s.dataId).values,{outputValues:i,outputShape:p,indices:u}=dp(a,n,s.shape,s.dtype);return[o.makeTensorInfo(p,s.dtype,i),o.makeTensorInfo([u.length],"int32",u)]}var CR={kernelName:Yi,backendName:"cpu",kernelFunc:Z7};function J7(r){let{inputs:e,backend:t,attrs:o}=r,{value:n}=e,{axis:s}=o;s<0&&(s+=n.shape.length);let a=n.shape.length,i=n.shape[s],p=new Array(a-1),u=0;for(let d=0;d<a;d++)d!==s&&(p[u++]=n.shape[d]);let c=new Array(a).fill(0),l=n.shape.slice();l[s]=1;let m=new Array(i);for(let d=0;d<m.length;d++){c[s]=d;let f=Ao({inputs:{x:n},backend:t,attrs:{begin:c,size:l}});m[d]=We({inputs:{x:f},backend:t,attrs:{shape:p}}),t.disposeIntermediateTensorInfo(f)}return m}var wR={kernelName:wa,backendName:"cpu",kernelFunc:J7};function eZ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,segmentIds:s}=e,{numSegments:a}=o;Q(n,"unsortedSegmentSum");let i=n.shape.length,p=s.shape.length,u=[],c=[],l=i-p,m=s;for(let f=0;f<l;++f){let h=kc({inputs:{input:m},backend:t,attrs:{dim:f+1}});m=h,c.push(h)}for(let f=0;f<a;++f){let h=y.createScalarValue(f,"int32"),g=t.makeTensorInfo([],"int32",h),x=HS({inputs:{a:g,b:m},backend:t}),b=Ro({inputs:{x},backend:t,attrs:{dtype:"float32"}}),C=ip({inputs:{a:b,b:n},backend:t}),S=fi({inputs:{x:C},backend:t,attrs:{axis:0,keepDims:!1}});u.push(S),c.push(g),c.push(x),c.push(b),c.push(C),c.push(S)}let d=kI({inputs:u,backend:t,attrs:{axis:0}});return c.forEach(f=>t.disposeIntermediateTensorInfo(f)),d}var SR={kernelName:Qi,backendName:"cpu",kernelFunc:eZ};var tZ=[q_,t_,j_,X_,a_,Y_,Q_,Z_,J_,eE,tE,rE,oE,nE,sE,iE,uE,pE,cE,K_,lE,mE,dE,i_,fE,s_,u_,hE,r_,gE,yE,bE,CE,wE,SE,IE,vE,kE,NE,TE,_E,EE,$E,RE,DE,AE,FE,PE,OE,ME,LE,BE,VE,z_,WE,p_,UE,c_,GE,l_,HE,KE,qE,m_,d_,jE,XE,YE,QE,f_,h_,o_,ZE,xE,JE,e$,t$,V_,g_,x_,r$,y_,o$,n$,s$,a$,i$,u$,p$,b_,c$,l$,m$,d$,h$,g$,x$,C_,y$,b$,S$,w_,S_,I$,v$,k$,I_,N$,E$,$$,Wf,R$,W_,k_,D$,A$,F$,P$,n_,Gl,O$,U_,G_,H_,M$,L$,B$,z$,V$,W$,U$,$_,G$,K$,q$,j$,D_,X$,Y$,Q$,A_,C$,J$,eR,tR,rR,oR,nR,sR,aR,P_,iR,O_,M_,uR,pR,cR,lR,mR,L_,zE,dR,fR,hR,gR,xR,bR,v_,CR,wR,SR,T$];for(let r of tZ)ti(r);var Ec={};qe(Ec,{assertNotComplex:()=>Vs,bindCanvasToFramebuffer:()=>cZ,bindColorTextureToFramebuffer:()=>Ql,bindTextureToProgramUniformSampler:()=>VI,bindTextureUnit:()=>NR,bindVertexBufferToProgramAttribute:()=>jf,callAndCheck:()=>ce,canBeRepresented:()=>EI,createFragmentShader:()=>RI,createFramebuffer:()=>LI,createProgram:()=>DI,createStaticIndexBuffer:()=>PI,createStaticVertexBuffer:()=>FI,createTexture:()=>OI,createVertexShader:()=>$I,getBatchDim:()=>gi,getExtensionOrThrow:()=>Nc,getFramebufferErrorMessage:()=>TR,getMaxTexturesInShader:()=>GI,getNumChannels:()=>uZ,getProgramUniformLocation:()=>zI,getProgramUniformLocationOrThrow:()=>BI,getRowsCols:()=>xi,getShapeAs3D:()=>_c,getTextureShapeFromLogicalShape:()=>WI,getWebGLDisjointQueryTimerVersion:()=>HI,getWebGLErrorMessage:()=>kR,getWebGLMaxTextureSize:()=>UI,hasExtension:()=>qr,isCapableOfRenderingToFloatTexture:()=>KI,isDownloadFloatTextureEnabled:()=>qI,isReshapeFree:()=>xu,isWebGLFenceEnabled:()=>jI,isWebGLVersionEnabled:()=>Yf,linkProgram:()=>AI,logShaderSourceAndInfoLog:()=>qf,resetMaxTextureSize:()=>lZ,resetMaxTexturesInShader:()=>mZ,unbindColorTextureFromFramebuffer:()=>Xf,unbindTextureUnit:()=>pZ,validateFramebuffer:()=>Tc,validateProgram:()=>Yl,validateTextureSize:()=>MI});var hp={},Uf={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function NI(r,e){hp[r]=e}function Kr(r,e){if(!(r in hp)||e!=null){let o=oZ(r,e);if(o!==null)hp[r]=o;else return console.log("Could not get context for WebGL version",r),null}let t=hp[r];return t==null||t.isContextLost()?(delete hp[r],Kr(r)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),hp[r])}function rZ(r){if(!A().getBool("IS_SAFARI")&&typeof OffscreenCanvas!="undefined"&&r===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function oZ(r,e){if(r!==1&&r!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=e==null?rZ(r):e;return t.addEventListener("webglcontextlost",o=>{o.preventDefault(),delete hp[r]},!1),A().getBool("SOFTWARE_WEBGL_ENABLED")&&(Uf.failIfMajorPerformanceCaveat=!1),r===1?t.getContext("webgl",Uf)||t.getContext("experimental-webgl",Uf):t.getContext("webgl2",Uf)}var gu;(function(r){r[r.DENSE=0]="DENSE",r[r.SHARED_BATCH=1]="SHARED_BATCH"})(gu||(gu={}));var mr;(function(r){r[r.RENDER=0]="RENDER",r[r.UPLOAD=1]="UPLOAD",r[r.PIXELS=2]="PIXELS",r[r.DOWNLOAD=3]="DOWNLOAD"})(mr||(mr={}));var er;(function(r){r[r.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",r[r.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",r[r.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",r[r.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",r[r.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(er||(er={}));function gp(r,e){return[e,r]}function IR(r,e){return r*e}function jl(r){let e=y.sizeFromShape(r),t=Math.ceil(e/4);return y.sizeToSquarishShape(t)}function Ma(r,e){return[Math.max(1,Math.ceil(e/2)),Math.max(1,Math.ceil(r/2))]}function vR(r,e){let[t,o]=Ma(r,e);return t*o*4}function Xl(r,e){let t=r,o,n,s,a,i,p,u,c,l,m;return A().getNumber("WEBGL_VERSION")===2?(o=t.R32F,n=t.R16F,s=t.RGBA16F,a=t.RGBA32F,i=t.RED,u=4,c=1,l=t.HALF_FLOAT,m=t.FLOAT,p=t.RGBA8):(o=r.RGBA,n=r.RGBA,s=r.RGBA,a=t.RGBA,i=r.RGBA,u=4,c=4,l=e!=null?e.HALF_FLOAT_OES:null,m=r.FLOAT,p=r.RGBA),{internalFormatFloat:o,internalFormatHalfFloat:n,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:a,textureFormatFloat:i,downloadTextureFormat:p,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:l,textureTypeFloat:m}}function ce(r,e){let t=e();return A().getBool("DEBUG")&&nZ(r),t}function nZ(r){let e=r.getError();if(e!==r.NO_ERROR)throw new Error("WebGL Error: "+kR(r,e))}var sZ=596e-10,aZ=65504;function EI(r){return!!(A().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||r===0||sZ<Math.abs(r)&&Math.abs(r)<aZ)}function kR(r,e){switch(e){case r.NO_ERROR:return"NO_ERROR";case r.INVALID_ENUM:return"INVALID_ENUM";case r.INVALID_VALUE:return"INVALID_VALUE";case r.INVALID_OPERATION:return"INVALID_OPERATION";case r.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case r.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case r.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${e}`}}function Nc(r,e){return hi(r,()=>r.getExtension(e),'Extension "'+e+'" not supported on this browser.')}function $I(r,e){let t=hi(r,()=>r.createShader(r.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(ce(r,()=>r.shaderSource(t,e)),ce(r,()=>r.compileShader(t)),r.getShaderParameter(t,r.COMPILE_STATUS)===!1)throw console.log(r.getShaderInfoLog(t)),new Error("Failed to compile vertex shader.");return t}function RI(r,e){let t=hi(r,()=>r.createShader(r.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(ce(r,()=>r.shaderSource(t,e)),ce(r,()=>r.compileShader(t)),A().get("ENGINE_COMPILE_ONLY"))return t;if(r.getShaderParameter(t,r.COMPILE_STATUS)===!1)throw qf(e,r.getShaderInfoLog(t)),new Error("Failed to compile fragment shader.");return t}var iZ=/ERROR: [0-9]+:([0-9]+):/g;function qf(r,e){let t=iZ.exec(e);if(t==null){console.log(`Couldn't parse line number in error: ${e}`),console.log(r);return}let o=+t[1],n=r.split(`
`),s=n.length.toString().length+2,a=n.map((l,m)=>y.rightPad((m+1).toString(),s)+l),i=0;for(let l=0;l<a.length;l++)i=Math.max(a[l].length,i);let p=a.slice(0,o-1),u=a.slice(o-1,o),c=a.slice(o);console.log(p.join(`
`)),console.log(e.split(`
`)[0]),console.log(`%c ${y.rightPad(u[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
`))}function DI(r){return hi(r,()=>r.createProgram(),"Unable to create WebGLProgram.")}function AI(r,e){if(ce(r,()=>r.linkProgram(e)),!A().get("ENGINE_COMPILE_ONLY")&&r.getProgramParameter(e,r.LINK_STATUS)===!1)throw console.log(r.getProgramInfoLog(e)),new Error("Failed to link vertex and fragment shaders.")}function Yl(r,e){if(ce(r,()=>r.validateProgram(e)),r.getProgramParameter(e,r.VALIDATE_STATUS)===!1)throw console.log(r.getProgramInfoLog(e)),new Error("Shader program validation failed.")}function FI(r,e){let t=hi(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return ce(r,()=>r.bindBuffer(r.ARRAY_BUFFER,t)),ce(r,()=>r.bufferData(r.ARRAY_BUFFER,e,r.STATIC_DRAW)),t}function PI(r,e){let t=hi(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return ce(r,()=>r.bindBuffer(r.ELEMENT_ARRAY_BUFFER,t)),ce(r,()=>r.bufferData(r.ELEMENT_ARRAY_BUFFER,e,r.STATIC_DRAW)),t}function uZ(){return A().getNumber("WEBGL_VERSION")===2?1:4}function OI(r){return hi(r,()=>r.createTexture(),"Unable to create WebGLTexture.")}function MI(r,e){let t=A().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(r<=0||e<=0){let o=`[${r}x${e}]`;throw new Error("Requested texture size "+o+" is invalid.")}if(r>t||e>t){let o=`[${r}x${e}]`,n=`[${t}x${t}]`;throw new Error("Requested texture size "+o+" greater than WebGL maximum on this browser / GPU "+n+".")}}function LI(r){return hi(r,()=>r.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function jf(r,e,t,o,n,s,a){let i=r.getAttribLocation(e,t);return i===-1?!1:(ce(r,()=>r.bindBuffer(r.ARRAY_BUFFER,o)),ce(r,()=>r.vertexAttribPointer(i,n,r.FLOAT,!1,s,a)),ce(r,()=>r.enableVertexAttribArray(i)),!0)}function NR(r,e,t){_R(r,t),ce(r,()=>r.activeTexture(r.TEXTURE0+t)),ce(r,()=>r.bindTexture(r.TEXTURE_2D,e))}function pZ(r,e){_R(r,e),ce(r,()=>r.activeTexture(r.TEXTURE0+e)),ce(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function BI(r,e,t){return hi(r,()=>r.getUniformLocation(e,t),'uniform "'+t+'" not present in program.')}function zI(r,e,t){return r.getUniformLocation(e,t)}function VI(r,e,t,o){ce(r,()=>NR(r,e,o)),ce(r,()=>r.uniform1i(t,o))}function cZ(r){ce(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,null)),ce(r,()=>r.viewport(0,0,r.canvas.width,r.canvas.height)),ce(r,()=>r.scissor(0,0,r.canvas.width,r.canvas.height))}function Ql(r,e,t){ce(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,t)),ce(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,e,0))}function Xf(r,e){ce(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,e)),ce(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,null,0))}function Tc(r){let e=r.checkFramebufferStatus(r.FRAMEBUFFER);if(e!==r.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+TR(r,e))}function TR(r,e){switch(e){case r.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case r.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${e}`}}function hi(r,e,t){let o=ce(r,()=>e());if(o==null)throw new Error(t);return o}function _R(r,e){let t=r.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,o=e+r.TEXTURE0;if(o<r.TEXTURE0||o>t){let n=`[gl.TEXTURE0, gl.TEXTURE${t}]`;throw new Error(`textureUnit must be in ${n}.`)}}function gi(r,e=2){return y.sizeFromShape(r.slice(0,r.length-e))}function xi(r){if(r.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[r.length>1?r[r.length-2]:1,r[r.length-1]]}function _c(r){let e=[1,1,1];return r.length===0||r.length===1&&r[0]===1||(e=[gi(r),...xi(r)]),e}function WI(r,e=!1){let t=A().getNumber("WEBGL_MAX_TEXTURE_SIZE"),o=A().getNumber("WEBGL_MAX_SIZE_FOR_NARROW_TEXTURE");o===1/0&&A().getBool("WEBGL_AUTO_SQUARIFY_NARROW_TEXTURE_SHAPE")&&(o=t/2),e&&(t=t*2,o=o*2,r=r.map((i,p)=>p>=r.length-2?y.nearestLargerEven(r[p]):r[p]),r.length===1&&(r=[2,r[0]])),r.length!==2&&(r=y.squeezeShape(r).newShape);let n=y.sizeFromShape(r),s=null;r.length<=1&&n<=t?s=[1,n]:r.length===2&&r[0]<=t&&r[1]<=t?s=r:r.length===3&&r[0]*r[1]<=t&&r[2]<=t?s=[r[0]*r[1],r[2]]:r.length===3&&r[0]<=t&&r[1]*r[2]<=t?s=[r[0],r[1]*r[2]]:r.length===4&&r[0]*r[1]*r[2]<=t&&r[3]<=t?s=[r[0]*r[1]*r[2],r[3]]:r.length===4&&r[0]<=t&&r[1]*r[2]*r[3]<=t&&(s=[r[0],r[1]*r[2]*r[3]]);let a=s!=null&&Math.max(...s)>o&&Math.min(...s)<=(e?2:1)&&Math.min(...s)>0;if(s==null||a)if(e){let i=gi(r),p=2,u=2;r.length&&([p,u]=xi(r)),n=i*(p/2)*(u/2),s=y.sizeToSquarishShape(n).map(c=>c*2)}else s=y.sizeToSquarishShape(n);return s}function Gf(r){return r%2===0}function xu(r,e){if(r=r.slice(-2),e=e.slice(-2),y.arraysEqual(r,e)||!r.length||!e.length||r[0]===0||r[1]===0||e[0]===0||e[1]===0)return!0;if(r.length!==e.length){let t=r[r.length-1],o=e[e.length-1];if(t===o||Gf(t)&&Gf(o)&&(r[0]===1||e[0]===1))return!0}return r[1]===e[1]&&Gf(r[0])&&Gf(e[0])}var Hf,Kf;function UI(r){if(Hf==null){let e=Kr(r);Hf=e.getParameter(e.MAX_TEXTURE_SIZE)}return Hf}function lZ(){Hf=null}function mZ(){Kf=null}function GI(r){if(Kf==null){let e=Kr(r);Kf=e.getParameter(e.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Kf)}function HI(r){if(r===0)return 0;let e,t=Kr(r);return qr(t,"EXT_disjoint_timer_query_webgl2")&&r===2?e=2:qr(t,"EXT_disjoint_timer_query")?e=1:e=0,e}function qr(r,e){return r.getExtension(e)!=null}function Yf(r){try{if(Kr(r)!=null)return!0}catch(e){return console.log("Error when getting WebGL context: ",e),!1}return!1}function KI(r){if(r===0)return!1;let e=Kr(r);if(r===1){if(!qr(e,"OES_texture_float"))return!1}else if(!qr(e,"EXT_color_buffer_float"))return!1;return _I(e)}function qI(r){if(r===0)return!1;let e=Kr(r);if(r===1){if(!qr(e,"OES_texture_float")||!qr(e,"WEBGL_color_buffer_float"))return!1}else{if(qr(e,"EXT_color_buffer_float"))return _I(e);let o="EXT_color_buffer_half_float";if(qr(e,o)){let n=e.getExtension(o);return dZ(e,n)}return!1}return _I(e)}function _I(r){let e=Xl(r),t=r.createTexture();r.bindTexture(r.TEXTURE_2D,t),r.texImage2D(r.TEXTURE_2D,0,e.internalFormatFloat,1,1,0,e.textureFormatFloat,e.textureTypeFloat,null);let s=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,s),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,t,0);let a=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(t),r.deleteFramebuffer(s),a}function dZ(r,e){let t=Xl(r,e),o=r.createTexture();r.bindTexture(r.TEXTURE_2D,o),r.texImage2D(r.TEXTURE_2D,0,t.internalFormatHalfFloat,1,1,0,t.textureFormatFloat,t.textureTypeHalfFloat,null);let a=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,a),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,o,0);let i=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(o),r.deleteFramebuffer(a),i}function jI(r){return r!==2?!1:Kr(r).fenceSync!=null}function Vs(r,e){Array.isArray(r)||(r=[r]),r.forEach(t=>{t!=null&&y.assert(t.dtype!=="complex64",()=>`${e} does not support complex64 tensors in the WebGL backend.`)})}var Se=A();Se.registerFlag("HAS_WEBGL",()=>Se.getNumber("WEBGL_VERSION")>0);Se.registerFlag("WEBGL_VERSION",()=>Yf(2)?2:Yf(1)?1:0);Se.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Se.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Se.get("WEBGL_VERSION")===2);Se.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Se.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Se.registerFlag("WEBGL_PACK",()=>Se.getBool("HAS_WEBGL"));Se.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Se.getBool("WEBGL_PACK"));Se.registerFlag("WEBGL_PACK_CLIP",()=>Se.getBool("WEBGL_PACK"));Se.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Se.getBool("WEBGL_PACK"));Se.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Se.getBool("WEBGL_PACK"));Se.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Se.getBool("WEBGL_PACK"));Se.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Se.getBool("WEBGL_PACK"));Se.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Se.getBool("WEBGL_PACK"));Se.registerFlag("WEBGL_PACK_REDUCE",()=>Se.getBool("WEBGL_PACK"));Se.registerFlag("WEBGL_LAZILY_UNPACK",()=>Se.getBool("WEBGL_PACK"));Se.registerFlag("WEBGL_CONV_IM2COL",()=>Se.getBool("WEBGL_PACK"));Se.registerFlag("WEBGL_PACK_CONV2DTRANSPOSE",()=>Se.getBool("WEBGL_PACK"));Se.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>UI(Se.getNumber("WEBGL_VERSION")));Se.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>GI(Se.getNumber("WEBGL_VERSION")));Se.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let r=Se.getNumber("WEBGL_VERSION");return r===0?0:HI(r)});Se.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Se.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!eu.isMobile());Se.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>KI(Se.getNumber("WEBGL_VERSION")));Se.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Se.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Se.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Se.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>qI(Se.getNumber("WEBGL_VERSION")));Se.registerFlag("WEBGL_FENCE_API_ENABLED",()=>jI(Se.getNumber("WEBGL_VERSION")));Se.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Se.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Se.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,r=>{if(typeof r!="number")throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be a number but got ${r}.`);if(r<0&&r!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${r}.`)});Se.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>eu.isMobile()?1:-1,r=>{if(typeof r!="number")throw new Error(`WEBGL_FLUSH_THRESHOLD must be a number but got ${r}.`);if(r<0&&r!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${r}.`)});Se.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Se.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Se.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Se.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);Se.registerFlag("WEBGL_EXP_CONV",()=>!1);Se.registerFlag("SOFTWARE_WEBGL_ENABLED",()=>Se.getBool("IS_TEST"));Se.registerFlag("WEBGL_MAX_SIZE_FOR_NARROW_TEXTURE",()=>1/0);Se.registerFlag("WEBGL_AUTO_SQUARIFY_NARROW_TEXTURE_SHAPE",()=>!1);Se.registerFlag("WEBGL2_ISNAN_CUSTOM",()=>!1);Se.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);function It(){let r,e,t,o,n,s,a,i,p,u;return A().getNumber("WEBGL_VERSION")===2?(r="#version 300 es",e="in",t="out",o="in",n="texture",s="outputColor",a="out vec4 outputColor;",i=A().getBool("WEBGL2_ISNAN_CUSTOM")?`
bool isnan_custom(float val) {
uint floatToUint = floatBitsToUint(val);
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`:"",p="",u=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(r="",e="attribute",t="varying",o="varying",n="texture2D",s="gl_FragColor",a="",i=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,p=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,u=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:r,attribute:e,varyingVs:t,varyingFs:o,texture2D:n,output:s,defineOutput:a,defineSpecialNaN:i,defineSpecialInf:p,defineRound:u}}function Ws(r,e,t="index"){let o=y.computeStrides(e);return o.map((n,s)=>{let a=`int ${r[s]} = ${t} / ${n}`,i=s===o.length-1?`int ${r[s+1]} = ${t} - ${r[s]} * ${n}`:`index -= ${r[s]} * ${n}`;return`${a}; ${i};`}).join("")}function xp(r,e,t="index"){let o=y.computeStrides(e);return o.map((n,s)=>{let a=`int ${r[s]} = ${t} / outShapeStrides[${s}]`,i=s===o.length-1?`int ${r[s+1]} = ${t} - ${r[s]} * outShapeStrides[${s}]`:`index -= ${r[s]} * outShapeStrides[${s}]`;return`${a}; ${i};`}).join("")}function fZ(r,e){let t=r.length,o=r.map(s=>`${e}[${s}]`),n=new Array(t-1);n[t-2]=o[t-1];for(let s=t-3;s>=0;--s)n[s]=`(${n[s+1]} * ${o[s+1]})`;return n}function ER(r,e,t="index"){let o=r.map((s,a)=>a),n=fZ(o,e);return n.map((s,a)=>{let i=`int ${r[a]} = ${t} / ${n[a]}`,p=a===n.length-1?`int ${r[a+1]} = ${t} - ${r[a]} * ${n[a]}`:`index -= ${r[a]} * ${n[a]}`;return`${i}; ${p};`}).join("")}function $c(r){let e=y.computeStrides(r).map(t=>t.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${e[0]} + coords.y * ${e[1]} + coords.z;
}
`}function Rc(){return`
int getFlatIndex(ivec3 coords) {
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
}
`}var Qf=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`;var{getBroadcastDims:$R}=w;function RR(r,e,t){let o=[];if(r.forEach(d=>{let f=y.sizeFromShape(d.shapeInfo.logicalShape);if(d.shapeInfo.isUniform?o.push(`uniform float ${d.name}${f>1?`[${f}]`:""};`):(o.push(`uniform sampler2D ${d.name};`),o.push(`uniform int offset${d.name};`)),t.enableShapeUniforms){let{uniformShape:h}=Zf(t.packedInputs,d.shapeInfo.logicalShape,d.shapeInfo.texShape);switch(h.length){case 1:o.push(`uniform int ${d.name}Shape;`);break;case 2:o.push(`uniform ivec2 ${d.name}Shape;`);break;case 3:o.push(`uniform ivec3 ${d.name}Shape;`);break;case 4:o.push(`uniform ivec4 ${d.name}Shape;`);break;default:break}o.push(`uniform ivec2 ${d.name}TexShape;`)}}),t.enableShapeUniforms){switch(e.logicalShape.length){case 1:o.push("uniform int outShape;");break;case 2:o.push("uniform ivec2 outShape;"),o.push("uniform int outShapeStrides;");break;case 3:o.push("uniform ivec3 outShape;"),o.push("uniform ivec2 outShapeStrides;");break;case 4:o.push("uniform ivec4 outShape;"),o.push("uniform ivec3 outShapeStrides;");break;default:break}o.push("uniform ivec2 outTexShape;")}t.customUniforms&&t.customUniforms.forEach(d=>{o.push(`uniform ${d.type} ${d.name}${d.arrayIndex?`[${d.arrayIndex}]`:""};`)});let n=o.join(`
`),s=r.map(d=>hZ(d,e,t.packedInputs,t.enableShapeUniforms)).join(`
`),a=e.texShape,i=It(),p=yZ(i),u,c,l=wZ(i);return e.isPacked?(u=gZ(e.logicalShape,a,t.enableShapeUniforms),c=CZ(i)):(u=xZ(e.logicalShape,a,t.enableShapeUniforms),c=bZ(i)),t.packedInputs&&(l+=kZ),[l,p,c,n,u,s,t.userCode].join(`
`)}function Ac(r,e=!1){let t=r.shapeInfo.logicalShape;switch(t.length){case 0:return MZ(r,e);case 1:return BZ(r,e);case 2:return VZ(r,e);case 3:return UZ(r,e);case 4:return HZ(r,e);case 5:return KZ(r);case 6:return qZ(r);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function DR(r,e){switch(r.shapeInfo.logicalShape.length){case 0:return OZ(r);case 1:return LZ(r,e);case 2:return zZ(r,e);case 3:return WZ(r,e);default:return GZ(r,e)}}function hZ(r,e,t=!1,o){let n="";t?n+=DR(r,o):n+=Ac(r,o);let s=r.shapeInfo.logicalShape,a=e.logicalShape;return s.length<=a.length&&(t?n+=jZ(r,e):n+=XZ(r,e)),n}function gZ(r,e,t){switch(r.length){case 0:return AR();case 1:return NZ(r,e,t);case 2:return FZ(r,e,t);case 3:return _Z(r,e,t);default:return $Z(r,e,t)}}function xZ(r,e,t){switch(r.length){case 0:return AR();case 1:return TZ(r,e,t);case 2:return PZ(r,e,t);case 3:return EZ(r,e,t);case 4:return RZ(r,e,t);case 5:return DZ(r,e);case 6:return AZ(r,e);default:throw new Error(`${r.length}-D output sampling is not yet supported`)}}function yZ(r){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${r.texture2D}(textureSampler, uv).r;
}
`}function bZ(r){return`
void setOutput(float val) {
${r.output} = vec4(val, 0, 0, 0);
}
`}function CZ(r){return`
void setOutput(vec4 val) {
${r.output} = val;
}
`}function wZ(r){return`${r.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${r.varyingFs} vec2 resultUV;
${r.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${r.defineSpecialNaN}
${r.defineSpecialInf}
${r.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${SZ}
${IZ}
${vZ}
`}var SZ=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,IZ=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,vZ=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,kZ=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function AR(){return`
int getOutputCoords() {
return 0;
}
`}function NZ(r,e,t){let o=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)];return o[0]===1?t?`
int getOutputCoords() {
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.x * ${o[1]}.0);
}
`:o[1]===1?t?`
int getOutputCoords() {
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.y * ${o[0]}.0);
}
`:t?`
int getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${o[0]}, ${o[1]}));
return 2 * (resTexRC.x * ${o[1]} + resTexRC.y);
}
`}function TZ(r,e,t){return e[0]===1?t?`
int getOutputCoords() {
return int(resultUV.x * float(outTexShape[1]));
}
`:`
int getOutputCoords() {
return int(resultUV.x * ${e[1]}.0);
}
`:e[1]===1?t?`
int getOutputCoords() {
return int(resultUV.y * float(outTexShape[0]));
}
`:`
int getOutputCoords() {
return int(resultUV.y * ${e[0]}.0);
}
`:t?`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
return resTexRC.x * outTexShape[1] + resTexRC.y;
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
return resTexRC.x * ${e[1]} + resTexRC.y;
}
`}function _Z(r,e,t){if(t)return`
ivec3 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec3(b, r, c);
}
`;let o=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)],n=Math.ceil(r[2]/2),s=n*Math.ceil(r[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${o[0]}, ${o[1]}));
int index = resTexRC.x * ${o[1]} + resTexRC.y;
int b = index / ${s};
index -= b * ${s};
int r = 2 * (index / ${n});
int c = imod(index, ${n}) * 2;
return ivec3(b, r, c);
}
`}function EZ(r,e,t){if(t)return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${xp(["r","c","d"],r)}
return ivec3(r, c, d);
}
`;let o=Ws(["r","c","d"],r);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
${o}
return ivec3(r, c, d);
}
`}function $Z(r,e,t){if(t)return`
ivec4 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
int texelsInBatchN = texelsInBatch * outShape[1];
int b2 = index / texelsInBatchN;
index -= b2 * texelsInBatchN;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec4(b2, b, r, c);
}
`;let o=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)],n=Math.ceil(r[r.length-1]/2),s=n*Math.ceil(r[r.length-2]/2),a=s,i="",p="b, r, c";for(let u=2;u<r.length-1;u++)a*=r[r.length-u-1],i=`
int b${u} = index / ${a};
index -= b${u} * ${a};
`+i,p=`b${u}, `+p;return`
ivec${r.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${o[0]}, ${o[1]}));
int index = resTexRC.x * ${o[1]} + resTexRC.y;
${i}
int b = index / ${s};
index -= b * ${s};
int r = 2 * (index / ${n});
int c = imod(index, ${n}) * 2;
return ivec${r.length}(${p});
}
`}function RZ(r,e,t){if(t)return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${xp(["r","c","d","d2"],r)}
return ivec4(r, c, d, d2);
}
`;let o=Ws(["r","c","d","d2"],r);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
${o}
return ivec4(r, c, d, d2);
}
`}function DZ(r,e){let t=Ws(["r","c","d","d2","d3"],r);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${e[0]},
${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
${t}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function AZ(r,e){let t=Ws(["r","c","d","d2","d3","d4"],r);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
${t}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function FZ(r,e,t){let o=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)];if(y.arraysEqual(r,e))return t?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${o[0]}, ${o[1]}));
}
`;let n=Math.ceil(r[1]/2);return t?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${o[0]}, ${o[1]}));
int index = resTexRC.x * ${o[1]} + resTexRC.y;
int r = 2 * (index / ${n});
int c = imod(index, ${n}) * 2;
return ivec2(r, c);
}
`}function PZ(r,e,t){return y.arraysEqual(r,e)?t?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${e[0]}, ${e[1]}));
}
`:r[1]===1?t?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(index, 0);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:r[0]===1?t?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
return ivec2(0, index);
}
`:t?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
int r = index / outShape[1];
int c = index - r * outShape[1];
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
int r = index / ${r[1]};
int c = index - r * ${r[1]};
return ivec2(r, c);
}
`}function yp(r){return`offset${r}`}function OZ(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1),o=It();return`
vec4 ${t}() {
return ${o.texture2D}(${e}, halfCR);
}
`}function MZ(r,e){let t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1);if(r.shapeInfo.isUniform)return`float ${o}() {return ${t};}`;let[n,s]=r.shapeInfo.texShape;if(n===1&&s===1)return`
float ${o}() {
return sampleTexture(${t}, halfCR);
}
`;let a=yp(t);if(e)return`
float ${o}() {
vec2 uv = uvFromFlat(${t}TexShape[0], ${t}TexShape[1], ${a});
return sampleTexture(${t}, uv);
}
`;let[i,p]=r.shapeInfo.texShape;return`
float ${o}() {
vec2 uv = uvFromFlat(${i}, ${p}, ${a});
return sampleTexture(${t}, uv);
}
`}function LZ(r,e){let t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=r.shapeInfo.texShape,s=It();if(e)return`
vec4 ${o}(int index) {
ivec2 packedTexShape = ivec2(ceil(float(${t}TexShape[0]) / 2.0), ceil(float(${t}TexShape[1]) / 2.0));
vec2 uv = packedUVfrom1D(
packedTexShape[0], packedTexShape[1], index);
return ${s.texture2D}(${t}, uv);
}
`;let a=[Math.ceil(n[0]/2),Math.ceil(n[1]/2)];return`
vec4 ${o}(int index) {
vec2 uv = packedUVfrom1D(
${a[0]}, ${a[1]}, index);
return ${s.texture2D}(${t}, uv);
}
`}function BZ(r,e){let t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1);if(r.shapeInfo.isUniform)return`
float ${o}(int index) {
${Fc(r)}
}
`;let n=r.shapeInfo.texShape,s=n[0],a=n[1];if(a===1&&s===1)return`
float ${o}(int index) {
return sampleTexture(${t}, halfCR);
}
`;let i=yp(t);return a===1?e?`
float ${o}(int index) {
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / float(${t}TexShape[0]));
return sampleTexture(${t}, uv);
}
`:`
float ${o}(int index) {
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${s}.0);
return sampleTexture(${t}, uv);
}
`:s===1?e?`
float ${o}(int index) {
vec2 uv = vec2((float(index + ${i}) + 0.5) / float(${t}TexShape[1]), 0.5);
return sampleTexture(${t}, uv);
}
`:`
float ${o}(int index) {
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${a}.0, 0.5);
return sampleTexture(${t}, uv);
}
`:e?`
float ${o}(int index) {
vec2 uv = uvFromFlat(${t}TexShape[0], ${t}TexShape[1], index + ${i});
return sampleTexture(${t}, uv);
}
`:`
float ${o}(int index) {
vec2 uv = uvFromFlat(${s}, ${a}, index + ${i});
return sampleTexture(${t}, uv);
}
`}function zZ(r,e){let t=r.shapeInfo.logicalShape,o=r.name,n="get"+o.charAt(0).toUpperCase()+o.slice(1),s=r.shapeInfo.texShape,a=s[0],i=s[1],p=It();if(s!=null&&y.arraysEqual(t,s))return e?`
vec4 ${n}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${o}TexShape[1], ${o}TexShape[0]);
return ${p.texture2D}(${o}, uv);
}
`:`
vec4 ${n}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${a}.0);
return ${p.texture2D}(${o}, uv);
}
`;if(e)return`
vec4 ${n}(int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${o}TexShape[0]) / 2.0), ceil(float(${o}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${o}Shape[1]) / 2.0));
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
return ${p.texture2D}(${o}, uv);
}
`;let u=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],c=Math.ceil(t[1]/2);return`
vec4 ${n}(int row, int col) {
vec2 uv = packedUVfrom2D(${c}, ${u[0]}, ${u[1]}, row, col);
return ${p.texture2D}(${o}, uv);
}
`}function VZ(r,e){let t=r.shapeInfo.logicalShape,o=r.name,n="get"+o.charAt(0).toUpperCase()+o.slice(1),s=r.shapeInfo.texShape;if(s!=null&&y.arraysEqual(t,s)){if(e)return`
float ${n}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${o}TexShape[1], ${o}TexShape[0]);
return sampleTexture(${o}, uv);
}
`;let m=s[0],d=s[1];return`
float ${n}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${d}.0, ${m}.0);
return sampleTexture(${o}, uv);
}
`}let{newShape:a,keptDims:i}=y.squeezeShape(t),p=a;if(p.length<t.length){let m=Pc(r,p),d=["row","col"];return`
${Ac(m,e)}
float ${n}(int row, int col) {
return ${n}(${Oc(d,i)});
}
`}if(r.shapeInfo.isUniform)return`
float ${n}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${t[1]}, 1)));
${Fc(r)}
}
`;let u=s[0],c=s[1],l=yp(o);return c===1?e?`
float ${n}(int row, int col) {
float index = dot(vec3(row, col, ${l}), vec3(${o}Shape[1], 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / float(${o}TexShape[0]));
return sampleTexture(${o}, uv);
}
`:`
float ${n}(int row, int col) {
float index = dot(vec3(row, col, ${l}), vec3(${t[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
return sampleTexture(${o}, uv);
}
`:u===1?e?`
float ${n}(int row, int col) {
float index = dot(vec3(row, col, ${l}), vec3(${o}Shape[1], 1, 1));
vec2 uv = vec2((index + 0.5) / float(${o}TexShape[1]), 0.5);
return sampleTexture(${o}, uv);
}
`:`
float ${n}(int row, int col) {
float index = dot(vec3(row, col, ${l}), vec3(${t[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
return sampleTexture(${o}, uv);
}
`:e?`
float ${n}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o}Shape[1] + col + ${l};
vec2 uv = uvFromFlat(${o}TexShape[0], ${o}TexShape[1], index);
return sampleTexture(${o}, uv);
}
`:`
float ${n}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${t[1]} + col + ${l};
vec2 uv = uvFromFlat(${u}, ${c}, index);
return sampleTexture(${o}, uv);
}
`}function WZ(r,e){let t=r.shapeInfo.logicalShape,o=r.name,n="get"+o.charAt(0).toUpperCase()+o.slice(1),s=r.shapeInfo.texShape,a=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)];if(t[0]===1){let m=t.slice(1),d=[1,2],f=Pc(r,m),h=["b","row","col"];return`
${DR(f,e)}
vec4 ${n}(int b, int row, int col) {
return ${n}(${Oc(h,d)});
}
`}let i=It();if(e)return`
vec4 ${n}(int b, int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${o}TexShape[0]) / 2.0), ceil(float(${o}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${o}Shape[2]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${o}Shape[1]) / 2.0));
vec2 uv = packedUVfrom3D(
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
return ${i.texture2D}(${o}, uv);
}
`;let p=a[0],u=a[1],c=Math.ceil(t[2]/2),l=c*Math.ceil(t[1]/2);return`
vec4 ${n}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${p}, ${u}, ${l}, ${c}, b, row, col);
return ${i.texture2D}(${o}, uv);
}
`}function UZ(r,e){let t=r.shapeInfo.logicalShape,o=r.name,n="get"+o.charAt(0).toUpperCase()+o.slice(1),s=t[1]*t[2],a=t[2],{newShape:i,keptDims:p}=y.squeezeShape(t),u=i;if(u.length<t.length){let h=Pc(r,u),g=["row","col","depth"];return`
${Ac(h,e)}
float ${n}(int row, int col, int depth) {
return ${n}(${Oc(g,p)});
}
`}if(r.shapeInfo.isUniform)return`
float ${n}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${s}, ${a}, 1)));
${Fc(r)}
}
`;let c=r.shapeInfo.texShape,l=c[0],m=c[1],d=r.shapeInfo.flatOffset;if(m===s&&d==null)return e?`
float ${n}(int row, int col, int depth) {
int stride1 = ${o}Shape[2];
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(stride1, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${o}TexShape[1], ${o}TexShape[0]);
return sampleTexture(${o}, uv);
}
`:`
float ${n}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${a}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${l}.0);
return sampleTexture(${o}, uv);
}
`;if(m===a&&d==null)return e?`
float ${n}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${o}Shape[1], 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${o}TexShape[1], ${o}TexShape[0]);
return sampleTexture(${o}, uv);
}
`:`
float ${n}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${t[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${m}.0, ${l}.0);
return sampleTexture(${o}, uv);
}
`;let f=yp(o);return e?`
float ${n}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int stride0 = ${o}Shape[1] * ${o}Shape[2];
int stride1 = ${o}Shape[2];
int index = row * stride0 + col * stride1 + depth + ${f};
vec2 uv = uvFromFlat(${o}TexShape[0], ${o}TexShape[1], index);
return sampleTexture(${o}, uv);
}
`:`
float ${n}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${s} + col * ${a} + depth + ${f};
vec2 uv = uvFromFlat(${l}, ${m}, index);
return sampleTexture(${o}, uv);
}
`}function GZ(r,e){let t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=It();if(e)return`
vec4 ${o}(int b2, int b, int row, int col) {
int valuesPerRow = int(ceil(float(${t}Shape[3]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${t}Shape[2]) / 2.0));
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
texelsInBatch *= ${t}Shape[1];
index = b2 * texelsInBatch + index;
ivec2 packedTexShape = ivec2(ceil(float(${t}TexShape[0]) / 2.0), ceil(float(${t}TexShape[1]) / 2.0));
int texR = index / packedTexShape[1];
int texC = index - texR * packedTexShape[1];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${n.texture2D}(${t}, uv);
}
`;let s=r.shapeInfo.logicalShape,a=s.length,i=r.shapeInfo.texShape,p=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)],u=p[0],c=p[1],l=Math.ceil(s[a-1]/2),m=l*Math.ceil(s[a-2]/2),d="int b, int row, int col",f=`b * ${m} + (row / 2) * ${l} + (col / 2)`;for(let h=2;h<a-1;h++)d=`int b${h}, `+d,m*=s[a-h-1],f=`b${h} * ${m} + `+f;return`
vec4 ${o}(${d}) {
int index = ${f};
int texR = index / ${c};
int texC = index - texR * ${c};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}, ${u});
return ${n.texture2D}(${t}, uv);
}
`}function HZ(r,e){let t=r.shapeInfo.logicalShape,o=r.name,n="get"+o.charAt(0).toUpperCase()+o.slice(1),s=t[3],a=t[2]*s,i=t[1]*a,{newShape:p,keptDims:u}=y.squeezeShape(t);if(p.length<t.length){let b=Pc(r,p),C=["row","col","depth","depth2"];return`
${Ac(b,e)}
float ${n}(int row, int col, int depth, int depth2) {
return ${n}(${Oc(C,u)});
}
`}if(r.shapeInfo.isUniform)return`
float ${n}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${i}, ${a}, ${s}, 1)));
${Fc(r)}
}
`;let c=r.shapeInfo.flatOffset,l=r.shapeInfo.texShape,m=l[0],d=l[1],f=`int stride2 = ${o}Shape[3];`,h=`int stride1 = ${o}Shape[2] * stride2;`,g=`int stride0 = ${o}Shape[1] * stride1;`;if(d===i&&c==null)return e?`
float ${n}(int row, int col, int depth, int depth2) {
${f}
${h}
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(stride1, stride2, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${o}TexShape[1], ${o}TexShape[0]);
return sampleTexture(${o}, uv);
}
`:`
float ${n}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${a}, ${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${m}.0);
return sampleTexture(${o}, uv);
}
`;if(d===s&&c==null)return e?`
float ${n}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${o}Shape[1] * ${o}Shape[2], ${o}Shape[2], 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${o}TexShape[1], ${o}TexShape[0]);
return sampleTexture(${o}, uv);
}
`:`
float ${n}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${t[1]*t[2]}, ${t[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${m}.0);
return sampleTexture(${o}, uv);
}
`;let x=yp(o);return e?`
float ${n}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
${f}
${h}
${g}
int index = row * stride0 + col * stride1 +
depth * stride2 + depth2;
vec2 uv = uvFromFlat(${o}TexShape[0], ${o}TexShape[1], index + ${x});
return sampleTexture(${o}, uv);
}
`:`
float ${n}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${a} +
depth * ${s} + depth2;
vec2 uv = uvFromFlat(${m}, ${d}, index + ${x});
return sampleTexture(${o}, uv);
}
`}function KZ(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=e[4],s=e[3]*n,a=e[2]*s,i=e[1]*a,{newShape:p,keptDims:u}=y.squeezeShape(e);if(p.length<e.length){let h=Pc(r,p),g=["row","col","depth","depth2","depth3"];return`
${Ac(h)}
float ${o}(int row, int col, int depth, int depth2, int depth3) {
return ${o}(${Oc(g,u)});
}
`}if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${i}, ${a}, ${s}, ${n})) +
depth3;
${Fc(r)}
}
`;let c=r.shapeInfo.flatOffset,l=r.shapeInfo.texShape,m=l[0],d=l[1];if(d===i&&c==null)return`
float ${o}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${a}, ${s}, ${n}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${m}.0);
return sampleTexture(${t}, uv);
}
`;if(d===n&&c==null)return`
float ${o}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${e[1]*e[2]*e[3]},
${e[2]*e[3]}, ${e[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${m}.0);
return sampleTexture(${t}, uv);
}
`;let f=yp(t);return`
float ${o}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${a} + depth * ${s} +
depth2 * ${n} + depth3 + ${f};
vec2 uv = uvFromFlat(${m}, ${d}, index);
return sampleTexture(${t}, uv);
}
`}function qZ(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),{newShape:n,keptDims:s}=y.squeezeShape(e);if(n.length<e.length){let g=Pc(r,n),x=["row","col","depth","depth2","depth3","depth4"];return`
${Ac(g)}
float ${o}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${o}(${Oc(x,s)});
}
`}let a=e[5],i=e[4]*a,p=e[3]*i,u=e[2]*p,c=e[1]*u;if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${c}, ${u}, ${p}, ${i})) +
dot(
vec2(depth3, depth4),
vec2(${a}, 1)));
${Fc(r)}
}
`;let l=r.shapeInfo.flatOffset,m=r.shapeInfo.texShape,d=m[0],f=m[1];if(f===c&&l==null)return`
float ${o}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${u}, ${p}, ${i}, ${a})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${d}.0);
return sampleTexture(${t}, uv);
}
`;if(f===a&&l==null)return`
float ${o}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${e[1]*e[2]*e[3]*e[4]},
${e[2]*e[3]*e[4]},
${e[3]*e[4]},
${e[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${d}.0);
return sampleTexture(${t}, uv);
}
`;let h=yp(t);return`
float ${o}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${c} + col * ${u} + depth * ${p} +
depth2 * ${i} + depth3 * ${a} + depth4 + ${h};
vec2 uv = uvFromFlat(${d}, ${f}, index);
return sampleTexture(${t}, uv);
}
`}function Fc(r){let e=r.name,t=y.sizeFromShape(r.shapeInfo.logicalShape);return t<2?`return ${e};`:`
for (int i = 0; i < ${t}; i++) {
if (i == index) {
return ${e}[i];
}
}
`}function jZ(r,e){let t=r.name,o=t.charAt(0).toUpperCase()+t.slice(1),n="get"+o+"AtOutCoords",s=r.shapeInfo.logicalShape.length,a=e.logicalShape.length,i=$R(r.shapeInfo.logicalShape,e.logicalShape),p=Re(a),u=a-s,c,l=["x","y","z","w","u","v"];s===0?c="":a<2&&i.length>=1?c="coords = 0;":c=i.map(b=>`coords.${l[b+u]} = 0;`).join(`
`);let m="";a<2&&s>0?m="coords":m=r.shapeInfo.logicalShape.map((b,C)=>`coords.${l[C+u]}`).join(", ");let d="return outputValue;",h=y.sizeFromShape(r.shapeInfo.logicalShape)===1,x=y.sizeFromShape(e.logicalShape)===1;if(s===1&&!h&&!x)d=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(h&&!x)a===1?d=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:d=`
return vec4(outputValue.x);
`;else if(i.length){let b=s-2,C=s-1;i.indexOf(b)>-1&&i.indexOf(C)>-1?d="return vec4(outputValue.x);":i.indexOf(b)>-1?d="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(C)>-1&&(d="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${n}() {
${p} coords = getOutputCoords();
${c}
vec4 outputValue = get${o}(${m});
${d}
}
`}function XZ(r,e){let t=r.name,o=t.charAt(0).toUpperCase()+t.slice(1),n="get"+o+"AtOutCoords",s=e.texShape,a=r.shapeInfo.texShape,i=r.shapeInfo.logicalShape.length,p=e.logicalShape.length;if(!r.shapeInfo.isUniform&&i===p&&r.shapeInfo.flatOffset==null&&y.arraysEqual(a,s))return`
float ${n}() {
return sampleTexture(${t}, resultUV);
}
`;let u=Re(p),c=$R(r.shapeInfo.logicalShape,e.logicalShape),l=p-i,m,d=["x","y","z","w","u","v"];i===0?m="":p<2&&c.length>=1?m="coords = 0;":m=c.map(h=>`coords.${d[h+l]} = 0;`).join(`
`);let f="";return p<2&&i>0?f="coords":f=r.shapeInfo.logicalShape.map((h,g)=>`coords.${d[g+l]}`).join(", "),`
float ${n}() {
${u} coords = getOutputCoords();
${m}
return get${o}(${f});
}
`}function Re(r){if(r<=1)return"int";if(r===2)return"ivec2";if(r===3)return"ivec3";if(r===4)return"ivec4";if(r===5)return"ivec5";if(r===6)return"ivec6";throw Error(`GPU for rank ${r} is not yet supported`)}function Zf(r,e,t){let{newShape:o,keptDims:n}=y.squeezeShape(e),s=e.length,a=r&&s===3&&e[0]===1,i=a?e.slice(1):o,p=!r&&s>1&&!y.arraysEqual(e,t)&&o.length<s||a;return{useSqueezeShape:p,uniformShape:p?i:e,keptDims:n}}function Pc(r,e){let t=JSON.parse(JSON.stringify(r));return t.shapeInfo.logicalShape=e,t}function Oc(r,e){return e.map(t=>r[t]).join(", ")}function PR(r,e,t,o){let n=t.map((c,l)=>{let m={logicalShape:c.shape,texShape:c.isUniform?null:c.texData.texShape,isUniform:c.isUniform,isPacked:c.isUniform?!1:c.texData.isPacked,flatOffset:null};return c.texData!=null&&c.texData.slice!=null&&c.texData.slice.flatOffset>0&&(m.flatOffset=c.texData.slice.flatOffset),{name:e.variableNames[l],shapeInfo:m}}),s=n.map(c=>c.shapeInfo),a={logicalShape:o.shape,texShape:o.texData.texShape,isUniform:!1,isPacked:o.texData.isPacked,flatOffset:null},i=RR(n,a,e),p=RI(r.gl,i),u=r.createProgram(p);return A().get("ENGINE_COMPILE_ONLY")?{program:e,fragmentShader:p,source:i,webGLProgram:u,inShapeInfos:s,outShapeInfo:a,variablesLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:(r.buildVao(u),Object.assign({program:e,fragmentShader:p,source:i,webGLProgram:u,inShapeInfos:s,outShapeInfo:a},XI(r,e,u)))}function XI(r,e,t){let o=[],n=[],s,a,i,p=null,u=null;u=r.getUniformLocation(t,"NAN",!1),A().getNumber("WEBGL_VERSION")===1&&(p=r.getUniformLocation(t,"INFINITY",!1));let c=!1;for(let l of e.variableNames){let m={name:l,uniform:r.getUniformLocation(t,l,c),offset:r.getUniformLocation(t,`offset${l}`,c)};e.enableShapeUniforms&&(m.shape=r.getUniformLocation(t,`${l}Shape`,c),m.texShape=r.getUniformLocation(t,`${l}TexShape`,c)),o.push(m)}if(e.enableShapeUniforms&&(s=r.getUniformLocation(t,"outShape",c),i=r.getUniformLocation(t,"outShapeStrides",c),a=r.getUniformLocation(t,"outTexShape",c)),e.customUniforms)for(let l of e.customUniforms)n.push(r.getUniformLocation(t,l.name,c));return{variablesLocations:o,customUniformLocations:n,infLoc:p,nanLoc:u,outShapeLocation:s,outShapeStridesLocation:i,outTexShapeLocation:a}}function FR(r,e){if(r.length!==e.length)throw Error(`Binary was compiled with ${r.length} inputs, but was executed with ${e.length} inputs`);r.forEach((t,o)=>{let n=t.logicalShape,s=e[o],a=s.shape;if(!y.arraysEqual(n,a))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${n} and ${a} must match`);if(t.isUniform&&s.isUniform)return;let i=t.texShape,p=s.isUniform?null:s.texData.texShape;if(!y.arraysEqual(i,p))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${p} must match`)})}function OR(r,e,t,o,n){e.program.enableShapeUniforms||(FR(e.inShapeInfos,t),FR([e.outShapeInfo],[o]));let s=o.texData.texture,a=o.texData.texShape;o.texData.isPacked?r.setOutputPackedMatrixTexture(s.texture,a[0],a[1]):r.setOutputMatrixTexture(s.texture,a[0],a[1]),r.setProgram(e.webGLProgram),r.bindVertexArray(e.webGLProgram.vao),A().getNumber("WEBGL_VERSION")===1&&e.infLoc!==null&&r.gl.uniform1f(e.infLoc,1/0),e.nanLoc!==null&&r.gl.uniform1f(e.nanLoc,NaN);for(let p=0;p<t.length;++p){let u=t[p],{uniform:c,offset:l,shape:m,texShape:d}=e.variablesLocations[p];if(m){let{uniformShape:f}=Zf(e.program.packedInputs,u.shape,u.texData.texShape);switch(f.length){case 1:r.gl.uniform1iv(m,new Int32Array(f));break;case 2:r.gl.uniform2iv(m,new Int32Array(f));break;case 3:r.gl.uniform3iv(m,new Int32Array(f));break;case 4:r.gl.uniform4iv(m,new Int32Array(f));break;default:break}}if(d&&r.gl.uniform2i(d,u.texData.texShape[0],u.texData.texShape[1]),c!=null){if(u.isUniform){if(y.sizeFromShape(u.shape)<2)r.gl.uniform1f(c,u.uniformValues[0]);else{let f=u.uniformValues;f instanceof Float32Array||(f=new Float32Array(f)),r.gl.uniform1fv(c,f)}continue}u.texData.slice!=null&&l!=null&&r.gl.uniform1i(l,u.texData.slice.flatOffset),r.setInputMatrixTexture(u.texData.texture.texture,c,p)}}let i=e.outShapeLocation;if(i)switch(o.shape.length){case 1:r.gl.uniform1iv(i,new Int32Array(o.shape));break;case 2:r.gl.uniform2iv(i,new Int32Array(o.shape));break;case 3:r.gl.uniform3iv(i,new Int32Array(o.shape));break;case 4:r.gl.uniform4iv(i,new Int32Array(o.shape));break;default:break}if(e.outShapeStridesLocation){let p=y.computeStrides(o.shape);switch(o.shape.length){case 2:r.gl.uniform1iv(e.outShapeStridesLocation,new Int32Array(p));break;case 3:r.gl.uniform2iv(e.outShapeStridesLocation,new Int32Array(p));break;case 4:r.gl.uniform3iv(e.outShapeStridesLocation,new Int32Array(p));break;default:break}}if(e.outTexShapeLocation&&r.gl.uniform2i(e.outTexShapeLocation,o.texData.texShape[0],o.texData.texShape[1]),e.program.customUniforms&&n)for(let p=0;p<e.program.customUniforms.length;++p){let u=e.program.customUniforms[p],c=e.customUniformLocations[p],l=n[p];if(u.type==="float")r.gl.uniform1fv(c,l);else if(u.type==="vec2")r.gl.uniform2fv(c,l);else if(u.type==="vec3")r.gl.uniform3fv(c,l);else if(u.type==="vec4")r.gl.uniform4fv(c,l);else if(u.type==="int")r.gl.uniform1iv(c,l);else if(u.type==="ivec2")r.gl.uniform2iv(c,l);else if(u.type==="ivec3")r.gl.uniform3iv(c,l);else if(u.type==="ivec4")r.gl.uniform4iv(c,l);else throw Error(`uniform type ${u.type} is not supported yet.`)}r.executeProgram()}function MR(r,e,t){let o="";e.concat(t).forEach(a=>{let i=a.texData!=null&&a.texData.slice!=null&&a.texData.slice.flatOffset>0;if(r.enableShapeUniforms&&!a.isUniform){let p=a.texData.texShape,{useSqueezeShape:u,uniformShape:c,keptDims:l}=Zf(r.packedInputs,a.shape,p),m="",d="",f="";if(c.length===1&&r.packedInputs){let k=[Math.ceil(p[0]/2),Math.ceil(p[1]/2)];m=`${k[0]>1}_${k[1]>1}`}else if(c.length===2&&!r.packedInputs)d=`${c[0]>1}_${c[1]>1}`;else if(c.length>2&&!r.packedInputs){let k=y.computeStrides(c);f=`${k[0]===p[1]}_${k[k.length-1]===p[1]}`}let h=a.shape.length,g=c.length===2&&y.arraysEqual(a.shape,p),x=y.sizeFromShape(a.shape)===1,b=w.getBroadcastDims(a.shape,t.shape),C=!r.packedInputs&&h===t.shape.length&&y.arraysEqual(p,t.texData.texShape),S=r.packedInputs||c.length>2?"":`${p[0]>1}_${p[1]>1}`;o+=`${h}_${C}_${u?l:""}_${c.length}_${x}_${b}_${g}_${m}_${d}_${f}_${S}_${i}`}else{let p=a.isUniform?"uniform":a.texData.texShape;o+=`${a.shape}_${p}_${i}`}});let n=r.userCode,s=r.constructor.name;return s+="_"+o+"_"+n+`${A().getNumber("WEBGL_VERSION")}`,s}function ut(r){return A().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&r<=4}var Jf=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=gu.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=It();this.outputShape=e,this.enableShapeUniforms=ut(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?xp(["r","c","d"],e):Ws(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${t.output} = result;
}
`}};var eh=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=gu.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=It();this.outputShape=e,this.enableShapeUniforms=ut(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?xp(["r","c","d"],e):Ws(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${t.output} = result;
}
`}};var th=class{constructor(e){this.variableNames=["A"],this.outTexUsage=mr.DOWNLOAD;let t=It();this.outputShape=e,this.userCode=`
${Qf}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}};var rh=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=mr.DOWNLOAD;let t=It();this.outputShape=e,this.userCode=`
${Qf}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}};var ZZ={R:0,G:1,B:2,A:3},Zl=class{constructor(e,t=!1,o="RGBA"){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=It();this.outputShape=e,this.enableShapeUniforms=ut(this.outputShape.length);let s="result";t&&(s="floor(result * 255. + 0.5)");let a="";for(let i=0;i<o.length;i++){let p=o[i];a+=`
if(offset == ${i}) {
result = values[${ZZ[p]}];
}`}this.userCode=`
${this.enableShapeUniforms?Rc():$c(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
float result = 0.;
int offset = imod(flatIndex, ${o.length});
flatIndex = idiv(flatIndex, ${o.length}, 1.);
int r = flatIndex / texShape[1];
if (r < texShape[0]) {
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
vec4 values = ${n.texture2D}(A, uv);
${a}
}
${n.output} = vec4(${s}, 0., 0., 0.);
}
`}};var oh=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let o=It();this.outputShape=e,this.enableShapeUniforms=ut(this.outputShape.length);let n="",s="result";t&&(s="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let i=0;i<=1;i++){let p=a*2+i;n+=`
localCoords = coords;
if(localCoords[2] + ${i} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
localCoords[2] += ${i};
if (localCoords[1] + ${a} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
localCoords[1] += ${a};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
values = ${o.texture2D}(A, uv);
if (offset == 0) {
result[${p}] = values[0];
} else if (offset == 1) {
result[${p}] = values[1];
} else if (offset == 2) {
result[${p}] = values[2];
} else {
result[${p}] = values[3];
}
}
}
`}this.userCode=`
${this.enableShapeUniforms?Rc():$c(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${n}
${o.output} = ${s};
}
`}};var mv={};qe(mv,{bindVertexProgramAttributeStreams:()=>nv,createBufferFromOutputTexture:()=>iv,createFloat16MatrixTexture:()=>ev,createFloat16PackedMatrixTexture:()=>ov,createFloat32MatrixTexture:()=>JI,createIndexBuffer:()=>ZI,createPackedMatrixTexture:()=>rv,createUnsignedBytesMatrixTexture:()=>tv,createVertexBuffer:()=>QI,createVertexShader:()=>YI,downloadByteEncodedFloatMatrixFromOutputTexture:()=>pv,downloadFloat32MatrixFromBuffer:()=>uv,downloadMatrixFromPackedOutputTexture:()=>lv,downloadPackedMatrixFromBuffer:()=>cv,getInternalFormatForFloat16MatrixTexture:()=>sh,getInternalFormatForFloat16PackedMatrixTexture:()=>uh,getInternalFormatForFloat32MatrixTexture:()=>nh,getInternalFormatForPackedMatrixTexture:()=>ih,getInternalFormatForUnsignedBytesMatrixTexture:()=>ah,uploadDenseMatrixToTexture:()=>sv,uploadPixelDataToTexture:()=>av});function YI(r){let e=It(),t=`${e.version}
precision highp float;
${e.attribute} vec3 clipSpacePos;
${e.attribute} vec2 uv;
${e.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return $I(r,t)}function QI(r){let e=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return FI(r,e)}function ZI(r){let e=new Uint16Array([0,1,2,2,1,3]);return PI(r,e)}function Jl(r,e,t,o,n,s){MI(e,t);let a=OI(r),i=r.TEXTURE_2D;return ce(r,()=>r.bindTexture(i,a)),ce(r,()=>r.texParameteri(i,r.TEXTURE_WRAP_S,r.CLAMP_TO_EDGE)),ce(r,()=>r.texParameteri(i,r.TEXTURE_WRAP_T,r.CLAMP_TO_EDGE)),ce(r,()=>r.texParameteri(i,r.TEXTURE_MIN_FILTER,r.NEAREST)),ce(r,()=>r.texParameteri(i,r.TEXTURE_MAG_FILTER,r.NEAREST)),A().getNumber("WEBGL_VERSION")===1?ce(r,()=>r.texImage2D(i,0,o,e,t,0,n,s,null)):ce(r,()=>r.texStorage2D(i,1,o,e,t)),ce(r,()=>r.bindTexture(r.TEXTURE_2D,null)),{texture:a,texShape:[t,e]}}function nh(r){return r.internalFormatFloat}function JI(r,e,t,o){let[n,s]=gp(e,t);return Jl(r,n,s,nh(o),o.textureFormatFloat,r.FLOAT)}function sh(r){return r.internalFormatHalfFloat}function ev(r,e,t,o){let[n,s]=gp(e,t);return Jl(r,n,s,sh(o),o.textureFormatFloat,o.textureTypeHalfFloat)}function ah(r){return r.downloadTextureFormat}function tv(r,e,t,o){let[n,s]=gp(e,t);return Jl(r,n,s,ah(o),r.RGBA,r.UNSIGNED_BYTE)}function ih(r){return r.internalFormatPackedFloat}function rv(r,e,t,o){let[n,s]=Ma(e,t);return Jl(r,n,s,ih(o),r.RGBA,r.FLOAT)}function uh(r){return r.internalFormatPackedHalfFloat}function ov(r,e,t,o){let[n,s]=Ma(e,t);return Jl(r,n,s,uh(o),r.RGBA,o.textureTypeHalfFloat)}function nv(r,e,t){return ce(r,()=>r.bindBuffer(r.ARRAY_BUFFER,t)),jf(r,e,"clipSpacePos",t,3,20,0)&&jf(r,e,"uv",t,2,20,12)}function sv(r,e,t,o,n,s){ce(r,()=>r.bindTexture(r.TEXTURE_2D,e));let a,i,p;n instanceof Uint8Array?(a=new Uint8Array(t*o*4),i=r.UNSIGNED_BYTE,p=r.RGBA):(a=new Float32Array(t*o*4),i=r.FLOAT,p=s.internalFormatPackedFloat),a.set(n),A().getNumber("WEBGL_VERSION")===2?ce(r,()=>r.texSubImage2D(r.TEXTURE_2D,0,0,0,t,o,r.RGBA,i,a)):ce(r,()=>r.texImage2D(r.TEXTURE_2D,0,p,t,o,0,r.RGBA,i,a)),ce(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function av(r,e,t){ce(r,()=>r.bindTexture(r.TEXTURE_2D,e)),t.data instanceof Uint8Array?A().getNumber("WEBGL_VERSION")===2?ce(r,()=>r.texSubImage2D(r.TEXTURE_2D,0,0,0,t.width,t.height,r.RGBA,r.UNSIGNED_BYTE,t.data)):ce(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,t.width,t.height,0,r.RGBA,r.UNSIGNED_BYTE,t.data)):A().getNumber("WEBGL_VERSION")===2?ce(r,()=>r.texSubImage2D(r.TEXTURE_2D,0,0,0,r.RGBA,r.UNSIGNED_BYTE,t)):ce(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,r.RGBA,r.UNSIGNED_BYTE,t)),ce(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function iv(r,e,t,o){let n=r.createBuffer();ce(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,n));let i=4*4*e*t;return ce(r,()=>r.bufferData(r.PIXEL_PACK_BUFFER,i,r.STREAM_READ)),ce(r,()=>r.readPixels(0,0,t,e,r.RGBA,r.FLOAT,0)),ce(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,null)),n}function uv(r,e,t){let o=r,n=new Float32Array(t);return o.bindBuffer(o.PIXEL_PACK_BUFFER,e),o.getBufferSubData(o.PIXEL_PACK_BUFFER,0,n),o.bindBuffer(o.PIXEL_PACK_BUFFER,null),n}function pv(r,e,t,o){let[n,s]=gp(e,t),a=4,i=new Uint8Array(IR(e*t,a));return ce(r,()=>r.readPixels(0,0,n,s,o.downloadTextureFormat,r.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function cv(r,e,t,o,n,s,a,i){let p=r,u=new Float32Array(vR(s,a));return p.bindBuffer(p.PIXEL_PACK_BUFFER,e),p.getBufferSubData(p.PIXEL_PACK_BUFFER,0,u),p.bindBuffer(p.PIXEL_PACK_BUFFER,null),u}function lv(r,e,t){let o=new Float32Array(e*t*4);return ce(r,()=>r.readPixels(0,0,t,e,r.RGBA,r.FLOAT,o)),o}var bp=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.itemsToPoll=[];let t=A().getNumber("WEBGL_VERSION");if(e!=null?(this.gl=e,NI(t,e)):this.gl=Kr(t),e=this.gl,A().getNumber("WEBGL_VERSION")===2){let s=e;this.createVertexArray=()=>ce(s,()=>s.createVertexArray()),this.bindVertexArray=a=>ce(s,()=>s.bindVertexArray(a)),this.deleteVertexArray=a=>ce(s,()=>s.deleteVertexArray(a)),this.getVertexArray=()=>ce(s,()=>s.getParameter(s.VERTEX_ARRAY_BINDING))}else if(e!=null){let s=e.getExtension("OES_vertex_array_object");if(s==null)throw new Error("All WebGL1 implementations are expected to offer OES_vertex_array_object.");this.createVertexArray=()=>ce(e,()=>s.createVertexArrayOES()),this.bindVertexArray=a=>ce(e,()=>s.bindVertexArrayOES(a)),this.deleteVertexArray=a=>ce(e,()=>s.deleteVertexArrayOES(a)),this.getVertexArray=()=>ce(e,()=>e.getParameter(s.VERTEX_ARRAY_BINDING_OES))}let o="WEBGL_color_buffer_float",n="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),A().getNumber("WEBGL_VERSION")===1){let s="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=Nc(this.gl,s),qr(this.gl,a))this.textureHalfFloatExtension=Nc(this.gl,a);else if(A().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(o),qr(this.gl,n))this.colorBufferHalfFloatExtension=Nc(this.gl,n);else if(A().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(o="EXT_color_buffer_float",qr(this.gl,o))this.colorBufferFloatExtension=this.gl.getExtension(o);else if(qr(this.gl,n))this.colorBufferHalfFloatExtension=this.gl.getExtension(n);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=QI(this.gl),this.indexBuffer=ZI(this.gl),this.framebuffer=LI(this.gl),this.textureConfig=Xl(this.gl,this.textureHalfFloatExtension)}get debug(){return A().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;ce(e,()=>e.finish()),ce(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ce(e,()=>e.deleteFramebuffer(this.framebuffer)),ce(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),ce(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),ce(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),JI(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),ev(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),tv(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),av(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,o,n){this.throwIfDisposed(),sv(this.gl,e,t,o,n,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),ov(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),rv(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(Xf(this.gl,this.framebuffer),this.outputTexture=null),ce(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,o){return this.downloadMatrixDriver(e,()=>pv(this.gl,t,o,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,o,n,s,a){return cv(this.gl,e,t,o,n,s,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return uv(this.gl,e,t)}createBufferFromTexture(e,t,o){this.bindTextureToFrameBuffer(e);let n=iv(this.gl,t,o,this.textureConfig);return this.unbindTextureToFrameBuffer(),n}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,o;if(A().getBool("WEBGL_FENCE_API_ENABLED")){let n=e,s=n.fenceSync(n.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),o=()=>{let a=n.clientWaitSync(s,0,0);return a===n.ALREADY_SIGNALED||a===n.CONDITION_SATISFIED},t=s}else A().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),o=()=>this.isQueryAvailable(t,A().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):o=()=>!0;return{query:t,isFencePassed:o}}downloadMatrixFromPackedTexture(e,t,o){return this.downloadMatrixDriver(e,()=>lv(this.gl,t,o))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=YI(t));let o=DI(t);ce(t,()=>t.attachShader(o,this.vertexShader)),ce(t,()=>t.attachShader(o,e)),AI(t,o);let n=Object.assign(o,{vao:this.createVertexArray()});return this.debug&&Yl(t,n),n}buildVao(e){this.setProgram(e),this.bindVertexArray(e.vao);let t=this.gl;ce(t,()=>t.bindBuffer(t.ELEMENT_ARRAY_BUFFER,this.indexBuffer)),nv(t,e,this.vertexBuffer)}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&(ce(this.gl,()=>this.gl.deleteProgram(e)),this.deleteVertexArray(e.vao))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Yl(this.gl,this.program),ce(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,o=!0){return this.throwIfDisposed(),o?BI(this.gl,e,t):zI(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),ce(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,o){this.throwIfDisposed(),this.throwIfNoProgram(),VI(this.gl,e,t,o)}setOutputMatrixTexture(e,t,o){this.setOutputMatrixTextureDriver(e,o,t)}setOutputPackedMatrixTexture(e,t,o){this.throwIfDisposed();let[n,s]=Ma(t,o);this.setOutputMatrixTextureDriver(e,n,s)}setOutputMatrixWriteRegion(e,t,o,n){this.setOutputMatrixWriteRegionDriver(o,e,n,t)}setOutputPackedMatrixWriteRegion(e,t,o,n){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Yl(this.gl,this.program),Tc(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;if(this.debug){let t=this.getVertexArray();console.assert(t===this.program.vao,"VAO changed between setProgram and executeProgram!"),this.debugValidate()}ce(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),ce(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Nc(this.gl,A().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(A().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let o=this.gl,n=this.getQueryTimerExtensionWebGL2(),s=o.createQuery();return o.beginQuery(n.TIME_ELAPSED_EXT,s),s}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(A().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,o=this.getQueryTimerExtensionWebGL2();t.endQuery(o.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await y.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,A().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,A().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let o=this.gl;return o.getQueryParameter(e,o.QUERY_RESULT)/1e6}else{let o=this.getQueryTimerExtensionWebGL1();return o.getQueryObjectEXT(e,o.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let o=this.gl,n=this.getQueryTimerExtensionWebGL2(),s=o.getQueryParameter(e,o.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}else{let o=this.getQueryTimerExtensionWebGL1(),n=o.getQueryObjectEXT(e,o.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(o.GPU_DISJOINT_EXT)),n&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=JZ(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:o}=this.itemsToPoll[t];o()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){if(this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),this.itemsToPoll.length>1)return;let o;"setTimeoutCustom"in A().platform&&(o=A().platform.setTimeoutCustom.bind(A().platform)),y.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0),()=>0,null,o)}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Ql(this.gl,e,this.framebuffer),this.debug&&Tc(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Ql(this.gl,this.outputTexture,this.framebuffer),this.debug&&Tc(this.gl)):Xf(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let o=t();return this.unbindTextureToFrameBuffer(),o}setOutputMatrixTextureDriver(e,t,o){this.throwIfDisposed();let n=this.gl;Ql(n,e,this.framebuffer),this.debug&&Tc(n),this.outputTexture=e,ce(n,()=>n.viewport(0,0,t,o)),ce(n,()=>n.scissor(0,0,t,o))}setOutputMatrixWriteRegionDriver(e,t,o,n){this.throwIfDisposed(),ce(this.gl,()=>this.gl.scissor(e,t,o,n))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function JZ(r){let e=0;for(;e<r.length&&r[e]();++e);return e-1}var{addImpl:LR,bincountImpl:ph,bincountReduceImpl:BR,bitwiseAndImpl:zR,castImpl:VR,ceilImpl:WR,concatImpl:UR,equalImpl:GR,expImpl:HR,expm1Impl:KR,floorImpl:qR,gatherNdImpl:jR,gatherV2Impl:XR,greaterImpl:YR,greaterEqualImpl:QR,lessImpl:ZR,lessEqualImpl:JR,linSpaceImpl:eD,logImpl:tD,maxImpl:rD,maximumImpl:oD,minimumImpl:nD,multiplyImpl:sD,negImpl:aD,notEqualImpl:iD,prodImpl:uD,raggedGatherImpl:pD,raggedRangeImpl:cD,raggedTensorToTensorImpl:lD,rangeImpl:mD,rsqrtImpl:dD,scatterImpl:fD,sigmoidImpl:hD,simpleAbsImpl:ch,sliceImpl:gD,sparseFillEmptyRowsImpl:xD,sparseReshapeImpl:yD,sparseSegmentReductionImpl:lh,sqrtImpl:bD,staticRegexReplaceImpl:CD,stridedSliceImpl:wD,stringNGramsImpl:SD,stringSplitImpl:ID,stringToHashBucketFastImpl:vD,subImpl:kD,tileImpl:ND,topKImpl:TD,transposeImpl:Cp,uniqueImpl:_D}=Ic;function dv(r,e){return["x","y","z","w","u","v"].slice(0,e).map(t=>`${r}.${t}`)}function Rt(r,e){return e===1?[r]:dv(r,e)}function ED(r,e){if(r===1)return"rc";let t="";for(let o=0;o<r;o++)t+=e[o],o<r-1&&(t+=",");return t}var mh=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=ut(this.outputShape.length),this.rank===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let t=Rt("rc",this.rank),o=Re(this.rank),n=this.getOutOfBoundsCondition(t),s=this.getSetup(t),a=this.getOutput(t);this.userCode=`
void main() {
${o} rc = getOutputCoords();
if(${n}) {
setOutput(vec4(0));
} else {
${s}
setOutput(vec4(${a}));
}
}
`}}getSourceCoordsArr(e){let t=[];for(let o=0;o<=1;o++)for(let n=0;n<=1;n++){let s=`${o===0?"r":"rp1"}, ${n===0?"c":"cp1"}`;for(let a=2;a<this.rank;a++)s=`${e[e.length-1-a]},`+s;t.push(s)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let o=this.rank-2;o<this.rank;o++)t+=`${e[o]} >= ${this.enableShapeUniforms?`outShape[${o}]`:this.outputShape[o]}`,o<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),o=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],n=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
int r = ${t[0]};
int c = ${t[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${o};
bool rEdge = rp1 >= ${n};
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}),
cEdge ? 0. : getA(${t[1]}),
rEdge ? 0. : getA(${t[2]}),
rEdge || cEdge ? 0. : getA(${t[3]})`}};var Mc=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=ut(this.outputShape.length);let o="";for(let n=0;n<4;n++){let s="thisRC = rc;";n%2===1&&(s+="thisRC.z += 1;"),n>1&&(s+="thisRC.y += 1;"),o+=`
${s}
${n>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${n}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${n>0?"}":""}
`}this.userCode=`
${e9(t,this.enableShapeUniforms)}
${this.enableShapeUniforms?Rc():$c(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
${o}
setOutput(result);
}
`}};function e9(r,e){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${e?ER(["r","c","d"],"inputShape"):Ws(["r","c","d"],r)}
return ivec3(r, c, d);
}
`}var dh=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.usedTextures={},this.logEnabled=!1}acquireTexture(e,t,o){let n=RD(t,o),s=DD(e,n,o);s in this.freeTextures||(this.freeTextures[s]=[]),s in this.usedTextures||(this.usedTextures[s]=[]);let a=$D(e,n,this.gpgpu.gl,this.gpgpu.textureConfig,o);if(this.freeTextures[s].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let p=this.freeTextures[s].pop();return this.usedTextures[s].push(p),p}let i;return n===er.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):n===er.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):n===er.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):n===er.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):n===er.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[s].push(i),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),i}releaseTexture(e,t,o,n){if(this.freeTextures==null)return;let s=RD(o,n),a=DD(t,s,n);a in this.freeTextures||(this.freeTextures[a]=[]);let i=$D(t,s,this.gpgpu.gl,this.gpgpu.textureConfig,n),p=A().getNumber("WEBGL_DELETE_TEXTURE_THRESHOLD");p!==-1&&this._numBytesAllocated>p?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=i):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let u=this.usedTextures[a],c=u&&u.indexOf(e);if(c==null||c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");u[c]=u[u.length-1],u.pop(),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function t9(r,e){let t=r;if(e===t.R32F)return 4;if(e===t.R16F)return 2;if(e===t.RGBA32F)return 16;if(e===r.RGBA)return 16;if(e===t.RGBA16F)return 8;if(e===t.RGBA8)return 4;throw new Error(`Unknown internal format ${e}`)}function $D(r,e,t,o,n){let s=r9(e,o),a;if(n){let[p,u]=Ma(r[0],r[1]);a=p*u}else{let[p,u]=gp(r[0],r[1]);a=p*u}let i=t9(t,s);return a*i}function r9(r,e){switch(r){case er.PACKED_2X2_FLOAT32:return ih(e);case er.PACKED_2X2_FLOAT16:return uh(e);case er.UNPACKED_FLOAT32:return nh(e);case er.UNPACKED_FLOAT16:return sh(e);case er.PACKED_4X1_UNSIGNED_BYTE:return ah(e);default:throw new Error(`Unknown physical texture type ${r}`)}}function o9(r){return A().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?r?er.PACKED_2X2_FLOAT32:er.UNPACKED_FLOAT32:r?er.PACKED_2X2_FLOAT16:er.UNPACKED_FLOAT16}function RD(r,e){if(r===mr.UPLOAD)return er.PACKED_2X2_FLOAT32;if(r===mr.RENDER||r==null)return o9(e);if(r===mr.DOWNLOAD||r===mr.PIXELS)return er.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${r}`)}function DD(r,e,t){return`${r[0]}_${r[1]}_${e}_${t}`}var tr=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=ut(this.outputShape.length),this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},Wt="if (isnan(x)) return x;",AD="return x;",fv="return abs(x);";var FD="return (x >= 0.0) ? x : (exp(x) - 1.0);",PD=Wt+`
return (x < 0.0) ? 0.0 : x;
`,OD=Wt+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,La="return x;",MD="return 1.0 / (1.0 + exp(-1.0 * x));";var BD="return x;",zD=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,VD=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,WD=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,UD="return 1.0 / (1.0 + exp(-1.0 * x));",Fr=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=ut(this.outputShape.length),this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}};var fh=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=ut(this.outputShape.length);let t=e.length,o=Rt("rc",t),n=Re(t),s=ED(t,o),a=o.slice(-2),i=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
void main() {
${n} rc = getOutputCoords();
vec4 packedInput = getA(${s});
setOutput(getChannel(packedInput, ${i}));
}
`}};var s9=Vt.whereImpl,a9=1e-7,i9=1e-4,hh={};function u9(r){return r in hh||(hh[r]={}),hh[r]}var p9=A().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),c9=600;function l9(){return A().global.screen==null?1024:A().global.screen.height*A().global.screen.width*window.devicePixelRatio*c9/1024/1024}var Lc=class r extends ao{nextDataId(){return r.nextDataId++}constructor(e){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!A().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof bp)t=e;else{let o=Kr(A().getNumber("WEBGL_VERSION"),e);t=new bp(o)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let o=Kr(A().getNumber("WEBGL_VERSION"));t=new bp(o),this.binaryCache=u9(A().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new dh(this.gpgpu),this.numMBBeforeWarning=l9(),this.texData=new Bo(this,ur())}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}writeTexture(e,t,o,n,s,a){let i=this.makeTensorInfo(t,o),p=this.texData.get(i.dataId);p.isPacked=!1,p.texture={texture:e,texShape:[n,s]},p.texShape=[n,s];let u=_c(t),c=new Zl(u,!1,a),l=this.runWebGLProgram(c,[i],o,[[n,s]]);return l.shape=t,p.texture=null,this.disposeIntermediateTensorInfo(i),l.dataId}write(e,t,o){if((A().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||A().getBool("DEBUG"))&&this.checkNumericalProblems(e),o==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let n={id:this.nextDataId()};return this.texData.set(n,{shape:t,dtype:o,values:e,usage:mr.UPLOAD,refCount:1}),n}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,o,n,s){if(A().getBool("DEBUG")&&this.checkNumericalProblems(t),n==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:o,dtype:n,values:t,usage:mr.UPLOAD,refCount:s})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:o,dtype:n,complexTensorInfos:s,slice:a,shape:i,isPacked:p}=t;if(a!=null){let m;p?m=new Fr(i,La):m=new tr(i,La);let d=this.runWebGLProgram(m,[{dataId:e,shape:i,dtype:n}],n),f=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),f}if(o!=null)return this.convertAndCacheOnCPU(e);if(n==="string")return o;let u=this.activeTimers!=null,c;u&&(c=y.now());let l;if(n==="complex64"){let m=this.readSync(s.real.dataId),d=this.readSync(s.imag.dataId);l=w.mergeRealAndImagArrays(m,d)}else l=this.getValuesFromTexture(e);return u&&(this.downloadWaitMs+=y.now()-c),this.convertAndCacheOnCPU(e,l)}async read(e){if(this.pendingRead.has(e)){let f=this.pendingRead.get(e);return new Promise(h=>f.push(h))}let t=this.texData.get(e),{values:o,shape:n,slice:s,dtype:a,complexTensorInfos:i,isPacked:p}=t;if(s!=null){let f;p?f=new Fr(n,La):f=new tr(n,La);let h=this.runWebGLProgram(f,[{dataId:e,shape:n,dtype:a}],a),g=this.read(h.dataId);return this.disposeIntermediateTensorInfo(h),g}if(o!=null)return this.convertAndCacheOnCPU(e);if(A().getBool("DEBUG")&&!A().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&A().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let u=null,c;if(a!=="complex64"&&A().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let f=this.texData.get(c.dataId);u=this.gpgpu.createBufferFromTexture(f.texture.texture,...jl(n))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let l;if(a==="complex64"){let f=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),h=f[0],g=f[1];l=w.mergeRealAndImagArrays(h,g)}else if(u==null)l=this.getValuesFromTexture(e);else{let f=y.sizeFromShape(n);l=this.gpgpu.downloadFloat32MatrixFromBuffer(u,f)}if(c!=null&&this.disposeIntermediateTensorInfo(c),u!=null){let f=this.gpgpu.gl;ce(f,()=>f.deleteBuffer(u))}let m=this.convertAndCacheOnCPU(e,l),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(f=>f(m)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&ur().removeDataId(e,this),this.pendingDeletes--),m}readToGPU(e,t={}){let o=this.texData.get(e),{values:n,shape:s,slice:a,dtype:i,isPacked:p,texture:u}=o;if(i==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(a!=null){let d;p?d=new Fr(s,La):d=new tr(s,La);let f=this.runWebGLProgram(d,[{dataId:e,shape:s,dtype:i}],i),h=this.readToGPU(f,t);return this.disposeIntermediateTensorInfo(f),h}if(u==null)throw n!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let c=this.decode(e,t.customTexShape),l=ur().makeTensorFromTensorInfo(c),m=this.texData.get(c.dataId);return Object.assign({tensorRef:l},m.texture)}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let o=t.map(n=>y.decodeString(n));return me(e.shape,e.dtype,o)}catch(o){throw new Error("Failed to decode encoded string bytes into utf-8")}return me(e.shape,e.dtype,t)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let o=e[t];if(!EI(o))throw A().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${o} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${o} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:o,isPacked:n}=this.texData.get(e),s=y.sizeFromShape(t);if(A().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let m=this.decode(e),d=this.texData.get(m.dataId),f=this.gpgpu.downloadMatrixFromPackedTexture(d.texture.texture,...jl(t)).subarray(0,s);return this.disposeIntermediateTensorInfo(m),f}let a=A().getBool("WEBGL_PACK")&&n===!0,i=a?_c(t):t,p=a?new rh(i):new th(i),u=this.runWebGLProgram(p,[{shape:i,dtype:o,dataId:e}],"float32"),c=this.texData.get(u.dataId),l=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture.texture,c.texShape[0],c.texShape[1]).subarray(0,s);return this.disposeIntermediateTensorInfo(u),l}timerAvailable(){return A().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(e){let t=this.activeTimers,o=[],n=!1;this.programTimersStack==null?(this.programTimersStack=o,n=!0):this.activeTimers.push(o),this.activeTimers=o,e();let s=y.flatten(this.activeTimers.map(p=>p.query)).filter(p=>p!=null),a=y.flatten(this.activeTimers.map(p=>p.name)).filter(p=>p!=null);this.activeTimers=t,n&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(A().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let p=await Promise.all(s);i.kernelMs=y.sum(p),i.getExtraProfileInfo=()=>p.map((u,c)=>({name:a[c],ms:u})).map(u=>`${u.name}: ${u.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return A().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:y.now(),endMs:null}}endTimer(e){return A().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=y.now(),e)}async getQueryTime(e){if(A().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:o}=this.texData.get(e);return o!=null&&(this.disposeData(o.real.dataId,t),this.disposeData(o.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:o,texShape:n,usage:s,isPacked:a,slice:i}=this.texData.get(e),p=i&&i.origDataId||e,u=this.dataRefCount.get(p);u>1?this.dataRefCount.set(p,u-1):(this.dataRefCount.delete(p),t!=null&&(this.numBytesInGPU-=this.computeBytes(n,o),this.textureManager.releaseTexture(t,n,s,a)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=p9){return A().getBool("WEBGL_CPU_FORWARD")&&e.every(o=>this.texData.get(o.dataId).texture==null&&y.sizeFromShape(o.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){w.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return s9(e.shape,t)}packedUnaryOp(e,t,o){let n=new Fr(e.shape,t),s=this.compileAndRun(n,[e],o);return ur().makeTensorFromTensorInfo(s)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let n=ch(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,n)}if(A().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,fv,e.dtype);let t=new tr(e.shape,fv),o=this.compileAndRun(t,[e]);return ur().makeTensorFromTensorInfo(o)}makeTensorInfo(e,t,o){let n;if(t==="string"&&o!=null&&o.length>0&&y.isString(o[0])){let s=o.map(a=>y.encodeString(a));n=this.write(s,e,t)}else n=this.write(o,e,t);return this.texData.get(n).usage=null,{dataId:n,shape:e,dtype:t}}makeOutput(e,t,o){return ur().makeTensorFromTensorInfo(this.makeTensorInfo(e,t,o),this)}unpackTensor(e){let t=new fh(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new mh(e.shape);return this.runWebGLProgram(t,[e],e.dtype,null,!0)}packedReshape(e,t){let o=[gi(e.shape),...xi(e.shape)],n={dtype:e.dtype,shape:o,dataId:e.dataId},s=[gi(t),...xi(t)],a=new Mc(s,o),i=!0,p=[o],u=this.runWebGLProgram(a,[n],e.dtype,p,i);return{dataId:u.dataId,shape:t,dtype:u.dtype}}decode(e,t){let o=this.texData.get(e),{isPacked:n,shape:s,dtype:a}=o;if(t!=null){let m=y.sizeFromShape(s),d=t[0]*t[1]*4;y.assert(m<=d,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let i=_c(s),p;n?p=new eh(i):p=new Jf(i);let u=!0,c=[t!=null?t:jl(i)],l=this.runWebGLProgram(p,[{shape:i,dtype:a,dataId:e}],a,c,u,t);return{dtype:a,shape:s,dataId:l.dataId}}runWebGLProgram(e,t,o,n,s=!1,a){let i=this.makeTensorInfo(e.outputShape,o),p=this.texData.get(i.dataId);if(e.packedOutput&&(p.isPacked=!0),e.outPackingScheme===gu.DENSE){let x=a!=null?a:jl(e.outputShape);p.texShape=x.map(b=>b*2)}if(e.outTexUsage!=null&&(p.usage=e.outTexUsage),y.sizeFromShape(i.shape)===0)return p.values=y.getTypedArrayFromDType(i.dtype,0),i;let u=[],c=t.map(x=>{if(x.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let b=this.texData.get(x.dataId);if(b.texture==null){if(!e.packedInputs&&y.sizeFromShape(x.shape)<=A().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:x.shape,texData:null,isUniform:!0,uniformValues:b.values};e.packedInputs&&(b.isPacked=!0,b.shape=x.shape)}if(this.uploadToGPU(x.dataId),!!b.isPacked!=!!e.packedInputs)x=b.isPacked?this.unpackTensor(x):this.packTensor(x),u.push(x),b=this.texData.get(x.dataId);else if(b.isPacked&&!xu(b.shape,x.shape)){let C=x,S=x.shape;x.shape=b.shape,x=this.packedReshape(x,S),u.push(x),b=this.texData.get(x.dataId),C.shape=S}return{shape:x.shape,texData:b,isUniform:!1}});this.uploadToGPU(i.dataId);let l={shape:i.shape,texData:p,isUniform:!1},m=MR(e,c,l),d=this.getAndSaveBinary(m,()=>PR(this.gpgpu,e,c,l)),f=this.activeTimers!=null,h;f&&(h=this.startTimer()),A().get("ENGINE_COMPILE_ONLY")||OR(this.gpgpu,d,c,l,n),u.forEach(x=>this.disposeIntermediateTensorInfo(x)),f&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let g=A().getNumber("WEBGL_FLUSH_THRESHOLD");if(g>0){let x=y.now();x-this.lastGlFlushTime>g&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=x)}if(!A().getBool("WEBGL_LAZILY_UNPACK")&&p.isPacked&&s===!1){let x=this.unpackTensor(i);return this.disposeIntermediateTensorInfo(i),x}return i}compileAndRun(e,t,o,n,s=!1){return o=o||t[0].dtype,this.runWebGLProgram(e,t,o,n,s)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(A().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=De(()=>{if(!A().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=A().getBool("DEBUG");A().set("DEBUG",!1);let t=this.abs(ke(1e-8)).dataSync()[0];if(A().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?a9:i9}uploadToGPU(e){let t=this.texData.get(e),{shape:o,dtype:n,values:s,texture:a,usage:i,isPacked:p}=t;if(a!=null)return;let u=this.activeTimers!=null,c;u&&(c=y.now());let l=t.texShape;if(l==null&&(l=WI(o,p),t.texShape=l),s!=null){let m=_c(o),d,f=l[1],h=l[0],g=s instanceof Uint8Array||s instanceof Uint8ClampedArray;(p||!g)&&([f,h]=Ma(l[0],l[1])),p?d=new oh(m,g):d=new Zl(m,g);let x=g?[h,f]:l,b=this.makeTensorInfo(x,n),C=this.texData.get(b.dataId);g?C.usage=mr.PIXELS:C.usage=mr.UPLOAD,C.texShape=x,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(b.dataId),f,h,s);let S=[[h,f]],_=this.runWebGLProgram(d,[b],n,S,!0),$=this.texData.get(_.dataId);t.texShape=$.texShape,t.isPacked=$.isPacked,t.usage=$.usage,A().get("ENGINE_COMPILE_ONLY")?this.disposeData(_.dataId):(t.texture=$.texture,t.values=null,this.texData.delete(_.dataId)),this.disposeIntermediateTensorInfo(b),u&&(this.uploadWaitMs+=y.now()-c)}else{let m=this.acquireTexture(l,i,n,p);t.texture=m}}convertAndCacheOnCPU(e,t){let o=this.texData.get(e),{dtype:n}=o;return t!=null&&(o.values=m9(t,n)),o.values}acquireTexture(e,t,o,n){if(this.numBytesInGPU+=this.computeBytes(e,o),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let s=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${s} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,n)}computeBytes(e,t){return e[0]*e[1]*y.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let o=new Promise(n=>{try{this.checkCompletion_(t),n(!0)}catch(s){throw s}});e.push(o)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await cS(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(qf(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let e of Object.values(this.binaryCache)){this.gpgpu.buildVao(e.webGLProgram);let{variablesLocations:t,customUniformLocations:o,infLoc:n,nanLoc:s,outShapeLocation:a,outShapeStridesLocation:i,outTexShapeLocation:p}=XI(this.gpgpu,e.program,e.webGLProgram);e.variablesLocations=t,e.customUniformLocations=o,e.infLoc=n,e.nanLoc=s,e.outShapeLocation=a,e.outShapeStridesLocation=i,e.outTexShapeLocation=p}}createTensorFromGPUData(e,t,o){e.channels=e.channels||"RGBA";let{texture:n,height:s,width:a,channels:i}=e,p=ur().backend;if(!p.gpgpu.gl.isTexture(n))throw new Error("The texture is invalid. Also, please make sure the texture and the TFJS WebGL backend are using the same canvas. If you want to use your own custom canvas, you have to create and use the custom TFJS WebGL backend created from the canvas through 'new tf.MathBackendWebGL(customCanvas)'.");let u=p.writeTexture(n,t,o,s,a,i);return ur().makeTensorFromDataId(u,t,o,p)}};Lc.nextDataId=0;function m9(r,e){if(e==="float32"||e==="complex64")return r;if(e==="int32"||e==="bool"){let t=e==="int32"?new Int32Array(r.length):new Uint8Array(r.length);for(let o=0;o<t.length;++o)t[o]=Math.round(r[o]);return t}else throw new Error(`Unknown dtype ${e}`)}var d9="4.22.0";function GD(){A().set("WEBGL_FORCE_F16_TEXTURES",!0)}eu.isBrowser()&&tu("webgl",()=>new Lc,2);var $at={forceHalfFloat:GD};var Bc=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`;var Pr=class{constructor(e,t,o){this.variableNames=["A","B"],this.outputShape=w.assertAndGetBroadcastShape(t,o),this.enableShapeUniforms=ut(this.outputShape.length),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}};var Xr=`
result.r = isNaN.r ? NAN : result.r;
result.g = isNaN.g ? NAN : result.g;
result.b = isNaN.b ? NAN : result.b;
result.a = isNaN.a ? NAN : result.a;
`;var jr=class{constructor(e,t,o,n=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=w.assertAndGetBroadcastShape(t,o);let s=this.outputShape.length;this.enableShapeUniforms=ut(s);let a="";if(n)if(s===0||y.sizeFromShape(this.outputShape)===1)a=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(a=`
${Re(s)} coords = getOutputCoords();
`,s===1)this.enableShapeUniforms?a+=`
result.y = (coords + 1) >= outShape ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`:a+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let p=Rt("coords",s);this.enableShapeUniforms?a+=`
bool nextRowOutOfBounds =
(${p[s-2]} + 1) >= outShape[${s} - 2];
bool nextColOutOfBounds =
(${p[s-1]} + 1) >= outShape[${s} - 1];
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`:a+=`
bool nextRowOutOfBounds =
(${p[s-2]} + 1) >= ${this.outputShape[s-2]};
bool nextColOutOfBounds =
(${p[s-1]} + 1) >= ${this.outputShape[s-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${a}
setOutput(result);
}
`}};function Dt(r){let{inputs:e,backend:t}=r,{x:o}=e;return t.incRef(o.dataId),{dataId:o.dataId,shape:o.shape,dtype:o.dtype}}var HD={kernelName:Co,backendName:"webgl",kernelFunc:Dt};function Or(r){let{inputs:e,backend:t}=r,{real:o,imag:n}=e,s=t.makeTensorInfo(o.shape,"complex64"),a=t.texData.get(s.dataId),i=Dt({inputs:{x:o},backend:t}),p=Dt({inputs:{x:n},backend:t});return a.complexTensorInfos={real:i,imag:p},s}var KD={kernelName:Di,backendName:"webgl",kernelFunc:Or};var hv="return (a < 0.) ? b * a : a;",gv=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function f9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{alpha:s}=o,a=t.makeTensorInfo([],"float32",y.createScalarValue(s,"float32")),i=A().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new jr(gv,n.shape,a.shape):new Pr(hv,n.shape,a.shape),p=t.runWebGLProgram(i,[n,a],"float32");return t.disposeIntermediateTensorInfo(a),p}var qD={kernelName:$n,backendName:"webgl",kernelFunc:f9};var xv="return (a < 0.) ? b * a : a;",yv=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function h9(r){let{inputs:e,backend:t}=r,{x:o,alpha:n}=e,s=A().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new jr(yv,o.shape,n.shape):new Pr(xv,o.shape,n.shape);return t.runWebGLProgram(s,[o,n],"float32")}var jD={kernelName:rs,backendName:"webgl",kernelFunc:h9};var Fo="if (isnan(x)) return x;";function xe({opSnippet:r,packedOpSnippet:e,cpuKernelImpl:t,dtype:o}){return({inputs:n,backend:s})=>{let{x:a}=n,i=s,p=o||a.dtype;if(i.shouldExecuteOnCPU([a])&&t!=null){let l=i.texData.get(a.dataId),m=t(l.values,p);return i.makeTensorInfo(a.shape,p,m)}let u=A().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&e!=null,c;return u?c=new Fr(a.shape,e):c=new tr(a.shape,r),i.runWebGLProgram(c,[a],p)}}function nt({opSnippet:r,packedOpSnippet:e,checkOutOfBounds:t=!1,supportsComplex:o=!1,cpuKernelImpl:n,dtype:s}){return({inputs:a,backend:i})=>{let{a:p,b:u}=a,c=i;if(o&&p.dtype==="complex64"){let f=c.texData.get(p.dataId),h=c.texData.get(u.dataId),[g,x]=[[f.complexTensorInfos.real,h.complexTensorInfos.real],[f.complexTensorInfos.imag,h.complexTensorInfos.imag]].map(C=>{let[S,k]=C,_={dataId:S.dataId,dtype:S.dtype,shape:p.shape},$={dataId:k.dataId,dtype:k.dtype,shape:u.shape},R=new Pr(r,p.shape,u.shape);return c.runWebGLProgram(R,[_,$],dt(S.dtype,k.dtype))}),b=Or({inputs:{real:g,imag:x},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(x),b}let l=s||dt(p.dtype,u.dtype);if((p.dtype==="string"||u.dtype==="string"||c.shouldExecuteOnCPU([p,u]))&&n!=null){let f=c.texData.get(p.dataId).values,h=c.texData.get(u.dataId).values,g=p.dtype==="string"?w.fromUint8ToStringArray(f):f,x=p.dtype==="string"?w.fromUint8ToStringArray(h):h,[b,C]=n(p.shape,u.shape,g,x,l),S=c.makeTensorInfo(C,l),k=c.texData.get(S.dataId);return k.values=b,S}let m=A().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&e!=null,d;return m?d=new jr(e,p.shape,u.shape,t):d=new Pr(r,p.shape,u.shape),c.runWebGLProgram(d,[p,u],l)}}function yi(r,e=!1){if(r==="linear")return e?BD:AD;if(r==="relu")return e?VD:PD;if(r==="elu")return e?zD:FD;if(r==="relu6")return e?WD:OD;if(r==="prelu")return e?yv:xv;if(r==="leakyrelu")return e?gv:hv;if(r==="sigmoid")return e?UD:MD;throw new Error(`Activation ${r} has not been implemented for the WebGL backend.`)}var zc=class{constructor(e,t,o,n=!1,s=!1,a=!1,i=null,p=!1,u=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=o,this.enableShapeUniforms=ut(this.outputShape.length);let c=n?e[1]:e[2],l=Math.ceil(c/2),m=n?"i * 2, rc.y":"rc.y, i * 2",d=s?"rc.z, i * 2":"i * 2, rc.z",f=n?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],h=s?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],g="",x="";i&&(p?g=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${i}
}`:u?g=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${i}
}`:g=`vec4 activation(vec4 x) {
${i}
}`,x="result = activation(result);");let b=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),p&&this.variableNames.push("preluActivationWeights"),u&&this.variableNames.push("leakyreluAlpha");let C="rc.x",S="rc.x";e[0]<t[0]?C=`imod(rc.x, ${e[0]})`:t[0]<e[0]&&(S=`imod(rc.x, ${t[0]})`),this.userCode=`
${g}
// Don't use uniform for sharedDimensionPacked for performance.
