/* Human library homepage: author: ' */ var Tv=Object.create,uh=Object.defineProperty,Ev=Object.getPrototypeOf,Cv=Object.prototype.hasOwnProperty,Rv=Object.getOwnPropertyNames,Fv=Object.getOwnPropertyDescriptor,G2=e=>uh(e,"__esModule",{value:!0}),ht=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),q2=(e,t)=>{G2(e);for(var n in t)uh(e,n,{get:t[n],enumerable:!0})},Mv=(e,t,n)=>{if(G2(e),t&&typeof t=="object"||typeof t=="function")for(let r of Rv(t))!Cv.call(e,r)&&r!=="default"&&uh(e,r,{get:()=>t[r],enumerable:!(n=Fv(t,r))||n.enumerable});return e},Be=e=>e&&e.__esModule?e:Mv(uh(e!=null?Tv(Ev(e)):{},"default",{value:e,enumerable:!0}),e),$v=ht(e=>{var t=6;function n(u){let h={strides:[u/16,u/8],anchors:[2,6]},d=[];for(let p=0;p{u.startEndTensor.dispose(),u.startPoint.dispose(),u.endPoint.dispose()},a=u=>({startEndTensor:u,startPoint:Me(u,[0,0],[-1,2]),endPoint:Me(u,[0,2],[-1,2])}),s=(u,h)=>{let d=B(u.startPoint,h),p=B(u.endPoint,h),f=Xl([d,p],1);return a(f)};function i(u,h,d){let p=Me(u,[0,1],[-1,2]),f=ie(p,h),m=Me(u,[0,3],[-1,2]),A=Se(m,d),y=Se(f,d),g=Se(A,2),w=be(y,g),x=ie(y,g),_=B(w,d),b=B(x,d);return Xl([_,b],1)}function o(u,h){return j(()=>{let d=u.box?u.box:u;return s(d,h).startEndTensor.squeeze()})}var l=class{constructor(u,h){this.blazeFaceModel=u,this.width=h.face.detector.inputSize,this.height=h.face.detector.inputSize,this.anchorsData=n(h.face.detector.inputSize),this.anchors=pr(this.anchorsData),this.inputSize=tn([this.width,this.height]),this.config=h,this.scaleFaces=.8}async getBoundingBoxes(u){if(!u||u.isDisposedInternal||u.shape.length!==4||u.shape[1]<1||u.shape[2]<1)return null;let[h,d,p]=j(()=>{let w=u.resizeBilinear([this.width,this.height]),x=be(w.div(127.5),1),_=this.blazeFaceModel.predict(x),b;if(Array.isArray(_)){let C=_.sort((O,V)=>O.size-V.size),$=pt([C[0],C[2]],2),D=pt([C[1],C[3]],2);b=pt([D,$],1).squeeze(0)}else b=_.squeeze();let T=i(b,this.anchors,this.inputSize),S=Me(b,[0,0],[-1,1]),N=tr(S).squeeze();return[b,T,N]}),f=await Dt.nonMaxSuppressionAsync(d,p,this.config.face.detector.maxFaces,this.config.face.detector.iouThreshold,this.config.face.detector.scoreThreshold),m=f.arraySync();f.dispose();let A=m.map(w=>Me(d,[w,0],[1,-1])).map(w=>{let x=w.arraySync();return w.dispose(),x}),y=p.dataSync(),g=[];for(let w=0;wthis.config.face.detector.minConfidence){let b=a(A[w]),T=this.anchorsData[x],S=j(()=>Me(h,[x,t-1],[1,-1]).squeeze().reshape([t,-1]));g.push({box:b,landmarks:S,anchor:T,confidence:_})}}return h.dispose(),d.dispose(),p.dispose(),h.dispose(),{boxes:g,scaleFactor:[u.shape[2]/this.width,u.shape[1]/this.height]}}async estimateFaces(u){let{boxes:h,scaleFactor:d}=await this.getBoundingBoxes(u),p=[];for(let f of h){let m=f.landmarks.arraySync(),A=o(f,d),y=s.arraySync(),g=f.probability.arraySync(),w=f.anchor,[x,_]=d,b=m.map(S=>[(S[0]+w[0])*x,(S[1]+w[1])*_]),T={topLeft:y.slice(0,2),bottomRight:y.slice(2),landmarks:b,probability:g};r(f.box),f.landmarks.dispose(),f.probability.dispose(),A.dispose(),p.push(T)}return p}};async function c(u){let h=await fr(u.face.detector.modelPath,{fromTFHub:u.face.detector.modelPath.includes("tfhub.dev")}),d=new l(h,u);return Je(`load model: ${u.face.detector.modelPath.match(/\/(.*)\./)[1]}`),d}e.load=c,e.BlazeFaceModel=l,e.disposeBox=r}),Dv=ht(e=>{function t(o,l){let c=[o.startPoint[0]*l[0],o.startPoint[1]*l[1]],u=[o.endPoint[0]*l[0],o.endPoint[1]*l[1]];return{startPoint:c,endPoint:u}}e.scaleBoxCoordinates=t;function n(o){return[Math.abs(o.endPoint[0]-o.startPoint[0]),Math.abs(o.endPoint[1]-o.startPoint[1])]}e.getBoxSize=n;function r(o){return[o.startPoint[0]+(o.endPoint[0]-o.startPoint[0])/2,o.startPoint[1]+(o.endPoint[1]-o.startPoint[1])/2]}e.getBoxCenter=r;function a(o,l,c){let u=l.shape[1],h=l.shape[2],d=[[o.startPoint[1]/u,o.startPoint[0]/h,o.endPoint[1]/u,o.endPoint[0]/h]];return Dt.cropAndResize(l,d,[0],c)}e.cutBoxFromImageAndResize=a;function s(o,l=1.5){let c=r(o),u=n(o),h=[l*u[0]/2,l*u[1]/2],d=[c[0]-h[0],c[1]-h[1]],p=[c[0]+h[0],c[1]+h[1]];return{startPoint:d,endPoint:p,landmarks:o.landmarks}}e.enlargeBox=s;function i(o){let l=r(o),c=n(o),u=Math.max(...c)/2,h=[l[0]-u,l[1]-u],d=[l[0]+u,l[1]+u];return{startPoint:h,endPoint:d,landmarks:o.landmarks}}e.squarifyBox=i}),Ov=ht(e=>{e.IDENTITY_MATRIX=[[1,0,0],[0,1,0],[0,0,1]];function t(d){return d-2*Math.PI*Math.floor((d+Math.PI)/(2*Math.PI))}e.normalizeRadians=t;function n(d,p){let f=Math.PI/2-Math.atan2(-(p[1]-d[1]),p[0]-d[0]);return t(f)}e.computeRotation=n;function r(d){return d*180/Math.PI}e.radToDegrees=r;function a(d,p){return[[1,0,d],[0,1,p],[0,0,1]]}function s(d,p){let f=0;for(let m=0;m{var t={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},n=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],r=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],a=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255],s=[0,1,36,0,36,17,1,2,41,1,41,36,2,3,31,2,31,41,3,4,48,3,48,31,4,5,48,5,6,48,6,7,59,6,59,48,7,8,58,7,58,59,8,9,56,8,56,57,8,57,58,9,10,55,9,55,56,10,11,54,10,54,55,11,12,54,12,13,54,13,14,35,13,35,54,14,15,46,14,46,35,15,16,45,15,45,46,16,26,45,17,36,18,18,37,19,18,36,37,19,38,20,19,37,38,20,39,21,20,38,39,21,39,27,22,42,23,22,27,42,23,43,24,23,42,43,24,44,25,24,43,44,25,45,26,25,44,45,27,39,28,27,28,42,28,39,29,28,29,42,29,31,30,29,30,35,29,40,31,29,35,47,29,39,40,29,47,42,30,31,32,30,32,33,30,33,34,30,34,35,31,50,32,31,40,41,31,48,49,31,49,50,32,51,33,32,50,51,33,51,34,34,52,35,34,51,52,35,46,47,35,52,53,35,53,54,36,41,37,37,40,38,37,41,40,38,40,39,42,47,43,43,47,44,44,46,45,44,47,46,48,60,49,48,59,60,49,61,50,49,60,61,50,62,51,50,61,62,51,62,52,52,63,53,52,62,63,53,64,54,53,63,64,54,64,55,55,65,56,55,64,65,56,66,57,56,65,66,57,66,58,58,67,59,58,66,67,59,67,60,60,67,61,61,66,62,61,67,66,62,66,63,63,65,64,63,66,65,21,27,22],i=[0,8,7,7,8,1,2,10,9,9,10,3,17,0,18,18,0,7,18,7,19,19,7,1,19,1,11,19,11,20,21,3,22,21,9,3,20,9,21,20,2,9,20,11,2,23,17,18,25,21,22,24,19,20,24,18,19,24,20,21,24,23,18,24,21,25,11,12,4,11,4,13,1,12,11,11,13,2,12,14,4,4,14,13,14,5,15,14,15,6,12,5,14,14,6,13,8,12,1,2,13,10,8,26,12,10,13,27,26,5,12,13,6,27,0,26,8,10,27,3,5,32,16,16,32,6,5,30,32,6,32,31,26,30,5,27,6,31,0,28,26,3,27,29,17,28,0,3,29,22,23,28,17,22,29,25,28,30,26,27,31,29],o=[0,4,1,2,4,3,4,5,6],l=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],c=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],u=[33,133,362,263,1,78,308];e.MESH_ANNOTATIONS=t,e.MESH_TO_IRIS_INDICES_MAP=n,e.TRI468=a,e.TRI68=s,e.TRI33=i,e.TRI7=o,e.UV468=r,e.UV68=l.map(h=>r[h]),e.UV33=c.map(h=>r[h]),e.UV7=u.map(h=>r[h])}),zv=ht(e=>{var t=Be(Dv()),n=Be(Ov()),r=Be(X2()),a=468,s=13,i=[s,r.MESH_ANNOTATIONS.midwayBetweenEyes[0]],o=3,l=2,c=[o,l],u=r.MESH_ANNOTATIONS.leftEyeLower0,h=[u[0],u[u.length-1]],d=r.MESH_ANNOTATIONS.rightEyeLower0,p=[d[0],d[d.length-1]],f=3,m=4,A=71,y=76;function g(x,_,b,T){for(let S=0;S[N[0]*(W[0]-this.meshWidth/2),N[1]*(W[1]-this.meshHeight/2),W[2]]),$=b!==0?n.buildRotationMatrix(b,[0,0]):n.IDENTITY_MATRIX,D=b!==0?C.map(W=>[...n.rotatePoint(W,$),W[2]]):C,O=b!==0?n.invertTransformMatrix(T):n.IDENTITY_MATRIX,V=[...t.getBoxCenter({startPoint:_.startPoint,endPoint:_.endPoint}),1];return D.map(W=>[W[0]+n.dot(V,O[0]),W[1]+n.dot(V,O[1]),W[2]])}getLeftToRightEyeDepthDifference(x){let _=x[h[0]][2],b=x[p[0]][2];return _-b}getEyeBox(x,_,b,T,S=!1){let N=t.squarifyBox(t.enlargeBox(this.calculateLandmarksBoundingBox([x[b],x[T]]),this.irisEnlarge)),C=t.getBoxSize(N),$=Dt.cropAndResize(_,[[N.startPoint[1]/this.meshHeight,N.startPoint[0]/this.meshWidth,N.endPoint[1]/this.meshHeight,N.endPoint[0]/this.meshWidth]],[0],[this.irisSize,this.irisSize]);return S&&($=Dt.flipLeftRight($)),{box:N,boxSize:C,crop:$}}getEyeCoords(x,_,b,T=!1){let S=[];for(let N=0;N{let D=N;return $===2?D=T:$===4&&(D=S),[C[0],C[1],D]})}async predict(x,_){let b=!1,T;if((this.skipped===0||this.skipped>_.face.detector.skipFrames||!_.face.mesh.enabled||!_.videoOptimized)&&(T=await this.boundingBoxDetector.getBoundingBoxes(x),this.skipped=0),_.videoOptimized&&this.skipped++,T&&T.boxes&&(!_.face.mesh.enabled||T.boxes.length!==this.detectedFaces&&this.detectedFaces!==_.face.detector.maxFaces)){this.storedBoxes=[],this.detectedFaces=0;for(let N of T.boxes)this.storedBoxes.push({startPoint:N.box.startPoint.dataSync(),endPoint:N.box.endPoint.dataSync(),landmarks:N.landmarks,confidence:N.confidence});this.storedBoxes.length>0&&(b=!0)}if(b){if(!T||!T.boxes||T.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let N=0;N{N.box.startPoint.dispose(),N.box.endPoint.dispose(),N.landmarks.dispose()});let S=j(()=>this.storedBoxes.map((N,C)=>{let $,D=0,O;if(_.face.detector.rotation){let[re,ce]=N.landmarks.length>=a?i:c;D=n.computeRotation(N.landmarks[re],N.landmarks[ce]);let he=t.getBoxCenter({startPoint:N.startPoint,endPoint:N.endPoint}),me=[he[0]/x.shape[2],he[1]/x.shape[1]],ye=Dt.rotateWithOffset(x,D,0,me);O=n.buildRotationMatrix(-D,he),$=t.cutBoxFromImageAndResize({startPoint:N.startPoint,endPoint:N.endPoint},ye,[this.meshHeight,this.meshWidth]).div(255)}else{O=n.IDENTITY_MATRIX;let re=x.clone();$=t.cutBoxFromImageAndResize({startPoint:N.startPoint,endPoint:N.endPoint},re,[this.meshHeight,this.meshWidth]).div(255)}if(!_.face.mesh.enabled)return{coords:null,box:N,faceConfidence:null,confidence:N.confidence,image:$};let[,V,W]=this.meshDetector.predict($),Z=V.dataSync()[0];if(Z<_.face.detector.minConfidence)return null;let K=X(W,[-1,3]).arraySync();if(_.face.iris.enabled){let{box:re,boxSize:ce,crop:he}=this.getEyeBox(K,$,h[0],h[1],!0),{box:me,boxSize:ye,crop:ge}=this.getEyeBox(K,$,p[0],p[1]),Ee=this.irisModel.predict(pt([he,ge])).dataSync(),Re=Ee.slice(0,y*3),{rawCoords:Oe,iris:Ge}=this.getEyeCoords(Re,re,ce,!0),Ve=Ee.slice(y*3),{rawCoords:et,iris:it}=this.getEyeCoords(Ve,me,ye),je=this.getLeftToRightEyeDepthDifference(K);Math.abs(je)<30?