const float sharedDimension = ${l}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
int batchA = ${C};
int batchB = ${S};
for (int i = 0; i < ${l}; i++) {
vec4 a = getMatrixA(batchA, ${m});
vec4 b = getMatrixB(batchB, ${d});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${f[0]} * ${h[0]});
result += (${f[1]} * ${h[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${b}
${x}
setOutput(result);
}
`}};var bv={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},em=class{constructor(e,t,o){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=w.assertAndGetBroadcastShape(t,o),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}};var XD="return a * b;";function tm(r){let{inputs:e,backend:t}=r,{a:o,b:n}=e,s=w.upcastType(o.dtype,n.dtype);if(o.dtype==="complex64"){let i=t.texData.get(o.dataId),p=t.texData.get(n.dataId),u=new em(bv.REAL,o.shape,n.shape),c=new em(bv.IMAG,o.shape,n.shape),l=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:o.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:o.shape},{dataId:p.complexTensorInfos.real.dataId,dtype:p.complexTensorInfos.real.dtype,shape:n.shape},{dataId:p.complexTensorInfos.imag.dataId,dtype:p.complexTensorInfos.imag.dtype,shape:n.shape}],m=t.runWebGLProgram(u,l,"float32"),d=t.runWebGLProgram(c,l,"float32"),f=Or({inputs:{real:m,imag:d},backend:t});return t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(d),f}if(t.shouldExecuteOnCPU([o,n])){let i=t.texData.get(o.dataId),p=t.texData.get(n.dataId),[u,c]=sD(o.shape,n.shape,i.values,p.values,s),l=t.makeTensorInfo(c,s),m=t.texData.get(l.dataId);return m.values=u,l}let a;return A().getBool("WEBGL_PACK_BINARY_OPERATIONS")?a=new jr(XD,o.shape,n.shape):a=new Pr(XD,o.shape,n.shape),t.runWebGLProgram(a,[o,n],s)}var YD={kernelName:Xn,backendName:"webgl",kernelFunc:tm};function QD(r,e,t){let o=[gi(r.shape),...xi(r.shape)],n={dtype:r.dtype,shape:o,dataId:r.dataId},s=[gi(e),...xi(e)],a=new Mc(s,o),i=!0,p=[o],u=t.runWebGLProgram(a,[n],r.dtype,p,i);return{dataId:u.dataId,shape:e,dtype:u.dtype}}function te(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{shape:s}=o,a=t,i=y.sizeFromShape(n.shape),p=y.inferFromImplicitShape(s,i),u=y.sizeFromShape(p);y.assert(i===u,()=>`The new shape (${p}) has ${u} elements and the old shape (${n.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let c=a.texData.get(n.dataId);return c.isPacked&&!xu(n.shape,p)&&!(c.texture!==null&&xu(c.shape,p))?QD(n,p,a):(a.incRef(n.dataId),{dataId:n.dataId,shape:p,dtype:n.dtype})}var ZD={kernelName:da,backendName:"webgl",kernelFunc:te};var rm=class{constructor(e,t){this.variableNames=["x"];let{windowSize:o,batchSize:n,inSize:s,outSize:a}=e;this.outputShape=[n,a];let i=Math.floor(o/4)*4,p=o%4,u="sumValue += dot(values, ones);";if(t!=null){let l=1/t;u=`sumValue += dot(values * ${y.isInt(l)?l.toPrecision(2):l}, ones);`}let c="";s%o>0&&(c=`
if (inIdx < 0 || inIdx >= ${s}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${c}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${o};
float sumValue = 0.0;
for (int i = 0; i < ${i}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${u}
}
int inIdx = inOffset + ${i};
if (${p===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${u}
} else if (${p===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${u}
} else if (${p===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${u}
}
setOutput(sumValue);
}
`}};var gh=class{constructor(e,t){this.variableNames=["x"];let{windowSize:o,batchSize:n,inSize:s,outSize:a}=e;this.outputShape=[n,a];let i="0.0",p="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",p="min"):t==="max"&&(i="-1.0 / 1e-20",p="max");let u=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?u="sumValue":t==="prod"?u="prodValue":t==="all"?u="allValue":t==="any"&&(u="anyValue");let c=Math.floor(o/4)*4,l=o%4,m=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${p}(values, minMaxValue);
if (${t==="min"} || ${t==="max"}) {
minMaxValue = ${p}(values, minMaxValue);
bvec4 isNaN = isnan(values);
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
minMaxValue = vec4(NAN);
}
}
}
`,d="vec4";t==="all"?(i="1.0",m=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,d="bvec4"):t==="any"&&(i="0.0",m=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,d="bvec4");let f="";s%o>0&&(f=`
if (inIdx < 0 || inIdx >= ${s}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${i};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${f}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${o};
vec4 minMaxValue = vec4(${i});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${m}
}
int inIdx = inOffset + ${c};
if (${l===1}) {
${d} values = ${d}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${m}
} else if (${l===2}) {
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${m}
} else if (${l===3}) {
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${m}
}
setOutput(${u});
}
`}};function x9(r){let e=[];for(;e.length===0||e[e.length-1].outSize!==1;){let t=e.length?e[e.length-1].outSize:r[1],o=w.computeOptimalWindowSize(t);e.push({inSize:t,windowSize:o,outSize:Math.ceil(t/o)})}return e}function Yr(r,e,t,o){let n=x9(r.shape),s=r;for(let a=0;a<n.length;a++){let{inSize:i,windowSize:p,outSize:u}=n[a],c,l;t==="mean"?c=a===0?new rm({windowSize:p,inSize:i,batchSize:r.shape[0],outSize:u},i):new rm({windowSize:p,inSize:i,batchSize:r.shape[0],outSize:u}):c=new gh({windowSize:p,inSize:i,batchSize:r.shape[0],outSize:u},t),l=s,s=o.runWebGLProgram(c,[s],e),l.dataId!==r.dataId&&o.disposeIntermediateTensorInfo(l)}return s}var xh=class{constructor(e,t){this.variableNames=["A"];let o=new Array(e.length);for(let a=0;a<o.length;a++)o[a]=e[t[a]];this.outputShape=o,this.rank=o.length;let n=Re(this.rank),s=y9(t);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${s}));
}
`}};function y9(r){let e=r.length;if(e>6)throw Error(`Transpose for rank ${e} is not yet supported`);let t=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],o=new Array(e);for(let n=0;n<r.length;n++)o[r[n]]=t[n];return o.join()}var yh=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let o=new Array(e.length);for(let c=0;c<o.length;c++)o[c]=e[t[c]];if(this.outputShape=o,this.rank=o.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let n=Re(this.rank),s=dv("rc",this.rank),a=new Array(this.rank);for(let c=0;c<t.length;c++)a[t[c]]=s[c];let i=`vec2(${a.slice(-2).join()})`,p=`++${s[this.rank-1]} < ${o[this.rank-1]}`,u=`getChannel(getA(${a.join()}), ${i})`;this.userCode=`
void main() {
${n} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${u};
if(${p}) {
result[1] = ${u};
}
--${s[this.rank-1]};
if(++${s[this.rank-2]} < ${o[this.rank-2]}) {
result[2] = ${u};
if(${p}) {
result[3] = ${u};
}
}
setOutput(result);
}
`}};function yu(r,e,t){let o=A().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new yh(r.shape,e):new xh(r.shape,e);return t.runWebGLProgram(o,[r],r.dtype)}function JD(r,e,t,o){let n=e,s=r.shape.length,a=y.parseAxisParam(n,r.shape),i=a,p=w.getAxesPermutation(i,s),u=p!=null,c=r;u&&(c=yu(r,p,o),i=w.getInnerMostAxes(i.length,s)),w.assertAxesAreInnerMostDims("sum",i,s);let[l,m]=w.computeOutAndReduceShapes(c.shape,i),d=l;t&&(d=w.expandShapeToKeepDim(l,a));let f=y.sizeFromShape(m),g=y.sizeFromShape(r.shape)/f,x=te({inputs:{x:c},attrs:{shape:[g,f]},backend:o}),b=oi(r.dtype),C=Yr(x,b,"sum",o),S=te({inputs:{x:C},attrs:{shape:d},backend:o});return o.disposeIntermediateTensorInfo(x),o.disposeIntermediateTensorInfo(C),u&&o.disposeIntermediateTensorInfo(c),S}function wp(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;return JD(n,s,a,t)}var eA={kernelName:Ss,backendName:"webgl",kernelFunc:wp};function bt(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{perm:s}=o,a=t,i=n.shape.length,p=new Array(i);for(let c=0;c<p.length;c++)p[c]=n.shape[s[c]];let u;if(a.shouldExecuteOnCPU([n])){let l=a.texData.get(n.dataId).values,m=Cp(l,n.shape,n.dtype,s,p);u=a.makeTensorInfo(p,n.dtype);let d=a.texData.get(u.dataId);d.values=m}else u=yu(n,s,a);return u}var tA={kernelName:co,backendName:"webgl",kernelFunc:bt};var Cv=1e3;function Sp({a:r,b:e,transposeA:t,transposeB:o,backend:n,bias:s=null,preluActivationWeights:a=null,leakyreluAlpha:i=0,activation:p=null}){let u=r.shape.length,c=e.shape.length,l=t?r.shape[u-2]:r.shape[u-1],m=o?e.shape[c-1]:e.shape[c-2],d=t?r.shape[u-1]:r.shape[u-2],f=o?e.shape[c-2]:e.shape[c-1],h=r.shape.slice(0,-2),g=e.shape.slice(0,-2),x=y.sizeFromShape(h),b=y.sizeFromShape(g),S=Sr.assertAndGetBroadcastShape(r.shape.slice(0,-2),e.shape.slice(0,-2)).concat([d,f]);y.assert(l===m,()=>`Error in matMul: inner shapes (${l}) and (${m}) of Tensors with shapes ${r.shape} and ${e.shape} and transposeA=${t} and transposeB=${o} must match.`);let k=t?[x,l,d]:[x,d,l],_=o?[b,f,m]:[b,m,f],$=te({inputs:{x:r},backend:n,attrs:{shape:k}}),R=te({inputs:{x:e},backend:n,attrs:{shape:_}}),D=[$,R],P=Math.max(x,b),O=t?$.shape[1]:$.shape[2],M=s!=null,L=a!=null,B=p==="leakyrelu",z=p!=null?yi(p,!0):null,U=M||L||B||z!=null,j;if((d===1||f===1)&&O>Cv&&U===!1){let Y=$,J=R;t&&(Y=bt({inputs:{x:$},backend:n,attrs:{perm:[0,2,1]}}),D.push(Y)),o&&(J=bt({inputs:{x:R},backend:n,attrs:{perm:[0,2,1]}}),D.push(J));let re=f!==1,ne=f===1,ee=Y;re&&(ee=te({inputs:{x:Y},backend:n,attrs:{shape:[P,O,1]}}),D.push(ee));let oe=f===1?2:1,ie=J;ne&&(ie=te({inputs:{x:J},backend:n,attrs:{shape:[P,1,O]}}),D.push(ie));let le=tm({inputs:{a:ee,b:ie},backend:n});j=wp({inputs:{x:le},backend:n,attrs:{axis:oe,keepDims:!0}}),D.push(le)}else{let Y=dt(r.dtype,e.dtype),J=new zc(k,_,[P,d,f],t,o,M,z,L,B),re=[$,R];if(s!=null&&re.push(s),L&&re.push(a),B){let ne=n.makeTensorInfo([],"float32",y.createScalarValue(i,"float32"));re.push(ne),D.push(ne)}j=n.runWebGLProgram(J,re,Y)}let q=te({inputs:{x:j},backend:n,attrs:{shape:S}});D.push(j);for(let Y of D)n.disposeIntermediateTensorInfo(Y);return q}function b9(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s,bias:a,preluActivationWeights:i}=e,{transposeA:p,transposeB:u,activation:c,leakyreluAlpha:l}=o;return Sp({a:n,b:s,transposeA:p,transposeB:u,backend:t,bias:a,preluActivationWeights:i,leakyreluAlpha:l,activation:c})}var rA={kernelName:So,backendName:"webgl",kernelFunc:b9};var oA="return abs(x);";function C9(r){let{inputs:e,backend:t}=r,{x:o}=e;if(t.shouldExecuteOnCPU([o])&&o.dtype!=="complex64"){let s=t.texData.get(o.dataId),a=ch(s.values);return t.makeTensorInfo(o.shape,o.dtype,a)}let n;return A().getBool("WEBGL_PACK_UNARY_OPERATIONS")?n=new Fr(o.shape,oA):n=new tr(o.shape,oA),t.runWebGLProgram(n,[o],o.dtype)}var nA={kernelName:Xs,backendName:"webgl",kernelFunc:C9};var w9=Wt+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,S9=xe({opSnippet:w9}),sA={kernelName:Vo,backendName:"webgl",kernelFunc:S9};var I9=Wt+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,v9=xe({opSnippet:I9}),aA={kernelName:Wo,backendName:"webgl",kernelFunc:v9};var iA="return a + b;",k9=nt({opSnippet:iA,packedOpSnippet:iA,supportsComplex:!0,cpuKernelImpl:LR}),uA={kernelName:uo,backendName:"webgl",kernelFunc:k9};var bh=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let o=[];this.variableNames.forEach(s=>{o.push(`float v${s} = get${s}AtOutCoords();`)});let n=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
void main() {
${o.join(`
`)}
float result = ${n};
setOutput(result);
}
`}};var Ch=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let o=[];this.variableNames.forEach(s=>{o.push(`vec4 v${s} = get${s}AtOutCoords();`)});let n=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
void main() {
${o.join(`
`)}
vec4 result = ${n};
setOutput(result);
}
`}};function wh(r){let{inputs:e,backend:t}=r,o=e;if(o.length===1)return Dt({inputs:{x:o[0]},backend:t});if(o.length>A().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let p=Math.floor(o.length/2),u=wh({inputs:o.slice(0,p),backend:t}),c=wh({inputs:o.slice(p),backend:t});return wh({inputs:[u,c],backend:t})}let n=o.map(p=>p.dtype).reduce((p,u)=>dt(p,u)),s=o.map(p=>p.shape),i=A().getBool("WEBGL_PACK")?new Ch(o[0].shape,s):new bh(o[0].shape,s);return t.runWebGLProgram(i,o,n)}var pA={kernelName:Uo,backendName:"webgl",kernelFunc:wh};function N9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=n.shape.length,p=y.parseAxisParam(s,n.shape),u=p,c=w.getAxesPermutation(u,i),l=n;c!=null&&(l=bt({inputs:{x:n},backend:t,attrs:{perm:c}}),u=w.getInnerMostAxes(u.length,i)),w.assertAxesAreInnerMostDims("all",u,i);let[m,d]=w.computeOutAndReduceShapes(l.shape,u),f=y.sizeFromShape(d),h=te({inputs:{x:l},backend:t,attrs:{shape:[-1,f]}}),g=Yr(h,h.dtype,"all",t),x;if(a){let b=w.expandShapeToKeepDim(m,p);x=te({inputs:{x:g},backend:t,attrs:{shape:b}})}else x=te({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(l),x}var cA={kernelName:Go,backendName:"webgl",kernelFunc:N9};function T9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=n.shape.length,p=y.parseAxisParam(s,n.shape),u=p,c=w.getAxesPermutation(u,i),l=n;c!=null&&(l=bt({inputs:{x:n},backend:t,attrs:{perm:c}}),u=w.getInnerMostAxes(u.length,i)),w.assertAxesAreInnerMostDims("any",u,i);let[m,d]=w.computeOutAndReduceShapes(l.shape,u),f=y.sizeFromShape(d),h=te({inputs:{x:l},backend:t,attrs:{shape:[-1,f]}}),g=Yr(h,h.dtype,"any",t),x;if(a){let b=w.expandShapeToKeepDim(m,p);x=te({inputs:{x:g},backend:t,attrs:{shape:b}})}else x=te({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(l),x}var lA={kernelName:Ho,backendName:"webgl",kernelFunc:T9};var Sh=class{constructor(e,t,o){this.variableNames=["A"];let{windowSize:n,batchSize:s,outSize:a}=e;o||this.variableNames.push("bestIndicesA"),this.outputShape=[s,a];let i=t==="max"?">":"<",p=o?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${n}; i++) {
int inIdx = ${p};
float candidate = getA(batch, inIdx);
if (candidate ${i} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}};var Ih=class{constructor(e,t,o,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,y.assert(e.length>2,()=>`Packed arg${o.charAt(0).toUpperCase()+o.slice(1)} supports only inputs with rank above 2.`);let s=e[e.length-1],a=Math.ceil(s/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),n||this.variableNames.push("bestIndicesA");let i=this.outputShape,p=i.length,u=Re(p),c=Rt("coords",p),l,m;if(a===1){m=p+1;let R=Re(m);l=`
${R} sourceLocR = ${R}(${c.join()}, 0);
++${c[p-1]};
${R} sourceLocG = ${R}(${c.join()}, 0);
++${c[p-2]};
${R} sourceLocA = ${R}(${c.join()}, 0);
--${c[p-1]};
${R} sourceLocB = ${R}(${c.join()}, 0);
--${c[p-2]};`}else m=p,l=`
${u} sourceLocR = coords;
++${c[p-1]};
${u} sourceLocG = coords;
++${c[p-2]};
${u} sourceLocA = coords;
--${c[p-1]};
${u} sourceLocB = coords;
--${c[p-2]};`;let d=["x","y","z","w","u","v"].slice(0,m),f="."+d[m-1],h=d.map(R=>"int "+R),g=Rt("sourceLocR",m-1).concat("inIdx.r"),x=Rt("sourceLocG",m-1).concat("inIdx.g"),b=Rt("sourceLocB",m-1).concat("inIdx.b"),C=Rt("sourceLocA",m-1).concat("inIdx.a"),S=o==="max"?"greaterThan":"lessThan",k=n?"":`
inIdx = round(vec4(getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${x.join()}),
getBestIndicesAChannel(${b.join()}),
getBestIndicesAChannel(${C.join()})));`,_=`vec4(
getAChannel(${g.join()}),
hasNextCol ? getAChannel(${x.join()}) : 0.,
hasNextRow ? getAChannel(${b.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${C.join()}) : 0.)`,$=n?"":`
float getBestIndicesAChannel(${h.join()}) {
return getChannel(getBestIndicesA(${d.join()}),
vec2(${d.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${h.join()}) {
return getChannel(getA(${d.join()}),
vec2(${d.slice(-2).join()}));
}
${$}
void main() {
${u} coords = getOutputCoords();
bool hasNextCol = ${c[p-1]} < ${i[p-1]-1};
bool hasNextRow = ${c[p-2]} < ${i[p-2]-1};
${l}
ivec4 srcIdx = ivec4(sourceLocR${f}, sourceLocG${f},
sourceLocB${f}, sourceLocA${f}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${_};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${k}
vec4 candidate = ${_};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${S}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function mA(r,e,t,o=null){let n=e.shape[0],s=e.shape[1];o!=null&&(n=o.shape[0],s=o.shape[1]);let a=w.computeOptimalWindowSize(s),i={windowSize:a,inSize:s,batchSize:n,outSize:Math.ceil(s/a)},p=new Sh(i,t,o==null),u=[e];o!=null&&u.push(o);let c=r.runWebGLProgram(p,u,"int32");if(c.shape[1]===1)return c;let l=mA(r,e,t,c);return r.disposeIntermediateTensorInfo(c),l}function dA(r,e,t,o=null){let n=o!=null?o.shape:e.shape,s=n[n.length-1],a=w.computeOptimalWindowSize(s),i=new Ih(n,a,t,o==null),p=o==null?[e]:[e,o],u=r.runWebGLProgram(i,p,"int32");if(u.shape.length===e.shape.length){let c=dA(r,e,t,u);return r.disposeIntermediateTensorInfo(u),c}return u}function vh(r,e,t,o){let n=[t];if(w.assertAxesAreInnerMostDims("arg"+o.charAt(0).toUpperCase()+o.slice(1),n,e.shape.length),!A().getBool("WEBGL_PACK_REDUCE")||e.shape.length<=2){let s=[],a=r.texData.get(e.dataId),i=a!==null&&a.isPacked,p=e;i&&(p=r.unpackTensor(e),s.push(p));let[u,c]=w.computeOutAndReduceShapes(p.shape,n),l=y.sizeFromShape(c),m=te({inputs:{x:p},backend:r,attrs:{shape:[-1,l]}});s.push(m);let d=mA(r,m,o);s.push(d);let f=te({inputs:{x:d},backend:r,attrs:{shape:u}});return s.forEach(h=>r.disposeIntermediateTensorInfo(h)),f}return dA(r,e,o)}function _9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s}=o,a=y.parseAxisParam(s,n.shape),i=w.getAxesPermutation(a,n.shape.length),p=n,u=[];i!=null&&(p=bt({inputs:{x:n},backend:t,attrs:{perm:i}}),u.push(p),a=w.getInnerMostAxes(a.length,p.shape.length)),w.assertAxesAreInnerMostDims("argMax",[a[0]],p.shape.length);let c=vh(t,p,a[0],"max");return u.forEach(l=>t.disposeIntermediateTensorInfo(l)),c}var fA={kernelName:Ys,backendName:"webgl",kernelFunc:_9};function E9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s}=o,a=y.parseAxisParam(s,n.shape),i=w.getAxesPermutation(a,n.shape.length),p=n,u=[];i!=null&&(p=bt({inputs:{x:n},backend:t,attrs:{perm:i}}),u.push(p),a=w.getInnerMostAxes(a.length,p.shape.length)),w.assertAxesAreInnerMostDims("argMin",[a[0]],p.shape.length);let c=vh(t,p,a[0],"min");return u.forEach(l=>t.disposeIntermediateTensorInfo(l)),c}var hA={kernelName:Qs,backendName:"webgl",kernelFunc:E9};var $9=Wt+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,R9=xe({opSnippet:$9}),gA={kernelName:Ko,backendName:"webgl",kernelFunc:R9};var D9=Wt+"return log(x + sqrt(x * x + 1.0));",A9=xe({opSnippet:D9}),xA={kernelName:qo,backendName:"webgl",kernelFunc:A9};var F9=Wt+`
return atan(x);
`,P9=xe({opSnippet:F9}),yA={kernelName:jo,backendName:"webgl",kernelFunc:P9};var O9=Bc+`
return atan(a, b);
`,M9=`
vec4 result = atan(a, b);
bvec4 isNaNA = isnan(a);
bvec4 isNaNB = isnan(b);
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
`+Xr+`
return result;
`,L9=nt({opSnippet:O9,packedOpSnippet:M9}),bA={kernelName:Yo,backendName:"webgl",kernelFunc:L9};var B9=Wt+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,z9=xe({opSnippet:B9}),CA={kernelName:Xo,backendName:"webgl",kernelFunc:z9};var Us=class{constructor(e,t,o,n=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&o)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,i=e.strideHeight,p=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,l=e.effectiveFilterHeight,m=e.effectiveFilterWidth,d=e.padInfo.top,f=e.padInfo.left;this.outputShape=e.outShape;let h=t==="avg",g=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,x=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,b="0.0";if(h||(b="-1.0 / 1e-20"),o){let R=">=";this.userCode=`
const ivec2 strides = ivec2(${i}, ${p});
const ivec2 pads = ivec2(${d}, ${f});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${l};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${m};
wC += ${c}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${R} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${n?s?g:x:`wR * ${m} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let C="max",S=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(S="avgValue / max(count, 1.0)");let k=Math.floor(a/4)*4,_=a%4,$=`
if (${h}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${C}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${i}, ${p});
const ivec2 pads = ivec2(${d}, ${f});
const float initializationValue = ${b};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${b});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${l};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${k}; wC += 4) {
int xC = xCCorner + wC * ${c};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
getValue(batch, xR, xC + 3 * ${c}, d)
);
${$}
}
int xC = xCCorner + ${k};
if (${_===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${$}
} else if (${_===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
initializationValue,
initializationValue
);
${$}
} else if (${_===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
initializationValue
);
${$}
}
}
setOutput(${S});
}
`}},bu=class{constructor(e,t,o,n=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&o)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,i=e.strideDepth,p=e.strideHeight,u=e.strideWidth,c=e.dilationDepth,l=e.dilationHeight,m=e.dilationWidth,d=e.effectiveFilterDepth,f=e.effectiveFilterHeight,h=e.effectiveFilterWidth,g=e.padInfo.front,x=e.padInfo.top,b=e.padInfo.left;this.outputShape=e.outShape;let C=t==="avg",S="0.0";if(C||(S="-1.0 / 1e-20"),o){let P=">=";this.userCode=`
const ivec3 strides =
ivec3(${i}, ${p}, ${u});
const ivec3 pads = ivec3(${g}, ${x}, ${b});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${d};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${f};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${h};
wC += ${m}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${P} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${n?s?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${f} * ${h} +
wR * ${h} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let k="max",_=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(_="avgValue / max(count, 1.0)");let $=Math.floor(a/4)*4,R=a%4,D=`
if (${C}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${k}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${i}, ${p}, ${u});
const ivec3 pads = ivec3(${g}, ${x}, ${b});
const float initializationValue = ${S};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${S});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${d};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${f};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${$}; wC += 4) {
int xC = xCCorner + wC * ${m};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${m}, ch),
getValue(batch, xD, xR, xC + 2 * ${m}, ch),
getValue(batch, xD, xR, xC + 3 * ${m}, ch)
);
${D}
}
int xC = xCCorner + ${$};
if (${R===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${D}
} else if (${R===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${m}, ch),
initializationValue,
initializationValue
);
${D}
} else if (${R===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${m}, ch),
getValue(batch, xD, xR, xC + 2 * ${m}, ch),
initializationValue
);
${D}
}
}
}
setOutput(${_});
}
`}};function V9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e;Vs(n,"avgPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:p}=o,u=1;y.assert(w.eitherStridesOrDilationsAreOne(a,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=w.computePool2DInfo(n.shape,s,a,u,i,p);if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))return Dt({inputs:{x:n},backend:t});let l=new Us(c,"avg",!1);return t.runWebGLProgram(l,[n],"float32")}var wA={kernelName:Qo,backendName:"webgl",kernelFunc:V9};function W9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:p,dataFormat:u}=o,c=[1,1,1],l=w.computePool3DInfo(n.shape,s,a,c,i,p,u),m=new bu(l,"avg",!1);return t.runWebGLProgram(m,[n],"float32")}var SA={kernelName:Zs,backendName:"webgl",kernelFunc:W9};var kh=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,o=e.filterWidth,n=e.strideHeight,s=e.strideWidth,a=e.dilationHeight,i=e.dilationWidth,p=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=p-1-e.padInfo.top,l=u-1-e.padInfo.left,m=1/(t*o);this.userCode=`
const ivec2 pads = ivec2(${c}, ${l});
const float avgMultiplier = float(${m});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${p};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${u};
wC+= ${i}) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},Nh=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,o=e.filterHeight,n=e.filterWidth,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,p=e.dilationDepth,u=e.dilationHeight,c=e.dilationWidth,l=e.effectiveFilterDepth,m=e.effectiveFilterHeight,d=e.effectiveFilterWidth,f=l-1-e.padInfo.front,h=m-1-e.padInfo.top,g=d-1-e.padInfo.left,x=1/(t*o*n);this.userCode=`
const ivec3 pads = ivec3(${f}, ${h}, ${g});
const float avgMultiplier = float(${x});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${l};
wD += ${p}) {
float dyD = float(dyDCorner + wD) / ${s}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${m};
wR += ${u}) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${d};
wC += ${c}) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function U9(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s,{filterSize:i,strides:p,pad:u,dimRoundingMode:c}=o,l=[1,1,1],m=w.computePool3DInfo(a.shape,i,p,l,u,c),d=new Nh(m);return t.runWebGLProgram(d,[n],a.dtype)}var IA={kernelName:Ri,backendName:"webgl",kernelFunc:U9};function G9(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s;Vs([n,s],"avgPoolGrad");let{filterSize:i,strides:p,pad:u}=o,c=w.computePool2DInfo(a.shape,i,p,1,u),l=new kh(c);return t.runWebGLProgram(l,[n],a.dtype)}var vA={kernelName:$i,backendName:"webgl",kernelFunc:G9};function H9(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s}=e,{transposeA:a,transposeB:i}=o;return Sp({a:n,b:s,transposeA:a,transposeB:i,backend:t})}var kA={kernelName:Zo,backendName:"webgl",kernelFunc:H9};var Th=class{constructor(e,t,o,n,s,a){this.outputShape=[],this.variableNames=["x","mean","variance"],w.assertAndGetBroadcastShape(e,t),w.assertAndGetBroadcastShape(e,o);let i="0.0";n!=null&&(w.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let p="1.0";s!=null&&(w.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),p="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${i};
float scale = ${p};
float inv = scale * inversesqrt(variance + float(${a}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}};var _h=class{constructor(e,t,o,n,s,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],w.assertAndGetBroadcastShape(e,t),w.assertAndGetBroadcastShape(e,o);let i="vec4(0.0)";n!=null&&(w.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let p="vec4(1.0)";s!=null&&(w.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),p="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${i};
vec4 scale = ${p};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
setOutput((x - mean) * inv + offset);
}
`}};var K9=({inputs:r,backend:e,attrs:t})=>{let{x:o,mean:n,variance:s,offset:a,scale:i}=r;y.assert(n.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),y.assert(a==null||n.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),y.assert(i==null||n.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:p}=t;p==null&&(p=.001);let u=[o,n,s],c=null;a!=null&&(c=a.shape,u.push(a));let l=null;i!=null&&(l=i.shape,u.push(i));let m=A().getBool("WEBGL_PACK_NORMALIZATION")?new _h(o.shape,n.shape,s.shape,c,l,p):new Th(o.shape,n.shape,s.shape,c,l,p);return e.runWebGLProgram(m,u,u[0].dtype)},NA={kernelName:In,backendName:"webgl",kernelFunc:K9};var Eh=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=Re(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let o=q9(this.rank),n,s=e.map((a,i)=>`sourceLoc.${wv[i]} = start[${i}] + coords.${wv[i]};`);n=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${s.join(`
`)}
`,this.userCode=`
void main() {
${n}
setOutput(getSource(${o}));
}
`}},wv=["x","y","z","w","u","v"];function q9(r){if(r===1)return"sourceLoc";if(r<=6)return wv.slice(0,r).map(e=>"sourceLoc."+e).join(",");throw Error(`Slicing for rank ${r} is not yet supported`)}var $h=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=Re(this.rank),o=Rt("coords",this.rank),n=Rt("sourceLoc",this.rank),s=this.rank===1?"sourceLoc":`vec2(${n.slice(-2).join()})`,a=`getChannel(getSource(${n.join()}), ${s})`,i=`
result.x = ${a};
if (++${o[this.rank-1]} < ${e[this.rank-1]}) {
++${n[this.rank-1]};
result.y = ${a};
--${n[this.rank-1]};
}
`,p=this.rank===1?"":`
--${o[this.rank-1]};
if (++${o[this.rank-2]} < ${e[this.rank-2]}) {
++${n[this.rank-2]};
result.z = ${a};
if (++${o[this.rank-1]} < ${e[this.rank-1]}) {
++${n[this.rank-1]};
result.w = ${a};
}
}
`,u=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((c,l)=>`start[${l}]`).join()});`:e.map((c,l)=>`${n[l]} = ${o[l]} + start[${l}];`).join(`
`);this.userCode=`
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${u}
vec4 result = vec4(0.);
${i}
${p}
setOutput(result);
}
`}};function j9(r,e,t,o){let n=o.texData.get(r.dataId),s=o.makeTensorInfo(t,r.dtype),a=o.texData.get(s.dataId);Object.assign(a,n),a.refCount=1,a.shape=t,a.dtype=r.dtype;let i=pt.computeFlatOffset(e,y.computeStrides(r.shape));n.slice&&(i+=n.slice.flatOffset),a.slice={flatOffset:i,origDataId:n.slice&&n.slice.origDataId||r.dataId};let p=o.dataRefCount.get(a.slice.origDataId)||1;return o.dataRefCount.set(a.slice.origDataId,p+1),s}function Gs(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{begin:s,size:a}=o,[i,p]=pt.parseSliceParams(n,s,a);if(pt.assertParamsValid(n,i,p),y.sizeFromShape(p)===0)return t.makeTensorInfo(p,n.dtype,[]);if(t.shouldExecuteOnCPU([n])||n.dtype==="string"){let l=t.texData.get(n.dataId),m=gD(l.values,i,p,n.shape,n.dtype);return t.makeTensorInfo(p,n.dtype,m)}let{isPacked:u}=t.texData.get(n.dataId),c=pt.isSliceContinous(n.shape,i,p);if(u||!c){let l=A().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new $h(p):new Eh(p),m=[i];return t.runWebGLProgram(l,[n],n.dtype,m)}return t.uploadToGPU(n.dataId),j9(n,i,p,t)}var TA={kernelName:ha,backendName:"webgl",kernelFunc:Gs};var X9=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,crops:a}=o;y.assert(n.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=s.reduce((b,C)=>b*C),p=w.getReshaped(n.shape,s,i),u=w.getPermuted(p.length,s.length),c=w.getReshapedPermuted(n.shape,s,i),l=w.getSliceBeginCoords(a,s.length),m=w.getSliceSize(c,a,s.length),d=[],f=te({inputs:{x:n},backend:t,attrs:{shape:p}}),h=bt({inputs:{x:f},backend:t,attrs:{perm:u}}),g=te({inputs:{x:h},backend:t,attrs:{shape:c}}),x=Gs({inputs:{x:g},backend:t,attrs:{begin:l,size:m}});return d.push(f),d.push(h),d.push(g),d.forEach(b=>t.disposeIntermediateTensorInfo(b)),x},_A={kernelName:Js,backendName:"webgl",kernelFunc:X9};function Y9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,weights:s}=e,{size:a}=o,i=t.readSync(n.dataId),p=t.readSync(s.dataId),u=ph(i,p,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,u)}var EA={kernelName:Jo,backendName:"webgl",kernelFunc:Y9};var Q9=`
int r = int(a.r) & int(b.r);
int g = int(a.g) & int(b.g);
int rb = int(a.b) & int(b.b);
int ra = int(a.a) & int(b.a);
return vec4(r, g, rb, ra);
`,Z9=`
return float(int(a.r) & int(b.r));
`;function J9(r){let{inputs:e,backend:t}=r,{a:o,b:n}=e,s=A().getBool("WEBGL_PACK_BINARY_OPERATIONS"),a=A().getNumber("WEBGL_VERSION");if(t.shouldExecuteOnCPU([o,n])||a===1){let p=t.texData.get(o.dataId).values,u=t.texData.get(n.dataId).values,[c,l]=zR(o.shape,n.shape,p,u,o.dtype),m=t.makeTensorInfo(l,o.dtype),d=t.texData.get(m.dataId);return d.values=c,m}let i;return s?i=new jr(Q9,o.shape,n.shape,!1):i=new Pr(Z9,o.shape,n.shape),t.runWebGLProgram(i,[o,n],o.dtype)}var $A={kernelName:qa,backendName:"webgl",kernelFunc:J9};function eJ(r){let{inputs:e,backend:t}=r,{s0:o,s1:n}=e,s=t.readSync(o.dataId),a=t.readSync(n.dataId),i=w.assertAndGetBroadcastShape(Array.from(s),Array.from(a));return t.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var RA={kernelName:ea,backendName:"webgl",kernelFunc:eJ};var tJ="return float(a != b);",Sv=nt({opSnippet:tJ,cpuKernelImpl:iD,dtype:"bool"}),DA={kernelName:Yn,backendName:"webgl",kernelFunc:Sv};function bi(r){let{inputs:e,backend:t}=r,{input:o}=e,n=t.texData.get(o.dataId);return Dt({inputs:{x:n.complexTensorInfos.real},backend:t})}var AA={kernelName:Hi,backendName:"webgl",kernelFunc:bi};var rJ="return float(int(x));";function FA(r,e){let t=new tr(r.shape,rJ),o=e.runWebGLProgram(t,[r],"int32");return{dataId:o.dataId,shape:o.shape,dtype:o.dtype}}function Iv(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dtype:s}=o;if(s==="complex64"){if(n.dtype==="complex64")return Dt({inputs:{x:n},backend:t});let a=Gr(n.shape),i=Iv({inputs:{x:n},backend:t,attrs:{dtype:"float32"}}),p=Or({inputs:{real:i,imag:a},backend:t});return a.dispose(),t.disposeIntermediateTensorInfo(i),p}if(n.dtype==="complex64"){let a=bi({inputs:{input:n},backend:t}),i=Iv({inputs:{x:a},backend:t,attrs:{dtype:s}});return t.disposeIntermediateTensorInfo(a),i}if(!y.hasEncodingLoss(n.dtype,s)){let a=Dt({inputs:{x:n},backend:t});return{dataId:a.dataId,shape:a.shape,dtype:s}}if(t.shouldExecuteOnCPU([n])){let a=t.texData.get(n.dataId).values,[i,p,u]=VR(a,n.shape,n.dtype,s);return t.makeTensorInfo(i,p,u)}if(s==="int32")return FA(n,t);if(s==="bool"){let a=t.makeTensorInfo([],"bool",y.getTypedArrayFromDType("bool",1)),p=Sv({inputs:{a:n,b:a},backend:t});return t.disposeIntermediateTensorInfo(a),p}throw new Error(`Error in Cast: failed to cast ${n.dtype} to ${s}`)}var PA={kernelName:yo,backendName:"webgl",kernelFunc:Iv};var OA="return ceil(x);",oJ=xe({opSnippet:OA,packedOpSnippet:OA,cpuKernelImpl:WR}),MA={kernelName:en,backendName:"webgl",kernelFunc:oJ};var Rh=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}};var Dh=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}};function nJ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{clipValueMin:s,clipValueMax:a}=o,i;A().getBool("WEBGL_PACK_CLIP")?i=new Dh(n.shape):i=new Rh(n.shape);let p=[[s],[a]];return t.runWebGLProgram(i,[n],n.dtype,p)}var LA={kernelName:bo,backendName:"webgl",kernelFunc:nJ};var Ah=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function BA(r,e){return{dataId:e.dataId,dtype:e.dtype,shape:r.shape}}function sJ(r){let{inputs:e,backend:t}=r,{x:o}=e,n=t.texData.get(o.dataId),s=new Ah(o.shape),a=[BA(o,n.complexTensorInfos.real),BA(o,n.complexTensorInfos.imag)];return t.runWebGLProgram(s,a,a[0].dtype)}var zA={kernelName:Ai,backendName:"webgl",kernelFunc:sJ};var Fh=class{constructor(e){this.outputShape=[],this.outputShape=w.computeOutShape(e,1),this.variableNames=e.map((a,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let o=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let i=t[a-1];o.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${i}));`)}let n=t.length,s=t[t.length-1];o.push(`else setOutput(getT${n}(yR, yC-${s}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${o.join(`
`)}
}
`}};var Oh=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=w.computeOutShape(e,t);let o=this.outputShape,n=o.length,s=Re(n),a=Rt("coords",n),i=["x","y","z","w","u","v"].slice(0,n);this.variableNames=e.map((h,g)=>`T${g}`);let p=new Array(e.length-1);p[0]=e[0][t];for(let h=1;h<p.length;h++)p[h]=p[h-1]+e[h][t];let u=i[t],c=i.slice(-2),l=i.join(),m=`if (${u} < ${p[0]}) {
return getChannel(
getT0(${l}), vec2(${c.join()}));
}`;for(let h=1;h<p.length;h++){let g=p[h-1];m+=`
if (${u} < ${p[h]} && ${u} >= ${p[h-1]}) {
return getChannel(
getT${h}(${Ph(i,u,g)}),
vec2(${Ph(c,u,g)}));
}`}let d=p.length,f=p[p.length-1];m+=`
return getChannel(
getT${d}(${Ph(i,u,f)}),
vec2(${Ph(c,u,f)}));`,this.userCode=`
float getValue(${i.map(h=>"int "+h)}) {
${m}
}
void main() {
${s} coords = getOutputCoords();
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
${a[n-1]} = ${a[n-1]} + 1;
if (${a[n-1]} < ${o[n-1]}) {
result.g = getValue(${a});
}
${a[n-2]} = ${a[n-2]} + 1;
if (${a[n-2]} < ${o[n-2]}) {
result.a = getValue(${a});
}
${a[n-1]} = ${a[n-1]} - 1;
if (${a[n-2]} < ${o[n-2]} &&
${a[n-1]} < ${o[n-1]}) {
result.b = getValue(${a});
}
setOutput(result);
}
`}};function Ph(r,e,t){let o=r.indexOf(e);return r.map((s,a)=>a===o?`${s} - ${t}`:s).join()}function Ip(r){let{inputs:e,backend:t}=r,{input:o}=e,n=t.texData.get(o.dataId);return Dt({inputs:{x:n.complexTensorInfos.imag},backend:t})}var VA={kernelName:Wi,backendName:"webgl",kernelFunc:Ip};function Vc(r,e,t){let o=r[0].dtype;if(o==="complex64"){let d=r.map(b=>bi({inputs:{input:b},backend:t})),f=r.map(b=>Ip({inputs:{input:b},backend:t})),h=Vc(d,e,t),g=Vc(f,e,t),x=Or({inputs:{real:h,imag:g},backend:t});return d.forEach(b=>t.disposeIntermediateTensorInfo(b)),f.forEach(b=>t.disposeIntermediateTensorInfo(b)),t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),x}let n=t.shouldExecuteOnCPU(r);if(o==="string"&&(n=!0),n){let d=r.map(S=>{let _=[-1,y.sizeFromShape(S.shape.slice(e))];return te({inputs:{x:S},backend:t,attrs:{shape:_}})}),f=d.map(S=>({vals:t.readSync(S.dataId),shape:S.shape})),h=w.computeOutShape(d.map(S=>S.shape),1),g=d[0].shape[0]===1,x=UR(f,h,o,g),b=w.computeOutShape(r.map(S=>S.shape),e),C=t.makeTensorInfo(b,o,x);return d.forEach(S=>t.disposeIntermediateTensorInfo(S)),C}let s=r.filter(d=>y.sizeFromShape(d.shape)>0),a=A().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&s[0].shape.length>1;if(s.length===1){let d=a?new tr(r[0].shape,La):new Fr(r[0].shape,La);return t.runWebGLProgram(d,r,o)}let i=A().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER");if(s.length>i){let d=[];for(let h=0;h<s.length;h+=i){let g=s.slice(h,h+i);d.push(Vc(g,e,t))}let f=Vc(d,e,t);for(let h of d)t.disposeIntermediateTensorInfo(h);return f}if(a){let d=new Oh(s.map(f=>f.shape),e);return t.runWebGLProgram(d,s,o)}let{tensors2D:p,outShape:u}=aJ(s,e,t),c=new Fh(p.map(d=>d.shape)),l=t.runWebGLProgram(c,p,o);p.forEach(d=>t.disposeIntermediateTensorInfo(d));let m=te({inputs:{x:l},attrs:{shape:u},backend:t});return t.disposeIntermediateTensorInfo(l),m}function aJ(r,e,t){let o=w.computeOutShape(r.map(s=>s.shape),e);return{tensors2D:r.map(s=>te({inputs:{x:s},attrs:{shape:[-1,y.sizeFromShape(s.shape.slice(e))]},backend:t})),outShape:o}}function vv(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o,s=y.parseAxisParam(n,e[0].shape)[0],a=e.map(u=>u.shape);w.assertParamsConsistent(a,s);let i=w.computeOutShape(e.map(u=>u.shape),s);if(y.sizeFromShape(i)===0)return t.makeTensorInfo(i,e[0].dtype,[]);let p=e.filter(u=>y.sizeFromShape(u.shape)>0);return p.length===1?Dt({inputs:{x:p[0]},backend:t}):Vc(p,s,t)}var WA={kernelName:ta,backendName:"webgl",kernelFunc:vv};var Wc=class{constructor(e,t=!1,o=null,n=!1,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,i=e.padInfo.left,p=e.strideHeight,u=e.strideWidth,c=e.dilationHeight,l=e.dilationWidth,m=e.filterHeight,d=e.filterWidth,f=Math.floor(e.inChannels/4)*4,h=e.inChannels%4,g=e.dataFormat==="channelsLast",x=g?1:2,b=g?2:3,C=g?3:1,S="",k="";o&&(n?S=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${o}
}`:s?S=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${o}
}`:S=`
float activation(float x) {
${o}
}
`,k="result = activation(result);");let _=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${S}
const ivec2 strides = ivec2(${p}, ${u});
const ivec2 pads = ivec2(${a}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${C}];
ivec2 xRCCorner =
ivec2(coords[${x}], coords[${b}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${m}; wR++) {
int xR = xRCorner + wR * ${c};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d}; wC++) {
int xC = xCCorner + wC * ${l};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${f}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${g}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${h===1}) {
if (${g}) {
dotProd +=
getX(batch, xR, xC, ${f}) *
getW(wR, wC, ${f}, d2);
} else {
dotProd +=
getX(batch, ${f}, xR, xC) *
getW(wR, wC, ${f}, d2);
}
} else if (${h===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${f}, d2),
getW(wR, wC, ${f} + 1, d2)
);
if (${g}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${f}),
getX(batch, xR, xC, ${f} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${f}, xR, xC),
getX(batch, ${f} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${h===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${f}, d2),
getW(wR, wC, ${f} + 1, d2),
getW(wR, wC, ${f} + 2, d2)
);
if (${g}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${f}),
getX(batch, xR, xC, ${f} + 1),
getX(batch, xR, xC, ${f} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${f}, xR, xC),
getX(batch, ${f} + 1, xR, xC),
getX(batch, ${f} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${_}
${k}
setOutput(result);
}
`}},Mh=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,o=e.padInfo.top,n=e.padInfo.left,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,p=e.dilationDepth,u=e.dilationHeight,c=e.dilationWidth,l=e.filterDepth,m=e.filterHeight,d=e.filterWidth,f=Math.floor(e.inChannels/4)*4,h=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${s}, ${a}, ${i});
const ivec3 pads = ivec3(${t}, ${o}, ${n});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${l}; wF++) {
int xF = xFCorner + wF * ${p};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${m}; wR++) {
int xR = xRCorner + wR * ${u};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d}; wC++) {
int xC = xCCorner + wC * ${c};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${f}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${h===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${f}) *
getW(wF, wR, wC, ${f}, d2);
} else if (${h===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${f}),
getX(batch, xF, xR, xC, ${f} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${f}, d2),
getW(wF, wR, wC, ${f} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${h===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${f}),
getX(batch, xF, xR, xC, ${f} + 1),
getX(batch, xF, xR, xC, ${f} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${f}, d2),
getW(wF, wR, wC, ${f} + 1, d2),
getW(wF, wR, wC, ${f} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}};var Uc=class{constructor(e,t=!1,o=null,n=!1,s=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=ut(this.outputShape.length);let a=e.padInfo.left,i=e.strideWidth,p=e.dilationWidth,u=e.filterHeight,c=e.filterWidth,l=c,m=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<c;g++)m+=`
vec4 xTexelC${g*2};
int xTexelC${g*2}Ready;
vec4 xTexelC${g*2+1};
int xTexelC${g*2+1}Ready;
vec4 xC${g};`;m+=`
for (int r = 0; r < ${u}; r++) {
for (int d1 = 0; d1 < ${e.inChannels}; d1 += 2) {
`;for(let g=0;g<c;g++)m+=`
xTexelC${g*2} = vec4(0.0);
xTexelC${g*2}Ready = 0;
xTexelC${g*2+1} = vec4(0.0);
xTexelC${g*2+1}Ready = 0;
xC${g} = vec4(0.0);`;m+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let g=0;g<(l+1)/2;g++){let x=g*2;if(m+=`
xC = xCCorner + ${x*p};
`,i===1){if(x<c&&(a%2===1?(m+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x}Ready == 0) {
xTexelC${x} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${x}.zw = vec2(0.0);
}
xTexelC${x}Ready = 1;
}
`,p===1&&x>0?m+=`
xC${x} = vec4(xTexelC${x-2}.zw, xTexelC${x}.xy);
`:m+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${x} = vec4(previous.zw, xTexelC${x}.xy);
} else {
xC${x} = vec4(0.0, 0.0, xTexelC${x}.xy);
}
`):m+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${x}Ready == 0) {
xTexelC${x} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${x}.zw = vec2(0.0);
}
xTexelC${x}Ready = 1;
}
xC${x} = xTexelC${x};
`,x+1<c)){let b=a%2===0?y.nearestLargerEven(p):p;p%2===0&&a%2===1||p%2!==0&&a%2!==1?(m+=`
xCOffset = xC + imod(pads[1], 2) + ${b};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x+1}Ready == 0) {
xTexelC${x+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${x+1}.zw = vec2(0.0);
}
xTexelC${x+1}Ready = 1;
}
`,p>1?m+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
xC${x+1} = vec4(previous.zw, xTexelC${x+1}.xy);
} else {
xC${x+1} = vec4(0.0, 0.0, xTexelC${x+1}.xy);
}
`:m+=`
xC${x+1} = vec4(xTexelC${x}.zw, xTexelC${x+1}.xy);
`):b===1?m+=`
xC${x+1} = xTexelC${x};
`:m+=`
xCOffset = xC + ${b};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x+1}Ready == 0) {
xTexelC${x+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${x+1}.zw = vec2(0.0);
}
xTexelC${x+1}Ready = 1;
}
xC${x+1} = xTexelC${x+1};
`}}else x<c&&(a%2===1?(m+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x}Ready == 0) {
xTexelC${x} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${x}.zw = vec2(0.0);
}
xTexelC${x}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${x+1}Ready == 0) {
xTexelC${x+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${x+1}.zw = vec2(0.0);
}
xTexelC${x+1}Ready = 1;
}
xC${x} = vec4(xTexelC${x}.zw, xTexelC${x+1}.zw);
`,x+1<c&&(m+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${x+1} = vec4(xTexelC${x+1}.xy, final.xy);
`)):(m+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${x}Ready == 0) {
xTexelC${x} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${x}.zw = vec2(0.0);
}
xTexelC${x}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x+1}Ready == 0) {
xTexelC${x+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${x+1}.zw = vec2(0.);
}
xTexelC${x+1}Ready = 1;
}
xC${x} = vec4(
xTexelC${x}.xy, xTexelC${x+1}.xy);
`,x+1<c&&(m+=`
xC${x+1} = vec4(xTexelC${x}.zw, xTexelC${x+1}.zw);
`)));x<c&&(m+=`
wTexel = getW(r, ${x}, d1, d2);
dotProd += xC${x}.xxzz * vec4(wTexel.xy, wTexel.xy);
if(d1 + 1 < ${e.inChannels}) {
dotProd += xC${x}.yyww * vec4(wTexel.zw, wTexel.zw);
}
`,x+1<c&&(m+=`
wTexel = getW(r, ${x+1}, d1, d2);
dotProd += xC${x+1}.xxzz * vec4(wTexel.xy, wTexel.xy);
if(d1 + 1 < ${e.inChannels}) {
dotProd += xC${x+1}.yyww * vec4(wTexel.zw, wTexel.zw);
}
`))}m+=`
}
`,m+=`
}
`,m+=`
}
`;let d="",f="";o&&(n?d=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${o}
}`:s?d=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${o}
}`:d=`vec4 activation(vec4 x) {
${o}
}`,f="result = activation(result);");let h=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${d}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${m}
vec4 result = dotProd - vec4(0.000000000000001);
${h}
${f}
setOutput(result);
}
`}};var Lh=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec4"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=ut(this.outputShape.length);let{dataFormat:o}=t,n=It(),s=o==="channelsLast",a=s?1:2,i=s?2:3,p=this.enableShapeUniforms?"if(blockIndex < outShape[2] && pos < outShape[1]) {":`if(blockIndex < ${e[2]} && pos < ${e[1]}) {`,u="";for(let c=0;c<=1;c++)for(let l=0;l<=1;l++)u+=`
blockIndex = rc.z + ${l};
pos = rc.y + ${c};
${p}
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
if(d0 < inputShape[${a}] && d0 >= 0) {
// Use custom imod instead mod. On Intel GPU, mod may generate
// unexpected value.
// https://github.com/tensorflow/tfjs/issues/5447
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
inChannels);
if(d1 < inputShape[${i}] && d1 >= 0) {
ch = imod(pos, inChannels);
if (${s}) {
innerDims = vec2(d1, ch);
result[${c*2+l}] = getChannel(
getA(rc.x, d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${c*2+l}] = getChannel(
getA(rc.x, ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${u}
${n.output} = result;
}
`}};function Bh(r,e){let t=r.length;return t>=3?e?[...r.slice(0,-3),r[t-3]*r[t-2],r[t-1]]:[...r.slice(0,-3),r[t-3],r[t-2]*r[t-1]]:!e&&t===1&&r[0]>1?[r[0],1]:null}function zh({x:r,filter:e,convInfo:t,backend:o,bias:n=null,preluActivationWeights:s=null,leakyreluAlpha:a=0,activation:i=null}){let p=r.shape,u=o.texData.get(r.dataId),c=t.inChannels,l=p[0]*p[1]*p[2],m=t.outChannels,d=t.dataFormat==="channelsLast",f=!1,h=!1,g,x=[];if(s!=null){let S=Bh(s.shape,d);S!=null&&(s=te({inputs:{x:s},backend:o,attrs:{shape:S}}),x.push(s))}if(n!=null){let S=Bh(n.shape,d);S!=null&&(n=te({inputs:{x:n},backend:o,attrs:{shape:S}}),x.push(n))}if(!((l===1||m===1)&&c>Cv)&&u.isPacked&&d&&u.texture!=null&&p[2]%2!==0&&y.arraysEqual(u.shape.slice(-3),p.slice(-3))){let S=p[0]*p[1]*(p[2]+1),k={dataId:r.dataId,shape:[1,S,t.inChannels],dtype:r.dtype},_=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,y.assert(xu(u.shape,k.shape),()=>`packed reshape ${u.shape} to ${k.shape} isn't free`);let $=te({inputs:{x:e},backend:o,attrs:{shape:[1,t.inChannels,t.outChannels]}});x.push($);let R=Sp({a:k,b:$,backend:o,transposeA:f,transposeB:h,bias:n,activation:i,preluActivationWeights:s,leakyreluAlpha:a}),D=o.texData.get(R.dataId);y.assert(D.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=_,D.shape=t.outShape,g=Dt({inputs:{x:R},backend:o}),g.shape=t.outShape,x.push(R)}else{let S=t.outHeight*t.outWidth,k=te({inputs:{x:r},backend:o,attrs:{shape:d?[t.batchSize,S,t.inChannels]:[t.batchSize,t.inChannels,S]}}),_=te({inputs:{x:e},backend:o,attrs:{shape:[1,t.inChannels,t.outChannels]}}),$=Sp({a:d?k:_,b:d?_:k,transposeA:!d,transposeB:h,backend:o,bias:n,activation:i,preluActivationWeights:s,leakyreluAlpha:a});g=te({inputs:{x:$},backend:o,attrs:{shape:t.outShape}}),x.push(k),x.push(_),x.push($)}for(let S of x)o.disposeIntermediateTensorInfo(S);return g}function Vh({x:r,filter:e,convInfo:t,backend:o,bias:n=null,preluActivationWeights:s=null,leakyreluAlpha:a=0,activation:i=null}){let{filterWidth:p,filterHeight:u,inChannels:c,outWidth:l,outHeight:m,dataFormat:d}=t,f=d==="channelsLast",h=p*u*c,g=m*l,x=[t.batchSize,h,g],b=!0,C=!1,S=[];if(s!=null){let q=Bh(s.shape,f);q!=null&&(s=te({inputs:{x:s},backend:o,attrs:{shape:q}}),S.push(s))}if(n!=null){let q=Bh(n.shape,f);q!=null&&(n=te({inputs:{x:n},backend:o,attrs:{shape:q}}),S.push(n))}let k=te({inputs:{x:e},backend:o,attrs:{shape:[1,h,y.sizeFromShape(e.shape)/h]}});S.push(k);let _=new Lh(x,t),$=[r.shape,[t.padInfo.top,t.padInfo.left],[t.strideHeight,t.strideWidth],[t.dilationHeight,t.dilationWidth],[t.inChannels],[t.filterWidth*t.inChannels],[t.outWidth]],R=o.runWebGLProgram(_,[r],"float32",$),D=te({inputs:{x:R},backend:o,attrs:{shape:x}});S.push(R),S.push(D);let P=n!=null,O=s!=null,M=i==="leakyrelu",L=i?yi(i,!0):null,B=new zc(f?D.shape:k.shape,f?k.shape:D.shape,f?[t.batchSize,g,t.outChannels]:[t.batchSize,t.outChannels,g],b,C,P,L,O,M),z=f?[D,k]:[k,D];if(n&&z.push(n),O&&z.push(s),M){let q=o.makeTensorInfo([],"float32",y.createScalarValue(a,"float32"));z.push(q),S.push(q)}let U=o.runWebGLProgram(B,z,"float32"),j=te({inputs:{x:U},backend:o,attrs:{shape:t.outShape}});S.push(U);for(let q of S)o.disposeIntermediateTensorInfo(q);return j}function iJ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dataFormat:p,dilations:u,dimRoundingMode:c}=o,l=w.convertConv2DDataFormat(p),m=w.computeConv2DInfo(n.shape,s.shape,a,u,i,c,!1,l),d;if(m.filterHeight===1&&m.filterWidth===1&&m.dilationHeight===1&&m.dilationWidth===1&&m.strideHeight===1&&m.strideWidth===1&&(m.padInfo.type==="SAME"||m.padInfo.type==="VALID"))d=zh({x:n,filter:s,convInfo:m,backend:t});else if(m.strideWidth<=2&&l==="channelsLast"&&A().getBool("WEBGL_EXP_CONV")){let h=new Uc(m),g=[[m.padInfo.top,m.padInfo.left],[m.strideHeight,m.strideWidth],[m.dilationHeight,m.dilationWidth],[m.inHeight,m.inWidth]];d=t.runWebGLProgram(h,[n,s],"float32",g)}else if(A().getBool("WEBGL_CONV_IM2COL"))d=Vh({x:n,filter:s,convInfo:m,backend:t});else{let h=new Wc(m);d=t.runWebGLProgram(h,[n,s],"float32")}let f=te({inputs:{x:d},backend:t,attrs:{shape:m.outShape}});return t.disposeIntermediateTensorInfo(d),f}var UA={kernelName:tn,backendName:"webgl",kernelFunc:iJ};var Wh=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,o=e.strideWidth,n=e.padInfo.top,s=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${n};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${o} - ${s};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
${a?`float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);`:`float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);`}
}
}
}
setOutput(dotProd);
}
`}},Uh=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,o=e.filterWidth,n=e.strideHeight,s=e.strideWidth,a=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,p=o-1-e.padInfo.left,u=a?1:2,c=a?2:3,l=a?3:1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${p});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${l}];
ivec2 dyCorner = ivec2(coords[${u}], coords[${c}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${o}; wC++) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${o} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${a}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},Gh=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,o=e.strideHeight,n=e.strideWidth,s=e.padInfo.front,a=e.padInfo.top,i=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${s};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${o} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},Hh=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,o=e.filterHeight,n=e.filterWidth,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,p=t-1-e.padInfo.front,u=o-1-e.padInfo.top,c=n-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${p}, ${u}, ${c});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${s}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${o}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${o} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function uJ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,pad:i,dataFormat:p,dimRoundingMode:u,filterShape:c}=o,l=w.convertConv2DDataFormat(p),m=w.computeConv2DInfo(n.shape,c,a,1,i,u,!1,l),d=new Wh(m);return t.runWebGLProgram(d,[n,s],"float32")}var GA={kernelName:Fi,backendName:"webgl",kernelFunc:uJ};var Kh=class{constructor(e){this.variableNames=["dy","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"strides",type:"vec2"}],this.outputShape=e.inShape,this.enableShapeUniforms=ut(this.outputShape.length);let t=e.filterHeight,o=e.filterWidth,n=t-1-e.padInfo.top,s=o-1-e.padInfo.left;this.userCode=`
const ivec2 pads = ivec2(${n}, ${s});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = ivec2(coords[1], coords[2]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
vec4 result = vec4(0.);
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / strides[0];
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${o}; wC++) {
int wCPerm = ${o} - 1 - wC;
float dyC = float(dyCCorner + wC) / strides[1];
bool idyCVal = (dyC >= 0.0) && (dyC < ${e.outWidth}.0)
&& (fract(dyC) == 0.0);
int idyC = int(dyC);
float dyC2 = float(dyCCorner + wC + 1) / strides[1];
bool idyCVal2 = (dyC2 >= 0.0) && (dyC2 < ${e.outWidth}.0)
&& (fract(dyC2) == 0.0);
int idyC2 = int(dyC2);
if (idyCVal && idyCVal2) {
for (int d2 = 0; d2 < ${e.outChannels}; d2 += 2) {
vec4 wValue = getW(wRPerm, wCPerm, d1, d2);
vec4 dySample = getDy(batch, idyR, idyC, d2);
vec4 dySample2 = (idyC / 2 == idyC2 / 2) ?
dySample : getDy(batch, idyR, idyC2, d2);
vec2 dyValue = mod(float(idyC), 2.) == 0. ?
dySample.xy : dySample.zw;
result.xy += vec2(dot(dyValue, wValue.xy),
dot(dyValue, wValue.zw));
dyValue = mod(float(idyC2), 2.) == 0. ?
dySample2.xy : dySample2.zw;
result.zw += vec2(dot(dyValue, wValue.xy),
dot(dyValue, wValue.zw));
}
} else if (idyCVal) {
for (int d2 = 0; d2 < ${e.outChannels}; d2 += 2) {
vec4 wValue = getW(wRPerm, wCPerm, d1, d2);
vec4 dySample = getDy(batch, idyR, idyC, d2);
vec2 dyValue = mod(float(idyC), 2.) == 0. ?
dySample.xy : dySample.zw;
result.xy += vec2(dot(dyValue, wValue.xy),
dot(dyValue, wValue.zw));
}
} else if (idyCVal2) {
for (int d2 = 0; d2 < ${e.outChannels}; d2 += 2) {
vec4 wValue = getW(wRPerm, wCPerm, d1, d2);
vec4 dySample = getDy(batch, idyR, idyC2, d2);
vec2 dyValue = mod(float(idyC2), 2.) == 0. ?
dySample.xy : dySample.zw;
result.zw += vec2(dot(dyValue, wValue.xy),
dot(dyValue, wValue.zw));
}
}
}
}
setOutput(result);
}
`}};function pJ(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{inputShape:a,strides:i,pad:p,dataFormat:u,dimRoundingMode:c}=o,l=w.convertConv2DDataFormat(u),m=w.computeConv2DInfo(a,s.shape,i,1,p,c,!1,l);if(A().getBool("WEBGL_PACK_CONV2DTRANSPOSE")&&l==="channelsLast"){let d=[[m.strideHeight,m.strideWidth]],f=new Kh(m);return t.runWebGLProgram(f,[n,s],"float32",d)}else{let d=new Uh(m);return t.runWebGLProgram(d,[n,s],"float32")}}var HA={kernelName:rn,backendName:"webgl",kernelFunc:pJ};function cJ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:p}=o,u=w.computeConv3DInfo(n.shape,s.shape,a,p,i),c=new Mh(u);return t.runWebGLProgram(c,[n,s],"float32")}var KA={kernelName:on,backendName:"webgl",kernelFunc:cJ};function lJ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,pad:i,filterShape:p}=o,u=w.computeConv3DInfo(n.shape,p,a,1,i),c=new Gh(u);return t.runWebGLProgram(c,[n,s],"float32")}var qA={kernelName:ja,backendName:"webgl",kernelFunc:lJ};function mJ(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{pad:a,strides:i,inputShape:p}=o,u=w.computeConv3DInfo(p,s.shape,i,1,a),c=new Hh(u);return t.runWebGLProgram(c,[n,s],"float32")}var jA={kernelName:nn,backendName:"webgl",kernelFunc:mJ};var dJ=Fo+`
return cos(x);
`,fJ=`
vec4 result = cos(x);
bvec4 isNaN = isnan(x);
${Xr}
return result;
`,hJ=xe({opSnippet:dJ,packedOpSnippet:fJ}),XA={kernelName:sn,backendName:"webgl",kernelFunc:hJ};var gJ=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,xJ=xe({opSnippet:gJ}),YA={kernelName:an,backendName:"webgl",kernelFunc:xJ};var qh=class{constructor(e,t,o,n,s){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,i,p,u]=e,[c]=t,[l,m]=o;this.outputShape=[c,l,m,u];let d=n==="bilinear"?1:0,[f,h]=[`${i-1}.0`,`${p-1}.0`],[g,x,b]=l>1?[`${(i-1)/(l-1)}`,"(y2-y1) * height_ratio",`y1*${f} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${f}`],[C,S,k]=m>1?[`${(p-1)/(m-1)}`,"(x2-x1) * width_ratio",`x1*${h} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${h}`];this.userCode=`
const float height_ratio = float(${g});
const float width_ratio = float(${C});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${a}) {
return;
}
float height_scale = ${x};
float width_scale = ${S};
float in_y = ${b};
if( in_y < 0.0 || in_y > ${f} ) {
setOutput(float(${s}));
return;
}
float in_x = ${k};
if( in_x < 0.0 || in_x > ${h} ) {
setOutput(float(${s}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${d} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}};var yJ=r=>{let{inputs:e,backend:t,attrs:o}=r,{image:n,boxes:s,boxInd:a}=e,{cropSize:i,method:p,extrapolationValue:u}=o,c=new qh(n.shape,s.shape,i,p,u);return t.runWebGLProgram(c,[n,s,a],"float32")},QA={kernelName:cn,backendName:"webgl",kernelFunc:yJ};var vp;(function(r){r.Prod="*",r.Sum="+"})(vp||(vp={}));var om=class{constructor(e,t,o,n){this.op=e,this.outputShape=t,this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}];let s=this.outputShape.length,a=this.op===vp.Prod?"1.0":"0.0",i=o?a:`getX(${ZA(s,"coords",this.op)})`,p=this.outputShape[this.outputShape.length-1],u="",c="";o?(u=n?`end != ${p-1}`:"end != 0",c=n?"end + 1":"end - 1"):(u=n?`end + pow2 < ${p}`:"end >= pow2",c=n?"end + pow2":"end - pow2"),this.userCode=`
void main() {
${Re(s)} coords = getOutputCoords();
int end = ${JA(s,"coords",this.op)};
float val = ${i};
int pow2 = int(pow(2.0, index));
if (${u}) {
int idx = ${c};
${JA(s,"coords",this.op)} = idx;
val ${this.op}= getX(${ZA(s,"coords",this.op)});
}
setOutput(val);
}
`}};function ZA(r,e,t){if(r===1)return`${e}`;if(r===2)return`${e}.x, ${e}.y`;if(r===3)return`${e}.x, ${e}.y, ${e}.z`;if(r===4)return`${e}.x, ${e}.y, ${e}.z, ${e}.w`;throw new Error(`Cumulative ${t} for rank ${r} is not yet supported`)}function JA(r,e,t){if(r===1)return`${e}`;if(r===2)return`${e}.y`;if(r===3)return`${e}.z`;if(r===4)return`${e}.w`;throw new Error(`Cumulative ${t} for rank ${r} is not yet supported`)}function jh(r,e,t,o,n,s){let a=e.shape.length,i=w.getAxesPermutation([o],a),p=e;i!=null&&(p=bt({inputs:{x:e},backend:t,attrs:{perm:i}}));let u=w.getInnerMostAxes(1,a)[0];if(u!==a-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${e.shape.length-1} but got axis=${o}`);let c=p.shape[u],l=Dt({inputs:{x:p},backend:t});for(let m=0;m<=Math.ceil(Math.log2(c))-1;m++){let d=new om(r,p.shape,!1,s),f=[[m]],h=l;l=t.runWebGLProgram(d,[l],l.dtype,f),t.disposeIntermediateTensorInfo(h)}if(n){let m=new om(r,p.shape,n,s),d=l;l=t.runWebGLProgram(m,[l],l.dtype),t.disposeIntermediateTensorInfo(d)}if(i!=null){let m=w.getUndoAxesPermutation(i),d=bt({inputs:{x:l},backend:t,attrs:{perm:m}});return t.disposeIntermediateTensorInfo(l),t.disposeIntermediateTensorInfo(p),d}return l}function bJ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,exclusive:a,reverse:i}=o;return jh(vp.Prod,n,t,s,a,i)}var eF={kernelName:un,backendName:"webgl",kernelFunc:bJ};function CJ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,exclusive:a,reverse:i}=o;return jh(vp.Sum,n,t,s,a,i)}var tF={kernelName:pn,backendName:"webgl",kernelFunc:CJ};function wJ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,weights:s}=e,{size:a,binaryOutput:i}=o;if(n.shape.length===1){let p=t.readSync(n.dataId),u=t.readSync(s.dataId),c=ph(p,u,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,c)}else if(n.shape.length===2){let p=t.bufferSync(n),u=t.bufferSync(s),c=BR(p,u,a,i);return t.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${n.shape.length}.`)}var rF={kernelName:ra,backendName:"webgl",kernelFunc:wJ};var Xh=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=o,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function SJ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockSize:s,dataFormat:a}=o,i=n.shape[0],p=a==="NHWC"?n.shape[1]:n.shape[2],u=a==="NHWC"?n.shape[2]:n.shape[3],c=a==="NHWC"?n.shape[3]:n.shape[1],l=p*s,m=u*s,d=c/(s*s),f=a==="NHWC"?[i,l,m,d]:[i,d,l,m],h=new Xh(f,s,a);return t.runWebGLProgram(h,[n],n.dtype)}var oF={kernelName:ln,backendName:"webgl",kernelFunc:SJ};var Gc=class{constructor(e,t=!1,o=null,n=!1,s=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=ut(this.outputShape.length);let a=e.filterHeight,i=e.filterWidth,p=e.outChannels/e.inChannels,u="",c="";o&&(n?u=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${o}
}`:s?u=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${o}
}`:u=`
float activation(float x) {
${o}
}
`,c="result = activation(result);");let l=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${u}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${p};
int q = d2 - d1 * ${p};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${a}; wR++) {
int xR = xRCorner + wR * dilations[0];
if (xR < 0 || xR >= inDims[0]) {
continue;
}
for (int wC = 0; wC < ${i}; wC++) {
int xC = xCCorner + wC * dilations[1];
if (xC < 0 || xC >= inDims[1]) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${l}
${c}
setOutput(result);
}
`}};var Hc=class{constructor(e,t=!1,o=null,n=!1,s=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=ut(this.outputShape.length);let a=e.outChannels/e.inChannels,i=e.padInfo.left,p=e.strideWidth,u=e.dilationWidth,c=e.filterHeight,l=e.filterWidth,m=l,d=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let x=0;x<l;x++)d+=`
vec4 xTexelC${x*2};
int xTexelC${x*2}Ready;
vec4 xTexelC${x*2+1};
int xTexelC${x*2+1}Ready;
vec4 xC${x};`;d+=`
for (int r = 0; r < ${c}; r++) {
`;for(let x=0;x<l;x++)d+=`
xTexelC${x*2} = vec4(0.0);
xTexelC${x*2}Ready = 0;
xTexelC${x*2+1} = vec4(0.0);
xTexelC${x*2+1}Ready = 0;
xC${x} = vec4(0.0);`;d+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let x=0;x<(m+1)/2;x++){let b=x*2;if(d+=`
xC = xCCorner + ${b*u};
`,p===1){if(b<l&&(i%2===1?(d+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
`,u===1&&b>0?d+=`
xC${b} = vec4(xTexelC${b-2}.zw, xTexelC${b}.xy);
`:d+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${b} = vec4(previous.zw, xTexelC${b}.xy);
} else {
xC${b} = vec4(0.0, 0.0, xTexelC${b}.xy);
}
`):d+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
xC${b} = xTexelC${b};
`,b+1<l)){let C=i%2===0?y.nearestLargerEven(u):u;u%2===0&&i%2===1||u%2!==0&&i%2!==1?(d+=`
xCOffset = xC + imod(pads[1], 2) + ${C};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.0);
}
xTexelC${b+1}Ready = 1;
}
`,u>1?d+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
xC${b+1} = vec4(previous.zw, xTexelC${b+1}.xy);
} else {
xC${b+1} = vec4(0.0, 0.0, xTexelC${b+1}.xy);
}
`:d+=`
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.xy);
`):C===1?d+=`
xC${b+1} = xTexelC${b};
`:d+=`
xCOffset = xC + ${C};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.0);
}
xTexelC${b+1}Ready = 1;
}
xC${b+1} = xTexelC${b+1};
`}}else b<l&&(i%2===1?(d+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.0);
}
xTexelC${b+1}Ready = 1;
}
xC${b} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
`,b+1<l&&(d+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${b+1} = vec4(xTexelC${b+1}.xy, final.xy);
`)):(d+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.);
}
xTexelC${b+1}Ready = 1;
}
xC${b} = vec4(
xTexelC${b}.xy, xTexelC${b+1}.xy);
`,b+1<l&&(d+=`
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
`)));b<l&&(d+=`
wTexel = getW(r, ${b}, d1, q);
dotProd += xC${b} * vec4(wTexel.xz, wTexel.xz);
`,b+1<l&&(d+=`
wTexel = getW(r, ${b+1}, d1, q);
dotProd += xC${b+1} * vec4(wTexel.xz, wTexel.xz);
`))}d+=`
}
`,d+=`
}
`;let f="",h="";o&&(n?f=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${o}
}`:s?f=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${o}
}`:f=`vec4 activation(vec4 x) {
${o}
}`,h="result = activation(result);");let g=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${f}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${a};
int q = d2 - d1 * ${a};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${d}
vec4 result = dotProd - vec4(0.000000000000001);
${g}
${h}
setOutput(result);
}
`}};function IJ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:p,dimRoundingMode:u}=o,c=p;c==null&&(c=[1,1]),y.assert(w.eitherStridesOrDilationsAreOne(a,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${c}'`);let l=w.computeConv2DInfo(n.shape,s.shape,a,c,i,u,!0),m;A().getBool("WEBGL_PACK_DEPTHWISECONV")&&l.strideWidth<=2&&l.outChannels/l.inChannels===1?m=new Hc(l):m=new Gc(l);let d=[[l.padInfo.top,l.padInfo.left],[l.strideHeight,l.strideWidth],[l.dilationHeight,l.dilationWidth],[l.inHeight,l.inWidth]];return t.runWebGLProgram(m,[n,s],"float32",d)}var nF={kernelName:mn,backendName:"webgl",kernelFunc:IJ};var Yh=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,o=e.strideWidth,n=e.padInfo.top,s=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${a} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${n};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${o} - ${s};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},Qh=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,o=e.filterWidth,n=e.strideHeight,s=e.strideWidth,a=t-1-e.padInfo.top,i=o-1-e.padInfo.left,p=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${a}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${o}; wC++) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${o} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${p}; dm++) {
int d2 = d1 * ${p} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function vJ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,dilations:i,pad:p,dimRoundingMode:u,filterShape:c}=o,l=w.computeConv2DInfo(n.shape,c,a,i,p,u,!0),m=new Yh(l);return t.runWebGLProgram(m,[n,s],"float32")}var sF={kernelName:Pi,backendName:"webgl",kernelFunc:vJ};function kJ(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{strides:a,dilations:i,pad:p,dimRoundingMode:u,inputShape:c}=o,l=w.computeConv2DInfo(c,s.shape,a,i,p,u,!0),m=new Qh(l);return t.runWebGLProgram(m,[n,s],"float32")}var aF={kernelName:Oi,backendName:"webgl",kernelFunc:kJ};var Zh=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function NJ(r){let{inputs:e,backend:t}=r,{x:o}=e,n=[...o.shape,...o.shape],s=y.sizeFromShape(o.shape),a=te({inputs:{x:o},backend:t,attrs:{shape:[s]}}),i=new Zh(s),p=t.runWebGLProgram(i,[a],a.dtype),u=te({inputs:{x:p},backend:t,attrs:{shape:n}});return t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(p),u}var iF={kernelName:oa,backendName:"webgl",kernelFunc:NJ};var Jh=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:o,padInfo:n,strideHeight:s,strideWidth:a,filterHeight:i,filterWidth:p,dilationHeight:u,dilationWidth:c}=e,{top:l,left:m}=n;this.userCode=`
const ivec2 strides = ivec2(${s}, ${a});
const ivec2 pads = ivec2(${l}, ${m});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${i}; h++) {
int hIn = hBeg + h * ${u};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${p}; w++) {
int wIn = wBeg + w * ${c};
if (wIn >= 0 && wIn < ${o}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function TJ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:p}=o,u=w.computeDilation2DInfo(n.shape,s.shape,a,i,"NHWC",p),c,l=new Jh(u);c=t.runWebGLProgram(l,[n,s],"float32");let m=te({inputs:{x:c},backend:t,attrs:{shape:u.outShape}});return t.disposeIntermediateTensorInfo(c),m}var uF={kernelName:dn,backendName:"webgl",kernelFunc:TJ};function _J(r){let{inputs:e,backend:t,attrs:o}=r,{equation:n}=o,s=e,{allDims:a,summedDims:i,idDims:p}=w.decodeEinsumEquation(n,s.length);w.checkEinsumDimSizes(a.length,p,s);let{path:u,steps:c}=w.getEinsumComputePath(i,p),l=c.length,m=null,d=a.length,f=[];for(let h=0;h<l;++h){for(let g of c[h]){let{permutationIndices:x,expandDims:b}=w.getEinsumPermutation(d,p[g]),C;w.isIdentityPermutation(x)?C=s[g]:(C=bt({inputs:{x:s[g]},backend:t,attrs:{perm:x}}),f.push(C));let S=C.shape.slice();for(let k=0;k<b.length;++k)S.splice(b[k],0,1);y.arraysEqual(C.shape,S)||(C=te({inputs:{x:C},backend:t,attrs:{shape:S}}),f.push(C)),m===null?m=C:(m=tm({inputs:{a:C,b:m},backend:t}),f.push(m))}h<l-1&&(u[h]>=0&&(m=wp({inputs:{x:m},backend:t,attrs:{axis:u[h]-(a.length-d),keepDims:!1}}),f.push(m)),d--)}for(let h of f)h!==m&&t.disposeIntermediateTensorInfo(h);return m}var pF={kernelName:Bi,backendName:"webgl",kernelFunc:_J};var EJ="return (x >= 0.0) ? x : (exp(x) - 1.0);",$J=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,RJ=xe({opSnippet:EJ,packedOpSnippet:$J}),cF={kernelName:hn,backendName:"webgl",kernelFunc:RJ};var DJ="return (b >= 0.0) ? a : a * (b + 1.0);",AJ=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,FJ=r=>{let{inputs:e,backend:t}=r,{dy:o,y:n}=e,s=A().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new jr(AJ,o.shape,n.shape):new Pr(DJ,o.shape,n.shape);return t.runWebGLProgram(s,[o,n],o.dtype)},lF={kernelName:Xa,backendName:"webgl",kernelFunc:FJ};var PJ=`
return vec4(equal(a, b));
`,OJ="return float(a == b);",MJ=nt({opSnippet:OJ,packedOpSnippet:PJ,dtype:"bool",cpuKernelImpl:GR}),mF={kernelName:xn,backendName:"webgl",kernelFunc:MJ};var LJ=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${w.ERF_P};
float a1 = ${w.ERF_A1};
float a2 = ${w.ERF_A2};
float a3 = ${w.ERF_A3};
float a4 = ${w.ERF_A4};
float a5 = ${w.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,BJ=xe({opSnippet:LJ}),dF={kernelName:gn,backendName:"webgl",kernelFunc:BJ};var zJ=Fo+`
return exp(x);
`,VJ=`
vec4 result = exp(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,kv=xe({opSnippet:zJ,packedOpSnippet:VJ,cpuKernelImpl:HR,dtype:"float32"}),fF={kernelName:yn,backendName:"webgl",kernelFunc:kv};function eg(r){let{inputs:e,attrs:t,backend:o}=r,{dim:n}=t,{input:s}=e,a=s.shape.length,i=s.shape.slice(),p=n;return n<0&&(y.assert(-(a+1)<=n,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),p=a+n+1),i.splice(p,0,1),te({inputs:{x:s},backend:o,attrs:{shape:i}})}var hF={kernelName:na,backendName:"webgl",kernelFunc:eg};var gF="return exp(x) - 1.0;",WJ=xe({opSnippet:gF,packedOpSnippet:gF,cpuKernelImpl:KR}),xF={kernelName:bn,backendName:"webgl",kernelFunc:WJ};var nm=class{constructor(e,t,o){this.variableNames=["real","imag"];let n=t[1];this.outputShape=t;let s=o?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=o?`${n}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${s};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${i}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${n});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${n}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${a};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function tg(r,e,t){let o=t.texData.get(r.dataId),n=y.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],a=n/s,i=te({inputs:{x:r},backend:t,attrs:{shape:[a,s]}}),p=i.shape,u=new nm("real",p,e),c=new nm("imag",p,e),l=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:p},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:p}],m=t.runWebGLProgram(u,l,"float32"),d=t.runWebGLProgram(c,l,"float32"),f=Or({inputs:{real:m,imag:d},backend:t});t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(d);let h=te({inputs:{x:f},backend:t,attrs:{shape:r.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(f),h}function UJ(r){let{inputs:e,backend:t}=r,{input:o}=e;return tg(o,!1,t)}var yF={kernelName:zi,backendName:"webgl",kernelFunc:UJ};var rg=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}};function Ci(r){let{backend:e,attrs:t}=r,{shape:o,value:n}=t,{dtype:s}=t;if(s=s||y.inferDtype(n),s==="string"){let a=y.getArrayFromDType(s,y.sizeFromShape(o));return a.fill(n),e.makeTensorInfo(o,s,a)}else{let a=new rg(o,n),i=[[n]];return e.runWebGLProgram(a,[],s,i)}}var bF={kernelName:sa,backendName:"webgl",kernelFunc:Ci};var og=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x - 1;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}};var CF={kernelName:Cn,backendName:"webgl",kernelFunc:({inputs:r,backend:e})=>{let{image:t}=r,o=e,n=new og(t.shape);return o.runWebGLProgram(n,[t],t.dtype)}};var wF="return floor(x);",GJ=xe({opSnippet:wF,packedOpSnippet:wF,cpuKernelImpl:qR}),SF={kernelName:wn,backendName:"webgl",kernelFunc:GJ};var HJ=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,KJ=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,qJ=nt({opSnippet:HJ,packedOpSnippet:KJ,dtype:"int32"}),IF={kernelName:Sn,backendName:"webgl",kernelFunc:qJ};var ng=class{constructor(e){this.variableNames=["A"];let t=It(),[o,n]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${n}.0, ${o}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}};var sg=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=It(),[o,n]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${n}.0, ${o}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}};var vF={kernelName:Du,backendName:"webgl",kernelFunc:jJ},Kc,Nv=A().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");function jJ(r){let{inputs:e,backend:t,attrs:o}=r,{pixels:n}=e,{numChannels:s}=o,a=typeof HTMLVideoElement!="undefined"&&n instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&n instanceof HTMLImageElement,[p,u]=a?[n.videoWidth,n.videoHeight]:[n.width,n.height],c=[u,p],l=[u,p,s];if(i||a){let h=A().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");(Kc==null||h!==Nv)&&(Nv=h,Kc=document.createElement("canvas").getContext("2d",{willReadFrequently:Nv})),Kc.canvas.width=p,Kc.canvas.height=u,Kc.drawImage(n,0,0,p,u),n=Kc.canvas}let m=t.makeTensorInfo(c,"int32");t.texData.get(m.dataId).usage=mr.PIXELS,t.gpgpu.uploadPixelDataToTexture(t.getTexture(m.dataId),n);let d=A().getBool("WEBGL_PACK")?new sg(l):new ng(l),f=t.runWebGLProgram(d,[m],"int32");return t.disposeData(m.dataId),f}function XJ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:p,pad:u,dataFormat:c,dilations:l,dimRoundingMode:m,activation:d,leakyreluAlpha:f}=o,h=w.convertConv2DDataFormat(c),g=w.computeConv2DInfo(n.shape,s.shape,p,l,u,m,!1,h),x,b=[],C=a!=null,S=i!=null,k=d==="leakyrelu",_=()=>{let R=[n,s],D=(P,O)=>{if(O==="NCHW"&&P.shape.length===1&&P.shape[0]!==1){let M=te({inputs:{x:P},backend:t,attrs:{shape:[P.shape[0],1,1]}});return b.push(M),M}return P};if(C&&R.push(D(a,c)),S&&R.push(D(i,c)),k){let P=t.makeTensorInfo([],"float32",y.createScalarValue(f,"float32"));R.push(P),b.push(P)}return R};if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))x=zh({x:n,filter:s,convInfo:g,backend:t,bias:a,activation:d,preluActivationWeights:i,leakyreluAlpha:f});else if(g.strideWidth<=2&&h==="channelsLast"&&A().getBool("WEBGL_EXP_CONV")){let R=d?yi(d,!0):null,D=new Uc(g,C,R,S,k),P=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],O=_();x=t.runWebGLProgram(D,O,"float32",P)}else if(A().getBool("WEBGL_CONV_IM2COL"))x=Vh({x:n,filter:s,convInfo:g,backend:t,bias:a,activation:d,preluActivationWeights:i,leakyreluAlpha:f});else{let R=d?yi(d,!1):null,D=new Wc(g,C,R,S,k),P=_();x=t.runWebGLProgram(D,P,"float32")}let $=te({inputs:{x},backend:t,attrs:{shape:g.outShape}});return b.push(x),b.forEach(R=>t.disposeIntermediateTensorInfo(R)),$}var kF={kernelName:Io,backendName:"webgl",kernelFunc:XJ};function YJ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:p,pad:u,dilations:c,dimRoundingMode:l,activation:m,leakyreluAlpha:d}=o,f=[],h=c;h==null&&(h=[1,1]),y.assert(w.eitherStridesOrDilationsAreOne(p,h),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${p} and dilations '${h}'`);let g=w.computeConv2DInfo(n.shape,s.shape,p,h,u,l,!0),x=A().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,b=m?yi(m,x):null,C=[n,s],S=a!=null,k=i!=null,_=m==="leakyrelu";if(S&&C.push(a),k&&C.push(i),_){let P=t.makeTensorInfo([],"float32",y.createScalarValue(d,"float32"));C.push(P),f.push(P)}let $;x?$=new Hc(g,S,b,k,_):$=new Gc(g,S,b,k,_);let R=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],D=t.runWebGLProgram($,C,"float32",R);return f.forEach(P=>t.disposeIntermediateTensorInfo(P)),D}var NF={kernelName:vo,backendName:"webgl",kernelFunc:YJ};var ag=class{constructor(e,t,o,n){this.sliceDim=e,this.strides=t,this.paramsShape=n,this.variableNames=["x","indices"],this.outputShape=o;let s=Re(o.length),a=`
int index;`;for(let i=0;i<this.sliceDim;i++)a+=`
index = round(getIndices(coords[0], ${i}));
out_of_bounds = out_of_bounds || index < 0;
out_of_bounds = out_of_bounds || index >= ${this.paramsShape[i]};
flattenIndex += index * ${this.strides[i]};`;this.userCode=`
void main() {
${s} coords = getOutputCoords();
int flattenIndex = 0;
bool out_of_bounds = false;
${a}
setOutput(out_of_bounds ? 0.0 : getX(flattenIndex, coords[1]));
}
`}};function QJ(r){let{inputs:e,backend:t}=r,{params:o,indices:n}=e,s=n.shape,a=s[s.length-1],i=y.sizeFromShape(o.shape),[p,u,c,l]=w.prepareAndValidate(o,n),m=te({inputs:{x:n},backend:t,attrs:{shape:[u,a]}}),d=te({inputs:{x:o},backend:t,attrs:{shape:[y.sizeFromShape(o.shape)/c,c]}});if(t.shouldExecuteOnCPU([o,n])||o.dtype==="string"){let x=t.readSync(n.dataId),b=t.bufferSync(o),C=jR(x,b,o.dtype,u,a,c,l,o.shape,i);return t.makeTensorInfo(p,o.dtype,C.values)}let f=new ag(a,l,[u,c],o.shape),h=t.runWebGLProgram(f,[d,m],d.dtype),g=te({inputs:{x:h},backend:t,attrs:{shape:p}});return t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(h),g}var TF={kernelName:vn,backendName:"webgl",kernelFunc:QJ};var ig=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let o=Re(this.rank),n=ZJ(e,2);this.userCode=`
void main() {
${o} resRC = getOutputCoords();
int index = int(getIndices(resRC.x, resRC.z));
float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0;
setOutput(inBounds * getA(${n}));
}
`}};function ZJ(r,e){let t=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[];for(let n=0;n<r.length;n++)n===2?o.push("index"):o.push(`${t[n]}`);return o.join()}function Tv(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,indices:s}=e,{axis:a,batchDims:i}=o,p=y.parseAxisParam(a,n.shape)[0];if(A().get("DEBUG")){let b=t.readSync(s.dataId),C=n.shape[p];for(let S=0;S<b.length;++S){let k=b[S];y.assert(k<=C-1&&k>=0,()=>`GatherV2: the index value ${k} is not in [0, ${C-1}]`)}}let u=w.segment_util.collectGatherOpShapeInfo(n,s,p,i),c=y.sizeFromShape(s.shape),l=[],m=te({inputs:{x:n},backend:t,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),d=te({inputs:{x:s},backend:t,attrs:{shape:[u.batchSize,c/u.batchSize]}});l.push(m),l.push(d);let f=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(t.shouldExecuteOnCPU([n,s])||n.dtype==="string"){let b=t.bufferSync(d),C=t.bufferSync(m),S=XR(C,b,f);return l.forEach(k=>t.disposeIntermediateTensorInfo(k)),t.makeTensorInfo(u.outputShape,S.dtype,S.values)}let h=new ig(m.shape,f),g=t.runWebGLProgram(h,[m,d],m.dtype);l.push(g);let x=te({inputs:{x:g},backend:t,attrs:{shape:u.outputShape}});return l.forEach(b=>t.disposeIntermediateTensorInfo(b)),x}var _F={kernelName:aa,backendName:"webgl",kernelFunc:Tv};var JJ="return float(a > b);",eee=`
return vec4(greaterThan(a, b));
`,tee=nt({opSnippet:JJ,packedOpSnippet:eee,cpuKernelImpl:YR,dtype:"bool"}),EF={kernelName:kn,backendName:"webgl",kernelFunc:tee};var ree="return float(a >= b);",oee=`
return vec4(greaterThanEqual(a, b));
`,nee=nt({opSnippet:ree,packedOpSnippet:oee,dtype:"bool",cpuKernelImpl:QR}),$F={kernelName:Nn,backendName:"webgl",kernelFunc:nee};function see(r){let{inputs:e,backend:t}=r,{input:o}=e;return tg(o,!0,t)}var RF={kernelName:Vi,backendName:"webgl",kernelFunc:see};var aee="return float(!isnan(x) && !isinf(x));",iee=xe({opSnippet:aee,dtype:"bool"}),DF={kernelName:Tn,backendName:"webgl",kernelFunc:iee};var uee="return float(isinf(x));",pee=xe({opSnippet:uee,dtype:"bool"}),AF={kernelName:_n,backendName:"webgl",kernelFunc:pee};var cee="return float(isnan(x));",lee=xe({opSnippet:cee,dtype:"bool"}),FF={kernelName:En,backendName:"webgl",kernelFunc:lee};var mee="return float(a < b);",dee=`
return vec4(lessThan(a, b));
`,fee=nt({opSnippet:mee,packedOpSnippet:dee,cpuKernelImpl:ZR,dtype:"bool"}),PF={kernelName:Rn,backendName:"webgl",kernelFunc:fee};var hee="return float(a <= b);",gee=`
return vec4(lessThanEqual(a, b));
`,xee=nt({opSnippet:hee,packedOpSnippet:gee,cpuKernelImpl:JR,dtype:"bool"}),OF={kernelName:Dn,backendName:"webgl",kernelFunc:xee};function yee(r){let{backend:e,attrs:t}=r,{start:o,stop:n,num:s}=t,a=eD(o,n,s);return e.makeTensorInfo([a.length],"float32",a)}var MF={kernelName:An,backendName:"webgl",kernelFunc:yee};var bee=Fo+`
return x < 0.0 ? 0./0. : log(x);
`,Cee=`
vec4 result = log(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
return result;
`,wee=xe({opSnippet:bee,packedOpSnippet:Cee,cpuKernelImpl:tD}),LF={kernelName:Fn,backendName:"webgl",kernelFunc:wee};var See=Fo+`
return log(1.0 + x);
`,Iee=xe({opSnippet:See}),BF={kernelName:Pn,backendName:"webgl",kernelFunc:Iee};var vee="return float(a >= 1.0 && b >= 1.0);",kee=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,Nee=nt({opSnippet:vee,packedOpSnippet:kee,dtype:"bool"}),zF={kernelName:On,backendName:"webgl",kernelFunc:Nee};var Tee="return float(!(x >= 1.0));",_ee=xe({opSnippet:Tee}),VF={kernelName:Mn,backendName:"webgl",kernelFunc:_ee};var Eee="return float(a >= 1.0 || b >= 1.0);",$ee=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,Ree=nt({opSnippet:Eee,packedOpSnippet:$ee,dtype:"bool"}),WF={kernelName:Ln,backendName:"webgl",kernelFunc:Ree};var ug=class{constructor(e,t,o,n,s){this.variableNames=["x"],this.outputShape=[];let a=t,i=e[3]-1;this.outputShape=e;let p,u=`float(${o}) + float(${n}) * sum`;s===.5?p=`inversesqrt(${u})`:s===1?p=`1.0/(${u})`:p=`exp(log(${u}) * float(-${s}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${a}; j <= ${a}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${i}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${p};
setOutput(val);
}
`}};var pg=class{constructor(e,t,o,n,s){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,i=e[3]-1;this.outputShape=e;let p,u=`float(${o}) + float(${n}) * sum`;s===.5?p=`inversesqrt(${u})`:s===1?p=`1.0/(${u})`:p=`exp(log(${u}) * float(-${s}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${a};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${a}; j <= ${a}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${p};
setOutput(result);
}
`}};var Dee=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{depthRadius:s,bias:a,alpha:i,beta:p}=o,u=A().getBool("WEBGL_PACK_NORMALIZATION")?new pg(n.shape,s,a,i,p):new ug(n.shape,s,a,i,p);return t.runWebGLProgram(u,[n],n.dtype)},UF={kernelName:Bn,backendName:"webgl",kernelFunc:Dee};var cg=class{constructor(e,t,o,n,s){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=o,this.alpha=n,this.beta=s,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${n}) * norm + float(${o});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${n})
* float(${s})
* getInputImage(b, r, c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${s});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}};var Aee=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n,y:s,dy:a}=e,{depthRadius:i,bias:p,alpha:u,beta:c}=o,l=new cg(n.shape,i,p,u,c);return t.runWebGLProgram(l,[n,s,a],n.dtype)},GF={kernelName:Ya,backendName:"webgl",kernelFunc:Aee};function HF(r,e,t,o){let n=y.sizeFromShape(e),a=y.sizeFromShape(r.shape)/n,i=te({inputs:{x:r},attrs:{shape:[a,n]},backend:o}),p=Yr(i,r.dtype,"max",o),u=te({inputs:{x:p},attrs:{shape:t},backend:o});return o.disposeIntermediateTensorInfo(i),o.disposeIntermediateTensorInfo(p),u}function _v(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{reductionIndices:s,keepDims:a}=o,i=n.shape.length,p=y.parseAxisParam(s,n.shape),u=p,c=w.getAxesPermutation(u,i),l=c!=null,m=t.shouldExecuteOnCPU([n]),d=n;if(l){if(m){let C=t.texData.get(d.dataId).values,S=new Array(i);for(let $=0;$<S.length;$++)S[$]=n.shape[c[$]];let k=Cp(C,n.shape,n.dtype,c,S);d=t.makeTensorInfo(S,n.dtype);let _=t.texData.get(d.dataId);_.values=k}else d=yu(n,c,t);u=w.getInnerMostAxes(u.length,i)}w.assertAxesAreInnerMostDims("max",u,i);let[f,h]=w.computeOutAndReduceShapes(d.shape,u),g=f;a&&(g=w.expandShapeToKeepDim(f,p));let x;if(m){let C=t.texData.get(d.dataId).values,S=rD(C,y.sizeFromShape(h),g,n.dtype);x=t.makeTensorInfo(g,n.dtype);let k=t.texData.get(x.dataId);k.values=S}else x=HF(d,h,g,t);return l&&t.disposeIntermediateTensorInfo(d),x}var KF={kernelName:zn,backendName:"webgl",kernelFunc:_v};var Fee=Bc+`
return max(a, b);
`,Pee=`
vec4 result = vec4(max(a, b));
bvec4 isNaNA = isnan(a);
bvec4 isNaNB = isnan(b);
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
`+Xr+`
return result;
`,Oee=nt({opSnippet:Fee,packedOpSnippet:Pee,cpuKernelImpl:oD}),qF={kernelName:Vn,backendName:"webgl",kernelFunc:Oee};function Mee(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e;Vs(n,"maxPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:p}=o,u=1;y.assert(w.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=w.computePool2DInfo(n.shape,s,a,u,i,p);if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))return Dt({inputs:{x:n},backend:t});let l=new Us(c,"max",!1);return t.runWebGLProgram(l,[n],n.dtype)}var jF={kernelName:Wn,backendName:"webgl",kernelFunc:Mee};function Lee(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dataFormat:p,dimRoundingMode:u}=o,c=[1,1,1],l=w.computePool3DInfo(n.shape,s,a,c,i,u,p),m=new bu(l,"max",!1);return t.runWebGLProgram(m,[n],n.dtype)}var XF={kernelName:ia,backendName:"webgl",kernelFunc:Lee};var lg=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,o=e.strideWidth,n=e.dilationHeight,s=e.effectiveFilterHeight,a=e.effectiveFilterWidth,i=s-1-e.padInfo.top,p=a-1-e.padInfo.left,u=s*a-1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${p});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${s};
wR += ${n}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${a}; wC++) {
float dyC = float(dyCCorner + wC) / ${o}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${u} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${a} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},mg=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,o=e.strideHeight,n=e.strideWidth,s=e.dilationDepth,a=e.dilationHeight,i=e.dilationWidth,p=e.effectiveFilterDepth,u=e.effectiveFilterHeight,c=e.effectiveFilterWidth,l=p-1-e.padInfo.front,m=u-1-e.padInfo.top,d=c-1-e.padInfo.left,f=p*u*c-1;this.userCode=`
const ivec3 pads = ivec3(${l}, ${m}, ${d});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${p};
wD += ${s}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${u};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${o}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${c};
wC += ${i}) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${f} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${u} * ${c} +
wR * ${c} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function Bee(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s,{filterSize:i,strides:p,pad:u,dimRoundingMode:c}=o,l=[1,1,1],m=w.computePool3DInfo(a.shape,i,p,l,u,c),d=new bu(m,"max",!0),f=t.runWebGLProgram(d,[a],a.dtype),h=new mg(m),g=t.runWebGLProgram(h,[n,f],a.dtype);return t.disposeIntermediateTensorInfo(f),g}var YF={kernelName:Gi,backendName:"webgl",kernelFunc:Bee};function zee(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s,output:a}=e,i=s;Vs([s,a],"maxPoolGrad");let{filterSize:p,strides:u,pad:c,dimRoundingMode:l}=o,m=w.computePool2DInfo(i.shape,p,u,1,c,l),d=!0,f=new Us(m,"max",d),h=t.runWebGLProgram(f,[i],i.dtype),g=new lg(m),x=t.runWebGLProgram(g,[n,h],i.dtype);return t.disposeIntermediateTensorInfo(h),x}var QF={kernelName:Ui,backendName:"webgl",kernelFunc:zee};function ZF(r,e,t,o){let n=new Us(t,"max",!1),s=o.runWebGLProgram(n,[r],"float32");n=new Us(t,"max",!0,!0,e);let a=o.runWebGLProgram(n,[r],"float32");return[s,a]}var JF={kernelName:ua,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:o}=r,{filterSize:n,strides:s,pad:a,includeBatchInIndex:i}=e,p=t;y.assert(o.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.shape.length}.`);let u=[1,1];y.assert(w.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let c=w.computePool2DInfo(o.shape,n,s,u,a),[l,m]=ZF(o,i,c,p);return[l,m]}};function e3(r,e,t,o){let n=y.sizeFromShape(e),a=y.sizeFromShape(r.shape)/n,i=te({inputs:{x:r},attrs:{shape:[a,n]},backend:o}),p=Yr(i,"float32","mean",o),u=te({inputs:{x:p},attrs:{shape:t},backend:o});return o.disposeIntermediateTensorInfo(i),o.disposeIntermediateTensorInfo(p),u}var t3={kernelName:Un,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:o}=r,{keepDims:n,axis:s}=e,a=t,i=o.shape.length,p=y.parseAxisParam(s,o.shape),u=p,c=w.getAxesPermutation(u,i),l=c!=null,m=a.shouldExecuteOnCPU([o]),d=[],f=o;if(l){if(m){let S=a.texData.get(f.dataId).values,k=new Array(i);for(let R=0;R<k.length;R++)k[R]=o.shape[c[R]];let _=Cp(S,o.shape,o.dtype,c,k);f=a.makeTensorInfo(k,o.dtype);let $=a.texData.get(f.dataId);$.values=_}else f=yu(o,c,a);d.push(f),u=w.getInnerMostAxes(u.length,i)}w.assertAxesAreInnerMostDims("sum",u,i);let[h,g]=w.computeOutAndReduceShapes(f.shape,u),x=h;n&&(x=w.expandShapeToKeepDim(h,p));let b=e3(f,g,x,a);for(let C of d)a.disposeIntermediateTensorInfo(C);return b}};function Vee(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=n.shape.length,p=y.parseAxisParam(s,n.shape),u=p,c=w.getAxesPermutation(u,i),l=n;c!=null&&(l=bt({inputs:{x:n},backend:t,attrs:{perm:c}}),u=w.getInnerMostAxes(u.length,n.shape.length)),w.assertAxesAreInnerMostDims("min",u,i);let[m,d]=w.computeOutAndReduceShapes(l.shape,u),f=y.sizeFromShape(d),h=te({inputs:{x:l},backend:t,attrs:{shape:[-1,f]}}),g=Yr(h,h.dtype,"min",t),x;if(a){let b=w.expandShapeToKeepDim(m,p);x=te({inputs:{x:g},backend:t,attrs:{shape:b}})}else x=te({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(l),x}var r3={kernelName:Gn,backendName:"webgl",kernelFunc:Vee};var Wee=Bc+`
return min(a, b);
`,Uee=`
vec4 result = vec4(min(a, b));
bvec4 isNaNA = isnan(a);
bvec4 isNaNB = isnan(b);
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
`+Xr+`
return result;
`,Gee=nt({opSnippet:Wee,packedOpSnippet:Uee,cpuKernelImpl:nD}),o3={kernelName:Hn,backendName:"webgl",kernelFunc:Gee};var dg=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=t.map((c,l)=>c[0]+e[l]+c[1]);let n=e.length,s=Re(n),a=t.map(c=>c[0]).join(","),i=t.map((c,l)=>c[0]+e[l]).join(","),p=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,n),u=o==="reflect"?0:1;if(n===1){this.userCode=`
int start = ${a};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${u};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${u};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${s} start = ${s}(${a});
${s} end = ${s}(${i});
void main() {
${s} outC = getOutputCoords();
for (int i = 0; i < ${n}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${u};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${u};
}
}
${s} coords = outC - start;
setOutput(getX(${p}));
}
`}};var fg=class{constructor(e,t,o){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((f,h)=>f[0]+e[h]+f[1]);let n=e.length,s=Re(n),a=t.map(f=>f[0]).join(","),i=t.map((f,h)=>f[0]+e[h]).join(","),p=Rt("rc",n),u=Rt("source",n),c=`${p[n-1]} < ${this.outputShape[n-1]}`,l=n===1?"source":`vec2(${u.slice(-2).join()})`,m=o==="reflect"?0:1,d="";if(n===1){let f=`
${s} source = rc;
if (source < start) {
source = start * 2 - source - ${m};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${m};
}
source -= start;
`;d=`
${s} rc = outputLoc;
${f}
result[0] = getChannel(getX(${u.join()}), ${l});
${p[n-1]} += 1;
if(${c}) {
${f}
result[1] = getChannel(getX(${u.join()}), ${l});
}
`}else{let f=`
${s} source = rc;
${s} lt = ${s}(lessThan(source, start));
${s} gte = ${s}(greaterThanEqual(source, end));
${s} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${m}) +
gte * ((end - 1) * 2 - source + ${m});
source -= start;
`;d=`
${s} rc = outputLoc;
${f}
result[0] = getChannel(getX(${u.join()}), ${l});
${p[n-1]} += 1;
if(${c}) {
${f}
result[1] = getChannel(getX(${u.join()}), ${l});
}
rc = outputLoc;
${p[n-2]} += 1;
if(${p[n-2]} < ${this.outputShape[n-2]}) {
${f}
result[2] = getChannel(getX(${u.join()}), ${l});
${p[n-1]} += 1;
if(${c}) {
${f}
result[3] = getChannel(getX(${u.join()}), ${l});
}
}
`}this.userCode=`
const ${s} start = ${s}(${a});
const ${s} end = ${s}(${i});
void main() {
${s} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${d}
setOutput(result);
}
`}};var Hee=({inputs:r,backend:e,attrs:t})=>{let{x:o}=r,{paddings:n,mode:s}=t,a=A().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new fg(o.shape,n,s):new dg(o.shape,n,s);return e.runWebGLProgram(a,[o],o.dtype)},n3={kernelName:Kn,backendName:"webgl",kernelFunc:Hee};var Kee=`if (b == 0.0) return NAN;
return mod(a, b);`,qee=`
vec4 result = mod(a, b);
bvec4 isNaN = equal(b, vec4(0.0));
`+Xr+`
return result;
`,jee=nt({opSnippet:Kee,packedOpSnippet:qee}),s3={kernelName:qn,backendName:"webgl",kernelFunc:jee};var hg=class{constructor(e,t,o){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,o],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}};var Xee=`
if (a == b) {
return 1.0;
};
return a / b;`,Yee=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,Ev=nt({opSnippet:Xee,packedOpSnippet:Yee,checkOutOfBounds:!0}),a3={kernelName:fn,backendName:"webgl",kernelFunc:Ev};var i3="return a - b;",$v=nt({opSnippet:i3,packedOpSnippet:i3,supportsComplex:!0,cpuKernelImpl:kD}),u3={kernelName:Ts,backendName:"webgl",kernelFunc:$v};function Rv(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{dim:s}=o,a=y.parseAxisParam([s],n.shape),i=_v({inputs:{x:n},backend:t,attrs:{reductionIndices:a,keepDims:!1}}),p=w.expandShapeToKeepDim(i.shape,a),u=te({inputs:{x:i},backend:t,attrs:{shape:p}}),c=$v({inputs:{a:n,b:u},backend:t}),l=kv({inputs:{x:c},backend:t}),m=wp({inputs:{x:l},backend:t,attrs:{axis:a,keepDims:!1}}),d=te({inputs:{x:m},backend:t,attrs:{shape:p}}),f=Ev({inputs:{a:l,b:d},backend:t});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(l),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(d),f}var p3={kernelName:Is,backendName:"webgl",kernelFunc:Rv};function Qee(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{numSamples:s,seed:a,normalized:i}=o,p=i?n:Rv({inputs:{logits:n},backend:t,attrs:{dim:n.shape.length-1}}),u=p.shape[0],c=p.shape[1],l=new hg(u,c,s),m=[[a]],d=t.runWebGLProgram(l,[p],"int32",m);return i||t.disposeIntermediateTensorInfo(p),d}var c3={kernelName:jn,backendName:"webgl",kernelFunc:Qee};var Zee=Wt+`
return -x;
`,Jee=`
vec4 result = -x;
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`;function ete(r){let{inputs:e,backend:t}=r,{x:o}=e;if(t.shouldExecuteOnCPU([o])){let s=t.texData.get(o.dataId),[a,i]=aD(s.values,o.shape,o.dtype);return t.makeTensorInfo(i,o.dtype,a)}let n;return A().getBool("WEBGL_PACK_UNARY_OPERATIONS")?n=new Fr(o.shape,Jee):n=new tr(o.shape,Zee),t.runWebGLProgram(n,[o],o.dtype)}var l3={kernelName:pa,backendName:"webgl",kernelFunc:ete};var tte=Vt.nonMaxSuppressionV3Impl;function rte(r){w.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:p}=o,u=t.readSync(n.dataId),c=t.readSync(s.dataId),{selectedIndices:l}=tte(u,c,a,i,p);return t.makeTensorInfo([l.length],"int32",new Int32Array(l))}var m3={kernelName:Qn,backendName:"webgl",kernelFunc:rte};var ote=Vt.nonMaxSuppressionV4Impl;function nte(r){w.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:p,padToMaxOutputSize:u}=o,c=t.readSync(n.dataId),l=t.readSync(s.dataId),{selectedIndices:m,validOutputs:d}=ote(c,l,a,i,p,u);return[t.makeTensorInfo([m.length],"int32",new Int32Array(m)),t.makeTensorInfo([],"int32",new Int32Array([d]))]}var d3={kernelName:Qa,backendName:"webgl",kernelFunc:nte};var ste=Vt.nonMaxSuppressionV5Impl;function ate(r){w.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:p,softNmsSigma:u}=o,c=t.readSync(n.dataId),l=t.readSync(s.dataId),m=a,d=i,f=p,h=u,{selectedIndices:g,selectedScores:x}=ste(c,l,m,d,f,h);return[t.makeTensorInfo([g.length],"int32",new Int32Array(g)),t.makeTensorInfo([x.length],"float32",new Float32Array(x))]}var f3={kernelName:Zn,backendName:"webgl",kernelFunc:ate};var gg=class{constructor(e,t,o,n){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${n}), float(${o}),
float(index == coords.y)));
}
`}};var ite=r=>{let{inputs:e,backend:t,attrs:o}=r,{indices:n}=e,{dtype:s,depth:a,onValue:i,offValue:p}=o,u=y.sizeFromShape(n.shape),c=new gg(u,a,i,p),l=te({inputs:{x:n},backend:t,attrs:{shape:[u]}}),m=t.runWebGLProgram(c,[l],s);t.disposeIntermediateTensorInfo(l);let d=[...n.shape,a],f=te({inputs:{x:m},backend:t,attrs:{shape:d}});return t.disposeIntermediateTensorInfo(m),f},h3={kernelName:Jn,backendName:"webgl",kernelFunc:ite};function sm(r){let{inputs:e,backend:t}=r,{x:o}=e;if(o.dtype==="complex64"){let n=bi({inputs:{input:o},backend:t}),s=sm({inputs:{x:n},backend:t}),a=Ip({inputs:{input:o},backend:t}),i=sm({inputs:{x:a},backend:t}),p=Or({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(n),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),p}else return Ci({attrs:{shape:o.shape,dtype:o.dtype,value:o.dtype==="string"?"":0},backend:t})}var g3={kernelName:Sa,backendName:"webgl",kernelFunc:sm};function x3(r){let{inputs:e,backend:t}=r,{x:o}=e;if(o.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(o.dtype==="complex64"){let n=bi({inputs:{input:o},backend:t}),s=x3({inputs:{x:n},backend:t}),a=Ip({inputs:{input:o},backend:t}),i=sm({inputs:{x:a},backend:t}),p=Or({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(n),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),p}else return Ci({attrs:{shape:o.shape,dtype:o.dtype,value:1},backend:t})}var y3={kernelName:ca,backendName:"webgl",kernelFunc:x3};function ute(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o;if(e.length===1)return eg({inputs:{input:e[0]},backend:t,attrs:{dim:n}});let s=e[0].shape,a=e[0].dtype;e.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],p=e.map(c=>{let l=eg({inputs:{input:c},backend:t,attrs:{dim:n}});return i.push(l),l}),u=vv({inputs:p,backend:t,attrs:{axis:n}});return i.forEach(c=>t.disposeIntermediateTensorInfo(c)),u}var b3={kernelName:la,backendName:"webgl",kernelFunc:ute};var xg=class{constructor(e,t,o){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let n=e.length,s=Re(n),a=t.map(u=>u[0]).join(","),i=t.map((u,c)=>u[0]+e[c]).join(","),p=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,n);if(n===1){this.userCode=`
int start = ${a};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${s} start = ${s}(${a});
${s} end = ${s}(${i});
void main() {
${s} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${s} coords = outC - start;
setOutput(getX(${p}));
}
}
`}};var yg=class{constructor(e,t,o){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((h,g)=>h[0]+e[g]+h[1]);let n=e.length,s=Re(n),a=t.map(h=>h[0]).join(","),i=t.map((h,g)=>h[0]+e[g]).join(","),p=Rt("rc",n),u=Rt("source",n),c=`${p[n-1]} < ${this.outputShape[n-1]}`,l=n===1?"source":`vec2(${u.slice(-2).join()})`,m=[`${s} rc = outputLoc;`,`${p[n-1]} += 1;
if(${c}) {
`,n===1?"":`}
rc = outputLoc;
${p[n-2]} += 1;
if(${p[n-2]} < ${this.outputShape[n-2]}) {`,n===1?"":` ${p[n-1]} += 1;
if(${c}) {`],d=n===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",f="";for(let h=0,g=n===1?2:4;h<g;h++)f+=`
${m[h]}
if (${d}) {
result[${h}] = float(value);
} else {
${s} source = rc - start;
result[${h}] = getChannel(getX(${u.join()}), ${l});
}
`;f+=n===1?"} ":"}}",this.userCode=`
const ${s} start = ${s}(${a});
const ${s} end = ${s}(${i});
void main() {
${s} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${f}
setOutput(result);
}
`}};var Dv=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{paddings:s,constantValue:a}=o;if(y.sizeFromShape(n.shape)===0){let u=s.map((c,l)=>c[0]+n.shape[l]+c[1]);return Ci({backend:t,attrs:{shape:u,value:a,dtype:n.dtype}})}let i=A().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new yg(n.shape,s,a):new xg(n.shape,s,a),p=[[a]];return t.runWebGLProgram(i,[n],n.dtype,p)},C3={kernelName:es,backendName:"webgl",kernelFunc:Dv};var pte=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,cte=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
bvec4 isNaN1 = lessThan(a, vec4(0.0));
bvec4 isNaN2 = lessThan(floor(b), b);
bvec4 isNaN = bvec4(isNaN1.x && isNaN2.x, isNaN1.y && isNaN2.y, isNaN1.z && isNaN2.z, isNaN1.w && isNaN2.w);
`+Xr+`
return result;
`,lte=nt({opSnippet:pte,packedOpSnippet:cte}),w3={kernelName:ts,backendName:"webgl",kernelFunc:lte};function mte(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=n.shape.length,p=[],u=y.parseAxisParam(s,n.shape),c=u,l=w.getAxesPermutation(c,i),m=n;l!=null&&(m=bt({inputs:{x:n},backend:t,attrs:{perm:l}}),c=w.getInnerMostAxes(c.length,i),p.push(m)),w.assertAxesAreInnerMostDims("prod",c,i);let d;if(t.shouldExecuteOnCPU([m])){let f=t.texData.get(m.dataId).values,{outVals:h,outShape:g,outDtype:x}=uD(m.shape,m.dtype,f,c);d=t.makeTensorInfo(g,x,h)}else{let[f,h]=w.computeOutAndReduceShapes(m.shape,c),g=y.sizeFromShape(h),x=te({inputs:{x:m},backend:t,attrs:{shape:[-1,g]}}),b=oi(n.dtype),C=Yr(x,b,"prod",t);d=te({inputs:{x:C},backend:t,attrs:{shape:f}}),p.push(x),p.push(C)}if(a){p.push(d);let f=w.expandShapeToKeepDim(d.shape,u);d=te({inputs:{x:d},backend:t,attrs:{shape:f}})}return p.forEach(f=>t.disposeIntermediateTensorInfo(f)),d}var S3={kernelName:os,backendName:"webgl",kernelFunc:mte};function dte(r){let{inputs:e,backend:t,attrs:o}=r,{paramsNestedSplits:n,paramsDenseValues:s,indices:a}=e,{outputRaggedRank:i}=o,p=n.map(x=>t.readSync(x.dataId)),u=n.map(x=>x.shape),c=t.readSync(s.dataId),l=t.readSync(a.dataId),[m,d,f]=pD(p,u,c,s.shape,s.dtype,l,a.shape,i),h=m.map(x=>t.makeTensorInfo([x.length],"int32",x)),g=t.makeTensorInfo(f,s.dtype,d);return h.concat([g])}var I3={kernelName:Hp,backendName:"webgl",kernelFunc:dte};function fte(r){let{inputs:e,backend:t}=r,{starts:o,limits:n,deltas:s}=e,a=t.readSync(o.dataId),i=t.readSync(n.dataId),p=t.readSync(s.dataId),[u,c]=cD(a,o.shape,o.dtype,i,n.shape,p,s.shape),l=t.makeTensorInfo([u.length],"int32",u),m=t.makeTensorInfo([c.length],o.dtype,c);return[l,m]}var v3={kernelName:Kp,backendName:"webgl",kernelFunc:fte};function hte(r){let{inputs:e,backend:t,attrs:o}=r,{shape:n,values:s,defaultValue:a,rowPartitionTensors:i}=e,{rowPartitionTypes:p}=o,u=t.readSync(n.dataId),c=t.readSync(s.dataId),l=t.readSync(a.dataId),m=i.map(g=>t.readSync(g.dataId)),d=i.map(g=>g.shape),[f,h]=lD(u,n.shape,c,s.shape,s.dtype,l,a.shape,m,d,p);return t.makeTensorInfo(f,s.dtype,h)}var k3={kernelName:qp,backendName:"webgl",kernelFunc:hte};var Av=r=>{let{backend:e,attrs:t}=r,{start:o,stop:n,step:s,dtype:a}=t,i=mD(o,n,s,a);return e.makeTensorInfo([i.length],a,i)},N3={kernelName:ma,backendName:"webgl",kernelFunc:Av};var gte="return 1.0 / x;",xte=xe({opSnippet:gte}),T3={kernelName:ns,backendName:"webgl",kernelFunc:xte};var yte=Wt+`
return (x < 0.0) ? 0.0 : x;
`,bte=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Cte=xe({opSnippet:yte,packedOpSnippet:bte}),_3={kernelName:ss,backendName:"webgl",kernelFunc:Cte};var wte=Wt+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,Ste=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Ite=xe({opSnippet:wte,packedOpSnippet:Ste}),E3={kernelName:us,backendName:"webgl",kernelFunc:Ite};var bg=class{constructor(e,t,o,n,s){this.variableNames=["A"],this.outputShape=[];let[a,i,p,u]=e;this.outputShape=[a,t,o,u];let c=[n&&t>1?i-1:i,n&&o>1?p-1:p],l=[n&&t>1?t-1:t,n&&o>1?o-1:o],m;s?m="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":m="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/l[0]},
${c[1]/l[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${p}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${m};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}};var Cg=class{constructor(e,t,o,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,i,p,u]=e;this.outputShape=[a,t,o,u];let c=[n&&t>1?i-1:i,n&&o>1?p-1:p],l=[n&&t>1?t-1:t,n&&o>1?o-1:o],m;s?m="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":m="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${c[0]/l[0]},
${c[1]/l[1]},
${c[1]/l[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${p}.0,
${p}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${m};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${u-1};
bool hasNextRow = coords.z < ${o-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function vte(r){let{inputs:e,backend:t,attrs:o}=r,{images:n}=e,{alignCorners:s,halfPixelCenters:a,size:i}=o,[p,u]=i,c=A().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Cg(n.shape,p,u,s,a):new bg(n.shape,p,u,s,a);return t.runWebGLProgram(c,[n],"float32")}var $3={kernelName:is,backendName:"webgl",kernelFunc:vte};var wg=class{constructor(e,t,o){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,n,s]=t,[,a,i]=e,p=[o&&a>1?n-1:n,o&&i>1?s-1:s],u=[o&&a>1?a-1:a,o&&i>1?i-1:i],c=p[0]/u[0],l=p[1]/u[1],m=1/c,d=1/l,f=Math.ceil(m)*2+2,h=Math.ceil(d)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${l});
const float invHeightScale = float(${m});
const float invWidthScale = float(${d});
const int winHeight = int(${f});
const int winWidth = int(${h});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${n-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${s-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function kte(r){let{inputs:e,backend:t,attrs:o}=r,{images:n,dy:s}=e,{alignCorners:a}=o,i=new wg(s.shape,n.shape,a);return t.runWebGLProgram(i,[s],s.dtype)}var R3={kernelName:Ja,backendName:"webgl",kernelFunc:kte};var Sg=class{constructor(e,t,o,n,s){this.variableNames=["A"],this.outputShape=[];let[a,i,p,u]=e;this.outputShape=[a,t,o,u];let c=[n&&t>1?i-1:i,n&&o>1?p-1:p],l=[n&&t>1?t-1:t,n&&o>1?o-1:o],m=n?"0.5":"0.0",d;s?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/l[0]},
${c[1]/l[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${p}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${d};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${m})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}};var Ig=class{constructor(e,t,o,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,i,p,u]=e;this.outputShape=[a,t,o,u];let c=[n&&t>1?i-1:i,n&&o>1?p-1:p],l=[n&&t>1?t-1:t,n&&o>1?o-1:o],m=n?"0.5":"0.0",d;s?d="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${c[0]/l[0]},
${c[1]/l[1]},
${c[1]/l[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${p}.0,
${p}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${d};
// Compute the coordinators of nearest neighbor point.
ivec3 sourceNearestRC = ivec3(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${m})));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${u-1};
bool hasNextRow = coords.z < ${o-1};
vec4 newValue = vec4(
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
setOutput(newValue);
}
`}};function Nte(r){let{inputs:e,backend:t,attrs:o}=r,{images:n}=e,{alignCorners:s,halfPixelCenters:a,size:i}=o,[p,u]=i,c=A().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Ig(n.shape,p,u,s,a):new Sg(n.shape,p,u,s,a);return t.runWebGLProgram(c,[n],n.dtype)}var D3={kernelName:as,backendName:"webgl",kernelFunc:Nte};var vg=class{constructor(e,t,o){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,n,s]=t,[,a,i]=e,p=[o&&a>1?n-1:n,o&&i>1?s-1:s],u=[o&&a>1?a-1:a,o&&i>1?i-1:i],c=p[0]/u[0],l=p[1]/u[1],m=1/c,d=1/l,f=Math.ceil(m)*2+2,h=Math.ceil(d)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${l});
const float invHeightScale = float(${m});
const float invWidthScale = float(${d});
const int winHeight = int(${f});
const int winWidth = int(${h});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float sourceFracRow =
float(${p[0]}) *
(float(dyR) / float(${u[0]}));
float sourceFracCol =
float(${p[1]}) *
(float(dyC) / float(${u[1]}));
int sourceNearestRow = int(min(
float(int(${n}) - 1),
${o} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${s}) - 1),
${o} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Tte(r){let{inputs:e,backend:t,attrs:o}=r,{images:n,dy:s}=e,{alignCorners:a}=o,i=new vg(s.shape,n.shape,a);return t.runWebGLProgram(i,[s],s.dtype)}var A3={kernelName:Za,backendName:"webgl",kernelFunc:Tte};var kg=class{constructor(e,t){this.variableNames=["x"];let o=e.length;if(o>4)throw new Error(`WebGL backend: Reverse of rank-${o} tensor is not yet supported`);if(this.outputShape=e,o===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let n=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,s=e.map((i,p)=>n(p)).join(","),a=Re(o);this.userCode=`
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${s}));
}
`}};var Ng=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let o=e.length;if(o>4)throw new Error(`WebGL backend: Reverse of rank-${o} tensor is not yet supported`);this.outputShape=e;let n=Rt("rc",o),s=`${n[o-1]} + 1 < ${this.outputShape[o-1]}`,a=`${n[o-2]} + 1 < ${this.outputShape[o-2]}`,i=Re(o);o===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${s}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${i} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${p(n.slice())};
if(${s}){
result.g = ${u(n.slice())};
}
if(${a}) {
result.b = ${c(n.slice())};
if(${s}) {
result.a = ${l(n.slice())};
}
}
setOutput(result);
}
`;function p(f){return m(f)}function u(f){return f[o-1]="("+f[o-1]+" + 1)",m(f)}function c(f){return f[o-2]="("+f[o-2]+" + 1)",m(f)}function l(f){return f[o-1]="("+f[o-1]+" + 1)",f[o-2]="("+f[o-2]+" + 1)",m(f)}function m(f){let h=e.map((b,C)=>d(C,f)),g=h.join(","),x=h.slice(-2).join(",");return`getChannel(getX(${g}), vec2(${x}))`}function d(f,h){return t.indexOf(f)!==-1&&e[f]!==1?`${e[f]} - ${h[f]} - 1`:`${h[f]}`}}};function _te(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dims:s}=o,a=n.shape.length,i=y.parseAxisParam(s,n.shape);if(a===0)return Dt({inputs:{x:n},backend:t});let p=A().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Ng(n.shape,i):new kg(n.shape,i);return t.runWebGLProgram(p,[n],n.dtype)}var F3={kernelName:ps,backendName:"webgl",kernelFunc:_te};var Tg=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let o=e[1],n=e[2];this.outputShape=e;let s="";typeof t=="number"?s=`float outputValue = ${t.toFixed(2)};`:s=`
vec3 fill = vec3(${t.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${s}
if(coordX >= 0 && coordX < ${n} && coordY >= 0 && coordY < ${o}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}};var P3={kernelName:Ds,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:o}=r,{radians:n,fillValue:s,center:a}=e,i=t,p=new Tg(o.shape,s),[u,c]=w.getImageCenter(a,o.shape[1],o.shape[2]),l=[[u,c,Math.sin(n),Math.cos(n)]];return i.runWebGLProgram(p,[o],o.dtype,l)}};var Ete=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,$te=xe({opSnippet:Ete}),O3={kernelName:cs,backendName:"webgl",kernelFunc:$te};var Rte="return inversesqrt(x);",Dte=xe({opSnippet:Rte,cpuKernelImpl:dD}),M3={kernelName:ls,backendName:"webgl",kernelFunc:Dte};var Cu=class{constructor(e,t,o,n,s,a,i=!0,p=!1){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let u=Re(s.length),c=Re(a.length),l="";o===1?l="i":o===2&&(l="i, j");let m=`getIndices(${l})`,d="";n===1?d="i":n===2&&(d="i, coords[1]");let f=`getUpdates(${d})`,h="";p&&(h="coords[0], coords[1]");let g=`getDefaultValue(${h})`,x=t>1?"strides[j]":"strides";this.userCode=`
${u} strides = ${u}(${s});
void main() {
${c} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${m});
flattenedIndex += index * ${x};
}
if (flattenedIndex == coords[0]) {
sum += ${f};
found = true;
}
}
setOutput(mix(${g}, sum, float(found)));
}
`}};var _g=class{constructor(e,t,o,n,s,a,i=!0,p=!1){this.variableNames=["updates","indices","defaultValue"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=a;let u=Re(s.length),c=Re(a.length),l="";o===1?l="i":o===2&&(l="i, j");let m=`getIndices(${l})`,d="";n===1?d="i":n===2&&(d="i, coords[1]");let f=`getUpdates(${d})`,h="";p&&(h="coords[0], coords[1]");let g=`getDefaultValue(${h})`,x=t>1?"strides[j]":"strides",b=t>1?"strides[j + 1]":"strides";this.userCode=`
${u} strides = ${u}(${s});
void main() {
${c} coords = getOutputCoords();
vec4 sum = vec4(0.);
vec4 found = vec4(0.);
for (int i = 0; i < ${e}; i+=2) {
ivec2 flattenedIndex = ivec2(0);
for (int j = 0; j < ${t}; j+=2) {
ivec4 index = round(${m});
flattenedIndex += index.xz * ${x};
if (j + 1 < ${t}) {
flattenedIndex += index.yw * ${b};
}
}
if (flattenedIndex[0] == coords[0] || flattenedIndex[1] == coords[0] ||
flattenedIndex[0] == coords[0] + 1 || flattenedIndex[1] == coords[0] + 1) {
vec4 updVals = ${f};
if (flattenedIndex[0] == coords[0]) {
sum.xy += updVals.xy;
found.xy = vec2(1.);
} else if (flattenedIndex[0] == coords[0] + 1) {
sum.zw += updVals.xy;
found.zw = vec2(1.);
}
if (flattenedIndex[1] == coords[0]) {
sum.xy += updVals.zw;
found.xy = vec2(1.);
} else if (flattenedIndex[1] == coords[0] + 1) {
sum.zw += updVals.zw;
found.zw = vec2(1.);
}
}
}
setOutput(mix(${g}, sum, found));
}
`}};function Ate(r){let{inputs:e,backend:t,attrs:o}=r,{indices:n,updates:s}=e,{shape:a}=o,{sliceRank:i,numUpdates:p,sliceSize:u,strides:c,outputSize:l}=w.calculateShapes(s,n,a),m=[l/u,u];if(l===0)return t.makeTensorInfo(a,n.dtype);let d=te({inputs:{x:n},backend:t,attrs:{shape:[p,i]}}),f=te({inputs:{x:s},backend:t,attrs:{shape:[p,u]}}),h=t.makeTensorInfo([],"float32",new Float32Array([0])),g;A().getBool("WEBGL_PACK")?g=new _g(p,i,d.shape.length,f.shape.length,c,m):g=new Cu(p,i,d.shape.length,f.shape.length,c,m);let x=t.runWebGLProgram(g,[f,d,h],f.dtype),b=te({inputs:{x},backend:t,attrs:{shape:a}});return t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(x),t.disposeIntermediateTensorInfo(h),b}var L3={kernelName:ms,backendName:"webgl",kernelFunc:Ate};var Eg=class{constructor(e,t,o,n){this.variableNames=["sortedSequence","values"],this.customUniforms=[{name:"numInputs",type:"int"}],this.outputShape=[e,o];let s="while (left < right) {",a=`for (int i = 0; i < ${Math.ceil(Math.log2(t+1))}; ++i) { if (left >= right) break;`,i=A().getNumber("WEBGL_VERSION")===2?s:a,p=n==="left"?"<":"<=";this.userCode=`
int findBound(int batch, float value) {
int left = 0;
int right = numInputs;
int mid;
${i}
mid = (left + right) / 2;
if (getSortedSequence(batch, mid) ${p} value) {
left = mid + 1;
} else {
right = mid;
}
}
return right;
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int valueIndex = coords[1];
float value = getValues(batch, valueIndex);
setOutput(float(findBound(batch, value)));
}
`}};function Fte(r){let{inputs:e,backend:t,attrs:o}=r,{sortedSequence:n,values:s}=e,{side:a}=o,i=new Eg(n.shape[0],n.shape[1],s.shape[1],a),p=[[n.shape[1]]];return t.runWebGLProgram(i,[n,s],"int32",p)}var B3={kernelName:fs,backendName:"webgl",kernelFunc:Fte};var $g=class{constructor(e,t,o){this.variableNames=["c","a","b"],this.outputShape=t;let n,s;if(o>4)throw Error(`Where for rank ${o} is not yet supported`);if(o===1)s="resRC",n="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],p=[],u=[];for(let c=0;c<t.length;c++)u.push(`${i[c]}`),c<e&&p.push(`${i[c]}`);n=p.join(),s=u.join()}let a=Re(o);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
float cVal = getC(${n});
if (cVal >= 1.0) {
setOutput(getA(${s}));
} else {
setOutput(getB(${s}));
}
}
`}};function Pte(r){let{inputs:e,backend:t}=r,{condition:o,t:n,e:s}=e,a=new $g(o.shape.length,n.shape,n.shape.length);return t.runWebGLProgram(a,[o,n,s],dt(n.dtype,s.dtype))}var z3={kernelName:fa,backendName:"webgl",kernelFunc:Pte};var Ote=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${w.SELU_SCALEALPHA};
float scale = ${w.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,Mte=xe({opSnippet:Ote}),V3={kernelName:hs,backendName:"webgl",kernelFunc:Mte};var Lte=Fo+`
return 1.0 / (1.0 + exp(-1.0 * x));
`,Bte=`
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,zte=xe({opSnippet:Lte,packedOpSnippet:Bte,cpuKernelImpl:hD}),W3={kernelName:bs,backendName:"webgl",kernelFunc:zte};var Vte=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,Wte=xe({opSnippet:Vte}),U3={kernelName:ys,backendName:"webgl",kernelFunc:Wte};var Ute=Fo+`
return sin(x);
`,Gte=`
vec4 result = sin(x);
bvec4 isNaN = isnan(x);
${Xr}
return result;
`,Hte=xe({opSnippet:Ute,packedOpSnippet:Gte}),G3={kernelName:gs,backendName:"webgl",kernelFunc:Hte};var Kte=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,qte=xe({opSnippet:Kte}),H3={kernelName:xs,backendName:"webgl",kernelFunc:qte};var jte=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,Xte=xe({opSnippet:jte}),K3={kernelName:Cs,backendName:"webgl",kernelFunc:Xte};var Yte=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,paddings:a}=o;y.assert(n.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=s.reduce((x,b)=>x*b),p=[[0,0]];p.push(...a);for(let x=1+s.length;x<n.shape.length;++x)p.push([0,0]);let u=[],c=Dv({inputs:{x:n},backend:t,attrs:{paddings:p,constantValue:0}}),l=w.getReshaped(c.shape,s,i,!1),m=w.getPermuted(l.length,s.length,!1),d=w.getReshapedPermuted(c.shape,s,i,!1),f=te({inputs:{x:c},backend:t,attrs:{shape:l}}),h=bt({inputs:{x:f},backend:t,attrs:{perm:m}}),g=te({inputs:{x:h},backend:t,attrs:{shape:d}});return u.push(c),u.push(f),u.push(h),u.forEach(x=>t.disposeIntermediateTensorInfo(x)),g},q3={kernelName:ga,backendName:"webgl",kernelFunc:Yte};function Qte(r){let{inputs:e,backend:t}=r,{indices:o,values:n,denseShape:s,defaultValue:a}=e;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${s.shape}`);if(o.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${o.shape}`);if(n.shape.length!==1)throw new Error(`Values must be a vector, saw:
${n.shape}`);if(a.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${a.shape}`);let i=t.readSync(o.dataId),p=t.readSync(n.dataId),u=t.readSync(s.dataId),c=t.readSync(a.dataId)[0],[l,m,d,f,h]=xD(i,o.shape,o.dtype,p,n.dtype,u,c);return[t.makeTensorInfo(m,o.dtype,l),t.makeTensorInfo([m[0]],n.dtype,d),t.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),t.makeTensorInfo([h.length],o.dtype,new Int32Array(h))]}var j3={kernelName:Ki,backendName:"webgl",kernelFunc:Qte};function Zte(r){let{inputs:e,backend:t}=r,{inputIndices:o,inputShape:n,newShape:s}=e;if(o.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${o.shape}`);if(n.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${n.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let a=Array.from(t.readSync(n.dataId)),i=t.readSync(o.dataId),p=Array.from(t.readSync(s.dataId)),[u,c,l]=yD(i,o.shape,o.dtype,a,p);return[t.makeTensorInfo(c,o.dtype,u),t.makeTensorInfo([l.length],s.dtype,new Int32Array(l))]}var X3={kernelName:ei,backendName:"webgl",kernelFunc:Zte};function Jte(r){let{inputs:e,backend:t}=r,{data:o,indices:n,segmentIds:s}=e;if(o.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(n.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${n.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);let a=t.readSync(o.dataId),i=t.readSync(n.dataId),p=t.readSync(s.dataId),[u,c]=lh(a,o.shape,o.dtype,i,p,!0);return t.makeTensorInfo(c,o.dtype,u)}var Y3={kernelName:ya,backendName:"webgl",kernelFunc:Jte};function ere(r){let{inputs:e,backend:t}=r,{data:o,indices:n,segmentIds:s}=e;if(o.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(n.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${n.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);let a=t.readSync(o.dataId),i=t.readSync(n.dataId),p=t.readSync(s.dataId),[u,c]=lh(a,o.shape,o.dtype,i,p);return t.makeTensorInfo(c,o.dtype,u)}var Q3={kernelName:ba,backendName:"webgl",kernelFunc:ere};function tre(r){let{inputs:e,backend:t,attrs:o}=r,{sparseIndices:n,sparseValues:s,defaultValue:a}=e,{outputShape:i}=o,{sliceRank:p,numUpdates:u,sliceSize:c,strides:l,outputSize:m}=w.calculateShapes(s,n,i),d=!1;if(s.dtype==="string"){let x=t.bufferSync(n),b=t.bufferSync(s),C=y.decodeString(t.readSync(a.dataId)[0]),S=fD(x,b,i,m,c,u,p,l,C,d);return t.makeTensorInfo(i,S.dtype,S.values)}let f=new Cu(u,p,n.shape.length,s.shape.length,l,[m,1],d),h=t.runWebGLProgram(f,[s,n,a],s.dtype),g=te({inputs:{x:h},backend:t,attrs:{shape:i}});return t.disposeIntermediateTensorInfo(h),g}var Z3={kernelName:vs,backendName:"webgl",kernelFunc:tre};function rre(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{numOrSizeSplits:s,axis:a}=o,i=y.parseAxisParam(a,n.shape)[0],p=w.prepareSplitSize(n,s,i),u=n.shape.length,c=new Array(u).fill(0),l=n.shape.slice();return p.map(m=>{let d=[...l];d[i]=m;let f=Gs({inputs:{x:n},backend:t,attrs:{begin:c,size:d}});return c[i]+=m,f})}var J3={kernelName:xa,backendName:"webgl",kernelFunc:rre};var eP="return sqrt(x);",ore=xe({opSnippet:eP,packedOpSnippet:eP,cpuKernelImpl:bD}),tP={kernelName:ws,backendName:"webgl",kernelFunc:ore};var nre="return x * x;",sre=xe({opSnippet:nre}),rP={kernelName:qi,backendName:"webgl",kernelFunc:sre};var oP="return (a - b) * (a - b);",are=nt({opSnippet:oP,packedOpSnippet:oP}),nP={kernelName:ks,backendName:"webgl",kernelFunc:are};function ire(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e;if(n.dtype!=="string")throw new Error("Input must be of datatype string");let s=t.readSync(n.dataId),a=w.fromUint8ToStringArray(s),i=CD(a,"string",o);return t.makeTensorInfo(n.shape,"string",i)}var sP={kernelName:Ru,backendName:"webgl",kernelFunc:ire};function ure({inputs:r,attrs:e,backend:t}){let{x:o}=r,n=Wt+`
return x > 0.0 ? 1.0 : float(${e.alpha});
`,s=new tr(o.shape,n);return t.runWebGLProgram(s,[o],o.dtype)}var aP={kernelName:wo,backendName:"webgl",kernelFunc:ure};var Rg=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=o;let n=o.length,s=Re(o.length),a=Re(o.length),i="";if(n===1)i="coords * strides + begin";else{let p=0;i=o.map((u,c)=>(p++,o.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${p-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
${s} begin = ${s}(${e});
${s} strides = ${s}(${t});
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${i}));
}
`}};function pre(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{begin:s,end:a,strides:i,beginMask:p,endMask:u,ellipsisMask:c,newAxisMask:l,shrinkAxisMask:m}=o,{finalShapeSparse:d,finalShape:f,isIdentity:h,sliceDim0:g,isSimpleSlice:x,begin:b,end:C,strides:S}=pt.sliceInfo(n.shape,s,a,i,p,u,c,l,m),k;if(h)k=te({inputs:{x:n},backend:t,attrs:{shape:f}});else if(g||x){y.assert(n.shape.length>=1,()=>`Input must have rank at least 1, got: ${n.shape.length}`);let $=pt.computeOutShape(b,C,S),R=Gs({inputs:{x:n},backend:t,attrs:{begin:b,size:$}});k=te({inputs:{x:R},backend:t,attrs:{shape:f}}),t.disposeIntermediateTensorInfo(R)}else if(t.shouldExecuteOnCPU([n])){let R=t.readSync(n.dataId),D=me(n.shape,n.dtype,R),P=wD(d,D,S,b);k=t.makeTensorInfo(f,n.dtype,P.values)}else{let R=new Rg(b,S,d);k=t.runWebGLProgram(R,[n],n.dtype)}let _=te({inputs:{x:k},backend:t,attrs:{shape:f}});return t.disposeIntermediateTensorInfo(k),_}var iP={kernelName:Ns,backendName:"webgl",kernelFunc:pre};function cre(r){let{inputs:e,backend:t,attrs:o}=r,{separator:n,nGramWidths:s,leftPad:a,rightPad:i,padWidth:p,preserveShortSequences:u}=o,{data:c,dataSplits:l}=e,m=t.readSync(c.dataId),d=t.readSync(l.dataId),[f,h]=SD(m,d,n,s,a,i,p,u);return[t.makeTensorInfo([f.length],"string",f),t.makeTensorInfo(l.shape,"int32",h)]}var uP={kernelName:Ca,backendName:"webgl",kernelFunc:cre};function lre(r){let{inputs:e,backend:t,attrs:o}=r,{skipEmpty:n}=o,{input:s,delimiter:a}=e;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(a.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${a.shape}`);let i=t.readSync(s.dataId),p=t.readSync(a.dataId)[0],[u,c,l]=ID(i,p,n),m=c.length;return[t.makeTensorInfo([m,2],"int32",u),t.makeTensorInfo([m],"string",c),t.makeTensorInfo([2],"int32",new Int32Array(l))]}var pP={kernelName:ji,backendName:"webgl",kernelFunc:lre};function mre(r){let{inputs:e,backend:t,attrs:o}=r,{numBuckets:n}=o,{input:s}=e;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(n<=0)throw new Error("Number of buckets must be at least 1");let a=t.readSync(s.dataId),i=vD(a,n);return t.makeTensorInfo(s.shape,"int32",i)}var cP={kernelName:Xi,backendName:"webgl",kernelFunc:mre};var dre="return tan(x);",fre=xe({opSnippet:dre}),lP={kernelName:_s,backendName:"webgl",kernelFunc:fre};var hre=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,gre=xe({opSnippet:hre}),mP={kernelName:Es,backendName:"webgl",kernelFunc:gre};function xre(r){let{inputs:e,backend:t,attrs:o}=r,{tensor:n,indices:s,updates:a}=e,{}=o,{sliceRank:i,numUpdates:p,sliceSize:u,strides:c,outputSize:l}=w.calculateShapes(a,s,n.shape),m=[l/u,u];if(l===0)return t.makeTensorInfo(n.shape,s.dtype);let d=te({inputs:{x:s},backend:t,attrs:{shape:[p,i]}}),f=te({inputs:{x:a},backend:t,attrs:{shape:[p,u]}}),h=te({inputs:{x:n},backend:t,attrs:{shape:m}}),g=new Cu(p,i,d.shape.length,f.shape.length,c,m,!1,!0),x=t.runWebGLProgram(g,[f,d,h],h.dtype),b=te({inputs:{x},backend:t,attrs:{shape:n.shape}});return t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(x),b}var dP={kernelName:ds,backendName:"webgl",kernelFunc:xre};var Dg=class{constructor(e,t){this.variableNames=["A"];let o=new Array(e.length);for(let a=0;a<o.length;a++)o[a]=e[a]*t[a];this.outputShape=o,this.rank=o.length;let n=Re(this.rank),s=yre(e);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${s}));
}
`}};function yre(r){let e=r.length;if(e>5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`imod(resRC, ${r[0]})`;let t=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],o=[];for(let n=0;n<r.length;n++)o.push(`imod(${t[n]}, ${r[n]})`);return o.join()}function Fv(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{reps:s}=o;if(n.dtype==="string"||n.shape.length>5){let p=t.readSync(n.dataId),u=n.dtype==="string"?p.map(m=>y.decodeString(m)):p,c=me(n.shape,n.dtype,u),l=ND(c,s);return t.makeTensorInfo(l.shape,l.dtype,l.values)}let a=new Dg(n.shape,s);return t.runWebGLProgram(a,[n],n.dtype)}var fP={kernelName:po,backendName:"webgl",kernelFunc:Fv};var Ag=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced above,
// Figure5(a) shows that element[1] is in the
// second half of the group when group size is 2, but it is in the
// first half of the group when group size is 4.
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
int i = isFirstInPair ? elemIdx : elemIdx - inc;
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
// Denotes which direction indices are in (ascending or descending).
bool reverse = imod(elemIdx, 2 * dir) >= dir;
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) { // Elements in opposite order of direction
int iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutput(float(i0));
} else {
setOutput(float(i1));
}
}
`}},Fg=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
// we only need to output the indices at positions |, the indices at
// positions _ can be thrown away, see Figure5(b) After Phase 2
// (Merge phase) in the Bitonic Top K paper referenced above.
// For example, the paper shows we only need to output the orange bars.