(g(K,Oe,"left"),g(K,et,"right")):je<1?g(K,Oe,"left",["EyeUpper0","EyeLower0"]):g(K,et,"right",["EyeUpper0","EyeLower0"]);let lt=this.getAdjustedIrisCoords(K,Ge,"left"),ut=this.getAdjustedIrisCoords(K,it,"right");K=K.concat(lt).concat(ut)}let te=this.transformRawCoords(K,N,D,O),J=t.enlargeBox(this.calculateLandmarksBoundingBox(te)),se=t.squarifyBox(J),Q=pr(te),le={coords:Q,box:J,faceConfidence:Z,confidence:N.confidence,image:$};return _.face.mesh.returnRawData&&(le.rawCoords=K),this.storedBoxes[C]={...se,landmarks:Q.arraySync(),confidence:N.confidence,faceConfidence:Z},le}));return S=S.filter(N=>N!==null),this.detectedFaces=S.length,S}calculateLandmarksBoundingBox(x){let _=x.map(N=>N[0]),b=x.map(N=>N[1]),T=[Math.min(..._),Math.min(...b)],S=[Math.max(..._),Math.max(...b)];return{startPoint:T,endPoint:S,landmarks:x}}};e.Pipeline=w}),Pv=ht(e=>{var t=Be($v()),n=Be(zv()),r=Be(X2()),a=class{constructor(o,l,c,u){this.facePipeline=new n.Pipeline(o,l,c,u),this.config=u}async estimateFaces(o,l){let c=await this.facePipeline.predict(o,l),u=[];for(let h of c||[]){if(h.isDisposedInternal)continue;let d=h.coords?h.coords.arraySync():null,p=h.rawCoords,f={};if(d&&d.length>0)for(let y of Object.keys(r.MESH_ANNOTATIONS))f[y]=r.MESH_ANNOTATIONS[y].map(g=>d[g]);let m=l.face.mesh.returnRawData&&h.box?{topLeft:h.box.startPoint,bottomRight:h.box.endPoint}:null,A=h.box?[Math.max(0,h.box.startPoint[0]),Math.max(0,h.box.startPoint[1]),Math.min(o.shape[2],h.box.endPoint[0])-h.box.startPoint[0],Math.min(o.shape[1],h.box.endPoint[1])-h.box.startPoint[1]]:0;u.push({confidence:h.confidence||0,box:A,mesh:d,boxRaw:m,meshRaw:p,annotations:f,image:h.image?Er(h.image):null}),h.coords&&h.coords.dispose(),h.image&&h.image.dispose()}return u}},s=[null,null,null];async function i(o){s=await Promise.all([!s[0]&&o.face.enabled?t.load(o):null,!s[1]&&o.face.mesh.enabled?fr(o.face.mesh.modelPath,{fromTFHub:o.face.mesh.modelPath.includes("tfhub.dev")}):null,!s[2]&&o.face.iris.enabled?fr(o.face.iris.modelPath,{fromTFHub:o.face.iris.modelPath.includes("tfhub.dev")}):null]);let l=new a(s[0],s[1],s[2],o);return o.face.mesh.enabled&&Je(`load model: ${o.face.mesh.modelPath.match(/\/(.*)\./)[1]}`),o.face.iris.enabled&&Je(`load model: ${o.face.iris.modelPath.match(/\/(.*)\./)[1]}`),l}e.load=i,e.MediaPipeFaceMesh=a,e.triangulation=r.TRI468}),Kl=ht(e=>{var t={};function n(r,a){if(!a||!a.kernels)return;let s=5,i=a.kernels.filter(u=>u.kernelTimeMs>0).reduce((u,h)=>u+=h.kernelTimeMs,0),o=a.kernels.map((u,h)=>(u.id=h,u)).filter(u=>u.kernelTimeMs>0).sort((u,h)=>h.kernelTimeMs-u.kernelTimeMs),l=a.kernels.map((u,h)=>(u.id=h,u)).filter(u=>u.totalBytesSnapshot>0).sort((u,h)=>h.totalBytesSnapshot-u.totalBytesSnapshot);o.length>s&&(o.length=s),l.length>s&&(l.length=s);let c={newBytes:a.newBytes,newTensors:a.newTensors,peakBytes:a.peakBytes,numKernelOps:a.kernels.length,timeKernelOps:i,slowestKernelOps:o,largestKernelOps:l};t[r]=c,Je("Human profiler",r,c)}e.run=n}),Lv=ht(e=>{var t=Be(Kl()),n={},r={age:0},a=Number.MAX_SAFE_INTEGER;async function s(o){return n.age||(n.age=await fr(o.face.age.modelPath),Je(`load model: ${o.face.age.modelPath.match(/\/(.*)\./)[1]}`)),n.age}async function i(o,l){return n.age?a0?(a++,r):(l.videoOptimized?a=0:a=Number.MAX_SAFE_INTEGER,new Promise(async c=>{let u=Dt.resizeBilinear(o,[l.face.age.inputSize,l.face.age.inputSize],!1),h=B(u,[255]);$e(u);let d,p={};if(!l.profile)l.face.age.enabled&&(d=await n.age.predict(h));else{let f=l.face.age.enabled?await Zl(()=>n.age.predict(h)):{};d=f.result.clone(),f.result.dispose(),t.run("age",f)}if(h.dispose(),d){let f=d.dataSync();p.age=Math.trunc(10*f[0])/10}d.dispose(),r=p,c(p)})):null}e.predict=i,e.load=s}),Wv=ht(e=>{var t=Be(Kl()),n={},r={gender:""},a=Number.MAX_SAFE_INTEGER,s=!1,i=[.2989,.587,.114];async function o(c){return n.gender||(n.gender=await fr(c.face.gender.modelPath),s=n.gender.inputs[0].shape[3]===1,Je(`load model: ${c.face.gender.modelPath.match(/\/(.*)\./)[1]}`)),n.gender}async function l(c,u){return n.gender?a{let d=Dt.resizeBilinear(c,[u.face.gender.inputSize,u.face.gender.inputSize],!1),p;s?p=j(()=>{let[A,y,g]=an(d,3,3),w=B(A,i[0]),x=B(y,i[1]),_=B(g,i[2]);return ch([w,x,_]).sub(.5).mul(2)}):p=B(d,[255]),$e(d);let f,m={};if(!u.profile)u.face.gender.enabled&&(f=await n.gender.predict(p));else{let A=u.face.gender.enabled?await Zl(()=>n.gender.predict(p)):{};f=A.result.clone(),A.result.dispose(),t.run("gender",A)}if(p.dispose(),f){let A=f.dataSync();if(s){let y=Math.trunc(100*Math.abs(A[0]-A[1]))/100;y>u.face.gender.minConfidence&&(m.gender=A[0]>A[1]?"female":"male",m.confidence=y)}else{let y=Math.trunc(200*Math.abs(A[0]-.5))/100;y>u.face.gender.minConfidence&&(m.gender=A[0]<=.5?"female":"male",m.confidence=Math.min(.99,y))}}f.dispose(),r=m,h(m)})):null}e.predict=l,e.load=o}),Bv=ht(e=>{var t=Be(Kl()),n=["angry","disgust","fear","happy","sad","surprise","neutral"],r={},a=[],s=Number.MAX_SAFE_INTEGER,i=[.2989,.587,.114],o=1;async function l(u){return r.emotion||(r.emotion=await fr(u.face.emotion.modelPath),Je(`load model: ${u.face.emotion.modelPath.match(/\/(.*)\./)[1]}`)),r.emotion}async function c(u,h){return r.emotion?s0?(s++,a):(h.videoOptimized?s=0:s=Number.MAX_SAFE_INTEGER,new Promise(async d=>{let p=Dt.resizeBilinear(u,[h.face.emotion.inputSize,h.face.emotion.inputSize],!1),[f,m,A]=an(p,3,3);p.dispose();let y=B(f,i[0]),g=B(m,i[1]),w=B(A,i[2]);f.dispose(),m.dispose(),A.dispose();let x=ch([y,g,w]);y.dispose(),g.dispose(),w.dispose();let _=j(()=>x.sub(.5).mul(2));x.dispose();let b=[];if(h.face.emotion.enabled){let T;if(h.profile){let S=await Zl(()=>r.emotion.predict(_));T=S.result.dataSync(),S.result.dispose(),t.run("emotion",S)}else{let S=await r.emotion.predict(_);T=S.dataSync(),$e(S)}for(let S=0;Sh.face.emotion.minConfidence&&b.push({score:Math.min(.99,Math.trunc(100*o*T[S])/100),emotion:n[S]});b.sort((S,N)=>N.score-S.score)}_.dispose(),a=b,d(b)})):null}e.predict=c,e.load=l}),Vv=ht(e=>{var t=Be(Kl()),n={};async function r(i){return n.embedding||(n.embedding=await fr(i.face.embedding.modelPath),Je(`load model: ${i.face.embedding.modelPath.match(/\/(.*)\./)[1]}`)),n.embedding}function a(i,o){if((i==null?void 0:i.length)!==(o==null?void 0:o.length))return 0;let l=2,c=10*i.map((u,h)=>u-o[h]).reduce((u,h)=>u+h**l,0)**(1/l);return Math.trunc(1e3*(1-c))/1e3}async function s(i,o){return n.embedding?new Promise(async l=>{let c=Dt.resizeBilinear(i,[o.face.embedding.inputSize,o.face.embedding.inputSize],!1),u=[];if(o.face.embedding.enabled)if(o.profile){let h=await Zl(()=>n.embedding.predict({img_inputs:c}));u=[...h.result.dataSync()],h.result.dispose(),t.run("emotion",h)}else{let h=await n.embedding.predict({img_inputs:c});u=[...h.dataSync()],$e(h)}c.dispose(),l(u)}):null}e.predict=s,e.simmilarity=a,e.load=r}),Uv=ht(e=>{var t=[-123.15,-115.9,-103.06];function n(s){let[i,o,l,c]=s;return{offsets:i,heatmap:o,displacementFwd:l,displacementBwd:c}}function r(s){let[i,o,l,c]=s;return{offsets:l,heatmap:c,displacementFwd:i,displacementBwd:o}}var a=class{constructor(s){this.model=s}predict(s,i){return j(()=>{let o=(i.body.modelType==="ResNet"?s.toFloat().add(t):s.toFloat().div(127.5).sub(1)).expandDims(0),l=this.model.predict(o).map(u=>u.squeeze([0])),c=i.body.modelType==="ResNet"?r(l):n(l);return{heatmapScores:c.heatmap.sigmoid(),offsets:c.offsets,displacementFwd:c.displacementFwd,displacementBwd:c.displacementBwd}})}dispose(){this.model.dispose()}};e.BaseModel=a}),jv=ht(e=>{function t(r){return Math.floor(r/2)}var n=class{constructor(r,a){this.priorityQueue=new Array(r),this.numberOfElements=-1,this.getElementValue=a}enqueue(r){this.priorityQueue[++this.numberOfElements]=r,this.swim(this.numberOfElements)}dequeue(){let r=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,r}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(r){for(;r>0&&this.less(t(r),r);)this.exchange(r,t(r)),r=t(r)}sink(r){for(;2*r<=this.numberOfElements;){let a=2*r;if(a{var t=Be(jv());function n(a,s,i,o,l,c){let[u,h]=c.shape,d=!0,p=Math.max(i-l,0),f=Math.min(i+l+1,u);for(let m=p;ms){d=!1;break}if(!d)break}return d}function r(a,s,i){let[o,l,c]=i.shape,u=new t.MaxHeap(o*l*c,({score:h})=>h);for(let h=0;h{e.partNames=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],e.NUM_KEYPOINTS=e.partNames.length,e.partIds=e.partNames.reduce((n,r,a)=>(n[r]=a,n),{});var t=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]];e.connectedPartIndices=t.map(([n,r])=>[e.partIds[n],e.partIds[r]]),e.poseChain=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]],e.partChannels=["left_face","right_face","right_upper_leg_front","right_lower_leg_back","right_upper_leg_back","left_lower_leg_front","left_upper_leg_front","left_upper_leg_back","left_lower_leg_back","right_feet","right_lower_leg_front","left_feet","torso_front","torso_back","right_upper_arm_front","right_upper_arm_back","right_lower_arm_back","left_lower_arm_front","left_upper_arm_front","left_upper_arm_back","left_lower_arm_back","right_hand","right_lower_arm_front","left_hand"]}),K2=ht(e=>{var t=Be(Yl());function n(c,u,h,d){return{y:d.get(c,u,h),x:d.get(c,u,h+t.NUM_KEYPOINTS)}}e.getOffsetPoint=n;function r(c,u,h){let{heatmapY:d,heatmapX:p,id:f}=c,{y:m,x:A}=n(d,p,f,h);return{x:c.heatmapX*u+A,y:c.heatmapY*u+m}}e.getImageCoords=r;function a(c,u){let h=new Array(u);for(let d=0;dh?h:c}e.clamp=s;function i(c,u,h,d){let p=h-c,f=d-u;return p*p+f*f}e.squaredDistance=i;function o(c,u){return{x:c.x+u.x,y:c.y+u.y}}e.addVectors=o;function l(c,u,h){return{y:s(c.y,u,h),x:s(c.x,u,h)}}e.clampVector=l}),Gv=ht(e=>{var t=Be(Yl());function n(l,c){let u=c.shape[0],h=new Float32Array(u);for(let d=0;dl.toTensor().mul(Te(c,"int32")).toFloat().add(a(l,u)))}e.getOffsetPoints=s;function i(l,c){return j(()=>{let u=l.div(Te(c,"int32"));return l.sub(u.mul(Te(c,"int32")))})}function o(l){let[c,u,h]=l.shape;return j(()=>{let d=l.reshape([c*u,h]).argMax(0),p=d.div(Te(u,"int32")).expandDims(1),f=i(d,u).expandDims(1);return pt([p,f],1)})}e.argmax2d=o}),Z2=ht(e=>{var t=Be(Yl()),n=Be(K2()),r=Be(Gv()),a=t.poseChain.map(([d,p])=>[t.partIds[d],t.partIds[p]]),s=a.map(([,d])=>d),i=a.map(([d])=>d);function