// The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back
// to the previous sequence to find the corresponding value,
// we need to double the index. When we double the index,
// we basically interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
// of each 2k positions by - elemIdx % k. E.g. for output at
// index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
float x0 = getX(batch, i0);
float x1 = i1 < n ? getX(batch, i1) : x0;
setOutput(x0 >= x1 ? float(i0) : float(i1));
}
`}};function kp(r,e){e!==null&&r.disposeIntermediateTensorInfo(e)}function hP(r){let e=1;for(;e<r;)e*=2;return e}function bre(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{k:s,sorted:a}=o,i=A().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),p=A().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=n.shape,c=u[u.length-1];if(t.shouldExecuteOnCPU([n])||c<i||s>p){let P=t.readSync(n.dataId),[O,M]=TD(P,u,n.dtype,s,a);return[t.makeTensorInfo(O.shape,O.dtype,O.values),t.makeTensorInfo(M.shape,M.dtype,M.values)]}if(s===0)return u[u.length-1]=0,[t.makeTensorInfo(u,n.dtype,[]),t.makeTensorInfo(u,"int32",[])];if(c===1)return[n,Ci({attrs:{shape:u,dtype:"int32",value:0},backend:t})];let l=t.texData.get(n.dataId),m=l!==null&&l.isPacked,d=m?t.unpackTensor(n):n,h=y.sizeFromShape(u)/c,g=te({inputs:{x:d},attrs:{shape:[h,c]},backend:t});m&&kp(t,d);let x=hP(s),b=hP(c),C=null,S=()=>C===null?[g,g]:[g,C],k=(P,O,M)=>{let L=S(),B=new Ag(M),U=[[c],[C===null?1:0],[Number.NEGATIVE_INFINITY],[P],[O]],j=C;C=t.runWebGLProgram(B,L,"int32",U),kp(t,j)};for(let P=1;P<x;P*=2){let O=P*2;for(let M=P;M>=1;M/=2)k(O,M,[h,b])}for(let P=b;P>x;P/=2){let O=S(),M=new Fg([h,P/2]),B=[[c],[C===null?1:0],[x]],z=C;C=t.runWebGLProgram(M,O,"int32",B),kp(t,z);let U=x/2,j=U*2;for(let q=U;q>=1;q/=2)k(j,q,C.shape)}let _=C;C=Gs({inputs:{x:C},backend:t,attrs:{begin:0,size:[h,s]}}),kp(t,_);let $=Tv({inputs:{x:g,indices:C},backend:t,attrs:{axis:1,batchDims:1}});kp(t,g);let R=u.slice(0,-1);R.push(s),_=C,C=te({inputs:{x:C},attrs:{shape:R},backend:t}),kp(t,_);let D=$;return $=te({inputs:{x:$},attrs:{shape:R},backend:t}),kp(t,D),[$,C]}var gP={kernelName:$s,backendName:"webgl",kernelFunc:bre};var Pg=class{constructor(e,t,o,n,s,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let i=o==="nearest"?1:2,p;switch(n){case"constant":p=1;break;case"reflect":p=2;break;case"wrap":p=3;break;case"nearest":p=4;break;default:p=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${p} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${p} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${p} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${s});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${s});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${t}));
float mapY = mapCoord(inY, float(${e}));
if (${i} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function Cre(r){let{inputs:e,backend:t,attrs:o}=r,{image:n,transforms:s}=e,{interpolation:a,fillMode:i,fillValue:p,outputShape:u}=o,[c,l,m,d]=n.shape,[f,h]=u!=null?u:[l,m],g=[c,f,h,d],x=new Pg(l,m,a,i,p,g);return t.runWebGLProgram(x,[n,s],"float32")}var xP={kernelName:Rs,backendName:"webgl",kernelFunc:Cre};function wre(r){let{inputs:e,attrs:t,backend:o}=r,{axis:n}=t,{x:s}=e;Vs(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let a=o.readSync(s.dataId),{outputValues:i,outputShape:p,indices:u}=_D(a,n,s.shape,s.dtype);return[o.makeTensorInfo(p,s.dtype,i),o.makeTensorInfo([u.length],"int32",u)]}var yP={kernelName:Yi,backendName:"webgl",kernelFunc:wre};function Sre(r){let{inputs:e,backend:t,attrs:o}=r,{value:n}=e,{axis:s}=o;s<0&&(s+=n.shape.length);let a=n,i=a.shape.length,p=n.shape[s],u=new Array(i-1),c=0;for(let h=0;h<i;h++)h!==s&&(u[c++]=a.shape[h]);let l=[],m=new Array(i).fill(0),d=a.shape.slice();d[s]=1;let f=new Array(p);for(let h=0;h<f.length;h++){m[s]=h;let g=Gs({inputs:{x:a},backend:t,attrs:{begin:m,size:d}}),x=te({inputs:{x:g},backend:t,attrs:{shape:u}});f[h]=x,l.push(g)}return l.forEach(h=>t.disposeIntermediateTensorInfo(h)),f}var bP={kernelName:wa,backendName:"webgl",kernelFunc:Sre};var Og=class{constructor(e,t){this.variableNames=["x","segmentIds"];let o=e.windowSize,n=e.batchSize,s=e.inSize,a=e.numSegments,i=a*Math.ceil(s/o);this.outputShape=[n,i];let p="0.0",u="sumValue",c=Math.floor(o/4)*4,l=o%4,m=`
sumValue += dot(values, segFilter);
`,d="";s%o>0&&(d=`
if (inIdx < 0 || inIdx >= ${s}) {
return initializationValue;
}
`);let f="";s%o>0&&(f=`
if (inIdx < 0 || inIdx >= ${s}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${p};
float getValue(int batch, int inIdx) {
${d}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${f}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${a})) * float(${o}));
int currentSeg = int(mod(float(outIdx), float(${a})));
float sumValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${m}
}
int inIdx = inOffset + ${c};
if (${l===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${m}
} else if (${l===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${m}
} else if (${l===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${m}
}
setOutput(${u});
}
`}};function Ire(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,segmentIds:s}=e,{numSegments:a}=o,i=n.shape.length,p=[],u=0,c=w.getAxesPermutation([u],i),l=n;c!=null&&(l=bt({inputs:{x:n},backend:t,attrs:{perm:c}}),p.push(l),u=w.getInnerMostAxes(1,i)[0]);let m=w.segment_util.computeOutShape(l.shape,u,a),d=y.sizeFromShape([l.shape[u]]),f=te({inputs:{x:l},backend:t,attrs:{shape:[-1,d]}});p.push(f);let h=oi(n.dtype),g=(S,k,_,$,R)=>{let D=S.shape[0],P=S.shape[1],O=w.segment_util.segOpComputeOptimalWindowSize(P,R),M={windowSize:O,inSize:P,batchSize:D,numSegments:R},L=new Og(M,k),B=t.compileAndRun(L,[S,_],$);if(p.push(B),B.shape[1]===R)return B;let z=Av({backend:t,attrs:{start:0,stop:R,step:1,dtype:"float32"}}),U=Fv({inputs:{x:z},backend:t,attrs:{reps:[P/O]}});return p.push(z),p.push(U),g(B,k,U,$,R)},x=g(f,"unsortedSegmentSum",s,h,a),b=te({inputs:{x},backend:t,attrs:{shape:m}}),C=b;if(c!=null){p.push(b);let S=w.getUndoAxesPermutation(c);C=bt({inputs:{x:C},backend:t,attrs:{perm:S}})}return p.forEach(S=>t.disposeIntermediateTensorInfo(S)),C}var CP={kernelName:Qi,backendName:"webgl",kernelFunc:Ire};var vre=[rA,nA,sA,aA,uA,pA,cA,lA,fA,hA,gA,xA,yA,bA,CA,wA,SA,IA,vA,kA,NA,_A,EA,$A,RA,PA,MA,LA,KD,zA,WA,UA,GA,HA,KA,qA,jA,XA,YA,QA,eF,tF,rF,oF,nF,sF,aF,iF,uF,pF,cF,lF,mF,dF,fF,hF,xF,yF,bF,CF,SF,IF,vF,kF,NF,TF,_F,EF,$F,HD,RF,VA,DF,AF,FF,qD,PF,OF,MF,LF,BF,zF,VF,WF,UF,GF,KF,qF,jF,XF,YF,QF,JF,t3,r3,o3,n3,s3,c3,YD,l3,m3,d3,f3,DA,h3,y3,b3,C3,w3,jD,S3,I3,v3,k3,N3,AA,a3,T3,_3,E3,ZD,$3,R3,D3,A3,F3,P3,O3,M3,L3,B3,z3,V3,W3,U3,G3,H3,TA,p3,K3,q3,j3,X3,Y3,Q3,Z3,J3,tP,rP,nP,sP,aP,iP,uP,pP,cP,u3,eA,lP,mP,dP,fP,gP,xP,tA,yP,bP,CP,g3];for(let r of vre)ti(r);var we;(function(r){r[r.float32=0]="float32",r[r.int32=1]="int32",r[r.bool=2]="bool",r[r.string=3]="string",r[r.complex64=4]="complex64"})(we||(we={}));var wu;(function(r){r[r.linear=0]="linear",r[r.relu=1]="relu",r[r.relu6=2]="relu6",r[r.prelu=3]="prelu",r[r.leakyrelu=4]="leakyrelu",r[r.sigmoid=5]="sigmoid",r[r.elu=6]="elu"})(wu||(wu={}));var wP;function kre(r){wP=r.wasm.cwrap(So,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Nre(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s,bias:a,preluActivationWeights:i}=e;if(n.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:p,transposeB:u,activation:c,leakyreluAlpha:l}=o,m=t.dataIdMap.get(n.dataId).id,d=t.dataIdMap.get(s.dataId).id,f=0;if(a!=null){let R=t.dataIdMap.get(a.dataId);if(R.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${R.shape.length}.`);f=R.id}let h=i==null?0:t.dataIdMap.get(i.dataId).id,g=wu[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let x=p?n.shape[2]:n.shape[1],b=u?s.shape[1]:s.shape[2],C=Sr.assertAndGetBroadcastShape(n.shape.slice(0,-2),s.shape.slice(0,-2)),S=t.makeOutput([...C,x,b],n.dtype),k=t.dataIdMap.get(S.dataId).id,_=new Uint8Array(new Int32Array(n.shape).buffer),$=new Uint8Array(new Int32Array(s.shape).buffer);return wP(m,_,n.shape.length,d,$,s.shape.length,p,u,g,f,h,l||0,k),S}var SP={kernelName:So,backendName:"wasm",setupFunc:kre,kernelFunc:Nre};function he(r,e){let t;function o(s){t=s.wasm.cwrap(r,null,["number","number","number"])}function n(s){let{backend:a,inputs:{x:i}}=s,p=a.dataIdMap.get(i.dataId).id,u=a.makeOutput(i.shape,e||i.dtype),c=a.dataIdMap.get(u.dataId).id;return y.sizeFromShape(u.shape)===0||t(p,we[i.dtype],c),u}return{kernelName:r,backendName:"wasm",setupFunc:o,kernelFunc:n}}var IP=he(Xs);var vP=he(Vo);var kP=he(Wo);function Ge(r,e,t){let o;function n(a){o=a.wasm.cwrap(r,null,["number","array","number","number","array","number","number","number"])}function s(a){let{backend:i,inputs:p}=a,{a:u,b:c}=p,l=i.dataIdMap.get(u.dataId).id,m=i.dataIdMap.get(c.dataId).id,d=t!=null?t:u.dtype,f=w.assertAndGetBroadcastShape(u.shape,c.shape),h=i.makeOutput(f,d);if(y.sizeFromShape(f)===0)return h;let g=new Uint8Array(new Int32Array(u.shape).buffer),x=new Uint8Array(new Int32Array(c.shape).buffer),b=i.dataIdMap.get(h.dataId).id;return o(l,g,u.shape.length,m,x,c.shape.length,we[u.dtype],b),h}return{kernelName:r,backendName:"wasm",setupFunc:n,kernelFunc:s}}var Tre=!0,NP=Ge(uo,Tre);var TP;function _re(r){TP=r.wasm.cwrap(Uo,null,["array","number","number","number"])}function Ere(r){let{inputs:e,backend:t}=r,o=t.makeOutput(e[0].shape,e[0].dtype);if(y.sizeFromShape(o.shape)===0)return o;let n=e.map(i=>t.dataIdMap.get(i.dataId).id),s=new Uint8Array(new Int32Array(n).buffer),a=t.dataIdMap.get(o.dataId).id;return TP(s,n.length,we[o.dtype],a),o}var _P={kernelName:Uo,backendName:"wasm",setupFunc:_re,kernelFunc:Ere};function Np(r){let{inputs:{x:e},backend:t}=r;if(e.dtype==="string")return ar(t.readSync(e.dataId),e.shape,e.dtype);let o=t.makeOutput(e.shape,e.dtype),n=t.typedArrayFromHeap(e);return t.typedArrayFromHeap(o).set(n),o}var EP={kernelName:Co,backendName:"wasm",kernelFunc:Np};var $P;function $re(r){$P=r.wasm.cwrap(co,null,["number","array","number","number","number","array","number"])}function ho(r){let{inputs:e,backend:t,attrs:o}=r,[n,s]=Dre(e.x.shape,o.perm),a=!0;for(let f=0;f<s.length;f++)s[f]!==f&&(a=!1);let i=Rre(e.x.shape,o.perm),p={dataId:e.x.dataId,shape:n,dtype:e.x.dtype};if(a){let f=Np({inputs:e,backend:t});return f.shape=i,f}let u=t.makeOutput(i,p.dtype),c=t.dataIdMap.get(p.dataId).id,l=t.dataIdMap.get(u.dataId).id,m=new Uint8Array(new Int32Array(s).buffer),d=new Uint8Array(new Int32Array(p.shape).buffer);return $P(c,d,p.shape.length,we[p.dtype],l,m,s.length),u}function Rre(r,e){let t=new Array(r.length);for(let o=0;o<t.length;o++)t[o]=r[e[o]];return t}function Dre(r,e){let t=[],o=[];for(let n=0;n<r.length;++n)r[n]!==1&&t.push(r[n]),r[e[n]]!==1&&o.push(e[n]);for(let n=0;n<o.length;++n){let s=-1;for(let a=0;a<o.length;++a)o[a]>=n&&(s===-1||o[s]>o[a])&&(s=a);o[s]=n}return[t,o]}var RP={kernelName:co,backendName:"wasm",kernelFunc:ho,setupFunc:$re};function Tr(r,e,t){let o=r.shape,n=r.shape.length,s=y.parseAxisParam(e,o),a=s,i=w.getAxesPermutation(a,n),p=null,u=!1;if(i!=null){let c=new Array(n);for(let d=0;d<c.length;d++)c[d]=o[i[d]];a=w.getInnerMostAxes(a.length,n),p=ho({inputs:{x:r},attrs:{perm:i},backend:t});let l=t.dataIdMap.get(r.dataId).id;t.dataIdMap.get(p.dataId).id!==l&&(u=!0)}return{transposed:p,originalAxes:s,axes:a,inputWasTransposed:u}}var DP;function Are(r){DP=r.wasm.cwrap(Go,null,["number, number, number"])}function Fre(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n,keepDims:s}=o,{x:a}=t,p=e.dataIdMap.get(a.dataId).id,u=a,{transposed:c,axes:l,originalAxes:m,inputWasTransposed:d}=Tr(a,n,e);if(d){let C=e.dataIdMap.get(c.dataId).id;u=c,p=C}let f=u.shape.length;w.assertAxesAreInnerMostDims("all",l,f);let[h,g]=w.computeOutAndReduceShapes(u.shape,l),x=y.sizeFromShape(g),b=e.makeOutput(h,a.dtype);if(y.sizeFromShape(u.shape)!==0){let C=e.dataIdMap.get(b.dataId).id;DP(p,x,C)}if(d&&e.disposeData(c.dataId),s){let C=w.expandShapeToKeepDim(b.shape,m);b.shape=C}return b}var AP={kernelName:Go,backendName:"wasm",setupFunc:Are,kernelFunc:Fre};var FP;function Pre(r){FP=r.wasm.cwrap(Ho,null,["number, number, number"])}function Ore(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n,keepDims:s}=o,{x:a}=t,p=e.dataIdMap.get(a.dataId).id,u=a,{transposed:c,axes:l,originalAxes:m,inputWasTransposed:d}=Tr(a,n,e);if(d){let C=e.dataIdMap.get(c.dataId).id;u=c,p=C}let f=u.shape.length;w.assertAxesAreInnerMostDims("any",l,f);let[h,g]=w.computeOutAndReduceShapes(u.shape,l),x=y.sizeFromShape(g),b=e.makeOutput(h,a.dtype);if(y.sizeFromShape(u.shape)!==0){let C=e.dataIdMap.get(b.dataId).id;FP(p,x,C)}if(d&&e.disposeData(c.dataId),s){let C=w.expandShapeToKeepDim(b.shape,m);b.shape=C}return b}var PP={kernelName:Ho,backendName:"wasm",setupFunc:Pre,kernelFunc:Ore};function Mg(r){let e;function t(n){e=n.wasm.cwrap(r,null,["number","number","number","number","number"])}function o(n){let{backend:s,inputs:a,attrs:i}=n,{axis:p}=i,{x:u}=a,c=s.dataIdMap.get(u.dataId).id,l=c,m=u,{transposed:d,axes:f,inputWasTransposed:h}=Tr(u,p,s);if(h){let k=s.dataIdMap.get(d.dataId).id;k!==c&&(m=d,l=k)}let g=m.shape.slice(0,-1),x=s.makeOutput(g,"int32"),b=s.dataIdMap.get(x.dataId).id,C=y.sizeFromShape(x.shape),S=m.shape[f[0]];return e(l,we[m.dtype],C,S,b),h&&s.disposeData(d.dataId),x}return{kernelName:r,backendName:"wasm",setupFunc:t,kernelFunc:o}}var OP=Mg(Ys);var MP=Mg(Qs);var LP=he(Ko);var BP=he(qo);var zP=he(jo);var VP=Ge(Yo,!1);var WP=he(Xo);var UP;function Mre(r){UP=r.wasm.cwrap(Qo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Lre(r){let{inputs:e,attrs:t,backend:o}=r,n=e.x,s=o.dataIdMap.get(n.dataId).id,{filterSize:a,strides:i,pad:p,dimRoundingMode:u}=t,c=w.computePool2DInfo(n.shape,a,i,1,p,u),l=c.filterHeight,m=c.filterWidth,d=c.padInfo.top,f=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,x=c.strideHeight,b=c.strideWidth,C=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let S=o.makeOutput(c.outShape,"float32"),k=o.dataIdMap.get(S.dataId).id;return UP(s,n.shape[0],n.shape[1],n.shape[2],l,m,d,f,h,g,x,b,C,k),S}var GP={kernelName:Qo,backendName:"wasm",setupFunc:Mre,kernelFunc:Lre};var HP;function Bre(r){HP=r.wasm.cwrap("AvgPool3D",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function zre(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:p,dataFormat:u}=o,c=w.computePool3DInfo(n.shape,s,a,1,i,p,u),l=t.makeOutput(c.outShape,n.dtype);return HP(t.dataIdMap.get(n.dataId).id,t.dataIdMap.get(l.dataId).id,c.batchSize,c.inChannels,c.inDepth,c.inHeight,c.inWidth,c.outDepth,c.outHeight,c.outWidth,c.strideDepth,c.strideHeight,c.strideWidth,c.dilationDepth,c.dilationHeight,c.dilationWidth,c.effectiveFilterDepth,c.effectiveFilterHeight,c.effectiveFilterWidth,c.padInfo.front,c.padInfo.top,c.padInfo.left),l}var KP={kernelName:Zs,backendName:"wasm",setupFunc:Bre,kernelFunc:zre};var qP;function Vre(r){qP=r.wasm.cwrap("AvgPool3DGrad",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Wre(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,{filterSize:a,strides:i,pad:p,dimRoundingMode:u}=o,c=w.computePool3DInfo(s.shape,a,i,1,p,u),l=t.makeOutput(s.shape,s.dtype);return qP(t.dataIdMap.get(n.dataId).id,t.dataIdMap.get(l.dataId).id,c.batchSize,c.inChannels,c.inDepth,c.inHeight,c.inWidth,c.outDepth,c.outHeight,c.outWidth,c.strideDepth,c.strideHeight,c.strideWidth,c.dilationDepth,c.dilationHeight,c.dilationWidth,c.effectiveFilterDepth,c.effectiveFilterHeight,c.effectiveFilterWidth,c.padInfo.front,c.padInfo.top,c.padInfo.left,c.filterDepth,c.filterHeight,c.filterWidth),l}var jP={kernelName:Ri,backendName:"wasm",setupFunc:Vre,kernelFunc:Wre};var XP;function Ure(r){XP=r.wasm.cwrap("AvgPoolGrad",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Gre(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,{filterSize:a,strides:i,pad:p}=o,u=w.computePool2DInfo(s.shape,a,i,1,p),c=t.makeOutput(s.shape,s.dtype);return XP(t.dataIdMap.get(n.dataId).id,t.dataIdMap.get(c.dataId).id,u.batchSize,u.inChannels,u.inHeight,u.inWidth,u.outHeight,u.outWidth,u.strideHeight,u.strideWidth,u.dilationHeight,u.dilationWidth,u.effectiveFilterHeight,u.effectiveFilterWidth,u.padInfo.top,u.padInfo.left,u.filterHeight,u.filterWidth),c}var YP={kernelName:$i,backendName:"wasm",setupFunc:Ure,kernelFunc:Gre};function zt(r){let{inputs:e,attrs:t}=r,{x:o}=e,{shape:n}=t,s=y.sizeFromShape(o.shape),a=y.inferFromImplicitShape(n,s);return y.assert(s===y.sizeFromShape(a),()=>`new shape: ${a}, old shape: ${o.shape}. New shape and old shape must have the same number of elements.`),r.backend.incRef(o.dataId),{dataId:o.dataId,shape:a,dtype:o.dtype}}var QP={kernelName:da,backendName:"wasm",kernelFunc:zt};var ZP;function Hre(r){ZP=r.wasm.cwrap(Zo,null,["number","array","number","number","array","number","number","number","number"])}function Kre(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s}=e,{transposeA:a,transposeB:i}=o;if(n.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let p=n.shape.length,u=s.shape.length,c=a?n.shape[p-2]:n.shape[p-1],l=i?s.shape[u-1]:s.shape[u-2],m=a?n.shape[p-1]:n.shape[p-2],d=i?s.shape[u-2]:s.shape[u-1],f=n.shape.slice(0,-2),h=s.shape.slice(0,-2),g=y.sizeFromShape(f),x=y.sizeFromShape(h),C=Sr.assertAndGetBroadcastShape(n.shape.slice(0,-2),s.shape.slice(0,-2)).concat([m,d]);y.assert(c===l,()=>`Error in matMul: inner shapes (${c}) and (${l}) of Tensors with shapes ${n.shape} and ${s.shape} and transposeA=${a} and transposeB=${i} must match.`);let S=a?[g,c,m]:[g,m,c],k=i?[x,d,l]:[x,l,d],_=zt({inputs:{x:n},backend:t,attrs:{shape:S}}),$=zt({inputs:{x:s},backend:t,attrs:{shape:k}}),R=t.dataIdMap.get(_.dataId).id,D=t.dataIdMap.get($.dataId).id,P=a?_.shape[2]:_.shape[1],O=i?$.shape[1]:$.shape[2],M=Math.max(g,x),L=t.makeOutput([M,P,O],_.dtype),B=t.dataIdMap.get(L.dataId).id,z=new Uint8Array(new Int32Array(_.shape).buffer),U=new Uint8Array(new Int32Array($.shape).buffer);return ZP(R,z,_.shape.length,D,U,$.shape.length,a,i,B),t.disposeData(_.dataId),t.disposeData($.dataId),L.shape=C,L}var JP={kernelName:Zo,backendName:"wasm",setupFunc:Hre,kernelFunc:Kre};function Po(r){let{inputs:{x:e},attrs:{begin:t,size:o},backend:n}=r,[s,a]=pt.parseSliceParams(e,t,o),i=pt.isSliceContinous(e.shape,s,a),p=n.readSync(e.dataId),u=n.makeOutput(a,e.dtype),c=y.computeStrides(e.shape),l=n.dataIdMap.get(u.dataId);if(i){let f=pt.computeFlatOffset(s,c);return e.dtype==="string"?l.stringBytes=p.slice(f,f+y.sizeFromShape(a)):n.typedArrayFromHeap(u).set(p.subarray(f,f+y.sizeFromShape(a))),u}if(e.dtype==="string"){let f=pp(p,s,a,e.shape,e.dtype);return l.stringBytes=f,u}let m=n.typedArrayFromHeap(u),d=e.shape.length;if(d===2)qre(p,c[0],m,s,a);else if(d===3)jre(p,c[0],c[1],m,s,a);else if(d===4)Xre(p,c[0],c[1],c[2],m,s,a);else{let f=pp(p,s,a,e.shape,e.dtype);m.set(f)}return u}function qre(r,e,t,o,n){let s=0,a=o[0],i=o[1],p=a+n[0];for(let u=a;u<p;u++){let c=u*e+i;t.set(r.subarray(c,c+n[1]),s),s+=n[1]}}function jre(r,e,t,o,n,s){let a=0,i=n[0],p=n[1],u=n[2],c=i+s[0],l=p+s[1];for(let m=i;m<c;m++)for(let d=p;d<l;d++){let f=m*e+d*t+u;o.set(r.subarray(f,f+s[2]),a),a+=s[2]}}function Xre(r,e,t,o,n,s,a){let i=0,p=s[0],u=s[1],c=s[2],l=p+a[0],m=u+a[1],d=c+a[2],f=s[3];for(let h=p;h<l;h++)for(let g=u;g<m;g++)for(let x=c;x<d;x++){let b=h*e+g*t+x*o+f;n.set(r.subarray(b,b+a[3]),i),i+=a[3]}}var eO={kernelName:ha,backendName:"wasm",kernelFunc:Po};function Yre(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,crops:a}=o,i=s.reduce((x,b)=>x*b),p=w.getReshaped(n.shape,s,i),u=w.getPermuted(p.length,s.length),c=w.getReshapedPermuted(n.shape,s,i),l=w.getSliceBeginCoords(a,s.length),m=w.getSliceSize(c,a,s.length),d=zt({inputs:{x:n},backend:t,attrs:{shape:p}}),f=ho({inputs:{x:d},backend:t,attrs:{perm:u}}),h=zt({inputs:{x:f},backend:t,attrs:{shape:c}}),g=Po({inputs:{x:h},backend:t,attrs:{begin:l,size:m}});return t.disposeData(d.dataId),t.disposeData(f.dataId),t.disposeData(h.dataId),g}var tO={kernelName:Js,backendName:"wasm",kernelFunc:Yre};var rO;function Qre(r){rO=r.wasm.cwrap(Jo,null,["number","number","boolean","number","number","number"])}function Zre(r){let{backend:e,inputs:t,attrs:o}=r,{x:n,weights:s}=t,{size:a}=o,i=s.shape.reduce((l,m)=>l*m,1)!==0,p=n.shape.length===1?[a]:[n.shape[0],a],u=e.makeOutput(p,s.dtype);function c(l){return e.dataIdMap.get(l.dataId).id}return rO(c(n),a,i,c(s),we[s.dtype],c(u)),u}var oO={kernelName:Jo,backendName:"wasm",setupFunc:Qre,kernelFunc:Zre};var Jre=!0,nO=Ge(qa,Jre);function eoe(r){let{inputs:e,backend:t}=r,{s0:o,s1:n}=e,s=t.typedArrayFromHeap(o),a=t.typedArrayFromHeap(n),i=w.assertAndGetBroadcastShape(Array.from(s),Array.from(a));return t.makeOutput([i.length],"int32",void 0,new Int32Array(i))}var sO={kernelName:ea,backendName:"wasm",kernelFunc:eoe};function Mr(r){let{inputs:{x:e},attrs:{dtype:t},backend:o}=r,n=o.makeOutput(e.shape,t),s=o.typedArrayFromHeap(e);return o.typedArrayFromHeap(n).set(s),n}var aO={kernelName:yo,backendName:"wasm",kernelFunc:Mr};var iO=he(en);var uO;function toe(r){uO=r.wasm.cwrap(bo,null,["number","number","number","number"])}function roe(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{clipValueMin:s,clipValueMax:a}=o,i=t.dataIdMap.get(n.dataId).id,p=t.makeOutput(n.shape,n.dtype),u=t.dataIdMap.get(p.dataId).id;return uO(i,s,a,u),p}var pO={kernelName:bo,backendName:"wasm",setupFunc:toe,kernelFunc:roe};function Pv(r){let{inputs:e,backend:t}=r,o=y.parseAxisParam(r.attrs.axis,e[0].shape)[0],n=e.map(d=>d.shape);w.assertParamsConsistent(n,o);let s=w.computeOutShape(e.map(d=>d.shape),o),a=e.filter(d=>y.sizeFromShape(d.shape)>0);if(a.length===1)return Np({inputs:{x:a[0]},backend:t});let i=t.makeOutput(s,e[0].dtype);if(y.sizeFromShape(s)===0)return i;if(a[0].dtype==="string"){let d=a.map(C=>{let k=[-1,y.sizeFromShape(C.shape.slice(o))];return zt({inputs:{x:C},backend:t,attrs:{shape:k}})}),f=d.map(C=>({vals:t.readSync(C.dataId),shape:C.shape}));s=w.computeOutShape(d.map(C=>C.shape),1);let h=d[0].shape[0]===1,g=ap(f,s,e[0].dtype,h),x=w.computeOutShape(a.map(C=>C.shape),o);i.shape=x;let b=t.dataIdMap.get(i.dataId);return b.stringBytes=w.fromStringArrayToUint8(g),d.forEach(C=>t.disposeData(C.dataId)),i}let p=y.sizeFromShape(a[0].shape.slice(0,o)),u=0,c=a.map(d=>{let f=y.sizeFromShape(d.shape.slice(o));return u+=f,f}),l=a.map(d=>t.typedArrayFromHeap(d)),m=t.typedArrayFromHeap(i);for(let d=0;d<p;d++){let f=d*u;for(let h=0;h<l.length;h++){let g=c[h],x=d*g,b=l[h].subarray(x,x+g);m.set(b,f),f+=g}}return i}var cO={kernelName:ta,backendName:"wasm",kernelFunc:Pv};var lO;function ooe(r){lO=r.wasm.cwrap(tn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function noe(r){let{inputs:e,attrs:t,backend:o}=r,{x:n,filter:s}=e,a=o.dataIdMap.get(n.dataId).id,i=o.dataIdMap.get(s.dataId).id,{strides:p,dilations:u,pad:c,dimRoundingMode:l,dataFormat:m}=t,d=w.convertConv2DDataFormat(m),f=w.computeConv2DInfo(n.shape,s.shape,p,u,c,l,!1,d),h=f.filterHeight,g=f.filterWidth,x=f.padInfo.top,b=f.padInfo.right,C=f.padInfo.bottom,S=f.padInfo.left,k=f.dilationHeight,_=f.dilationWidth,$=f.strideHeight,R=f.strideWidth,D=f.inChannels,P=f.outChannels,O=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let M=o.makeOutput(f.outShape,"float32"),L=o.dataIdMap.get(M.dataId).id;return lO(a,n.shape[0],n.shape[1],n.shape[2],i,h,g,x,b,C,S,O,k,_,$,R,D,P,L),M}var mO={kernelName:tn,backendName:"wasm",setupFunc:ooe,kernelFunc:noe};var dO;function soe(r){dO=r.wasm.cwrap(rn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function aoe(r){let{backend:e,inputs:t,attrs:o}=r,{dy:n,filter:s}=t,{strides:a,pad:i,dataFormat:p,dimRoundingMode:u,inputShape:c}=o,l=1,m=w.convertConv2DDataFormat(p),d=w.computeConv2DInfo(c,s.shape,a,l,i,u,!1,m),{batchSize:f,filterHeight:h,filterWidth:g,inChannels:x,inHeight:b,inWidth:C,outChannels:S,outHeight:k,outWidth:_,strideHeight:$,strideWidth:R}=d,D=h-1-d.padInfo.top,P=g-1-d.padInfo.left,O=d.dataFormat==="channelsLast",M=y.computeStrides(d.inShape),L=y.computeStrides(n.shape),[B,z,U]=y.computeStrides(s.shape),j=M[0],q=O?M[1]:M[2],Y=O?M[2]:1,J=O?1:M[1],re=L[0],ne=O?L[1]:L[2],ee=O?L[2]:1,oe=O?1:L[1],ie=e.makeOutput(d.inShape,"float32"),le=e.dataIdMap.get(ie.dataId).id,be=e.dataIdMap.get(n.dataId).id,_e=e.dataIdMap.get(s.dataId).id;return dO(be,_e,f,h,g,b,C,x,k,_,S,$,R,D,P,B,z,U,j,q,Y,J,re,ne,ee,oe,le),ie}var fO={kernelName:rn,backendName:"wasm",setupFunc:soe,kernelFunc:aoe};var hO;function ioe(r){hO=r.wasm.cwrap(on,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function uoe(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:p}=o;if(n.dtype!=="float32")throw new Error(`Tensor x must have dtype float32, got ${n.dtype}`);if(s.dtype!=="float32")throw new Error(`Tensor filter must have dtype float32, got ${s.dtype}`);let u=w.computeConv3DInfo(n.shape,s.shape,a,p,i),c=t.makeOutput(u.outShape,n.dtype);return hO(t.dataIdMap.get(n.dataId).id,t.dataIdMap.get(s.dataId).id,t.dataIdMap.get(c.dataId).id,u.batchSize,u.inDepth,u.inHeight,u.inWidth,u.inChannels,u.outDepth,u.outHeight,u.outWidth,u.outChannels,u.strideDepth,u.strideHeight,u.strideWidth,u.dilationDepth,u.dilationHeight,u.dilationWidth,u.filterDepth,u.filterHeight,u.filterWidth,u.padInfo.front,u.padInfo.top,u.padInfo.left),c}var gO={kernelName:on,backendName:"wasm",setupFunc:ioe,kernelFunc:uoe};var xO;function poe(r){xO=r.wasm.cwrap(ja,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function coe(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,pad:i,filterShape:p}=o;if(n.dtype!=="float32")throw new Error(`Tensor dy must have dtype float32, got ${n.dtype}`);if(s.dtype!=="float32")throw new Error(`Tensor filter must have dtype float32, got ${s.dtype}`);let u=w.computeConv3DInfo(n.shape,p,a,1,i),c=t.makeOutput(u.filterShape,s.dtype);return xO(t.dataIdMap.get(n.dataId).id,t.dataIdMap.get(s.dataId).id,t.dataIdMap.get(c.dataId).id,u.batchSize,u.inDepth,u.inHeight,u.inWidth,u.inChannels,u.outDepth,u.outHeight,u.outWidth,u.outChannels,u.strideDepth,u.strideHeight,u.strideWidth,u.dilationDepth,u.dilationHeight,u.dilationWidth,u.filterDepth,u.filterHeight,u.filterWidth,u.padInfo.front,u.padInfo.top,u.padInfo.left),c}var yO={kernelName:ja,backendName:"wasm",setupFunc:poe,kernelFunc:coe};var bO;function loe(r){bO=r.wasm.cwrap(nn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function moe(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{pad:a,strides:i,inputShape:p}=o;if(n.dtype!=="float32")throw new Error(`Tensor dy must have dtype float32, got ${n.dtype}`);if(s.dtype!=="float32")throw new Error(`Tensor filter must have dtype float32, got ${s.dtype}`);let u=w.computeConv3DInfo(p,s.shape,i,1,a),c=t.makeOutput(u.inShape,n.dtype);return bO(t.dataIdMap.get(s.dataId).id,t.dataIdMap.get(n.dataId).id,t.dataIdMap.get(c.dataId).id,u.batchSize,u.inDepth,u.inHeight,u.inWidth,u.inChannels,u.outDepth,u.outHeight,u.outWidth,u.outChannels,u.strideDepth,u.strideHeight,u.strideWidth,u.dilationDepth,u.dilationHeight,u.dilationWidth,u.filterDepth,u.filterHeight,u.filterWidth,u.padInfo.front,u.padInfo.top,u.padInfo.left),c}var CO={kernelName:nn,backendName:"wasm",setupFunc:loe,kernelFunc:moe};var wO=he(sn);var SO=he(an);var Ov;(function(r){r[r.bilinear=0]="bilinear",r[r.nearest=1]="nearest"})(Ov||(Ov={}));var IO;function doe(r){IO=r.wasm.cwrap(cn,null,["number","number","number","number","array","number","number","number","number","number"])}function foe(r){let{backend:e,inputs:t,attrs:o}=r,{method:n,extrapolationValue:s,cropSize:a}=o,{image:i,boxes:p,boxInd:u}=t,c=p.shape[0],[l,m]=a,d=[c,l,m,i.shape[3]],f=e.dataIdMap.get(i.dataId),h;i.dtype!=="float32"&&(h=Mr({backend:e,inputs:{x:i},attrs:{dtype:"float32"}}),f=e.dataIdMap.get(h.dataId));let g=f.id,x=e.dataIdMap.get(p.dataId).id,b=e.dataIdMap.get(u.dataId).id,C=e.makeOutput(d,"float32"),S=e.dataIdMap.get(C.dataId).id,k=new Uint8Array(new Int32Array(i.shape).buffer);return IO(g,x,b,c,k,l,m,Ov[n],s,S),h!=null&&e.disposeData(h.dataId),C}var vO={kernelName:cn,backendName:"wasm",setupFunc:doe,kernelFunc:foe};var kO;function hoe(r){kO=r.wasm.cwrap(un,null,["number","number","number","number","number","number"])}function goe(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,exclusive:a,reverse:i}=o,p=n.shape.length;y.assert(n.dtype==="float32"||n.dtype==="int32",()=>`cumprod does not support ${n.dtype} tensors in the WASM backend`);let u=w.getAxesPermutation([s],p),c=n;u!==null&&(c=ho({inputs:{x:n},attrs:{perm:u},backend:t}));let l=w.getInnerMostAxes(1,p)[0];w.assertAxesAreInnerMostDims("cumprod",[l],p);let m=t.makeOutput(c.shape,c.dtype),d=c.shape[l],f=t.dataIdMap.get(c.dataId).id,h=t.dataIdMap.get(m.dataId).id;kO(f,a?1:0,i?1:0,d,h,we[n.dtype]);let g=m;if(u!==null){let x=w.getUndoAxesPermutation(u);g=ho({inputs:{x:m},attrs:{perm:x},backend:t}),t.disposeData(c.dataId),t.disposeData(m.dataId)}return g}var NO={kernelName:un,backendName:"wasm",setupFunc:hoe,kernelFunc:goe};var TO;function xoe(r){TO=r.wasm.cwrap(pn,null,["number","number","number","number","number","number"])}function yoe(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,exclusive:a,reverse:i}=o,p=n.shape.length;y.assert(n.dtype==="float32"||n.dtype==="int32",()=>`cumsum does not support ${n.dtype} tensors in the WASM backend`);let u=w.getAxesPermutation([s],p),c=n;u!==null&&(c=ho({inputs:{x:n},attrs:{perm:u},backend:t}));let l=w.getInnerMostAxes(1,p)[0];w.assertAxesAreInnerMostDims("cumsum",[l],p);let m=t.makeOutput(c.shape,c.dtype),d=c.shape[l],f=t.dataIdMap.get(c.dataId).id,h=t.dataIdMap.get(m.dataId).id;TO(f,a?1:0,i?1:0,d,h,we[n.dtype]);let g=m;if(u!==null){let x=w.getUndoAxesPermutation(u);g=ho({inputs:{x:m},attrs:{perm:x},backend:t}),t.disposeData(c.dataId),t.disposeData(m.dataId)}return g}var _O={kernelName:pn,backendName:"wasm",setupFunc:xoe,kernelFunc:yoe};var EO;function boe(r){EO=r.wasm.cwrap("DenseBincount",null,["number","array","number","number","boolean","number","number","boolean","number"])}function Coe(r){let{backend:e,inputs:t,attrs:o}=r,{x:n,weights:s}=t,{size:a,binaryOutput:i}=o,p=s.shape.reduce((m,d)=>m*d,1)!==0,u=n.shape.length===1?[a]:[n.shape[0],a],c=e.makeOutput(u,s.dtype);function l(m){return e.dataIdMap.get(m.dataId).id}return EO(l(n),new Uint8Array(new Int32Array(n.shape).buffer),n.shape.length,a,p,l(s),we[s.dtype],i,l(c)),c}var $O={kernelName:ra,backendName:"wasm",setupFunc:boe,kernelFunc:Coe};var RO;function woe(r){RO=r.wasm.cwrap(ln,null,["number","number","number","array","number","array","array","number","number"])}function Soe(r){let{backend:e,inputs:t,attrs:o}=r,{x:n}=t,{blockSize:s,dataFormat:a}=o,i=n.shape[0],p=a==="NHWC"?n.shape[1]:n.shape[2],u=a==="NHWC"?n.shape[2]:n.shape[3],c=a==="NHWC"?n.shape[3]:n.shape[1],l=p*s,m=u*s,d=c/(s*s),f=a==="NHWC"?[i,l,m,d]:[i,d,l,m],h=e.makeOutput(f,"float32"),x=e.dataIdMap.get(n.dataId).id,b=new Uint8Array(new Int32Array(y.computeStrides(n.shape)).buffer),C=new Uint8Array(new Int32Array(f).buffer),S=new Uint8Array(new Int32Array(y.computeStrides(f)).buffer),k=e.dataIdMap.get(h.dataId).id;return RO(x,s,a==="NHWC"?1:0,b,n.shape.length-1,C,S,f.length,k),h}var DO={kernelName:ln,backendName:"wasm",setupFunc:woe,kernelFunc:Soe};var AO;function Ioe(r){AO=r.wasm.cwrap(mn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function voe(r){let{inputs:e,attrs:t,backend:o}=r,{x:n,filter:s}=e,a=o.dataIdMap.get(n.dataId).id,i=o.dataIdMap.get(s.dataId).id,{strides:p,dilations:u,pad:c,dimRoundingMode:l}=t,m=u==null?[1,1]:u,d=w.computeConv2DInfo(n.shape,s.shape,p,m,c,l,!0),f=d.filterHeight,h=d.filterWidth,g=d.padInfo.top,x=d.padInfo.right,b=d.padInfo.bottom,C=d.padInfo.left,S=d.dilationHeight,k=d.dilationWidth,_=d.strideHeight,$=d.strideWidth,R=d.inChannels,D=d.outChannels,P=d.padInfo.type==="SAME"?1:0;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);let O=o.makeOutput(d.outShape,"float32"),M=o.dataIdMap.get(O.dataId).id;return AO(a,n.shape[0],n.shape[1],n.shape[2],i,f,h,g,x,b,C,P,S,k,_,$,R,D,M),O}var FO={kernelName:mn,backendName:"wasm",setupFunc:Ioe,kernelFunc:voe};var PO;function koe(r){PO=r.wasm.cwrap("Diag",null,["number","number","number","number"])}function Noe(r){let{inputs:e,backend:t}=r,{x:o}=e,n=y.sizeFromShape(o.shape),s=t.makeOutput([...o.shape,...o.shape],o.dtype);return PO(t.dataIdMap.get(o.dataId).id,we[o.dtype],n,t.dataIdMap.get(s.dataId).id),s}var OO={kernelName:oa,backendName:"wasm",setupFunc:koe,kernelFunc:Noe};var MO;function Toe(r){MO=r.wasm.cwrap(dn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function _oe(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:p}=o;if(n.dtype!==s.dtype)throw new Error(`Dilation2D error: x must have the same dtype as filter. Got ${n.dtype} and ${s.dtype}`);let u=w.computeDilation2DInfo(n.shape,s.shape,a,i,"NHWC",p),c=t.makeOutput(u.outShape,n.dtype);return MO(t.dataIdMap.get(n.dataId).id,t.dataIdMap.get(s.dataId).id,t.dataIdMap.get(c.dataId).id,we[n.dtype],u.batchSize,u.inChannels,u.inHeight,u.inWidth,u.outHeight,u.outWidth,u.strideHeight,u.strideWidth,u.dilationHeight,u.dilationWidth,u.filterHeight,u.filterWidth,u.padInfo.top,u.padInfo.left),c}var LO={kernelName:dn,backendName:"wasm",setupFunc:Toe,kernelFunc:_oe};var BO;function Eoe(r){BO=r.wasm.cwrap(Li,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function $oe(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,dy:a}=e,{strides:i,pad:p,dilations:u}=o;if(n.dtype!==s.dtype||n.dtype!==a.dtype)throw new Error(`Dilation2DBackpropFilter error: x must have the same dtype as filter and dy. Got ${n.dtype}, ${s.dtype}, and ${a.dtype}`);let c=w.computeDilation2DInfo(n.shape,s.shape,i,p,"NHWC",u),l=t.makeOutput(s.shape,s.dtype);return BO(t.dataIdMap.get(n.dataId).id,t.dataIdMap.get(s.dataId).id,t.dataIdMap.get(a.dataId).id,t.dataIdMap.get(l.dataId).id,we[n.dtype],c.batchSize,c.inChannels,c.inHeight,c.inWidth,c.outHeight,c.outWidth,c.strideHeight,c.strideWidth,c.dilationHeight,c.dilationWidth,c.filterHeight,c.filterWidth,c.padInfo.top,c.padInfo.left),l}var zO={kernelName:Li,backendName:"wasm",setupFunc:Eoe,kernelFunc:$oe};var VO;function Roe(r){VO=r.wasm.cwrap(Mi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Doe(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,dy:a}=e,{strides:i,pad:p,dilations:u}=o;if(n.dtype!==s.dtype||n.dtype!==a.dtype)throw new Error(`Dilation2DBackpropInput error: x must have the same dtype as filter and dy. Got ${n.dtype}, ${s.dtype}, and ${a.dtype}`);let c=w.computeDilation2DInfo(n.shape,s.shape,i,p,"NHWC",u),l=t.makeOutput(n.shape,n.dtype);return VO(t.dataIdMap.get(n.dataId).id,t.dataIdMap.get(s.dataId).id,t.dataIdMap.get(a.dataId).id,t.dataIdMap.get(l.dataId).id,we[n.dtype],c.batchSize,c.inChannels,c.inHeight,c.inWidth,c.outHeight,c.outWidth,c.strideHeight,c.strideWidth,c.dilationHeight,c.dilationWidth,c.filterHeight,c.filterWidth,c.padInfo.top,c.padInfo.left),l}var WO={kernelName:Mi,backendName:"wasm",setupFunc:Roe,kernelFunc:Doe};var UO=he(hn);var GO;function Aoe(r){GO=r.wasm.cwrap(Xa,null,["number","number","number"])}function Foe(r){let{inputs:e,backend:t}=r,{dy:o,y:n}=e,s=t.makeOutput(n.shape,"float32"),a=i=>t.dataIdMap.get(i.dataId).id;return GO(a(n),a(o),a(s)),s}var HO={kernelName:Xa,backendName:"wasm",setupFunc:Aoe,kernelFunc:Foe};var Poe=!1,KO=Ge(xn,Poe,"bool");var qO=he(gn);var jO=he(yn,"float32");function Lg(r){let{inputs:e,attrs:t,backend:o}=r,{input:n}=e,{dim:s}=t,a=n.shape.length,i=n.shape.slice(),p=s;return s<0&&(y.assert(-(a+1)<=s,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),p=a+s+1),i.splice(p,0,1),zt({inputs:{x:n},backend:o,attrs:{shape:i}})}var XO={kernelName:na,backendName:"wasm",kernelFunc:Lg};var YO=he(bn,"float32");function Mv(r){let{attrs:{shape:e,value:t},backend:o}=r,{attrs:{dtype:n}}=r;n=n||y.inferDtype(t);let s=o.makeOutput(e,n);return o.typedArrayFromHeap(s).fill(t),s}var QO={kernelName:sa,backendName:"wasm",kernelFunc:Mv};var ZO;function Ooe(r){ZO=r.wasm.cwrap(Cn,null,["number","number","number","number","number","number"])}function Moe(r){let{inputs:e,backend:t}=r,{image:o}=e,n=t.makeOutput(o.shape,o.dtype),s=t.dataIdMap.get(o.dataId).id,a=t.dataIdMap.get(n.dataId).id,[i,p,u,c]=o.shape;return ZO(s,i,p,u,c,a),n}var JO={kernelName:Cn,backendName:"wasm",kernelFunc:Moe,setupFunc:Ooe};var eM=he(wn);var Loe=!1,tM=Ge(Sn,Loe);var rM;function Boe(r){rM=r.wasm.cwrap(In,null,["number","number","number","number","number","number","number"])}function zoe(r){let{backend:e,inputs:t,attrs:o}=r,{varianceEpsilon:n}=o,{x:s,mean:a,variance:i,offset:p,scale:u}=t,c=e.dataIdMap.get(s.dataId).id,l=e.dataIdMap.get(a.dataId).id,m=e.dataIdMap.get(i.dataId).id,d=p!=null?e.dataIdMap.get(p.dataId).id:0,f=u!=null?e.dataIdMap.get(u.dataId).id:0,h=e.makeOutput(s.shape,s.dtype);if(y.sizeFromShape(s.shape)===0)return h;let g=e.dataIdMap.get(h.dataId).id;return rM(c,l,m,d,f,n,g),h}var oM={kernelName:In,backendName:"wasm",setupFunc:Boe,kernelFunc:zoe};var nM;function Voe(r){nM=r.wasm.cwrap(Io,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Woe(r){let{inputs:e,attrs:t,backend:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:p,pad:u,dilations:c,dataFormat:l,dimRoundingMode:m,activation:d,leakyreluAlpha:f}=t,h=w.computeConv2DInfo(n.shape,s.shape,p,c,u,m),g=wu[d];if(g==null)throw new Error(`${d} activation not yet supported for FusedConv2D in the wasm backend.`);let x=o.dataIdMap.get(n.dataId).id,b=o.dataIdMap.get(s.dataId).id,C=h.outChannels,S=0;if(a!=null){let ee=o.dataIdMap.get(a.dataId);if(ee.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ee.shape.length}.`);if(ee.shape[0]!==C)throw new Error(`FusedConv2D bias shape (${ee.shape}) does not match the number of output channels (${C})`);S=ee.id}let k=h.filterHeight,_=h.filterWidth,$=h.padInfo.top,R=h.padInfo.right,D=h.padInfo.bottom,P=h.padInfo.left,O=h.dilationHeight,M=h.dilationWidth,L=h.strideHeight,B=h.strideWidth,z=h.inChannels,U=h.padInfo.type==="SAME"?1:0,j=h.batchSize,q=h.inHeight,Y=h.inWidth;if(l!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${l}'. Please use 'NHWC'.`);let J=o.makeOutput(h.outShape,"float32"),re=o.dataIdMap.get(J.dataId).id,ne=i==null?0:o.dataIdMap.get(i.dataId).id;return nM(x,j,q,Y,b,k,_,S,$,R,D,P,U,O,M,L,B,z,C,g,ne,f||0,re),J}var sM={kernelName:Io,backendName:"wasm",setupFunc:Voe,kernelFunc:Woe};var aM;function Uoe(r){aM=r.wasm.cwrap(vo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Goe(r){let{inputs:e,attrs:t,backend:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:p,pad:u,dilations:c,dataFormat:l,dimRoundingMode:m,activation:d,leakyreluAlpha:f}=t,h=w.computeConv2DInfo(n.shape,s.shape,p,c,u,m,!0),g=wu[d];if(g==null)throw new Error(`${d} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let x=o.dataIdMap.get(n.dataId).id,b=o.dataIdMap.get(s.dataId).id,C=h.outChannels,S=0;if(a!=null){let ee=o.dataIdMap.get(a.dataId);if(ee.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ee.shape.length}.`);if(ee.shape[0]!==C)throw new Error(`FusedDepthwiseConv2D bias shape (${ee.shape}) does not match the number of output channels (${C})`);S=ee.id}let k=h.filterHeight,_=h.filterWidth,$=h.padInfo.top,R=h.padInfo.right,D=h.padInfo.bottom,P=h.padInfo.left,O=h.dilationHeight,M=h.dilationWidth,L=h.strideHeight,B=h.strideWidth,z=h.inChannels,U=h.padInfo.type==="SAME"?1:0,j=h.batchSize,q=h.inHeight,Y=h.inWidth;if(l!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${l}'. Please use 'NHWC'.`);let J=o.makeOutput(h.outShape,"float32"),re=o.dataIdMap.get(J.dataId).id,ne=i==null?0:o.dataIdMap.get(i.dataId).id;return aM(x,j,q,Y,b,k,_,S,$,R,D,P,U,O,M,L,B,z,C,g,ne,f||0,re),J}var iM={kernelName:vo,backendName:"wasm",setupFunc:Uoe,kernelFunc:Goe};var uM;function Hoe(r){uM=r.wasm.cwrap(vn,null,["number","number","number","number","number","number","array","number"])}function Koe(r){let{backend:e,inputs:t}=r,{params:o,indices:n}=t,[s,a,i,p]=af.prepareAndValidate(o,n),u=e.makeOutput(s,o.dtype);if(a===0)return u;let c=n.shape,l=c[c.length-1],d=e.dataIdMap.get(o.dataId).id,h=e.dataIdMap.get(n.dataId).id,g=new Uint8Array(new Int32Array(p).buffer),x=e.dataIdMap.get(u.dataId).id;return uM(d,we[o.dtype],h,a,l,i,g,x),u}var pM={kernelName:vn,backendName:"wasm",setupFunc:Hoe,kernelFunc:Koe};var cM;function qoe(r){cM=r.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function joe(r){let{backend:e,inputs:t,attrs:o}=r,{x:n,indices:s}=t,{axis:a,batchDims:i}=o,p=y.parseAxisParam(a,n.shape)[0],u=e.readSync(s.dataId),c=n.shape[p];for(let D=0;D<u.length;++D){let P=u[D];y.assert(P<=c-1&&P>=0,()=>`GatherV2: the index value ${P} is not in [0, ${c-1}]`)}let l=w.segment_util.collectGatherOpShapeInfo(n,s,p,i),m=zt({inputs:{x:n},attrs:{shape:[l.batchSize,l.outerSize,l.dimSize,l.sliceSize]},backend:e}),d=y.sizeFromShape(s.shape),f=zt({inputs:{x:s},attrs:{shape:[l.batchSize,d/l.batchSize]},backend:e}),h=[l.batchSize,l.outerSize,d/l.batchSize,l.sliceSize],g=e.makeOutput(h,n.dtype);if(y.sizeFromShape(n.shape)===0)return g;let x=m.shape.length-1,C=e.dataIdMap.get(m.dataId).id,k=e.dataIdMap.get(f.dataId).id,_=e.dataIdMap.get(g.dataId).id,$=new Uint8Array(new Int32Array(y.computeStrides(m.shape)).buffer),R=new Uint8Array(new Int32Array(y.computeStrides(h)).buffer);return cM(C,we[n.dtype],$,x,k,l.batchSize,R,_),e.disposeData(m.dataId),e.disposeData(f.dataId),g.shape=l.outputShape,g}var lM={kernelName:aa,backendName:"wasm",setupFunc:qoe,kernelFunc:joe};var Xoe=!1,mM=Ge(kn,Xoe,"bool");var Yoe=!1,dM=Ge(Nn,Yoe,"bool");var fM=he(Tn,"bool");var hM=he(_n,"bool");var gM=he(En,"bool");var xM;function Qoe(r){xM=r.wasm.cwrap($n,null,["number","number","number","number"])}function Zoe(r){let{inputs:{x:e},attrs:{alpha:t},backend:o}=r,n=o.dataIdMap.get(e.dataId).id,s=o.makeOutput(e.shape,"float32");if(y.sizeFromShape(e.shape)!==0){let a=o.dataIdMap.get(s.dataId).id;xM(n,we[e.dtype],t,a)}return s}var yM={kernelName:$n,backendName:"wasm",setupFunc:Qoe,kernelFunc:Zoe};var Joe=!1,bM=Ge(Rn,Joe,"bool");var ene=!1,CM=Ge(Dn,ene,"bool");var wM;function tne(r){wM=r.wasm.cwrap(An,null,["number","number","number","number"])}function rne(r){let{attrs:e,backend:t}=r,{start:o,stop:n,num:s}=e,a=Math.floor(s),i=t.makeOutput([a],"float32");return wM(t.dataIdMap.get(i.dataId).id,o,n,a),i}var SM={kernelName:An,backendName:"wasm",setupFunc:tne,kernelFunc:rne};var IM=he(Fn);var vM=he(Pn);var one=!1,kM=Ge(On,one,"bool");var NM=he(Mn);var nne=!1,TM=Ge(Ln,nne,"bool");var sne=!1,_M=Ge(R0,sne,"bool");var EM;function ane(r){EM=r.wasm.cwrap(Bn,null,["number","number","number","number","number","number","number"])}function ine(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{depthRadius:s,bias:a,alpha:i,beta:p}=o;if(n.dtype!=="float32")throw new Error("LRN error: x must have dtype float32");let u=t.makeOutput(n.shape,n.dtype);return EM(t.dataIdMap.get(n.dataId).id,t.dataIdMap.get(u.dataId).id,n.shape[3],s,a,i,p),u}var $M={kernelName:Bn,backendName:"wasm",setupFunc:ane,kernelFunc:ine};var RM;function une(r){RM=r.wasm.cwrap(Ya,null,["number","number","number","number","number","number","number","number","number"])}function pne(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,y:s,dy:a}=e,{depthRadius:i,bias:p,alpha:u,beta:c}=o;if(n.dtype!=="float32"||s.dtype!=="float32"||a.dtype!=="float32")throw new Error("LRNGrad error: x, y, and dy must have dtype float32");let l=t.makeOutput(n.shape,n.dtype);return RM(t.dataIdMap.get(n.dataId).id,t.dataIdMap.get(s.dataId).id,t.dataIdMap.get(a.dataId).id,t.dataIdMap.get(l.dataId).id,a.shape[3],i,p,u,c),l}var DM={kernelName:Ya,backendName:"wasm",setupFunc:une,kernelFunc:pne};var AM;function cne(r){AM=r.wasm.cwrap(zn,null,["number","number","number","number"])}function lne(r){let{backend:e,inputs:t,attrs:o}=r,{reductionIndices:n,keepDims:s}=o,{x:a}=t,p=e.dataIdMap.get(a.dataId).id,u=a,{transposed:c,axes:l,originalAxes:m,inputWasTransposed:d}=Tr(a,n,e);if(d){let C=e.dataIdMap.get(c.dataId).id;u=c,p=C}let f=u.shape.length;w.assertAxesAreInnerMostDims("max",l,f);let[h,g]=w.computeOutAndReduceShapes(u.shape,l),x=y.sizeFromShape(g),b=e.makeOutput(h,a.dtype);if(y.sizeFromShape(u.shape)!==0){let C=e.dataIdMap.get(b.dataId).id;AM(p,we[a.dtype],x,C)}if(d&&e.disposeData(c.dataId),s){let C=w.expandShapeToKeepDim(b.shape,m);b.shape=C}return b}var FM={kernelName:zn,backendName:"wasm",setupFunc:cne,kernelFunc:lne};var mne=!1,PM=Ge(Vn,mne);var OM;function dne(r){OM=r.wasm.cwrap(Wn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function fne(r){let{inputs:e,attrs:t,backend:o}=r,n=e.x,s=o.dataIdMap.get(n.dataId).id;y.assert(n.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${n.dtype}.`);let{filterSize:a,strides:i,pad:p,dimRoundingMode:u}=t,c=w.computePool2DInfo(n.shape,a,i,1,p,u),l=c.filterHeight,m=c.filterWidth,d=c.padInfo.top,f=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,x=c.dilationHeight,b=c.dilationWidth,C=c.strideHeight,S=c.strideWidth,k=c.inChannels,_=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let $=o.makeOutput(c.outShape,"float32"),R=o.dataIdMap.get($.dataId).id;return OM(s,n.shape[0],n.shape[1],n.shape[2],l,m,d,f,h,g,x,b,C,S,k,_,R),$}var MM={kernelName:Wn,backendName:"wasm",setupFunc:dne,kernelFunc:fne};var LM;function hne(r){LM=r.wasm.cwrap("MaxPool3D",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function gne(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:p,dataFormat:u}=o,c=w.computePool3DInfo(n.shape,s,a,1,i,p,u),l=t.makeOutput(c.outShape,n.dtype);return LM(t.dataIdMap.get(n.dataId).id,t.dataIdMap.get(l.dataId).id,c.batchSize,c.inChannels,c.inDepth,c.inHeight,c.inWidth,c.outDepth,c.outHeight,c.outWidth,c.strideDepth,c.strideHeight,c.strideWidth,c.dilationDepth,c.dilationHeight,c.dilationWidth,c.effectiveFilterDepth,c.effectiveFilterHeight,c.effectiveFilterWidth,c.padInfo.front,c.padInfo.top,c.padInfo.left),l}var BM={kernelName:ia,backendName:"wasm",setupFunc:hne,kernelFunc:gne};var zM;function xne(r){zM=r.wasm.cwrap("MaxPool3DGrad",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function yne(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,{filterSize:a,strides:i,pad:p,dimRoundingMode:u}=o,c=w.computePool3DInfo(s.shape,a,i,1,p,u),l=t.makeOutput(s.shape,s.dtype);return zM(t.dataIdMap.get(s.dataId).id,t.dataIdMap.get(n.dataId).id,t.dataIdMap.get(l.dataId).id,c.batchSize,c.inChannels,c.inDepth,c.inHeight,c.inWidth,c.outDepth,c.outHeight,c.outWidth,c.strideDepth,c.strideHeight,c.strideWidth,c.dilationDepth,c.dilationHeight,c.dilationWidth,c.effectiveFilterDepth,c.effectiveFilterHeight,c.effectiveFilterWidth,c.padInfo.front,c.padInfo.top,c.padInfo.left),l}var VM={kernelName:Gi,backendName:"wasm",setupFunc:xne,kernelFunc:yne};var WM;function bne(r){WM=r.wasm.cwrap("MaxPoolGrad",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Cne(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,{filterSize:a,strides:i,pad:p,dimRoundingMode:u}=o,c=w.computePool2DInfo(s.shape,a,i,1,p,u),l=t.makeOutput(s.shape,s.dtype);return WM(t.dataIdMap.get(s.dataId).id,t.dataIdMap.get(n.dataId).id,t.dataIdMap.get(l.dataId).id,c.batchSize,c.inChannels,c.inHeight,c.inWidth,c.outHeight,c.outWidth,c.strideHeight,c.strideWidth,c.dilationHeight,c.dilationWidth,c.effectiveFilterHeight,c.effectiveFilterWidth,c.padInfo.top,c.padInfo.left),l}var UM={kernelName:Ui,backendName:"wasm",setupFunc:bne,kernelFunc:Cne};var GM;function wne(r){GM=r.wasm.cwrap("MaxPoolWithArgmax",null,["number","number","number","number","boolean","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Sne(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,includeBatchInIndex:p}=o;y.assert(n.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${n.shape.length}.`);let u=[1,1];y.assert(w.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=w.computePool2DInfo(n.shape,s,a,[1,1],i),l=t.makeOutput(c.outShape,n.dtype),m=t.makeOutput(c.outShape,"int32");return GM(t.dataIdMap.get(n.dataId).id,t.dataIdMap.get(l.dataId).id,t.dataIdMap.get(m.dataId).id,we[n.dtype],p,c.batchSize,c.inChannels,c.inHeight,c.inWidth,c.outHeight,c.outWidth,c.strideHeight,c.strideWidth,c.dilationHeight,c.dilationWidth,c.effectiveFilterHeight,c.effectiveFilterWidth,c.padInfo.top,c.padInfo.left),[l,m]}var HM={kernelName:ua,backendName:"wasm",setupFunc:wne,kernelFunc:Sne};var KM;function Ine(r){KM=r.wasm.cwrap(Un,null,["number, number, number"])}function vne(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n,keepDims:s}=o,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,p=i,u=a,{transposed:c,axes:l,originalAxes:m,inputWasTransposed:d}=Tr(a,n,e),f=l;if(d){let S=e.dataIdMap.get(c.dataId).id;S!==i&&(u=c,p=S,f=w.getInnerMostAxes(f.length,u.shape.length))}w.assertAxesAreInnerMostDims("mean",f,u.shape.length);let[h,g]=w.computeOutAndReduceShapes(u.shape,f),x=y.sizeFromShape(g),b=u;u.dtype!=="float32"&&(b=Mr({backend:e,inputs:{x:u},attrs:{dtype:"float32"}}),p=e.dataIdMap.get(b.dataId).id);let C=e.makeOutput(h,"float32");if(y.sizeFromShape(u.shape)!==0){let S=e.dataIdMap.get(C.dataId).id;KM(p,x,S)}if(d&&e.disposeData(c.dataId),s){let S=w.expandShapeToKeepDim(C.shape,m);C.shape=S}return u.dtype!=="float32"&&e.disposeData(b.dataId),C}var qM={kernelName:Un,backendName:"wasm",setupFunc:Ine,kernelFunc:vne};var jM;function kne(r){jM=r.wasm.cwrap(Gn,null,["number","number","number","number"])}function Nne(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n,keepDims:s}=o,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,p=i,u=a,{transposed:c,axes:l,originalAxes:m,inputWasTransposed:d}=Tr(a,n,e);if(d){let C=e.dataIdMap.get(c.dataId).id;C!==i&&(u=c,p=C)}let f=u.shape.length;w.assertAxesAreInnerMostDims("min",l,f);let[h,g]=w.computeOutAndReduceShapes(u.shape,l),x=y.sizeFromShape(g),b=e.makeOutput(h,u.dtype);if(y.sizeFromShape(u.shape)!==0){let C=e.dataIdMap.get(b.dataId).id;jM(p,we[a.dtype],x,C)}if(d&&e.disposeData(c.dataId),s){let C=w.expandShapeToKeepDim(b.shape,m);b.shape=C}return b}var XM={kernelName:Gn,backendName:"wasm",setupFunc:kne,kernelFunc:Nne};var Tne=!1,YM=Ge(Hn,Tne);var Lv;(function(r){r[r.reflect=0]="reflect",r[r.symmetric=1]="symmetric"})(Lv||(Lv={}));var QM;function _ne(r){QM=r.wasm.cwrap(Kn,null,["number","array","number","number","array","array","number","number"])}function Ene(r){let{inputs:{x:e},backend:t,attrs:{paddings:o,mode:n}}=r,s=o.map((f,h)=>f[0]+e.shape[h]+f[1]),a=t.dataIdMap.get(e.dataId).id,i=t.makeOutput(s,e.dtype),p=t.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(e.shape).buffer),c=o.map(f=>f[0]),l=o.map(f=>f[1]),m=new Uint8Array(new Int32Array(c).buffer),d=new Uint8Array(new Int32Array(l).buffer);return QM(a,u,e.shape.length,we[e.dtype],m,d,Lv[n],p),i}var ZM={kernelName:Kn,backendName:"wasm",kernelFunc:Ene,setupFunc:_ne};var JM;function $ne(r){JM=r.wasm.cwrap(Is,null,["number","number","number","number"])}function Bv(r){let{backend:e,inputs:{logits:t},attrs:{dim:o}}=r,n=e.dataIdMap.get(t.dataId).id,s=e.makeOutput(t.shape,t.dtype),a=e.dataIdMap.get(s.dataId).id,i=t.shape[o],p=y.sizeFromShape(t.shape)/i;return y.sizeFromShape(s.shape)===0||JM(n,a,i,p),s}var eL={kernelName:Is,backendName:"wasm",setupFunc:$ne,kernelFunc:Bv};var tL;function Rne(r){tL=r.wasm.cwrap(jn,null,["number","number","number","number","number","number"])}function Dne(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{numSamples:s,seed:a,normalized:i}=o;if(n.dtype!=="float32")throw new Error(`Tensor logits must have dtype float32, got ${n.dtype}`);let p=i?n:Bv({inputs:{logits:n},backend:t,attrs:{dim:n.shape.length-1}}),[u,c]=p.shape,l=t.makeOutput([u,s],"int32");return tL(t.dataIdMap.get(p.dataId).id,u,c,s,a,t.dataIdMap.get(l.dataId).id),i||t.disposeData(p.dataId),l}var rL={kernelName:jn,backendName:"wasm",setupFunc:Rne,kernelFunc:Dne};var oL=Ge(qn,!0);var Ane=!0,nL=Ge(Xn,Ane);var sL=he(pa);function qc(r,e){let t=new Int32Array(r.wasm.HEAPU8.buffer,e,4),o=t[0],n=t[1],s=t[2],a=t[3];return r.wasm._free(e),{pSelectedIndices:o,selectedSize:n,pSelectedScores:s,pValidOutputs:a}}var aL;function Fne(r){aL=r.wasm.cwrap(Qn,"number",["number","number","number","number","number"])}function Pne(r){let{backend:e,inputs:t,attrs:o}=r,{iouThreshold:n,maxOutputSize:s,scoreThreshold:a}=o,{boxes:i,scores:p}=t,u=e.dataIdMap.get(i.dataId).id,c=e.dataIdMap.get(p.dataId).id,l=aL(u,c,s,n,a),{pSelectedIndices:m,selectedSize:d,pSelectedScores:f,pValidOutputs:h}=qc(e,l);return e.wasm._free(f),e.wasm._free(h),e.makeOutput([d],"int32",m)}var iL={kernelName:Qn,backendName:"wasm",setupFunc:Fne,kernelFunc:Pne};var uL;function One(r){uL=r.wasm.cwrap(Qa,"number",["number","number","number","number","number","bool"])}function Mne(r){let{backend:e,inputs:t,attrs:o}=r,{iouThreshold:n,maxOutputSize:s,scoreThreshold:a,padToMaxOutputSize:i}=o,{boxes:p,scores:u}=t,c=e.dataIdMap.get(p.dataId).id,l=e.dataIdMap.get(u.dataId).id,m=uL(c,l,s,n,a,i),{pSelectedIndices:d,selectedSize:f,pSelectedScores:h,pValidOutputs:g}=qc(e,m);e.wasm._free(h);let x=e.makeOutput([f],"int32",d),b=e.makeOutput([],"int32",g);return[x,b]}var pL={kernelName:Qa,backendName:"wasm",setupFunc:One,kernelFunc:Mne};var cL;function Lne(r){cL=r.wasm.cwrap(Zn,"number",["number","number","number","number","number","number"])}function Bne(r){let{backend:e,inputs:t,attrs:o}=r,{iouThreshold:n,maxOutputSize:s,scoreThreshold:a,softNmsSigma:i}=o,{boxes:p,scores:u}=t,c=e.dataIdMap.get(p.dataId).id,l=e.dataIdMap.get(u.dataId).id,m=cL(c,l,s,n,a,i),{pSelectedIndices:d,selectedSize:f,pSelectedScores:h,pValidOutputs:g}=qc(e,m);e.wasm._free(g);let x=e.makeOutput([f],"int32",d),b=e.makeOutput([f],"float32",h);return[x,b]}var lL={kernelName:Zn,backendName:"wasm",setupFunc:Lne,kernelFunc:Bne};var zne=!1,mL=Ge(Yn,zne,"bool");var dL;function Vne(r){dL=r.wasm.cwrap(Jn,null,["number","number","number","number","number"])}function Wne(r){let{inputs:e,backend:t,attrs:o}=r,{indices:n}=e,{dtype:s,depth:a,onValue:i,offValue:p}=o,u=t.makeOutput([...n.shape,a],s),c=t.dataIdMap.get(u.dataId).id,m=t.dataIdMap.get(n.dataId).id;return dL(m,a,i,p,c),u}var fL={kernelName:Jn,backendName:"wasm",setupFunc:Vne,kernelFunc:Wne};function Une(r){let{inputs:{x:e},backend:t}=r,o=t.makeOutput(e.shape,e.dtype);return t.typedArrayFromHeap(o).fill(1),o}var hL={kernelName:ca,backendName:"wasm",kernelFunc:Une};function Gne(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o;if(e.length===1)return Lg({inputs:{input:e[0]},backend:t,attrs:{dim:n}});let s=e[0].shape,a=e[0].dtype;e.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],p=e.map(c=>{let l=Lg({inputs:{input:c},backend:t,attrs:{dim:n}});return i.push(l),l}),u=Pv({inputs:p,backend:t,attrs:{axis:n}});return i.forEach(c=>t.disposeData(c.dataId)),u}var gL={kernelName:la,backendName:"wasm",kernelFunc:Gne};var xL;function Hne(r){xL=r.wasm.cwrap(es,null,["number","array","number","number","array","array","number","number"])}function Kne(r){let{inputs:{x:e},backend:t,attrs:{paddings:o,constantValue:n}}=r,s=o.map((h,g)=>h[0]+e.shape[g]+h[1]);if(y.sizeFromShape(e.shape)===0)return Mv({backend:t,attrs:{shape:s,value:n,dtype:e.dtype}});let a=t.dataIdMap.get(e.dataId).id,i=t.makeOutput(s,e.dtype),u=t.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(e.shape).buffer),l=o.map(h=>h[0]),m=o.map(h=>h[1]),d=new Uint8Array(new Int32Array(l).buffer),f=new Uint8Array(new Int32Array(m).buffer);return xL(a,c,e.shape.length,we[e.dtype],d,f,n,u),i}var Bg={kernelName:es,backendName:"wasm",kernelFunc:Kne,setupFunc:Hne};var qne=!1,yL=Ge(ts,qne);var bL;function jne(r){bL=r.wasm.cwrap(rs,null,["number","number","number"])}function Xne(r){let{inputs:e,backend:t}=r,{x:o,alpha:n}=e,s=t.dataIdMap.get(o.dataId).id,a=t.dataIdMap.get(n.dataId).id,i=s,p=o,u=p;p.dtype!=="float32"&&(u=Mr({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),i=t.dataIdMap.get(u.dataId).id);let c=t.makeOutput(o.shape,"float32"),l=t.dataIdMap.get(c.dataId).id;return bL(i,a,l),p.dtype!=="float32"&&t.disposeData(u.dataId),c}var CL={kernelName:rs,backendName:"wasm",setupFunc:jne,kernelFunc:Xne};var wL;function Yne(r){wL=r.wasm.cwrap(os,null,["number","number","number","number"])}function Qne(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n,keepDims:s}=o,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,p=i,u=a,{transposed:c,axes:l,originalAxes:m,inputWasTransposed:d}=Tr(a,n,e),f=l;if(d){let C=e.dataIdMap.get(c.dataId).id;C!==i&&(u=c,p=C,f=w.getInnerMostAxes(f.length,u.shape.length))}w.assertAxesAreInnerMostDims("prod",f,u.shape.length);let[h,g]=w.computeOutAndReduceShapes(u.shape,f),x=y.sizeFromShape(g),b=e.makeOutput(h,u.dtype);if(y.sizeFromShape(u.shape)!==0){let C=e.dataIdMap.get(b.dataId).id;wL(p,x,we[b.dtype],C)}if(d&&e.disposeData(c.dataId),s){let C=w.expandShapeToKeepDim(b.shape,m);b.shape=C}return b}var SL={kernelName:os,backendName:"wasm",setupFunc:Yne,kernelFunc:Qne};var Zne=r=>{let{backend:e,attrs:t}=r,{start:o,stop:n,step:s,dtype:a}=t,i=up(o,n,s,a),p=e.makeOutput([i.length],a);return e.typedArrayFromHeap(p).set(i),p},IL={kernelName:ma,backendName:"wasm",kernelFunc:Zne};var Jne=!0,vL=Ge(fn,Jne);var kL=he(ns);var NL=he(ss);var TL=he(us);var _L;function ese(r){_L=r.wasm.cwrap(is,null,["number","number","number","number","number","number","number","number","number","number"])}function tse(r){let{backend:e,inputs:t,attrs:o}=r,{images:n}=t,{alignCorners:s,halfPixelCenters:a,size:i}=o,[p,u]=i,[c,l,m,d]=n.shape,f=[c,p,u,d],h=e.dataIdMap.get(n.dataId),g;h.dtype!=="float32"&&(g=Mr({backend:e,inputs:{x:n},attrs:{dtype:"float32"}}),h=e.dataIdMap.get(g.dataId));let x=h.id,b=e.makeOutput(f,"float32");if(y.sizeFromShape(n.shape)===0)return b;let C=e.dataIdMap.get(b.dataId).id;return _L(x,c,l,m,d,p,u,s?1:0,a?1:0,C),g!=null&&e.disposeData(g.dataId),b}var EL={kernelName:is,backendName:"wasm",setupFunc:ese,kernelFunc:tse};var $L;function rse(r){$L=r.wasm.cwrap(Ja,null,["number","number","number","array","array","boolean"])}function ose(r){let{inputs:e,backend:t,attrs:o}=r,{images:n,dy:s}=e,{alignCorners:a}=o,i=t.makeOutput(n.shape,"float32"),p=t.dataIdMap.get(n.dataId),u;return p.dtype!=="float32"&&(u=Mr({backend:t,inputs:{x:n},attrs:{dtype:"float32"}}),p=t.dataIdMap.get(u.dataId)),$L(t.dataIdMap.get(n.dataId).id,t.dataIdMap.get(s.dataId).id,t.dataIdMap.get(i.dataId).id,new Uint8Array(new Int32Array(n.shape).buffer),new Uint8Array(new Int32Array(s.shape).buffer),a),u!=null&&t.disposeData(u.dataId),i}var RL={kernelName:Ja,backendName:"wasm",setupFunc:rse,kernelFunc:ose};var DL;function nse(r){DL=r.wasm.cwrap(as,null,["number","number","number","number","number","number","number","number","number","number"])}function sse(r){let{backend:e,inputs:t,attrs:o}=r,{images:n}=t,{alignCorners:s,halfPixelCenters:a,size:i}=o,[p,u]=i,[c,l,m,d]=n.shape,f=[c,p,u,d],h=e.makeOutput(f,"float32");if(y.sizeFromShape(n.shape)===0)return h;let g=e.dataIdMap.get(n.dataId),x;g.dtype!=="float32"&&(x=Mr({backend:e,inputs:{x:n},attrs:{dtype:"float32"}}),g=e.dataIdMap.get(x.dataId));let b=g.id,C=e.dataIdMap.get(h.dataId).id;return DL(b,c,l,m,d,p,u,s?1:0,a?1:0,C),x!=null&&e.disposeData(x.dataId),h}var AL={kernelName:as,backendName:"wasm",setupFunc:nse,kernelFunc:sse};var FL;function ase(r){FL=r.wasm.cwrap(Za,null,["number","number","number","array","array","boolean"])}function ise(r){let{inputs:e,backend:t,attrs:o}=r,{images:n,dy:s}=e,{alignCorners:a}=o,i=t.makeOutput(n.shape,"float32"),p=t.dataIdMap.get(n.dataId),u;return p.dtype!=="float32"&&(u=Mr({backend:t,inputs:{x:n},attrs:{dtype:"float32"}}),p=t.dataIdMap.get(u.dataId)),FL(t.dataIdMap.get(n.dataId).id,t.dataIdMap.get(s.dataId).id,t.dataIdMap.get(i.dataId).id,new Uint8Array(new Int32Array(n.shape).buffer),new Uint8Array(new Int32Array(s.shape).buffer),a),u!=null&&t.disposeData(u.dataId),i}var PL={kernelName:Za,backendName:"wasm",setupFunc:ase,kernelFunc:ise};var OL;function use(r){OL=r.wasm.cwrap(ps,null,["number","array","number","array","number","number"])}function pse(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dims:s}=o,a=y.parseAxisParam(s,n.shape);if(n.shape.length===0)return Np({inputs:{x:n},backend:t});let i=t.makeOutput(n.shape,n.dtype),p=t.dataIdMap.get(n.dataId).id,u=t.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(a).buffer),l=new Uint8Array(new Int32Array(n.shape).buffer);OL(p,c,a.length,l,n.shape.length,u);let m=zt({inputs:{x:i},attrs:{shape:n.shape},backend:t});return t.disposeData(i.dataId),m}var ML={kernelName:ps,backendName:"wasm",kernelFunc:pse,setupFunc:use};var LL;function cse(r){LL=r.wasm.cwrap(Ds,null,["number","number","number","number","number","number","number","number","array","number","number"])}function lse(r){let{inputs:e,backend:t,attrs:o}=r,{image:n}=e,{radians:s,fillValue:a,center:i}=o,p=t.makeOutput(n.shape,n.dtype),u=t.dataIdMap.get(n.dataId).id,c=t.dataIdMap.get(p.dataId).id,[l,m,d,f]=n.shape,[h,g]=w.getImageCenter(i,m,d),x=a===0,b=255,C=typeof a=="number"?[a,a,a,x?0:b]:[...a,b],S=new Uint8Array(new Int32Array(C).buffer);return LL(u,l,m,d,f,s,h,g,S,C.length,c),p}var BL={kernelName:Ds,backendName:"wasm",kernelFunc:lse,setupFunc:cse};var zL=he(cs);var VL=he(ls);var WL;function mse(r){WL=r.wasm.cwrap(ms,null,["number","number","number","number","number","number","array","number","number"])}function dse(r){let{backend:e,inputs:t,attrs:o}=r,{indices:n,updates:s}=t,{shape:a}=o,i=e.makeOutput(a,s.dtype);if(y.sizeFromShape(a)===0)return i;let{sliceRank:p,numUpdates:u,sliceSize:c,strides:l,outputSize:m}=du.calculateShapes(s,n,a),f=e.dataIdMap.get(n.dataId).id,g=e.dataIdMap.get(s.dataId).id,x=new Uint8Array(new Int32Array(l).buffer),b=e.dataIdMap.get(i.dataId).id;return WL(f,g,we[s.dtype],p,u,c,x,m,b),i}var UL={kernelName:ms,backendName:"wasm",setupFunc:mse,kernelFunc:dse};var GL;function fse(r){GL=r.wasm.cwrap(fs,null,["number","number","number","number","number","number","bool","number"])}function hse(r){let{inputs:e,backend:t,attrs:o}=r,{sortedSequence:n,values:s}=e,{side:a}=o;if(n.dtype!==s.dtype)throw new Error(`SearchSorted error: sorted_sequence must have the same dtype as values. Got ${n.dtype} and ${s.dtype}`);let i=t.makeOutput(s.shape,"int32");function p(u){return t.dataIdMap.get(u.dataId).id}return GL(p(n),p(s),n.shape[0],n.shape[1],s.shape[1],we[n.dtype],a==="left",p(i)),i}var HL={kernelName:fs,backendName:"wasm",setupFunc:fse,kernelFunc:hse};var KL;function gse(r){KL=r.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function xse(r){let{inputs:e,backend:t}=r,{condition:o,t:n,e:s}=e,a=t.dataIdMap.get(o.dataId).id,i=t.dataIdMap.get(n.dataId).id,p=t.dataIdMap.get(s.dataId).id,u=t.makeOutput(n.shape,n.dtype),c=t.dataIdMap.get(u.dataId).id,l=o.shape.length,m=n.shape.length,d=l===0||l>1||m===1?1:y.sizeFromShape(n.shape.slice(1));return KL(a,i,p,d,c),u}var qL={kernelName:fa,backendName:"wasm",kernelFunc:xse,setupFunc:gse};var jL=he(hs);var XL;function yse(r){XL=r.wasm.cwrap(bs,null,["number","number"])}function bse(r){let{backend:e,inputs:{x:t}}=r,o=e.dataIdMap.get(t.dataId).id,n=e.makeOutput(t.shape,t.dtype),s=e.dataIdMap.get(n.dataId).id;return y.sizeFromShape(n.shape)===0||XL(o,s),n}var YL={kernelName:"Sigmoid",backendName:"wasm",setupFunc:yse,kernelFunc:bse};var QL=he(ys);var ZL=he(gs);var JL=he(xs);var eB=he(Cs);function Cse(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,paddings:a}=o,i=y.sizeFromShape(s),p=[[0,0]];p.push(...a);for(let _=1+s.length;_<n.shape.length;++_)p.push([0,0]);let u=Bg.kernelFunc({inputs:{x:n},backend:t,attrs:{paddings:p,constantValue:0}}),c=w.getReshaped(u.shape,s,i,!1),l=w.getPermuted(c.length,s.length,!1),m=w.getReshapedPermuted(u.shape,s,i,!1),h=zt({inputs:{x:u},backend:t,attrs:{shape:c}}),b=ho({inputs:{x:h},backend:t,attrs:{perm:l}}),k=zt({inputs:{x:b},backend:t,attrs:{shape:m}});return t.disposeData(u.dataId),t.disposeData(h.dataId),t.disposeData(b.dataId),k}var tB={kernelName:ga,backendName:"wasm",kernelFunc:Cse};var rB;function wse(r){rB=r.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function Sse(r){let{backend:e,inputs:t}=r,{indices:o,values:n,denseShape:s,defaultValue:a}=t,i=o.shape[0],p=o.shape[1],u=e.readSync(s.dataId)[0],c=[i+u,p],l=e.dataIdMap.get(o.dataId).id,m=e.dataIdMap.get(n.dataId).id,d=e.dataIdMap.get(a.dataId).id,f=e.makeOutput(c,o.dtype),h=e.dataIdMap.get(f.dataId).id,g=e.makeOutput(c.slice(0,1),n.dtype),x=e.dataIdMap.get(g.dataId).id,b=e.makeOutput([u],"bool"),C=e.dataIdMap.get(b.dataId).id,S=e.makeOutput([i],o.dtype),k=e.dataIdMap.get(S.dataId).id,_=e.makeOutput([4],"int32"),$=e.dataIdMap.get(_.dataId).id,R=rB(l,m,we[n.dtype],i,u,p,d,h,x,C,k,$),D=e.readSync(_.dataId),P;switch(D[0]){case 1:{P=w.getSparseFillEmptyRowsIndicesDenseShapeMismatch(D[1]);break}case 2:{P=w.getSparseFillEmptyRowsNegativeIndexErrorMessage(D[1],D[2]);break}case 3:P=w.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(D[1],D[2],D[3]);break;default:P=""}if(e.disposeData(_.dataId),P)throw e.disposeData(f.dataId),e.disposeData(g.dataId),e.disposeData(b.dataId),e.disposeData(S.dataId),new Error(P);let O=f,M=g;return R!==c[0]&&(O=Po({inputs:{x:f},attrs:{begin:0,size:[R,p]},backend:e}),M=Po({inputs:{x:g},attrs:{begin:0,size:R},backend:e}),e.disposeData(f.dataId),e.disposeData(g.dataId)),[O,M,b,S]}var oB={kernelName:Ki,backendName:"wasm",setupFunc:wse,kernelFunc:Sse};var nB;function Ise(r){nB=r.wasm.cwrap(ei,null,["number","number","number","number","number","number","number"])}function vse(r){let{backend:e,inputs:t}=r,{inputIndices:o,inputShape:n,newShape:s}=t;if(o.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${o.shape}`);if(n.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${n.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let a=e.dataIdMap.get(o.dataId).id,i=e.dataIdMap.get(n.dataId).id,p=e.dataIdMap.get(s.dataId).id,u=o.shape[0],c=y.sizeFromShape(s.shape),l=e.makeOutput([u,c],o.dtype),m=e.dataIdMap.get(l.dataId).id,d=e.makeOutput([c],s.dtype),f=e.dataIdMap.get(d.dataId).id,h=e.makeOutput([3],"int32"),g=e.dataIdMap.get(h.dataId).id;nB(a,i,p,u,m,f,g);let x=e.readSync(h.dataId),b;switch(x[0]){case 0:{b=w.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(x[1],x[2]);break}case 1:{b=w.getSparseReshapeNegativeOutputDimErrorMessage(x[1],x[2]);break}case 2:b=w.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let C=Array.from(e.readSync(n.dataId)),S=Array.from(e.readSync(d.dataId));b=w.getSparseReshapeInputOutputMultipleErrorMessage(C,S);break}case 4:{let C=Array.from(e.readSync(n.dataId)),S=Array.from(e.readSync(d.dataId));b=w.getSparseReshapeInputOutputMismatchErrorMessage(C,S);break}default:b=""}if(e.disposeData(h.dataId),b)throw e.disposeData(l.dataId),e.disposeData(d.dataId),new Error(b);return[l,d]}var sB={kernelName:ei,backendName:"wasm",setupFunc:Ise,kernelFunc:vse};var aB;function zg(r){aB=r.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function Vg(r,e){let{backend:t,inputs:o}=r,{data:n,indices:s,segmentIds:a}=o,i=s.shape[0],p=t.readSync(a.dataId,i-1,i)[0],c=i>0?p+1:0;if(c<0)throw new Error(w.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let l=n.shape.slice();l[0]=c;let m=t.dataIdMap.get(n.dataId).id,d=t.dataIdMap.get(s.dataId).id,f=t.dataIdMap.get(a.dataId).id,h=t.makeOutput(l,n.dtype),g=t.dataIdMap.get(h.dataId).id,x=t.makeOutput([4],"int32"),b=t.dataIdMap.get(x.dataId).id;aB(m,we[n.dtype],n.shape[0],d,f,g,b,e,0);let C=t.readSync(x.dataId),S;switch(C[0]){case 0:{S=w.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{S=w.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:S=w.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(C[1],C[2]);break;case 3:S=w.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(C[1],C[2],C[3]);break;default:S=""}if(t.disposeData(x.dataId),S)throw t.disposeData(h.dataId),new Error(S);return h}function kse(r){return Vg(r,!0)}var iB={kernelName:ya,backendName:"wasm",setupFunc:zg,kernelFunc:kse};function Nse(r){return Vg(r,!1)}var uB={kernelName:ba,backendName:"wasm",setupFunc:zg,kernelFunc:Nse};var pB;function Tse(r){pB=r.wasm.cwrap(vs,null,["number","number","number","number","number","number","number","number","array","number","number"])}function _se(r){let{backend:e,inputs:t,attrs:o}=r,{sparseIndices:n,sparseValues:s,defaultValue:a}=t,{outputShape:i}=o,p=e.makeOutput(i,a.dtype);if(y.sizeFromShape(i)===0)return p;let{sliceRank:u,numUpdates:c,sliceSize:l,strides:m,outputSize:d}=w.calculateShapes(s,n,i),f=e.dataIdMap.get(n.dataId).id,h=e.dataIdMap.get(s.dataId).id,g=e.dataIdMap.get(a.dataId).id,x=new Uint8Array(new Int32Array(m).buffer),b=e.dataIdMap.get(p.dataId).id;return pB(f,h,s.shape.length,g,we[a.dtype],u,c,l,x,d,b),p}var cB={kernelName:vs,backendName:"wasm",setupFunc:Tse,kernelFunc:_se};function Ese(r){let{inputs:e,attrs:t,backend:o}=r,{x:n}=e,{numOrSizeSplits:s,axis:a}=t,i=y.parseAxisParam(a,n.shape)[0],p=w.prepareSplitSize(n,s,i),u=new Array(n.shape.length).fill(0),c=n.shape.slice();return p.map(l=>{let m=[...c];m[i]=l;let d=Po({inputs:{x:n},attrs:{begin:u,size:m},backend:o});return u[i]+=l,d})}var lB={kernelName:xa,backendName:"wasm",kernelFunc:Ese};var mB=he(ws);var dB=he(qi);var $se=!0,fB=Ge(ks,$se);var hB;function Rse(r){hB=r.wasm.cwrap(wo,null,["number","number","number","number"])}function Dse(r){let{backend:e,inputs:t,attrs:o}=r,{alpha:n}=o,{x:s}=t,a=e.dataIdMap.get(s.dataId).id,i=e.makeOutput(s.shape,s.dtype),p=e.dataIdMap.get(i.dataId).id;return hB(a,n,we[s.dtype],p),i}var gB={kernelName:wo,backendName:"wasm",setupFunc:Rse,kernelFunc:Dse};var xB;function Ase(r){xB=r.wasm.cwrap(Ns,null,["number","array","number","array","array","array","array","array","number","number"])}function Fse(r){let{backend:e,inputs:t,attrs:o}=r,{x:n}=t,{begin:s,end:a,strides:i,beginMask:p,endMask:u,ellipsisMask:c,newAxisMask:l,shrinkAxisMask:m}=o,{finalShapeSparse:d,finalShape:f,isIdentity:h,sliceDim0:g,isSimpleSlice:x,begin:b,end:C,strides:S}=pt.sliceInfo(n.shape,s,a,i,p,u,c,l,m),k;if(h)k=zt({inputs:{x:n},backend:e,attrs:{shape:f}});else if(g||x){y.assert(n.shape.length>=1,()=>`Input must have rank at least 1, got: ${n.shape.length}`);let _=pt.computeOutShape(b,C,S),$=Po({inputs:{x:n},backend:e,attrs:{begin:b,size:_}});k=zt({inputs:{x:$},backend:e,attrs:{shape:f}}),e.disposeData($.dataId)}else{let _=e.makeOutput(d,"float32"),$=e.dataIdMap.get(n.dataId).id,R=new Uint8Array(new Int32Array(y.computeStrides(n.shape)).buffer),D=new Uint8Array(new Int32Array(b).buffer),P=new Uint8Array(new Int32Array(C).buffer),O=new Uint8Array(new Int32Array(S).buffer),M=new Uint8Array(new Int32Array(d).buffer),L=new Uint8Array(new Int32Array(y.computeStrides(d)).buffer),B=e.dataIdMap.get(_.dataId).id;xB($,R,n.shape.length,D,P,O,M,L,d.length,B),k=zt({inputs:{x:_},backend:e,attrs:{shape:f}}),e.disposeData(_.dataId)}return k}var yB={kernelName:Ns,backendName:"wasm",setupFunc:Ase,kernelFunc:Fse};function Pse(r){let{backend:e,inputs:t,attrs:o}=r,{data:n,dataSplits:s}=t,{separator:a,nGramWidths:i,leftPad:p,rightPad:u,padWidth:c,preserveShortSequences:l}=o,m=e.readSync(n.dataId),d=e.readSync(s.dataId),[f,h]=cp(m,d,a,i,p,u,c,l),g=e.makeOutput([f.length],"string"),x=e.dataIdMap.get(g.dataId);x.stringBytes=f;let b=e.makeOutput(s.shape,"int32");return e.typedArrayFromHeap(b).set(h),[g,b]}var bB={kernelName:Ca,backendName:"wasm",kernelFunc:Pse};function Ose(r){let{backend:e,inputs:t,attrs:o}=r,{input:n,delimiter:s}=t,{skipEmpty:a}=o,i=e.readSync(n.dataId),p=e.readSync(s.dataId),[u,c,l]=lp(i,p[0],a),m=c.length,d=e.makeOutput([m,2],"int32");e.typedArrayFromHeap(d).set(u);let h=e.makeOutput([m],"string"),g=e.dataIdMap.get(h.dataId);g.stringBytes=c;let x=e.makeOutput([2],"int32");return e.typedArrayFromHeap(x).set(l),[d,h,x]}var CB={kernelName:ji,backendName:"wasm",kernelFunc:Ose};function Mse(r){let{backend:e,inputs:t,attrs:o}=r,{input:n}=t,{numBuckets:s}=o,a=e.readSync(n.dataId),i=mp(a,s),p=e.makeOutput(n.shape,"int32");return e.typedArrayFromHeap(p).set(i),p}var wB={kernelName:Xi,backendName:"wasm",kernelFunc:Mse};var Lse=!0,SB=Ge(Ts,Lse);var IB;function Bse(r){IB=r.wasm.cwrap(Ss,null,["number","number","number","number"])}function zse(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n,keepDims:s}=o,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,p=i,u=a,{transposed:c,axes:l,originalAxes:m,inputWasTransposed:d}=Tr(a,n,e),f=l;if(d){let C=e.dataIdMap.get(c.dataId).id;C!==i&&(u=c,p=C,f=w.getInnerMostAxes(f.length,u.shape.length))}w.assertAxesAreInnerMostDims("sum",f,u.shape.length);let[h,g]=w.computeOutAndReduceShapes(u.shape,f),x=y.sizeFromShape(g),b=e.makeOutput(h,u.dtype);if(y.sizeFromShape(u.shape)!==0){let C=e.dataIdMap.get(b.dataId).id;IB(p,x,we[b.dtype],C)}if(d&&e.disposeData(c.dataId),s){let C=w.expandShapeToKeepDim(b.shape,m);b.shape=C}return b}var vB={kernelName:Ss,backendName:"wasm",setupFunc:Bse,kernelFunc:zse};var kB=he(_s);var NB=he(Es);var TB;function Vse(r){TB=r.wasm.cwrap(ds,null,["number","number","number","number","number","number","array","number","number","number"])}function Wse(r){let{backend:e,inputs:t,attrs:o}=r,{tensor:n,indices:s,updates:a}=t,{}=o,i=e.makeOutput(n.shape,n.dtype);if(y.sizeFromShape(n.shape)===0)return i;let{sliceRank:p,numUpdates:u,sliceSize:c,strides:l,outputSize:m}=du.calculateShapes(a,s,n.shape),f=e.dataIdMap.get(s.dataId).id,g=e.dataIdMap.get(a.dataId).id,b=e.dataIdMap.get(n.dataId).id,C=new Uint8Array(new Int32Array(l).buffer),S=e.dataIdMap.get(i.dataId).id;return TB(f,g,we[a.dtype],p,u,c,C,m,S,b),i}var _B={kernelName:ds,backendName:"wasm",setupFunc:Vse,kernelFunc:Wse};var EB;function Use(r){EB=r.wasm.cwrap(po,null,["number","array","number","array","number","number"])}function Gse(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,s=t.dataIdMap.get(n.dataId).id,{reps:a}=o,i=new Array(n.shape.length);for(let m=0;m<i.length;m++)i[m]=n.shape[m]*a[m];let p=new Uint8Array(new Int32Array(n.shape).buffer),u=new Uint8Array(new Int32Array(i).buffer),c=t.makeOutput(i,n.dtype),l=t.dataIdMap.get(c.dataId).id;return EB(s,p,n.shape.length,u,i.length,we[c.dtype],l),c}var $B={kernelName:po,backendName:"wasm",setupFunc:Use,kernelFunc:Gse};var RB;function Hse(r){RB=r.wasm.cwrap($s,null,["number","array","number","number","number","bool","number","number"])}var Kse=({inputs:r,backend:e,attrs:t})=>{let{x:o}=r,{k:n,sorted:s}=t,a=e.dataIdMap.get(o.dataId).id,i=new Uint8Array(new Int32Array(o.shape).buffer),p=o.shape.slice();p[p.length-1]=n;let u=e.makeOutput(p,o.dtype),c=e.dataIdMap.get(u.dataId).id,l=e.makeOutput(p,"int32"),m=e.dataIdMap.get(l.dataId).id;return RB(a,i,o.shape.length,we[o.dtype],n,s,c,m),[u,l]},DB={kernelName:$s,backendName:"wasm",setupFunc:Hse,kernelFunc:Kse};var AB;function qse(r){AB=r.wasm.cwrap(Rs,null,["number","number","bool","number","number","number","number","number","number","array","number","array","number","number","number","number","number"])}function jse(r){let{backend:e,inputs:t,attrs:o}=r,{image:n,transforms:s}=t,{interpolation:a,fillMode:i,fillValue:p,outputShape:u}=o,[c,l,m,d]=n.shape,[f,h]=u!=null?u:[l,m],g=[c,f,h,d],x=new Uint8Array(new Int32Array(y.computeStrides(n.shape)).buffer),b=new Uint8Array(new Int32Array(y.computeStrides(g)).buffer),C=e.makeOutput(g,n.dtype),S=e.dataIdMap.get(C.dataId).id,_=e.dataIdMap.get(n.dataId).id,R=e.dataIdMap.get(s.dataId).id,D=a==="nearest"?1:2,P;switch(i){case"constant":P=1;break;case"reflect":P=2;break;case"wrap":P=3;break;case"nearest":P=4;break;default:P=1;break}return AB(_,R,s.shape[0]>1,c,f,h,d,m,l,x,n.shape.length-1,b,g.length-1,D,P,p,S),C}var FB={kernelName:Rs,backendName:"wasm",setupFunc:qse,kernelFunc:jse};function Xse(r){let{inputs:e,attrs:t,backend:o}=r,{axis:n}=t,{x:s}=e,{outputValues:a,outputShape:i,indices:p}=dp(o.readSync(s.dataId),n,s.shape,s.dtype);return[o.makeOutput(i,s.dtype,void 0,a),o.makeOutput([p.length],"int32",void 0,p)]}var PB={kernelName:Yi,backendName:"wasm",kernelFunc:Xse};function Yse(r){let{inputs:e,backend:t,attrs:o}=r,{value:n}=e,{axis:s}=o;s<0&&(s+=n.shape.length);let a=n.shape[s],i=n.shape.length,p=new Array(i-1),u=0;for(let d=0;d<i;d++)d!==s&&(p[u++]=n.shape[d]);let c=new Array(a),l=new Array(i).fill(0),m=n.shape.slice();m[s]=1;for(let d=0;d<c.length;d++)l[s]=d,c[d]=Po({inputs:{x:n},attrs:{begin:l,size:m},backend:t});return c.map(({dataId:d,dtype:f})=>({dataId:d,dtype:f,shape:p}))}var OB={kernelName:wa,backendName:"wasm",kernelFunc:Yse};function Qse(r){let{inputs:{x:e},backend:t}=r,o=t.makeOutput(e.shape,e.dtype);return t.typedArrayFromHeap(o).fill(0),o}var MB={kernelName:Sa,backendName:"wasm",kernelFunc:Qse};var Zse=[SP,IP,vP,kP,NP,_P,AP,PP,OP,MP,LP,BP,zP,VP,WP,GP,YP,KP,jP,JP,tO,oO,nO,sO,aO,iO,pO,cO,mO,fO,gO,yO,CO,wO,SO,vO,NO,_O,$O,DO,FO,OO,LO,zO,WO,UO,HO,KO,qO,jO,XO,YO,QO,JO,eM,tM,oM,sM,iM,pM,lM,mM,dM,EP,fM,hM,gM,yM,bM,CM,SM,vM,IM,kM,NM,TM,_M,$M,DM,FM,PM,MM,BM,VM,UM,HM,qM,XM,YM,ZM,rL,oL,nL,sL,iL,pL,lL,mL,fL,hL,gL,Bg,yL,CL,SL,IL,vL,kL,NL,TL,QP,EL,RL,AL,PL,ML,BL,zL,VL,UL,HL,qL,jL,YL,QL,ZL,JL,eO,eL,eB,tB,oB,sB,iB,uB,cB,lB,mB,dB,fB,gB,yB,bB,CB,wB,SB,vB,kB,NB,_B,$B,DB,FB,RP,PB,OB,MB];for(let r of Zse)ti(r);var zv=A();zv.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>{try{return WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11]))}catch(r){return!1}});zv.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(zv.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(r){return!1}});var jv=zp(VB()),qB=zp(UB()),Xv=zp(GB());var HB=jv.default||jv,Jse=Xv.default||Xv,pm=class extends ao{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(XB),qv=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new Bo(this,ur())}write(e,t,o){let n={id:this.dataIdNextNumber++};return this.move(n,e,t,o,1),n}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=y.now();return e(),{kernelMs:y.now()-t}}move(e,t,o,n,s){let a=this.dataIdNextNumber++;if(n==="string"){let c=t;this.dataIdMap.set(e,{id:a,stringBytes:c,shape:o,dtype:n,memoryOffset:null,refCount:s});return}let i=y.sizeFromShape(o),p=i*y.bytesPerElement(n),u=this.wasm._malloc(p)>>>0;this.dataIdMap.set(e,{id:a,memoryOffset:u,shape:o,dtype:n,refCount:s}),this.wasm.tfjs.registerTensor(a,i,u),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,p),u)}async read(e){return this.readSync(e)}readSync(e,t,o){let{memoryOffset:n,dtype:s,shape:a,stringBytes:i}=this.dataIdMap.get(e);if(s==="string")return(t==null||t===0)&&(o==null||o>=i.length)?i:i.slice(t,o);t=t||0,o=o||y.sizeFromShape(a);let p=y.bytesPerElement(s),u=this.wasm.HEAPU8.slice(n+t*p,n+o*p);return tae(u.buffer,s)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let o=this.dataIdMap.get(e);if(o.refCount--,!t&&o.refCount>0)return!1;this.wasm._free(o.memoryOffset),this.wasm.tfjs.disposeData(o.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,o,n){let s;if(o==null)s=this.write(n!=null?n:null,e,t);else{let a=this.dataIdNextNumber++;s={id:a},this.dataIdMap.set(s,{id:a,memoryOffset:o,shape:e,dtype:t,refCount:1});let i=y.sizeFromShape(e);this.wasm.tfjs.registerTensor(a,i,o)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:o}){let n=this.wasm.HEAPU8.buffer,{memoryOffset:s}=this.dataIdMap.get(o),a=y.sizeFromShape(e);switch(t){case"float32":return new Float32Array(n,s,a);case"int32":return new Int32Array(n,s,a);case"bool":return new Uint8Array(n,s,a);default:throw new Error(`Unknown dtype ${t}`)}}};function eae(r){return(e,t)=>(y.fetch(r,{credentials:"same-origin"}).then(o=>{o.ok||e.env.a(`failed to load wasm binary file at '${r}'`),o.arrayBuffer().then(n=>{WebAssembly.instantiate(n,e).then(s=>{t(s.instance,s.module)})})}),{})}function KB(r,e,t){if(Gg!=null)return Gg;let o="tfjs-backend-wasm.wasm";return r&&e?o="tfjs-backend-wasm-threaded-simd.wasm":r&&(o="tfjs-backend-wasm-simd.wasm"),im!=null&&im[o]!=null?im[o]:t+o}async function jB(){let[r,e]=await Promise.all([A().getAsync("WASM_HAS_SIMD_SUPPORT"),A().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((t,o)=>{let n={};n.locateFile=(i,p)=>{if(i.endsWith(".worker.js")){let u=qB.wasmWorkerContents.replace(/\n/g,"\\n"),c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return i.endsWith(".wasm")?KB(r,e,am!=null?am:p):p+i},Yv&&(n.instantiateWasm=eae(KB(r,e,am!=null?am:"")));let s=!1;n.onAbort=()=>{if(s||um)return;um=!0,o({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let a;e&&r&&Gg==null?(n.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+HB.toString()],{type:"text/javascript"}),a=HB(n)):a=Jse(n),a.then(i=>{s=!0,um=!1;let p=null;i.tfjs={init:i.cwrap("init",null,[]),initWithThreadsCount:i.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:i.cwrap("get_threads_count","number",[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",p,["number"]),dispose:i.cwrap("dispose",p,[])},t({wasm:i})}).catch(o)})}function tae(r,e){switch(e){case"float32":return new Float32Array(r);case"int32":return new Int32Array(r);case"bool":return new Uint8Array(r);default:throw new Error(`Unknown dtype ${e}`)}}var rae=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Gg=null,am=null,im={},um=!1,Yv=!1;function oae(r,e=!1){if(Tw("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),um)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Gg=r,Yv=e}function nae(r,e=!1){if(um)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof r=="string")am=r;else{im=r;let t=rae.filter(o=>im[o]==null);if(t.length>0)throw new Error(`There were no entries found for the following binaries: ${t.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Yv=e}var XB=-1,qv=-1;function sae(r){XB=r}function aae(){if(qv===-1)throw new Error("WASM backend not initialized.");return qv}var iae="4.22.0";var uae=2;tu("wasm",async()=>{let{wasm:r}=await jB();return new pm(r)},uae);var go=A();go.registerFlag("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE",()=>15);go.registerFlag("WEBGPU_CPU_FORWARD",()=>!0);go.registerFlag("WEBGPU_MATMUL_PROGRAM_TYPE",()=>-1);go.registerFlag("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE",()=>!0);go.registerFlag("WEBGPU_USE_LOW_POWER_GPU",()=>!1);go.registerFlag("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e3);go.registerFlag("WEBGPU_USE_PROFILE_TOOL",()=>!1);go.registerFlag("WEBGPU_IMPORT_EXTERNAL_TEXTURE",()=>!0);go.registerFlag("WEBGPU_USE_NAIVE_CONV2D_DEBUG",()=>!1);go.registerFlag("WEBGPU_THRESHOLD_TO_INCREASE_WORKGROUPS_FOR_MATMUL",()=>-1);go.registerFlag("WEBGPU_CONV_SEPARATE_IM2COL_SHADER",()=>!1);go.registerFlag("WEBGPU_PRINT_SHADER",()=>"");go.registerFlag("WEBGPU_ENGINE_COMPILE_ONLY",()=>!1);var Hg=class{constructor(e){e&&(this.vendor=e.vendor,this.architecture=e.architecture,this.intelGPUGeneration=this.getIntelGPUGeneration())}getIntelGPUGeneration(){if(this.isIntel()){if(this.architecture.startsWith("gen"))return Number(this.architecture.match(/\d+/));if(this.architecture.startsWith("xe"))return 12}return 0}isIntel(){return this.vendor==="intel"}};var Kg=class{constructor(e){this.device=e,this.numUsedBuffers=0,this.numFreeBuffers=0,this.freeBuffers=new Map,this.usedBuffers=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireBuffer(e,t,o=!1,n=!0){let s,a=YB(e,t);return n?(this.freeBuffers.has(a)||this.freeBuffers.set(a,[]),this.freeBuffers.get(a).length>0?(s=this.freeBuffers.get(a).pop(),this.numFreeBuffers--):(s=this.device.createBuffer({size:e,usage:t,mappedAtCreation:o}),this.numBytesAllocated+=e)):(s=this.device.createBuffer({size:e,usage:t,mappedAtCreation:o}),this.numBytesAllocated+=e),this.usedBuffers.has(a)||this.usedBuffers.set(a,[]),this.usedBuffers.get(a).push(s),this.numUsedBuffers++,this.numBytesUsed+=e,s}releaseBuffer(e,t=!0){if(this.freeBuffers.size===0)return;let o=e.size,n=e.usage,s=YB(o,n),a=this.usedBuffers.get(s),i=a.indexOf(e);if(i<0)throw new Error("Cannot find the buffer in buffer manager");a[i]=a[a.length-1],a.pop(),this.numUsedBuffers--,this.numBytesUsed-=o,t?(this.freeBuffers.get(s).push(e),this.numFreeBuffers++):(e.destroy(),this.numBytesAllocated-=o)}getNumUsedBuffers(){return this.numUsedBuffers}getNumFreeBuffers(){return this.numFreeBuffers}dispose(){this.freeBuffers.forEach((e,t)=>{e.forEach(o=>{o.destroy()})}),this.usedBuffers.forEach((e,t)=>{e.forEach(o=>{o.destroy()})}),this.freeBuffers=new Map,this.usedBuffers=new Map,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function YB(r,e){return`${r}_${e}`}var qg=class{constructor(e){this.device=e,this.numUsedTextures=0,this.numFreeTextures=0,this.freeTextures=new Map,this.usedTextures=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireTexture(e,t,o,n){let s=ZB(o),a=e*t*s,i=QB(e,t,o,n);if(this.freeTextures.has(i)||this.freeTextures.set(i,[]),this.usedTextures.has(i)||this.usedTextures.set(i,[]),this.numBytesUsed+=a,this.numUsedTextures++,this.freeTextures.get(i).length>0){this.numFreeTextures--;let u=this.freeTextures.get(i).shift();return this.usedTextures.get(i).push(u),u}this.numBytesAllocated+=a;let p=this.device.createTexture({size:[e,t],format:o,usage:n});return this.usedTextures.get(i).push(p),p}releaseTexture(e){if(this.freeTextures.size===0)return;let t=e.width,o=e.height,n=e.format,s=e.usage,a=QB(t,o,n,s);this.freeTextures.has(a)||this.freeTextures.set(a,[]),this.freeTextures.get(a).push(e),this.numFreeTextures++,this.numUsedTextures--;let i=this.usedTextures.get(a),p=i.indexOf(e);if(p<0)throw new Error("Cannot release a texture that was never provided by this texture manager");i.splice(p,1);let u=ZB(n),c=t*o*u;this.numBytesUsed-=c}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){this.freeTextures.forEach((e,t)=>{e.forEach(o=>{o.destroy()})}),this.usedTextures.forEach((e,t)=>{e.forEach(o=>{o.destroy()})}),this.freeTextures=new Map,this.usedTextures=new Map,this.numUsedTextures=0,this.numFreeTextures=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function QB(r,e,t,o){return`${r}_${e}_${t}_${o}`}function ZB(r){if(r==="rgba8unorm")return 16;throw new Error(`${r} is not supported!`)}function JB(r,e){if(Math.max(...r)>5)throw new Error("Cannot symbolically compute strides for rank > 6 tensor.");let t=r.length,o="xyzwuv",n=r.map(a=>`${e}.${o[a]}`),s=new Array(t-1);s[t-2]=n[t-1];for(let a=t-3;a>=0;--a)s[a]=`(${s[a+1]} * ${n[a+1]})`;return s}var Qr=(r,e,t)=>t==="int32"?`atomicAdd(${r}, bitcast<i32>(${e}));`:`
{
var oldValue = 0;
loop {
let newValueF32 = bitcast<f32>(oldValue) + (${e});
let newValue = bitcast<i32>(newValueF32);
let res = atomicCompareExchangeWeak(${r}, oldValue, newValue);
if res.exchanged {
break;
}
oldValue = res.old_value;
}
}`;var wi;(function(r){r[r.FROM_PIXELS=0]="FROM_PIXELS",r[r.DRAW=1]="DRAW"})(wi||(wi={}));var oz=(r,e,t,o,n)=>{let s={dtype:o.dtype,shape:o.shape},a=cae(t,s,e),i=r.createShaderModule({code:a,label:e.constructor.name}),p=A().get("WEBGPU_PRINT_SHADER");if(p!==""){p=p.toLowerCase();let u=p.split(",");(p==="all"||u.some(c=>e.shaderKey.toLowerCase().includes(c)))&&(console.group(e.shaderKey),console.debug(a),console.groupEnd())}return n?r.createComputePipelineAsync({compute:{module:i,entryPoint:"_start"},label:e.constructor.name,layout:"auto"}):r.createComputePipeline({compute:{module:i,entryPoint:"_start"},label:e.constructor.name,layout:"auto"})},Ae=(r,e="f32")=>{switch(r){case 1:return`${e}`;case 2:return`vec2<${e}>`;case 3:return`vec3<${e}>`;case 4:return`vec4<${e}>`;default:throw new Error(`${r}-component ${e} is not supported.`)}};function ft(r){if(r<=1)return"i32";if(r===2)return"vec2<i32>";if(r===3)return"vec3<i32>";if(r===4)return"vec4<i32>";if(r===5)return"vec5";if(r===6)return"vec6";throw Error(`GPU for rank ${r} is not yet supported`)}function Oo(r){if(r===0)return"x";if(r===1)return"y";if(r===2)return"z";if(r===3)return"w";if(r===4)return"u";if(r===5)return"v";throw Error(`Index ${r} is not yet supported`)}function G(...r){let e;switch(r.length){case 0:e=`
fn main()
`;break;case 1:e=`
fn main(${r[0]} : i32)
`;break;default:throw Error("Unreachable")}return e}function ez(r,e){let t;return t=`
${pae(e)}
fn _start(@builtin(local_invocation_id) LocalId : vec3<u32>,
@builtin(global_invocation_id) GlobalId : vec3<u32>,
@builtin(local_invocation_index) LocalIndex: u32,
@builtin(workgroup_id) WorkgroupId : vec3<u32>,
@builtin(num_workgroups) NumWorkgroups : vec3<u32>) {
localId = LocalId;
localIndex = LocalIndex;
globalId = GlobalId;
numWorkgroups = NumWorkgroups;
workgroupId = WorkgroupId;
${r?"main(getGlobalIndex());":"main();"};
}
`,t}function pae(r){return`
@compute @workgroup_size(${r.workgroupSize[0]}, ${r.workgroupSize[1]}, ${r.workgroupSize[2]})
`}function cae(r,e,t){let o=[],n=t.workgroupSize[0]*t.workgroupSize[1]*t.workgroupSize[2];if(t.outputComponent=t.outputComponent?t.outputComponent:1,o.push(`
var<private> localId: vec3<u32>;
var<private> localIndex: u32;
var<private> globalId: vec3<u32>;
var<private> numWorkgroups: vec3<u32>;
var<private> workgroupId: vec3<u32>;
// Only used when the y/z dimension of workgroup size is 1.
fn getGlobalIndex() -> i32 {
${sz(t)?" return i32(globalId.x);":` return i32((workgroupId.z * numWorkgroups.x * numWorkgroups.y +
workgroupId.y * numWorkgroups.x + workgroupId.x) * ${n}u +
localIndex);
`}
}
`),t.pixelsOpType!=null){let f=t.pixelsOpType===wi.FROM_PIXELS?`@group(0) @binding(0) var<storage, read_write> result: array<${Su(e.dtype,t.outputComponent)}>;`:`@group(0) @binding(1) var<storage, read> inBuf : array<${Su(r[0].dtype,t.outputComponent)}>;`,h=e.shape.length===3?"vec2<i32>":"i32";o.push(`
struct Uniform {
outShapeStrides : ${h},
size : i32,
numChannels : i32,
alpha : f32,
};
${f}
@group(0) @binding(2) var<uniform> uniforms: Uniform;
`);let g=rz(t);return[tz,o.join(`
`),cm(e.shape),t.getUserCode(),ez(g,t)].join(`
`)}let s,a,i="struct Uniforms { NAN : f32, INFINITY : f32, ";t.variableNames.forEach((f,h)=>{let g=ft(r[h].shape.length);i+=`${f.charAt(0).toLowerCase()+f.slice(1)}Shape : ${g}, `,s=r[h].shape.length-1,a=ft(s),i+=`${f.charAt(0).toLowerCase()+f.slice(1)}ShapeStrides: ${a}, `});let p=ft(e.shape.length);i+=`outShape : ${p}, `,s=e.shape.length-1,a=ft(s),i+=`
outShapeStrides: ${a}, `,t.size&&(i+="size : i32, "),t.uniforms&&(i+=t.uniforms),i+="};",i=yae(i),o.push(i),t.atomic?o.push(`
@group(0) @binding(0) var<storage, read_write> result: array<atomic<i32>>;
`):o.push(`
@group(0) @binding(0) var<storage, read_write> result: array<${Su(e.dtype,t.outputComponent)}>;
`),t.variableNames.forEach((f,h)=>{o.push(`
@group(0) @binding(${1+h}) var<storage, read> ${f}: array<${t.variableComponents?Su(r[h].dtype,t.variableComponents[h]):Su(r[h].dtype,t.outputComponent)}>;
`)}),i!==""&&o.push(`
@group(0) @binding(${1+t.variableNames.length}) var<uniform> uniforms: Uniforms;
`);let u=hae(e.shape,t.dispatchLayout),c=[tz,o.join(`
`)+lae,cm(e.shape),u,gae(e.shape.length)];t.atomic||c.push(xae(e.shape,e.dtype,t.outputComponent)),t.variableNames.forEach((f,h)=>{c.push(`${cm(r[h].shape,f)}`)});let l=r.map((f,h)=>fae(f,e.shape,t.variableComponents?t.variableComponents[h]:t.outputComponent,t.dispatchLayout.x.length===e.shape.length)).join(`
`);c.push(l),c.push(t.getUserCode());let m=rz(t);return c.push(ez(m,t)),c.join(`
`)}function nz(r,e,t){let o=r.shaderKey;if(r.pixelsOpType!=null)return o;let n=[],s=[];e.forEach(c=>{n.push(c.shape),s.push(c.dtype)}),n.push(t.shape),s.push(t.dtype);let a=e.map(c=>w.getBroadcastDims(c.shape,t.shape)),i=e.map(c=>y.arraysEqual(c.shape,t.shape)).join("_"),p=a.map(c=>c.join("_")).join(";"),u=sz(r)?"flatDispatch":"";return o+="_"+(r.workgroupSize?r.workgroupSize.join(","):"")+n.map(c=>c.length).join(",")+s.join(",")+r.variableNames.join(",")+p+i+u,o}var tz=`
struct vec5 {x: i32, y: i32, z: i32, w: i32, u: i32};
struct vec6 {x: i32, y: i32, z: i32, w: i32, u: i32, v: i32};
// Checks whether coordinates lie within the bounds of the shape.
fn coordsInBounds2D(coord : vec2<i32>, shape : vec2<i32>) -> bool {
return all(coord >= vec2<i32>(0)) && all(coord < shape);
}
fn coordsInBounds3D(coord : vec3<i32>, shape : vec3<i32>) -> bool {
return all(coord >= vec3<i32>(0)) && all(coord < shape);
}
fn coordsInBounds4D(coord : vec4<i32>, shape : vec4<i32>) -> bool {
return all(coord >= vec4<i32>(0)) && all(coord < shape);
}
fn getIndexFromCoords1D(coord : i32, shape : i32) -> i32 {
return coord;
}
fn getIndexFromCoords2D(coords : vec2<i32>, shape : vec2<i32>) -> i32 {
return dot(coords, vec2<i32>(shape.y, 1));
}
fn getIndexFromCoords3D(coords : vec3<i32>, shape : vec3<i32>) -> i32 {
return dot(coords, vec3<i32>(shape.y * shape.z, shape.z, 1));
}
fn getIndexFromCoords4D(coords : vec4<i32>, shape : vec4<i32>) -> i32 {
return dot(coords, vec4<i32>(
shape.y * shape.z * shape.w, shape.z * shape.w, shape.w, 1));
}
fn getIndexFromCoords5D(coords : vec5, shape : vec5) -> i32 {
let shapeStrides: vec5 = vec5(shape.y * shape.z * shape.w * shape.u, shape.z * shape.w * shape.u, shape.w * shape.u, shape.u, 1);
return coords.x*shapeStrides.x + coords.y*shapeStrides.y + coords.z*shapeStrides.z + coords.w*shapeStrides.w + coords.u*shapeStrides.u;
}
fn getIndexFromCoords6D(coords : vec6, shape : vec6) -> i32 {
let shapeStrides: vec6 = vec6(shape.y * shape.z * shape.w * shape.u * shape.v, shape.z * shape.w * shape.u * shape.v, shape.w * shape.u * shape.v, shape.u * shape.v, shape.v, 1);
return coords.x*shapeStrides.x + coords.y*shapeStrides.y + coords.z*shapeStrides.z + coords.w*shapeStrides.w + coords.u*shapeStrides.u + coords.v*shapeStrides.v;
}
// NaN defination in IEEE 754-1985 is :
// - sign = either 0 or 1.
// - biased exponent = all 1 bits.
// - fraction = anything except all 0 bits (since all 0 bits represents infinity).
// https://en.wikipedia.org/wiki/IEEE_754-1985#Representation_of_non-numbers
fn isnan(val: f32) -> bool {
let floatToUint: u32 = bitcast<u32>(val);
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
}
fn isnanVec4(val : vec4<f32>) -> vec4<bool> {
let floatToUint: vec4<u32> = bitcast<vec4<u32>>(val);
return (floatToUint & vec4<u32>(0x7fffffffu)) > vec4<u32>(0x7f800000u);
}
`,lae=`
fn isinf(val: f32) -> bool {
return abs(val) == uniforms.INFINITY;
}
`;function cm(r,e=""){let t=r.length,o=e!==""?`get${e.charAt(0).toUpperCase()+e.slice(1)}CoordsFromIndex`:"getCoordsFromIndex",n=e!==""?`${e.charAt(0).toLowerCase()+e.slice(1)}ShapeStrides`:"outShapeStrides";if(t<=1)return`fn ${o}(index : i32) -> i32 { return index; }`;let s=y.computeStrides(r),a=ft(t),i=[];for(let u=0;u<t;u++)i.push(`d${u}`);if(s.length===1)return` fn ${o}(index : i32) -> vec2<i32> {
let d0 = index / uniforms.${n}; let d1 = index - d0 * uniforms.${n};
return vec2<i32>(d0, d1);
}`;let p;return p="var index2 = index;"+s.map((u,c)=>{let l=`let ${i[c]} = index2 / uniforms.${n}.${Oo(c)}`,m=c===s.length-1?`let ${i[c+1]} = index2 - ${i[c]} * uniforms.${n}.${Oo(c)}`:`index2 = index2 - ${i[c]} * uniforms.${n}.${Oo(c)}`;return`${l}; ${m};`}).join(""),`
fn ${o}(index : i32) -> ${a} {
${p}
return ${a}(${i.join(",")});
}
`}function mae(r,e){let t=r.name,o=r.shape.length,n=ft(o),s="get"+t.charAt(0).toUpperCase()+t.slice(1),a=["d0","d1","d2","d3","d4","d5"].slice(0,o),i=a.map(c=>`${c} : i32`).join(", ");if(o<1)return`
fn ${s}() -> ${Ae(e)} {
return ${Ae(e)}(${t}[0]);
}
`;let p=`uniforms.${t.charAt(0).toLowerCase()+t.slice(1)}Shape`,u=`${o}D`;return o===0&&(u="1D"),`
fn ${s}(${i}) -> ${Ae(e)} {
return ${Ae(e)}(${t}[getIndexFromCoords${u}(${n}(${a.join(",")}),
${p})${e===1?"":` / ${e}`}]);
}
`}function dae(r,e,t,o){let n=r.name,s=n.charAt(0).toUpperCase()+n.slice(1),a="get"+s+"ByOutput",i=r.shape.length,p=e.length,u=ft(p);if(y.arraysEqual(r.shape,e)&&o)return`
fn ${a}Index(globalIndex : i32) -> ${Ae(t)} {
return ${Ae(t)}(${n}[globalIndex]);
}
fn ${a}Coords(coords : ${u}) -> ${Ae(t)} {
return ${Ae(t)}(${n}[${p>1?"getOutputIndexFromCoords(coords)":"coords"}${t===1?"":` / ${t}`}]);
}
`;let c=w.getBroadcastDims(r.shape,e),l=p-i,m="";if(i===0)return`
fn ${a}Index(globalIndex : i32) -> ${Ae(t)}{
return get${s}();
}
fn ${a}Coords(coords : ${u}) -> ${Ae(t)}{
return get${s}();
}
`;p<2&&c.length>=1?m="coords = 0;":m=c.map(g=>`coords.${Oo(g+l)} = 0;`).join(`
`);let d="";if(p<2&&i>0)d="coords";else if(p>1){let g=ft(i),x=r.shape.map((b,C)=>`coords.${Oo(C+l)}`).join(", ");d=`${g}(${x})`}else d="coords";let f=`uniforms.${n.charAt(0).toLowerCase()+n.slice(1)}Shape`,h=`${i}D`;return`
fn ${a}Index(globalIndex : i32) -> ${Ae(t)} {
var coords = getCoordsFromIndex(globalIndex);
${m}
return ${Ae(t)}(${n}[getIndexFromCoords${h}(${d}, ${f})${t===1?"":` / ${t}`}]);
}
fn ${a}Coords(coordsIn : ${u}) -> ${Ae(t)} {
var coords = coordsIn;
${m}
return ${Ae(t)}(${n}[getIndexFromCoords${h}(${d}, ${f})${t===1?"":` / ${t}`}]);
}
`}function fae(r,e,t,o){let n=mae(r,t);return r.shape.length<=e.length&&(n+=dae(r,e,t,o)),n}function hae(r,e){let{x:t,y:o=[],z:n=[]}=e,s=r.length,a=t.length+o.length+n.length;if(a!==s)return"";if(t.length===s)return`fn getOutputCoords() -> ${ft(s)}{
let globalIndex = getGlobalIndex();
return getCoordsFromIndex(globalIndex);
}
`;let i="",p=[t,o,n];for(let m=0;m<p.length;m++){let d=p[m];if(d.length!==0)if(d.length===1)i+=`let d${d[0]} = i32(globalId[${m}]);`;else{let f=JB(d,"uniforms.outShape");i+=`var index${m} = i32(globalId[${m}]);`;for(let h=0;h<f.length;h++)i+=`let d${d[h]} = index${m} / ${f[h]};`,h===f.length-1?i+=`let d${d[h+1]} = index${m} - d${d[h]} * ${f[h]};`:i+=`index${m} = index${m} - d${d[h]} * ${f[h]};`}}let u=[];for(let m=0;m<a;m++)u.push(`d${m}`);let c=ft(a),l=`fn getOutputCoords() -> ${c} {
${i}
`;return u.length===0?l+=`return ${c}(0); }`:l+=`return ${c}(${u.join(",")}); }`,l}function gae(r){let e="";switch(r){case 0:case 1:e+=`
fn getOutputIndexFromCoords(coords : i32) -> i32 {
return coords;
}
`;break;case 2:e+=`
fn getOutputIndexFromCoords(coords : vec2<i32>) -> i32 {
return dot(coords, vec2<i32>(uniforms.outShapeStrides, 1));
}
`;break;case 3:e+=`
fn getOutputIndexFromCoords(coords : vec3<i32>) -> i32 {
return dot(coords, vec3<i32>(uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, 1));
}
`;break;case 4:e+=`
fn getOutputIndexFromCoords(coords : vec4<i32>) -> i32 {
return dot(coords, vec4<i32>(
uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, uniforms.outShapeStrides.z, 1));
}
`;break;case 5:e+=`
fn getOutputIndexFromCoords(coords : vec5) -> i32 {
return coords.x * uniforms.outShapeStrides.x +
coords.y * uniforms.outShapeStrides.y +
coords.z * uniforms.outShapeStrides.z +
coords.w * uniforms.outShapeStrides.w +
coords.u;
}
`;break;case 6:e+=`
fn getOutputIndexFromCoords(coords : vec6) -> i32 {
return coords.x * uniforms.outShapeStrides.x +
coords.y * uniforms.outShapeStrides.y +
coords.z * uniforms.outShapeStrides.z +
coords.w * uniforms.outShapeStrides.w +
coords.u * uniforms.outShapeStrides.u +
coords.v;
}
`;break;default:y.assert(!1,()=>`Unsupported ${r}D shape`);break}return e}function sz(r){return r.dispatch[1]===1&&r.dispatch[2]===1}function Su(r,e=1){if(r==="float32")return Ae(e,"f32");if(r==="int32"||r==="bool")return Ae(e,"i32");throw new Error(`type ${r} is not supported.`)}function xae(r,e,t){let o=r.length,n=Su(e,t),s=`fn setOutputAtIndex(flatIndex : i32, value : ${Ae(t)}) {
result[flatIndex] = ${n}(value);
}
fn setOutputAtIndexI32(flatIndex : i32, value : ${Ae(t,"i32")}) {
result[flatIndex] = ${n}(value);
}
`;if(o>=2){let a=["d0","d1","d2","d3","d4","d5"].slice(0,o),i=ft(o);s+=`
fn setOutputAtCoords(${a.map(p=>`${p} : i32`).join(", ")}, value : ${Ae(t)}) {
let flatIndex = getOutputIndexFromCoords(${i}(${a.join(", ")}));
setOutputAtIndex(flatIndex${t===1?"":` / ${t}`}, value);
}
fn setOutputAtCoordsI32(${a.map(p=>`${p} : i32`).join(", ")}, value : ${Ae(t,"i32")}) {
let flatIndex = getOutputIndexFromCoords(${i}(${a.join(", ")}));
setOutputAtIndexI32(flatIndex${t===1?"":` / ${t}`}, value);
}
`}return s}function yae(r){let e=/(\w+)\s*:\s*vec(5|6)/g;r=r.replace(e,o=>"@align(16) "+o);let t=/vec(5|6)\s*,\s*(\w+)/g;return r=r.replace(t,(o,n,s)=>`vec${n}, @align(16) ${s}`),r}function rz(r){return!(r.dispatchLayout.hasOwnProperty("y")&&r.dispatchLayout.y.length!==0||r.dispatchLayout.hasOwnProperty("z")&&r.dispatchLayout.z.length!==0)}var Zv={};qe(Zv,{GPUBytesPerElement:()=>jg,MatMulProgramType:()=>Mo,assertNotComplex:()=>fm,computeDispatch:()=>H,computeWorkPerThreadForConv2d:()=>mm,computeWorkgroupInfoForMatMul:()=>Qv,computeWorkgroupSizeForConv2d:()=>lm,flatDispatchLayout:()=>X,isWebGPUSupported:()=>dm,tilesFitEvenlyIntoShape:()=>Cae});var Tp=r=>{let e=1;for(let t=0;t<r.length;t++)e*=r[t];return e};function Cae(r,e){if(r.length!==e.length)throw new Error(`Cannot compute whether rank ${r.length} tiles fit evenly into rank ${e.length} shape - ranks must match.`);return e.every((t,o)=>t%r[o]===0)}function H(r,e,t=[1,1,1],o=[1,1,1]){let[n,s,a]=[Math.ceil(Tp(r.x.map(i=>e[i]))/(t[0]*o[0])),r.y?Math.ceil(Tp(r.y.map(i=>e[i]))/(t[1]*o[1])):1,r.z?Math.ceil(Tp(r.z.map(i=>e[i]))/(t[2]*o[2])):1];return[n,s,a]}function Qv(r,e,t,o=!1){let n=[8,8,1],s=[4,4,1];return o||(r<=8&&(s[1]=1),e<=16&&t<=16&&(n[0]=4)),{workgroupSize:n,elementsPerThread:s}}function lm(r,e,t=!1){if(t)return[8,8,1];let o=Tp(r.x.map(s=>e[s])),n=Tp(r.y.map(s=>e[s]));return o<=4?[4,16,1]:n<=4?[16,4,1]:[16,16,1]}function mm(r,e,t=!1){if(t)return[4,4,1];let o=Tp(r.x.map(s=>e[s])),n=Tp(r.y.map(s=>e[s]));return o<=4?[1,2,1]:n<=4?[2,1,1]:[2,2,1]}function X(r){return{x:r.map((e,t)=>t)}}function jg(r){if(r==="float32"||r==="int32"||r==="bool"||r==="string")return 4;if(r==="complex64")return 8;throw new Error(`Unknown dtype ${r}`)}function dm(){return!!(typeof globalThis!="undefined"&&globalThis.navigator&&globalThis.navigator.gpu)}function fm(r,e){Array.isArray(r)||(r=[r]),r.forEach(t=>{t!=null&&y.assert(t.dtype!=="complex64",()=>`${e} does not support complex64 tensors in the WebGPU backend.`)})}var Mo;(function(r){r[r.MatMulReduceProgram=0]="MatMulReduceProgram",r[r.MatMulSplitKProgram=1]="MatMulSplitKProgram",r[r.MatMulSmallOutputSizeProgram=2]="MatMulSmallOutputSizeProgram",r[r.MatMulPackedProgram=3]="MatMulPackedProgram",r[r.MatMulMax=4]="MatMulMax"})(Mo||(Mo={}));var wae=A().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"),Sae=(r,e)=>{let t=r.limits.maxComputeWorkgroupsPerDimension,o=e.dispatchLayout,n=e.dispatch;if(n.every(a=>a<=t))return n;y.assert(n[0]>t&&o.y===void 0&&o.z===void 0,()=>"Dispatch size exceeds WebGPU limits in Y or Z dimension.");let s=Math.ceil(Math.sqrt(n[0]));return s>t?(s=Math.ceil(Math.cbrt(n[0])),y.assert(s<=t,()=>"Total dispatch size exceeds WebGPU maximum."),[s,s,s]):[s,s,1]},jc=class r extends ao{nextDataId(){return r.nextDataId++}constructor(e,t){if(super(),this.commandQueueOwnedIds=new WeakSet,this.dispatchCountInPass=0,this.disposed=!1,this.downloadWaitMs=0,this.tensorDataPendingDisposal=[],this.queryResolveBuffer=null,this.querySet=null,this.querySetCount=2,this.stagingPendingDisposal=[],this.uniformPendingDisposal=[],this.uploadWaitMs=0,this.hasReadSyncWarned=!1,this.hasTimestampQueryWarned=!1,!dm())throw new Error("WebGPU is not supported on this device");this.pipelineCache={},this.device=e,this.queue=e.queue,this.commandEncoder=null,this.computePassEncoder=null,this.adapterInfo=new Hg(t),this.supportTimestampQuery=this.device.features.has("timestamp-query"),this.thresholdToIncreaseWorkgroups=this.adapterInfo.intelGPUGeneration>=12?16:8,this.bufferManager=new Kg(this.device),this.textureManager=new qg(this.device),this.tensorMap=new Bo(this,ur()),A().getBool("WEBGPU_USE_PROFILE_TOOL")&&(this.dummyCanvas=document.createElement("canvas"),this.dummyCanvas.width=1,this.dummyCanvas.height=1,this.dummyContext=this.dummyCanvas.getContext("webgpu"),this.dummyContext.configure({device:e,format:"bgra8unorm"}),document.body.appendChild(this.dummyCanvas))}floatPrecision(){return 32}disposeData(e,t=!1){if(!this.tensorMap.has(e))return!0;let o=this.tensorMap.get(e);return t?o.refCount=0:o.refCount--,o.refCount>0?!1:(o.complexTensorInfos!=null&&(this.disposeData(o.complexTensorInfos.real.dataId),this.disposeData(o.complexTensorInfos.imag.dataId)),this.commandQueueOwnedIds.has(e)?(this.tensorDataPendingDisposal.push(e),!0):(this.releaseResource(e),this.tensorMap.delete(e),!0))}memory(){return{numBytesInGPU:this.bufferManager.numBytesUsed,numBytesAllocatedInGPU:this.bufferManager.numBytesAllocated,unreliable:!1}}releaseResource(e){let t=this.tensorMap.get(e);if(!(!t||!t.resource)){if(t.external){t.resource=null;return}t.resource instanceof GPUBuffer?this.bufferManager.releaseBuffer(t.resource):t.resource instanceof GPUTexture&&this.textureManager.releaseTexture(t.resource),t.resource=null}}refCount(e){return this.tensorMap.has(e)?this.tensorMap.get(e).refCount:0}incRef(e){let t=this.tensorMap.get(e);t.refCount++}decRef(e){if(this.tensorMap.has(e)){let t=this.tensorMap.get(e);t.refCount--}}write(e,t,o){if(o==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let n={id:this.nextDataId()};return this.tensorMap.set(n,{dtype:o,shape:t,values:e,refCount:1}),n}move(e,t,o,n,s){if(n==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.tensorMap.set(e,{dtype:n,shape:o,values:t,refCount:s})}submitQueue(){this.queue.submit([this.commandEncoder.finish()]),this.commandEncoder=null,this.dispatchCountInPass=0,this.commandQueueOwnedIds=new WeakSet,this.tensorDataPendingDisposal.forEach(e=>{this.releaseResource(e),this.tensorMap.delete(e)}),this.uniformPendingDisposal.forEach(e=>this.bufferManager.releaseBuffer(e)),this.stagingPendingDisposal.forEach(e=>this.bufferManager.releaseBuffer(e,!1)),this.tensorDataPendingDisposal=[],this.uniformPendingDisposal=[],this.stagingPendingDisposal=[]}ensureCommandEncoderReady(){this.commandEncoder||(this.commandEncoder=this.device.createCommandEncoder())}endComputePassEncoder(){this.computePassEncoder&&(this.computePassEncoder.end(),this.computePassEncoder=null)}async checkCompileCompletionAsync(){let e;try{e=await Promise.all(Object.values(this.pipelineCache))}catch(t){throw new Error(t.message)}Object.keys(this.pipelineCache).map((t,o)=>{this.pipelineCache[t]=e[o]})}async getBufferData(e){if(A().getBool("WEBGPU_ENGINE_COMPILE_ONLY"))return console.warn("The data may be invalid since WEBGPU_ENGINE_COMPILE_ONLY is true, this can only be called when WEBGPU_ENGINE_COMPILE_ONLY is false"),null;let t=e.size,o=this.bufferManager.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ);this.ensureCommandEncoderReady(),this.endComputePassEncoder(),this.commandEncoder.copyBufferToBuffer(e,0,o,0,t),this.submitQueue(),await o.mapAsync(GPUMapMode.READ);let n=o.getMappedRange().slice(0);return o.unmap(),o!=null&&this.bufferManager.releaseBuffer(o),A().getBool("WEBGPU_USE_PROFILE_TOOL")&&(y.assert(this.dummyContext!==void 0,()=>"Fail to get context for profiling tool"),this.dummyContext.getCurrentTexture()),n}convertAndCacheOnCPU(e,t){let o=this.tensorMap.get(e);return o.values=t,o.values}readSync(e){let t=this.tensorMap.get(e),{values:o,complexTensorInfos:n}=t;if(o!=null||t.dtype==="string")return o;if(t.dtype==="complex64"){let h=this.readSync(n.real.dataId),g=this.readSync(n.imag.dataId),x=y.convertBackendValuesAndArrayBuffer(w.mergeRealAndImagArrays(h,g).buffer,"float32");return this.convertAndCacheOnCPU(e,x),x}this.hasReadSyncWarned||(this.hasReadSyncWarned=!0,console.warn("The performance of synchronously reading data from GPU to CPU is poor on the webgpu backend, please use asynchronous APIs instead."));let s=["opaque","premultiplied"],a=t.resource,i=a.size;y.assert(i%4===0,()=>"Because there is 4 bytes for one pixel, buffer size must be multiple of 4.");let p=i/4,u=new ArrayBuffer(i),c=256,l=256,m=s.map(h=>new OffscreenCanvas(c,l)),d=new OffscreenCanvas(c,l);this.endComputePassEncoder(),m.map((h,g)=>{let x=h.getContext("webgpu");return x.configure({device:this.device,format:"bgra8unorm",usage:GPUTextureUsage.COPY_DST,alphaMode:s[g]}),x.getCurrentTexture()}).map((h,g)=>{let x=c*4,b=(R,D,P)=>{this.ensureCommandEncoderReady(),this.commandEncoder.copyBufferToTexture({buffer:a,bytesPerRow:x,offset:P},{texture:h},{width:R,height:D}),this.submitQueue();let O=d.getContext("2d",{willReadFrequently:!0});O.clearRect(0,0,R,D),O.drawImage(m[g],0,0);let M=O.getImageData(0,0,R,D).data,L=s[g],B=new Uint8ClampedArray(u,P,R*D*4);for(let z=0;z<B.length;z+=4)if(L==="premultiplied")B[z+3]=M[z+3];else{let U=M[z];B[z]=M[z+2],B[z+1]=M[z+1],B[z+2]=U}},C=Math.floor(p/(c*l)),S=c,k=l,_=0;for(let R=0;R<C;R++)b(S,k,_),_+=c*l*4;let $=p%(c*l);k=Math.floor($/c),k>0&&(b(S,k,_),_+=k*(c*4)),S=$%c,S>0&&b(S,1,_)});let f=y.convertBackendValuesAndArrayBuffer(u,t.dtype);return this.convertAndCacheOnCPU(e,f),f}async read(e){if(!this.tensorMap.has(e))throw new Error(`Tensor ${e} was not registered!`);let t=this.tensorMap.get(e),{values:o}=t;if(o!=null)return o;let n;if(t.dtype==="complex64"){let s=await Promise.all([this.read(t.complexTensorInfos.real.dataId),this.read(t.complexTensorInfos.imag.dataId)]),a=s[0],i=s[1];n=w.mergeRealAndImagArrays(a,i)}else{let s=await this.getBufferData(t.resource);n=y.convertBackendValuesAndArrayBuffer(s,t.dtype)}return this.convertAndCacheOnCPU(e,n),n}copyBuffer(e){let t=e.size,o=e.usage,n=this.bufferManager.acquireBuffer(t,o);return this.ensureCommandEncoderReady(),this.endComputePassEncoder(),this.commandEncoder.copyBufferToBuffer(e,0,n,0,t),this.submitQueue(),n}createTensorFromGPUData(e,t,o){let n=e.buffer;if(o==="complex64")throw new Error("Cannot write to a complex64 dtype. ");let s={id:this.nextDataId()};this.tensorMap.set(s,{dtype:o,shape:t,values:null,refCount:1,external:e.zeroCopy});let a=this.tensorMap.get(s),i=jg(a.dtype)*y.sizeFromShape(a.shape);if(e.buffer.size<i)throw new Error(`GPUBuffer size(${e.buffer.size}) is smaller than tensor size(${i})!`);if((e.buffer.usage&(GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC))!==(GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC))throw new Error("GPUBuffer.usage should include GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_SRC!");return e.zeroCopy!==!0&&(n=this.copyBuffer(n)),a.resource=n,ur().makeTensorFromDataId(s,t,o,this)}readToGPU(e){let t=this.tensorMap.get(e),{values:o,dtype:n,shape:s,resource:a}=t;if(n==="complex64")throw new Error("Does not support reading buffer for complex64 dtype.");if(a==null)throw o!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let i=a,p=i.size,u=i.usage,c=this.bufferManager.acquireBuffer(p,u);this.ensureCommandEncoderReady(),this.endComputePassEncoder(),this.commandEncoder.copyBufferToBuffer(a,0,c,0,p),this.submitQueue();let l=this.makeTensorInfo(s,n),m=ur().makeTensorFromTensorInfo(l),d=this.tensorMap.get(l.dataId);return d.resource=c,{tensorRef:m,buffer:c}}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let o=t.map(n=>y.decodeString(n));return me(e.shape,e.dtype,o)}catch(o){throw new Error("Failed to decode encoded string bytes into utf-8")}return me(e.shape,e.dtype,t)}async time(e){!this.supportTimestampQuery&&!this.hasTimestampQueryWarned&&(console.warn("This device doesn't support timestamp-query extension. Start Chrome browser with flag --enable-dawn-features=allow_unsafe_apis to try it again. Otherwise, zero will be shown for the kernel time when profiling mode is enabled."),this.hasTimestampQueryWarned=!0);let t=this.activeTimers,o=[],n=!1;this.programTimersStack==null?(this.programTimersStack=o,n=!0):this.activeTimers.push(o),this.activeTimers=o,e();let s=y.flatten(this.activeTimers.map(u=>u.query)).filter(u=>u!=null),a=y.flatten(this.activeTimers.map(u=>u.name)).filter(u=>u!=null);this.activeTimers=t,n&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null},p=await Promise.all(s);return i.kernelMs=y.sum(p),i.getExtraProfileInfo=()=>p.map((u,c)=>({name:a[c],ms:u})).map(u=>`${u.name}: ${u.ms}`).join(", "),this.uploadWaitMs=0,this.downloadWaitMs=0,i}makeTensorInfo(e,t,o){return t==="string"&&o!=null&&o.length>0&&y.isString(o[0])&&(o=o.map(s=>y.encodeString(s))),{dataId:this.write(o,e,t),shape:e,dtype:t}}tensorToBinding(e){if(!e)return null;let o=this.tensorMap.get(e.dataId).resource;return o instanceof GPUBuffer?{buffer:o}:o instanceof GPUTexture?o.createView():o}uploadToGPU(e){let t=this.tensorMap.get(e);if(t.resource!=null)return;let o=jg(t.dtype)*y.sizeFromShape(t.shape),n,s=GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC|GPUBufferUsage.COPY_DST;if(t.values){if(n=this.bufferManager.acquireBuffer(o,s,!0),n.mapState==="unmapped"){let a=this.bufferManager.acquireBuffer(o,GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC,!0,!1),i=a.getMappedRange();t.dtype==="int32"||t.dtype==="bool"?new Int32Array(i).set(t.values):new Float32Array(i).set(t.values),a.unmap(),this.ensureCommandEncoderReady(),this.endComputePassEncoder(),this.commandEncoder.copyBufferToBuffer(a,0,n,0,o),this.stagingPendingDisposal.push(a)}else{let a=n.getMappedRange();t.dtype==="int32"||t.dtype==="bool"?new Int32Array(a).set(t.values):new Float32Array(a).set(t.values),n.unmap()}t.values=null}else n=this.bufferManager.acquireBuffer(o,s);t.resource=n}makeUniforms(e){let t=0,o=0,n=[],s=1;e.forEach(p=>{p.data.length===0&&(p.data=[1]);let u;switch(p.data.length){case 1:u=4;break;case 2:u=8;break;case 3:u=16;break;case 4:u=16;break;case 5:u=16;break;case 6:u=16;break;default:y.assert(!1,()=>`Unsupported ${p.data.length}D shape`)}(o===5||o===6)&&(u=16),u>s&&(s=u),t=Math.ceil(t/u)*u,o=p.data.length,n.push(t),t+=p.data.length*4}),t=Math.ceil(t/s)*s;let a=new ArrayBuffer(t);e.forEach((p,u)=>{let c=n[u];p.type==="int32"?new Int32Array(a,c,p.data.length).set(p.data):p.type==="uint32"?new Uint32Array(a,c,p.data.length).set(p.data):new Float32Array(a,c,p.data.length).set(p.data)});let i=this.bufferManager.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM);return this.queue.writeBuffer(i,0,a,0,t),this.uniformPendingDisposal.push(i),{offset:0,size:t,buffer:i}}runWebGPUProgram(e,t,o,n,s){if(s||(s=this.makeTensorInfo(e.outputShape,o)),y.sizeFromShape(s.shape)===0)return this.tensorMap.get(s.dataId).values=y.getTypedArrayFromDType(s.dtype,0),s;this.uploadToGPU(s.dataId),e.dispatch=Sae(this.device,e);let a=t.map((p,u)=>{if(p.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");return this.uploadToGPU(p.dataId),{dtype:this.tensorMap.get(p.dataId).dtype,shape:p.shape,name:e.variableNames[u]}});e.shaderKey=nz(e,a,s);let i=A().getBool("WEBGPU_ENGINE_COMPILE_ONLY");return e.shaderKey in this.pipelineCache||(this.pipelineCache[e.shaderKey]=oz(this.device,e,a,s,i)),e.pipeline=this.pipelineCache[e.shaderKey],i||this.recordAndSubmit(e,s,t,n),s}recordAndSubmit(e,t,o,n){if(e.pipeline instanceof Promise)throw new Error("Please call checkCompileCompletionAsync to ensure parallel compilation is done!");let s=[],a=[],i="int32";if(e.pixelsOpType==null){s.push({type:"float32",data:[NaN]},{type:"float32",data:[1/0]}),a=o.concat(t).map(d=>d.shape);let m="int32";a.map(d=>{s.push({type:m,data:d});let f=y.computeStrides(d);s.push({type:m,data:f})})}else{let m=y.computeStrides(t.shape);s.push({type:i,data:m})}if(e.size){let m=y.sizeFromShape(e.outputShape);s.push({type:i,data:[e.outputComponent?m/e.outputComponent:m]})}n&&(s=[...s,...n]);let p=[this.tensorToBinding(t),...o.map(m=>this.tensorToBinding(m)),this.makeUniforms(s)];o.forEach(m=>{this.commandQueueOwnedIds.add(m.dataId)}),this.commandQueueOwnedIds.add(t.dataId);let u=this.device.createBindGroup({layout:e.pipeline.getBindGroupLayout(0),entries:p.map((m,d)=>({binding:d,resource:m}))}),c=this.activeTimers!=null;this.ensureCommandEncoderReady();let l={};c&&this.supportTimestampQuery?(this.endComputePassEncoder(),this.querySet==null&&(this.querySet=this.device.createQuerySet({type:"timestamp",count:this.querySetCount})),l.timestampWrites={querySet:this.querySet,beginningOfPassWriteIndex:0,endOfPassWriteIndex:1},this.computePassEncoder=this.commandEncoder.beginComputePass(l)):this.computePassEncoder||(this.computePassEncoder=this.commandEncoder.beginComputePass(l)),this.computePassEncoder.setPipeline(e.pipeline),this.computePassEncoder.setBindGroup(0,u),this.computePassEncoder.dispatchWorkgroups(e.dispatch[0],e.dispatch[1],e.dispatch[2]),this.dispatchCountInPass++,(c||A().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchCountInPass||e.pixelsOpType===wi.DRAW)&&(this.endComputePassEncoder(),c?this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime()}):this.submitQueue())}async getQueryTime(){if(!this.supportTimestampQuery)return 0;this.queryResolveBuffer==null&&(this.queryResolveBuffer=this.bufferManager.acquireBuffer(this.querySetCount*8,GPUBufferUsage.COPY_SRC|GPUBufferUsage.COPY_DST|GPUBufferUsage.QUERY_RESOLVE)),this.commandEncoder.resolveQuerySet(this.querySet,0,this.querySetCount,this.queryResolveBuffer,0);let e=this.bufferManager.acquireBuffer(this.querySetCount*8,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST);this.commandEncoder.copyBufferToBuffer(this.queryResolveBuffer,0,e,0,this.querySetCount*8),this.submitQueue(),await e.mapAsync(GPUMapMode.READ);let t=new BigUint64Array(e.getMappedRange()),o=Number(t[1]-t[0])/1e6;return e.unmap(),this.bufferManager.releaseBuffer(e),o}shouldExecuteOnCPU(e,t=wae){return A().getBool("WEBGPU_CPU_FORWARD")&&e.every(o=>this.tensorMap.get(o.dataId).resource==null&&y.sizeFromShape(o.shape)<t)}numDataIds(){return this.tensorMap.numDataIds()-this.tensorDataPendingDisposal.length}dispose(){this.disposed||(this.querySet!=null&&this.querySet.destroy(),this.bufferManager.dispose(),this.textureManager.dispose(),this.disposed=!0)}};jc.nextDataId=0;dm()&&tu("webgpu",async()=>{let r={powerPreference:A().get("WEBGPU_USE_LOW_POWER_GPU")?"low-power":"high-performance"},e=await navigator.gpu.requestAdapter(r),t={},o=[];e.features.has("timestamp-query")&&o.push("timestamp-query"),e.features.has("bgra8unorm-storage")&&o.push(["bgra8unorm-storage"]),t.requiredFeatures=o;let n=e.limits;t.requiredLimits={maxComputeWorkgroupStorageSize:n.maxComputeWorkgroupStorageSize,maxComputeWorkgroupsPerDimension:n.maxComputeWorkgroupsPerDimension,maxStorageBufferBindingSize:n.maxStorageBufferBindingSize,maxBufferSize:n.maxBufferSize,maxComputeWorkgroupSizeX:n.maxComputeWorkgroupSizeX,maxComputeInvocationsPerWorkgroup:n.maxComputeInvocationsPerWorkgroup};let s=await e.requestDevice(t),a="info"in e?e.info:"requestAdapterInfo"in e?await e.requestAdapterInfo():void 0;return new jc(s,a)},3);var fe;(function(r){r[r.ADD=0]="ADD",r[r.ATAN2=1]="ATAN2",r[r.COMPLEX_MULTIPLY_IMAG=2]="COMPLEX_MULTIPLY_IMAG",r[r.COMPLEX_MULTIPLY_REAL=3]="COMPLEX_MULTIPLY_REAL",r[r.DIV=4]="DIV",r[r.ELU_DER=5]="ELU_DER",r[r.EQUAL=6]="EQUAL",r[r.FLOOR_DIV=7]="FLOOR_DIV",r[r.GREATER=8]="GREATER",r[r.GREATER_EQUAL=9]="GREATER_EQUAL",r[r.LESS=10]="LESS",r[r.LESS_EQUAL=11]="LESS_EQUAL",r[r.LOGICAL_AND=12]="LOGICAL_AND",r[r.LOGICAL_OR=13]="LOGICAL_OR",r[r.MAX=14]="MAX",r[r.MIN=15]="MIN",r[r.MOD=16]="MOD",r[r.MUL=17]="MUL",r[r.NOT_EQUAL=18]="NOT_EQUAL",r[r.POW=19]="POW",r[r.PRELU=20]="PRELU",r[r.SQUARED_DIFFERENCE=21]="SQUARED_DIFFERENCE",r[r.SUB=22]="SUB"})(fe||(fe={}));var Iae="let resultTemp = a + b;",vae="let resultTemp = atan2(a, b);",kae="let resultTemp = areal * breal - aimag * bimag;",Nae="let resultTemp = areal * bimag + aimag * breal;",Tae="let resultTemp = a / b;",_ae="let resultTemp = select(a * (b + 1.0), a, b >= b - b);",Eae=`
let zero = sign(a) * 0 + 0;
let one = sign(b) * 0 + 1;
let resultTemp = select(zero, one, a == b);
`,$ae=`
let remainder =
select(a % b, round(a % b), (round(a) == a) & (round(b) == b));
let quotient = (a - remainder) / b;
let resultTemp =
round(select(quotient, quotient - 1, sign(remainder) == -sign(b)));
`,Rae=`
let zero = sign(a) * 0 + 0;
let one = sign(b) * 0 + 1;
let resultTemp = select(zero, one, a > b);
`,Dae=`
let zero = sign(a) * 0 + 0;
let one = sign(b) * 0 + 1;
let resultTemp = select(zero, one, a >= b);
`,Aae=`
let zero = sign(a) * 0 + 0;
let one = sign(b) * 0 + 1;
let resultTemp = select(zero, one, a < b);
`,Fae=`
let zero = sign(a) * 0 + 0;
let one = sign(b) * 0 + 1;
let resultTemp = select(zero, one, a <= b);
`,Pae="return f32(a >= 1.0 && b >= 1.0);",Oae=`return (vec4<f32>(a >= vec4<f32>(1.0)) *
vec4<f32>(b >= vec4<f32>(1.0)));`,Mae="return f32(a >= 1.0 || b >= 1.0);",Lae=`return min(vec4<f32>(a >= vec4<f32>(1.0)) +
vec4<f32>(b >= vec4<f32>(1.0)), vec4<f32>(1.0));`,Bae="let resultTemp = max(a, b);",zae="let resultTemp = min(a, b);",Vae=`
let isNaN = b == 0.;
var resultTemp = a % b;
resultTemp = select((resultTemp + b) % b, resultTemp,
(a < 0. && b < 0.) || (a >= 0. && b > 0.));
`,Wae=`
let isNaN = !vec4<bool>(b);
var resultTemp = vec4<f32>(a % b);
if (!((a[0] < 0. && b[0] < 0.) || (a[0] >= 0. && b[0] > 0.))) {
resultTemp[0] = (resultTemp[0] + b[0]) % b[0];
}
if (!((a[1] < 0. && b[1] < 0.) || (a[1] >= 0. && b[1] > 0.))) {
resultTemp[1] = (resultTemp[1] + b[1]) % b[1];
}
if (!((a[2] < 0. && b[2] < 0.) || (a[2] >= 0. && b[2] > 0.))) {
resultTemp[2] = (resultTemp[2] + b[2]) % b[2];
}
if (!((a[3] < 0. && b[3] < 0.) || (a[3] >= 0. && b[3] > 0.))) {
resultTemp[3] = (resultTemp[3] + b[3]) % b[3];
}
`,Uae="let resultTemp = a * b;",Gae=`
var resultTemp = f32(a != b);
let valueForNaN = 1.0;
`,Hae=`
var resultTemp = vec4<f32>(a != b);
let valueForNaN = 1.0;
`,Kae=`
let isNaN = a < 0.0 && floor(b) < b;
if (b == 0.0) {
return 1.0;
}
var resultTemp = select(sign(a) * pow(abs(a), b), pow(abs(a), b),
round(abs(b) % 2.0) != 1.0);
`,qae=`
let isModRound1Bool = vec4<i32>(round(abs(b) % vec4<f32>(2.0))) == vec4<i32>(1);
let isModRound1 = vec4<f32>(isModRound1Bool);
let multiplier = sign(a) * isModRound1 + (vec4<f32>(1.0) - isModRound1);
var resultTemp = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
let isExpZero = b == vec4<f32>(0.0);
if (isExpZero.r) {
resultTemp.r = 1.0;
}
if (isExpZero.g) {
resultTemp.g = 1.0;
}
if (isExpZero.b) {
resultTemp.b = 1.0;
}
if (isExpZero.a) {
resultTemp.a = 1.0;
}
let isNaN = (a < vec4<f32>(0.0)) & (floor(b) < b);
`,jae="if (a < 0.0) { return b * a; } return a;",Xae=`
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
return (aLessThanZero * (b * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
`,Yae="let resultTemp = (a - b) * (a - b);",Qae="let resultTemp = a - b;";function Xc(r,e){let t;do{switch(r){case fe.ATAN2:t=vae;break;case fe.MAX:t=Bae;break;case fe.MIN:t=zae;break;case fe.MOD:t=e?Wae:Vae;break;case fe.NOT_EQUAL:t=e?Hae:Gae;break;case fe.POW:t=e?qae:Kae;break;default:continue}let o,n,s;return e?(o="isnanVec4",n="vec4<f32>",s="vec4<bool>"):(o="isnan",n="f32",s="bool"),`
let aIsNaN = ${o}(a);
let aPostLegalization = select(a, ${n}(42), aIsNaN);
let bIsNaN = ${o}(b);
let bPostLegalization = select(b, ${n}(42), bIsNaN);
let isNaN = false;
let valueForNaN = uniforms.NAN;
{
let a = aPostLegalization;
let b = bPostLegalization;
${t}
return select(
resultTemp, ${n}(valueForNaN),
${s}(isNaN) | aIsNaN | bIsNaN);
}
`}while(!1);switch(r){case fe.ADD:t=Iae;break;case fe.COMPLEX_MULTIPLY_IMAG:t=Nae;break;case fe.COMPLEX_MULTIPLY_REAL:t=kae;break;case fe.DIV:t=Tae;break;case fe.ELU_DER:t=_ae;break;case fe.EQUAL:t=Eae;break;case fe.FLOOR_DIV:t=$ae;break;case fe.GREATER:t=Rae;break;case fe.GREATER_EQUAL:t=Dae;break;case fe.LESS:t=Aae;break;case fe.LESS_EQUAL:t=Fae;break;case fe.LOGICAL_AND:return e?Oae:Pae;case fe.LOGICAL_OR:return e?Lae:Mae;case fe.MUL:t=Uae;break;case fe.PRELU:return e?Xae:jae;case fe.SQUARED_DIFFERENCE:t=Yae;break;case fe.SUB:t=Qae;break;default:}return`
${t}
return resultTemp;
`}var Z;(function(r){r[r.ABS=0]="ABS",r[r.ACOS=1]="ACOS",r[r.ACOSH=2]="ACOSH",r[r.ASIN=3]="ASIN",r[r.ASINH=4]="ASINH",r[r.ATAN=5]="ATAN",r[r.ATANH=6]="ATANH",r[r.CEIL=7]="CEIL",r[r.COS=8]="COS",r[r.COSH=9]="COSH",r[r.ELU=10]="ELU",r[r.ERF=11]="ERF",r[r.EXP=12]="EXP",r[r.EXPM1=13]="EXPM1",r[r.FLOOR=14]="FLOOR",r[r.IS_FINITE=15]="IS_FINITE",r[r.IS_INF=16]="IS_INF",r[r.IS_NAN=17]="IS_NAN",r[r.LINEAR=18]="LINEAR",r[r.LOG=19]="LOG",r[r.LOG1P=20]="LOG1P",r[r.LOGICAL_NOT=21]="LOGICAL_NOT",r[r.NEG=22]="NEG",r[r.RELU=23]="RELU",r[r.RELU6=24]="RELU6",r[r.LEAKYRELU=25]="LEAKYRELU",r[r.RECIPROCAL=26]="RECIPROCAL",r[r.ROUND=27]="ROUND",r[r.RSQRT=28]="RSQRT",r[r.SELU=29]="SELU",r[r.SIGMOID=30]="SIGMOID",r[r.SIGN=31]="SIGN",r[r.SIN=32]="SIN",r[r.SINH=33]="SINH",r[r.SOFTPLUS=34]="SOFTPLUS",r[r.SQRT=35]="SQRT",r[r.SQUARE=36]="SQUARE",r[r.STEP=37]="STEP",r[r.TAN=38]="TAN",r[r.TANH=39]="TANH",r[r.TO_INT=40]="TO_INT"})(Z||(Z={}));var Zae="return abs(a);",Jae=`
if (abs(a) > 1.) {
return uniforms.NAN;
}
return acos(a);
`,eie=`
if (a < 1.) {
return uniforms.NAN;
}
return acosh(a);
`,tie=`
if (abs(a) > 1.) {
return uniforms.NAN;
}
return asin(a);
`,rie="return asinh(a);",oie=`
if (isnan(a)) {
return uniforms.NAN;
}
return atan(a);
`,nie=`
if (abs(a) > 1.) {
return uniforms.NAN;
}
if (a == 1.) {
return uniforms.INFINITY;
}
if (a == -1.) {
return -uniforms.INFINITY;
}
return atanh(a);
`,sie="return ceil(a);",aie="return cos(a);",iie=`
let e2x = exp(-a);
return (e2x + 1.0 / e2x) / 2.0;
`,uie="return exp(a) - 1.0;",pie="if (a >= 0.0) { return a; } return (exp(a) - 1.0);",cie=`
var resFloat = exp(a) - vec4<f32>(1.0);
if (a.r >= 0.0) {
resFloat.r = a.r;
}
if (a.g >= 0.0) {
resFloat.g = a.g;
}
if (a.b >= 0.0) {
resFloat.b = a.b;
}
if (a.a >= 0.0) {
resFloat.a = a.a;
}
return resFloat;
`,lie=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
let p = ${w.ERF_P};
let a1 = ${w.ERF_A1};
let a2 = ${w.ERF_A2};
let a3 = ${w.ERF_A3};
let a4 = ${w.ERF_A4};
let a5 = ${w.ERF_A5};
let sign = sign(a);
let absA = abs(a);
let t = 1.0 / (1.0 + p * absA);
return sign * (1.0 - (((((a5 * t + a4) * t) + a3) * t + a2) * t + a1) * t * exp(-absA * absA));
`,mie="return exp(a);",die="return floor(a);",fie="return f32(!isnan(a) && !isinf(a));",hie="return f32(isinf(a));",gie="return f32(isnan(a));",xie="return a;",yie=`if (a < 0.0) { return uniforms.NAN; }
return log(a);`,bie=`
if (isnan(a)) { return a; }
return log(1.0 + a);
`,Cie="return f32(!(a >= 1.0));",wie="return -a;",Sie="if (a < 0.0) { return uniforms.alpha * a; } return a;",Iie=`
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
return (aLessThanZero * (uniforms.alpha * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
`,vie="return 1.0 / a;",kie="return select(a, 0.0, a < 0.0);",Nie="return clamp(a, 0.0, 6.0);",Tie="return clamp(a, vec4<f32>(0.0, 0.0, 0.0, 0.0), vec4<f32>(6.0, 6.0, 6.0, 6.0));",_ie=`
return select(a, vec4<f32>(0.0), a < vec4<f32>(0.0));
`,Eie="return round(a);",$ie="return inverseSqrt(a);",Rie=`
if (a >= 0.0) {
return ${w.SELU_SCALE} * a;
} else {
return ${w.SELU_SCALEALPHA} * (exp(a) - 1.0);
}
`,Die="return 1.0 / (1.0 + exp(-1.0 * a));",Aie="return sign(a);",Fie="return sin(a);",Pie=`
let e2x = exp(a);
return (e2x - 1.0 / e2x) / 2.0;
`,Oie=`
let epsilon = 1.1920928955078125e-7;
let threshold = log(epsilon) + 2.0;
let too_large = a > -threshold;
let too_small = a < threshold;
let exp_a = exp(a);
if (too_large) {
return a;
} else if (too_small) {
return exp_a;
} else {
return log(exp_a + 1.0);
}
`,Mie="return sqrt(a);",Lie="return a * a;",Bie=`
if (isnan(a)) {
return a;
}
return select(uniforms.stepAlpha, 1.0, a > 0.0);
`,zie="return tan(a);",Vie=`
let e2x = exp(-2.0 * abs(a));
return sign(a) * (1.0 - e2x) / (1.0 + e2x);
`,Wie="return f32(i32((a)));";function Si(r,e){switch(r){case Z.ABS:return Zae;case Z.ACOS:return Jae;case Z.ACOSH:return eie;case Z.ASIN:return tie;case Z.ASINH:return rie;case Z.ATAN:return oie;case Z.ATANH:return nie;case Z.COS:return aie;case Z.COSH:return iie;case Z.CEIL:return sie;case Z.ELU:return e?cie:pie;case Z.ERF:return lie;case Z.EXP:return mie;case Z.EXPM1:return uie;case Z.FLOOR:return die;case Z.IS_FINITE:return fie;case Z.IS_INF:return hie;case Z.IS_NAN:return gie;case Z.LINEAR:return xie;case Z.LOG:return yie;case Z.LOG1P:return bie;case Z.LOGICAL_NOT:return Cie;case Z.NEG:return wie;case Z.LEAKYRELU:return e?Iie:Sie;case Z.RECIPROCAL:return vie;case Z.RELU:return e?_ie:kie;case Z.RELU6:return e?Tie:Nie;case Z.ROUND:return Eie;case Z.RSQRT:return $ie;case Z.SELU:return Rie;case Z.SIGMOID:return Die;case Z.SIGN:return Aie;case Z.SIN:return Fie;case Z.SINH:return Pie;case Z.SOFTPLUS:return Oie;case Z.SQRT:return Mie;case Z.SQUARE:return Lie;case Z.STEP:return Bie;case Z.TAN:return zie;case Z.TANH:return Vie;case Z.TO_INT:return Wie;default:throw new Error(`BinaryType ${r} is not implemented!`)}}function dr(r,e=!1,t=!1,o=3){if(r===null)return"";let n="";if(r==="linear")n=Si(Z.LINEAR);else if(r==="relu")n=Si(Z.RELU,t);else if(r==="elu")n=Si(Z.ELU,t);else if(r==="relu6")n=Si(Z.RELU6,t);else if(r==="prelu")n=Xc(fe.PRELU,t);else if(r==="sigmoid")n=Si(Z.SIGMOID,t);else if(r==="leakyrelu")n=Si(Z.LEAKYRELU,t);else throw new Error(`Activation ${r} has not been implemented for the WebGPU backend.`);let a=Ae(t?4:1),i="";return e?i=`
fn activation(a : ${a}, coords : vec${o}<i32>) -> ${a} {
let b = getPreluActivationWeightsByOutputCoords(coords);
${n}
}`:i=`
fn activation(a : ${a}, coords : vec${o}<i32>) -> ${a} {
${n}
}`,i}function Zr(r,e){return`
${r?"value = value + getBiasByOutputCoords(coords);":""}
${e?"value = activation(value, coords);":""}
`}function Jv(r,e,t=!1,o=!1,n=!1,s=1){y.assert(r&&s===1||!r,()=>`transposeA ${r} is not compatible with component size ${s}`);let a=`
${r?"value = getA(batch, col, row);":"value = getA(batch, row, col);"}
`,i=e?"value = getB(batch, col, row);":"value = getB(batch, row, col);";return`
fn mm_readA(batch: i32, row: i32, col: i32) -> ${Ae(s)} {
var value = ${Ae(s)}(0.0);
${t&&n?a:`
${r?"if(row < uniforms.dimAOuter && col < uniforms.dimInner)":"if(row < uniforms.aShape[1] && col < uniforms.aShape[2])"}
{
${a}
}
`}
return value;
}
fn mm_readB(batch: i32, row: i32, col: i32) -> ${Ae(s)} {
var value = ${Ae(s)}(0.0);
${i}
return value;
}
`}function hm(r,e,t,o,n=!1,s=!1,a=!1,i=1){return`
${Jv(t,o,n,s,a,i)}
fn mm_write(batch: i32, row: i32, col: i32, valueIn: ${Ae(i)}) {
${n&&s?"":"if (row < uniforms.dimAOuter && col < uniforms.dimBOuter)"}
{
var value = valueIn;
let coords = vec3<i32>(batch, row, col);
${Zr(r,e)}
setOutputAtCoords(coords[0], coords[1], coords[2], value);
}
}
`}var Uie=(r,e)=>r?`
mm_Asub[inputRow][inputCol] = mm_readA(batchA,
kStart + inputRow,
globalRowStart + inputCol * ${e});
`:`
mm_Asub[inputRow][inputCol] = mm_readA(batchA,
globalRow + innerRow,
kStart + inputCol * ${e});
`,Gie=(r,e,t,o)=>{if(r)return`
for (var k = 0; k < ${o}; k++) {
let BCached0 = mm_Bsub[k][tileCol];
let ACached0 = mm_Asub[k][localRow];
for (var i = 0; i < ${t}; i++) {
acc[i] = fma(BCached0, vec4<f32>(ACached0[i]), acc[i]);
}
}`;{let n="",s="";for(let a=0;a<e;a++)n+=`let BCached${a} = mm_Bsub[k * ${e} + ${a}][tileCol];`,s+=`acc[i] = fma(BCached${a}, vec4<f32>(ACached[${a}]), acc[i]);`;return`
for (var k = 0; k < ${o/e}; k++) {
${n}
for (var i = 0; i < ${t}; i++) {
let ACached = mm_Asub[tileRow + i][k];
${s}
}
}`}};function _p(r,e,t=!1,o=32,n=!1,s=32,a=!1){let i=e[1]*r[1],p=e[0]*r[0],u=t?i:o,c=t?o:i,l=u/e[0],m=o/e[1],d=r[1],f=r[0];return y.assert((t&&l===4&&r[1]===4||!t&&(l===3||l===4))&&u%e[0]===0&&o%e[1]===0&&r[0]===4,()=>`If transposeA ${t} is true, innerElementSize ${l} and workPerThread[1] ${r[1]} must be 4.
Otherwise, innerElementSize ${l} must be 3 or 4.
tileAWidth ${u} must be divisible by workgroupSize[0]${e[0]}. tileInner ${o} must be divisible by workgroupSize[1] ${e[1]}. colPerThread ${r[0]} must be 4.`),`
var<workgroup> mm_Asub : array<array<vec${l}<f32>, ${u/l}>, ${c}>;
var<workgroup> mm_Bsub : array<array<vec4<f32>, ${p/r[0]}>, ${o}>;
${G()} {
let localRow = i32(localId.y);
let tileRow = localRow * ${d};
let tileCol = i32(localId.x);
let globalRow = i32(globalId.y) * ${d};
let globalCol = i32(globalId.x) * ${f};
let batch = ${n?"0":"i32(globalId.z)"};
let batchA = ${n||!a?"batch":"batch % uniforms.aShape[0]"};
let batchB = ${n||!a?"batch":"batch % uniforms.bShape[0]"};
let globalRowStart = i32(workgroupId.y) * ${i};
let numTiles = ${n?`${Math.ceil(s/o)}`:`(uniforms.dimInner - 1) / ${o} + 1`};
var kStart = ${n?`i32(globalId.z) * ${s}`:"0"};
var acc: array<vec4<f32>, ${d}>;
// Loop over shared dimension.
let tileRowB = localRow * ${m};
for (var t = 0; t < numTiles; t++) {
// Load one tile of A into local memory.
for (var innerRow = 0; innerRow < ${d}; innerRow++) {
let inputRow = tileRow + innerRow;
let inputCol = tileCol;
${Uie(t,l)}
}
// Load one tile of B into local memory.
for (var innerRow = 0; innerRow < ${m}; innerRow++) {
let inputRow = tileRowB + innerRow;
let inputCol = tileCol;
mm_Bsub[inputRow][inputCol] = mm_readB(batchB, kStart + inputRow, globalCol);
}
kStart = kStart + ${o};
workgroupBarrier();
// Compute acc values for a single thread.