o(d,p,f){let m=f.shape[2]/2;return{y:f.get(p.y,p.x,d),x:f.get(p.y,p.x,m+d)}}function l(d,p,f,m){return{y:n.clamp(Math.round(d.y/p),0,f-1),x:n.clamp(Math.round(d.x/p),0,m-1)}}function c(d,p,f,m,A,y,g,w=2){let[x,_]=m.shape,b=l(p.position,y,x,_),T=o(d,b,g),S=n.addVectors(p.position,T);for(let $=0;$=0;--S){let N=s[S],C=i[S];x[N]&&!x[C]&&(x[C]=c(S,x[N],C,p,f,m,y))}for(let S=0;S(m+=N,{position:{y:b.get(C,0),x:b.get(C,1)},part:t.partNames[C],score:N})),S=T.filter(N=>N.score>f.body.scoreThreshold);return A.dispose(),_.dispose(),{keypoints:S,score:m/T.length}}e.decodeSinglePose=h}),qv=ht(e=>{var t=Be(Hv()),n=Be(Z2()),r=Be(K2()),a=1;function s(l,c,{x:u,y:h},d){return l.some(({keypoints:p})=>{let f=p[d].position;return r.squaredDistance(h,u,f.y,f.x)<=c})}function i(l,c,u){return u.reduce((h,{position:d,score:p},f)=>(s(l,c,d,f)||(h+=p),h),0)/u.length}function o(l,c,u,h,d){let p=[],f=t.buildPartWithScoreQueue(d.body.scoreThreshold,a,l),m=d.body.nmsRadius^2;for(;p.lengthd.body.scoreThreshold&&p.push({keypoints:g,score:w})}return p}e.decodeMultiplePoses=o}),Y2=ht(e=>{var t=Be(Yl());function n(d,p,f){return d(n(d[m].score,d[A].score,p)||f.push([d[m],d[A]]),f),[])}e.getAdjacentKeyPoints=r;var{NEGATIVE_INFINITY:a,POSITIVE_INFINITY:s}=Number;function i(d){return d.reduce(({maxX:p,maxY:f,minX:m,minY:A},{position:{x:y,y:g}})=>({maxX:Math.max(p,y),maxY:Math.max(f,g),minX:Math.min(m,y),minY:Math.min(A,g)}),{maxX:a,maxY:a,minX:s,minY:s})}e.getBoundingBox=i;function o(d){let{minX:p,minY:f,maxX:m,maxY:A}=i(d);return[{x:p,y:f},{x:m,y:f},{x:m,y:A},{x:p,y:A}]}e.getBoundingBoxPoints=o;async function l(d){return Promise.all(d.map(p=>p.buffer()))}e.toTensorBuffers3D=l;function c(d,p,f){return{score:d.score,keypoints:d.keypoints.map(({score:m,part:A,position:y})=>({score:m,part:A,position:{x:y.x*f,y:y.y*p}}))}}e.scalePose=c;function u(d,[p,f]){let m=d.squeeze(0),A=m.resizeBilinear([p,f]);return m.dispose(),A}e.resizeTo=u;function h(d,[p,f],[m,A]){return d.map(y=>c(y,p/m,f/A))}e.scaleAndFlipPoses=h}),Xv=ht(e=>{var t=Be(Uv()),n=Be(qv()),r=Be(Z2()),a=Be(Y2());async function s(c,u,h){return new Promise(async d=>{let p=c.shape[1],f=c.shape[2],m=await a.toTensorBuffers3D([u.heatmapScores,u.offsets,u.displacementFwd,u.displacementBwd]),A=m[0],y=m[1],g=m[2],w=m[3],x=await n.decodeMultiplePoses(A,y,g,w,h),_=a.scaleAndFlipPoses(x,[p,f],[h.body.inputSize,h.body.inputSize]);d(_)})}async function i(c,u,h){return new Promise(async d=>{let p=c.shape[1],f=c.shape[2],m=[await r.decodeSinglePose(u.heatmapScores,u.offsets,h)],A=a.scaleAndFlipPoses(m,[p,f],[h.body.inputSize,h.body.inputSize]);d(A)})}var o=class{constructor(c){this.baseModel=c}async estimatePoses(c,u){let h=a.resizeTo(c,[u.body.inputSize,u.body.inputSize]),d=this.baseModel.predict(h,u),p=u.body.maxDetections<2?await i(c,d,u):await s(c,d,u);return d.heatmapScores.dispose(),d.offsets.dispose(),d.displacementFwd.dispose(),d.displacementBwd.dispose(),h.dispose(),p}dispose(){this.baseModel.dispose()}};e.PoseNet=o;async function l(c){let u=await fr(c.body.modelPath),h=new t.BaseModel(u);return Je(`load model: ${c.body.modelPath.match(/\/(.*)\./)[1]}`),new o(h)}e.load=l}),Kv=ht(e=>{var t=Be(Xv()),n=Be(Yl()),r=Be(Y2());e.load=t.load,e.PoseNet=t.PoseNet,e.partChannels=n.partChannels,e.partIds=n.partIds,e.partNames=n.partNames,e.poseChain=n.poseChain,e.getAdjacentKeyPoints=r.getAdjacentKeyPoints,e.getBoundingBox=r.getBoundingBox,e.getBoundingBoxPoints=r.getBoundingBoxPoints,e.scaleAndFlipPoses=r.scaleAndFlipPoses,e.scalePose=r.scalePose}),Yv=ht(e=>{var t=class{constructor(n,r,a){this.model=n,this.anchors=a.map(s=>[s.x_center,s.y_center]),this.anchorsTensor=pr(this.anchors),this.inputSizeTensor=tn([r,r]),this.doubleInputSizeTensor=tn([r*2,r*2])}normalizeBoxes(n){return j(()=>{let r=Me(n,[0,0],[-1,2]),a=Me(n,[0,2],[-1,2]),s=ie(Se(r,this.inputSizeTensor),this.anchorsTensor),i=Se(a,this.doubleInputSizeTensor),o=B(be(s,i),this.inputSizeTensor),l=B(ie(s,i),this.inputSizeTensor);return Xl([o,l],1)})}normalizeLandmarks(n,r){return j(()=>{let a=ie(Se(n.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[r]);return B(a,this.inputSizeTensor)})}async getBoxes(n,r){let a=this.model.predict(n),s=a.squeeze();a.dispose();let i=j(()=>tr(Me(s,[0,0],[-1,1])).squeeze()),o=i.dataSync(),l=Me(s,[0,1],[-1,4]),c=this.normalizeBoxes(l);l.dispose();let u=await Dt.nonMaxSuppressionAsync(c,o,r.hand.maxHands,r.hand.iouThreshold,r.hand.scoreThreshold),h=u.arraySync();i.dispose(),u.dispose();let d=[];for(let p of h)if(o[p]>=r.hand.minConfidence){let f=Me(c,[p,0],[1,-1]),m=Me(s,[p,5],[1,14]),A=j(()=>this.normalizeLandmarks(m,p).reshape([-1,2]));m.dispose(),d.push({box:f,palmLandmarks:A,confidence:o[p]})}return s.dispose(),c.dispose(),d}async estimateHandBounds(n,r){let a=n.shape[1],s=n.shape[2],i=j(()=>n.resizeBilinear([r.hand.inputSize,r.hand.inputSize]).div(127.5).sub(1)),o=await this.getBoxes(i,r);i.dispose();let l=[];if(!o||o.length===0)return l;for(let c of o){let u=c.box.dataSync(),h=u.slice(0,2),d=u.slice(2,4),p=c.palmLandmarks.arraySync();c.box.dispose(),c.palmLandmarks.dispose(),l.push(Zv({startPoint:h,endPoint:d,palmLandmarks:p,confidence:c.confidence},[s/r.hand.inputSize,a/r.hand.inputSize]))}return l}};e.HandDetector=t}),t4=ht(e=>{var t=5,n=1.65,r=[0,5,9,13,17,1,2],a=0,s=2,i=class{constructor(o,l,c){this.handDetector=o,this.landmarkDetector=l,this.inputSize=c,this.storedBoxes=[],this.skipped=0,this.detectedHands=0}getBoxForPalmLandmarks(o,l){let c=o.map(h=>Q2([...h,1],l)),u=this.calculateLandmarksBoundingBox(c);return pf(ff(u),t)}getBoxForHandLandmarks(o){let l=this.calculateLandmarksBoundingBox(o),c=pf(ff(l),n);c.palmLandmarks=[];for(let u=0;u[d[0]*(w[0]-this.inputSize/2),d[1]*(w[1]-this.inputSize/2),d[2]*w[2]]),f=J2(c,[0,0]),m=p.map(w=>[...Q2(w,f),w[2]]),A=e4(u),y=[...hh(l),1],g=[Ka(y,A[0]),Ka(y,A[1])];return m.map(w=>[w[0]+g[0],w[1]+g[1],w[2]])}async estimateHands(o,l){let c=!1,u;(this.skipped===0||this.skipped>l.hand.skipFrames||!l.hand.landmarks||!l.videoOptimized)&&(u=await this.handDetector.estimateHandBounds(o,l),this.skipped=0),l.videoOptimized&&this.skipped++,u&&u.length>0&&(u.length!==this.detectedHands&&this.detectedHands!==l.hand.maxHands||!l.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...u],this.storedBoxes.length>0&&(c=!0));let h=[];for(let d=0;d=l.hand.minConfidence){let N=X(T,[-1,3]),C=N.arraySync();T.dispose(),N.dispose();let $=this.transformRawCoords(C,w,f,g),D=this.getBoxForHandLandmarks($);this.storedBoxes[d]=D;let O={landmarks:$,confidence:S,box:{topLeft:D.startPoint,bottomRight:D.endPoint}};h.push(O)}else this.storedBoxes[d]=null;T.dispose()}else{let f=pf(ff(p),n),m={confidence:p.confidence,box:{topLeft:f.startPoint,bottomRight:f.endPoint}};h.push(m)}}return this.storedBoxes=this.storedBoxes.filter(d=>d!==null),this.detectedHands=h.length,h}calculateLandmarksBoundingBox(o){let l=o.map(d=>d[0]),c=o.map(d=>d[1]),u=[Math.min(...l),Math.min(...c)],h=[Math.max(...l),Math.max(...c)];return{startPoint:u,endPoint:h}}};e.HandPipeline=i}),n4=ht(e=>{e.anchors=[{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375}]}),r4=ht(e=>{var t=Be(Yv()),n=Be(t4()),r=Be(n4()),a={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},s=class{constructor(o){this.handPipeline=o}static getAnnotations(){return a}async estimateHands(o,l){let c=await this.handPipeline.estimateHands(o,l);if(!c)return[];let u=[];for(let h of c){let d={};if(h.landmarks)for(let f of Object.keys(a))d[f]=a[f].map(m=>h.landmarks[m]);let p=h.box?[Math.max(0,h.box.topLeft[0]),Math.max(0,h.box.topLeft[1]),Math.min(o.shape[2],h.box.bottomRight[0])-h.box.topLeft[0],Math.min(o.shape[1],h.box.bottomRight[1])-h.box.topLeft[1]]:0;u.push({confidence:h.confidence,box:p,landmarks:h.landmarks,annotations:d})}return u}};e.HandPose=s;async function i(o){let[l,c]=await Promise.all([o.hand.enabled?fr(o.hand.detector.modelPath,{fromTFHub:o.hand.detector.modelPath.includes("tfhub.dev")}):null,o.hand.landmarks?fr(o.hand.skeleton.modelPath,{fromTFHub:o.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),u=new t.HandDetector(l,o.hand.inputSize,r.anchors),h=new n.HandPipeline(u,c,o.hand.inputSize),d=new s(h);return o.hand.enabled&&Je(`load model: ${o.hand.detector.modelPath.match(/\/(.*)\./)[1]}`),o.hand.landmarks&&Je(`load model: ${o.hand.skeleton.modelPath.match(/\/(.*)\./)[1]}`),d}e.load=i}),a4=ht(e=>{e.body=t=>{if(!t)return[];let n=[];for(let r=0;rc.part==="leftWrist"),s=t[r].keypoints.find(c=>c.part==="rightWrist"),i=t[r].keypoints.find(c=>c.part==="nose");i&&a&&s&&a.position.yc.part==="leftShoulder"),l=t[r].keypoints.find(c=>c.part==="rightShoulder");o&&l&&n.push({body:r,gesture:`leaning ${o.position.y>l.position.y?"left":"right"}`})}return n},e.face=t=>{if(!t)return[];let n=[];for(let r=0;r0){let a=t[r].mesh[35][2]-t[r].mesh[263][2];Math.abs(a)<10?n.push({face:r,gesture:"facing camera"}):n.push({face:r,gesture:`facing ${a<0?"right":"left"}`}),Math.abs(t[r].mesh[374][1]-t[r].mesh[386][1])/Math.abs(t[r].mesh[443][1]-t[r].mesh[450][1])<.2&&n.push({face:r,gesture:"blink left eye"}),Math.abs(t[r].mesh[145][1]-t[r].mesh[159][1])/Math.abs(t[r].mesh[223][1]-t[r].mesh[230][1])<.2&&n.push({face:r,gesture:"blink right eye"});let s=Math.min(100,500*Math.abs(t[r].mesh[13][1]-t[r].mesh[14][1])/Math.abs(t[r].mesh[10][1]-t[r].mesh[152][1]));s>10&&n.push({face:r,gesture:`mouth ${Math.trunc(s)}% open`});let i=t[r].mesh[152][2];Math.abs(i)>10&&n.push({face:r,gesture:`head ${i<0?"up":"down"}`})}return n},e.iris=t=>{if(!t)return[];let n=[];for(let r=0;r{if(!t)return[];let n=[];for(let r=0;r0){let s=a.reduce((o,l)=>o.position[2]o.position[1]{var t=function(r,a,s){let i=function(u,h,d){let p=new RegExp("\\b"+h+" \\w+ (\\w+)","ig");u.replace(p,(f,m)=>(d[m]=0,f))},o=function(u,h){let d=r.createShader(h);if(r.shaderSource(d,u),r.compileShader(d),!r.getShaderParameter(d,r.COMPILE_STATUS))throw new Error("Filter: GL compile failed",r.getShaderInfoLog(d));return