${Gie(t,l,d,o)}
workgroupBarrier();
}
for (var innerRow = 0; innerRow < ${d}; innerRow++) {
mm_write(batch, globalRow + innerRow, globalCol, acc[innerRow]);
}
}`}var az=r=>r?`
mm_Asub[inputRow][inputCol] = mm_readA(batchA,
kStart + inputRow,
globalRowStart + inputCol);
`:`
mm_Asub[inputRow][inputCol] = mm_readA(batchA,
globalRowStart + inputRow,
kStart + inputCol);
`,Hie=r=>r?"let ACached = mm_Asub[k][tileRow + innerRow];":"let ACached = mm_Asub[tileRow + innerRow][k];";function Ep(r,e,t=!1,o=32,n=!1,s=32,a=!1,i=!1){let p=r[1]*e[1],u=r[0]*e[0],c=t?p:o,l=t?o:p;y.assert(l%e[1]===0&&c%e[0]===0&&o%e[1]===0,()=>`tileAHight ${l} must be divisible by workgroupSize[1]${e[1]}, tileAWidth ${c} must be divisible by workgroupSize[0]${e[0]}, tileInner ${o} must be divisible by workgroupSize[1]${e[1]}`);let m=l/e[1],d=c/e[0],f=o/e[1],h=r[1],g=r[0],x=a?`
let localRow = i32(localId.y);
let localCol = i32(localId.x);
let globalRowStart = i32(workgroupId.y) * ${p};
let globalColStart = i32(workgroupId.x) * ${u};
// Loop over shared dimension.
for (var t = 0; t < numTiles; t++) {
// Load one tile of A into local memory.
for (var inputRow = localRow; inputRow < ${l}; inputRow = inputRow + ${e[1]}) {
for (var inputCol = localCol; inputCol < ${c}; inputCol = inputCol + ${e[0]}) {
${az(t)}
}
}
// Load one tile of B into local memory.
for (var inputRow = localRow; inputRow < ${o}; inputRow = inputRow + ${e[1]}) {
for (var inputCol = localCol; inputCol < ${u}; inputCol = inputCol + ${e[0]}) {
mm_Bsub[inputRow][inputCol] = mm_readB(batchB,
kStart + inputRow,
globalColStart + inputCol);
}
}
kStart = kStart + ${o};
workgroupBarrier();
// Compute acc values for a single thread.
var BCached : array<f32, ${g}>;
for (var k = 0; k < ${o}; k++) {
for (var inner = 0; inner < ${g}; inner++) {
BCached[inner] = mm_Bsub[k][localCol + inner * ${e[0]}];
}
for (var innerRow = 0; innerRow < ${h}; innerRow++) {
let ACached = ${t?`mm_Asub[k][localRow + innerRow * ${e[1]}];`:`mm_Asub[localRow + innerRow * ${e[1]}][k];`}
for (var innerCol = 0; innerCol < ${g}; innerCol++) {
acc[innerRow][innerCol] =
fma(ACached, BCached[innerCol], acc[innerRow][innerCol]);
}
}
}
workgroupBarrier();
}
for (var innerRow = 0; innerRow < ${h}; innerRow++) {
let gRow = globalRowStart + localRow + innerRow * ${e[1]};
for (var innerCol = 0; innerCol < ${g}; innerCol++) {
let gCol = globalColStart + localCol + innerCol * ${e[0]};
mm_write(batch, gRow, gCol, acc[innerRow][innerCol]);
}
}
`:`
let tileRow = i32(localId.y) * ${h};
let tileCol = i32(localId.x) * ${g};
let globalRow = i32(globalId.y) * ${h};
let globalCol = i32(globalId.x) * ${g};
let globalRowStart = i32(workgroupId.y) * ${p};
let tileRowA = i32(localId.y) * ${m};
let tileColA = i32(localId.x) * ${d};
let tileRowB = i32(localId.y) * ${f};
// Loop over shared dimension.
for (var t = 0; t < numTiles; t++) {
// Load one tile of A into local memory.
for (var innerRow = 0; innerRow < ${m}; innerRow++) {
for (var innerCol = 0; innerCol < ${d}; innerCol++) {
let inputRow = tileRowA + innerRow;
let inputCol = tileColA + innerCol;
${az(t)}
}
}
// Load one tile of B into local memory.
for (var innerRow = 0; innerRow < ${f}; innerRow++) {
for (var innerCol = 0; innerCol < ${g}; innerCol++) {
let inputRow = tileRowB + innerRow;
let inputCol = tileCol + innerCol;
mm_Bsub[inputRow][inputCol] = mm_readB(batchB,
kStart + inputRow,
globalCol + innerCol);
}
}
kStart = kStart + ${o};
workgroupBarrier();
// Compute acc values for a single thread.
var BCached : array<f32, ${g}>;
for (var k = 0; k < ${o}; k++) {
for (var inner = 0; inner < ${g}; inner++) {
BCached[inner] = mm_Bsub[k][tileCol + inner];
}
for (var innerRow = 0; innerRow < ${h}; innerRow++) {
${Hie(t)}
for (var innerCol = 0; innerCol < ${g}; innerCol++) {
acc[innerRow][innerCol] =
fma(ACached, BCached[innerCol], acc[innerRow][innerCol]);
}
}
}
workgroupBarrier();
}
for (var innerRow = 0; innerRow < ${h}; innerRow++) {
for (var innerCol = 0; innerCol < ${g}; innerCol++) {
mm_write(batch, globalRow + innerRow, globalCol + innerCol,
acc[innerRow][innerCol]);
}
}
`;return`
var<workgroup> mm_Asub : array<array<f32, ${c}>, ${l}>;
var<workgroup> mm_Bsub : array<array<f32, ${u}>, ${o}>;
${G()} {
let batch = ${n?"0":"i32(globalId.z)"};
let batchA = ${n||!i?"batch":"batch % uniforms.aShape[0]"};
let batchB = ${n||!i?"batch":"batch % uniforms.bShape[0]"};
let numTiles = ${n?`${Math.ceil(s/o)}`:`(uniforms.dimInner - 1) / ${o} + 1`};
var kStart = ${n?`i32(globalId.z) * ${s}`:"0"};
var acc : array<array<f32, ${g}>, ${h}>;
// Without this initialization strange values show up in acc.
for (var innerRow = 0; innerRow < ${h}; innerRow++) {
for (var innerCol = 0; innerCol < ${g}; innerCol++) {
acc[innerRow][innerCol] = 0.0;
}
}
${x}
}
`}var Kie=r=>r?`
mm_readA(batchA, colA, globalRow),
mm_readA(batchA, colA + 1, globalRow),
mm_readA(batchA, colA + 2, globalRow),
mm_readA(batchA, colA + 3, globalRow)
`:`
mm_readA(batchA, globalRow, colA),
mm_readA(batchA, globalRow, colA + 1),
mm_readA(batchA, globalRow, colA + 2),
mm_readA(batchA, globalRow, colA + 3)
`;function qie(r,e=!1){y.assert(r[1]===1&&r[2]===1,()=>`A linear work group size is required. But got ${r}.`);let t=r[0]*4;return`
var<workgroup> mm_Asub : array<vec4<f32>, ${r[0]}>;
${G()} {
let tileCol = i32(localId.x);
let globalCol = i32(globalId.x);
let globalRow = i32(globalId.y);
let numTiles = (uniforms.dimInner - 1) / ${t} + 1;
let batch = i32(globalId.z);
let batchA = batch % uniforms.aShape[0];
let batchB = batch % uniforms.bShape[0];
// Without this initialization strange values show up in acc.
var acc = 0.0;
// Loop over shared dimension.
for (var t = 0; t < numTiles; t++) {
// Load one tile of A into local memory.
let colA = t * ${t} + tileCol * 4;
mm_Asub[tileCol] = vec4<f32>(${Kie(e)});
workgroupBarrier();
// Compute acc values for a single thread.
for (var k = 0; k < ${t/4}; k++) {
let rowB = t * ${t} + k * 4;
let BCached = vec4<f32>(mm_readB(batchB, rowB, globalCol),
mm_readB(batchB, rowB + 1, globalCol),
mm_readB(batchB, rowB + 2, globalCol),
mm_readB(batchB, rowB + 3, globalCol));
let ACached = mm_Asub[k];
acc = acc + dot(ACached, BCached);
}
workgroupBarrier();
}
mm_write(batch, globalRow, globalCol, acc);
}
`}var Xg=class{constructor(e,t,o=!1,n=!1,s=null,a=null,i=null,p=!1){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]};let u=o?e[1]:e[2];if(this.isVec4=(u%4===0&&!o||t[1]%4===0&&o)&&t[2]%4===0&&!n,this.outputComponent=this.isVec4?4:1,this.isVectorA=t[1]===1&&!o,!this.isVec4&&this.isVectorA)this.elementsPerThread=[1,1,1],this.workgroupSize=[32,1,1];else{let m=Qv(t[1],u,t[2],o);this.workgroupSize=m.workgroupSize,this.elementsPerThread=m.elementsPerThread}this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize,this.elementsPerThread);let c=s!=null,l=i!=null;c&&this.variableNames.push("bias"),l&&this.variableNames.push("preluActivationWeights"),this.sequentialAccessByThreads=p,this.transposeA=o,this.transposeB=n,this.addBias=c,this.activation=a,this.hasPreluActivationWeights=l,[this.fitAOuter,this.fitBOuter,this.fitInner]=this.getShapeFit(t[1],t[2],u),this.shaderKey=`matMulPacked_${this.elementsPerThread}_${o}_${n}_${this.activation}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.isVec4}_${this.isVectorA}_${this.sequentialAccessByThreads}`}getShapeFit(e,t,o){let n=this.workgroupSize[1]*this.elementsPerThread[1],s=this.workgroupSize[0]*this.elementsPerThread[0];!this.isVec4&&this.isVectorA?this.tileInner=this.workgroupSize[0]*4:this.tileInner=s;let a=e%n===0,i=t%s===0,p=o%this.tileInner===0;return[a,i,p]}getUserCode(){return`
${dr(this.activation,this.hasPreluActivationWeights,this.isVec4)}
${hm(this.addBias,this.activation,!1,this.transposeB,this.fitAOuter,this.fitBOuter,this.fitInner,this.isVec4?4:1)}
${this.isVec4?_p(this.elementsPerThread,this.workgroupSize,this.transposeA,this.tileInner,!1,null,!0):this.isVectorA?qie(this.workgroupSize,this.transposeA):Ep(this.elementsPerThread,this.workgroupSize,this.transposeA,this.tileInner,!1,null,this.sequentialAccessByThreads,!0)}
`}};function jie(r){return`
var<workgroup> sumValues : array<f32, ${r}>;
${G()} {
let coords = getOutputCoords();
let batch = coords[0];
let batchA = batch % uniforms.aShape[0];
let batchB = batch % uniforms.bShape[0];
let row = coords[1];
let col = coords[2];
var sum = 0.0;
let Length = uniforms.dimInner;
for (var k = i32(localId.x); k < Length; k = k + ${r}) {
let dataA = mm_readA(batchA, row, k);
let dataB = mm_readB(batchB, k, col);
sum = sum + dataA * dataB;
}
sumValues[localId.x] = sum;
workgroupBarrier();
for(var currentSize = ${r/2}u; currentSize > 1u;
currentSize = currentSize / 2u) {
if (localId.x < currentSize)
{
sumValues[localId.x] = sumValues[localId.x] + sumValues[localId.x + currentSize];
}
workgroupBarrier();
}
if (localId.x == 0u) {
sum = sumValues[0] + sumValues[1];
mm_write(batch, row, col, sum);
}
}
`}var Yg=class{constructor(e,t=!1,o=!1,n=null,s=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workgroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout={x:[],y:[1,2],z:[0]},this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize);let i=n!=null,p=a!=null;i&&this.variableNames.push("bias"),p&&this.variableNames.push("preluActivationWeights"),this.transposeA=t,this.transposeB=o,this.addBias=i,this.activation=s,this.hasPreluActivationWeights=p,this.shaderKey=`matMulReduce_${this.activation}_${t}_${o}`}getUserCode(){return`
${dr(this.activation,this.hasPreluActivationWeights)}
${hm(this.addBias,this.activation,this.transposeA,this.transposeB)}
${jie(this.workgroupSize[0])}
`}};function Xie(r){let e=r[1],t=r[0],o=e>t?e:t;return`
var<workgroup> mm_Asub : array<array<f32, ${o}>, ${e}>;
var<workgroup> mm_Bsub : array<array<f32, ${t}>, ${o}>;
// If the output size is small for matrix multiplication, avoid to use vec4
// and handle some elements per thread to optimally utilize the ALU.
// Read data from global memory to registers firstly, then store them into
// shared memory, so it is instruction-Level parallelism for arithmetic
// operations and others handle IO operations between barrier api, makes ALU
// and load/store units work simultaneously, could improves the performance.
${G()} {
let tileRow = i32(localId.y);
let tileCol = i32(localId.x);
let globalRow = i32(globalId.y);
let globalCol = i32(globalId.x);
let batch = i32(globalId.z);
let batchA = batch % uniforms.aShape[0];
let batchB = batch % uniforms.bShape[0];
// uniforms.dimInner should be greater than 0.
let numTiles = (uniforms.dimInner - 1) / ${o} + 1;
var acc = 0.0;
var globalColA = tileCol;
var globalRowB = 0;
var regA = mm_readA(batchA, globalRow, globalColA);
var regB0 = mm_readB(batchB, globalRowB + 2 * tileRow, globalCol);
var regB1 = mm_readB(batchB, globalRowB + 2 * tileRow + 1, globalCol);
globalColA = globalColA + ${o};
globalRowB = globalRowB + ${o};
for (var t = 0; t < numTiles; t = t + 1) {
mm_Asub[tileRow][tileCol] = regA;
mm_Bsub[2 * tileRow][tileCol] = regB0;
mm_Bsub[2 * tileRow + 1][tileCol] = regB1;
workgroupBarrier();
regA = mm_readA(batchA, globalRow, globalColA);
regB0 = mm_readB(batchB, globalRowB + 2 * tileRow, globalCol);
regB1 = mm_readB(batchB, globalRowB + 2 * tileRow + 1, globalCol);
globalColA = globalColA + ${o};
globalRowB = globalRowB + ${o};
for (var k = 0; k < ${o}; k = k + 1) {
acc = acc + mm_Asub[tileRow][k] * mm_Bsub[k][tileCol];
}
workgroupBarrier();
}
mm_write(batch, globalRow, globalCol, acc);
}
`}var Qg=class{constructor(e,t,o,n=!1,s=!1,a=null,i=null,p=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workgroupSize=[16,8,1],this.outputShape=o,this.dispatchLayout={x:[2],y:[1],z:[0]},this.dispatch=[Math.ceil(o[2]/this.workgroupSize[0]),Math.ceil(o[1]/this.workgroupSize[1]),o[0]];let u=a!=null;u&&this.variableNames.push("bias");let c=p!=null;c&&this.variableNames.push("preluActivationWeights"),this.transposeA=n,this.transposeB=s,this.addBias=u,this.activation=i,this.hasPreluActivationWeights=c,this.shaderKey=`matMulSmallOutputSize_${this.activation}_${n}_${s}`}getUserCode(){return`
${dr(this.activation,this.hasPreluActivationWeights)}
${hm(this.addBias,this.activation,this.transposeA,this.transposeB)}
${Xie(this.workgroupSize)}
`}};var Zg=class{constructor(e,t,o=!1,n=!1){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workgroupSize=[8,8,1],this.atomic=!0,this.splitedDimInner=128,y.assert(e[0]===1,()=>"MatMulSplitKProgram only supports batch = 1."),this.outputShape=e,this.dispatchLayout={x:[2],y:[1],z:[0,3]};let s=(o&&this.outputShape[1]%4===0||!o&&t%4===0)&&this.outputShape[2]%4===0;this.elementsPerThread=[4,4,this.splitedDimInner],this.outputComponent=s?4:1,s||(this.outputShape[1]<16&&(this.elementsPerThread[1]=1),this.outputShape[2]<16&&(this.elementsPerThread[0]=1)),this.dispatch=H(this.dispatchLayout,[this.outputShape[0],this.outputShape[1],this.outputShape[2],t],this.workgroupSize,this.elementsPerThread),this.transposeA=o,this.transposeB=n,this.shaderKey=`matMulSplitK_${o}_${n}_${this.elementsPerThread}_${this.outputComponent}`}getUserCode(){let e=this.outputComponent;return`
${Jv(!1,this.transposeB,!1,!1,!1,e)}
fn mm_write(batch: i32, row : i32, col : i32, value : ${Ae(e)}) {
if (row < uniforms.dimAOuter && col < uniforms.dimBOuter) {
let coords = vec3<i32>(batch, row, col);
let flatIndex = getOutputIndexFromCoords(coords);
// The problem is that we should initialize output to zero before using.
// Otherwise, the original value will be added to the result.
for (var i = 0; i < ${e}; i = i + 1) {
${Qr("&result[flatIndex + i]",`${e>1?"value[i]":"value"}`,"float32")}
}
}
}
${e===4?_p(this.elementsPerThread,this.workgroupSize,this.transposeA,32,!0,this.splitedDimInner):Ep(this.elementsPerThread,this.workgroupSize,this.transposeA,32,!0,this.splitedDimInner)}
`}},Jg=class{constructor(e,t=null,o=null,n=null){this.uniforms="",this.variableNames=["x"],this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.addBias=t!=null,this.hasPreluActivationWeights=n!=null,this.activation=o,this.addBias&&this.variableNames.push("bias"),this.hasPreluActivationWeights&&this.variableNames.push("preluActivationWeights"),this.shaderKey=`biasActivation_${o}`}getUserCode(){return`
${dr(this.activation,this.hasPreluActivationWeights)}
${G("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
var value = getXByOutputIndex(index);
${Zr(this.addBias,this.activation)}
setOutputAtIndex(index, value);
}
}
`}};var ex=class{constructor(e){this.variableNames=[],this.outputShape=[],this.uniforms="value : f32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="fill"}getUserCode(){return`
${G("index")} {
if (index < uniforms.size) {
setOutputAtIndex(index, uniforms.value);
}
}
`}};function vt(r){let{backend:e,attrs:t}=r,{shape:o,value:n}=t,{dtype:s}=t;if(s=s||y.inferDtype(n),s==="string"){let a=y.getArrayFromDType(s,y.sizeFromShape(o));return a.fill(n),e.makeTensorInfo(o,s,a)}else{let a=new ex(o),i=[{type:"float32",data:[n]}];return e.runWebGPUProgram(a,[],s,i)}}var iz={kernelName:sa,backendName:"webgpu",kernelFunc:vt};function pe(r){let{inputs:e,attrs:t}=r,{x:o}=e,{shape:n}=t,s=y.sizeFromShape(o.shape),a=y.inferFromImplicitShape(n,s),i=y.sizeFromShape(a);return y.assert(s===i,()=>`The new shape (${a}) has ${i} elements and the old shape (${o.shape}) has ${s} elements. The new shape and old shape must have the same number of elements.`),r.backend.incRef(o.dataId),{dataId:o.dataId,shape:a,dtype:o.dtype}}var uz={kernelName:da,backendName:"webgpu",kernelFunc:pe};function $p({a:r,b:e,transposeA:t,transposeB:o,backend:n,bias:s=null,preluActivationWeights:a=null,leakyreluAlpha:i=0,activation:p=null}){let u=r.shape.length,c=e.shape.length,l=t?r.shape[u-2]:r.shape[u-1],m=o?e.shape[c-1]:e.shape[c-2],d=t?r.shape[u-1]:r.shape[u-2],f=o?e.shape[c-2]:e.shape[c-1],h=r.shape.slice(0,-2),g=e.shape.slice(0,-2),x=y.sizeFromShape(h),b=y.sizeFromShape(g),S=Sr.assertAndGetBroadcastShape(r.shape.slice(0,-2),e.shape.slice(0,-2)).concat([d,f]);y.assert(l===m,()=>`Error in matMul: inner shapes (${l}) and (${m}) of Tensors with shapes ${r.shape} and ${e.shape} and transposeA=${t} and transposeB=${o} must match.`);let k=t?[x,l,d]:[x,d,l],_=o?[b,f,m]:[b,m,f],$=pe({inputs:{x:r},backend:n,attrs:{shape:k}}),R=pe({inputs:{x:e},backend:n,attrs:{shape:_}}),D=[$,R],P=Math.max(x,b),O=[$,R],M=[{type:"int32",data:[d]},{type:"int32",data:[f]},{type:"int32",data:[l]}],L,B,z=[P,d,f],U=A().get("WEBGPU_MATMUL_PROGRAM_TYPE");if(U<0){let q=A().getNumber("WEBGPU_THRESHOLD_TO_INCREASE_WORKGROUPS_FOR_MATMUL"),Y=q>0?q:n.thresholdToIncreaseWorkgroups,J=P*Math.ceil(d/32)*Math.ceil(f/32);J<=Y||d<=8&&J<=Y*2?P*d*f<=128?U=Mo.MatMulReduceProgram:P===1&&m>=2e3?U=Mo.MatMulSplitKProgram:U=Mo.MatMulSmallOutputSizeProgram:U=Mo.MatMulPackedProgram}switch(U){case Mo.MatMulReduceProgram:L=new Yg(z,t,o,s,p,a);break;case Mo.MatMulSplitKProgram:{if(B=vt({backend:n,attrs:{shape:z,value:0,dtype:r.dtype}}),L=new Zg(z,m,t,o),s||p){B=n.runWebGPUProgram(L,O,r.dtype,M,B);let Y=new Jg(B.shape,s,p,a),J=null,re=[B];s&&re.push(s),a&&re.push(a),p==="leakyrelu"&&(J=[{type:"float32",data:[i]}],Y.uniforms+=" alpha : f32,");let ne=n.runWebGPUProgram(Y,re,B.dtype,J);D.push(B);let ee=pe({inputs:{x:ne},backend:n,attrs:{shape:S}});D.push(ne);for(let oe of D)n.disposeData(oe.dataId);return ee}break}case Mo.MatMulSmallOutputSizeProgram:L=new Qg(k,_,z,t,o,s,p,a);break;case Mo.MatMulPackedProgram:let q=n.adapterInfo.isIntel();L=new Xg(k,z,t,o,s,p,a,q);break;default:throw new Error(`Unsupported MatMulProgramType ${U}.`)}s&&O.push(s),a&&O.push(a),p==="leakyrelu"&&(M.push({type:"float32",data:[i]}),L.uniforms+=" alpha : f32,"),B=n.runWebGPUProgram(L,O,r.dtype,M,B);let j=pe({inputs:{x:B},backend:n,attrs:{shape:S}});D.push(B);for(let q of D)n.disposeData(q.dataId);return j}function Yie(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s,bias:a,preluActivationWeights:i}=e,{transposeA:p,transposeB:u,activation:c,leakyreluAlpha:l}=o;return $p({a:n,b:s,transposeA:p,transposeB:u,backend:t,bias:a,preluActivationWeights:i,leakyreluAlpha:l,activation:c})}var pz={kernelName:So,backendName:"webgpu",kernelFunc:Yie};var gm=class{constructor(e,t,o){this.variableNames=["AReal","AImag","BReal","BImag"],this.workgroupSize=[128,1,1],this.size=!0,this.outputShape=w.assertAndGetBroadcastShape(t,o),this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey=`binaryOpComplex_${e}`,this.op=e}getUserCode(){return`
fn binaryOpComplex(
areal : f32, aimag : f32, breal : f32, bimag : f32) -> f32 {
${Xc(this.op,!1)}
}
${G("index")} {
if(index < uniforms.size) {
let areal = getARealByOutputIndex(index);
let aimag = getAImagByOutputIndex(index);
let breal = getBRealByOutputIndex(index);
let bimag = getBImagByOutputIndex(index);
setOutputAtIndex(index, binaryOpComplex(areal, aimag, breal, bimag));
}
}
`}};var Ii=class{constructor(e,t,o){if(this.size=!0,this.variableNames=["A","B"],this.outputShape=w.assertAndGetBroadcastShape(t,o),this.dispatchLayout=X(this.outputShape),this.op=e,this.useSharedMemoryWithA=t.length<=1&&o.length>1&&t[0]<128,this.useSharedMemoryWithB=o.length<=1&&t.length>1&&o[0]<128,this.useSharedMemoryWithA||this.useSharedMemoryWithB)this.outputComponent=1,this.variableComponents=[1,1],this.lastDimensionSize=this.useSharedMemoryWithB?o[0]:t[0],this.shaderKey=`binary_${e}_${this.lastDimensionSize}`,this.type="shared",this.workgroupSize=[256,1,1];else{let n=t.length>0&&t[t.length-1]%4===0,s=o.length>0&&o[o.length-1]%4===0;n&&s?(this.outputComponent=4,this.variableComponents=[4,4]):n&&(y.isScalarShape(o)||o[o.length-1]===1)||s&&(y.isScalarShape(t)||t[t.length-1]===1)?(this.outputComponent=4,this.variableComponents=n?[4,1]:[1,4]):(this.outputComponent=1,this.variableComponents=[1,1]),this.type="nonshared",this.shaderKey=`binary_${e}_${this.variableComponents}`,this.workgroupSize=[128,1,1]}this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize,[this.outputComponent,1,1])}getUserCode(){let e,t=this.outputComponent===4?"vec4<f32>":"f32",o=`
fn binaryOperation(a : ${t}, b : ${t}) -> ${t} {
${Xc(this.op,this.outputComponent===4)}
};
`;if(this.type==="shared"){let n=this.lastDimensionSize>1?`coords[${this.outputShape.length-1}]`:"0",s=this.useSharedMemoryWithB?`let a = getAByOutputIndex(index);
let b = sharedBuf[${n}];`:`let a = sharedBuf[${n}];
let b = getBByOutputIndex(index);`;e=`
${o}
var<workgroup> sharedBuf : array<f32, ${this.lastDimensionSize}>;
${G("index")} {
// Fill in the shared memory buffer.
let localIndex = i32(localId.x);
if(localIndex < ${this.lastDimensionSize}) {
sharedBuf[localIndex] = f32(${this.useSharedMemoryWithB?"B":"A"}[localIndex]);
}
workgroupBarrier();
if(index < uniforms.size) {
let coords = getCoordsFromIndex(index);
${s}
setOutputAtIndex(index, binaryOperation(a, b));
}
}
`}else e=`
${o}
${G("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index * ${this.outputComponent});
let a = ${t}(getAByOutputCoords(coords));
let b = ${t}(getBByOutputCoords(coords));
setOutputAtIndex(index, binaryOperation(a, b));
}
}
`;return e}};function At(r){let{inputs:e}=r,{x:t}=e;return r.backend.incRef(t.dataId),{dataId:t.dataId,shape:t.shape,dtype:t.dtype}}var cz={kernelName:Co,backendName:"webgpu",kernelFunc:At};function xo(r){let{inputs:e,backend:t}=r,{real:o,imag:n}=e,s=t.makeTensorInfo(o.shape,"complex64"),a=t.tensorMap.get(s.dataId),i=At({inputs:{x:o},backend:t}),p=At({inputs:{x:n},backend:t});return a.complexTensorInfos={real:i,imag:p},s}var lz={kernelName:Di,backendName:"webgpu",kernelFunc:xo};var Jr=class{constructor(e,t,o=""){this.variableNames=["A"],this.size=!0;let n=128;this.workgroupSize=[n,1,1],this.outputShape=e,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.op=t,o!==""&&(this.uniforms=o),this.shaderKey=`unary_${t}`}getUserCode(){return`
fn unaryOperation(a : f32) -> f32 {
${Si(this.op,!1)}
}
${G("index")} {
if (index < uniforms.size) {
let a = getAByOutputIndex(index);
setOutputAtIndex(index, unaryOperation(a));
}
}
`}};function ye({opType:r,cpuKernelImpl:e,dtype:t}){return({inputs:o,backend:n})=>{let{x:s}=o,a=n,i=t||s.dtype;if(a.shouldExecuteOnCPU([s])&&e!=null){let u=a.tensorMap.get(s.dataId),c=e(u.values,i);return a.makeTensorInfo(s.shape,i,c)}let p=new Jr(s.shape,r);return a.runWebGPUProgram(p,[s],i)}}function et({opType:r,cpuKernelImpl:e,supportsComplex:t=!1,dtype:o}){return({inputs:n,backend:s})=>{let{a,b:i}=n,p=s;if(t&&a.dtype==="complex64"){let l=p.tensorMap.get(a.dataId),m=p.tensorMap.get(i.dataId),d,f;if(r!==fe.MUL)[d,f]=[[l.complexTensorInfos.real,m.complexTensorInfos.real],[l.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(g=>{let[x,b]=g,C={dataId:x.dataId,dtype:x.dtype,shape:a.shape},S={dataId:b.dataId,dtype:b.dtype,shape:i.shape},k=new Ii(r,a.shape,i.shape);return p.runWebGPUProgram(k,[C,S],dt(x.dtype,b.dtype))});else{let g=new gm(fe.COMPLEX_MULTIPLY_REAL,a.shape,i.shape),x=new gm(fe.COMPLEX_MULTIPLY_IMAG,a.shape,i.shape),b=[{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:a.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:m.complexTensorInfos.real.dataId,dtype:m.complexTensorInfos.real.dtype,shape:i.shape},{dataId:m.complexTensorInfos.imag.dataId,dtype:m.complexTensorInfos.imag.dtype,shape:i.shape}];d=p.runWebGPUProgram(g,b,"float32"),f=p.runWebGPUProgram(x,b,"float32")}let h=xo({inputs:{real:d,imag:f},backend:p});return p.disposeData(d.dataId),p.disposeData(f.dataId),h}let u=o||dt(a.dtype,i.dtype);if((a.dtype==="string"||i.dtype==="string"||p.shouldExecuteOnCPU([a,i]))&&e!=null){let l=p.tensorMap.get(a.dataId).values,m=p.tensorMap.get(i.dataId).values,d=a.dtype==="string"?w.fromUint8ToStringArray(l):l,f=a.dtype==="string"?w.fromUint8ToStringArray(m):m,[h,g]=e(a.shape,i.shape,d,f,u);return p.makeTensorInfo(g,u,h)}let c=new Ii(r,a.shape,i.shape);return p.runWebGPUProgram(c,[a,i],u)}}var{addImpl:mz,castImpl:dz,ceilImpl:fz,concatImpl:hz,equalImpl:gz,expImpl:xz,expm1Impl:yz,floorImpl:bz,floorDivImpl:Cz,gatherNdImpl:wz,gatherV2Impl:Sz,greaterEqualImpl:Iz,greaterImpl:vz,lessEqualImpl:kz,lessImpl:Nz,logImpl:Tz,maxImpl:_z,maximumImpl:Ez,minimumImpl:$z,multiplyImpl:Rz,negImpl:Dz,notEqualImpl:Az,prodImpl:Fz,rangeImpl:Pz,rsqrtImpl:Oz,scatterImpl:Mz,simpleAbsImpl:Lz,sliceImpl:Bz,stridedSliceImpl:zz,stringNGramsImpl:Vz,subImpl:Wz,tileImpl:Uz,topKImpl:Gz,transposeImpl:Hz,uniqueImpl:rOt}=Ic;var Qie=ye({opType:Z.ABS,cpuKernelImpl:Lz}),Kz={kernelName:Xs,backendName:"webgpu",kernelFunc:Qie};var Zie=ye({opType:Z.ACOS}),qz={kernelName:Vo,backendName:"webgpu",kernelFunc:Zie};var Jie=ye({opType:Z.ACOSH}),jz={kernelName:Wo,backendName:"webgpu",kernelFunc:Jie};var eue=et({opType:fe.ADD,cpuKernelImpl:mz,supportsComplex:!0}),Xz={kernelName:uo,backendName:"webgpu",kernelFunc:eue};var tx=class{constructor(e){this.workPerThread=1,this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e[0],this.variableNames=e.map((t,o)=>`T${o}`),this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize,[this.workPerThread,1,1]),this.shaderKey="addN"}getUserCode(){let e=[];this.variableNames.forEach(n=>{e.push(`let v${n} = get${n}ByOutputCoords(coords);`)});let t=this.variableNames.map(n=>`v${n}`).join(" + ");return`
${G("index")} {
for (var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if (flatIndex < uniforms.size) {
let coords = getCoordsFromIndex(flatIndex);
${e.join(`
`)}
setOutputAtIndex(flatIndex, ${t});
}
}
}
`}};function tue(r){let{inputs:e,backend:t}=r,o=e;if(o.length===1)return At({inputs:{x:o[0]},backend:t});let n=o.map(i=>i.dtype).reduce((i,p)=>dt(i,p)),s=o.map(i=>i.shape),a=new tx(s);return t.runWebGPUProgram(a,o,n)}var Yz={kernelName:Uo,backendName:"webgpu",kernelFunc:tue};var rx=class{constructor(e,t){this.variableNames=["A"],this.workgroupSize=[16,16,1];let o=new Array(e.length);for(let n=0;n<o.length;n++)o[n]=e[t[n]];this.outputShape=o,this.dispatchLayout={x:[0],y:[1]},this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize,[1,1,1]),this.shaderKey="transposeShared"}getUserCode(){y.assert(this.workgroupSize[0]===this.workgroupSize[1],()=>`Must be a square tile, current tile shape is ${this.workgroupSize[0]} x ${this.workgroupSize[1]}`);let e=this.workgroupSize[0];return`
var<workgroup> tile : array<array<f32, ${this.workgroupSize[0]+1}>, ${this.workgroupSize[0]}>;
${G()} {
var x = i32(workgroupId.x) * ${e} + i32(localId.x);
var y = i32(workgroupId.y) * ${e} + i32(localId.y);
let width = uniforms.outShape[0];
let height = uniforms.outShape[1];
if (x < width && y < height) {
tile[localId.y][localId.x] = f32(A[y * width + x]);
}
workgroupBarrier();
x = i32(workgroupId.y) * ${e} + i32(localId.x);
y = i32(workgroupId.x) * ${e} + i32(localId.y);
if (x < height && y < width) {
setOutputAtIndex((y * height + x), tile[localId.x]
[localId.y]);
}
}
`}};var ox=class{constructor(e,t){this.variableNames=["A"],this.workPerThread=1,this.workgroupSize=[64,1,1],this.size=!0;let o=new Array(e.length);for(let n=0;n<o.length;n++)o[n]=e[t[n]];this.outputShape=o,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize,[this.workPerThread,1,1]),this.newDim=t,this.shaderKey=`transpose_${t}`}getUserCode(){let e=ft(this.outputShape.length),t=e0(this.newDim);return`
${G("index")} {
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let coords = getCoordsFromIndex(flatIndex);
setOutputAtIndex(flatIndex, A[getIndexFromCoords${this.outputShape.length}D(
${e}(${t}), uniforms.aShape)]);
}
}
}
`}};function e0(r){let e=r.length;if(e>6)throw Error(`Transpose for rank ${e} is not yet supported`);let t=new Array(e);for(let o=0;o<r.length;o++)t[r[o]]=`coords.${Oo(o)}`;return t.join()}function xr(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{perm:s}=o,a=t,i=n.shape.length,p=new Array(i);for(let c=0;c<p.length;c++)p[c]=n.shape[s[c]];if(t.shouldExecuteOnCPU([n])){let l=a.tensorMap.get(n.dataId).values,m=Hz(l,n.shape,n.dtype,s,p);return t.makeTensorInfo(p,n.dtype,m)}if(n.shape.length===2&&y.arraysEqual(s,[1,0])){let c=new rx(n.shape,s);return a.runWebGPUProgram(c,[n],n.dtype)}let u=new ox(n.shape,s);return a.runWebGPUProgram(u,[n],n.dtype)}var Qz={kernelName:co,backendName:"webgpu",kernelFunc:xr};var nx=class{constructor(e,t,o){this.variableNames=["x"],this.uniforms="reduceSize : i32,",this.size=!0,this.inputShape=[e.batchSize,e.inSize];let[n]=w.computeOutAndReduceShapes(this.inputShape,[1]);this.outputShape=n.length===0?[1]:n,e.inSize>=32768&&o>=512?this.workgroupSize=[512,1,1]:e.inSize>=4096?this.workgroupSize=[256,1,1]:this.workgroupSize=[64,1,1],this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,[1,1,1]),this.reduceType=t,this.shaderKey=`reduce_${t}`}getUserCode(){let e="",t="0.0",o=this.workgroupSize[0];this.reduceType==="min"||this.reduceType==="max"?(e=`
if (isnan(candidate)) {
bestValue = uniforms.NAN;
} else if (!isnan(bestValue) && candidate ${this.reduceType==="min"?"<":">"} bestValue)
{ bestValue = candidate; }`,t="f32(x[offset])"):this.reduceType==="sum"||this.reduceType==="mean"?e=" bestValue = bestValue + candidate; ":this.reduceType==="prod"?(e=" bestValue = bestValue * candidate; ",t="1.0"):this.reduceType==="all"?(e=" bestValue = f32(bestValue >= 1.0 && candidate >= 1.0); ",t="1.0"):this.reduceType==="any"&&(e=" bestValue = f32(bestValue >= 1.0 || candidate >= 1.0); ",t="0.0");let n=this.reduceType==="mean"?"setOutputAtIndex(outputIndex, bestValue / f32(uniforms.reduceSize));":"setOutputAtIndex(outputIndex, bestValue);";return`
fn DIV_CEIL(a : u32, b : u32) -> u32 {
return ((a - 1u) / b + 1u);
}
${`
var<workgroup> xBestValues : array<f32, ${o}>;
`}
fn getOffset(outputIndex : i32) -> i32 {
let outputCoords = getCoordsFromIndex(outputIndex);
let offset = ${this.outputShape.length===1?"outputCoords":"outputCoords[0]"} * uniforms.reduceSize;
return offset;
}
${G("index")} {
let outputIndex = index / ${o};
let offset = getOffset(outputIndex);
var bestValue = ${t};
let Length = uniforms.reduceSize;
let WorkPerThread = DIV_CEIL(u32(Length), ${o}u);
for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size;
k = k + ${o}) {
let candidate = f32(x[offset + k]);
${e}
}
xBestValues[localId.x] = bestValue;
workgroupBarrier();
var reduceSize = min(u32(Length), ${o}u);
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
currentSize = reduceSize / 2u) {
let interval = DIV_CEIL(reduceSize, 2u);
if (localId.x < currentSize) {
let candidate = xBestValues[localId.x + interval];
${e}
xBestValues[localId.x] = bestValue;
}
reduceSize = interval;
workgroupBarrier();
}
if (localId.x == 0u && outputIndex < uniforms.size) {
${n}
}
}
`}};var rue={mean:"float32",all:"bool",any:"bool"};function eo(r,e,t,o,n){let s=r.shape.length,a=[],i=y.parseAxisParam(e,r.shape),p=i,u=w.getAxesPermutation(p,s),c=r;u!=null&&(c=xr({inputs:{x:r},attrs:{perm:u},backend:n}),p=w.getInnerMostAxes(p.length,s),a.push(c)),w.assertAxesAreInnerMostDims(o,p,s);let[l,m]=w.computeOutAndReduceShapes(c.shape,p),d=l;t&&(d=w.expandShapeToKeepDim(l,i));let f;if((o==="max"||o==="prod")&&n.shouldExecuteOnCPU([c])){let h=n.tensorMap.get(c.dataId).values;switch(o){case"max":let g=_z(h,y.sizeFromShape(m),d,r.dtype);f=n.makeTensorInfo(d,r.dtype,g);break;case"prod":let{outVals:x,outShape:b,outDtype:C}=Fz(c.shape,c.dtype,h,p);f=n.makeTensorInfo(b,C,x);break;default:throw new Error(`${o} CPU implementation is not yet supported.`)}}else{let h=y.sizeFromShape(m),x=y.sizeFromShape(c.shape)/h,b={windowSize:h,inSize:h,batchSize:x,outSize:1},C=rue[o]||oi(r.dtype),S=[{type:"int32",data:[h]}],k=new nx(b,o,n.device.limits.maxComputeWorkgroupSizeX),_=n.runWebGPUProgram(k,[c],C,S);a.push(_),f=pe({inputs:{x:_},attrs:{shape:d},backend:n})}return a.forEach(h=>n.disposeData(h.dataId)),f}function oue(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{keepDims:s,axis:a}=o;return eo(n,a,s,"all",t)}var Zz={kernelName:Go,backendName:"webgpu",kernelFunc:oue};function nue(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{keepDims:s,axis:a}=o;return eo(n,a,s,"any",t)}var Jz={kernelName:Ho,backendName:"webgpu",kernelFunc:nue};var Yc=class{constructor(e,t,o){this.workgroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="infinityValue : f32,",this.size=!0;let n=[t];this.op=o==="min"?"<":">";let[s,a]=w.computeOutAndReduceShapes(e,n);this.outputShape=s.length===0?[1]:s,this.dispatchLayout=X(this.outputShape),y.sizeFromShape(a)<32?(this.type="plain",this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize)):(this.type="shared",this.dispatch=H(this.dispatchLayout,this.outputShape,[1,1,1])),this.inputShape=e,this.shaderKey=`argMinMax_${this.op}_${this.type}`}getUserCode(){let e=this.workgroupSize[0],t=()=>this.inputShape.length===1?"uniforms.xShape":`uniforms.xShape.${Oo(this.inputShape.length-1)}`,o=()=>{let n="";if(this.outputShape.length===1)this.inputShape.length!==1&&(n+="outputCoords,");else for(let s=0;s<this.outputShape.length;s++)n+=`outputCoords.${Oo(s)},`;return n};return this.type==="shared"?`
fn DIV_CEIL(a : u32, b : u32) -> u32 {
return ((a - 1u) / b + 1u);
}
${`
var<workgroup> xBestIndices : array<i32, ${e}>;
var<workgroup> xBestValues : array<f32, ${e}>;
`}
${G("index")} {
let outputIndex = index / ${e};
let reduceLength = ${t()};
var bestIndex = i32(localId.x);
var bestValue = uniforms.infinityValue;
let outputCoords = getCoordsFromIndex(outputIndex);
for (var k = i32(localId.x); k < reduceLength && outputIndex < uniforms.size;
k = k + ${e}) {
let candidate = getX(${o()} k);
if (!isnan(candidate) && candidate ${this.op} bestValue) {
bestValue = candidate;
bestIndex = k;
}
}
xBestValues[localId.x] = bestValue;
xBestIndices[localId.x] = bestIndex;
workgroupBarrier();
var reduceSize = min(u32(reduceLength), ${e}u);
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
currentSize = reduceSize / 2u) {
let interval = DIV_CEIL(reduceSize, 2u);
if (localId.x < currentSize) {
let candidate = xBestValues[localId.x + interval];
if (candidate ${this.op} bestValue) {
bestValue = candidate;
xBestValues[localId.x] = bestValue;
xBestIndices[localId.x] = xBestIndices[localId.x + interval];
}
}
reduceSize = interval;
workgroupBarrier();
}
if (localId.x == 0u && outputIndex < uniforms.size) {
setOutputAtIndexI32(outputIndex, xBestIndices[localId.x]);
}
}
`:`
${G("index")} {
if (index < uniforms.size) {
let outputCoords = getCoordsFromIndex(index);
var bestIndex = 0;
var bestValue = getX(${o()} 0);
let reduceLength = ${t()};
for (var i = 1; i < reduceLength; i++) {
let candidate = getX(${o()} i);
if (candidate ${this.op} bestValue) {
bestValue = candidate;
bestIndex = i;
}
}
setOutputAtIndexI32(index, bestIndex);
}
}
`}};function sue(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s}=o,a=y.parseAxisParam(s,n.shape),i=w.getAxesPermutation(a,n.shape.length),p=n,u=[];i!=null&&(p=xr({inputs:{x:n},backend:t,attrs:{perm:i}}),u.push(p),a=w.getInnerMostAxes(a.length,p.shape.length)),w.assertAxesAreInnerMostDims("argMax",[a[0]],p.shape.length);let c=new Yc(p.shape,a[0],"max"),l=[{type:"float32",data:[Number.NEGATIVE_INFINITY]}],m=t.runWebGPUProgram(c,[p],"int32",l);return u.forEach(d=>t.disposeData(d.dataId)),m}var eV={kernelName:Ys,backendName:"webgpu",kernelFunc:sue};function aue(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s}=o,a=y.parseAxisParam(s,n.shape),i=w.getAxesPermutation(a,n.shape.length),p=n,u=[];i!=null&&(p=xr({inputs:{x:n},backend:t,attrs:{perm:i}}),u.push(p),a=w.getInnerMostAxes(a.length,p.shape.length)),w.assertAxesAreInnerMostDims("argMin",[a[0]],p.shape.length);let c=new Yc(p.shape,a[0],"min"),l=[{type:"float32",data:[Number.POSITIVE_INFINITY]}],m=t.runWebGPUProgram(c,[p],"int32",l);return u.forEach(d=>t.disposeData(d.dataId)),m}var tV={kernelName:Qs,backendName:"webgpu",kernelFunc:aue};var iue=ye({opType:Z.ASIN}),rV={kernelName:Ko,backendName:"webgpu",kernelFunc:iue};var uue=ye({opType:Z.ASINH}),oV={kernelName:qo,backendName:"webgpu",kernelFunc:uue};var pue=ye({opType:Z.ATAN}),nV={kernelName:jo,backendName:"webgpu",kernelFunc:pue};var cue=et({opType:fe.ATAN2}),sV={kernelName:Yo,backendName:"webgpu",kernelFunc:cue};var lue=ye({opType:Z.ATANH}),aV={kernelName:Xo,backendName:"webgpu",kernelFunc:lue};var sx=class{constructor(e){this.variableNames=["x"],this.uniforms="strides : vec2<i32>,",this.workgroupSize=[256,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="poolWithFilterSizeEqualsOne"}getUserCode(){return`
${G("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let batch = coords[0];
let d = coords[3];
let xRCCorner = coords.yz * uniforms.strides;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
let value = getX(batch, xRCorner, xCCorner, d);
setOutputAtIndex(index, value);
}
}
`}};var Ba=class{constructor(e,t,o=!1,n=!1,s=!1){if(this.variableNames=["x"],this.uniforms="strides : vec2<i32>, pads : vec2<i32>, dilations : vec2<i32>, convDims : vec2<i32>, filterDims : vec2<i32>,",this.workgroupSize=[128,1,1],this.size=!0,t==="avg"&&o)throw new Error("Cannot compute positions for average pool.");this.outputShape=e.outShape,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.poolType=t,this.computePositions=o,this.flattenPositions=n,this.includeBatchIndex=s,this.shaderKey=`pool2D_${t}_${o}_${n}_${s}`}getUserCode(){let e;this.poolType==="avg"?e="resultValue = resultValue + value; count = count + 1.0;":this.computePositions?e=`let currMaxValue = mix(value, maxValue, maxValueFound);
if (value >= currMaxValue) {
maxValue = value;
maxValueFound = 1.0;
maxPosition = ${this.flattenPositions?this.includeBatchIndex?"((batch * uniforms.xShape[1] + xR) * uniforms.xShape[2] + xC) * uniforms.xShape[3] + d":"(xR * uniforms.xShape[2] + xC) * uniforms.xShape[3] + d":"wR * uniforms.filterDims.y + wC"};
}`:e="resultValue = max(value, resultValue);";let t="resultValue";return this.poolType==="avg"&&(t="resultValue / max(count, 1.0)"),`
${G("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let batch = coords[0];
let d = coords[3];
let xRCCorner = vec2<i32>(coords.yz) * uniforms.strides - uniforms.pads;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
${this.computePositions?`var maxValue = 0.0;
var maxValueFound = 0.0;
var maxPosition = 0;`:`var resultValue = ${this.poolType==="avg"?"0.0":"-1.0 / pow(10.0, -20.0)"};`}
var count = 0.0;
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + uniforms.dilations.x) {
let xR = xRCorner + wR;
if (xR < 0 || xR >= uniforms.convDims.x) {
continue;
}
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + uniforms.dilations.y) {
let xC = xCCorner + wC;
if (xC < 0 || xC >= uniforms.convDims.y) {
continue;
}
let value = getX(batch, xR, xC, d);
${e}
}
}
${this.computePositions?"setOutputAtIndexI32(index, maxPosition);":`setOutputAtIndex(index, ${t});`}
}
}
`}},Iu=class{constructor(e,t,o=!1,n=!1,s=!1){if(this.variableNames=["x"],this.uniforms="strides : vec3<i32>, pads : vec3<i32>, convDims : vec3<i32>, filterDims : vec3<i32>,",this.workgroupSize=[128,1,1],this.size=!0,t==="avg"&&o)throw new Error("Cannot compute positions for average pool.");this.outputShape=e.outShape,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.poolType=t,this.computePositions=o,this.flattenPositions=n,this.includeBatchIndex=s,this.shaderKey=`pool3D_${t}_${o}_${n}_${s}`}getUserCode(){let e;this.poolType==="avg"?e="resultValue += value; count += 1.0;":this.computePositions?e=`let currMaxValue = mix(value, maxValue, maxValueFound);
if (value >= currMaxValue) {
maxValue = value;
maxValueFound = 1.0;
maxPosition = ${this.flattenPositions?this.includeBatchIndex?"(((batch * uniforms.xShape.y + xD) * uniforms.xShape.z + xR) * uniforms.xShape.w + xC) * uniforms.xShape.u + ch":"((xD * uniforms.xShape.z + xR) * uniforms.xShape.w + xC) * uniforms.xShape.u + ch":"wD * uniforms.filterDims.y * uniforms.filterDims.y + wR * uniforms.filterDims.z + wC"};
}`:e="resultValue = max(value, resultValue);";let t="resultValue";return this.poolType==="avg"&&(t="resultValue / max(count, 1.0)"),`
${G("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let batch = coords.x;
let ch = coords.u;
let xCorner = vec3<i32>(coords.y, coords.z, coords.w) * uniforms.strides - uniforms.pads;
let xDCorner = xCorner.x;
let xRCorner = xCorner.y;
let xCCorner = xCorner.z;
${this.computePositions?`var maxValue = 0.0;
var maxValueFound = 0.0;
var maxPosition = 0;`:`var resultValue = ${this.poolType==="avg"?"0.0":"-1.0 / pow(10.0, -20.0)"};`}
var count = 0.0;
for (var wD = 0; wD < uniforms.filterDims.x; wD++) {
let xD = xDCorner + wD;
if (xD < 0 || xD >= uniforms.convDims.x) {
continue;
}
for (var wR = 0; wR < uniforms.filterDims.y; wR++) {
let xR = xRCorner + wR;
if (xR < 0 || xR >= uniforms.convDims.y) {
continue;
}
for (var wC = 0; wC < uniforms.filterDims.z; wC++) {
let xC = xCCorner + wC;
if (xC < 0 || xC >= uniforms.convDims.z) {
continue;
}
let value = getX(batch, xD, xR, xC, ch);
${e}
}
}
}
${this.computePositions?"setOutputAtIndexI32(index, maxPosition);":`setOutputAtIndex(index, ${t});`}
}
}
`}};function t0(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{reductionIndices:s,keepDims:a}=o;return eo(n,s,a,"max",t)}var iV={kernelName:zn,backendName:"webgpu",kernelFunc:t0};function r0(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{keepDims:s,axis:a}=o;return eo(n,a,s,"mean",t)}var uV={kernelName:Un,backendName:"webgpu",kernelFunc:r0};function ax(r,e,t,o){if(e.filterWidth===1&&e.filterHeight===1&&y.arraysEqual(e.inShape,e.outShape))return At({inputs:{x:r},backend:o});if(e.filterWidth===e.inWidth&&e.filterHeight===e.inHeight&&e.batchSize===1&&e.padInfo.type==="VALID"){let a=r.shape.length,i=pe({inputs:{x:r},backend:o,attrs:{shape:[r.shape[a-3]*r.shape[a-2],r.shape[a-1]]}}),p;t==="avg"?p=r0({inputs:{x:i},backend:o,attrs:{axis:0,keepDims:!1}}):(y.assert(t==="max",()=>`Invalid pool type ${t}`),p=t0({inputs:{x:i},backend:o,attrs:{reductionIndices:0,keepDims:!1}}));let u=pe({inputs:{x:p},backend:o,attrs:{shape:e.outShape}});return o.disposeData(i.dataId),o.disposeData(p.dataId),u}let n,s=[{type:"int32",data:[e.strideHeight,e.strideWidth]}];return e.filterHeight===1&&e.filterWidth===1?n=new sx(e):(t==="avg"?n=new Ba(e,"avg"):(y.assert(t==="max",()=>`Invalid pool type ${t}`),n=new Ba(e,"max")),s.push({type:"int32",data:[e.padInfo.top,e.padInfo.left]},{type:"int32",data:[e.dilationHeight,e.dilationWidth]},{type:"int32",data:[e.inHeight,e.inWidth]},{type:"int32",data:[e.effectiveFilterHeight,e.effectiveFilterWidth]})),o.runWebGPUProgram(n,[r],r.dtype,s)}function mue(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:p}=o,c=w.computePool2DInfo(n.shape,s,a,1,i,p);return ax(n,c,"avg",t)}var pV={kernelName:Qo,backendName:"webgpu",kernelFunc:mue};function due(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dataFormat:p,dimRoundingMode:u}=o,c=[1,1,1],l=w.computePool3DInfo(n.shape,s,a,c,i,u,p),m=new Iu(l,"avg"),d=[{type:"int32",data:[l.strideDepth,l.strideHeight,l.strideWidth]},{type:"int32",data:[l.padInfo.front,l.padInfo.top,l.padInfo.left]},{type:"int32",data:[l.inDepth,l.inHeight,l.inWidth]},{type:"int32",data:[l.effectiveFilterDepth,l.effectiveFilterHeight,l.effectiveFilterWidth]}];return t.runWebGPUProgram(m,[n],n.dtype,d)}var cV={kernelName:Zs,backendName:"webgpu",kernelFunc:due};var ix=class{constructor(e){this.variableNames=["dy"],this.uniforms=`strides : vec2<i32>, pads : vec2<i32>, dilations : vec2<i32>, filterDims : vec2<i32>,
outHeight : i32, outWidth : i32, avgMultiplier : f32,`,this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e.inShape,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="avgPool2DBackprop"}getUserCode(){return`
${G("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let batch = coords[0];
let d = coords[3];
let dyRCCorner = vec2<i32>(coords.yz) - uniforms.pads;
let dyRCorner = dyRCCorner.x;
let dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
var dotProd = 0.0;
for (var wR = 0; wR < uniforms.filterDims[0]; wR = wR + uniforms.dilations[0]) {
let dyR = f32(dyRCorner + wR) / f32(uniforms.strides[0]);
if (dyR < 0.0 || dyR >= f32(uniforms.outHeight) || fract(dyR) > 0.0) {
continue;
}
let idyR = i32(dyR);
for (var wC = 0; wC < uniforms.filterDims[1]; wC = wC + uniforms.dilations[1]) {
let dyC = f32(dyCCorner + wC) / f32(uniforms.strides[1]);
if (dyC < 0.0 || dyC >= f32(uniforms.outWidth) || fract(dyC) > 0.0) {
continue;
}
let idyC = i32(dyC);
let dyValue = getDy(batch, idyR, idyC, d);
dotProd = dotProd + dyValue * uniforms.avgMultiplier;
}
}
setOutputAtIndex(index, dotProd);
}
}
`}},ux=class{constructor(e){this.variableNames=["dy"],this.uniforms=`strides : vec3<i32>, pads : vec3<i32>, filterDims : vec3<i32>,
outDepth : i32, outHeight : i32, outWidth : i32, avgMultiplier : f32,`,this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e.inShape,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="avgPool3DBackprop"}getUserCode(){return`
${G("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let batch = coords.x;
let ch = coords.u;
let dyCorner = vec3<i32>(coords.y, coords.z, coords.w) - uniforms.pads;
let dyDCorner = dyCorner.x;
let dyRCorner = dyCorner.y;
let dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
var dotProd = 0.0;
for (var wD = 0; wD < uniforms.filterDims[0]; wD++) {
let dyD = f32(dyDCorner + wD) / f32(uniforms.strides[0]);
if (dyD < 0.0 || dyD >= f32(uniforms.outDepth) || fract(dyD) > 0.0) {
continue;
}
let idyD = i32(dyD);
for (var wR = 0; wR < uniforms.filterDims[1]; wR++) {
let dyR = f32(dyRCorner + wR) / f32(uniforms.strides[1]);
if (dyR < 0.0 || dyR >= f32(uniforms.outHeight) || fract(dyR) > 0.0) {
continue;
}
let idyR = i32(dyR);
for (var wC = 0; wC < uniforms.filterDims[2]; wC++) {
let dyC = f32(dyCCorner + wC) / f32(uniforms.strides[2]);
if (dyC < 0.0 || dyC >= f32(uniforms.outWidth) || fract(dyC) > 0.0) {
continue;
}
let idyC = i32(dyC);
let dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * uniforms.avgMultiplier;
}
}
}
setOutputAtIndex(index, dotProd);
}
}
`}};function fue(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s,{filterSize:i,strides:p,pad:u,dimRoundingMode:c}=o,l=w.computePool3DInfo(a.shape,i,p,1,u,c),m=new ux(l),d=1/(l.filterDepth*l.filterHeight*l.filterWidth),f=[{type:"int32",data:[l.strideDepth,l.strideHeight,l.strideWidth]},{type:"int32",data:[l.effectiveFilterDepth-1-l.padInfo.front,l.effectiveFilterHeight-1-l.padInfo.top,l.effectiveFilterWidth-1-l.padInfo.left]},{type:"int32",data:[l.effectiveFilterDepth,l.effectiveFilterHeight,l.effectiveFilterWidth]},{type:"int32",data:[l.outDepth]},{type:"int32",data:[l.outHeight]},{type:"int32",data:[l.outWidth]},{type:"float32",data:[d]}];return t.runWebGPUProgram(m,[n],a.dtype,f)}var lV={kernelName:Ri,backendName:"webgpu",kernelFunc:fue};function hue(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s;fm([n,s],"avgPoolGrad");let{filterSize:i,strides:p,pad:u}=o,c=w.computePool2DInfo(a.shape,i,p,1,u),l=new ix(c),m=1/(c.filterHeight*c.filterWidth),d=[{type:"int32",data:[c.strideHeight,c.strideWidth]},{type:"int32",data:[c.effectiveFilterHeight-1-c.padInfo.top,c.effectiveFilterWidth-1-c.padInfo.left]},{type:"int32",data:[c.dilationHeight,c.dilationWidth]},{type:"int32",data:[c.effectiveFilterHeight,c.effectiveFilterWidth]},{type:"int32",data:[c.outHeight]},{type:"int32",data:[c.outWidth]},{type:"float32",data:[m]}];return t.runWebGPUProgram(l,[n],a.dtype,d)}var mV={kernelName:$i,backendName:"webgpu",kernelFunc:hue};function gue(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s}=e,{transposeA:a,transposeB:i}=o;return $p({a:n,b:s,transposeA:a,transposeB:i,backend:t})}var dV={kernelName:Zo,backendName:"webgpu",kernelFunc:gue};var px=class{constructor(e,t){this.variableNames=["source"],this.workPerThread=1,this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.rank=t.length,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize,[this.workPerThread,1,1]),this.start=e,this.uniforms=`start : ${ft(e.length)}, `,this.shaderKey="slice"}getUserCode(){let e=ft(this.rank),t=xue(this.rank),o;return this.start.length===1?o=this.outputShape.map((s,a)=>"sourceLoc = uniforms.start + coords;"):o=this.outputShape.map((s,a)=>`sourceLoc.${o0[a]} = uniforms.start.${Oo(a)} + coords.${o0[a]};`),`
${G("index")} {
if (index < uniforms.size) {
var sourceLoc : ${e};
let coords = getCoordsFromIndex(index);
${o.join(`
`)}
setOutputAtIndex(index, getSource(${t}));
}
}
`}},o0=["x","y","z","w","u","v"];function xue(r){if(r===1)return"sourceLoc";if(r<=6)return o0.slice(0,r).map(e=>`sourceLoc.${e}`).join(",");throw Error(`Slicing for rank ${r} is not yet supported`)}function Hs(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{begin:s,size:a}=o,[i,p]=pt.parseSliceParams(n,s,a);if(pt.assertParamsValid(n,i,p),t.shouldExecuteOnCPU([n])||n.dtype==="string"){let l=t.tensorMap.get(n.dataId),m=Bz(l.values,i,p,n.shape,n.dtype);return t.makeTensorInfo(p,n.dtype,m)}if(y.sizeFromShape(p)===0)return t.makeTensorInfo(p,n.dtype,[]);let u=new px(i,p),c=[{type:"int32",data:i}];return t.runWebGPUProgram(u,[n],n.dtype,c)}var fV={kernelName:ha,backendName:"webgpu",kernelFunc:Hs};var yue=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,crops:a}=o;y.assert(n.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet");let i=s.reduce((b,C)=>b*C),p=w.getReshaped(n.shape,s,i),u=w.getPermuted(p.length,s.length),c=w.getReshapedPermuted(n.shape,s,i),l=w.getSliceBeginCoords(a,s.length),m=w.getSliceSize(c,a,s.length),d=[],f=pe({inputs:{x:n},backend:t,attrs:{shape:p}}),h=xr({inputs:{x:f},backend:t,attrs:{perm:u}}),g=pe({inputs:{x:h},backend:t,attrs:{shape:c}}),x=Hs({inputs:{x:g},backend:t,attrs:{begin:l,size:m}});return d.push(f),d.push(h),d.push(g),d.forEach(b=>t.disposeData(b.dataId)),x},hV={kernelName:Js,backendName:"webgpu",kernelFunc:yue};var bue=`
fn bincount_write(index: i32, value: f32) {
${Qr("&result[index]","value","float32")}
}
`,Cue=`
fn bincount_write(index: i32, value: f32) {
atomicStore(&result[index], bitcast<i32>(value));
}
`,Qc=class{constructor(e,t,o=!1){this.outputShape=[],this.variableNames=["x"],this.uniforms="binCountSize : i32,",this.workgroupSize=[64,1,1],this.atomic=!0,this.hasWeights=!0,this.binaryOutput=!1,this.outputShape=e,this.rank=e.length,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.binaryOutput=o,o&&(this.atomic=!1),this.hasWeights=t,this.hasWeights&&this.variableNames.push("w"),this.shaderKey=`bincount_${this.hasWeights}_${this.binaryOutput}_${this.rank}`}getUserCode(){return`
${this.binaryOutput?Cue:bue}
${G("index")} {
${this.rank===1?`if (index < uniforms.xShape) {
let indexVal = i32(getX(index));
if (indexVal < uniforms.binCountSize) {
let value = ${this.binaryOutput?1:this.hasWeights?"getW(index)":"1."};
bincount_write(indexVal, value);
}
}`:`let coord = getCoordsFromIndex(index);
if (coordsInBounds2D(coord, uniforms.xShape)) {
let indexVal = i32(getX(coord[0], coord[1]));
if (indexVal < uniforms.binCountSize) {
let value = ${this.binaryOutput?1:this.hasWeights?"getW(coord[0], coord[1])":"1."};
bincount_write(coord.x * uniforms.binCountSize + indexVal, value);
}
}`}
}
`}};function wue(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,weights:s}=e,{size:a}=o,i=y.sizeFromShape(n.shape),u=y.sizeFromShape(s.shape)>0,c=[a],l=s.dtype,m=vt({backend:t,attrs:{shape:c,value:0,dtype:l}}),d=new Qc([i],u),f=[{type:"int32",data:[a]}],h=u?[n,s]:[n];return t.runWebGPUProgram(d,h,l,f,m)}var gV={kernelName:Jo,backendName:"webgpu",kernelFunc:wue};var cx=class{constructor(e){this.outputShape=[],this.variableNames=["s0","s1"],this.uniforms="s0Size : i32, s1Size : i32, ",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=[e],this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="broadcastArgs"}getUserCode(){return`
${G("index")} {
if (index < uniforms.size) {
var s0 = 1.0;
var s1 = 1.0;
let indexS0 = index - uniforms.size + uniforms.s0Size;
let indexS1 = index - uniforms.size + uniforms.s1Size;
if (indexS0 >= 0) {
s0 = getS0(indexS0);
}
if (indexS1 >= 0) {
s1 = getS1(indexS1);
}
if (s0 == 1.0) {
setOutputAtIndex(index, s1);
} else if (s1 == 1.0) {
setOutputAtIndex(index, s0);
} else if (s0 != s1) {
setOutputAtIndex(index, uniforms.NAN);
} else {
setOutputAtIndex(index, s0);
}
}
}
`}};function Sue(r){let{inputs:e,backend:t}=r,{s0:o,s1:n}=e;if(t.shouldExecuteOnCPU([o,n])){let c=t.tensorMap.get(o.dataId),l=t.tensorMap.get(n.dataId),m=c.values,d=l.values,f=w.assertAndGetBroadcastShape(Array.from(m),Array.from(d));return t.makeTensorInfo([f.length],"int32",Int32Array.from(f))}let s=y.sizeFromShape(o.shape),a=y.sizeFromShape(n.shape),i=Math.max(s,a),p=new cx(i),u=[{type:"int32",data:[s]},{type:"int32",data:[a]}];return t.runWebGPUProgram(p,[o,n],"int32",u)}var xV={kernelName:ea,backendName:"webgpu",kernelFunc:Sue};var n0=et({opType:fe.NOT_EQUAL,dtype:"bool",cpuKernelImpl:Az}),yV={kernelName:Yn,backendName:"webgpu",kernelFunc:n0};function vi(r){let{inputs:e,backend:t}=r,{input:o}=e,n=t.tensorMap.get(o.dataId);return At({inputs:{x:n.complexTensorInfos.real},backend:t})}var bV={kernelName:Hi,backendName:"webgpu",kernelFunc:vi};function CV(r,e){let t=new Jr(r.shape,Z.TO_INT),o=e.runWebGPUProgram(t,[r],"int32");return{dataId:o.dataId,shape:o.shape,dtype:o.dtype}}function s0(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dtype:s}=o;if(s==="complex64"){if(n.dtype==="complex64")return At({inputs:{x:n},backend:t});let a=Gr(n.shape),i=s0({inputs:{x:n},backend:t,attrs:{dtype:"float32"}}),p=xo({inputs:{real:i,imag:a},backend:t});return a.dispose(),t.disposeData(i.dataId),p}if(n.dtype==="complex64"){let a=vi({inputs:{input:n},backend:t}),i=s0({inputs:{x:a},backend:t,attrs:{dtype:s}});return t.disposeData(a.dataId),i}if(!y.hasEncodingLoss(n.dtype,s)){let a=At({inputs:{x:n},backend:t});return{dataId:a.dataId,shape:a.shape,dtype:s}}if(t.shouldExecuteOnCPU([n])){let a=t.tensorMap.get(n.dataId).values,[i,p,u]=dz(a,n.shape,n.dtype,s);return t.makeTensorInfo(i,p,u)}if(s==="int32")return CV(n,t);if(s==="bool"){let a=t.makeTensorInfo([],"bool",y.getTypedArrayFromDType("bool",1)),p=n0({inputs:{a:n,b:a},backend:t});return t.disposeData(a.dataId),p}throw new Error(`Error in Cast: failed to cast ${n.dtype} to ${s}`)}var wV={kernelName:yo,backendName:"webgpu",kernelFunc:s0};var Iue=ye({opType:Z.CEIL,cpuKernelImpl:fz}),SV={kernelName:en,backendName:"webgpu",kernelFunc:Iue};var lx=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workPerThread=4,this.workgroupSize=[64,1,1],this.outputComponent=4,this.size=!0,this.outputShape=e,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize,[this.workPerThread,1,1]),this.shaderKey="clipVec4"}getUserCode(){return`
${G("index")} {
if(index < uniforms.size) {
let value = getAByOutputIndex(index);
var clampedValue = clamp(
value, vec4<f32>(uniforms.minVal), vec4<f32>(uniforms.maxVal));
clampedValue = select(clampedValue, value, isnanVec4(value));
setOutputAtIndex(index, clampedValue);
}
}
`}};var mx=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="clip"}getUserCode(){return`
${G("index")} {
if(index < uniforms.size) {
let value = getAByOutputIndex(index);
if (isnan(value)) {
setOutputAtIndex(index, value);
return;
}
setOutputAtIndex(index, clamp(value, uniforms.minVal, uniforms.maxVal));
}
}
`}};function vue(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{clipValueMin:s,clipValueMax:a}=o,i,p=[{type:"float32",data:[s]},{type:"float32",data:[a]}];return y.sizeFromShape(n.shape)%4===0?i=new lx(n.shape):i=new mx(n.shape),t.runWebGPUProgram(i,[n],n.dtype,p)}var IV={kernelName:bo,backendName:"webgpu",kernelFunc:vue};var dx=class{constructor(e){this.outputShape=[],this.variableNames=["real","imag"],this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="complexAbs"}getUserCode(){return`
${G("index")} {
if (index < uniforms.size) {
let re = abs(getRealByOutputIndex(index));
let im = abs(getImagByOutputIndex(index));
let mx = max(re, im);
// The length function in wgsl may be not underflow-safe on some GPUs.
// So the safe solution is to ensure underflow-safety in all cases.
setOutputAtIndex(index, select(mx * length(vec2<f32>(1, min(re, im)/mx)), 0.0, mx == 0.0));
}
}
`}};function vV(r,e){return{dataId:e.dataId,dtype:e.dtype,shape:r.shape}}function kue(r){let{inputs:e,backend:t}=r,{x:o}=e,n=t.tensorMap.get(o.dataId),s=new dx(o.shape),a=[vV(o,n.complexTensorInfos.real),vV(o,n.complexTensorInfos.imag)];return t.runWebGPUProgram(s,a,a[0].dtype)}var kV={kernelName:Ai,backendName:"webgpu",kernelFunc:kue};var fx=class{constructor(e){this.uniforms="",this.workPerThread=1,this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=w.computeOutShape(e,1),this.variableNames=e.map((t,o)=>`T${o}`),this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize,[this.workPerThread,1,1]),this.offsetLength=e.length-1;for(let t=0;t<this.offsetLength;t++)this.uniforms+=`offset${t} : i32,`;this.shaderKey="concat"}getUserCode(){let e=[];if(this.offsetLength>0){e.push("if (yC < uniforms.offset0){ setOutputAtCoords(coords.x, coords.y, getT0(yR, yC)); }");for(let s=1;s<this.offsetLength;s++)e.push(`else if (yC < uniforms.offset${[s]}){ setOutputAtCoords(coords.x, coords.y, getT${s}(yR, yC - uniforms.offset${s-1})); }`);let o=this.offsetLength,n=this.offsetLength-1;e.push(`else { setOutputAtCoords(coords.x, coords.y, getT${o}(yR, yC - uniforms.offset${n})); }`)}else e.push("setOutputAtCoords(coords.x, coords.y, getT0(yR, yC));");return`
${G("index")} {
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let coords = getCoordsFromIndex(flatIndex);
let yR = coords.x;
let yC = coords.y;
${e.join(`
`)}
}
}
}
`}};function Rp(r){let{inputs:e,backend:t}=r,{input:o}=e,n=t.tensorMap.get(o.dataId);return At({inputs:{x:n.complexTensorInfos.imag},backend:t})}var NV={kernelName:Wi,backendName:"webgpu",kernelFunc:Rp};function Zc(r,e,t){let o=r[0].dtype;if(o==="complex64"){let f=r.map(C=>vi({inputs:{input:C},backend:t})),h=r.map(C=>Rp({inputs:{input:C},backend:t})),g=Zc(f,e,t),x=Zc(h,e,t),b=xo({inputs:{real:g,imag:x},backend:t});return f.forEach(C=>t.disposeData(C.dataId)),h.forEach(C=>t.disposeData(C.dataId)),t.disposeData(g.dataId),t.disposeData(x.dataId),b}let n=t.shouldExecuteOnCPU(r);if(o==="string"&&(n=!0),n){let f=r.map(k=>{let $=[-1,y.sizeFromShape(k.shape.slice(e))];return pe({inputs:{x:k},backend:t,attrs:{shape:$}})}),h=f.map(k=>({vals:t.readSync(k.dataId),shape:k.shape})),g=w.computeOutShape(f.map(k=>k.shape),1),x=f[0].shape[0]===1,b=hz(h,g,o,x),C=w.computeOutShape(r.map(k=>k.shape),e),S=t.makeTensorInfo(C,o,b);return f.forEach(k=>t.disposeData(k.dataId)),S}let s=t.device.limits.maxStorageBuffersPerShaderStage-1;if(r.length>s){let f=[];for(let g=0;g<r.length;g+=s){let x=r.slice(g,g+s);f.push(Zc(x,e,t))}let h=Zc(f,e,t);for(let g of f)t.disposeData(g.dataId);return h}let{tensors2D:a,outShape:i}=Nue(r,e,t),p=a.map(f=>f.shape),u=new fx(p),c=[],l=new Array(p.length-1);if(l.length>0){l[0]=p[0][1],c.push({type:"int32",data:[l[0]]});for(let f=1;f<l.length;f++)l[f]=l[f-1]+p[f][1],c.push({type:"int32",data:[l[f]]})}let m=t.runWebGPUProgram(u,a,a[0].dtype,c);a.forEach(f=>t.disposeData(f.dataId));let d=pe({inputs:{x:m},backend:t,attrs:{shape:i}});return t.disposeData(m.dataId),d}function Nue(r,e,t){let o=w.computeOutShape(r.map(s=>s.shape),e);return{tensors2D:r.map(s=>pe({inputs:{x:s},backend:t,attrs:{shape:[y.sizeFromShape(s.shape.slice(0,e)),y.sizeFromShape(s.shape.slice(e))]}})),outShape:o}}function a0(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o,s=y.parseAxisParam(n,e[0].shape)[0],a=e.map(u=>u.shape);w.assertParamsConsistent(a,s);let i=w.computeOutShape(e.map(u=>u.shape),s);if(y.sizeFromShape(i)===0)return t.makeTensorInfo(i,e[0].dtype,[]);let p=e.filter(u=>y.sizeFromShape(u.shape)>0);return p.length===1?At({inputs:{x:p[0]},backend:t}):Zc(p,s,t)}var TV={kernelName:ta,backendName:"webgpu",kernelFunc:a0};function Tue(r,e,t,o,n=!1,s=null,a=!1,i=4,p=4,u=4){let c=D=>{switch(D){case 1:return"resData = f32(x[xIndex]);";case 3:return"resData = vec3<f32>(x[xIndex], x[xIndex + 1], x[xIndex + 2]);";case 4:return"resData = vec4<f32>(x[xIndex / 4]);";default:throw new Error(`innerElementSize ${D} is not supported.`)}},l=D=>{switch(D){case 1:return"return f32(W[row * uniforms.wShape[3] + col]);";case 4:return"return vec4<f32>(W[(row * uniforms.wShape[3] + col) / 4]);";default:throw new Error(`innerElementSize ${D} is not supported.`)}},m=r?`
let coord = vec4<i32>(batch, xRow, xCol, xCh);
`:`
let coord = vec4<i32>(batch, xCh, xRow, xCol);
`,d=r?`
let coords = vec4<i32>(
batch,
row / outWidth,
row % outWidth,
col);
`:`
let coords = vec4<i32>(
batch,
row,
col / outWidth,
col % outWidth);
`,f=r?"uniforms.xShape[1]":"uniforms.xShape[2]",h=r?"uniforms.xShape[2]":"uniforms.xShape[3]",g=r?"row":"col",x=r?"col":"row",b=`
let inChannels = uniforms.wShape[2];
let outWidth = ${r?"uniforms.outShape[2]":"uniforms.outShape[3]"};
let outRow = ${g} / outWidth;
let outCol = ${g} % outWidth;
let WRow = ${x} / (uniforms.filterDims[1] * inChannels);
let WCol = ${x} / inChannels % uniforms.filterDims[1];
let xRow = outRow * uniforms.strides[0] + uniforms.dilations[0] * WRow - uniforms.pads[0];
let xCol = outCol * uniforms.strides[1] + uniforms.dilations[1] * WCol - uniforms.pads[1];
let xCh = ${x} % inChannels;
var resData = ${Ae(i)}(0.0);
// The bounds checking is always needed since we use it to pad zero for
// the 'same' padding type.
if (xRow >= 0 && xRow < ${f} && xCol >= 0 && xCol < ${h}) {
${m}
let xIndex = getIndexFromCoords4D(coord, uniforms.xShape);
${c(i)}
}
return resData;`,C=r?e&&o?`
${b}`:`
if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
${b}
}
return ${Ae(i)}(0.0);`:o&&t?`
${b}`:`
if (row < uniforms.dimInner && col < uniforms.dimBOuter) {
${b}
}
return ${Ae(i)}(0.0);`,S=`${l(p)}`,k=Ae(u),_=r?Ae(i):Ae(p),$=r?Ae(p):Ae(i);return`
${dr(s,a,u===4,4)}
fn mm_readA(batch: i32, row : i32, col : i32) -> ${_} {
${r?C:S}
}
fn mm_readB(batch: i32, row : i32, col : i32) -> ${$} {
${r?S:C}
}
fn mm_write(batch: i32, row : i32, col : i32, valueIn : ${k}) {
if (row < uniforms.dimAOuter && col < uniforms.dimBOuter)
{
var value = valueIn;
let outWidth = ${r?"uniforms.outShape[2]":"uniforms.outShape[3]"};
${d}
${Zr(n,s)}
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);
}
}`}var hx=class{constructor(e,t,o,n,s=!1,a=null,i=!1,p=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, strides : vec2<i32>, dilations : vec2<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.outShape,this.isChannelsLast=e.dataFormat==="channelsLast",this.isVec4=((e.inChannels%4===0||e.inChannels%3===0)&&this.isChannelsLast||e.outWidth%4===0&&!this.isChannelsLast)&&e.outChannels%4===0,this.dispatchLayout=this.isChannelsLast?{x:[3],y:[1,2],z:[0]}:{x:[2,3],y:[1],z:[0]},this.workgroupSize=lm(this.dispatchLayout,this.outputShape,this.isVec4),this.elementsPerThread=mm(this.dispatchLayout,this.outputShape,this.isVec4),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize,this.elementsPerThread),this.isVec4?(this.outputComponent=4,this.isChannelsLast&&e.inChannels%4!==0?(this.innerElementSize=3,this.variableComponents=[1,4]):(this.innerElementSize=4,this.variableComponents=[4,4]),s&&(this.variableNames.push("bias"),this.variableComponents.push(4)),i&&(this.variableNames.push("preluActivationWeights"),this.variableComponents.push(4))):(this.innerElementSize=this.elementsPerThread[0],s&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights")),this.sequentialAccessByThreads=p,this.addBias=s,this.activation=a,this.hasPreluActivationWeights=i,this.tileAOuter=this.workgroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workgroupSize[0]*this.elementsPerThread[0],this.tileInner=Math.max(this.workgroupSize[0]*this.innerElementSize,this.workgroupSize[1]),this.fitAOuter=t%this.tileAOuter===0,this.fitBOuter=o%this.tileBOuter===0,this.fitInner=n%this.tileInner===0,this.shaderKey=`conv2DMM_${this.elementsPerThread}_${this.activation}}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.isVec4}_${this.innerElementSize}_${this.isChannelsLast}_${this.sequentialAccessByThreads}`}getUserCode(){let e=this.isVec4?_p(this.elementsPerThread,this.workgroupSize,!this.isChannelsLast,this.tileInner):Ep(this.elementsPerThread,this.workgroupSize,!this.isChannelsLast,this.tileInner,!1,null,this.sequentialAccessByThreads),t=this.isVec4?[this.innerElementSize,4,4]:[1,1,1];return`
${Tue(this.isChannelsLast,this.fitAOuter,this.fitBOuter,this.fitInner,this.addBias,this.activation,this.hasPreluActivationWeights,t[0],t[1],t[2])}
${e}
`}};var gx=class{constructor(e,t=!1,o=null,n=!1){this.variableNames=["x","W"],this.uniforms="filterDims: vec2<i32>, pads: vec2<i32>, strides: vec2<i32>, dilations: vec2<i32>,",this.workgroupSize=[4,4,8],this.outputShape=e.outShape,this.isChannelsLast=e.dataFormat==="channelsLast",this.dispatchLayout=this.isChannelsLast?{x:[2],y:[1],z:[0,3]}:{x:[3],y:[2],z:[0,1]},this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.addBias=t,this.activation=o,this.hasPreluActivationWeights=n,t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),this.shaderKey=`conv2dnaive_${this.activation}_${this.isChannelsLast}`}getUserCode(){return`
${dr(this.activation,this.hasPreluActivationWeights,!1,4)}
fn readInp(batch : i32, row : i32, col : i32, chan : i32) -> f32{
let coords = vec4<i32>(batch, row, col, chan);
if (coordsInBounds4D(coords, uniforms.xShape)) {
return getX(batch, row, col, chan);
} else {
return 0.0;
}
}
fn readFilt(row : i32, col : i32, xChannel : i32, outChannel : i32) -> f32{
let coords = vec4<i32>(row, col, xChannel, outChannel);
if(coordsInBounds4D(coords, uniforms.wShape)) {
return getW(row, col, xChannel, outChannel);
} else {
return 0.0;
}
}
fn writeResult(batch : i32, row : i32, col : i32, chan : i32, valueIn : f32) {
let coords = ${this.isChannelsLast?"vec4<i32>(batch, row, col, chan);":"vec4<i32>(batch, chan, row, col);"}
if (coordsInBounds4D(coords, uniforms.outShape)) {
var value = valueIn;
${Zr(this.addBias,this.activation)}
setOutputAtCoords(coords.x, coords.y, coords.z, coords.w, value);
}
}
${G("index")} {
let coords = getOutputCoords();
let batch = coords[0];
let outChannel = ${this.isChannelsLast?"coords[3];":"coords[1];"}
let outRow = ${this.isChannelsLast?"coords[1];":"coords[2];"}
let outCol = ${this.isChannelsLast?"coords[2];":"coords[3];"}
var acc : f32 = 0.0;
for (var row = 0; row < uniforms.filterDims[0]; row = row + 1) {
for (var col = 0; col < uniforms.filterDims[1]; col = col + 1) {
let xRow = outRow * uniforms.strides[0] + uniforms.dilations[0] * row - uniforms.pads[0];
let xCol = outCol * uniforms.strides[1] + uniforms.dilations[1] * col - uniforms.pads[1];
for (var xChannel = 0; xChannel < ${this.isChannelsLast?"uniforms.xShape[3];":"uniforms.xShape[1];"} xChannel = xChannel + 1) {
${this.isChannelsLast?"let v = readInp(batch, xRow, xCol, xChannel);":"let v = readInp(batch, xChannel, xRow, xCol);"}
let f = readFilt(row, col, xChannel, outChannel);
acc = acc + v * f;
}
}
}
writeResult(batch, outRow, outCol, outChannel, acc);
}
`}};var xx=class{constructor(e,t){this.variableNames=["x"],this.uniforms=`pads : vec2<i32>, strides : vec2<i32>, dilations : vec2<i32>, outWidth : i32, itemsPerBlockRow : i32,
inChannels : i32,`,this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.isChannelsLast=t,this.shaderKey=`im2col_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?1:2,t=this.isChannelsLast?2:3,o=this.isChannelsLast?"coords[1]":"coords[2]",n=this.isChannelsLast?"coords[2]":"coords[1]",s=this.isChannelsLast?"getX(batch, xRow, xCol, ch)":"getX(batch, ch, xRow, xCol)";return`
${G("index")} {
let coords = getCoordsFromIndex(index);
if(index < uniforms.size) {
let batch = coords[0];
let row = ${o};
let col = ${n};
let offsetY = (row / uniforms.outWidth) * uniforms.strides[0] - uniforms.pads[0];
let xRow = offsetY + uniforms.dilations[0] * (col / uniforms.itemsPerBlockRow);
var value = 0.0;
if(xRow < uniforms.xShape[${e}] && xRow >= 0) {
let offsetX = (row % uniforms.outWidth) * uniforms.strides[1] -
uniforms.pads[1];
let xCol = offsetX + uniforms.dilations[1] * ((col %
uniforms.itemsPerBlockRow) / uniforms.inChannels);
let ch = col % uniforms.inChannels;
if(xCol < uniforms.xShape[${t}] && xCol >= 0) {
value = ${s};
}
}
setOutputAtIndex(index, value);
}
}
`}};function yx(r,e){let t=r.length;return t>=3?e?[...r.slice(0,-3),r[t-3]*r[t-2],r[t-1]]:[...r.slice(0,-3),r[t-3],r[t-2]*r[t-1]]:!e&&t===1&&r[0]>1?[r[0],1]:null}function _ue({x:r,filter:e,convInfo:t,backend:o,bias:n=null,preluActivationWeights:s=null,leakyreluAlpha:a=0,activation:i=null}){let p=t.dataFormat==="channelsLast",u=!p,c=!1,l=p&&t.filterHeight===t.inHeight&&t.filterWidth===t.inWidth&&t.padInfo.type==="VALID",m=[],d,f;if(l){let x=t.inHeight*t.inWidth*t.inChannels;d=pe({inputs:{x:r},backend:o,attrs:{shape:[1,t.batchSize,x]}}),f=pe({inputs:{x:e},backend:o,attrs:{shape:[1,x,t.outChannels]}})}else d=pe({inputs:{x:r},backend:o,attrs:{shape:p?[t.batchSize,t.inHeight*t.inWidth,t.inChannels]:[t.batchSize,t.inChannels,t.inHeight*t.inWidth]}}),f=pe({inputs:{x:e},backend:o,attrs:{shape:[1,t.inChannels,t.outChannels]}});if(m.push(d),m.push(f),s!=null){let x=yx(s.shape,p);x!=null&&(s=pe({inputs:{x:s},backend:o,attrs:{shape:x}}),m.push(s))}if(n!=null){let x=yx(n.shape,p);x!=null&&(n=pe({inputs:{x:n},backend:o,attrs:{shape:x}}),m.push(n))}let h=$p({a:p?d:f,b:p?f:d,transposeA:u,transposeB:c,backend:o,bias:n,activation:i,preluActivationWeights:s,leakyreluAlpha:a}),g=pe({inputs:{x:h},backend:o,attrs:{shape:t.outShape}});m.push(h);for(let x of m)o.disposeData(x.dataId);return g}function Eue({x:r,filter:e,convInfo:t,backend:o,bias:n=null,preluActivationWeights:s=null,leakyreluAlpha:a=0,activation:i=null}){let{filterWidth:p,filterHeight:u,inChannels:c,strideWidth:l,strideHeight:m,padInfo:d,outWidth:f,outHeight:h,dilationWidth:g,dilationHeight:x,dataFormat:b}=t,C=b==="channelsLast",S=p*u*c,k=h*f,_=C?[t.batchSize,k,S]:[t.batchSize,S,k],$=new xx(_,C),R=[{type:"int32",data:[d.top,d.left]},{type:"int32",data:[m,l]},{type:"int32",data:[x,g]},{type:"int32",data:[f]},{type:"int32",data:[c*p]},{type:"int32",data:[c]}],D=o.runWebGPUProgram($,[r],r.dtype,R),P=[];P.push(D);let O=pe({inputs:{x:e},backend:o,attrs:{shape:[1,S,-1]}});if(P.push(O),s!=null){let U=yx(s.shape,C);U!=null&&(s=pe({inputs:{x:s},backend:o,attrs:{shape:U}}),P.push(s))}if(n!=null){let U=yx(n.shape,C);U!=null&&(n=pe({inputs:{x:n},backend:o,attrs:{shape:U}}),P.push(n))}let B=$p({a:C?D:O,b:C?O:D,transposeA:!C,transposeB:!1,backend:o,bias:n,activation:i,preluActivationWeights:s,leakyreluAlpha:a}),z=pe({inputs:{x:B},backend:o,attrs:{shape:t.outShape}});P.push(B);for(let U of P)o.disposeData(U.dataId);return z}function bx({x:r,filter:e,convInfo:t,backend:o,bias:n=null,preluActivationWeights:s=null,leakyreluAlpha:a=0,activation:i=null}){let p=n!=null,u=s!=null,c=t.dataFormat==="channelsLast",l=c&&t.filterHeight===t.inHeight&&t.filterWidth===t.inWidth&&t.padInfo.type==="VALID",m=A().getBool("WEBGPU_USE_NAIVE_CONV2D_DEBUG");if(!m&&(l||t.filterHeight===1&&t.filterWidth===1&&t.dilationHeight===1&&t.dilationWidth===1&&t.strideHeight===1&&t.strideWidth===1&&(t.padInfo.type==="SAME"||t.padInfo.type==="VALID")))return _ue({x:r,filter:e,convInfo:t,backend:o,bias:n,activation:i,preluActivationWeights:s,leakyreluAlpha:a});let d=A().getNumber("WEBGPU_THRESHOLD_TO_INCREASE_WORKGROUPS_FOR_MATMUL"),f=d>-1?d:o.thresholdToIncreaseWorkgroups,h=t.batchSize*Math.ceil(t.outHeight*t.outWidth/32)*Math.ceil(t.outChannels/32);if(A().getBool("WEBGPU_CONV_SEPARATE_IM2COL_SHADER")||h<=f)return Eue({x:r,filter:e,convInfo:t,backend:o,bias:n,preluActivationWeights:s,leakyreluAlpha:a,activation:i});let g,x=[t.padInfo.top,t.padInfo.left],b=[{type:"int32",data:[t.filterHeight,t.filterWidth]},{type:"int32",data:[...x]},{type:"int32",data:[t.strideHeight,t.strideWidth]},{type:"int32",data:[t.dilationHeight,t.dilationWidth]}];if(m)g=new gx(t,p,i,u);else{let _=c?t.outHeight*t.outWidth:t.outChannels,$=c?t.outChannels:t.outHeight*t.outWidth,R=t.filterHeight*t.filterWidth*t.inChannels;b.push({type:"int32",data:[_]},{type:"int32",data:[$]},{type:"int32",data:[R]});let D=o.adapterInfo.isIntel();g=new hx(t,_,$,R,p,i,u,D)}let C=[],S=[r,e];p&&(!c&&n.shape.length===1&&(n=pe({inputs:{x:n},backend:o,attrs:{shape:[n.shape[0],1,1]}}),C.push(n)),S.push(n)),u&&(!c&&s.shape.length===1&&(s=pe({inputs:{x:s},backend:o,attrs:{shape:[s.shape[0],1,1]}}),C.push(s)),S.push(s)),i==="leakyrelu"&&(b.push({type:"float32",data:[a]}),g.uniforms+=" alpha : f32,");let k=o.runWebGPUProgram(g,S,r.dtype,b);for(let _ of C)o.disposeData(_.dataId);return k}function $ue(r){let{inputs:e,attrs:t,backend:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dataFormat:p,dilations:u,dimRoundingMode:c}=t,l=w.convertConv2DDataFormat(p),m=w.computeConv2DInfo(n.shape,s.shape,a,u,i,c,!1,l);return bx({x:n,filter:s,convInfo:m,backend:o})}var _V={kernelName:tn,backendName:"webgpu",kernelFunc:$ue};var Cx=class{constructor(e){this.variableNames=["dy","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, strides : vec2<i32>, outBackprop : vec4<i32>,",this.workgroupSize=[64,1,1],this.size=!1,this.isVec4=!1,this.workPerThread=1,this.outputShape=e.inShape,this.isChannelsLast=e.dataFormat==="channelsLast",this.isVec4=this.isChannelsLast&&e.outChannels%4===0&&e.inChannels%4===0,this.isVec4?(this.workPerThread=2,this.outputComponent=4,this.workgroupSize=[4,4,4],this.dispatchLayout={x:[3],y:[2],z:[0,1]},this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize,[4,this.workPerThread,1])):(this.size=!0,this.workPerThread=1,this.workgroupSize=[64,1,1],this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize)),this.shaderKey=`conv2DDerInput_${this.isChannelsLast}_${this.isVec4}_${this.workPerThread}`}getUserCode(){let e=this.isChannelsLast?1:2,t=this.isChannelsLast?2:3,o=this.isChannelsLast?3:1,n=`
${G()} {
let batch = i32(globalId.z) / uniforms.outShape[1];
let r = i32(globalId.z) % uniforms.outShape[1];
let c = i32(globalId.y) * ${this.workPerThread};
let d1 = i32(globalId.x) * 4;
let dyCorner = vec2<i32>(r, c) - uniforms.pads;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
var dotProd: array<vec4<f32>, ${this.workPerThread}>;
for (var i = 0; i < ${this.workPerThread}; i++) {
dotProd[i] = vec4<f32>(0.0);
}
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + 1) {
let dyR = f32(dyCorner.x + wR) / f32(uniforms.strides.x);
let wRPerm = uniforms.filterDims.x - 1 - wR;
if (dyR < 0.0 || dyR >= f32(uniforms.outBackprop[1]) ||
fract(dyR) > 0.0) {
continue;
}
let idyR = i32(dyR);
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + 1) {
let dyC = f32(dyCorner.y + wC) / f32(uniforms.strides.y);
let dyC2 = f32(dyCorner.y + 1 + wC) / f32(uniforms.strides.y);
let wCPerm = uniforms.filterDims.y - 1 - wC;
var bDyCVal = true;
var bDyCVal2 = true;
if (dyC < 0.0 || dyC >= f32(uniforms.outBackprop[2]) ||
fract(dyC) > 0.0) {
bDyCVal = false;
}
if (dyC2 < 0.0 || dyC2 >= f32(uniforms.outBackprop[2]) ||
fract(dyC2) > 0.0) {
bDyCVal2 = false;
}
let idyC = i32(dyC);
let idyC2 = i32(dyC2);
if (bDyCVal && bDyCVal2) {
let d2Length = uniforms.outBackprop[3];
for (var d2 = 0; d2 < d2Length; d2 = d2 + 4) {
let wValue0 = getW(wRPerm, wCPerm, d1, d2);
let wValue1 = getW(wRPerm, wCPerm, d1 + 1, d2);
let wValue2 = getW(wRPerm, wCPerm, d1 + 2, d2);
let wValue3 = getW(wRPerm, wCPerm, d1 + 3, d2);
var xValue = getDy(batch, idyR, idyC, d2);
let tmpval = vec4<f32>(dot(xValue, wValue0),
dot(xValue, wValue1),
dot(xValue, wValue2),
dot(xValue, wValue3));
dotProd[0] = dotProd[0] + tmpval;
xValue = getDy(batch, idyR, idyC2, d2);
dotProd[1] = dotProd[1] + vec4<f32>(dot(xValue, wValue0),
dot(xValue, wValue1),
dot(xValue, wValue2),
dot(xValue, wValue3));
}
} else if (bDyCVal) {
let d2Length = uniforms.outBackprop[3];
for (var d2 = 0; d2 < d2Length; d2 = d2 + 4) {
let wValue0 = getW(wRPerm, wCPerm, d1, d2);
let wValue1 = getW(wRPerm, wCPerm, d1 + 1, d2);
let wValue2 = getW(wRPerm, wCPerm, d1 + 2, d2);
let wValue3 = getW(wRPerm, wCPerm, d1 + 3, d2);
var xValue = getDy(batch, idyR, idyC, d2);
let tmpval = vec4<f32>(dot(xValue, wValue0),
dot(xValue, wValue1),
dot(xValue, wValue2),
dot(xValue, wValue3));
dotProd[0] = dotProd[0] + tmpval;
}
} else if (bDyCVal2) {
let d2Length = uniforms.outBackprop[3];
for (var d2 = 0; d2 < d2Length; d2 = d2 + 4) {
let wValue0 = getW(wRPerm, wCPerm, d1, d2);
let wValue1 = getW(wRPerm, wCPerm, d1 + 1, d2);
let wValue2 = getW(wRPerm, wCPerm, d1 + 2, d2);
let wValue3 = getW(wRPerm, wCPerm, d1 + 3, d2);
var xValue = getDy(batch, idyR, idyC2, d2);
let tmpval = vec4<f32>(dot(xValue, wValue0),
dot(xValue, wValue1),
dot(xValue, wValue2),
dot(xValue, wValue3));
dotProd[1] = dotProd[1] + tmpval;
}
}
}
}
for (var i = 0; i < ${this.workPerThread}; i = i + 1) {
let coords = vec4<i32>(batch, r, c + i, d1);
if (coordsInBounds4D(coords, uniforms.outShape)) {
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], dotProd[i]);
}
}
}
`;return this.isVec4?`
${n}
`:`
${G("index")} {
if(index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let batch = coords[0];
let d1 = coords[${o}];
let dyCorner = vec2<i32>(coords[${e}], coords[${t}]) - uniforms.pads;
let dyRCorner = dyCorner.x;
let dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
var dotProd = 0.0;
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + 1) {
let dyR = (f32(dyRCorner) + f32(wR)) / f32(uniforms.strides.x);
let wRPerm = uniforms.filterDims.x - 1 - wR;
if (dyR < 0.0 || dyR >= f32(uniforms.outBackprop[1]) || fract(dyR) > 0.0 ||
wRPerm < 0) {
continue;
}
let idyR = i32(dyR);
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + 1) {
let dyC = (f32(dyCCorner) + f32(wC)) / f32(uniforms.strides.y);
let wCPerm = uniforms.filterDims.y - 1 - wC;
if (dyC < 0.0 || dyC >= f32(uniforms.outBackprop[2]) ||
fract(dyC) > 0.0 || wCPerm < 0) {
continue;
}
let idyC = i32(dyC);
for (var d2 = 0; d2 < uniforms.outBackprop[3]; d2 = d2 + 1) {
let xValue = ${this.isChannelsLast?"getDy(batch, idyR, idyC, d2)":"getDy(batch, d2, idyR, idyC)"};
let wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd = dotProd + xValue * wValue;
}
}
}
setOutputAtIndex(index, dotProd);
}
}
`}},wx=class{constructor(e){this.variableNames=["x","dy"],this.uniforms="pads : vec2<i32>, strides : vec2<i32>, batchSize : i32, outHeight : i32, outWidth : i32, inHeight : i32, inWidth : i32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e.filterShape,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",this.shaderKey=`conv2DDerFilter_${this.isChannelsLast}`}getUserCode(){return`
${G("index")} {
if(index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let wR = coords[0];
let wC = coords[1];
let d1 = coords[2];
let d2 = coords[3];
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
var dotProd = 0.0;
for (var b = 0; b < uniforms.batchSize; b = b + 1) {
for (var yR = 0; yR < uniforms.outHeight; yR = yR + 1) {
let xR = wR + yR * uniforms.strides[0] - uniforms.pads[0];
if (xR < 0 || xR >= uniforms.inHeight) {
continue;
}
for (var yC = 0; yC < uniforms.outWidth; yC = yC + 1) {
let xC = wC + yC * uniforms.strides[1] - uniforms.pads[1];
if (xC < 0 || xC >= uniforms.inWidth) {
continue;
}
if (${this.isChannelsLast}) {
let dyValue = getDy(b, yR, yC, d2);
let xValue = getX(b, xR, xC, d1);
dotProd = dotProd + xValue * dyValue;
} else {
let dyValue = getDy(b, d2, yR, yC);
let xValue = getX(b, d1, xR, xC);
dotProd = dotProd + xValue * dyValue;
}
}
}
}
setOutputAtIndex(index, dotProd);
}
}
`}},Sx=class{constructor(e){this.variableNames=["x","dy"],this.uniforms=`pads : vec3<i32>, strides : vec3<i32>, batchSize : i32, outDepth : i32,
outHeight : i32, outWidth : i32, inDepth : i32, inHeight : i32, inWidth : i32,`,this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e.filterShape,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="conv3DDerFilter"}getUserCode(){return`
${G("index")} {
if(index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let wF = coords.x;
let wR = coords.y;
let wC = coords.z;
let d1 = coords.w;
let d2 = coords.u;
var dotProd = 0.0;
for (var b = 0; b < uniforms.batchSize; b++) {
for (var yF = 0; yF < uniforms.outDepth; yF++) {
let xF = wF + yF * uniforms.strides[0] - uniforms.pads[0];
if (xF < 0 || xF >= uniforms.inDepth) {
continue;
}
for (var yR = 0; yR < uniforms.outHeight; yR++) {
let xR = wR + yR * uniforms.strides[1] - uniforms.pads[1];
if (xR < 0 || xR >= uniforms.inHeight) {
continue;
}
for (var yC = 0; yC < uniforms.outWidth; yC++) {
let xC = wC + yC * uniforms.strides[2] - uniforms.pads[2];
if (xC < 0 || xC >= uniforms.inWidth) {
continue;
}
let dyValue = getDy(b, yF, yR, yC, d2);
let xValue = getX(b, xF, xR, xC, d1);
dotProd += xValue * dyValue;
}
}
}
}
setOutputAtIndex(index, dotProd);
}
}
`}},Ix=class{constructor(e){this.variableNames=["dy","W"],this.uniforms=`filterDims : vec3<i32>, pads : vec3<i32>, strides : vec3<i32>,
outDepth : i32, outHeight : i32, outWidth : i32, outChannels : i32,`,this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e.inShape,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="conv3DDerInput"}getUserCode(){return`
${G("index")} {
if(index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let batch = coords.x;
let d1 = coords.u;
let dyCorner = vec3<i32>(coords.y, coords.z, coords.w) - uniforms.pads;
let dyFCorner = dyCorner.x;
let dyRCorner = dyCorner.y;
let dyCCorner = dyCorner.z;
var dotProd = 0.0;
for (var wF = 0; wF < uniforms.filterDims[0]; wF++) {
let dyF = f32(dyFCorner + wF) / f32(uniforms.strides[0]);
if (dyF < 0.0 || dyF >= f32(uniforms.outDepth) || fract(dyF) > 0.0) {
continue;
}
let idyF = i32(dyF);
let wFPerm = uniforms.filterDims[0] - 1 - wF;
for (var wR = 0; wR < uniforms.filterDims[1]; wR++) {
let dyR = f32(dyRCorner + wR) / f32(uniforms.strides[1]);
if (dyR < 0.0 || dyR >= f32(uniforms.outHeight) || fract(dyR) > 0.0) {
continue;
}
let idyR = i32(dyR);
let wRPerm = uniforms.filterDims[1] - 1 - wR;
for (var wC = 0; wC < uniforms.filterDims[2]; wC++) {
let dyC = f32(dyCCorner + wC) / f32(uniforms.strides[2]);
if (dyC < 0.0 || dyC >= f32(uniforms.outWidth) || fract(dyC) > 0.0) {
continue;
}
let idyC = i32(dyC);
let wCPerm = uniforms.filterDims[2] - 1 - wC;
for (var d2 = 0; d2 < uniforms.outChannels; d2++) {
let xValue = getDy(batch, idyF, idyR, idyC, d2);
let wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutputAtIndex(index, dotProd);
}
}
`}};function Rue(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,pad:i,dataFormat:p,dimRoundingMode:u,filterShape:c}=o,l=w.convertConv2DDataFormat(p),m=w.computeConv2DInfo(n.shape,c,a,1,i,u,!1,l),d=new wx(m),f=[{type:"int32",data:[m.padInfo.top,m.padInfo.left]},{type:"int32",data:[m.strideHeight,m.strideWidth]},{type:"int32",data:[m.batchSize]},{type:"int32",data:[m.outHeight]},{type:"int32",data:[m.outWidth]},{type:"int32",data:[m.inHeight]},{type:"int32",data:[m.inWidth]}];return t.runWebGPUProgram(d,[n,s],n.dtype,f)}var EV={kernelName:Fi,backendName:"webgpu",kernelFunc:Rue};function Due(r=4){let e=s=>{switch(s){case 1:return"return W[getIndexFromCoords4D(coord, uniforms.wShape)];";case 4:return`
let coord1 = vec4<i32>(coordX, coordY, col + 1, rowInner);
let coord2 = vec4<i32>(coordX, coordY, col + 2, rowInner);
let coord3 = vec4<i32>(coordX, coordY, col + 3, rowInner);
let v0 = W[getIndexFromCoords4D(coord, uniforms.wShape)];
let v1 = W[getIndexFromCoords4D(coord1, uniforms.wShape)];
let v2 = W[getIndexFromCoords4D(coord2, uniforms.wShape)];
let v3 = W[getIndexFromCoords4D(coord3, uniforms.wShape)];
return vec4<f32>(v0, v1, v2, v3);
`;default:throw new Error(`innerElementSize ${s} is not supported.`)}},o=`if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
${`
let outRow = row / uniforms.outShape[2];
let outCol = row % uniforms.outShape[2];
let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1];
let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.strides[0]);
let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.strides[1]);
if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) {
return ${Ae(r)}(0.0);
}
if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) {
return ${Ae(r)}(0.0);
}
let coord = vec4<i32>(
batch,
i32(xR),
i32(xC),
col % uniforms.outBackprop[3]);
return x[getIndexFromCoords4D(coord, uniforms.xShape)/${r}];`}
}
return ${Ae(r)}(0.0);`;return`
fn mm_readA(batch: i32, row : i32, col : i32) -> ${Ae(r)} {
${o}
}
fn mm_readB(batch: i32, row : i32, col : i32) -> ${Ae(r)} {
let coordX = uniforms.filterDims.x - 1 -
row / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
let coordY = uniforms.filterDims.y - 1 -
(row / uniforms.outBackprop[3]) % uniforms.filterDims[1];
if (row < uniforms.dimInner && col < uniforms.dimBOuter &&
coordX >= 0 && coordY >= 0) {
let rowInner = row % uniforms.outBackprop[3];
let coord = vec4<i32>(coordX, coordY, col, rowInner);
${e(r)}
}
return ${Ae(r)}(0.0);
}
fn mm_write(batch: i32, row : i32, col : i32, valueInput : ${Ae(r)}) {
if (row < uniforms.dimAOuter && col < uniforms.dimBOuter) {
var value = valueInput;
let outCoord = vec4<i32>(
batch,
row / uniforms.outShape[2],
row % uniforms.outShape[2],
col);
result[getIndexFromCoords4D(outCoord, uniforms.outShape)/${r}] = value;
}
}`}var vx=class{constructor(e){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, strides : vec2<i32>, outBackprop : vec4<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.inShape,y.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.isVec4=e.inChannels%4===0&&e.outChannels%4===0,this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workgroupSize=lm(this.dispatchLayout,this.outputShape,this.isVec4),this.elementsPerThread=mm(this.dispatchLayout,this.outputShape,this.isVec4),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize,this.elementsPerThread),this.isVec4&&(this.outputComponent=4,this.variableComponents=[4,1]),this.shaderKey=`conv2DDerInputMM_${this.isVec4}_${this.elementsPerThread}`}getUserCode(){let e=this.isVec4?_p(this.elementsPerThread,this.workgroupSize):Ep(this.elementsPerThread,this.workgroupSize);return`
${Due(this.isVec4?4:1)}
${e}
`}};function Aue(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{inputShape:a,strides:i,pad:p,dataFormat:u,dimRoundingMode:c}=o,l=w.convertConv2DDataFormat(u),m=w.computeConv2DInfo(a,s.shape,i,1,p,c,!1,l),d=[{type:"int32",data:[m.filterHeight,m.filterWidth]},{type:"int32",data:[m.filterHeight-1-m.padInfo.top,m.filterWidth-1-m.padInfo.left]},{type:"int32",data:[m.strideHeight,m.strideWidth]},{type:"int32",data:[m.batchSize,m.outHeight,m.outWidth,m.outChannels]}],f;if(A().getBool("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE")||m.dataFormat!=="channelsLast")f=new Cx(m);else{f=new vx(m);let h=m.inHeight*m.inWidth,g=m.inChannels,x=m.filterHeight*m.filterWidth*m.outChannels;d.push({type:"uint32",data:[h]},{type:"uint32",data:[g]},{type:"uint32",data:[x]})}return t.runWebGPUProgram(f,[n,s],"float32",d)}var $V={kernelName:rn,backendName:"webgpu",kernelFunc:Aue};var kx=class{constructor(e){this.variableNames=["x","W"],this.uniforms="filterDims: vec3<i32>, pads: vec3<i32>, strides: vec3<i32>, dilations: vec3<i32>,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="conv3dnaive"}getUserCode(){return`
${G("index")} {
if (index < uniforms.size) {
let coords = getOutputCoords();
let batch = coords.x;
let d2 = coords.u;
let xFRCCorner = vec3<i32>(coords.y, coords.z, coords.w) * uniforms.strides - uniforms.pads;
let xFCorner = xFRCCorner.x;
let xRCorner = xFRCCorner.y;
let xCCorner = xFRCCorner.z;
let inputDepthNearestVec4 = (uniforms.xShape.u / 4) * 4;
let inputDepthVec4Remainder = uniforms.xShape.u % 4;
var dotProd = 0.0;
for (var wF = 0; wF < uniforms.filterDims[0]; wF++) {
let xF = xFCorner + wF * uniforms.dilations[0];
if (xF < 0 || xF >= uniforms.xShape.y) {
continue;
}
for (var wR = 0; wR < uniforms.filterDims[1]; wR++) {
let xR = xRCorner + wR * uniforms.dilations[1];
if (xR < 0 || xR >= uniforms.xShape.z) {
continue;
}
for (var wC = 0; wC < uniforms.filterDims[2]; wC++) {
let xC = xCCorner + wC * uniforms.dilations[2];
if (xC < 0 || xC >= uniforms.xShape.w) {
continue;
}
for (var d1 = 0; d1 < inputDepthNearestVec4; d1 += 4) {
let xValues = vec4<f32>(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
let wValues = vec4<f32>(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (inputDepthVec4Remainder == 1) {
dotProd += getX(batch, xF, xR, xC, inputDepthNearestVec4) *
getW(wF, wR, wC, inputDepthNearestVec4, d2);
} else if (inputDepthVec4Remainder == 2) {
let xValues = vec2<f32>(
getX(batch, xF, xR, xC, inputDepthNearestVec4),
getX(batch, xF, xR, xC, inputDepthNearestVec4 + 1)
);
let wValues = vec2<f32>(
getW(wF, wR, wC, inputDepthNearestVec4, d2),
getW(wF, wR, wC, inputDepthNearestVec4 + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (inputDepthVec4Remainder == 3) {
let xValues = vec3<f32>(
getX(batch, xF, xR, xC, inputDepthNearestVec4),
getX(batch, xF, xR, xC, inputDepthNearestVec4 + 1),
getX(batch, xF, xR, xC, inputDepthNearestVec4 + 2)
);
let wValues = vec3<f32>(
getW(wF, wR, wC, inputDepthNearestVec4, d2),
getW(wF, wR, wC, inputDepthNearestVec4 + 1, d2),
getW(wF, wR, wC, inputDepthNearestVec4 + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutputAtIndex(index, dotProd);
}
}`}};function Fue(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:p}=o,u=w.computeConv3DInfo(n.shape,s.shape,a,p,i),c=[u.padInfo.front,u.padInfo.top,u.padInfo.left],l=[{type:"int32",data:[u.filterDepth,u.filterHeight,u.filterWidth]},{type:"int32",data:[...c]},{type:"int32",data:[u.strideDepth,u.strideHeight,u.strideWidth]},{type:"int32",data:[u.dilationDepth,u.dilationHeight,u.dilationWidth]}],m=new kx(u),d=dt(n.dtype,s.dtype);return t.runWebGPUProgram(m,[n,s],d,l)}var RV={kernelName:on,backendName:"webgpu",kernelFunc:Fue};function Pue(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,pad:i,filterShape:p}=o,u=w.computeConv3DInfo(n.shape,p,a,1,i),c=new Sx(u),l=[{type:"int32",data:[u.padInfo.front,u.padInfo.top,u.padInfo.left]},{type:"int32",data:[u.strideDepth,u.strideHeight,u.strideWidth]},{type:"int32",data:[u.batchSize]},{type:"int32",data:[u.outDepth]},{type:"int32",data:[u.outHeight]},{type:"int32",data:[u.outWidth]},{type:"int32",data:[u.inDepth]},{type:"int32",data:[u.inHeight]},{type:"int32",data:[u.inWidth]}];return t.runWebGPUProgram(c,[n,s],s.dtype,l)}var DV={kernelName:ja,backendName:"webgpu",kernelFunc:Pue};function Oue(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{strides:a,pad:i,inputShape:p}=o,u=w.computeConv3DInfo(p,s.shape,a,1,i),c=new Ix(u),l=[{type:"int32",data:[u.filterDepth,u.filterHeight,u.filterWidth]},{type:"int32",data:[u.filterDepth-1-u.padInfo.front,u.filterHeight-1-u.padInfo.top,u.filterWidth-1-u.padInfo.left]},{type:"int32",data:[u.strideDepth,u.strideHeight,u.strideWidth]},{type:"int32",data:[u.outDepth]},{type:"int32",data:[u.outHeight]},{type:"int32",data:[u.outWidth]},{type:"int32",data:[u.outChannels]}];return t.runWebGPUProgram(c,[n,s],n.dtype,l)}var AV={kernelName:nn,backendName:"webgpu",kernelFunc:Oue};var Mue=ye({opType:Z.COS}),FV={kernelName:sn,backendName:"webgpu",kernelFunc:Mue};var Lue=ye({opType:Z.COSH}),PV={kernelName:an,backendName:"webgpu",kernelFunc:Lue};var Nx=class{constructor(e,t,o,n){this.variableNames=["Image","Boxes","BoxInd"],this.uniforms="extrapolationValue : f32,",this.workgroupSize=[64,1,1],this.size=!0;let[s]=t;this.outputShape=[s,o[0],o[1],e],this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.methodId=n==="bilinear"?1:0,this.cropHeightBiggerThan1=this.outputShape[1]>1,this.cropWidthBiggerThan1=this.outputShape[2]>1,this.shaderKey=`cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`}getUserCode(){let[e,t]=["f32(uniforms.imageShape[1] - 1)","f32(uniforms.imageShape[2] - 1)"],[o,n,s]=this.cropHeightBiggerThan1?[`(${e} / f32(uniforms.outShape[1] - 1))`,"(y2-y1) * height_ratio",`y1*${e} + f32(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${e}`],[a,i,p]=this.cropWidthBiggerThan1?[`(${t} / f32(uniforms.outShape[2] - 1))`,"(x2-x1) * width_ratio",`x1*${t} + f32(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${t}`];return`
${G("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let height_ratio = f32(${o});
let width_ratio = f32(${a});
let b = coords[0];
let y = coords[1];
let x = coords[2];
let d = coords[3];
// get box vals
let y1 = getBoxes(b, 0);
let x1 = getBoxes(b, 1);
let y2 = getBoxes(b, 2);
let x2 = getBoxes(b, 3);
// get image in batch index
let bInd = i32(round(getBoxInd(b)));
if(bInd < 0 || bInd >= uniforms.outShape[0]) {
return;
}
let height_scale = ${n};
let width_scale = ${i};
let in_y = ${s};
if( in_y < 0.0 || in_y > ${e} ) {
setOutputAtIndex(index, uniforms.extrapolationValue);
return;
}
let in_x = ${p};
if( in_x < 0.0 || in_x > ${t} ) {
setOutputAtIndex(index, uniforms.extrapolationValue);
return;
}
let sourceFracIndexCR = vec2<f32>(in_x,in_y);
if(${this.methodId} == 1) {
// Compute the four integer indices.
let sourceFloorCR = vec2<i32>(sourceFracIndexCR);
let sourceCeilCR = vec2<i32>(ceil(sourceFracIndexCR));
let topLeft = getImage(bInd, sourceFloorCR.y, sourceFloorCR.x, d);
let bottomLeft = getImage(bInd, sourceCeilCR.y, sourceFloorCR.x, d);
let topRight = getImage(bInd, sourceFloorCR.y, sourceCeilCR.x, d);
let bottomRight = getImage(bInd, sourceCeilCR.y, sourceCeilCR.x, d);
let fracCR = sourceFracIndexCR - vec2<f32>(sourceFloorCR);
let top = topLeft + (topRight - topLeft) * fracCR.x;
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
let newValue = top + (bottom - top) * fracCR.y;
setOutputAtIndex(index, newValue);
} else {
// Compute the coordinators of nearest neighbor point.
let sourceNearestCR = vec2<i32>(floor(
sourceFracIndexCR + vec2<f32>(0.5,0.5)));
let newValue = getImage(
bInd, sourceNearestCR.y, sourceNearestCR.x, d);
setOutputAtIndex(index, newValue);
}
}
}
`}};var Bue=r=>{let{inputs:e,backend:t,attrs:o}=r,{image:n,boxes:s,boxInd:a}=e,{cropSize:i,method:p,extrapolationValue:u}=o,c=new Nx(n.shape[3],s.shape,i,p),l=[{type:"float32",data:[u]}];return t.runWebGPUProgram(c,[n,s,a],"float32",l)},OV={kernelName:cn,backendName:"webgpu",kernelFunc:Bue};var Dp;(function(r){r.Prod="*",r.Sum="+"})(Dp||(Dp={}));var xm=class{constructor(e,t,o,n){this.variableNames=["x"],this.uniforms="index : f32,",this.size=!0,this.workgroupSize=[128,1,1],this.outputShape=t,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.exclusive=o,this.reverse=n,this.op=e,this.shaderKey=`cum_${this.op}_${this.exclusive}_${this.reverse}`}getUserCode(){let e=this.outputShape.length,t=this.op===Dp.Prod?"1.0":"0.0",o=this.exclusive?t:`getX(${MV(e,"coords",this.op)})`,n=this.outputShape[this.outputShape.length-1],s="",a="";return this.exclusive?(s=this.reverse?`end != ${n-1}`:"end != 0",a=this.reverse?"end + 1":"end - 1"):(s=this.reverse?`end + pow2 < ${n}`:"end >= pow2",a=this.reverse?"end + pow2":"end - pow2"),`
${G("index")} {
if (index < uniforms.size) {
var coords = getCoordsFromIndex(index);
let end = ${LV(e,"coords",this.op)};
var val = ${o};
let pow2 = i32(pow(2.0, uniforms.index));
if (${s}) {
let idx = ${a};
${LV(e,"coords",this.op)} = idx;
val ${this.op}= getX(${MV(e,"coords",this.op)});
}
setOutputAtIndex(index, val);
}
}
`}};function MV(r,e,t){if(r===1)return`${e}`;if(r===2)return`${e}.x, ${e}.y`;if(r===3)return`${e}.x, ${e}.y, ${e}.z`;if(r===4)return`${e}.x, ${e}.y, ${e}.z, ${e}.w`;throw Error(`Cumulative ${t} for rank ${r} is not yet supported`)}function LV(r,e,t){if(r===1)return`${e}`;if(r===2)return`${e}.y`;if(r===3)return`${e}.z`;if(r===4)return`${e}.w`;throw Error(`Cumulative ${t} for rank ${r} is not yet supported`)}function Tx(r,e,t,o,n,s){let a=e.shape.length,i=w.getAxesPermutation([o],a),p=e;i!=null&&(p=xr({inputs:{x:e},backend:t,attrs:{perm:i}}));let u=w.getInnerMostAxes(1,a)[0];if(u!==a-1)throw new Error(`WebGPU cumprod shader expects an inner-most axis=${e.shape.length-1} but got axis=${o}`);let c=p.shape[u],l=At({inputs:{x:p},backend:t});for(let m=0;m<=Math.ceil(Math.log2(c))-1;m++){let d=new xm(r,p.shape,!1,s),f=l,h=[{type:"float32",data:[m]}];l=t.runWebGPUProgram(d,[l],l.dtype,h),t.disposeData(f.dataId)}if(n){let m=new xm(r,p.shape,n,s),d=l,f=[{type:"float32",data:[0]}];l=t.runWebGPUProgram(m,[l],l.dtype,f),t.disposeData(d.dataId)}if(i!=null){let m=w.getUndoAxesPermutation(i),d=xr({inputs:{x:l},backend:t,attrs:{perm:m}});return t.disposeData(l.dataId),t.disposeData(p.dataId),d}return l}function zue(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,exclusive:a,reverse:i}=o;return Tx(Dp.Prod,n,t,s,a,i)}var BV={kernelName:un,backendName:"webgpu",kernelFunc:zue};function Vue(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,exclusive:a,reverse:i}=o;return Tx(Dp.Sum,n,t,s,a,i)}var zV={kernelName:pn,backendName:"webgpu",kernelFunc:Vue};function Wue(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,weights:s}=e,{size:a,binaryOutput:i}=o,p=n.shape.length===1,c=y.sizeFromShape(s.shape)>0,l=s.dtype,m=p?[n.shape[0]]:[n.shape[0],n.shape[1]],d=p?[a]:[n.shape[0],a],f=vt({backend:t,attrs:{shape:d,value:0,dtype:l}}),h=new Qc(m,c,i),g=[{type:"int32",data:[a]}],x=c?[n,s]:[n];return t.runWebGPUProgram(h,x,l,g,f)}var VV={kernelName:ra,backendName:"webgpu",kernelFunc:Wue};var _x=class{constructor(e,t){this.variableNames=["x"],this.workgroupSize=[64,1,1],this.size=!0,this.uniforms="blockSize : i32,",this.outputShape=e,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey=`depthToSpace_${t}`,this.dataFormat=t}getUserCode(){return`
${G("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let b = coords[0];
let h = ${this.getHeightCoordString()};
let w = ${this.getWidthCoordString()};
let d = ${this.getDepthCoordString()};
let in_h = h / uniforms.blockSize;
let offset_h = h % uniforms.blockSize;
let in_w = w / uniforms.blockSize;
let offset_w = w % uniforms.blockSize;
let offset_d = (offset_h * uniforms.blockSize + offset_w) *
${this.getOutputDepthSize()};
let in_d = d + offset_d;
let rlt = ${this.getInputSamplingString()};
setOutputAtIndex(index, rlt);
}
}`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?"uniforms.outShape[3]":"uniforms.outShape[1]"}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Uue(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockSize:s,dataFormat:a}=o,i=n.shape[0],p=a==="NHWC"?n.shape[1]:n.shape[2],u=a==="NHWC"?n.shape[2]:n.shape[3],c=a==="NHWC"?n.shape[3]:n.shape[1],l=p*s,m=u*s,d=c/(s*s),f=a==="NHWC"?[i,l,m,d]:[i,d,l,m],h=[{type:"int32",data:[s]}],g=new _x(f,a);return t.runWebGPUProgram(g,[n],n.dtype,h)}var WV={kernelName:ln,backendName:"webgpu",kernelFunc:Uue};var Ex=class{constructor(e,t,o,n=!1,s=null,a=!1){this.variableNames=["x","W"],this.uniforms="pads : vec2<i32>, inDims : vec2<i32>,",this.workgroupSize=[16,16,1],this.outputShape=e,this.dispatchLayout={x:[3],y:[2],z:[0,1]},this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),n&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),this.addBias=n,this.activation=s,this.hasPreluActivation=a,this.filterHeight=t,this.filterWidth=o,this.shaderKey=`depthwiseNCHW_${this.activation}_${this.filterHeight}_${this.filterWidth}`}getUserCode(){let e=this.filterWidth*this.filterHeight,t=this.workgroupSize[0]*this.workgroupSize[1]*this.workgroupSize[2],o=this.workgroupSize[1]+this.filterHeight-1,n=this.workgroupSize[0]+this.filterWidth-1;return`
${dr(this.activation,this.hasPreluActivation,!1,4)}
var<workgroup> mm_Asub : array<array<f32, ${n}>, ${o}>;
var<workgroup> mm_Bsub : array<array<f32, ${this.filterWidth}>, ${this.filterHeight}>;
fn readX(batch : i32, channel : i32, row : i32, col : i32) -> f32 {
var value = 0.0;
if (row >=0 && row < uniforms.inDims[0] && col >=0 && col < uniforms.inDims[1])
{
value = getX(batch, channel, row, col);
}
return value;
}
${G()} {
let coords = getOutputCoords();
let batch = coords[0];
let xRCCorner = vec2<i32>(coords.zw) - uniforms.pads;
let channelMul = uniforms.wShape[3];
let d1 = coords[1] / channelMul;
let q = coords[1] % channelMul;
let inputRowStart = xRCCorner.x;
let inputColStart = xRCCorner.y;
let localRow = i32(localId.y);
let localCol = i32(localId.x);
// Load one tile of X into local memory.
for (var inputRow = localRow; inputRow < ${o}; inputRow = inputRow + ${this.workgroupSize[1]}) {
for (var inputCol = localCol; inputCol < ${n}; inputCol = inputCol + ${this.workgroupSize[0]}) {
let rowOffset = inputRow - localRow;
let colOffset = inputCol - localCol;
mm_Asub[inputRow][inputCol] = readX(batch, d1, inputRowStart + rowOffset, inputColStart + colOffset);
}
}
// Load one tile of W into local memory.
var wIndex = i32(localIndex);
${e<t?`if (wIndex < ${e})`:`for(; wIndex < ${e}; wIndex = wIndex + ${t})`}
{
let wRow = wIndex / ${this.filterWidth};
let wCol = wIndex % ${this.filterWidth};
mm_Bsub[wRow][wCol] = getW(wRow, wCol, d1, q);
}
workgroupBarrier();
var value = 0.0;
for (var wR = 0; wR < ${this.filterHeight}; wR = wR + 1) {
for (var wC = 0; wC < ${this.filterWidth}; wC = wC + 1) {
let xVal = mm_Asub[localRow + wR][localCol + wC];
let wVal = mm_Bsub[wR][wC];
value = fma(xVal, wVal, value);
}
}
${Zr(this.addBias,this.activation)}
if (coordsInBounds4D(coords, uniforms.outShape)) {
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);
}
}
`}};var Jc=class{constructor(e,t=!1,o=null,n=!1){this.variableNames=["x","W"],this.uniforms="pads : vec2<i32>, inDims : vec2<i32>, virtualWidth : i32,",this.workgroupSize=[64,1,1],this.workPerThread=4,this.outputComponent=4,this.outputShape=e.outShape,this.virtualWidth=Math.ceil(this.outputShape[2]/this.workPerThread)*this.workPerThread;let s=[this.outputShape[0],this.outputShape[1],this.virtualWidth,this.outputShape[3]];this.dispatchLayout=X(s),this.dispatch=H(this.dispatchLayout,s,this.workgroupSize,[this.outputComponent*this.workPerThread,1,1]),y.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=o,this.hasPreluActivation=n,this.shaderKey=`depthwiseVec4_${o}_${this.convInfo.filterHeight}_${this.convInfo.filterWidth}_${this.convInfo.strideHeight}_${this.convInfo.strideWidth}_${this.workPerThread}`}getUserCode(){let e=(this.workPerThread-1)*this.convInfo.strideWidth+this.convInfo.filterWidth,t=this.convInfo.strideHeight,o=this.convInfo.strideWidth;return`
${dr(this.activation,this.hasPreluActivation,!0,4)}
fn readX(batch : i32, row : i32, col : i32, channel : i32) -> vec4<f32> {
var value = vec4<f32>(0.0);
if (col >=0 && col < uniforms.inDims[1]) {
value = getX(batch, row, col, channel);
}
return value;
}
${G("index")} {
let width0 = uniforms.outShape[3] / ${this.outputComponent};
let d1 = (index % width0) * ${this.outputComponent};
var index1 = index / width0;
let width1 = uniforms.virtualWidth / ${this.workPerThread};
let c = (index1 % width1) * ${this.workPerThread};
index1 = index1 / width1;
let r = index1 % uniforms.outShape[1];
let batch = index1 / uniforms.outShape[1];
let xRCCorner = vec2<i32>(r, c) * vec2<i32>(${t}, ${o}) - uniforms.pads;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
var xVals : array<vec4<f32>, ${e}>;
var dotProd : array<vec4<f32>, ${this.workPerThread}>;
for (var i = 0; i < ${this.workPerThread}; i++) {
dotProd[i] = vec4<f32>(0.0);
}
// Use constant instead of uniform can give better performance.
for (var wR = 0; wR < ${this.convInfo.filterHeight}; wR = wR + 1) {
let xR = xRCorner + wR;
if (xR >=0 && xR < uniforms.inDims[0]) {
for (var i = 0; i < ${e}; i++) {
xVals[i] = readX(batch, xR, xCCorner + i, d1);
}
for (var wC = 0; wC < ${this.convInfo.filterWidth}; wC = wC + 1) {
let wValue = getW(wR, wC, d1, 0);
for (var i = 0; i < ${this.workPerThread}; i++) {
dotProd[i] = fma(xVals[i * ${o} + wC], wValue, dotProd[i]);
}
}
}
}
for (var i = 0; i < ${this.workPerThread}; i = i + 1) {
let coords = vec4<i32>(batch, r, c + i, d1);
if (coordsInBounds4D(coords, uniforms.outShape)) {
var value = dotProd[i];
${Zr(this.addBias,this.activation)}
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);
}
}
}
`}};var el=class{constructor(e,t=!1,o=null,n=!1){this.variableNames=["x","W"],this.uniforms=`pads : vec2<i32>, inDims : vec2<i32>, filterHeight : i32,
filterWidth : i32, strides : vec2<i32>, dilations : vec2<i32>,`,this.workgroupSize=[256,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=o,this.hasPreluActivation=n,this.shaderKey=`depthwise_${this.activation}_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?"getX(batch, xR, xC, d1);":"getX(batch, d1, xR, xC);";return`
${dr(this.activation,this.hasPreluActivation,!1,4)}
${G("index")} {
if (index < uniforms.size) {
let coords = getOutputCoords();
let batch = coords[0];
let xRCCorner = vec2<i32>(coords.${this.isChannelsLast?"yz":"zw"}) * uniforms.strides - uniforms.pads;
let d2 = coords[${this.isChannelsLast?3:1}];
let channelMul = uniforms.wShape[3];
let d1 = d2 / channelMul;
let q = d2 % channelMul;
let inputRowStart = xRCCorner.x;
let inputColStart = xRCCorner.y;
let inputRowEnd = inputRowStart + uniforms.filterHeight *
uniforms.dilations[0];
let inputColEnd = inputColStart + uniforms.filterWidth *
uniforms.dilations[1];
// Convolve x(?, ?, d1)|x(d1, ?, ?) with w(:, :, d1, q) to get
// y(yR, yC, d2)|y(d2, yR, yC). ? = to be determined. : = across all
// values in that axis. x(?, ?, d1) and y(yR, yC, d2) is for NHWC.
// x(d1, ?, ?) and y(d2, yR, yC) is for NCHW.
var value = 0.0;
// Extract if checking out of for loop for performance.
if (inputRowStart >= 0 && inputColStart >= 0 &&
inputRowEnd < uniforms.inDims[0] &&
inputColEnd < uniforms.inDims[1]) {
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
let xR = inputRowStart + wR * uniforms.dilations[0];
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
let xC = inputColStart + wC * uniforms.dilations[1];
let xVal = ${e};
let wVal = getW(wR, wC, d1, q);
value = value + xVal * wVal;
}
}
} else {
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
let xR = inputRowStart + wR * uniforms.dilations[0];
if (xR < 0 || xR >= uniforms.inDims[0]) {
continue;
}
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
let xC = inputColStart + wC * uniforms.dilations[1];
if (xC < 0 || xC >= uniforms.inDims[1]) {
continue;
}
let xVal = ${e};
let wVal = getW(wR, wC, d1, q);
value = value + xVal * wVal;
}
}
}
${Zr(this.addBias,this.activation)}
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);
}
}
`}};function Gue(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dataFormat:p,dilations:u,dimRoundingMode:c}=o,l=w.convertConv2DDataFormat(p),m=u;m==null&&(m=[1,1]);let d=w.computeConv2DInfo(n.shape,s.shape,a,m,i,c,!0,l),f=[{type:"int32",data:[d.padInfo.top,d.padInfo.left]},{type:"int32",data:[d.inHeight,d.inWidth]}],h=d.dataFormat==="channelsLast",g;return!h&&d.inHeight>16&&d.inWidth>16&&d.strideHeight===1&&d.strideWidth===1&&d.dilationWidth===1&&d.dilationHeight===1&&d.inChannels===d.outChannels?g=new Ex(d.outShape,d.filterHeight,d.filterWidth):h&&d.outHeight>4&&d.outWidth>4&&d.strideWidth<=2&&d.inChannels===d.outChannels&&d.dilationHeight===1&&d.dilationWidth===1&&d.inChannels%4===0?(g=new Jc(d),f.push({type:"int32",data:[g.virtualWidth]})):(g=new el(d),f.push({type:"int32",data:[d.filterHeight]},{type:"int32",data:[d.filterWidth]},{type:"int32",data:[d.strideHeight,d.strideWidth]},{type:"int32",data:[d.dilationHeight,d.dilationWidth]})),t.runWebGPUProgram(g,[n,s],n.dtype,f)}var UV={kernelName:mn,backendName:"webgpu",kernelFunc:Gue};var $x=class{constructor(e){this.variableNames=["x","dy"],this.uniforms=`strides : vec2<i32>, pads : vec2<i32>, filterDims : vec2<i32>, outHeight : i32,
outWidth : i32, inHeight : i32, inWidth : i32, batchSize : i32, channelMul : i32,`,this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e.filterShape,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="depthwise_conv2d_backprop_filter"}getUserCode(){return`
${G("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let wR = coords[0];
let wC = coords[1];
let d1 = coords[2];
let dm = coords[3];
let d2 = d1 * uniforms.channelMul + dm;
var dotProd = 0.0;
for (var b = 0; b < uniforms.batchSize; b++) {
for (var yR = 0; yR < uniforms.outHeight; yR++) {
let xR = wR + yR * uniforms.strides[0] - uniforms.pads[0];
if (xR < 0 || xR >= uniforms.inHeight) {
continue;
}
for (var yC = 0; yC < uniforms.outWidth; yC++) {
let xC = wC + yC * uniforms.strides[1] - uniforms.pads[1];
if (xC < 0 || xC >= uniforms.inWidth) {
continue;
}
let dyValue = getDy(b, yR, yC, d2);
let xValue = getX(b, xR, xC, d1);
dotProd += xValue * dyValue;
}
}
}
setOutputAtIndex(index, dotProd);
}
}
`}},Rx=class{constructor(e){this.variableNames=["dy","W"],this.uniforms=`strides : vec2<i32>, pads : vec2<i32>, filterDims : vec2<i32>,
outHeight : i32, outWidth : i32, channelMul : i32,`,this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e.inShape,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="depthwise_conv2d_backprop_input"}getUserCode(){return`
${G("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let batch = coords[0];
let d1 = coords[3];
let dyCorner = coords.yz - uniforms.pads;
let dyRCorner = dyCorner.x;
let dyCCorner = dyCorner.y;
var dotProd = 0.0;
for (var wR = 0; wR < uniforms.filterDims[0]; wR++) {
let dyR = f32(dyRCorner + wR) / f32(uniforms.strides[0]);
if (dyR < 0.0 || dyR >= f32(uniforms.outHeight) || fract(dyR) > 0.0) {
continue;
}
let idyR = i32(dyR);
let wRPerm = uniforms.filterDims[0] - 1 - wR;
for (var wC = 0; wC < uniforms.filterDims[1]; wC++) {
let dyC = f32(dyCCorner + wC) / f32(uniforms.strides[1]);
if (dyC < 0.0 || dyC >= f32(uniforms.outWidth) || fract(dyC) > 0.0) {
continue;
}
let idyC = i32(dyC);
let wCPerm = uniforms.filterDims[1] - 1 - wC;
for (var dm = 0; dm < uniforms.channelMul; dm++) {
let d2 = d1 * uniforms.channelMul + dm;
let xValue = getDy(batch, idyR, idyC, d2);
let wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutputAtIndex(index, dotProd);
}
}
`}};function Hue(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,dilations:i,pad:p,dimRoundingMode:u,filterShape:c}=o,l=w.computeConv2DInfo(n.shape,c,a,i,p,u,!0),m=new $x(l),d=[{type:"int32",data:[l.strideHeight,l.strideWidth]},{type:"int32",data:[l.padInfo.top,l.padInfo.left]},{type:"int32",data:[l.filterHeight,l.filterWidth]},{type:"int32",data:[l.outHeight]},{type:"int32",data:[l.outWidth]},{type:"int32",data:[l.inHeight]},{type:"int32",data:[l.inWidth]},{type:"int32",data:[l.batchSize]},{type:"int32",data:[l.outChannels/l.inChannels]}];return t.runWebGPUProgram(m,[n,s],"float32",d)}var GV={kernelName:Pi,backendName:"webgpu",kernelFunc:Hue};function Kue(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{strides:a,dilations:i,pad:p,dimRoundingMode:u,inputShape:c}=o,l=w.computeConv2DInfo(c,s.shape,a,i,p,u,!0),m=new Rx(l),d=[{type:"int32",data:[l.strideHeight,l.strideWidth]},{type:"int32",data:[l.filterHeight-1-l.padInfo.top,l.filterWidth-1-l.padInfo.left]},{type:"int32",data:[l.filterHeight,l.filterWidth]},{type:"int32",data:[l.outHeight]},{type:"int32",data:[l.outWidth]},{type:"int32",data:[l.outChannels/l.inChannels]}];return t.runWebGPUProgram(m,[n,s],n.dtype,d)}var HV={kernelName:Oi,backendName:"webgpu",kernelFunc:Kue};var Dx=class{constructor(e){this.variableNames=["x"],this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=[e,e],this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="diag"}getUserCode(){return`
${G("index")} {
if (index < uniforms.size) {
let coords = getOutputCoords();
let value = select(0.0, getX(coords[0]), coords[0] == coords[1]);
setOutputAtIndex(index, value);
}
}
`}};function que(r){let{inputs:e,backend:t}=r,{x:o}=e,n=[...o.shape,...o.shape],s=y.sizeFromShape(o.shape),a=pe({inputs:{x:o},backend:t,attrs:{shape:[s]}}),i=new Dx(s),p=t.runWebGPUProgram(i,[a],a.dtype),u=pe({inputs:{x:p},backend:t,attrs:{shape:n}});return t.disposeData(a.dataId),t.disposeData(p.dataId),u}var KV={kernelName:oa,backendName:"webgpu",kernelFunc:que};var Ax=class{constructor(e){this.variableNames=["x","w"],this.uniforms="filterDims: vec2<i32>, pads: vec2<i32>, strides: vec2<i32>, dilations: vec2<i32>",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="dilation2d"}getUserCode(){return`
${G("index")} {
if (index < uniforms.size) {
let neg_infinity = -3.4e38;
let coords = getOutputCoords();
let batch = coords.x;
let d1 = coords.w;
let outTopLeftCorner = coords.yz * uniforms.strides - uniforms.pads;
let hBeg = outTopLeftCorner.x;
let wBeg = outTopLeftCorner.y;
var curVal = neg_infinity;
for (var h = 0; h < uniforms.filterDims[0]; h = h + 1) {
let hIn = hBeg + h * uniforms.dilations[0];
if (hIn >= 0 && hIn < uniforms.xShape[1]) {
for (var w = 0; w < uniforms.filterDims[1]; w = w + 1) {
let wIn = wBeg + w * uniforms.dilations[1];
if (wIn >= 0 && wIn < uniforms.xShape[2]) {
let val = getX(batch, hIn, wIn, d1) + getW(h, w, d1);
if (val > curVal) {
curVal = val;
}
}
}
}
}
setOutputAtIndex(index, curVal);
}
}
`}};function jue(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:p}=o,u=w.computeDilation2DInfo(n.shape,s.shape,a,i,"NHWC",p),c=[u.padInfo.top,u.padInfo.left],l=[{type:"int32",data:[u.filterHeight,u.filterWidth]},{type:"int32",data:[...c]},{type:"int32",data:[u.strideHeight,u.strideWidth]},{type:"int32",data:[u.dilationHeight,u.dilationWidth]}],m=new Ax(u);return t.runWebGPUProgram(m,[n,s],n.dtype,l)}var qV={kernelName:dn,backendName:"webgpu",kernelFunc:jue};var Fx=class{constructor(e,t){if(this.variableNames=["x","w","dy"],this.uniforms="filterDims: vec2<i32>, pads: vec2<i32>, strides: vec2<i32>, dilations: vec2<i32>, dySize: i32,",this.workgroupSize=[64,1,1],this.atomic=!0,this.outputShape=e.inShape,this.dispatchLayout=X(e.outShape),this.dispatch=H(this.dispatchLayout,e.outShape,this.workgroupSize),t!=="float32"&&t!=="int32")throw new Error(`Dilation2DBackpropInput only supports float32 and int32
types, does not support ${t} type.`);this.type=t,this.shaderKey="dilation2DBackpropInput"}getUserCode(){return`
${G("index")} {
if (index < uniforms.dySize) {
let coords = getDyCoordsFromIndex(index);
let b = coords[0];
let r = coords[1];
let c = coords[2];
let d = coords[3];
let dyCorner = vec2<i32>(r, c) * uniforms.strides - uniforms.pads;
var curVal = -3.4e38; // neg_infinity
var xRMax = 0;
var xCMax = 0;
// In the case of multiple argmax branches, we only back-propagate
// along the last branch, i.e., the one with largest value of
// 'wR * uniforms.filterDims[1] + wC', similarly to the max-pooling
// backward routines.
for (var wR = 0; wR < uniforms.filterDims[0]; wR++) {
let xR = dyCorner.x + wR * uniforms.dilations[0];
if (xR >= 0 && xR < uniforms.xShape[1]) {
for (var wC = 0; wC < uniforms.filterDims[1]; wC++) {
let xC = dyCorner.y + wC * uniforms.dilations[1];
if (xC >= 0 && xC < uniforms.xShape[2]) {
let val = getX(b, xR, xC, d) + getW(wR, wC, d);
if (val > curVal) {
curVal = val;
xRMax = xR;
xCMax = xC;
}
}
}
}
}
let flatIndexIn = d + uniforms.xShape[3] *
(xCMax + uniforms.xShape[2] * (xRMax + uniforms.xShape[1] * b));
let value = getDy(b, r, c, d);
${Qr("&result[flatIndexIn]","value",this.type)}
}
}
`}},Px=class{constructor(e,t,o){if(this.variableNames=["x","w","dy"],this.uniforms="filterDims: vec2<i32>, pads: vec2<i32>, strides: vec2<i32>, dilations: vec2<i32>, dySize: i32,",this.workgroupSize=[64,1,1],this.atomic=!0,this.outputShape=e.filterShape,this.dispatchLayout=X(e.outShape),this.dispatch=H(this.dispatchLayout,e.outShape,this.workgroupSize),o!=="float32"&&o!=="int32")throw new Error(`Dilation2DBackpropFilter only supports float32 and int32
types, does not support ${o} type.`);this.type=o,this.shaderKey="dilation2DBackpropFilter"}getUserCode(){return`
${G("index")} {
if (index < uniforms.dySize) {
let coords = getDyCoordsFromIndex(index);
let b = coords[0];
let r = coords[1];
let c = coords[2];
let d = coords[3];
let dyCorner = vec2<i32>(r, c) * uniforms.strides - uniforms.pads;
var curVal = -3.4e38; // neg_infinity
var wRMax = 0;
var wCMax = 0;
// In the case of multiple argmax branches, we only back-propagate
// along the last branch, i.e., the one with largest value of
// 'wR * uniforms.filterDims[1] + wC', similarly to the max-pooling
// backward routines.
for (var wR = 0; wR < uniforms.filterDims[0]; wR++) {
let xR = dyCorner.x + wR * uniforms.dilations[0];
if (xR >= 0 && xR < uniforms.xShape[1]) {
for (var wC = 0; wC < uniforms.filterDims[1]; wC++) {
let xC = dyCorner.y + wC * uniforms.dilations[1];
if (xC >= 0 && xC < uniforms.xShape[2]) {
let val = getX(b, xR, xC, d) + getW(wR, wC, d);
if (val > curVal) {
curVal = val;
wRMax = wR;
wCMax = wC;
}
}
}
}
}
let flatIndexIn = d + uniforms.wShape[2] * (wCMax + wRMax * uniforms.wShape[1]);
let value = getDy(b, r, c, d);
${Qr("&result[flatIndexIn]","value",this.type)}
}
}
`}};function Xue(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,dy:a}=e,{strides:i,pad:p,dilations:u}=o,c=w.computeDilation2DInfo(n.shape,s.shape,i,p,"NHWC",u),l=s.dtype,m=new Px(c,s.shape,l),d=[{type:"int32",data:[c.filterHeight,c.filterWidth]},{type:"int32",data:[c.padInfo.top,c.padInfo.left]},{type:"int32",data:[c.strideHeight,c.strideWidth]},{type:"int32",data:[c.dilationHeight,c.dilationWidth]},{type:"int32",data:[y.sizeFromShape(c.outShape)]}],f=vt({backend:t,attrs:{shape:s.shape,value:0,dtype:l}});return t.runWebGPUProgram(m,[n,s,a],l,d,f)}var jV={kernelName:Li,backendName:"webgpu",kernelFunc:Xue};function Yue(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,dy:a}=e,{strides:i,pad:p,dilations:u}=o,c=w.computeDilation2DInfo(n.shape,s.shape,i,p,"NHWC",u),l=n.dtype,m=new Fx(c,l),d=[{type:"int32",data:[c.filterHeight,c.filterWidth]},{type:"int32",data:[c.padInfo.top,c.padInfo.left]},{type:"int32",data:[c.strideHeight,c.strideWidth]},{type:"int32",data:[c.dilationHeight,c.dilationWidth]},{type:"int32",data:[y.sizeFromShape(c.outShape)]}],f=vt({backend:t,attrs:{shape:c.inShape,value:0,dtype:l}});return t.runWebGPUProgram(m,[n,s,a],l,d,f)}var XV={kernelName:Mi,backendName:"webgpu",kernelFunc:Yue};var Ox=class{constructor(e,t,o){this.variableNames=["Image"],this.uniforms="alpha: f32,",this.workgroupSize=[64,1,1],this.pixelsOpType=wi.DRAW,this.size=!0,this.outputShape=e,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.type=t,this.textureFormat=o,this.shaderKey=`draw_${t}_${o}`}getUserCode(){let e,t=this.type==="float32"?"value":"value / 255.0";return e=`
if (uniforms.numChannels == 1) {
rgba[0] = ${t};
rgba[1] = ${t};
rgba[2] = ${t};
} else {
rgba[d] = ${t};
}`,`
@group(0) @binding(0) var outImage : texture_storage_2d<${this.textureFormat}, write>;
${G("index")} {
if (index < uniforms.size) {
var rgba = vec4<f32>(0.0, 0.0, 0.0, uniforms.alpha);
for (var d = 0; d < uniforms.numChannels; d = d + 1) {
let value = f32(inBuf[index * uniforms.numChannels + d]);
${e}
}
rgba.x = rgba.x * rgba.w;
rgba.y = rgba.y * rgba.w;
rgba.z = rgba.z * rgba.w;
let coords = getCoordsFromIndex(index);
textureStore(outImage, vec2<i32>(coords.yx), rgba);
}
}
`}};function Que(r){let{inputs:e,backend:t,attrs:o}=r,{image:n}=e,{canvas:s,options:a}=o,[i,p]=n.shape.slice(0,2),{imageOptions:u}=a||{},c=(u==null?void 0:u.alpha)||1,l=t.device.features.has("bgra8unorm-storage")?"bgra8unorm":"rgba8unorm",m=[i,p],d=new Ox(m,n.dtype,l);s.width=p,s.height=i;let f="webgpu",h=s.getContext(f),g;h||(g=new OffscreenCanvas(p,i),h=g.getContext(f));let x=n.shape.length===3?n.shape[2]:1;h.configure({device:t.device,format:l,usage:GPUTextureUsage.STORAGE_BINDING,alphaMode:"premultiplied"});let b="int32",C=t.makeTensorInfo(m,b),S=t.tensorMap.get(C.dataId);S.resource=h.getCurrentTexture(),S.external=!0;let k=[{type:"uint32",data:[x]},{type:"float32",data:[c]}];if(t.runWebGPUProgram(d,[n],b,k,C),g){let _=s.getContext("2d");if(!_)throw new Error("Please make sure this canvas has only been used for 2d or webgpu context!");_.drawImage(g,0,0)}return t.disposeData(C.dataId),n}var YV={kernelName:$u,backendName:"webgpu",kernelFunc:Que};var i0=et({opType:fe.MUL,cpuKernelImpl:Rz,supportsComplex:!0}),QV={kernelName:Xn,backendName:"webgpu",kernelFunc:i0};function u0(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;return eo(n,s,a,"sum",t)}var ZV={kernelName:Ss,backendName:"webgpu",kernelFunc:u0};function Zue(r){let{inputs:e,backend:t,attrs:o}=r,{equation:n}=o,s=e,{allDims:a,summedDims:i,idDims:p}=w.decodeEinsumEquation(n,s.length);w.checkEinsumDimSizes(a.length,p,s);let{path:u,steps:c}=w.getEinsumComputePath(i,p),l=c.length,m=null,d=a.length,f=[];for(let h=0;h<l;++h){for(let g of c[h]){let{permutationIndices:x,expandDims:b}=w.getEinsumPermutation(d,p[g]),C;w.isIdentityPermutation(x)?C=s[g]:(C=xr({inputs:{x:s[g]},backend:t,attrs:{perm:x}}),f.push(C));let S=C.shape.slice();for(let k=0;k<b.length;++k)S.splice(b[k],0,1);y.arraysEqual(C.shape,S)||(C=pe({inputs:{x:C},backend:t,attrs:{shape:S}}),f.push(C)),m===null?m=C:(m=i0({inputs:{a:C,b:m},backend:t}),f.push(m))}h<l-1&&(u[h]>=0&&(m=u0({inputs:{x:m},backend:t,attrs:{axis:u[h]-(a.length-d),keepDims:!1}}),f.push(m)),d--)}for(let h of f)h!==m&&t.disposeData(h.dataId);return m}var JV={kernelName:Bi,backendName:"webgpu",kernelFunc:Zue};var Jue=ye({opType:Z.ELU}),eW={kernelName:hn,backendName:"webgpu",kernelFunc:Jue};var epe=r=>{let{inputs:e,backend:t}=r,{dy:o,y:n}=e,s=new Ii(fe.ELU_DER,o.shape,n.shape);return t.runWebGPUProgram(s,[o,n],o.dtype)},tW={kernelName:Xa,backendName:"webgpu",kernelFunc:epe};var tpe=et({opType:fe.EQUAL,dtype:"bool",cpuKernelImpl:gz}),rW={kernelName:xn,backendName:"webgpu",kernelFunc:tpe};var rpe=ye({opType:Z.ERF}),oW={kernelName:gn,backendName:"webgpu",kernelFunc:rpe};var ope=ye({opType:Z.EXP,cpuKernelImpl:xz,dtype:"float32"}),nW={kernelName:yn,backendName:"webgpu",kernelFunc:ope};function Mx(r){let{inputs:e,attrs:t,backend:o}=r,{dim:n}=t,{input:s}=e,a=s.shape.length,i=s.shape.slice(),p=n;return n<0&&(y.assert(-(a+1)<=n,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),p=a+n+1),i.splice(p,0,1),pe({inputs:{x:s},backend:o,attrs:{shape:i}})}var sW={kernelName:na,backendName:"webgpu",kernelFunc:Mx};var npe=ye({opType:Z.EXPM1,cpuKernelImpl:yz}),aW={kernelName:bn,backendName:"webgpu",kernelFunc:npe};var ym=class{constructor(e,t){this.variableNames=["real","imag"],this.outputShape=[],this.uniforms="exponentMultiplier : f32, denominator: f32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.component=e,this.shaderKey=`fft_${e}`}getUserCode(){return`
fn unaryOpComplex(real: f32, expR: f32, imag: f32, expI: f32) -> f32 {
${this.component==="real"?"return real * expR - imag * expI;":"return real * expI + imag * expR;"}
}
fn mulMatDFT(batch: i32, index: i32) -> f32 {
let indexRatio = f32(index) / f32(uniforms.realShape[1]);
let exponentMultiplierTimesIndexRatio =
uniforms.exponentMultiplier * indexRatio;
var result = 0.0;
for (var i = 0; i < uniforms.realShape[1]; i = i + 1) {
// x = (-2|2 * PI / N) * index * i;
let x = exponentMultiplierTimesIndexRatio * f32(i);
let expR = cos(x);
let expI = sin(x);
let real = getReal(batch, i);
let imag = getImag(batch, i);
result = result +
unaryOpComplex(real, expR, imag, expI) / uniforms.denominator;
}
return result;
}
${G("index")} {
if (index < uniforms.size) {
let coords = getOutputCoords();
setOutputAtIndex(index, mulMatDFT(coords[0], coords[1]));
}
}
`}};function Lx(r,e,t){let o=t.tensorMap.get(r.dataId),n=y.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],a=n/s,i=[],p=pe({inputs:{x:r},backend:t,attrs:{shape:[a,s]}});i.push(p);let u=p.shape,c=new ym("real",u),l=new ym("imag",u),m=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:u},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:u}],d=e?2*Math.PI:-2*Math.PI,f=e?u[1]:1,h=[{type:"float32",data:[d]},{type:"float32",data:[f]}],g=t.runWebGPUProgram(c,m,"float32",h);i.push(g);let x=t.runWebGPUProgram(l,m,"float32",h);i.push(x);let b=xo({inputs:{real:g,imag:x},backend:t});i.push(b);let C=pe({inputs:{x:b},backend:t,attrs:{shape:r.shape}});return i.forEach(S=>t.disposeData(S.dataId)),C}function spe(r){let{inputs:e,backend:t}=r,{input:o}=e;return Lx(o,!1,t)}var iW={kernelName:zi,backendName:"webgpu",kernelFunc:spe};var Bx=class{constructor(e){this.outputShape=[],this.variableNames=["x"],this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="flipLeftRight"}getUserCode(){return`
${G("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let coordX = uniforms.xShape[2] - coords[2] - 1;
let outputValue = getX(coords[0], coords[1], coordX, coords[3]);
setOutputAtIndex(index, outputValue);
}
}
`}};var uW={kernelName:Cn,backendName:"webgpu",kernelFunc:({inputs:r,backend:e})=>{let{image:t}=r,o=e,n=new Bx(t.shape);return o.runWebGPUProgram(n,[t],t.dtype)}};var ape=ye({opType:Z.FLOOR,cpuKernelImpl:bz}),pW={kernelName:wn,backendName:"webgpu",kernelFunc:ape};var ipe=et({opType:fe.FLOOR_DIV,cpuKernelImpl:Cz,dtype:"int32"}),cW={kernelName:Sn,backendName:"webgpu",kernelFunc:ipe};var zx=class{constructor(e,t,o=!1){this.pixelsOpType=wi.FROM_PIXELS,this.outputShape=[0],this.variableNames=[],this.workgroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize,[t,1,1]),this.importVideo=o,this.shaderKey=`fromPixels_${this.importVideo}`}getUserCode(){let e=this.importVideo?"textureLoad(src, vec2<i32>(coords.yx));":"textureLoad(src, vec2<i32>(coords.yx), 0)";return`
@binding(1) @group(0) var src: ${this.importVideo?"texture_external":"texture_2d<f32>"};
${G("index")} {
let flatIndex = index * uniforms.numChannels;
if (flatIndex < uniforms.size) {
let coords = getCoordsFromIndex(flatIndex);
let values = ${e};
for (var i = 0; i < uniforms.numChannels; i = i + 1) {
result[flatIndex + i] = i32(floor(255.0 * values[i]));
}
}
}
`}};var lW={kernelName:Du,backendName:"webgpu",kernelFunc:upe},tl,p0=A().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");function upe(r){let{inputs:e,backend:t,attrs:o}=r,{pixels:n}=e,{numChannels:s}=o;if(n==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let a=typeof HTMLVideoElement!="undefined"&&n instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&n instanceof HTMLImageElement,p=typeof HTMLCanvasElement!="undefined"&&n instanceof HTMLCanvasElement||typeof OffscreenCanvas!="undefined"&&n instanceof OffscreenCanvas,u=typeof ImageBitmap!="undefined"&&n instanceof ImageBitmap,[c,l]=a?[n.videoWidth,n.videoHeight]:[n.width,n.height],m=[l,c,s],d=A().getBool("WEBGPU_IMPORT_EXTERNAL_TEXTURE")&&a,f=a||i;if(u||p||f){let b;if(d)b=t.device.importExternalTexture({source:n});else{if(f){let L=A().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");(tl==null||L!==p0)&&(p0=L,tl=document.createElement("canvas").getContext("2d",{willReadFrequently:p0})),tl.canvas.width=c,tl.canvas.height=l,tl.drawImage(n,0,0,c,l),n=tl.canvas}let P=GPUTextureUsage.COPY_DST|GPUTextureUsage.RENDER_ATTACHMENT|GPUTextureUsage.TEXTURE_BINDING,M=t.textureManager.acquireTexture(m[1],m[0],"rgba8unorm",P);t.queue.copyExternalImageToTexture({source:n},{texture:M},[m[1],m[0]]),b=M}let C=y.sizeFromShape(m),S=y.computeStrides(m),k=new zx(m,s,d),_=[{type:"uint32",data:[C]},{type:"uint32",data:[s]},{type:"uint32",data:[...S]}],$=t.makeTensorInfo([l,c],"int32"),R=t.tensorMap.get($.dataId);R.resource=b;let D=t.runWebGPUProgram(k,[$],"int32",_);return t.disposeData($.dataId),D}let h=n.data,g=h;if(s!=null&&s!==4){g=new Uint8Array(n.width*n.height*s);let b=h.length,C=0;for(let S=0;S<b;S++)S%4<s&&(g[C++]=h[S])}let x=t.makeTensorInfo(m,"int32",new Int32Array(g));return t.uploadToGPU(x.dataId),x}var Vx=class{constructor(e,t,o,n,s){this.uniforms="varianceEpsilon : f32,",this.workgroupSize=[128,1,1],this.size=!0,this.variableNames=["x","mean","variance"],w.assertAndGetBroadcastShape(e,t),w.assertAndGetBroadcastShape(e,o),this.outputShape=e,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),n!=null&&(w.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset")),s!=null&&(w.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale")),this.offsetShape=n,this.scaleShape=s,this.shaderKey="batchNorm"}getUserCode(){let e="0.0";this.offsetShape!=null&&(e="getOffsetByOutputIndex(index)");let t="1.0";return this.scaleShape!=null&&(t="getScaleByOutputIndex(index)"),`
${G("index")} {
if (index < uniforms.size)
{
let xValue = getXByOutputIndex(index);
let meanValue = getMeanByOutputIndex(index);
let varianValue = getVarianceByOutputIndex(index);
let offsetValue = ${e};
let scaleValue = ${t};
let inv = scaleValue * inverseSqrt(varianValue + f32(uniforms.varianceEpsilon));
setOutputAtIndex(index,dot(vec3<f32>(xValue, -meanValue, offsetValue), vec3<f32>(inv, inv, 1.0)));
}
}
`}};var mW={kernelName:In,backendName:"webgpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:o,scale:n,offset:s,mean:a,variance:i}=r,{varianceEpsilon:p}=e,u=t,c=[o,a,i],l=null;s!=null&&(l=s.shape,c.push(s));let m=null;n!=null&&(m=n.shape,c.push(n));let d=new Vx(o.shape,a.shape,i.shape,l,m),f=[{type:"float32",data:[p]}];return u.runWebGPUProgram(d,c,o.dtype,f)}};function ppe(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:p,pad:u,dataFormat:c,dilations:l,dimRoundingMode:m,activation:d,leakyreluAlpha:f}=o,h=w.convertConv2DDataFormat(c),g=w.computeConv2DInfo(n.shape,s.shape,p,l,u,m,!1,h);return bx({x:n,filter:s,convInfo:g,backend:t,bias:a,preluActivationWeights:i,leakyreluAlpha:f,activation:d})}var dW={kernelName:Io,backendName:"webgpu",kernelFunc:ppe};function cpe(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:p,pad:u,dilations:c,dimRoundingMode:l,activation:m,leakyreluAlpha:d}=o,f=c;f==null&&(f=[1,1]),y.assert(w.eitherStridesOrDilationsAreOne(p,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${p} and dilations '${f}'`);let h=w.computeConv2DInfo(n.shape,s.shape,p,f,u,l,!0),g=[n,s],x=a!=null,b=i!=null;x&&g.push(a),b&&g.push(i);let C=[{type:"int32",data:[h.padInfo.top,h.padInfo.left]},{type:"int32",data:[h.inHeight,h.inWidth]}],S;return h.outHeight>4&&h.outWidth>4&&h.strideWidth<=2&&h.inChannels===h.outChannels&&h.dilationHeight===1&&h.dilationWidth===1&&h.inChannels%4===0?(S=new Jc(h,x,m,b),C.push({type:"int32",data:[S.virtualWidth]})):(S=new el(h,x,m,b),C.push({type:"int32",data:[h.filterHeight]},{type:"int32",data:[h.filterWidth]},{type:"int32",data:[h.strideHeight,h.strideWidth]},{type:"int32",data:[h.dilationHeight,h.dilationWidth]})),m==="leakyrelu"&&(C.push({type:"float32",data:[d]}),S.uniforms+=" alpha : f32,"),t.runWebGPUProgram(S,g,"float32",C)}var fW={kernelName:vo,backendName:"webgpu",kernelFunc:cpe};var Wx=class{constructor(e,t){this.variableNames=["A","indices"],this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey=`gathernd_${e}`,this.sliceDim=e,this.uniforms=`sliceDim : i32, strides : ${ft(e)},`}getUserCode(){let e;return this.sliceDim>1?e="uniforms.strides[j]":e="uniforms.strides",`
${G("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
var flattenIndex = 0;
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
let indexTemp = i32(round(getIndices(coords[0], j)));
let strideNum = ${e};
flattenIndex = flattenIndex + indexTemp * strideNum;
}
setOutputAtIndex(index, getA(flattenIndex, coords[1]));
}
}
`}};function lpe(r){let{inputs:e,backend:t}=r,{params:o,indices:n}=e,s=n.shape,a=s[s.length-1],i=y.sizeFromShape(o.shape),[p,u,c,l]=w.prepareAndValidate(o,n),m=pe({inputs:{x:n},backend:t,attrs:{shape:[u,a]}}),d=pe({inputs:{x:o},backend:t,attrs:{shape:[y.sizeFromShape(o.shape)/c,c]}});if(t.shouldExecuteOnCPU([o,n])||o.dtype==="string"){let b=t.readSync(n.dataId),C=t.bufferSync(o),S=wz(b,C,o.dtype,u,a,c,l,o.shape,i);return t.makeTensorInfo(p,o.dtype,S.values)}let f=new Wx(a,[u,c]),h=[{type:"int32",data:[a]},{type:"int32",data:l}],g=t.runWebGPUProgram(f,[d,m],d.dtype,h),x=pe({inputs:{x:g},backend:t,attrs:{shape:p}});return t.disposeData(m.dataId),t.disposeData(d.dataId),t.disposeData(g.dataId),x}var hW={kernelName:vn,backendName:"webgpu",kernelFunc:lpe};var Ux=class{constructor(e,t){this.variableNames=["A","indices"],this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e.slice(),this.aShape=e,this.outputShape=t,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="gather"}getUserCode(){let e=mpe(this.aShape);return`
${G("index")} {
if (index < uniforms.size) {
let resRC = getCoordsFromIndex(index);
let indexZ = i32(getIndices(resRC.x, resRC.z));
let inBounds = select(0.0, 1.0, indexZ >= 0 && indexZ < uniforms.aShape[2]);
setOutputAtIndex(index, inBounds * getA(${e}));
}
}
`}};function mpe(r){let e=["resRC.x","resRC.y","resRC.z","resRC.w"],t=[];for(let o=0;o<r.length;o++)o===2?t.push("indexZ"):t.push(`${e[o]}`);return t.join()}function c0(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,indices:s}=e,{axis:a,batchDims:i}=o,p=y.parseAxisParam(a,n.shape)[0],u=w.segment_util.collectGatherOpShapeInfo(n,s,p,i),c=y.sizeFromShape(s.shape),l=[],m=pe({inputs:{x:n},backend:t,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),d=pe({inputs:{x:s},backend:t,attrs:{shape:[u.batchSize,c/u.batchSize]}});l.push(m),l.push(d);let f=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(t.shouldExecuteOnCPU([n,s])){let C=t.tensorMap.get(d.dataId).values,S=me(d.shape,d.dtype,C),_=t.tensorMap.get(m.dataId).values,$=me(m.shape,m.dtype,_),R=Sz($,S,f);return l.forEach(D=>t.disposeData(D.dataId)),t.makeTensorInfo(u.outputShape,R.dtype,R.values)}let h=new Ux(m.shape,f),g=t.runWebGPUProgram(h,[m,d],m.dtype);l.push(g);let x=pe({inputs:{x:g},backend:t,attrs:{shape:u.outputShape}});return l.forEach(b=>t.disposeData(b.dataId)),x}var gW={kernelName:aa,backendName:"webgpu",kernelFunc:c0};var dpe=et({opType:fe.GREATER,cpuKernelImpl:vz,dtype:"bool"}),xW={kernelName:kn,backendName:"webgpu",kernelFunc:dpe};var fpe=et({opType:fe.GREATER_EQUAL,dtype:"bool",cpuKernelImpl:Iz}),yW={kernelName:Nn,backendName:"webgpu",kernelFunc:fpe};function hpe(r){let{inputs:e,backend:t}=r,{input:o}=e;return Lx(o,!0,t)}var bW={kernelName:Vi,backendName:"webgpu",kernelFunc:hpe};var gpe=ye({opType:Z.IS_FINITE,dtype:"bool"}),CW={kernelName:Tn,backendName:"webgpu",kernelFunc:gpe};var xpe=ye({opType:Z.IS_INF,dtype:"bool"}),wW={kernelName:_n,backendName:"webgpu",kernelFunc:xpe};var ype=ye({opType:Z.IS_NAN,dtype:"bool"}),SW={kernelName:En,backendName:"webgpu",kernelFunc:ype};function bpe(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{alpha:s}=o,a=[{type:"float32",data:[s]}],i=new Jr(n.shape,Z.LEAKYRELU,"alpha : f32,");return t.runWebGPUProgram(i,[n],"float32",a)}var IW={kernelName:$n,backendName:"webgpu",kernelFunc:bpe};var Cpe=et({opType:fe.LESS,dtype:"bool",cpuKernelImpl:Nz}),vW={kernelName:Rn,backendName:"webgpu",kernelFunc:Cpe};var wpe=et({opType:fe.LESS_EQUAL,dtype:"bool",cpuKernelImpl:kz}),kW={kernelName:Dn,backendName:"webgpu",kernelFunc:wpe};var Gx=class{constructor(e){this.variableNames=[],this.outputShape=[],this.uniforms="start : f32, step : f32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=[e],this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="linSpace"}getUserCode(){return`
${G("index")} {
if (index < uniforms.size) {
setOutputAtIndex(index, uniforms.start + f32(index) * uniforms.step);
}
}
`}};function Spe(r){let{backend:e,attrs:t}=r,{start:o,stop:n,num:s}=t,a=(n-o)/(s-1),i=new Gx(s),p=[{type:"float32",data:[o]},{type:"float32",data:[a]}];return e.runWebGPUProgram(i,[],"float32",p)}var NW={kernelName:An,backendName:"webgpu",kernelFunc:Spe};var Ipe=ye({opType:Z.LOG,cpuKernelImpl:Tz}),TW={kernelName:Fn,backendName:"webgpu",kernelFunc:Ipe};var vpe=ye({opType:Z.LOG1P}),_W={kernelName:Pn,backendName:"webgpu",kernelFunc:vpe};var kpe=et({opType:fe.LOGICAL_AND,dtype:"bool"}),EW={kernelName:On,backendName:"webgpu",kernelFunc:kpe};var Npe=ye({opType:Z.LOGICAL_NOT}),$W={kernelName:Mn,backendName:"webgpu",kernelFunc:Npe};var Tpe=et({opType:fe.LOGICAL_OR}),RW={kernelName:Ln,backendName:"webgpu",kernelFunc:Tpe};var DW=`
var powValue = 0.0;
let basis = uniforms.bias + uniforms.alpha * sum;
if (uniforms.beta == 0.5) {
powValue = inverseSqrt(basis);
} else if (uniforms.beta == 1.0) {
powValue = 1.0 / basis;
} else {
powValue = exp(log(basis) * (-uniforms.beta));
}
`,Hx=class{constructor(e){this.outputShape=[],this.variableNames=["x"],this.uniforms="radius : i32, bias : f32, alpha : f32, beta : f32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="lrn"}getUserCode(){return`
${G("index")} {
if (index < uniforms.size) {
let coords = getOutputCoords();
let b = coords[0];
let r = coords[1];
let c = coords[2];
let d = coords[3];
let x = getX(b, r, c, d);
var sum = 0.0;
for (var i = -uniforms.radius; i <= uniforms.radius; i = i + 1) {
let idx = d + i;
if (idx >= 0 && idx < uniforms.xShape[3]) {
let z = getX(b, r, c, idx);
sum = sum + z * z;
}
}
${DW}
setOutputAtIndex(index, x * powValue);
}
}
`}},Kx=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.uniforms="radius : i32, bias : f32, alpha : f32, beta : f32,",this.workgroupSize=[256,1,1],this.maxAllowRadius=16,y.assert(t<=this.maxAllowRadius,()=>`Radius must be less than or equal to ${this.maxAllowRadius}, current radius is ${t}`),this.outputShape=e,this.elementsPerWorkgroup=this.workgroupSize[0]-2*this.maxAllowRadius,this.dispatchLayout={x:[3],y:[2],z:[0,1]},this.dispatch=H(this.dispatchLayout,this.outputShape,[this.elementsPerWorkgroup,this.workgroupSize[1],this.workgroupSize[2]]),this.shaderKey="lrn_shared"}getUserCode(){return`
var <workgroup>lrnSub: array<f32, ${this.workgroupSize[0]}>;
const elementsPerWorkgroup = ${this.elementsPerWorkgroup};
const maxAllowRadius = ${this.maxAllowRadius};
${G()} {
let localDepth = i32(localId.x);
let workgroupDepth = i32(workgroupId.x) * elementsPerWorkgroup;
let xDepth = workgroupDepth + localDepth - maxAllowRadius;
let b = i32(globalId.z) / uniforms.xShape[1];
let r = i32(globalId.z) - b * uniforms.xShape[1];
let c = i32(globalId.y);
let d = workgroupDepth + localDepth;
var x = 0.0;
if (xDepth >= 0 && xDepth < uniforms.xShape[3]) {
x = getX(b, r, c, xDepth);
}
lrnSub[localDepth] = x;
workgroupBarrier();
if (localDepth < elementsPerWorkgroup && d < uniforms.outShape[3]) {
var sum = 0.0;
let index = localDepth + maxAllowRadius;
for (var i = -uniforms.radius; i <= uniforms.radius; i = i + 1) {
let z = lrnSub[index + i];
sum = sum + z * z;
}
${DW}
setOutputAtCoords(b, r, c, d, lrnSub[index] * powValue);
}
} `}};function _pe(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{depthRadius:s,bias:a,alpha:i,beta:p}=o,u;s>16?u=new Hx(n.shape):u=new Kx(n.shape,s);let c=[{type:"int32",data:[s]},{type:"float32",data:[a]},{type:"float32",data:[i]},{type:"float32",data:[p]}];return t.runWebGPUProgram(u,[n],n.dtype,c)}var AW={kernelName:Bn,backendName:"webgpu",kernelFunc:_pe};var qx=class{constructor(e){this.outputShape=[],this.variableNames=["inputImage","outputImage","dy"],this.uniforms="depthRadius : i32, bias : f32, alpha : f32, beta : f32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="lrn_grad"}getUserCode(){return`
${G("index")} {
if (index < uniforms.size) {
let coords = getOutputCoords();
let b = coords[0];
let r = coords[1];
let c = coords[2];
let MIN_DEPTH_BEGIN = 0;
let MAX_DEPTH_END = uniforms.outShape[3];
var result = 0.0;
for (var d = MIN_DEPTH_BEGIN; d < MAX_DEPTH_END; d++) {
let depthBegin = max(MIN_DEPTH_BEGIN, d - uniforms.depthRadius);
let depthEnd = min(MAX_DEPTH_END, d + uniforms.depthRadius + 1);
var norm = 0.0;
for (var k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; k++) {
if (k < depthBegin) {
continue;
} else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
} else {
break;
}
}
norm = uniforms.alpha * norm + uniforms.bias;
for (var k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; k++) {
if (k < depthBegin) {
continue;
} else if (k >= depthBegin && k < depthEnd) {
var dyi = -2.0 * uniforms.alpha * uniforms.beta
* getInputImage(b, r, c, k) * getOutputImage(b, r, c, d) / norm;
if (k == d) {
dyi += pow(norm, -1.0 * uniforms.beta);
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
} else {
break;
}
}
}
setOutputAtIndex(index, result);
}
}
`}};function Epe(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,y:s,dy:a}=e,{depthRadius:i,bias:p,alpha:u,beta:c}=o,l=new qx(n.shape),m=[{type:"int32",data:[i]},{type:"float32",data:[p]},{type:"float32",data:[u]},{type:"float32",data:[c]}];return t.runWebGPUProgram(l,[n,s,a],n.dtype,m)}var FW={kernelName:Ya,backendName:"webgpu",kernelFunc:Epe};var $pe=et({opType:fe.MAX,cpuKernelImpl:Ez}),PW={kernelName:Vn,backendName:"webgpu",kernelFunc:$pe};function Rpe(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:p}=o,c=w.computePool2DInfo(n.shape,s,a,1,i,p);return ax(n,c,"max",t)}var OW={kernelName:Wn,backendName:"webgpu",kernelFunc:Rpe};function Dpe(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dataFormat:p,dimRoundingMode:u}=o,c=[1,1,1],l=w.computePool3DInfo(n.shape,s,a,c,i,u,p),m=new Iu(l,"max"),d=[{type:"int32",data:[l.strideDepth,l.strideHeight,l.strideWidth]},{type:"int32",data:[l.padInfo.front,l.padInfo.top,l.padInfo.left]},{type:"int32",data:[l.inDepth,l.inHeight,l.inWidth]},{type:"int32",data:[l.effectiveFilterDepth,l.effectiveFilterHeight,l.effectiveFilterWidth]}];return t.runWebGPUProgram(m,[n],n.dtype,d)}var MW={kernelName:ia,backendName:"webgpu",kernelFunc:Dpe};var jx=class{constructor(e){this.variableNames=["dy","maxPos"],this.uniforms=`strides : vec2<i32>, pads : vec2<i32>, dilations : vec2<i32>, filterDims : vec2<i32>,
outHeight : i32, outWidth : i32`,this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e.inShape,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="maxPool2DBackprop"}getUserCode(){return`
${G("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let batch = coords[0];
let d = coords[3];
let dyRCCorner = vec2<i32>(coords.yz) - uniforms.pads;
let dyRCorner = dyRCCorner.x;
let dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
var dotProd = 0.0;
let lastIndex = uniforms.filterDims[0] * uniforms.filterDims[1] - 1;
for (var wR = 0; wR < uniforms.filterDims[0]; wR += uniforms.dilations[0]) {
let dyR = f32(dyRCorner + wR) / f32(uniforms.strides[0]);
if (dyR < 0.0 || dyR >= f32(uniforms.outHeight) || fract(dyR) > 0.0) {
continue;
}
let idyR = i32(dyR);
for (var wC = 0; wC < uniforms.filterDims[1]; wC += uniforms.dilations[1]) {
let dyC = f32(dyCCorner + wC) / f32(uniforms.strides[1]);
if (dyC < 0.0 || dyC >= f32(uniforms.outWidth) || fract(dyC) > 0.0) {
continue;
}
let idyC = i32(dyC);
let dyValue = getDy(batch, idyR, idyC, d);
let maxPosValue = lastIndex - i32(getMaxPos(batch, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
let curPosValue = wR * uniforms.filterDims[1] + wC;
let mask = select(0.0, 1.0, maxPosValue == curPosValue);
dotProd += dyValue * mask;
}
}
setOutputAtIndex(index, dotProd);
}
}
`}},Xx=class{constructor(e){this.variableNames=["dy","maxPos"],this.uniforms=`strides : vec3<i32>, pads : vec3<i32>, filterDims : vec3<i32>,
outDepth : i32, outHeight : i32, outWidth : i32`,this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e.inShape,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="maxPool3DBackprop"}getUserCode(){return`
${G("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let batch = coords.x;
let ch = coords.u;
let dyCorner = vec3<i32>(coords.y, coords.z, coords.w) - uniforms.pads;
let dyDCorner = dyCorner.x;
let dyRCorner = dyCorner.y;
let dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
var dotProd = 0.0;
let lastIndex = uniforms.filterDims[0] * uniforms.filterDims[1] * uniforms.filterDims[2] - 1;
for (var wD = 0; wD < uniforms.filterDims[0]; wD++) {
let dyD = f32(dyDCorner + wD) / f32(uniforms.strides[0]);
if (dyD < 0.0 || dyD >= f32(uniforms.outDepth) || fract(dyD) > 0.0) {
continue;
}
let idyD = i32(dyD);
for (var wR = 0; wR < uniforms.filterDims[1]; wR++) {
let dyR = f32(dyRCorner + wR) / f32(uniforms.strides[1]);
if (dyR < 0.0 || dyR >= f32(uniforms.outHeight) || fract(dyR) > 0.0) {
continue;
}
let idyR = i32(dyR);
for (var wC = 0; wC < uniforms.filterDims[2]; wC++) {
let dyC = f32(dyCCorner + wC) / f32(uniforms.strides[2]);
if (dyC < 0.0 || dyC >= f32(uniforms.outWidth) || fract(dyC) > 0.0) {
continue;
}
let idyC = i32(dyC);
let dyValue = getDy(batch, idyD, idyR, idyC, ch);
let maxPosValue = lastIndex - i32(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
let curPosValue = wD * uniforms.filterDims[1] * uniforms.filterDims[2] + wR * uniforms.filterDims[2] + wC;
let mask = select(0.0, 1.0, maxPosValue == curPosValue);
dotProd += dyValue * mask;
}
}
}
setOutputAtIndex(index, dotProd);
}
}
`}};function Ape(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s,{filterSize:i,strides:p,pad:u,dimRoundingMode:c}=o,l=[1,1,1],m=w.computePool3DInfo(a.shape,i,p,l,u,c),d=new Iu(m,"max",!0),f=[{type:"int32",data:[m.strideDepth,m.strideHeight,m.strideWidth]},{type:"int32",data:[m.padInfo.front,m.padInfo.top,m.padInfo.left]},{type:"int32",data:[m.inDepth,m.inHeight,m.inWidth]},{type:"int32",data:[m.effectiveFilterDepth,m.effectiveFilterHeight,m.effectiveFilterWidth]}],h=t.runWebGPUProgram(d,[a],"int32",f),g=new Xx(m);f=[{type:"int32",data:[m.strideDepth,m.strideHeight,m.strideWidth]},{type:"int32",data:[m.effectiveFilterDepth-1-m.padInfo.front,m.effectiveFilterHeight-1-m.padInfo.top,m.effectiveFilterWidth-1-m.padInfo.left]},{type:"int32",data:[m.effectiveFilterDepth,m.effectiveFilterHeight,m.effectiveFilterWidth]},{type:"int32",data:[m.outDepth]},{type:"int32",data:[m.outHeight]},{type:"int32",data:[m.outWidth]}];let x=t.runWebGPUProgram(g,[n,h],a.dtype,f);return t.disposeData(h.dataId),x}var LW={kernelName:Gi,backendName:"webgpu",kernelFunc:Ape};function Fpe(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s,output:a}=e,i=s;fm([s,a],"maxPoolGrad");let{filterSize:p,strides:u,pad:c,dimRoundingMode:l}=o,m=w.computePool2DInfo(i.shape,p,u,1,c,l),d=new Ba(m,"max",!0),f=[{type:"int32",data:[m.strideHeight,m.strideWidth]},{type:"int32",data:[m.padInfo.top,m.padInfo.left]},{type:"int32",data:[m.dilationHeight,m.dilationWidth]},{type:"int32",data:[m.inHeight,m.inWidth]},{type:"int32",data:[m.effectiveFilterHeight,m.effectiveFilterWidth]}],h=t.runWebGPUProgram(d,[i],"int32",f),g=new jx(m);f=[{type:"int32",data:[m.strideHeight,m.strideWidth]},{type:"int32",data:[m.effectiveFilterHeight-1-m.padInfo.top,m.effectiveFilterWidth-1-m.padInfo.left]},{type:"int32",data:[m.dilationHeight,m.dilationWidth]},{type:"int32",data:[m.effectiveFilterHeight,m.effectiveFilterWidth]},{type:"int32",data:[m.outHeight]},{type:"int32",data:[m.outWidth]}];let x=t.runWebGPUProgram(g,[n,h],i.dtype,f);return t.disposeData(h.dataId),x}var BW={kernelName:Ui,backendName:"webgpu",kernelFunc:Fpe};function Ppe(r){let{inputs:e,backend:t,attrs:o}=r,{filterSize:n,strides:s,pad:a,includeBatchInIndex:i}=o,{x:p}=e;y.assert(p.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${p.shape.length}.`);let u=[1,1];y.assert(w.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let c=w.computePool2DInfo(p.shape,n,s,u,a),l=[{type:"int32",data:[c.strideHeight,c.strideWidth]},{type:"int32",data:[c.padInfo.top,c.padInfo.left]},{type:"int32",data:[c.dilationHeight,c.dilationWidth]},{type:"int32",data:[c.inHeight,c.inWidth]},{type:"int32",data:[c.effectiveFilterHeight,c.effectiveFilterWidth]}],m=new Ba(c,"max",!1),d=t.runWebGPUProgram(m,[p],p.dtype,l);m=new Ba(c,"max",!0,!0,i);let f=t.runWebGPUProgram(m,[p],"int32",l);return[d,f]}var zW={kernelName:ua,backendName:"webgpu",kernelFunc:Ppe};function Ope(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;return eo(n,s,a,"min",t)}var VW={kernelName:Gn,backendName:"webgpu",kernelFunc:Ope};var Mpe=et({opType:fe.MIN,cpuKernelImpl:$z}),WW={kernelName:Hn,backendName:"webgpu",kernelFunc:Mpe};var Yx=class{constructor(e,t,o){this.uniforms="",this.variableNames=["x"],this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((n,s)=>n[0]+e[s]+n[1]),this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.xShape=e,t.map((n,s)=>{this.uniforms+=` pad${s} : vec2<i32>,`}),this.offset=o==="reflect"?0:1,this.shaderKey=`mirrorPad_${o}`}getUserCode(){let e=this.xShape.length,t=this.xShape.map((u,c)=>`uniforms.pad${c}[0]`).join(","),o=this.xShape.map((u,c)=>`uniforms.pad${c}[0] + uniforms.xShape${e>1?`[${c}]`:""}`).join(","),n=e===1?"start":"start[i]",s=e===1?"end":"end[i]",a=e===1?"outC":"outC[i]",i=ft(e),p=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
${G("index")} {
if (index < uniforms.size) {
let start = ${i}(${t});
let end = ${i}(${o});
var outC = getCoordsFromIndex(index);
for (var i = 0; i < ${e}; i = i + 1) {
if (${a} < ${n}) {
${a} = ${n} * 2 - ${a} - ${this.offset};
} else if(${a} >= ${s}) {
${a} = (${s} - 1) * 2 - ${a} + ${this.offset};
}
}
let coords = outC - start;
setOutputAtIndex(index, getX(${p}));
}
}
`}};var UW={kernelName:Kn,backendName:"webgpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:o}=r,{paddings:n,mode:s}=e,a=t,i=n.map(c=>({type:"int32",data:[c[0],c[1]]})),p=new Yx(o.shape,n,s);return a.runWebGPUProgram(p,[o],o.dtype,i)}};var Lpe=et({opType:fe.MOD}),GW={kernelName:qn,backendName:"webgpu",kernelFunc:Lpe};var Qx=class{constructor(e,t){this.variableNames=["probs"],this.outputShape=[],this.uniforms="seed : f32, numOutcomes: i32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=[e,t],this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="multinomial"}getUserCode(){return`
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
fn random (seed : f32, resultUV : vec2<f32>) -> f32 {
let HASHSCALE1 = 443.8975;
let p = resultUV * seed;
var p3 = fract(vec3<f32>(p.xyx) * HASHSCALE1);
p3 = p3 + dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${G("index")} {
if (index < uniforms.size) {
let coords = getOutputCoords();
let batch = coords[0];
let resUV = vec2<f32>(f32(coords[1]) / f32(uniforms.outShape[1]),
f32(coords[0]) / f32(uniforms.outShape[0]));
let r = random(uniforms.seed, resUV);
var cdf = 0.0;
for (var i = 0; i < uniforms.numOutcomes - 1; i = i + 1) {
cdf = cdf + getProbs(batch, i);
if (r < cdf) {
setOutputAtIndexI32(index, i);
return;
}
}
// If no other event happened, last event happened.