d};this.uniform={},this.attribute={};let l=o(a,r.VERTEX_SHADER),c=o(s,r.FRAGMENT_SHADER);if(this.id=r.createProgram(),r.attachShader(this.id,l),r.attachShader(this.id,c),r.linkProgram(this.id),!r.getProgramParameter(this.id,r.LINK_STATUS))throw new Error("Filter: GL link failed",r.getProgramInfoLog(this.id));r.useProgram(this.id),i(a,"attribute",this.attribute);for(let u in this.attribute)this.attribute[u]=r.getAttribLocation(this.id,u);i(a,"uniform",this.uniform),i(s,"uniform",this.uniform);for(let u in this.uniform)this.uniform[u]=r.getUniformLocation(this.id,u)},n=function(r){r||(r={});let a=0,s=null,i=!1,o=-1,l=[null,null],c=[],u=-1,h=-1,d=null,p=null,f=r.canvas||document.createElement("canvas"),m={},A=f.getContext("webgl");if(!A)throw new Error("Filter: getContext() failed");this.addFilter=function(N){let C=Array.prototype.slice.call(arguments,1),$=S[N];c.push({func:$,args:C})},this.reset=function(){c=[]},this.apply=function(N){if(y(N.width,N.height),a=0,s||(s=A.createTexture()),A.bindTexture(A.TEXTURE_2D,s),A.texParameteri(A.TEXTURE_2D,A.TEXTURE_WRAP_S,A.CLAMP_TO_EDGE),A.texParameteri(A.TEXTURE_2D,A.TEXTURE_WRAP_T,A.CLAMP_TO_EDGE),A.texParameteri(A.TEXTURE_2D,A.TEXTURE_MIN_FILTER,A.NEAREST),A.texParameteri(A.TEXTURE_2D,A.TEXTURE_MAG_FILTER,A.NEAREST),A.texImage2D(A.TEXTURE_2D,0,A.RGBA,A.RGBA,A.UNSIGNED_BYTE,N),c.length===0)return x(),f;for(let C=0;C{var t=Be(s4()),n=null,r=null;function a(s,i){let o;if(s instanceof H)o=Er(s);else{let l=s.naturalWidth||s.videoWidth||s.width||s.shape&&s.shape[1]>0,c=s.naturalHeight||s.videoHeight||s.height||s.shape&&s.shape[2]>0,u=l,h=c;if(i.filter.width>0?u=i.filter.width:i.filter.height>0&&(u=l*(i.filter.height/c)),i.filter.height>0?h=i.filter.height:i.filter.width>0&&(h=c*(i.filter.width/l)),!u||!h)return Je("Human: invalid input",s),null;(!n||n.width!==u||n.height!==h)&&(n=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(u,h):document.createElement("canvas"),n.width!==u&&(n.width=u),n.height!==h&&(n.height=h));let d=n.getContext("2d");if(s instanceof ImageData?d.putImageData(s,0,0):d.drawImage(s,0,0,l,c,0,0,n.width,n.height),i.filter.enabled){if((!this.fx||!r||n.width!==r.width||n.height!==r.height)&&(r=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(n.width,n.height):document.createElement("canvas"),r.width!==n.width&&(r.width=n.width),r.height!==n.height&&(r.height=n.height),this.fx=vn.flags.IS_BROWSER?new t.Canvas({canvas:r}):null),!this.fx)return n;this.fx.reset(),this.fx.addFilter("brightness",i.filter.brightness),i.filter.contrast!==0&&this.fx.addFilter("contrast",i.filter.contrast),i.filter.sharpness!==0&&this.fx.addFilter("sharpen",i.filter.sharpness),i.filter.blur!==0&&this.fx.addFilter("blur",i.filter.blur),i.filter.saturation!==0&&this.fx.addFilter("saturation",i.filter.saturation),i.filter.hue!==0&&this.fx.addFilter("hue",i.filter.hue),i.filter.negative&&this.fx.addFilter("negative"),i.filter.sepia&&this.fx.addFilter("sepia"),i.filter.vintage&&this.fx.addFilter("brownie"),i.filter.sepia&&this.fx.addFilter("sepia"),i.filter.kodachrome&&this.fx.addFilter("kodachrome"),i.filter.technicolor&&this.fx.addFilter("technicolor"),i.filter.polaroid&&this.fx.addFilter("polaroid"),i.filter.pixelate!==0&&this.fx.addFilter("pixelate",i.filter.pixelate),this.fx.apply(n)}else r=n;let p;if(r.data){let m=[r.height,r.width,3];p=mf(r.data,m,"int32")}else if(i.backend==="webgl"||r instanceof ImageData)p=Jl.fromPixels(r);else{let m=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(u,h):document.createElement("canvas");m.width=u,m.height=h;let A=m.getContext("2d");A==null||A.drawImage(r,0,0);let y=A==null?void 0:A.getImageData(0,0,u,h);p=Jl.fromPixels(y)}let f=p.toFloat();o=f.expandDims(0),p.dispose(),f.dispose()}return{tensor:o,canvas:i.filter.return?r:null}}e.process=a});function Je(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var eg={};q2(eg,{Abs:()=>Di,Acos:()=>Oi,Acosh:()=>zi,AdadeltaOptimizer:()=>xd,AdagradOptimizer:()=>wd,AdamOptimizer:()=>_d,AdamaxOptimizer:()=>bd,Add:()=>fa,AddN:()=>Za,All:()=>ph,Any:()=>fh,ArgMax:()=>Ya,ArgMin:()=>eu,Asin:()=>Pi,Asinh:()=>Li,Atan:()=>Wi,Atan2:()=>Vi,Atanh:()=>Bi,AvgPool:()=>Ja,AvgPool3D:()=>tu,AvgPool3DGrad:()=>Ah,AvgPoolGrad:()=>mh,BackendWasm:()=>l0,BatchMatMul:()=>Qa,BatchToSpaceND:()=>nu,Bincount:()=>yh,BroadcastTo:()=>ng,Callback:()=>b0,CallbackList:()=>m0,Cast:()=>es,Ceil:()=>Ui,ClipByValue:()=>ma,Complex:()=>gh,ComplexAbs:()=>ru,Concat:()=>ji,Conv2D:()=>ts,Conv2DBackpropFilter:()=>xh,Conv2DBackpropInput:()=>ns,Conv3D:()=>au,Conv3DBackpropFilterV2:()=>wh,Conv3DBackpropInputV2:()=>_h,Cos:()=>rs,Cosh:()=>Hi,CropAndResize:()=>Gi,Cumsum:()=>as,CustomCallback:()=>y0,DataStorage:()=>dh,DenseBincount:()=>bh,DepthToSpace:()=>qi,DepthwiseConv2dNative:()=>ss,DepthwiseConv2dNativeBackpropFilter:()=>vh,DepthwiseConv2dNativeBackpropInput:()=>kh,Diag:()=>Ih,Dilation2D:()=>su,Dilation2DBackpropFilter:()=>Sh,Dilation2DBackpropInput:()=>Nh,ENV:()=>vn,EarlyStopping:()=>v0,Elu:()=>Xi,EluGrad:()=>Th,Environment:()=>tg,Equal:()=>Zi,Erf:()=>Ki,Exp:()=>os,ExpandDims:()=>Yi,Expm1:()=>Ji,FFT:()=>Eh,Fill:()=>iu,FlipLeftRight:()=>Qi,Floor:()=>ls,FloorDiv:()=>us,FromPixels:()=>Uh,FusedBatchNorm:()=>cs,FusedConv2D:()=>Bs,FusedDepthwiseConv2D:()=>Vs,GPGPUContext:()=>rm,GatherNd:()=>to,GatherV2:()=>eo,GraphModel:()=>k0,Greater:()=>no,GreaterEqual:()=>hs,History:()=>A0,IFFT:()=>Ch,Identity:()=>ro,Imag:()=>Rh,InputSpec:()=>Ht,IsFinite:()=>ao,IsInf:()=>so,IsNan:()=>io,KernelBackend:()=>Ql,LRN:()=>uu,LRNGrad:()=>Mh,LayerVariable:()=>f0,LayersModel:()=>ta,LeakyRelu:()=>ds,Less:()=>oo,LessEqual:()=>lo,LinSpace:()=>Fh,Log:()=>ps,Log1p:()=>uo,LogSoftmax:()=>rg,LogicalAnd:()=>co,LogicalNot:()=>ou,LogicalOr:()=>lu,MathBackendCPU:()=>n0,MathBackendWebGL:()=>am,Max:()=>fs,MaxPool:()=>As,MaxPool3D:()=>cu,MaxPool3DGrad:()=>Dh,MaxPoolGrad:()=>$h,MaxPoolWithArgmax:()=>Oh,Maximum:()=>ms,Mean:()=>ys,Min:()=>gs,Minimum:()=>xs,MirrorPad:()=>hu,Mod:()=>ho,MomentumOptimizer:()=>vd,Multinomial:()=>zh,Multiply:()=>ws,Neg:()=>po,NonMaxSuppressionV3:()=>mo,NonMaxSuppressionV4:()=>Ao,NonMaxSuppressionV5:()=>yo,NotEqual:()=>fo,OP_SCOPE_SUFFIX:()=>sg,OneHot:()=>_s,OnesLike:()=>go,Optimizer:()=>ea,Pack:()=>xo,PadV2:()=>bs,Pool:()=>o4,Pow:()=>vs,Prelu:()=>ks,Prod:()=>wo,RMSPropOptimizer:()=>kd,RNN:()=>Dr,Range:()=>du,Rank:()=>gf,Real:()=>Ph,RealDiv:()=>is,Reciprocal:()=>_o,Reduction:()=>on,Relu:()=>Is,Relu6:()=>Ss,Reshape:()=>bo,ResizeBilinear:()=>Ns,ResizeBilinearGrad:()=>Wh,ResizeNearestNeighbor:()=>pu,ResizeNearestNeighborGrad:()=>Lh,Reverse:()=>Ts,RotateWithOffset:()=>Oo,Round:()=>Es,Rsqrt:()=>Cs,SGDOptimizer:()=>Lu,ScatterNd:()=>vo,Select:()=>ko,Selu:()=>Io,Sequential:()=>qo,Sigmoid:()=>Fs,Sign:()=>To,Sin:()=>Rs,Sinh:()=>So,Slice:()=>No,Softmax:()=>Ds,Softplus:()=>Eo,SpaceToBatchND:()=>fu,SparseToDense:()=>Bh,SplitV:()=>Co,Sqrt:()=>Ms,Square:()=>mu,SquaredDifference:()=>Os,Step:()=>ya,StridedSlice:()=>Ro,Sub:()=>zs,Sum:()=>$s,SymbolicTensor:()=>gr,Tan:()=>Fo,Tanh:()=>Ps,Tensor:()=>H,TensorBuffer:()=>Ot,Tile:()=>Aa,TopK:()=>Mo,Transpose:()=>Ls,Unique:()=>Vh,Unpack:()=>$o,UnsortedSegmentSum:()=>Au,Variable:()=>gu,ZerosLike:()=>Do,_FusedMatMul:()=>Ws,abs:()=>zt,acos:()=>bf,acosh:()=>vf,add:()=>ie,addN:()=>ch,addStrict:()=>Vg,all:()=>Kh,any:()=>wu,argMax:()=>_u,argMin:()=>kf,asin:()=>If,asinh:()=>Nf,atan:()=>Sf,atan2:()=>Tf,atanh:()=>Ef,avgPool:()=>bu,avgPool3d:()=>Cf,backend:()=>_f,backend_util:()=>F,basicLSTMCell:()=>g4,batchNorm:()=>Us,batchNorm2d:()=>fg,batchNorm3d:()=>mg,batchNorm4d:()=>Ag,batchToSpaceND:()=>vu,bincount:()=>yg,booleanMaskAsync:()=>W4,broadcastTo:()=>ku,browser:()=>Jl,buffer:()=>Ue,callbacks:()=>J4,cast:()=>xe,ceil:()=>Rf,clipByValue:()=>fn,clone:()=>Er,complex:()=>ga,concat:()=>pt,concat1d:()=>gg,concat2d:()=>Xl,concat3d:()=>xg,concat4d:()=>wg,constraints:()=>h0,conv1d:()=>Zh,conv2d:()=>Zr,conv2dTranspose:()=>Yh,conv3d:()=>Ff,conv3dTranspose:()=>x4,copyRegisteredKernels:()=>c4,cos:()=>Iu,cosh:()=>Jh,cosineWindow:()=>em,cumsum:()=>Qh,customGrad:()=>Cr,data:()=>I0,denseBincount:()=>_g,deprecationWarn:()=>Ft,depthToSpace:()=>Mf,depthwiseConv2d:()=>js,deregisterOp:()=>e8,device_util:()=>Hh,diag:()=>w4,dilation2d:()=>$f,disableDeprecationWarnings:()=>d4,dispose:()=>$e,disposeVariables:()=>p4,div:()=>Se,divNoNan:()=>Df,divStrict:()=>Ug,dot:()=>bg,dropout:()=>Qg,elu:()=>Wo,enableDebugMode:()=>h4,enableProdMode:()=>cg,enclosingPowerOfTwo:()=>e0,engine:()=>Wn,env:()=>ee,equal:()=>Yr,equalStrict:()=>Og,erf:()=>Of,exp:()=>Bn,expandDims:()=>Vn,expm1:()=>zf,eye:()=>Pf,fft:()=>Ou,fill:()=>Nu,findBackend:()=>pg,findBackendFactory:()=>A4,floor:()=>Bo,floorDiv:()=>Xh,forceHalfFloat:()=>o0,fused:()=>va,gather:()=>Hs,gatherND:()=>Jg,gather_util:()=>xf,getBackend:()=>qh,getGradient:()=>yf,getKernel:()=>Af,getKernelsForBackend:()=>yu,gpgpu_util:()=>s0,grad:()=>_4,grads:()=>b4,greater:()=>Un,greaterEqual:()=>Jr,greaterEqualStrict:()=>zg,greaterStrict:()=>Pg,ifft:()=>Ho,imag:()=>ed,image:()=>Dt,inTopKAsync:()=>V4,initializers:()=>d0,input:()=>g0,io:()=>pn,irfft:()=>md,isFinite:()=>vg,isInf:()=>kg,isNaN:()=>Ig,keep:()=>jt,kernel_impls:()=>$r,layers:()=>p0,leakyRelu:()=>Su,less:()=>Tu,lessEqual:()=>wa,lessEqualStrict:()=>Lg,lessStrict:()=>Wg,linalg:()=>t0,linspace:()=>Ng,loadGraphModel:()=>fr,loadLayersModel:()=>Z4,localResponseNormalization:()=>Lf,log:()=>kn,log1p:()=>td,logSigmoid:()=>Tg,logSoftmax:()=>nd,logSumExp:()=>Wf,logicalAnd:()=>rr,logicalNot:()=>Eu,logicalOr:()=>rd,logicalXor:()=>Eg,losses:()=>H4,matMul:()=>Ke,math:()=>og,max:()=>jn,maxPool:()=>Cu,maxPool3d:()=>Bf,maxPoolWithArgmax:()=>Cg,maximum:()=>yr,maximumStrict:()=>jg,mean:()=>It,memory:()=>Gh,metrics:()=>x0,min:()=>Uo,minimum:()=>Gs,minimumStrict:()=>Hg,mirrorPad:()=>Vf,mod:()=>ad,modStrict:()=>Gg,model:()=>X4,models:()=>w0,moments:()=>sd,movingAverage:()=>B4,mul:()=>B,mulStrict:()=>qg,multiRNNCell:()=>I4,multinomial:()=>Rg,neg:()=>kt,nextFrame:()=>Id,norm:()=>gd,notEqual:()=>_a,notEqualStrict:()=>Bg,oneHot:()=>Po,ones:()=