setOutputAtIndexI32(index, uniforms.numOutcomes - 1);
}
}
`}};var Zx=class{constructor(e){this.variableNames=["logits"],this.outputShape=e,this.dispatchLayout=X(this.outputShape),this.dispatch=[this.outputShape[0],1,1],this.outputShape[1]>=4096?this.workgroupSize=[256,1,1]:this.workgroupSize=[64,1,1],this.shaderKey="softmax"}getUserCode(){return`
var<workgroup> buf : array<f32, ${this.workgroupSize[0]}>;
var<workgroup> rowMaxShared : f32;
var<workgroup> rowSumShared : f32;
const blockSize = ${this.workgroupSize[0]};
${G("index")} {
let row = index / blockSize;
let tid = i32(localId.x);
let cols = uniforms.outShape[1];
var threadMax = -3.402823e+38f;
for (var col = tid; col < cols; col += blockSize) {
let value = getLogits(row, col);
threadMax = max(threadMax, value);
}
if (tid < cols) {
buf[tid] = threadMax;
}
workgroupBarrier();
var reduceSize = min(cols, blockSize);
for (var currSize = reduceSize >> 1; currSize > 0; currSize = reduceSize >> 1) {
reduceSize = currSize + (reduceSize & 1);
if (tid < currSize) {
buf[tid] = max(buf[tid], buf[tid + reduceSize]);
}
workgroupBarrier();
}
if (tid == 0) {
rowMaxShared = buf[0];
}
workgroupBarrier();
var threadSum = 0.0;
for (var col = tid; col < cols; col += blockSize) {
let subExp = exp(getLogits(row, col) - rowMaxShared);
threadSum += subExp;
}
buf[tid] = threadSum;
workgroupBarrier();
for (var currSize = blockSize >> 1; currSize > 0; currSize = currSize >> 1) {
if (tid < currSize) {
buf[tid] = buf[tid] + buf[tid + currSize];
}
workgroupBarrier();
}
if (tid == 0) {
rowSumShared = buf[0];
}
workgroupBarrier();
for (var col = tid; col < cols; col += blockSize) {
let value = exp(getLogits(row, col) - rowMaxShared) / rowSumShared;
setOutputAtCoords(row, col, value);
}
}
`}};function l0(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{dim:s}=o,a=pe({inputs:{x:n},backend:t,attrs:{shape:[y.sizeFromShape(n.shape)/n.shape[s],n.shape[s]]}}),i=new Zx(a.shape),p=t.runWebGPUProgram(i,[a],n.dtype),u=pe({inputs:{x:p},backend:t,attrs:{shape:n.shape}});return t.disposeData(a.dataId),t.disposeData(p.dataId),u}var HW={kernelName:Is,backendName:"webgpu",kernelFunc:l0};function Bpe(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{numSamples:s,seed:a,normalized:i}=o,p=i?n:l0({inputs:{logits:n},backend:t,attrs:{dim:n.shape.length-1}}),u=p.shape[0],c=p.shape[1],l=new Qx(u,s),m=[{type:"float32",data:[a]},{type:"int32",data:[c]}],d=t.runWebGPUProgram(l,[p],"int32",m);return i||t.disposeData(p.dataId),d}var KW={kernelName:jn,backendName:"webgpu",kernelFunc:Bpe};function zpe(r){let{inputs:e,backend:t}=r,{x:o}=e;if(t.shouldExecuteOnCPU([o])){let s=t.tensorMap.get(o.dataId),[a,i]=Dz(s.values,o.shape,o.dtype);return t.makeTensorInfo(i,o.dtype,a)}let n=new Jr(o.shape,Z.NEG);return t.runWebGPUProgram(n,[o],o.dtype)}var qW={kernelName:pa,backendName:"webgpu",kernelFunc:zpe};function Vpe(r){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:p}=o,u=t.readSync(n.dataId),c=t.readSync(s.dataId),{selectedIndices:l}=Vt.nonMaxSuppressionV3Impl(u,c,a,i,p);return t.makeTensorInfo([l.length],"int32",new Int32Array(l))}var jW={kernelName:Qn,backendName:"webgpu",kernelFunc:Vpe};function Wpe(r){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:p,softNmsSigma:u}=o,c=t.readSync(n.dataId),l=t.readSync(s.dataId),m=a,d=i,f=p,h=u,{selectedIndices:g,selectedScores:x}=Vt.nonMaxSuppressionV5Impl(c,l,m,d,f,h);return[t.makeTensorInfo([g.length],"int32",new Int32Array(g)),t.makeTensorInfo([x.length],"float32",new Float32Array(x))]}var XW={kernelName:Zn,backendName:"webgpu",kernelFunc:Wpe};var Jx=class{constructor(e,t){this.variableNames=["x"],this.uniforms="onValue : f32, offValue : f32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=[e,t],this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="onehot"}getUserCode(){return`
${G("index")} {
if(index < uniforms.size) {
let coords = getCoordsFromIndex(index);
setOutputAtIndex(index, mix(uniforms.offValue, uniforms.onValue,
f32(i32(round(getX(coords.x))) == coords.y)));
}
}
`}};function Upe(r){let{inputs:e,backend:t,attrs:o}=r,{indices:n}=e,{dtype:s,depth:a,onValue:i,offValue:p}=o,u=y.sizeFromShape(n.shape),c=new Jx(u,a),l=pe({inputs:{x:n},backend:t,attrs:{shape:[u]}}),m=[{type:"float32",data:[i]},{type:"float32",data:[p]}],d=t.runWebGPUProgram(c,[l],s,m);t.disposeData(l.dataId);let f=[...n.shape,a],h=pe({inputs:{x:d},backend:t,attrs:{shape:f}});return t.disposeData(d.dataId),h}var YW={kernelName:Jn,backendName:"webgpu",kernelFunc:Upe};function bm(r){let{inputs:e,backend:t}=r,{x:o}=e;if(o.dtype==="complex64"){let n=vi({inputs:{input:o},backend:t}),s=bm({inputs:{x:n},backend:t}),a=Rp({inputs:{input:o},backend:t}),i=bm({inputs:{x:a},backend:t}),p=xo({inputs:{real:s,imag:i},backend:t});return t.disposeData(n.dataId),t.disposeData(s.dataId),t.disposeData(a.dataId),t.disposeData(i.dataId),p}else return vt({attrs:{shape:o.shape,dtype:o.dtype,value:o.dtype==="string"?"":0},backend:t})}var QW={kernelName:Sa,backendName:"webgpu",kernelFunc:bm};function ZW(r){let{inputs:e,backend:t}=r,{x:o}=e;if(o.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(o.dtype==="complex64"){let n=vi({inputs:{input:o},backend:t}),s=ZW({inputs:{x:n},backend:t}),a=Rp({inputs:{input:o},backend:t}),i=bm({inputs:{x:a},backend:t}),p=xo({inputs:{real:s,imag:i},backend:t});return t.disposeData(n.dataId),t.disposeData(s.dataId),t.disposeData(a.dataId),t.disposeData(i.dataId),p}else return vt({attrs:{shape:o.shape,dtype:o.dtype,value:1},backend:t})}var JW={kernelName:ca,backendName:"webgpu",kernelFunc:ZW};function Gpe(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o;if(e.length===1)return Mx({inputs:{input:e[0]},backend:t,attrs:{dim:n}});let s=e[0].shape,a=e[0].dtype;e.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],p=e.map(c=>{let l=Mx({inputs:{input:c},backend:t,attrs:{dim:n}});return i.push(l),l}),u=a0({inputs:p,backend:t,attrs:{axis:n}});return i.forEach(c=>t.disposeData(c.dataId)),u}var eU={kernelName:la,backendName:"webgpu",kernelFunc:Gpe};function m0(r,e=!1){let t=r.length,o=ft(t),n=r.map((l,m)=>`uniforms.pad${m}[0]`).join(","),s=r.map((l,m)=>`uniforms.pad${m}[0] + uniforms.xShape${t>1?`[${m}]`:""}`).join(","),a=t>1?`${o}(${n})`:`${n}`,i=t>1?`${o}(${s})`:`${s}`,p=t>1?"any(paddedCoords < start)":"paddedCoords < start",u=t>1?"any(paddedCoords >= end)":"paddedCoords >= end",c=t>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,t):"coords";return`
let start = ${a};
let end = ${i};
if (${p} || ${u}) {
setOutputAtIndex(index, ${e?0:"uniforms.constantValue"});
} else {
let coords = paddedCoords - start;
setOutputAtIndex(index, getX(${c}));
}
`}var ey=class{constructor(e,t){this.variableNames=["x"],this.uniforms="constantValue : f32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((o,n)=>o[0]+e[n]+o[1]),this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),t.map((o,n)=>{this.uniforms+=` pad${n} : vec2<i32>,`}),this.xShape=e,this.shaderKey="pad"}getUserCode(){return`
${G("index")} {
if (index < uniforms.size) {
let paddedCoords = getCoordsFromIndex(index);
${m0(this.xShape)}
}
}
`}};var Hpe=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{paddings:s,constantValue:a}=o;if(s.every(u=>y.arraysEqual(u,[0,0])))return At({inputs:{x:n},backend:t});if(y.sizeFromShape(n.shape)===0){let u=s.map((c,l)=>c[0]+n.shape[l]+c[1]);return vt({backend:t,attrs:{shape:u,value:a,dtype:n.dtype}})}let i=[{type:"float32",data:[a]}];s.map(u=>i.push({type:"int32",data:[u[0],u[1]]}));let p=new ey(n.shape,s);return t.runWebGPUProgram(p,[n],n.dtype,i)},tU={kernelName:es,backendName:"webgpu",kernelFunc:Hpe};var Kpe=et({opType:fe.POW}),rU={kernelName:ts,backendName:"webgpu",kernelFunc:Kpe};function qpe(r){let{inputs:e,backend:t}=r,{x:o,alpha:n}=e,s=new Ii(fe.PRELU,o.shape,n.shape);return t.runWebGPUProgram(s,[o,n],"float32")}var oU={kernelName:rs,backendName:"webgpu",kernelFunc:qpe};function jpe(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;return eo(n,s,a,"prod",t)}var nU={kernelName:os,backendName:"webgpu",kernelFunc:jpe};var Xpe=r=>{let{backend:e,attrs:t}=r,{start:o,stop:n,step:s,dtype:a}=t,i=Pz(o,n,s,a);return e.makeTensorInfo([i.length],a,i)},sU={kernelName:ma,backendName:"webgpu",kernelFunc:Xpe};var Ype=et({opType:fe.DIV}),aU={kernelName:fn,backendName:"webgpu",kernelFunc:Ype};var Qpe=ye({opType:Z.RECIPROCAL}),iU={kernelName:ns,backendName:"webgpu",kernelFunc:Qpe};var Zpe=ye({opType:Z.RELU}),uU={kernelName:ss,backendName:"webgpu",kernelFunc:Zpe};var Jpe=ye({opType:Z.RELU6}),pU={kernelName:us,backendName:"webgpu",kernelFunc:Jpe};var ty=class{constructor(e,t,o){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, halfPixelCenters : f32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,o,e[3]],this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="resizeBilinear"}getUserCode(){return`
${G("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let b = coords[0];
let d = coords[3];
let rc = coords.yz;
let effectiveInSize = vec2<f32>(
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveOutSize = vec2<f32>(
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveInputOverOutputRatioRC =
effectiveInSize / effectiveOutSize;
// Fractional source index
let sourceFracIndexRC =
(vec2<f32>(rc) + vec2<f32>(uniforms.halfPixelCenters)) *
effectiveInputOverOutputRatioRC - vec2<f32>(uniforms.halfPixelCenters);
// Compute the four integer indices.
let sourceFloorRC = vec2<i32>(sourceFracIndexRC);
let sourceCeilRC = vec2<i32>(
min(vec2<f32>(uniforms.xShape.yz) - vec2<f32>(1.0), ceil(sourceFracIndexRC)));
let topLeft = getX(b, sourceFloorRC.x, sourceFloorRC.y, d);
let bottomLeft = getX(b, sourceCeilRC.x, sourceFloorRC.y, d);
let topRight = getX(b, sourceFloorRC.x, sourceCeilRC.y, d);
let bottomRight = getX(b, sourceCeilRC.x, sourceCeilRC.y, d);
let fracRC = sourceFracIndexRC - vec2<f32>(sourceFloorRC);
let top = topLeft + (topRight - topLeft) * fracRC.y;
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
let newValue = top + (bottom - top) * fracRC.x;
setOutputAtIndex(index, newValue);
}
}
`}};function ece(r){let{inputs:e,backend:t,attrs:o}=r,{images:n}=e,{alignCorners:s,size:a,halfPixelCenters:i}=o,[p,u]=a,c=s&&p>1?1:0,l=s&&u>1?1:0,d=[{type:"float32",data:[c,l]},{type:"float32",data:[i?.5:0]}],f=new ty(n.shape,p,u);return t.runWebGPUProgram(f,[n],"float32",d)}var cU={kernelName:is,backendName:"webgpu",kernelFunc:ece};var ry=class{constructor(e,t){this.variableNames=["dy"],this.uniforms=`effectiveXSize : vec2<i32>, effectiveYSize : vec2<i32>, heightScale : f32, widthScale : f32,
invHeightScale : f32, invWidthScale : f32, winHeight : i32, winWidth : i32,`,this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.alignCorners=t,this.shaderKey=`resizeBilinearBackprop_${t}`}getUserCode(){return`
${G("index")} {
if (index < uniforms.size) {
let coords = getOutputCoords();
let b = coords[0];
let d = coords[3];
let r = coords[1];
let c = coords[2];
var accumulator = 0.0;
// Compute bounds for where in dy we will look
let startRLerp = floor(f32(r) * uniforms.invHeightScale);
let startDyR = i32(startRLerp - f32(uniforms.winHeight / 2));
let startCLerp = floor(f32(c) * uniforms.invWidthScale);
let startDyC = i32(startCLerp - f32(uniforms.winWidth / 2));
// Loop over dy
for (var dyROffset = 0; dyROffset < uniforms.winHeight; dyROffset++) {
let dyR = startDyR + dyROffset;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= uniforms.dyShape[1]) {
continue;
}
for (var dyCOffset = 0; dyCOffset < uniforms.winWidth; dyCOffset++) {
let dyC = startDyC + dyCOffset;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= uniforms.dyShape[2]) {
continue;
}
let dxR = f32(dyR) * uniforms.heightScale;
let topDxRIndex = i32(floor(dxR));
let bottomDxRIndex = i32(min(ceil(dxR), f32(uniforms.outShape[1] - 1)));
let dxRLerp = dxR - f32(topDxRIndex);
let inverseDxRLerp = 1.0 - dxRLerp;
let dxC = f32(dyC) * uniforms.widthScale;
let leftDxCIndex = i32(floor(dxC));
let rightDxCIndex = i32(min(ceil(dxC), f32(uniforms.outShape[2] - 1)));
let dxCLerp = dxC - f32(leftDxCIndex);
let inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutputAtIndex(index, accumulator);
}
}
`}};function tce(r){let{inputs:e,backend:t,attrs:o}=r,{images:n,dy:s}=e,{alignCorners:a}=o,[,i,p]=n.shape,[,u,c]=s.shape,l=[a&&u>1?i-1:i,a&&c>1?p-1:p],m=[a&&u>1?u-1:u,a&&c>1?c-1:c],d=l[0]/m[0],f=l[1]/m[1],h=1/d,g=1/f,x=Math.ceil(h)*2+2,b=Math.ceil(g)*2+2,C=new ry(n.shape,a),S=[{type:"int32",data:l},{type:"int32",data:m},{type:"float32",data:[d]},{type:"float32",data:[f]},{type:"float32",data:[h]},{type:"float32",data:[g]},{type:"int32",data:[x]},{type:"int32",data:[b]}];return t.runWebGPUProgram(C,[s],s.dtype,S)}var lU={kernelName:Ja,backendName:"webgpu",kernelFunc:tce};var oy=class{constructor(e,t,o,n){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, roundBase : f32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,o,e[3]],this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.halfPixelCenters=n,this.shaderKey=`resizeNearest_${n}`}getUserCode(){let e;return this.halfPixelCenters?e="max((vec2<f32>(rc) + vec2<f32>(0.5)) * effectiveInputOverOutputRatioRC, vec2<f32>(0.0))":e="vec2<f32>(rc) * effectiveInputOverOutputRatioRC",`
${G("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let b = coords[0];
let d = coords[3];
let rc = coords.yz;
let effectiveInSize = vec2<f32>(
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveOutSize = vec2<f32>(
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveInputOverOutputRatioRC =
effectiveInSize / effectiveOutSize;
// Fractional source index
let sourceFracIndexRC = ${e};
// Compute the coordinators of nearest neighbor point.
let inputShapeRC = vec2<f32>(f32(uniforms.xShape.y), f32(uniforms.xShape.z));
let sourceNearestRC = vec2<i32>(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + uniforms.roundBase)));
let newValue = getX(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutputAtIndex(index, newValue);
}
}
`}};function rce(r){let{inputs:e,backend:t,attrs:o}=r,{images:n}=e,{alignCorners:s,halfPixelCenters:a,size:i}=o,[p,u]=i,c=s&&p>1?1:0,l=s&&u>1?1:0,d=[{type:"float32",data:[c,l]},{type:"float32",data:[s?.5:0]}],f=new oy(n.shape,p,u,a);return t.runWebGPUProgram(f,[n],n.dtype,d)}var mU={kernelName:as,backendName:"webgpu",kernelFunc:rce};var ny=class{constructor(e,t){this.variableNames=["dy"],this.uniforms=`effectiveXSize : vec2<i32>, effectiveYSize : vec2<i32>, invHeightScale : f32, invWidthScale : f32,
winHeight : i32, winWidth : i32,`,this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.alignCorners=t,this.shaderKey=`resizeNearestNeigborBackprop_${t}`}getUserCode(){return`
${G("index")} {
if (index < uniforms.size) {
let coords = getOutputCoords();
let b = coords[0];
let d = coords[3];
let r = coords[1];
let c = coords[2];
var accumulator = 0.0;
// Compute bounds for where in dy we will look
let startRLerp = floor(f32(r) * uniforms.invHeightScale);
let startDyR = i32(floor(startRLerp - f32(uniforms.winHeight / 2)));
let startCLerp = floor(f32(c) * uniforms.invWidthScale);
let startDyC = i32(floor(startCLerp - f32(uniforms.winWidth / 2)));
// Loop over dy
for (var dyROffset = 0; dyROffset < uniforms.winHeight; dyROffset++) {
let dyR = startDyR + dyROffset;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= uniforms.dyShape[1]) {
continue;
}
for (var dyCOffset = 0; dyCOffset < uniforms.winWidth; dyCOffset++) {
let dyC = startDyC + dyCOffset;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= uniforms.dyShape[2]) {
continue;
}
let sourceFracRow = f32(uniforms.effectiveXSize[0]) *
(f32(dyR) / f32(uniforms.effectiveYSize[0]));
let sourceFracCol = f32(uniforms.effectiveXSize[1]) *
(f32(dyC) / f32(uniforms.effectiveYSize[1]));
let sourceNearestRow =
i32(min(f32(uniforms.outShape[1] - 1),
${this.alignCorners?"floor(sourceFracRow + 0.5)":"floor(sourceFracRow)"}));
let sourceNearestCol =
i32(min(f32(uniforms.outShape[2] - 1),
${this.alignCorners?"floor(sourceFracCol + 0.5)":"floor(sourceFracCol)"}));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutputAtIndex(index, accumulator);
}
}
`}};function oce(r){let{inputs:e,backend:t,attrs:o}=r,{images:n,dy:s}=e,{alignCorners:a}=o,[,i,p]=n.shape,[,u,c]=s.shape,l=[a&&u>1?i-1:i,a&&c>1?p-1:p],m=[a&&u>1?u-1:u,a&&c>1?c-1:c],d=l[0]/m[0],f=l[1]/m[1],h=1/d,g=1/f,x=Math.ceil(h)*2+2,b=Math.ceil(g)*2+2,C=new ny(n.shape,a),S=[{type:"int32",data:l},{type:"int32",data:m},{type:"float32",data:[h]},{type:"float32",data:[g]},{type:"int32",data:[x]},{type:"int32",data:[b]}];return t.runWebGPUProgram(C,[s],s.dtype,S)}var dU={kernelName:Za,backendName:"webgpu",kernelFunc:oce};var sy=class{constructor(e){this.variableNames=["x"],this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.uniforms=" axis : vec4<i32>,",this.shaderKey="reverse"}getUserCode(){return`
// Using uniform variables as judging conditions, so the function has
// coherent execution within all threads.
fn getReverseCoords(coords : vec4<i32>) -> vec4<i32> {
var reverseCoords = coords;
if (uniforms.axis[0] == 1) {
reverseCoords[0] = uniforms.xShape[0] - coords[0] - 1;
}
if (uniforms.axis[1] == 1) {
reverseCoords[1] = uniforms.xShape[1] - coords[1] - 1;
}
if (uniforms.axis[2] == 1) {
reverseCoords[2] = uniforms.xShape[2] - coords[2] - 1;
}
if (uniforms.axis[3] == 1) {
reverseCoords[3] = uniforms.xShape[3] - coords[3] - 1;
}
return reverseCoords;
}
${G("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let reverseCoords = getReverseCoords(coords);
setOutputAtIndex(index, getX(reverseCoords[0],
reverseCoords[1], reverseCoords[2], reverseCoords[3]));
}
}
`}};function nce(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dims:s}=o,a=n.shape.length;if(a===0)return At({inputs:{x:n},backend:t});let i=n.shape,p=[1,1,1,1];i.forEach((g,x)=>{let b=x+4-a;p[b]=g});let u=y.parseAxisParam(s,n.shape),c=[0,0,0,0];u.forEach(g=>{let x=g+4-a;c[x]=1});let l=[{type:"int32",data:c}],m=pe({inputs:{x:n},backend:t,attrs:{shape:p}}),d=new sy(p),f=t.runWebGPUProgram(d,[m],m.dtype,l);t.disposeData(m.dataId);let h=pe({inputs:{x:f},backend:t,attrs:{shape:i}});return t.disposeData(f.dataId),h}var fU={kernelName:ps,backendName:"webgpu",kernelFunc:nce};var ay=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.uniforms=`centerX : f32, centerY : f32, sinRadians : f32,
cosRadians : f32,`,this.shaderKey="rotate",this.outputShape=e,typeof t=="number"?(this.uniforms+=" fillValue : f32,",this.fillSnippet="var outputValue = uniforms.fillValue;",this.shaderKey+="_float"):(this.uniforms+=" fillValue : vec3<f32>,",this.fillSnippet="var outputValue = uniforms.fillValue[coords[3]];",this.shaderKey+="_vec3")}getUserCode(){return`
${G("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let coordXFloat = (f32(coords[2]) - uniforms.centerX) *
uniforms.cosRadians - (f32(coords[1]) - uniforms.centerY) *
uniforms.sinRadians;
let coordYFloat = (f32(coords[2]) - uniforms.centerX) *
uniforms.sinRadians + (f32(coords[1]) - uniforms.centerY) *
uniforms.cosRadians;
let coordX = i32(round(coordXFloat + uniforms.centerX));
let coordY = i32(round(coordYFloat + uniforms.centerY));
${this.fillSnippet}
if(coordX >= 0 && coordX < uniforms.xShape[2] && coordY >= 0 &&
coordY < uniforms.xShape[1]) {
outputValue = getX(coords[0], coordY, coordX, coords[3]);
}
setOutputAtIndex(index, outputValue);
}
}
`}};var hU={kernelName:Ds,backendName:"webgpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:o}=r,{radians:n,fillValue:s,center:a}=e,i=t,p=new ay(o.shape,s),[u,c]=w.getImageCenter(a,o.shape[1],o.shape[2]),l=[{type:"float32",data:[u]},{type:"float32",data:[c]},{type:"float32",data:[Math.sin(n)]},{type:"float32",data:[Math.cos(n)]}];return typeof s=="number"?l.push({type:"float32",data:[Number.parseFloat(s.toFixed(2))]}):l.push({type:"float32",data:s}),i.runWebGPUProgram(p,[o],o.dtype,l)}};var sce=ye({opType:Z.ROUND}),gU={kernelName:cs,backendName:"webgpu",kernelFunc:sce};var ace=ye({opType:Z.RSQRT,cpuKernelImpl:Oz}),xU={kernelName:ls,backendName:"webgpu",kernelFunc:ace};var za=class{constructor(e,t,o,n,s,a,i,p=!0){this.variableNames=["updates","indices"],this.workgroupSize=[64,1,1],this.atomic=!0,this.outputShape=a,this.type=i,this.sumDupeIndices=p,this.dispatchLayout=X(e),this.dispatch=H(this.dispatchLayout,e,this.workgroupSize),this.sliceDimGreaterThanOne=t>1,this.shaderKey=`scatter_${o}_${n}_${this.sliceDimGreaterThanOne}_${i}_${p}_${s.length}`;let u=ft(s.length);this.uniforms=`sliceDim : i32, strides: ${u}, updatesSize: i32,`,this.updatesRank=n,this.indicesRank=o}getUserCode(){let e="";this.indicesRank===1?e="coords[0]":this.indicesRank===2&&(e="coords[0], j");let t=`getIndices(${e})`,o=this.sliceDimGreaterThanOne?"uniforms.strides[j]":"uniforms.strides",n="",s="";this.dispatchLayout.x.length===1?(n="flattenedIndex",s=`
fn getUpdatesCoordsFromFlatIndex(index : i32) -> i32 {
return index;
}
`):this.dispatchLayout.x.length===2&&(n="vec2<i32>(flattenedIndex, coords[1])",s=`
fn getUpdatesCoordsFromFlatIndex(index : i32) -> vec2<i32> {
// N.B. |updates| could be a scalar tensor, conceptually representing a
// 2D tensor with all values equal to that. By design, its size must be
// the same as |outShape[1]| in one dimension, and |indicesShape[0]|
// gives the other.
let sliceSize = uniforms.outShape[1];
let d0 = index / sliceSize;
let d1 = index - d0 * sliceSize;
return vec2<i32>(d0, d1);
}
`);let i=`getUpdates(${Array.from({length:this.updatesRank},(u,c)=>`coords[${c}]`).join(", ")})`;return`
${s}
${G("index")} {
if (index < uniforms.updatesSize) {
let coords = getUpdatesCoordsFromFlatIndex(index);
var flattenedIndex = 0;
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
let indexInside = i32(round(${t}));
flattenedIndex = flattenedIndex + indexInside * ${o};
}
let updateValue =
${Su(this.type)}(${i});
let flatIndex = getOutputIndexFromCoords(${n});
${this.sumDupeIndices?Qr("&result[flatIndex]","updateValue",this.type):"atomicStore(&result[flatIndex], bitcast<i32>(updateValue));"}
}
}`}};function ice(r){let{inputs:e,backend:t,attrs:o}=r,{indices:n,updates:s}=e,{shape:a}=o,{sliceRank:i,numUpdates:p,sliceSize:u,strides:c,outputSize:l}=w.calculateShapes(s,n,a),m=[l/u,u];if(l===0)return t.makeTensorInfo(a,n.dtype);let d=pe({inputs:{x:n},backend:t,attrs:{shape:[p,i]}}),f=pe({inputs:{x:s},backend:t,attrs:{shape:[p,u]}}),h=f.dtype,g=vt({backend:t,attrs:{shape:m,value:0,dtype:h}}),x=y.sizeFromShape(f.shape),b=[{type:"int32",data:[i]},{type:"int32",data:c},{type:"int32",data:[x]}],C=new za(f.shape,i,d.shape.length,f.shape.length,c,m,h),S=t.runWebGPUProgram(C,[f,d],h,b,g),k=pe({inputs:{x:S},backend:t,attrs:{shape:a}});return t.disposeData(d.dataId),t.disposeData(f.dataId),t.disposeData(S.dataId),k}var yU={kernelName:ms,backendName:"webgpu",kernelFunc:ice};var iy=class{constructor(e,t){this.outputShape=[],this.variableNames=["sortedSequence","values"],this.uniforms="numInputs : i32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.side=t,this.shaderKey=`search_sorted_${t}`}getUserCode(){return`
fn findBound(batch: i32, value: f32) -> i32 {
var left = i32(0);
var right = uniforms.numInputs;
while (left < right) {
var mid = (left + right) / 2;
if (getSortedSequence(batch, mid) ${this.side==="left"?"<":"<="} value) {
left = mid + 1;
} else {
right = mid;
}
}
return right;
}
${G("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let value = getValuesByOutputIndex(index);
setOutputAtIndexI32(index, findBound(coords[0], value));
}
}
`}};function uce(r){let{inputs:e,backend:t,attrs:o}=r,{sortedSequence:n,values:s}=e,{side:a}=o,i=new iy([s.shape[0],s.shape[1]],a),p=[{type:"int32",data:[n.shape[1]]}];return t.runWebGPUProgram(i,[n,s],"int32",p)}var bU={kernelName:fs,backendName:"webgpu",kernelFunc:uce};var uy=class{constructor(e,t,o){this.variableNames=["c","a","b"],this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.cRank=e,this.rank=o,this.shaderKey="select"}getUserCode(){let e,t;if(this.rank>4)throw Error(`Where for rank ${this.rank} is not yet supported`);if(this.rank===1)t="resRC",e="resRC";else{let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[],a=[];for(let i=0;i<this.outputShape.length;i++)a.push(`${n[i]}`),i<this.cRank&&s.push(`${n[i]}`);e=s.join(),t=a.join()}return`
${G("index")} {
if (index < uniforms.size) {
let resRC = getCoordsFromIndex(index);
let cVal = getC(${e});
if (cVal >= 1.0) {
setOutputAtIndex(index, getA(${t}));
} else {
setOutputAtIndex(index, getB(${t}));
}
}
}
`}};function pce(r){let{inputs:e,backend:t}=r,{condition:o,t:n,e:s}=e,a=new uy(o.shape.length,n.shape,n.shape.length);return t.runWebGPUProgram(a,[o,n,s],dt(n.dtype,s.dtype))}var CU={kernelName:fa,backendName:"webgpu",kernelFunc:pce};var cce=ye({opType:Z.SELU}),wU={kernelName:hs,backendName:"webgpu",kernelFunc:cce};var lce=ye({opType:Z.SIGMOID}),SU={kernelName:bs,backendName:"webgpu",kernelFunc:lce};var mce=ye({opType:Z.SIGN}),IU={kernelName:ys,backendName:"webgpu",kernelFunc:mce};var dce=ye({opType:Z.SIN}),vU={kernelName:gs,backendName:"webgpu",kernelFunc:dce};var fce=ye({opType:Z.SINH}),kU={kernelName:xs,backendName:"webgpu",kernelFunc:fce};var hce=ye({opType:Z.SOFTPLUS}),NU={kernelName:Cs,backendName:"webgpu",kernelFunc:hce};var py=class{constructor(e,t,o,n,s,a){this.variableNames=["x"],this.outputShape=[],this.uniforms="",this.workgroupSize=[64,1,1],this.size=!0;let i=new Array(n.length);for(let p=0;p<i.length;p++)i[p]=n[s[p]];this.outputShape=i,this.newDim=s,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.xShape=e,this.paddedXShape=t,this.uniforms+=`reshapedPaddedXShape : ${ft(n.length)}, paddedXShapeStrides : ${ft(a)}, `,o.map((p,u)=>{this.uniforms+=` pad${u} : vec2<i32>,`}),this.shaderKey=`spaceToBatchND_${s}`}getUserCode(){let e=ft(this.outputShape.length),t=e0(this.newDim);return`
${cm(this.paddedXShape,"PaddedX")}
${G("index")} {
if(index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let switchedIndex = getIndexFromCoords${this.outputShape.length}D(${e}(${t}), uniforms.reshapedPaddedXShape);
let paddedCoords = getPaddedXCoordsFromIndex(switchedIndex);
${m0(this.xShape,!0)}
}
}
`}};var gce=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,paddings:a}=o;y.assert(n.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet");let i=s.reduce((b,C)=>b*C),p=[[0,0]];p.push(...a);for(let b=1+s.length;b<n.shape.length;++b)p.push([0,0]);let u=p.map((b,C)=>b[0]+n.shape[C]+b[1]),c=w.getReshaped(u,s,i,!1),l=w.getPermuted(c.length,s.length,!1),m=w.getReshapedPermuted(u,s,i,!1),d=y.computeStrides(u),f=new py(n.shape,u,p,c,l,d.length),h=[{type:"int32",data:c},{type:"int32",data:d}];p.map(b=>h.push({type:"int32",data:[b[0],b[1]]}));let g=t.runWebGPUProgram(f,[n],n.dtype,h),x=pe({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeData(g.dataId),x},TU={kernelName:ga,backendName:"webgpu",kernelFunc:gce};var cy=class{constructor(e,t,o){this.variableNames=["input","indices","segmentIds"],this.outputShape=[],this.uniforms="segmentSize : i32, sparseSize : i32,",this.workgroupSize=[64,1,1],this.atomic=!0,this.outputShape=e,this.type=o,this.dispatchLayout=X([t]),this.dispatch=H(this.dispatchLayout,[t],this.workgroupSize),this.shaderKey="sparseSegmentSum"}getUserCode(){return`
${G("index")} {
if (index < uniforms.sparseSize) {
let indexInSegmentIds = index / uniforms.segmentSize;
let indexInSegment = index % uniforms.segmentSize;
let indexInInput = indices[indexInSegmentIds];
let segmentId = segmentIds[indexInSegmentIds];
let value = input[indexInInput * uniforms.segmentSize + indexInSegment];
let outIndex = segmentId * uniforms.segmentSize + indexInSegment;
${Qr("&result[outIndex]","value",this.type)}
}
}
`}},ly=class{constructor(e,t){this.variableNames=["segmentIds"],this.outputShape=[],this.workgroupSize=[64,1,1],this.atomic=!0,this.outputShape=[e],this.dispatchLayout=X(t),this.dispatch=H(this.dispatchLayout,t,this.workgroupSize),this.shaderKey="sparseSegmentIdCountProgram"}getUserCode(){return`
${G("index")} {
if (index < uniforms.segmentIdsShape) {
let segmentId = segmentIds[index];
${Qr("&result[segmentId]","1","int32")}
}
}
`}},my=class{constructor(e,t){this.variableNames=["segmentSum","sameSegmentIdCount"],this.outputShape=[],this.uniforms="segmentSize : i32",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.type=t,this.dispatchLayout=X(e),this.dispatch=H(this.dispatchLayout,e,this.workgroupSize),this.shaderKey="sparseSegmentMean"}getUserCode(){return`
${G("index")} {
if (index < uniforms.size) {
let segmentId = index / uniforms.segmentSize;
let count = sameSegmentIdCount[segmentId];
if (count != 0) {
${this.type==="float32"?"setOutputAtIndex(index, segmentSum[index] / f32(count));":"setOutputAtIndexI32(index, segmentSum[index] / count);"}
}
}
}
`}};function dy(r,e,t,o=!1,n){let a=y.sizeFromShape(r.shape)/r.shape[0],i=r.dtype,p=y.sizeFromShape(e.shape),u=n.readSync(t.dataId),l=p>0?u[p-1]+1:0,m,d=r.shape.slice();d[0]=l;let f=p*a,h=vt({backend:n,attrs:{shape:d,value:0,dtype:i}});m=new cy(d,f,i);let g=[{type:"int32",data:[a]},{type:"int32",data:[f]}],x=n.runWebGPUProgram(m,[r,e,t],i,g,h);if(o)return x;let b=vt({backend:n,attrs:{shape:[l],value:0,dtype:"int32"}});m=new ly(l,t.shape);let C=n.runWebGPUProgram(m,[t],"int32",null,b),S=vt({backend:n,attrs:{shape:d,value:0,dtype:i}});m=new my(d,i),g=[{type:"int32",data:[a]}];let k=n.runWebGPUProgram(m,[x,C],i,g,S);return n.disposeData(x.dataId),n.disposeData(C.dataId),k}function xce(r){let{inputs:e,backend:t}=r,{data:o,indices:n,segmentIds:s}=e;return dy(o,n,s,!1,t)}var _U={kernelName:ya,backendName:"webgpu",kernelFunc:xce};function yce(r){let{inputs:e,backend:t}=r,{data:o,indices:n,segmentIds:s}=e;return dy(o,n,s,!0,t)}var EU={kernelName:ba,backendName:"webgpu",kernelFunc:yce};var fy=class{constructor(e,t){this.variableNames=["A"],this.workgroupSize=[64,1,1],this.size=!0;let o=new Array(e.length);for(let n=0;n<o.length;n++)o[n]=e[n]*t[n];this.outputShape=o,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.rank=this.outputShape.length,this.shaderKey="tile"}getUserCode(){let e=bce(this.rank,"uniforms.");return`
${G("index")} {
if (index < uniforms.size) {
let resRC = getCoordsFromIndex(index);
setOutputAtIndex(index, getA(${e}));
}
}
`}};function bce(r,e=""){if(r>=5)throw Error(`Tile for rank ${r} is not yet supported`);if(r===1)return`(resRC % ${e}aShape)`;let t=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[];for(let n=0;n<r;n++)o.push(`(${t[n]} % ${e}aShape[${n}])`);return o.join()}function Cm(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{reps:s}=o;if(t.shouldExecuteOnCPU([n])||n.dtype==="string"||n.shape.length>=5){let p=t.readSync(n.dataId),u=n.dtype==="string"?p.map(m=>y.decodeString(m)):p,c=me(n.shape,n.dtype,u),l=Uz(c,s);return t.makeTensorInfo(l.shape,l.dtype,l.values)}let a=new fy(n.shape,s);return t.runWebGPUProgram(a,[n],n.dtype)}var $U={kernelName:po,backendName:"webgpu",kernelFunc:Cm};function Cce(r){let{inputs:e,backend:t,attrs:o}=r,{sparseIndices:n,sparseValues:s,defaultValue:a}=e,{outputShape:i}=o,{sliceRank:p,numUpdates:u,sliceSize:c,strides:l,outputSize:m}=w.calculateShapes(s,n,i),d=!1;if(s.dtype==="string"){let R=t.bufferSync(n),D=t.bufferSync(s),P=y.decodeString(t.readSync(a.dataId)[0]),O=Mz(R,D,i,m,c,u,p,l,P,d);return t.makeTensorInfo(i,O.dtype,O.values)}let f=[m/c,c],h=pe({inputs:{x:n},backend:t,attrs:{shape:[u,p]}}),g=s.shape.length?pe({inputs:{x:s},backend:t,attrs:{shape:[u,c]}}):At({inputs:{x:s},backend:t}),x=g.dtype,b=t.makeTensorInfo([],x,y.makeZerosTypedArray(1,x)),C=pe({inputs:{x:a},backend:t,attrs:{shape:Array(f.length).fill(1)}}),S=Cm({inputs:{x:C},backend:t,attrs:{reps:f}}),k=y.sizeFromShape([u,c]),_=[{type:"int32",data:[p]},{type:"int32",data:l},{type:"int32",data:[k]}];switch(u){case 0:break;case 1:{let R=new za([u,c],p,h.shape.length,g.shape.length,l,f,x,d);t.runWebGPUProgram(R,[g,h],x,_,S)}break;default:{let R=new za([u,c],p,h.shape.length,b.shape.length,l,f,x,d);t.runWebGPUProgram(R,[b,h],x,_,S)}{let R=new za([u,c],p,h.shape.length,g.shape.length,l,f,x);t.runWebGPUProgram(R,[g,h],x,_,S)}}let $=pe({inputs:{x:S},backend:t,attrs:{shape:i}});return t.disposeData(h.dataId),t.disposeData(g.dataId),t.disposeData(C.dataId),t.disposeData(b.dataId),t.disposeData(S.dataId),$}var RU={kernelName:vs,backendName:"webgpu",kernelFunc:Cce};function wce(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{numOrSizeSplits:s,axis:a}=o,i=y.parseAxisParam(a,n.shape)[0],p=w.prepareSplitSize(n,s,i),u=n.shape.length,c=new Array(u).fill(0),l=n.shape.slice();return p.map(m=>{let d=[...l];d[i]=m;let f=Hs({inputs:{x:n},backend:t,attrs:{begin:c,size:d}});return c[i]+=m,f})}var DU={kernelName:xa,backendName:"webgpu",kernelFunc:wce};var Sce=ye({opType:Z.SQRT}),AU={kernelName:ws,backendName:"webgpu",kernelFunc:Sce};var FU={kernelName:qi,backendName:"webgpu",kernelFunc:({inputs:r,backend:e})=>{let{x:t}=r,o=e,n=new Jr(t.shape,Z.SQUARE);return o.runWebGPUProgram(n,[t],t.dtype)}};var Ice=et({opType:fe.SQUARED_DIFFERENCE}),PU={kernelName:ks,backendName:"webgpu",kernelFunc:Ice};function vce({inputs:r,attrs:e,backend:t}){let{x:o}=r,n=new Jr(o.shape,Z.STEP,"stepAlpha : f32,"),s=[{type:"float32",data:[e.alpha]}];return t.runWebGPUProgram(n,[o],o.dtype,s)}var OU={kernelName:wo,backendName:"webgpu",kernelFunc:vce};var hy=class{constructor(e){this.variableNames=["x"],this.workPerThread=1,this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize,[this.workPerThread,1,1]);let t=ft(this.outputShape.length);this.uniforms=`begin : ${t}, strides : ${t}, `,this.shaderKey="stridedSlice"}getUserCode(){let e=this.outputShape.length,t="";if(e===1)t="coords * uniforms.strides + uniforms.begin";else{let n=0;t=this.outputShape.map((s,a)=>(n++,this.outputShape.length===1?`coords * uniforms.strides[${a}] + uniforms.begin[${a}]`:`coords[${n-1}] * uniforms.strides[${a}] + uniforms.begin[${a}]`)).join(",")}return`
${G("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
setOutputAtIndex(index, getX(${t}));
}
}
`}};function kce(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{begin:s,end:a,strides:i,beginMask:p,endMask:u,ellipsisMask:c,newAxisMask:l,shrinkAxisMask:m}=o,{finalShapeSparse:d,finalShape:f,isIdentity:h,sliceDim0:g,isSimpleSlice:x,begin:b,end:C,strides:S}=pt.sliceInfo(n.shape,s,a,i,p,u,c,l,m),k;if(h)k=pe({inputs:{x:n},backend:t,attrs:{shape:f}});else if(g||x){y.assert(n.shape.length>=1,()=>`Input must have rank at least 1, got: ${n.shape.length}`);let _=pt.computeOutShape(b,C,S),$=Hs({inputs:{x:n},backend:t,attrs:{begin:b,size:_}});k=pe({inputs:{x:$},backend:t,attrs:{shape:f}}),t.disposeData($.dataId)}else if(t.shouldExecuteOnCPU([n])){let $=t.readSync(n.dataId),R=me(n.shape,n.dtype,$),D=zz(d,R,S,b);k=t.makeTensorInfo(f,n.dtype,D.values)}else{let $=new hy(d),R=[{type:"int32",data:b},{type:"int32",data:S}],D=t.runWebGPUProgram($,[n],n.dtype,R);k=pe({inputs:{x:D},backend:t,attrs:{shape:f}}),t.disposeData(D.dataId)}return k}var MU={kernelName:Ns,backendName:"webgpu",kernelFunc:kce};function Nce(r){let{inputs:e,backend:t,attrs:o}=r,{separator:n,nGramWidths:s,leftPad:a,rightPad:i,padWidth:p,preserveShortSequences:u}=o,{data:c,dataSplits:l}=e,m=t.readSync(c.dataId),d=t.readSync(l.dataId),[f,h]=Vz(m,d,n,s,a,i,p,u);return[t.makeTensorInfo([f.length],"string",f),t.makeTensorInfo(l.shape,"int32",h)]}var LU={kernelName:Ca,backendName:"webgpu",kernelFunc:Nce};var Tce=et({opType:fe.SUB,cpuKernelImpl:Wz,supportsComplex:!0}),BU={kernelName:Ts,backendName:"webgpu",kernelFunc:Tce};var _ce=ye({opType:Z.TAN}),zU={kernelName:_s,backendName:"webgpu",kernelFunc:_ce};var Ece=ye({opType:Z.TANH}),VU={kernelName:Es,backendName:"webgpu",kernelFunc:Ece};function $ce(r){let{inputs:e,backend:t,attrs:o}=r,{tensor:n,indices:s,updates:a}=e,{}=o,{sliceRank:i,numUpdates:p,sliceSize:u,strides:c,outputSize:l}=w.calculateShapes(a,s,n.shape),m=[l/u,u];if(l===0)return t.makeTensorInfo(n.shape,s.dtype);let d=[],f=pe({inputs:{x:s},backend:t,attrs:{shape:[p,i]}});d.push(f);let h=pe({inputs:{x:a},backend:t,attrs:{shape:[p,u]}});d.push(h);let g=pe({inputs:{x:n},backend:t,attrs:{shape:m}});d.push(g);let x=Cm({inputs:{x:g},backend:t,attrs:{reps:Array(m.length).fill(1)}}),b=new za([p,u],i,f.shape.length,h.shape.length,c,m,n.dtype,!1),C=y.sizeFromShape([p,u]),S=[{type:"int32",data:[i]},{type:"int32",data:c},{type:"int32",data:[C]}],k=t.runWebGPUProgram(b,[h,f],g.dtype,S,x);d.push(k);let _=pe({inputs:{x:k},backend:t,attrs:{shape:n.shape}});return d.forEach($=>t.disposeData($.dataId)),_}var WU={kernelName:ds,backendName:"webgpu",kernelFunc:$ce};var gy=class{constructor(e){this.variableNames=["x","indices"],this.workgroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.uniforms=`inputSize : i32, firstPass : i32, negativeInf : f32,
dir : i32, inc : i32,`,this.shaderKey="swap"}getUserCode(){return`
${G("index")} {
if (index < uniforms.size) {
let outC = getCoordsFromIndex(index);
let batch = outC[0];
let elemIdx = outC[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced
// above, Figure5(a) shows that element[1] is in the second half of
// the group when group size is 2, but it is in the first half of
// the group when group size is 4.
let isFirstInPair = elemIdx % (2 * uniforms.inc) < uniforms.inc;
var i = 0;
if (isFirstInPair) {
i = elemIdx;
} else {
i = elemIdx - uniforms.inc;
}
var i0 = 0;
if (uniforms.firstPass == 1) {
i0 = i;
} else {
i0 = i32(getIndices(batch, i));
}
var i1 = 0;
if (uniforms.firstPass == 1) {
i1 = i + uniforms.inc;
} else {
i1 = i32(getIndices(batch, i + uniforms.inc));
}
var x0 = f32(0.0);
var x1 = f32(0.0);
if (i0 < uniforms.inputSize) {
x0 = getX(batch, i0);
} else {
x0 = uniforms.negativeInf;
}
if (i1 < uniforms.inputSize) {
x1 = getX(batch, i1);
} else {
x1 = uniforms.negativeInf;
}
let reverse = elemIdx % (2 * uniforms.dir) >= uniforms.dir;
let isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) {
// Elements in opposite order of direction
let iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutputAtIndex(index, f32(i0));
} else {
setOutputAtIndex(index, f32(i1));
}
}
}
`}},xy=class{constructor(e){this.variableNames=["x","indices"],this.workgroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.uniforms="inputSize : i32, firstPass : i32, k : i32,",this.shaderKey="merge"}getUserCode(){return`
${G("index")} {
if (index < uniforms.size) {
let outC = getCoordsFromIndex(index);
let batch = outC[0];
let elemIdx = outC[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _
// (k=4), we only need to output the indices at positions |, the
// indices at positions _ can be thrown away, see Figure5(b) After
// Phase 2 (Merge phase) in the Bitonic Top K paper referenced
// above.
// For example, the paper shows we only need to output the orange
// bars. The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back to
// the previous sequence to find the corresponding value, we need
// to double the index. When we double the index, we basically
// interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k
// position of each 2k positions by - elemIdx % k. E.g. for output
// at index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
var i = 0;
if (elemIdx < uniforms.k) {
i = elemIdx;
} else {
i = elemIdx * 2 - elemIdx % uniforms.k;
}
var i0 = 0;
if (uniforms.firstPass == 1) {
i0 = i;
} else {
i0 = i32(getIndices(batch, i));
}
var i1 = 0;
if (uniforms.firstPass == 1) {
i1 = i + uniforms.k;
} else {
i1 = i32(getIndices(batch, i + uniforms.k));
}
let x0 = getX(batch, i0);
var x1 = f32(0.0);
if (i1 < uniforms.inputSize) {
x1 = getX(batch, i1);
} else {
x1 = x0;
}
if (x0 >= x1) {
setOutputAtIndex(index, f32(i0));
} else {
setOutputAtIndex(index, f32(i1));
}
}
}
`}};function rl(r,e){e!==null&&r.disposeData(e.dataId)}function UU(r){let e=1;for(;e<r;)e*=2;return e}function Rce(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{k:s,sorted:a}=o,i=n.shape,p=i[i.length-1];if(t.shouldExecuteOnCPU([n])){let k=t.readSync(n.dataId),[_,$]=Gz(k,i,n.dtype,s,a);return[t.makeTensorInfo(_.shape,_.dtype,_.values),t.makeTensorInfo($.shape,$.dtype,$.values)]}if(s===0)return i[i.length-1]=0,[t.makeTensorInfo(i,n.dtype,[]),t.makeTensorInfo(i,"int32",[])];if(p===1)return[n,vt({attrs:{shape:i,dtype:"int32",value:0},backend:t})];let c=y.sizeFromShape(i)/p,l=pe({inputs:{x:n},attrs:{shape:[c,p]},backend:t}),m=UU(s),d=UU(p),f=null,h=()=>f===null?[l,l]:[l,f],g=(k,_,$)=>{let R=h(),D=new gy($),O=[{type:"int32",data:[p]},{type:"int32",data:[f===null?1:0]},{type:"float32",data:[Number.NEGATIVE_INFINITY]},{type:"int32",data:[k]},{type:"int32",data:[_]}],M=f;f=t.runWebGPUProgram(D,R,"int32",O),rl(t,M)};for(let k=1;k<m;k*=2){let _=k*2;for(let $=k;$>=1;$/=2)g(_,$,[c,d])}for(let k=d;k>m;k/=2){let _=h(),$=new xy([c,k/2]),D=[{type:"int32",data:[p]},{type:"int32",data:[f===null?1:0]},{type:"int32",data:[m]}],P=f;f=t.runWebGPUProgram($,_,"int32",D),rl(t,P);let O=m/2,M=O*2;for(let L=O;L>=1;L/=2)g(M,L,f.shape)}let x=f;f=Hs({inputs:{x:f},backend:t,attrs:{begin:0,size:[c,s]}}),rl(t,x);let b=c0({inputs:{x:l,indices:f},backend:t,attrs:{axis:1,batchDims:1}});rl(t,l);let C=i.slice(0,-1);C.push(s),x=f,f=pe({inputs:{x:f},attrs:{shape:C},backend:t}),rl(t,x);let S=b;return b=pe({inputs:{x:b},attrs:{shape:C},backend:t}),rl(t,S),[b,f]}var GU={kernelName:$s,backendName:"webgpu",kernelFunc:Rce};var yy=class{constructor(e){this.variableNames=["Image","Transforms"],this.uniforms="interpolationModeId : i32, fillModeId : i32, fillValue : f32,",this.workgroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=X(this.outputShape),this.dispatch=H(this.dispatchLayout,this.outputShape,this.workgroupSize),this.shaderKey="transform"}getUserCode(){return`
fn mapCoord(outCoord : f32, len : f32) -> f32{
var inCoord = outCoord;
if(uniforms.fillModeId == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * f32(i32(f32(-inCoord / sz2))) +
inCoord;
}
if (inCoord < -len) {
inCoord = inCoord + sz2;
} else {
inCoord = -inCoord - 1.0;
}
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz2 = 2.0 * len;
inCoord = inCoord - sz2 * f32(i32(f32(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (uniforms.fillModeId == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz = len - 1.0;
inCoord = inCoord + len * (f32(i32(f32(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz = len - 1.0;
inCoord = inCoord - len * f32(i32(f32(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (uniforms.fillModeId == 4) {
return clamp(outCoord, 0.0, len - 1.0);
}
return outCoord;
}
fn readWithFillValue(batch : i32, coordY : i32, coordX : i32,
channel : i32) -> f32 {
var outputValue : f32;
if (0 <= coordY && coordY < uniforms.imageShape[1] && 0 <= coordX && coordX < uniforms.imageShape[2]) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = uniforms.fillValue;
}
return outputValue;
}
${G("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
var outputValue : f32;
let batch = coords[0];
let x = coords[2];
let y = coords[1];
let channel = coords[3];
let xf = f32(x);
let yf = f32(y);
let a1 = getTransforms(batch, 0);
let a2 = getTransforms(batch, 1);
let a3 = getTransforms(batch, 2);
let b1 = getTransforms(batch, 3);
let b2 = getTransforms(batch, 4);
let b3 = getTransforms(batch, 5);
let c1 = getTransforms(batch, 6);
let c2 = getTransforms(batch, 7);
let projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = uniforms.fillValue;
} else {
let inX = (a1 * xf + a2 * yf + a3) / projection;
let inY = (b1 * xf + b2 * yf + b3) / projection;
let mapX = mapCoord(inX, f32(uniforms.imageShape[2]));
let mapY = mapCoord(inY, f32(uniforms.imageShape[1]));
if (uniforms.interpolationModeId == 1) {
let coordY = i32(round(mapY));
let coordX = i32(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
let yFloor = floor(mapY);
let xFloor = floor(mapX);
let yCeil = yFloor + 1.0;
let xCeil = xFloor + 1.0;
let valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, i32(yFloor), i32(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, i32(yFloor), i32(xCeil), channel);
let valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, i32(yCeil), i32(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, i32(yCeil), i32(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutputAtIndex(index, outputValue);
}
}
`}};function Dce(r){let{inputs:e,backend:t,attrs:o}=r,{image:n,transforms:s}=e,{interpolation:a,fillMode:i,fillValue:p,outputShape:u}=o,[c,l,m,d]=n.shape,[f,h]=u!=null?u:[l,m],g=[c,f,h,d],x=new yy(g),b=a==="nearest"?1:2,C;switch(i){case"constant":C=1;break;case"reflect":C=2;break;case"wrap":C=3;break;case"nearest":C=4;break;default:C=1;break}let S=[{type:"int32",data:[b]},{type:"int32",data:[C]},{type:"float32",data:[p]}];return t.runWebGPUProgram(x,[n,s],"float32",S)}var HU={kernelName:Rs,backendName:"webgpu",kernelFunc:Dce};function Ace(r){let{inputs:e,backend:t,attrs:o}=r,{value:n}=e,{axis:s}=o;s<0&&(s+=n.shape.length);let a=n,i=a.shape.length,p=n.shape[s],u=new Array(i-1),c=0;for(let h=0;h<i;h++)h!==s&&(u[c++]=a.shape[h]);let l=[],m=new Array(i).fill(0),d=a.shape.slice();d[s]=1;let f=new Array(p);for(let h=0;h<f.length;h++){m[s]=h;let g=Hs({inputs:{x:a},backend:t,attrs:{begin:m,size:d}}),x=pe({inputs:{x:g},backend:t,attrs:{shape:u}});f[h]=x,l.push(g)}return l.forEach(h=>t.disposeData(h.dataId)),f}var KU={kernelName:wa,backendName:"webgpu",kernelFunc:Ace};var by=class{constructor(e,t,o){if(this.outputShape=[],this.variableNames=["x","segmentIds"],this.uniforms="numSegments : i32, xSize: i32,",this.workgroupSize=[64,1,1],this.atomic=!0,this.outputShape=t,this.dispatchLayout=X(e),this.dispatch=H(this.dispatchLayout,e,this.workgroupSize),o!=="float32"&&o!=="int32")throw new Error(`UnsortedSegmentSum only supports float32 and int32
types, does not support ${o} type.`);this.type=o,this.shaderKey="unsortedSegmentSum"}getUserCode(){return`
${G("index")} {
if (index < uniforms.xSize) {
let coords = getXCoordsFromIndex(index);
let b = coords[0];
let inCol = coords[1];
let segmentId = i32(getSegmentIds(inCol));
if (segmentId >= 0) {
let flatIndex = b * uniforms.numSegments + segmentId % uniforms.numSegments;
let value = getX(b, inCol);
${Qr("&result[flatIndex]","value",this.type)}
}
}
}
`}};function Fce(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,segmentIds:s}=e,{numSegments:a}=o,i=n.shape.length,p=[],u=0,c=w.getAxesPermutation([u],i),l=n;c!=null&&(l=xr({inputs:{x:n},backend:t,attrs:{perm:c}}),p.push(l),u=w.getInnerMostAxes(1,i)[0]);let m=w.segment_util.computeOutShape(l.shape,u,a),d=y.sizeFromShape([l.shape[u]]),f=pe({inputs:{x:l},backend:t,attrs:{shape:[-1,d]}});p.push(f);let h=n.dtype,g=[f.shape[0],a],x=vt({backend:t,attrs:{shape:g,value:0,dtype:h}}),b=new by(f.shape,g,h),C=[{type:"int32",data:[a]},{type:"int32",data:[y.sizeFromShape(f.shape)]}],S=t.runWebGPUProgram(b,[f,s],h,C,x),k=pe({inputs:{x:S},backend:t,attrs:{shape:m}});p.push(S);let _=k;if(c!=null){p.push(k);let $=w.getUndoAxesPermutation(c);_=xr({inputs:{x:_},backend:t,attrs:{perm:$}})}return p.forEach($=>t.disposeData($.dataId)),_}var qU={kernelName:Qi,backendName:"webgpu",kernelFunc:Fce};var Pce=[pz,Kz,qz,jz,Xz,Yz,Zz,Jz,eV,tV,rV,oV,nV,sV,aV,pV,cV,lV,mV,dV,hV,gV,xV,wV,SV,IV,lz,kV,TV,_V,EV,$V,RV,DV,AV,FV,PV,OV,BV,zV,VV,WV,GV,HV,UV,KV,qV,jV,XV,YV,JV,eW,tW,rW,oW,nW,sW,aW,iW,iz,uW,lW,pW,cW,mW,dW,fW,hW,gW,xW,yW,cz,bW,NV,CW,wW,SW,IW,vW,kW,NW,_W,TW,EW,$W,RW,AW,FW,iV,PW,OW,BW,MW,LW,zW,uV,VW,WW,UW,GW,KW,QV,qW,jW,XW,yV,YW,JW,eU,tU,rU,oU,nU,sU,bV,aU,iU,uU,pU,uz,cU,lU,mU,dU,fU,hU,gU,xU,yU,bU,CU,wU,SU,IU,vU,kU,fV,OU,MU,LU,HW,NU,TU,_U,EU,RU,DU,AU,FU,PU,BU,ZV,zU,VU,WU,$U,GU,HU,Qz,KU,qU,QW];for(let r of Pce)ti(r);var jU="4.22.0",Oce="4.22.0",Mce="4.22.0",Lce="4.22.0",Bce="4.22.0",zce="4.22.0",Vce={tfjs:jU,"tfjs-core":jU,"tfjs-converter":Oce,"tfjs-backend-cpu":Mce,"tfjs-backend-webgl":Lce,"tfjs-backend-wasm":Bce,"tfjs-backend-webgpu":zce};var EQt=void 0;export{Xs as Abs,Vo as Acos,Wo as Acosh,Ju as AdadeltaOptimizer,ep as AdagradOptimizer,tp as AdamOptimizer,rp as AdamaxOptimizer,uo as Add,Uo as AddN,Go as All,Ho as Any,Ys as ArgMax,Qs as ArgMin,Ko as Asin,qo as Asinh,jo as Atan,Yo as Atan2,Xo as Atanh,Qo as AvgPool,Zs as AvgPool3D,Ri as AvgPool3DGrad,$i as AvgPoolGrad,pm as BackendWasm,Zo as BatchMatMul,Js as BatchToSpaceND,Jo as Bincount,qa as BitwiseAnd,ea as BroadcastArgs,qce as BroadcastTo,yo as Cast,en as Ceil,bo as ClipByValue,Di as Complex,Ai as ComplexAbs,ta as Concat,tn as Conv2D,Fi as Conv2DBackpropFilter,rn as Conv2DBackpropInput,on as Conv3D,ja as Conv3DBackpropFilterV2,nn as Conv3DBackpropInputV2,sn as Cos,an as Cosh,cn as CropAndResize,un as Cumprod,pn as Cumsum,Bo as DataStorage,ra as DenseBincount,ln as DepthToSpace,mn as DepthwiseConv2dNative,Pi as DepthwiseConv2dNativeBackpropFilter,Oi as DepthwiseConv2dNativeBackpropInput,oa as Diag,dn as Dilation2D,Li as Dilation2DBackpropFilter,Mi as Dilation2DBackpropInput,$u as Draw,nw as ENV,Bi as Einsum,hn as Elu,Xa as EluGrad,dl as Environment,xn as Equal,gn as Erf,yn as Exp,na as ExpandDims,bn as Expm1,zi as FFT,sa as Fill,Cn as FlipLeftRight,wn as Floor,Sn as FloorDiv,Du as FromPixels,In as FusedBatchNorm,Io as FusedConv2D,vo as FusedDepthwiseConv2D,bp as GPGPUContext,vn as GatherNd,aa as GatherV2,Bl as GraphModel,kn as Greater,Nn as GreaterEqual,Vi as IFFT,Co as Identity,Wi as Imag,Tn as IsFinite,_n as IsInf,En as IsNan,ao as KernelBackend,Bn as LRN,Ya as LRNGrad,$n as LeakyRelu,Rn as Less,Dn as LessEqual,An as LinSpace,Fn as Log,Pn as Log1p,jce as LogSoftmax,On as LogicalAnd,Mn as LogicalNot,Ln as LogicalOr,R0 as LogicalXor,Xce as LowerBound,xc as MathBackendCPU,Lc as MathBackendWebGL,Yce as MatrixBandPart,zn as Max,Wn as MaxPool,ia as MaxPool3D,Gi as MaxPool3DGrad,Ui as MaxPoolGrad,ua as MaxPoolWithArgmax,Vn as Maximum,Un as Mean,Gn as Min,Hn as Minimum,Kn as MirrorPad,qn as Mod,op as MomentumOptimizer,jn as Multinomial,Xn as Multiply,pa as Neg,Qn as NonMaxSuppressionV3,Qa as NonMaxSuppressionV4,Zn as NonMaxSuppressionV5,Yn as NotEqual,Nw as OP_SCOPE_SUFFIX,Jn as OneHot,ca as OnesLike,kr as Optimizer,Fl as OptimizerConstructors,la as Pack,es as PadV2,Qce as Pool,ts as Pow,rs as Prelu,os as Prod,np as RMSPropOptimizer,Hp as RaggedGather,Kp as RaggedRange,qp as RaggedTensorToTensor,ma as Range,gw as Rank,Hi as Real,fn as RealDiv,ns as Reciprocal,$t as Reduction,ss as Relu,us as Relu6,da as Reshape,is as ResizeBilinear,Ja as ResizeBilinearGrad,as as ResizeNearestNeighbor,Za as ResizeNearestNeighborGrad,ps as Reverse,Ds as RotateWithOffset,cs as Round,ls as Rsqrt,mi as SGDOptimizer,ms as ScatterNd,fs as SearchSorted,fa as Select,hs as Selu,bs as Sigmoid,ys as Sign,gs as Sin,xs as Sinh,ha as Slice,Is as Softmax,Cs as Softplus,ga as SpaceToBatchND,Ki as SparseFillEmptyRows,ei as SparseReshape,ya as SparseSegmentMean,ba as SparseSegmentSum,vs as SparseToDense,xa as SplitV,ws as Sqrt,qi as Square,ks as SquaredDifference,Ru as StaticRegexReplace,wo as Step,Ns as StridedSlice,Ca as StringNGrams,ji as StringSplit,Xi as StringToHashBucketFast,Ts as Sub,Ss as Sum,_s as Tan,Es as Tanh,mt as Tensor,tt as TensorBuffer,ds as TensorScatterUpdate,po as Tile,$s as TopK,Rs as Transform,co as Transpose,Yi as Unique,wa as Unpack,Qi as UnsortedSegmentSum,Zce as UpperBound,ri as Variable,jc as WebGPUBackend,Sa as ZerosLike,So as _FusedMatMul,Qt as abs,Rk as acos,Dk as acosh,Ce as add,Ak as addN,Fk as all,Pk as any,Ok as argMax,Mk as argMin,Lk as asin,Bk as asinh,zk as atan,Vk as atan2,Wk as atanh,dd as avgPool,Hk as avgPool3d,ak as backend,w as backend_util,Kk as basicLSTMCell,nu as batchNorm,jk as batchNorm2d,Xk as batchNorm3d,Yk as batchNorm4d,fd as batchToSpaceND,hd as bincount,Qk as bitwiseAnd,L6 as booleanMaskAsync,Zk as broadcastArgs,su as broadcastTo,Sr as broadcast_util,cT as browser,me as buffer,Ue as cast,Jk as ceil,e2 as clipByValue,Ur as clone,Er as complex,yt as concat,t2 as concat1d,r2 as concat2d,o2 as concat3d,n2 as concat4d,s2 as conv1d,au as conv2d,a2 as conv2dTranspose,i2 as conv3d,p2 as conv3dTranspose,ale as copyRegisteredKernels,c2 as cos,l2 as cosh,$l as cosineWindow,m2 as cumprod,d2 as cumsum,Ir as customGrad,f2 as denseBincount,Tw as deprecationWarn,h2 as depthToSpace,sc as depthwiseConv2d,V5 as deregisterOp,eu as device_util,g2 as diag,x2 as dilation2d,xme as disableDeprecationWarnings,Ot as dispose,yme as disposeVariables,je as div,b2 as divNoNan,C2 as dot,Y6 as dropout,iu as einsum,bd as elu,gme as enableDebugMode,hme as enableProdMode,Zw as enclosingPowerOfTwo,ur as engine,w2 as ensureShape,A as env,yd as equal,S2 as erf,k2 as euclideanNorm,_o as exp,Ms as expandDims,N2 as expm1,Cd as eye,uc as fft,$a as fill,kme as findBackend,Nme as findBackendFactory,wd as floor,md as floorDiv,GD as forceHalfFloat,Jw as fused,Sd as gather,j6 as gatherND,af as gather_util,sk as getBackend,iw as getGradient,Xp as getKernel,Ym as getKernelsForBackend,aae as getThreadsCount,mv as gpgpu_util,VK as grad,WK as grads,Wu as greater,Id as greaterEqual,ju as ifft,pu as imag,eX as image,Z6 as inTopKAsync,di as io,Hd as irfft,T2 as isFinite,_2 as isInf,E2 as isNaN,$r as keep,Vt as kernel_impls,vd as leakyRelu,Tl as less,ac as lessEqual,tX as linalg,$2 as linspace,M8 as loadGraphModel,L8 as loadGraphModelSync,R2 as localResponseNormalization,pi as log,kd as log1p,D2 as logSigmoid,A2 as logSoftmax,_d as logSumExp,Uu as logicalAnd,Ed as logicalNot,$d as logicalOr,F2 as logicalXor,rX as losses,P2 as lowerBound,Ze as matMul,aT as math,Ra as max,Dd as maxPool,O2 as maxPool3d,M2 as maxPoolWithArgmax,Ad as maximum,Gu as mean,bme as memory,L2 as meshgrid,Nl as min,Hu as minimum,B2 as mirrorPad,z2 as mod,V2 as moments,V6 as movingAverage,se as mul,W2 as multiRNNCell,U2 as multinomial,pr as neg,cS as nextFrame,EQt as node,Vu as norm,Fd as notEqual,El as oneHot,Da as ones,G2 as onesLike,N as op,H2 as outerProduct,Aa as pad,K2 as pad1d,q2 as pad2d,j2 as pad3d,X2 as pad4d,Y2 as pool,ui as pow,Od as prelu,ld as print,Q2 as prod,Cme as profile,Z2 as raggedGather,J2 as raggedRange,e1 as raggedTensorToTensor,t1 as rand,S1 as randomGamma,Wd as randomNormal,I1 as randomStandardNormal,ic as randomUniform,v1 as randomUniformInt,cu as range,Ime as ready,ci as real,k1 as reciprocal,tu as registerBackend,ole as registerGradient,ti as registerKernel,z5 as registerOp,lu as relu,Ud as relu6,vme as removeBackend,W as reshape,mo as reverse,N1 as reverse1d,T1 as reverse2d,_1 as reverse3d,E1 as reverse4d,pc as rfft,Gd as round,$1 as rsqrt,ke as scalar,U6 as scatterND,du as scatter_util,_l as searchSorted,R1 as selu,D1 as separableConv2d,jN as serialization,Sme as setBackend,Tme as setPlatform,sae as setThreadsCount,oae as setWasmPath,nae as setWasmPaths,NI as setWebGLContext,A1 as setdiff1dAsync,Ic as shared,Ea as sigmoid,F1 as sign,Jj as signal,P1 as sin,O1 as sinh,Xe as slice,M1 as slice1d,L1 as slice2d,B1 as slice3d,z1 as slice4d,pt as slice_util,V1 as softmax,Td as softplus,Pd as spaceToBatchND,oX as sparse,K6 as sparseToDense,Zj as spectral,li as split,Rr as sqrt,Zt as square,Kd as squaredDifference,cc as squeeze,vr as stack,qd as step,W1 as stridedSlice,nX as string,Te as sub,ot as sum,oi as sumOutType,U1 as tan,kl as tanh,ar as tensor,Jt as tensor1d,mu as tensor2d,jd as tensor3d,G1 as tensor4d,H1 as tensor5d,K1 as tensor6d,j1 as tensorScatterUpdate,rk as tensor_util,w1 as test_util,De as tidy,uu as tile,wme as time,X1 as topk,OGe as train,mc as transpose,Y1 as truncatedNormal,Q1 as unique,sle as unregisterGradient,nle as unregisterKernel,Z1 as unsortedSegmentSum,fo as unstack,dt as upcastType,J1 as upperBound,y as util,UK as valueAndGrad,GK as valueAndGrads,eN as variable,Vw as variableGrads,Vce as version,z8 as version_converter,OX as version_core,yY as version_cpu,iae as version_wasm,d9 as version_webgl,$at as webgl,Ec as webgl_util,Zv as webgpu_util,lo as where,Yd as whereAsync,Gr as zeros,Gt as zerosLike};