>Rr,onesLike:()=>In,op:()=>P,outerProduct:()=>N4,pad:()=>Qr,pad1d:()=>S4,pad2d:()=>T4,pad3d:()=>E4,pad4d:()=>C4,pool:()=>Fg,pow:()=>Fr,powStrict:()=>Xg,prelu:()=>Fu,print:()=>ig,prod:()=>id,profile:()=>Zl,rand:()=>R4,randomGamma:()=>F4,randomNormal:()=>Mg,randomUniform:()=>jo,range:()=>od,ready:()=>dg,real:()=>Mu,reciprocal:()=>Uf,registerBackend:()=>xu,registerCallbackConstructor:()=>Y4,registerGradient:()=>ag,registerKernel:()=>zo,registerOp:()=>Q4,regularizers:()=>_0,relu:()=>Mr,relu6:()=>ld,removeBackend:()=>m4,reshape:()=>X,reverse:()=>Nn,reverse1d:()=>M4,reverse2d:()=>$4,reverse3d:()=>D4,reverse4d:()=>O4,rfft:()=>zu,round:()=>jf,rsqrt:()=>ud,scalar:()=>Te,scatterND:()=>Yg,scatter_util:()=>wf,selu:()=>cd,separableConv2d:()=>Hf,sequential:()=>K4,serialization:()=>ae,setBackend:()=>hg,setPlatform:()=>y4,setWasmPath:()=>q4,setWasmPaths:()=>u0,setWebGLContext:()=>nm,setdiff1dAsync:()=>$g,shared:()=>tm,sigmoid:()=>tr,sign:()=>Gf,signal:()=>j4,sin:()=>hd,sinh:()=>dd,slice:()=>Me,slice1d:()=>pd,slice2d:()=>qf,slice3d:()=>fd,slice4d:()=>$u,slice_util:()=>sn,softmax:()=>Du,softplus:()=>Vo,spaceToBatchND:()=>Ru,sparseToDense:()=>Qf,spectral:()=>U4,split:()=>an,sqrt:()=>Yt,square:()=>dt,squaredDifference:()=>Pu,squaredDifferenceStrict:()=>Kg,squeeze:()=>ba,stack:()=>Sn,step:()=>Go,stridedSlice:()=>Xf,sub:()=>be,subStrict:()=>Zg,sum:()=>Ce,sumOutType:()=>jh,tan:()=>Kf,tanh:()=>Lo,tensor:()=>Ar,tensor1d:()=>tn,tensor2d:()=>pr,tensor3d:()=>mf,tensor4d:()=>z4,tensor5d:()=>P4,tensor6d:()=>L4,tensor_util:()=>mr,test_util:()=>lg,tidy:()=>j,tile:()=>xa,time:()=>f4,topk:()=>Zf,train:()=>qs,transpose:()=>ot,truncatedNormal:()=>Ad,unique:()=>yd,unregisterGradient:()=>u4,unregisterKernel:()=>l4,unsortedSegmentSum:()=>Yf,unstack:()=>ar,upcastType:()=>nr,util:()=>k,valueAndGrad:()=>v4,valueAndGrads:()=>k4,variable:()=>Dg,variableGrads:()=>Sg,version:()=>n8,version_converter:()=>t8,version_core:()=>ug,version_cpu:()=>r0,version_layers:()=>sm,version_wasm:()=>c0,version_webgl:()=>i0,webgl:()=>G4,webgl_util:()=>a0,where:()=>mn,whereAsync:()=>Jf,zeros:()=>Ct,zerosLike:()=>qe});var r8=Object.create,Nd=Object.defineProperty,a8=Object.getPrototypeOf,s8=Object.prototype.hasOwnProperty,i8=Object.getOwnPropertyNames,o8=Object.getOwnPropertyDescriptor,N0=e=>Nd(e,"__esModule",{value:!0}),at=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),Pe=(e,t)=>{N0(e);for(var n in t)Nd(e,n,{get:t[n],enumerable:!0})},l8=(e,t,n)=>{if(N0(e),t&&typeof t=="object"||typeof t=="function")for(let r of i8(t))!s8.call(e,r)&&r!=="default"&&Nd(e,r,{get:()=>t[r],enumerable:!(n=o8(t,r))||n.enumerable});return e},Xo=e=>e&&e.__esModule?e:l8(Nd(e!=null?r8(a8(e)):{},"default",{value:e,enumerable:!0}),e),u8=at(()=>{}),c8=at((e,t)=>{(function(n,r,a){function s(c){var u=this,h=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=h(" "),u.s1=h(" "),u.s2=h(" "),u.s0-=h(c),u.s0<0&&(u.s0+=1),u.s1-=h(c),u.s1<0&&(u.s1+=1),u.s2-=h(c),u.s2<0&&(u.s2+=1),h=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var h=new s(c),d=u&&u.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var c=4022871197,u=function(h){h=h.toString();for(var d=0;d>>0,p-=c,p*=c,c=p>>>0,p-=c,c+=p*4294967296}return(c>>>0)*23283064365386963e-26};return u}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),h8=at((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),d8=at((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var h=0;h>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),p8=at((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.x,d=c.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,c.i=d+1&7,f};function u(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p0;--p)h.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.x&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),f8=at((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.w,d=c.X,p=c.i,f,m;return c.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,c.i=p,m+(h^h>>>16)|0};function u(h,d){var p,f,m,A,y,g=[],w=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,w=Math.max(w,d.length)),m=0,A=-32;A>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(g[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],p=g[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,g[m]=f^p;h.w=y,h.X=g,h.i=m}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.X&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),m8=at((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.b,p=c.c,f=c.d,m=c.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,c.b=d=d<<20^d>>>12^p,c.c=p=p-f|0,c.d=f<<16^p>>>16^m,c.a=m-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),im=at(()=>{}),A8=at((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",c=r.pow(s,i),u=r.pow(2,o),h=u*2,d=s-1,p;function f(_,b,T){var S=[];b=b==!0?{entropy:!0}:b||{};var N=g(y(b.entropy?[_,x(n)]:_==null?w():_,3),S),C=new m(S),$=function(){for(var D=C.g(i),O=c,V=0;D=h;)D/=2,O/=2,V>>>=1;return(D+V)/O};return $.int32=function(){return C.g(4)|0},$.quick=function(){return C.g(4)/4294967296},$.double=$,g(x(C.S),n),(b.pass||T||function(D,O,V,W){return W&&(W.S&&A(W,C),D.state=function(){return A(C,{})}),V?(r[l]=D,O):D})($,N,"global"in b?b.global:this==r,b.state)}r["seed"+l]=f;function m(_){var b,T=_.length,S=this,N=0,C=S.i=S.j=0,$=S.S=[];for(T||(_=[T++]);N{var n=c8(),r=h8(),a=d8(),s=p8(),i=f8(),o=m8(),l=A8();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),g8=at((e,t)=>{(function(n,r,a){function s(c){var u=this,h=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=h(" "),u.s1=h(" "),u.s2=h(" "),u.s0-=h(c),u.s0<0&&(u.s0+=1),u.s1-=h(c),u.s1<0&&(u.s1+=1),u.s2-=h(c),u.s2<0&&(u.s2+=1),h=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var h=new s(c),d=u&&u.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var c=4022871197,u=function(h){h=h.toString();for(var d=0;d>>0,p-=c,p*=c,c=p>>>0,p-=c,c+=p*4294967296}return(c>>>0)*23283064365386963e-26};return u}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),x8=at((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),w8=at((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var h=0;h>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),_8=at((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.x,d=c.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,c.i=d+1&7,f};function u(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p0;--p)h.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.x&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),b8=at((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.w,d=c.X,p=c.i,f,m;return c.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,c.i=p,m+(h^h>>>16)|0};function u(h,d){var p,f,m,A,y,g=[],w=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,w=Math.max(w,d.length)),m=0,A=-32;A>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(g[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],p=g[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,g[m]=f^p;h.w=y,h.X=g,h.i=m}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.X&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),v8=at((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.b,p=c.c,f=c.d,m=c.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,c.b=d=d<<20^d>>>12^p,c.c=p=p-f|0,c.d=f<<16^p>>>16^m,c.a=m-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),k8=at((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",c=r.pow(s,i),u=r.pow(2,o),h=u*2,d=s-1,p;function f(_,b,T){var S=[];b=b==!0?{entropy:!0}:b||{};var N=g(y(b.entropy?[_,x(n)]:_==null?w():_,3),S),C=new m(S),$=function(){for(var D=C.g(i),O=c,V=0;D=h;)D/=2,O/=2,V>>>=1;return(D+V)/O};return $.int32=function(){return C.g(4)|0},$.quick=function(){return C.g(4)/4294967296},$.double=$,g(x(C.S),n),(b.pass||T||function(D,O,V,W){return W&&(W.S&&A(W,C),D.state=function(){return A(C,{})}),V?(r[l]=D,O):D})($,N,"global"in b?b.global:this==r,b.state)}r["seed"+l]=f;function m(_){var b,T=_.length,S=this,N=0,C=S.i=S.j=0,$=S.S=[];for(T||(_=[T++]);N{var n=g8(),r=x8(),a=w8(),s=_8(),i=b8(),o=v8(),l=k8();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),Wu=at(()=>{}),N8=at(()=>{}),S8=at(()=>{}),T8=at((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};function s(){return Q.buffer!=tt&&bn(Q.buffer),wn}function i(){return Q.buffer!=tt&&bn(Q.buffer),Zt}function o(){return Q.buffer!=tt&&bn(Q.buffer),dn}function l(){return Q.buffer!=tt&&bn(Q.buffer),rn}function c(){return Q.buffer!=tt&&bn(Q.buffer),Sr}var u=typeof a!="undefined"?a:{},h={},d;for(d in u)u.hasOwnProperty(d)&&(h[d]=u[d]);var p=[],f="./this.program",m=function(v,E){throw E},A=!1,y=!1,g=!1,w=!1;A=typeof window=="object",y=typeof importScripts=="function",g=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",w=!A&&!g&&!y;var x=u.ENVIRONMENT_IS_PTHREAD||!1;x&&(tt=u.buffer,Jn=u.DYNAMIC_BASE,dr=u.DYNAMICTOP_PTR);var _="";function b(v){return u.locateFile?u.locateFile(v,_):_+v}var T,S,N,C,$,D;if(g){y?_=Wu().dirname(_)+"/":_=__dirname+"/",T=function(v,E){return $||($=require("fs")),D||(D=Wu()),v=D.normalize(v),$.readFileSync(v,E?null:"utf8")},N=function(v){var E=T(v,!0);return E.buffer||(E=new Uint8Array(E)),ge(E.buffer),E},process.argv.length>1&&(f=process.argv[1].replace(/\\/g,"/")),p=process.argv.slice(2),process.on("uncaughtException",function(v){if(!(v instanceof j2))throw v}),process.on("unhandledRejection",qr),m=function(v){process.exit(v)},u.inspect=function(){return"[Emscripten Module object]"};var O;try{O=N8()}catch(v){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),v}Worker=O.Worker}else w?(typeof read!="undefined"&&(T=function(v){return read(v)}),N=function(v){var E;return typeof readbuffer=="function"?new Uint8Array(readbuffer(v)):(E=read(v,"binary"),ge(typeof E=="object"),E)},typeof scriptArgs!="undefined"?p=scriptArgs:typeof arguments!="undefined"&&(p=arguments),typeof quit=="function"&&(m=function(v){quit(v)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(A||y)&&(y?_=self.location.href:document.currentScript&&(_=document.currentScript.src),typeof r!="undefined"&&r&&(_=r),_.indexOf("blob:")!==0?_=_.substr(0,_.lastIndexOf("/")+1):_="",g?(T=function(v,E){return $||($=require("fs")),D||(D=Wu()),v=D.normalize(v),$.readFileSync(v,E?null:"utf8")},N=function(v){var E=T(v,!0);return E.buffer||(E=new Uint8Array(E)),ge(E.buffer),E}):(T=function(v){var E=new XMLHttpRequest;return E.open("GET",v,!1),E.send(null),E.responseText},y&&(N=function(v){var E=new XMLHttpRequest;return E.open("GET",v,!1),E.responseType="arraybuffer",E.send(null),new Uint8Array(E.response)}),S=function(v,E,z){var q=new XMLHttpRequest;q.open("GET",v,!0),q.responseType="arraybuffer",q.onload=function(){if(q.status==200||q.status==0&&q.response){E(q.response);return}z()},q.onerror=z,q.send(null)}),C=function(v){document.title=v});g&&typeof performance=="undefined"&&(performance=S8().performance);var V=u.print||console.log.bind(console),W=u.printErr||console.warn.bind(console);for(d in h)h.hasOwnProperty(d)&&(u[d]=h[d]);h=null,u.arguments&&(p=u.arguments),u.thisProgram&&(f=u.thisProgram),u.quit&&(m=u.quit);var Z=Atomics.load,K=Atomics.store,te=Atomics.compareExchange,J;u.wasmBinary&&(J=u.wasmBinary);var se;u.noExitRuntime&&(se=u.noExitRuntime),typeof WebAssembly!="object"&&W("no native wasm support detected");var Q,le=new WebAssembly.Table({initial:169,maximum:169+0,element:"anyfunc"}),re,ce=0,he=0,me=!1,ye=0;function ge(v,E){v||qr("Assertion failed: "+E)}function Ee(v){var E=u["_"+v];return ge(E,"Cannot call unknown function "+v+", make sure it is exported"),E}function Re(v,E,z,q,fe){var de={string:function(Ln){var pa=0;if(Ln!=null&&Ln!==0){var ql=(Ln.length<<2)+1;pa=Ri(ql),it(Ln,pa,ql)}return pa},array:function(Ln){var pa=Ri(Ln.length);return lt(Ln,pa),pa}};function ue(Ln){return E==="string"?Ve(Ln):E==="boolean"?Boolean(Ln):Ln}var ke=Ee(v),nt=[],$t=0;if(q)for(var en=0;en=q);){var de=v[E++];if(!de)return fe;if(!(de&128)){fe+=String.fromCharCode(de);continue}var ue=v[E++]&63;if((de&224)==192){fe+=String.fromCharCode((de&31)<<6|ue);continue}var ke=v[E++]&63;if((de&240)==224?de=(de&15)<<12|ue<<6|ke:de=(de&7)<<18|ue<<12|ke<<6|v[E++]&63,de<65536)fe+=String.fromCharCode(de);else{var nt=de-65536;fe+=String.fromCharCode(55296|nt>>10,56320|nt&1023)}}return fe}function Ve(v,E){return v?Ge(i(),v,E):""}function et(v,E,z,q){if(!(q>0))return 0;for(var fe=z,de=z+q-1,ue=0;ue=55296&&ke<=57343){var nt=v.charCodeAt(++ue);ke=65536+((ke&1023)<<10)|nt&1023}if(ke<=127){if(z>=de)break;E[z++]=ke}else if(ke<=2047){if(z+1>=de)break;E[z++]=192|ke>>6,E[z++]=128|ke&63}else if(ke<=65535){if(z+2>=de)break;E[z++]=224|ke>>12,E[z++]=128|ke>>6&63,E[z++]=128|ke&63}else{if(z+3>=de)break;E[z++]=240|ke>>18,E[z++]=128|ke>>12&63,E[z++]=128|ke>>6&63,E[z++]=128|ke&63}}return E[z]=0,z-fe}function it(v,E,z){return et(v,i(),E,z)}function je(v){for(var E=0,z=0;z=55296&&q<=57343&&(q=65536+((q&1023)<<10)|v.charCodeAt(++z)&1023),q<=127?++E:q<=2047?E+=2:q<=65535?E+=3:E+=4}return E}function lt(v,E){s().set(v,E)}var ut=65536;function zn(v,E){return v%E>0&&(v+=E-v%E),v}var tt,wn,Zt,_n,Zn,dn,rn,Yn,Sr;function bn(v){tt=v,u.HEAP8=wn=new Int8Array(v),u.HEAP16=_n=new Int16Array(v),u.HEAP32=dn=new Int32Array(v),u.HEAPU8=Zt=new Uint8Array(v),u.HEAPU16=Zn=new Uint16Array(v),u.HEAPU32=rn=new Uint32Array(v),u.HEAPF32=Yn=new Float32Array(v),u.HEAPF64=Sr=new Float64Array(v)}var bi=5256464,El=bi,hr=13584,Jn=5256464,dr=12656,vi=u.INITIAL_MEMORY||16777216;if(x)Q=u.wasmMemory,tt=u.buffer;else if(u.wasmMemory)Q=u.wasmMemory;else if(Q=new WebAssembly.Memory({initial:vi/ut,maximum:2147483648/ut,shared:!0}),!(Q.buffer instanceof SharedArrayBuffer))throw W("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),g&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Q&&(tt=Q.buffer),vi=tt.byteLength,bn(tt),x||(o()[dr>>2]=Jn);function ki(v){for(;v.length>0;){var E=v.shift();if(typeof E=="function"){E(u);continue}var z=E.func;typeof z=="number"?E.arg===void 0?u.dynCall_v(z):u.dynCall_vi(z,E.arg):z(E.arg===void 0?null:E.arg)}}var Va=[],Cl=[],n1=[],Rl=[],Vc=[],Fl=!1;x&&(Fl=!0);function Qn(){if(!x){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)s1(u.preRun.shift());ki(Va)}}function Uc(){Fl=!0,ki(Cl)}function r1(){x||ki(n1)}function a1(){if(!x){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)Ua(u.postRun.shift());ki(Vc)}}function s1(v){Va.unshift(v)}function Ua(v){Vc.unshift(v)}var Ii=Math.ceil,i1=Math.floor,Gr=0,Ml=null,ja=null;function o1(v){ge(!x,"addRunDependency cannot be used in a pthread worker"),Gr++,u.monitorRunDependencies&&u.monitorRunDependencies(Gr)}function l1(v){if(Gr--,u.monitorRunDependencies&&u.monitorRunDependencies(Gr),Gr==0&&(Ml!==null&&(clearInterval(Ml),Ml=null),ja)){var E=ja;ja=null,E()}}u.preloadedImages={},u.preloadedAudios={};function qr(v){throw u.onAbort&&u.onAbort(v),x&&console.error("Pthread aborting at "+new Error().stack),v+="",V(v),W(v),me=!0,ye=1,v="abort("+v+"). Build with -s ASSERTIONS=1 for more info.",new WebAssembly.RuntimeError(v)}function $l(v,E){return String.prototype.startsWith?v.startsWith(E):v.indexOf(E)===0}var u1="data:application/octet-stream;base64,";function jc(v){return $l(v,u1)}var c1="file://";function Hc(v){return $l(v,c1)}var er="tfjs-backend-wasm-threaded-simd.wasm";jc(er)||(er=b(er));function Gc(){try{if(J)return new Uint8Array(J);if(N)return N(er);throw"both async and sync fetching of the wasm failed"}catch(v){qr(v)}}function h1(){return!J&&(A||y)&&typeof fetch=="function"&&!Hc(er)?fetch(er,{credentials:"same-origin"}).then(function(v){if(!v.ok)throw"failed to load wasm binary file at '"+er+"'";return v.arrayBuffer()}).catch(function(){return Gc()}):new Promise(function(v,E){v(Gc())})}function d1(){var v={a:rf};function E(ue,ke){var nt=ue.exports;if(u.asm=nt,re=ke,!x){var $t=Ae.unusedWorkers.length;Ae.unusedWorkers.forEach(function(en){Ae.loadWasmModuleToWorker(en,function(){--$t||l1("wasm-instantiate")})})}}x||o1("wasm-instantiate");function z(ue){E(ue.instance,ue.module)}function q(ue){return h1().then(function(ke){return WebAssembly.instantiate(ke,v)}).then(ue,function(ke){W("failed to asynchronously prepare wasm: "+ke),qr(ke)})}function fe(){if(!J&&typeof WebAssembly.instantiateStreaming=="function"&&!jc(er)&&!Hc(er)&&typeof fetch=="function")fetch(er,{credentials:"same-origin"}).then(function(ue){var ke=WebAssembly.instantiateStreaming(ue,v);return ke.then(z,function(nt){W("wasm streaming compile failed: "+nt),W("falling back to ArrayBuffer instantiation"),q(z)})});else return q(z)}if(u.instantiateWasm)try{var de=u.instantiateWasm(v,E);return de}catch(ue){return W("Module.instantiateWasm callback failed with error: "+ue),!1}return fe(),{}}var p1={};function f1(){Ae.initRuntime()}x||Cl.push({func:function(){zl()}});var qc=0,Xc=0,Kc=0;function Ni(v,E,z){v=v|0,E=E|0,z=z|0,qc=v,Kc=E,Xc=z}u.__register_pthread_ptr=Ni;var Dl={EPERM:63,ENOENT:44,ESRCH:71,EINTR:27,EIO:29,ENXIO:60,E2BIG:1,ENOEXEC:45,EBADF:8,ECHILD:12,EAGAIN:6,EWOULDBLOCK:6,ENOMEM:48,EACCES:2,EFAULT:21,ENOTBLK:105,EBUSY:10,EEXIST:20,EXDEV:75,ENODEV:43,ENOTDIR:54,EISDIR:31,EINVAL:28,ENFILE:41,EMFILE:33,ENOTTY:59,ETXTBSY:74,EFBIG:22,ENOSPC:51,ESPIPE:70,EROFS:69,EMLINK:34,EPIPE:64,EDOM:18,ERANGE:68,ENOMSG:49,EIDRM:24,ECHRNG:106,EL2NSYNC:156,EL3HLT:107,EL3RST:108,ELNRNG:109,EUNATCH:110,ENOCSI:111,EL2HLT:112,EDEADLK:16,ENOLCK:46,EBADE:113,EBADR:114,EXFULL:115,ENOANO:104,EBADRQC:103,EBADSLT:102,EDEADLOCK:16,EBFONT:101,ENOSTR:100,ENODATA:116,ETIME:117,ENOSR:118,ENONET:119,ENOPKG:120,EREMOTE:121,ENOLINK:47,EADV:122,ESRMNT:123,ECOMM:124,EPROTO:65,EMULTIHOP:36,EDOTDOT:125,EBADMSG:9,ENOTUNIQ:126,EBADFD:127,EREMCHG:128,ELIBACC:129,ELIBBAD:130,ELIBSCN:131,ELIBMAX:132,ELIBEXEC:133,ENOSYS:52,ENOTEMPTY:55,ENAMETOOLONG:37,ELOOP:32,EOPNOTSUPP:138,EPFNOSUPPORT:139,ECONNRESET:15,ENOBUFS:42,EAFNOSUPPORT:5,EPROTOTYPE:67,ENOTSOCK:57,ENOPROTOOPT:50,ESHUTDOWN:140,ECONNREFUSED:14,EADDRINUSE:3,ECONNABORTED:13,ENETUNREACH:40,ENETDOWN:38,ETIMEDOUT:73,EHOSTDOWN:142,EHOSTUNREACH:23,EINPROGRESS:26,EALREADY:7,EDESTADDRREQ:17,EMSGSIZE:35,EPROTONOSUPPORT:66,ESOCKTNOSUPPORT:137,EADDRNOTAVAIL:4,ENETRESET:39,EISCONN:30,ENOTCONN:53,ETOOMANYREFS:141,EUSERS:136,EDQUOT:19,ESTALE:72,ENOTSUP:138,ENOMEDIUM:148,EILSEQ:25,EOVERFLOW:61,ECANCELED:11,ENOTRECOVERABLE:56,EOWNERDEAD:62,ESTRPIPE:135},Si=13568;function Ti(v,E){if(v<=0||v>s().length||v&!0||E<0)return-28;if(E==0)return 0;E>=2147483647&&(E=Infinity);var z=Atomics.load(o(),Si>>2),q=0;if(z==v){var fe=Atomics.compareExchange(o(),Si>>2,z,0);if(fe==z&&(--E,q=1,E<=0))return 1}var de=Atomics.notify(o(),v>>2,E);if(de>=0)return de+q;throw"Atomics.notify returned an unexpected value "+de}u._emscripten_futex_wake=Ti;function m1(v){if(x)throw"Internal Error! _kill_thread() can only ever be called from main application thread!";if(!v)throw"Internal Error! Null pthread_ptr in _kill_thread!";o()[v+12>>2]=0;var E=Ae.pthreads[v];E.worker.terminate(),Ae.freeThreadData(E),Ae.runningWorkers.splice(Ae.runningWorkers.indexOf(E.worker),1),E.worker.pthread=void 0}function A1(v){if(x)throw"Internal Error! _cancel_thread() can only ever be called from main application thread!";if(!v)throw"Internal Error! Null pthread_ptr in _cancel_thread!";var E=Ae.pthreads[v];E.worker.postMessage({cmd:"cancel"})}function y1(v){if(x)throw"Internal Error! _cleanup_thread() can only ever be called from main application thread!";if(!v)throw"Internal Error! Null pthread_ptr in _cleanup_thread!";o()[v+12>>2]=0;var E=Ae.pthreads[v];if(E){var z=E.worker;Ae.returnWorkerToPool(z)}}var Ae={MAIN_THREAD_ID:1,mainThreadInfo:{schedPolicy:0,schedPrio:0},unusedWorkers:[],runningWorkers:[],initRuntime:function(){Ni(Ae.mainThreadBlock,!y,1),W2(Ae.mainThreadBlock)},initMainThreadBlock:function(){for(var v=8,E=0;E>2]=Ae.mainThreadBlock;var z=Ae.mainThreadBlock+156;o()[z>>2]=z;for(var q=13056,E=0;E<128;++E)l()[q/4+E]=0;Atomics.store(l(),Ae.mainThreadBlock+104>>2,q),Atomics.store(l(),Ae.mainThreadBlock+40>>2,Ae.mainThreadBlock),Atomics.store(l(),Ae.mainThreadBlock+44>>2,42)},initWorker:function(){},pthreads:{},exitHandlers:null,setThreadStatus:function(){},runExitHandlers:function(){if(Ae.exitHandlers!==null){for(;Ae.exitHandlers.length>0;)Ae.exitHandlers.pop()();Ae.exitHandlers=null}x&&ce&&L2()},threadExit:function(v){var E=Tr();E&&(Atomics.store(l(),E+4>>2,v),Atomics.store(l(),E+0>>2,1),Atomics.store(l(),E+60>>2,1),Atomics.store(l(),E+64>>2,0),Ae.runExitHandlers(),Ti(E+0,2147483647),Ni(0,0,0),ce=0,x&&postMessage({cmd:"exit"}))},threadCancel:function(){Ae.runExitHandlers(),Atomics.store(l(),ce+4>>2,-1),Atomics.store(l(),ce+0>>2,1),Ti(ce+0,2147483647),ce=he=0,Ni(0,0,0),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var v in Ae.pthreads){var E=Ae.pthreads[v];E&&E.worker&&Ae.returnWorkerToPool(E.worker)}Ae.pthreads={};for(var z=0;z>2];o()[v.threadInfoStruct+104>>2]=0,Ul(E),Ul(v.threadInfoStruct)}v.threadInfoStruct=0,v.allocatedOwnStack&&v.stackBase&&Ul(v.stackBase),v.stackBase=0,v.worker&&(v.worker.pthread=null)}},returnWorkerToPool:function(v){delete Ae.pthreads[v.pthread.thread],Ae.unusedWorkers.push(v),Ae.runningWorkers.splice(Ae.runningWorkers.indexOf(v),1),Ae.freeThreadData(v.pthread),v.pthread=void 0},receiveObjectTransfer:function(v){},loadWasmModuleToWorker:function(v,E){v.onmessage=function(z){var q=z.data,fe=q.cmd;if(v.pthread&&(Ae.currentProxiedOperationCallerThread=v.pthread.threadInfoStruct),q.targetThread&&q.targetThread!=Tr()){var de=Ae.pthreads[q.targetThread];de?de.worker.postMessage(z.data,q.transferList):console.error('Internal error! Worker sent a message "'+fe+'" to target pthread '+q.targetThread+", but that thread no longer exists!"),Ae.currentProxiedOperationCallerThread=void 0;return}if(fe==="processQueuedMainThreadWork")of();else if(fe==="spawnThread")th(z.data);else if(fe==="cleanupThread")y1(q.thread);else if(fe==="killThread")m1(q.thread);else if(fe==="cancelThread")A1(q.thread);else if(fe==="loaded")v.loaded=!0,E&&E(v),v.runPthread&&(v.runPthread(),delete v.runPthread);else if(fe==="print")V("Thread "+q.threadId+": "+q.text);else if(fe==="printErr")W("Thread "+q.threadId+": "+q.text);else if(fe==="alert")alert("Thread "+q.threadId+": "+q.text);else if(fe==="exit"){var ue=v.pthread&&Atomics.load(l(),v.pthread.thread+68>>2);ue&&Ae.returnWorkerToPool(v)}else fe==="cancelDone"?Ae.returnWorkerToPool(v):fe==="objectTransfer"?Ae.receiveObjectTransfer(z.data):z.data.target==="setimmediate"?v.postMessage(z.data):W("worker sent an unknown command "+fe);Ae.currentProxiedOperationCallerThread=void 0},v.onerror=function(z){W("pthread sent an error! "+z.filename+":"+z.lineno+": "+z.message)},g&&(v.on("message",function(z){v.onmessage({data:z})}),v.on("error",function(z){v.onerror(z)}),v.on("exit",function(z){console.log("worker exited - TODO: update the worker queue?")})),v.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||r,wasmMemory:Q,wasmModule:re,DYNAMIC_BASE:Jn,DYNAMICTOP_PTR:dr})},allocateUnusedWorker:function(){var v=b("tfjs-backend-wasm-threaded-simd.worker.js");Ae.unusedWorkers.push(new Worker(v))},getNewWorker:function(){return Ae.unusedWorkers.length==0&&(Ae.allocateUnusedWorker(),Ae.loadWasmModuleToWorker(Ae.unusedWorkers[0])),Ae.unusedWorkers.length>0?Ae.unusedWorkers.pop():null},busySpinWait:function(v){for(var E=performance.now()+v;performance.now()>2]=v,v}function v1(v,E){if(x)return ca(1,1,v,E);Rl.unshift({func:v,arg:E})}function k1(v,E){if(v==E)postMessage({cmd:"processQueuedMainThreadWork"});else if(x)postMessage({targetThread:v,cmd:"processThreadQueue"});else{var z=Ae.pthreads[v],q=z&&z.worker;if(!q)return;q.postMessage({cmd:"processThreadQueue"})}return 1}function I1(){qr()}function N1(v,E){v=v|0,E=E|0}function S1(v,E,z){if(v<=0||v>s().length||v&!0)return-28;if(y){var q=Atomics.wait(o(),v>>2,E,z);if(q==="timed-out")return-73;if(q==="not-equal")return-6;if(q==="ok")return 0;throw"Atomics.wait returned an unexpected value "+q}else{var fe=Atomics.load(o(),v>>2);if(E!=fe)return-6;var de=performance.now(),ue=de+z;Atomics.store(o(),Si>>2,v);for(var ke=v;v==ke;){if(de=performance.now(),de>ue)return-73;of(),v=Atomics.load(o(),Si>>2)}return 0}}function T1(){return Kc|0}function E1(){return Xc|0}function C1(v,E,z){i().copyWithin(v,E,E+z)}function R1(){return navigator.hardwareConcurrency}function ca(v,E){for(var z=arguments.length-2,q=jl(),fe=Ri(z*8),de=fe>>3,ue=0;ue>3]),E+=8):(E=E+3&~3,z.push(o()[E>>2]),E+=4);return z}function F1(v,E,z){Ga.length=E;for(var q=z>>3,fe=0;fe>>16),bn(Q.buffer),1}catch(E){}}function D1(v){v=v>>>0;var E=M1();if(v<=E)return!1;var z=65536,q=2147483648;if(v>q)return!1;for(var fe=16777216,de=1;de<=4;de*=2){var ue=E*(1+.2/de);ue=Math.min(ue,v+100663296);var ke=Math.min(q,zn(Math.max(fe,v,ue),z)),nt=$1(ke);if(nt)return!0}return!1}var We={keyEvent:0,mouseEvent:0,wheelEvent:0,uiEvent:0,focusEvent:0,deviceOrientationEvent:0,deviceMotionEvent:0,fullscreenChangeEvent:0,pointerlockChangeEvent:0,visibilityChangeEvent:0,touchEvent:0,previousFullscreenElement:null,previousScreenX:null,previousScreenY:null,removeEventListenersRegistered:!1,removeAllEventListeners:function(){for(var v=We.eventHandlers.length-1;v>=0;--v)We._removeHandler(v);We.eventHandlers=[],We.deferredCalls=[]},registerRemoveEventListeners:function(){We.removeEventListenersRegistered||(Rl.push(We.removeAllEventListeners),We.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(v,E,z){function q(ue,ke){if(ue.length!=ke.length)return!1;for(var nt in ue)if(ue[nt]!=ke[nt])return!1;return!0}for(var fe in We.deferredCalls){var de=We.deferredCalls[fe];if(de.targetFunction==v&&q(de.argsList,z))return}We.deferredCalls.push({targetFunction:v,precedence:E,argsList:z}),We.deferredCalls.sort(function(ue,ke){return ue.precedence>2]=z,o()[ue+4>>2]=q,o()[ue+8>>2]=fe,lf(v,637534208,E,q,ue),Fi(de)},getTargetThreadForEventCallback:function(v){switch(v){case 1:return 0;case 2:return Ae.currentProxiedOperationCallerThread;default:return v}},getNodeNameForTarget:function(v){return v?v==window?"#window":v==screen?"#screen":v&&v.nodeName?v.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function O1(v){var E=je(v)+1,z=Vl(E);return it(v,z,E),z}function z1(v,E,z,q){var fe=jl(),de=Ri(12),ue=0;E&&(ue=O1(E)),o()[de>>2]=ue,o()[de+4>>2]=z,o()[de+8>>2]=q,lf(v,657457152,0,ue,de),Fi(fe)}function P1(v,E,z,q){E=E?Ve(E):"",z1(v,E,z,q)}function L1(v){return v>2?Ve(v):v}var W1=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function B1(v){v=L1(v);var E=W1[v]||(typeof document!="undefined"?document.querySelector(v):void 0);return E}function Ol(v){return B1(v)}function Zc(v,E,z){var q=Ol(v);if(!q)return-4;if(q.canvasSharedPtr&&(o()[q.canvasSharedPtr>>2]=E,o()[q.canvasSharedPtr+4>>2]=z),q.offscreenCanvas||!q.controlTransferredOffscreen){q.offscreenCanvas&&(q=q.offscreenCanvas);var fe=!1;if(q.GLctxObject&&q.GLctxObject.GLctx){var de=q.GLctxObject.GLctx.getParameter(2978);fe=de[0]===0&&de[1]===0&&de[2]===q.width&&de[3]===q.height}q.width=E,q.height=z,fe&&q.GLctxObject.GLctx.viewport(0,0,E,z)}else if(q.canvasSharedPtr){var ue=o()[q.canvasSharedPtr+8>>2];return P1(ue,v,E,z),1}else return-4;return 0}function Yc(v,E,z){return x?ca(2,1,v,E,z):Zc(v,E,z)}function V1(v,E,z){var q=Ol(v);return q?Zc(v,E,z):Yc(v,E,z)}function U1(v){v=v|0}function j1(v,E){v=v|0,E=E|0}function H1(v){var E=v.getExtension("ANGLE_instanced_arrays");if(E)return v.vertexAttribDivisor=function(z,q){E.vertexAttribDivisorANGLE(z,q)},v.drawArraysInstanced=function(z,q,fe,de){E.drawArraysInstancedANGLE(z,q,fe,de)},v.drawElementsInstanced=function(z,q,fe,de,ue){E.drawElementsInstancedANGLE(z,q,fe,de,ue)},1}function G1(v){var E=v.getExtension("OES_vertex_array_object");if(E)return v.createVertexArray=function(){return E.createVertexArrayOES()},v.deleteVertexArray=function(z){E.deleteVertexArrayOES(z)},v.bindVertexArray=function(z){E.bindVertexArrayOES(z)},v.isVertexArray=function(z){return E.isVertexArrayOES(z)},1}function q1(v){var E=v.getExtension("WEBGL_draw_buffers");if(E)return v.drawBuffers=function(z,q){E.drawBuffersWEBGL(z,q)},1}var He={counter:1,lastError:0,buffers:[],mappedBuffers:{},programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},currentContext:null,offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,init:function(){for(var v=new Float32Array(He.MINI_TEMP_BUFFER_SIZE),E=0;E>2]:-1;fe+=Ve(o()[z+de*4>>2],ue<0?void 0:ue)}return fe},createContext:function(v,E){var z=v.getContext("webgl",E);if(!z)return 0;var q=He.registerContext(z,E);return q},registerContext:function(v,E){var z=Vl(8);o()[z+4>>2]=Tr();var q={handle:z,attributes:E,version:E.majorVersion,GLctx:v};return v.canvas&&(v.canvas.GLctxObject=q),He.contexts[z]=q,(typeof E.enableExtensionsByDefault=="undefined"||E.enableExtensionsByDefault)&&He.initExtensions(q),z},makeContextCurrent:function(v){return He.currentContext=He.contexts[v],u.ctx=ha=He.currentContext&&He.currentContext.GLctx,!(v&&!ha)},getContext:function(v){return He.contexts[v]},deleteContext:function(v){He.currentContext===He.contexts[v]&&(He.currentContext=null),typeof We=="object"&&We.removeAllHandlersOnTarget(He.contexts[v].GLctx.canvas),He.contexts[v]&&He.contexts[v].GLctx.canvas&&(He.contexts[v].GLctx.canvas.GLctxObject=void 0),Ul(He.contexts[v].handle),He.contexts[v]=null},initExtensions:function(v){if(v||(v=He.currentContext),!v.initExtensionsDone){v.initExtensionsDone=!0;var E=v.GLctx;H1(E),G1(E),q1(E),E.disjointTimerQueryExt=E.getExtension("EXT_disjoint_timer_query");var z=["OES_texture_float","OES_texture_half_float","OES_standard_derivatives","OES_vertex_array_object","WEBGL_compressed_texture_s3tc","WEBGL_depth_texture","OES_element_index_uint","EXT_texture_filter_anisotropic","EXT_frag_depth","WEBGL_draw_buffers","ANGLE_instanced_arrays","OES_texture_float_linear","OES_texture_half_float_linear","EXT_blend_minmax","EXT_shader_texture_lod","EXT_texture_norm16","WEBGL_compressed_texture_pvrtc","EXT_color_buffer_half_float","WEBGL_color_buffer_float","EXT_sRGB","WEBGL_compressed_texture_etc1","EXT_disjoint_timer_query","WEBGL_compressed_texture_etc","WEBGL_compressed_texture_astc","EXT_color_buffer_float","WEBGL_compressed_texture_s3tc_srgb","EXT_disjoint_timer_query_webgl2","WEBKIT_WEBGL_compressed_texture_pvrtc"],q=E.getSupportedExtensions()||[];q.forEach(function(fe){z.indexOf(fe)!=-1&&E.getExtension(fe)})}},populateUniformTable:function(v){for(var E=He.programs[v],z=He.programInfos[v]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},q=z.uniforms,fe=ha.getProgramParameter(E,35718),de=0;de>2;z.alpha=!!o()[q+(0>>2)],z.depth=!!o()[q+(4>>2)],z.stencil=!!o()[q+(8>>2)],z.antialias=!!o()[q+(12>>2)],z.premultipliedAlpha=!!o()[q+(16>>2)],z.preserveDrawingBuffer=!!o()[q+(20>>2)];var fe=o()[q+(24>>2)];z.powerPreference=X1[fe],z.failIfMajorPerformanceCaveat=!!o()[q+(28>>2)],z.majorVersion=o()[q+(32>>2)],z.minorVersion=o()[q+(36>>2)],z.enableExtensionsByDefault=o()[q+(40>>2)],z.explicitSwapControl=o()[q+(44>>2)],z.proxyContextToMainThread=o()[q+(48>>2)],z.renderViaOffscreenBackBuffer=o()[q+(52>>2)];var de=Ol(v);if(!de)return-4;if(z.explicitSwapControl)return-1;var ue=He.createContext(de,z);return ue}function Z1(v,E){return K1(v,E)}var qa={splitPath:function(v){var E=/^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;return E.exec(v).slice(1)},normalizeArray:function(v,E){for(var z=0,q=v.length-1;q>=0;q--){var fe=v[q];fe==="."?v.splice(q,1):fe===".."?(v.splice(q,1),z++):z&&(v.splice(q,1),z--)}if(E)for(;z;z--)v.unshift("..");return v},normalize:function(v){var E=v.charAt(0)==="/",z=v.substr(-1)==="/";return v=qa.normalizeArray(v.split("/").filter(function(q){return!!q}),!E).join("/"),!v&&!E&&(v="."),v&&z&&(v+="/"),(E?"/":"")+v},dirname:function(v){var E=qa.splitPath(v),z=E[0],q=E[1];return!z&&!q?".":(q&&(q=q.substr(0,q.length-1)),z+q)},basename:function(v){if(v==="/")return"/";var E=v.lastIndexOf("/");return E===-1?v:v.substr(E+1)},extname:function(v){return qa.splitPath(v)[3]},join:function(){var v=Array.prototype.slice.call(arguments,0);return qa.normalize(v.join("/"))},join2:function(v,E){return qa.normalize(v+"/"+E)}},Ci={mappings:{},buffers:[null,[],[]],printChar:function(v,E){var z=Ci.buffers[v];E===0||E===10?((v===1?V:W)(Ge(z,0)),z.length=0):z.push(E)},varargs:void 0,get:function(){Ci.varargs+=4;var v=o()[Ci.varargs-4>>2];return v},getStr:function(v){var E=Ve(v);return E},get64:function(v,E){return v}};function Jc(v){return x?ca(3,1,v):0}function Qc(v,E,z,q,fe){if(x)return ca(4,1,v,E,z,q,fe)}function eh(v,E,z,q){if(x)return ca(5,1,v,E,z,q);for(var fe=0,de=0;de>2],ke=o()[E+(de*8+4)>>2],nt=0;nt>2]=fe,0}function Y1(v){var E=Ae.exitHandlers.pop();v&&E()}function J1(v,E){Ae.exitHandlers===null&&(Ae.exitHandlers=[]),Ae.exitHandlers.push(function(){U2(v,E)})}function th(v){if(x)throw"Internal Error! _spawn_thread() can only ever be called from main application thread!";var E=Ae.getNewWorker();if(E.pthread!==void 0)throw"Internal error!";if(!v.pthread_ptr)throw"Internal error, no pthread ptr!";Ae.runningWorkers.push(E);for(var z=Vl(128*4),q=0;q<128;++q)o()[z+q*4>>2]=0;var fe=v.stackBase+v.stackSize,de=Ae.pthreads[v.pthread_ptr]={worker:E,stackBase:v.stackBase,stackSize:v.stackSize,allocatedOwnStack:v.allocatedOwnStack,thread:v.pthread_ptr,threadInfoStruct:v.pthread_ptr},ue=de.threadInfoStruct>>2;Atomics.store(l(),ue+(0>>2),0),Atomics.store(l(),ue+(4>>2),0),Atomics.store(l(),ue+(8>>2),0),Atomics.store(l(),ue+(68>>2),v.detached),Atomics.store(l(),ue+(104>>2),z),Atomics.store(l(),ue+(48>>2),0),Atomics.store(l(),ue+(40>>2),de.threadInfoStruct),Atomics.store(l(),ue+(44>>2),42),Atomics.store(l(),ue+(108>>2),v.stackSize),Atomics.store(l(),ue+(84>>2),v.stackSize),Atomics.store(l(),ue+(80>>2),fe),Atomics.store(l(),ue+(108+8>>2),fe),Atomics.store(l(),ue+(108+12>>2),v.detached),Atomics.store(l(),ue+(108+20>>2),v.schedPolicy),Atomics.store(l(),ue+(108+24>>2),v.schedPrio);var ke=z2(),nt=ke+40;Atomics.store(l(),ue+(176>>2),nt),E.pthread=de;var $t={cmd:"run",start_routine:v.startRoutine,arg:v.arg,threadInfoStruct:v.pthread_ptr,selfThreadId:v.pthread_ptr,parentThreadId:v.parent_pthread_ptr,stackBase:v.stackBase,stackSize:v.stackSize};E.runPthread=function(){$t.time=performance.now(),E.postMessage($t,v.transferList)},E.loaded&&(E.runPthread(),delete E.runPthread)}function Q1(v,E,z){if(!E&&!z)return Dl.EINVAL;if(!v)return W("pthread_getschedparam called with a null thread pointer!"),Dl.ESRCH;var q=o()[v+12>>2];if(q!==v)return W("pthread_getschedparam attempted on thread "+v+", which does not point to a valid thread, or does not exist anymore!"),Dl.ESRCH;var fe=Atomics.load(l(),v+108+20>>2),de=Atomics.load(l(),v+108+24>>2);return E&&(o()[E>>2]=fe),z&&(o()[z>>2]=de),0}function Tr(){return qc|0}u._pthread_self=Tr;function ef(v,E,z,q){if(typeof SharedArrayBuffer=="undefined")return W("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!v)return W("pthread_create called with a null thread pointer!"),28;var fe=[],de=0;if(x&&(fe.length===0||de))return B2(687865856,v,E,z,q);if(de)return de;var ue=0,ke=0,nt=0,$t=0,en=0;if(E){ue=o()[E>>2],ue+=81920,ke=o()[E+8>>2],nt=o()[E+12>>2]!==0;var Mi=o()[E+16>>2]===0;if(Mi){var Gl=o()[E+20>>2],Ln=o()[E+24>>2],pa=Ae.currentProxiedOperationCallerThread?Ae.currentProxiedOperationCallerThread:Tr();Q1(pa,E+20,E+24),$t=o()[E+20>>2],en=o()[E+24>>2],o()[E+20>>2]=Gl,o()[E+24>>2]=Ln}else $t=o()[E+20>>2],en=o()[E+24>>2]}else ue=2097152;var ql=ke==0;ql?ke=P2(16,ue):(ke-=ue,ge(ke>0));for(var $i=Vl(232),cf=0;cf<232>>2;++cf)l()[($i>>2)+cf]=0;o()[v>>2]=$i,o()[$i+12>>2]=$i;var H2=$i+156;o()[H2>>2]=H2;var hf={stackBase:ke,stackSize:ue,allocatedOwnStack:ql,schedPolicy:$t,schedPrio:en,detached:nt,startRoutine:z,pthread_ptr:$i,parent_pthread_ptr:Tr(),arg:q,transferList:fe};return x?(hf.cmd="spawnThread",postMessage(hf,fe)):th(hf),0}function tf(v){return v=+v,v>=0?+i1(v+.5):+Ii(v-.5)}function nh(v){if(x)return ca(6,1,v);switch(v){case 30:return 16384;case 85:var E=2147483648;return E/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 80:case 81:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:case 79:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return b1(28),-1}x?Ae.initWorker():Ae.initMainThreadBlock();var ha;He.init();var nf=[null,v1,Yc,Jc,Qc,eh,nh],rf={e:w1,r:_1,w:k1,a:I1,l:N1,d:S1,c:Ti,h:Ha,g:T1,x:E1,q:C1,B:R1,t:F1,A:D1,u:V1,k:U1,s:j1,v:Z1,m:Jc,o:Qc,i:eh,p:f1,memory:Q||u.wasmMemory,y:Y1,z:J1,j:ef,b:Tr,f:tf,n:nh,table:le},rh=d1();u.asm=rh;var zl=u.___wasm_call_ctors=function(){return(zl=u.___wasm_call_ctors=u.asm.C).apply(null,arguments)},Pl=u._init=function(){return(Pl=u._init=u.asm.D).apply(null,arguments)},ah=u._register_tensor=function(){return(ah=u._register_tensor=u.asm.E).apply(null,arguments)},Xa=u._dispose_data=function(){return(Xa=u._dispose_data=u.asm.F).apply(null,arguments)},Ll=u._dispose=function(){return(Ll=u._dispose=u.asm.G).apply(null,arguments)},af=u._Abs=function(){return(af=u._Abs=u.asm.H).apply(null,arguments)},sf=u._Add=function(){return(sf=u._Add=u.asm.I).apply(null,arguments)},Wl=u._AddN=function(){return(Wl=u._AddN=u.asm.J).apply(null,arguments)},sh=u._ArgMax=function(){return(sh=u._ArgMax=u.asm.K).apply(null,arguments)},ih=u._AvgPool=function(){return(ih=u._AvgPool=u.asm.L).apply(null,arguments)},G=u._BatchMatMul=function(){return(G=u._BatchMatMul=u.asm.M).apply(null,arguments)},ne=u._ClipByValue=function(){return(ne=u._ClipByValue=u.asm.N).apply(null,arguments)},Ne=u._Conv2D=function(){return(Ne=u._Conv2D=u.asm.O).apply(null,arguments)},Fe=u._Conv2DBackpropInput=function(){return(Fe=u._Conv2DBackpropInput=u.asm.P).apply(null,arguments)},rt=u._Cos=function(){return(rt=u._Cos=u.asm.Q).apply(null,arguments)},Tt=u._CropAndResize=function(){return(Tt=u._CropAndResize=u.asm.R).apply(null,arguments)},Ye=u._Cumsum=function(){return(Ye=u._Cumsum=u.asm.S).apply(null,arguments)},Xe=u._DepthToSpace=function(){return(Xe=u._DepthToSpace=u.asm.T).apply(null,arguments)},Ut=u._DepthwiseConv2dNative=function(){return(Ut=u._DepthwiseConv2dNative=u.asm.U).apply(null,arguments)},Xr=u._Equal=function(){return(Xr=u._Equal=u.asm.V).apply(null,arguments)},Kr=u._Exp=function(){return(Kr=u._Exp=u.asm.W).apply(null,arguments)},oh=u._FlipLeftRight=function(){return(oh=u._FlipLeftRight=u.asm.X).apply(null,arguments)},Bl=u._Floor=function(){return(Bl=u._Floor=u.asm.Y).apply(null,arguments)},Pn=u._FloorDiv=function(){return(Pn=u._FloorDiv=u.asm.Z).apply(null,arguments)},da=u._FusedBatchNorm=function(){return(da=u._FusedBatchNorm=u.asm._).apply(null,arguments)},lh=u._FusedConv2D=function(){return(lh=u._FusedConv2D=u.asm.$).apply(null,arguments)},f6=u._FusedDepthwiseConv2D=function(){return(f6=u._FusedDepthwiseConv2D=u.asm.aa).apply(null,arguments)},m6=u._Gather=function(){return(m6=u._Gather=u.asm.ba).apply(null,arguments)},A6=u._GatherNd=function(){return(A6=u._GatherNd=u.asm.ca).apply(null,arguments)},y6=u._Greater=function(){return(y6=u._Greater=u.asm.da).apply(null,arguments)},g6=u._GreaterEqual=function(){return(g6=u._GreaterEqual=u.asm.ea).apply(null,arguments)},x6=u._LeakyRelu=function(){return(x6=u._LeakyRelu=u.asm.fa).apply(null,arguments)},w6=u._Less=function(){return(w6=u._Less=u.asm.ga).apply(null,arguments)},_6=u._LessEqual=function(){return(_6=u._LessEqual=u.asm.ha).apply(null,arguments)},b6=u._Log=function(){return(b6=u._Log=u.asm.ia).apply(null,arguments)},v6=u._LogicalAnd=function(){return(v6=u._LogicalAnd=u.asm.ja).apply(null,arguments)},k6=u._Max=function(){return(k6=u._Max=u.asm.ka).apply(null,arguments)},I6=u._MaxPool=function(){return(I6=u._MaxPool=u.asm.la).apply(null,arguments)},N6=u._Maximum=function(){return(N6=u._Maximum=u.asm.ma).apply(null,arguments)},S6=u._Mean=function(){return(S6=u._Mean=u.asm.na).apply(null,arguments)},T6=u._Min=function(){return(T6=u._Min=u.asm.oa).apply(null,arguments)},E6=u._Minimum=function(){return(E6=u._Minimum=u.asm.pa).apply(null,arguments)},C6=u._Multiply=function(){return(C6=u._Multiply=u.asm.qa).apply(null,arguments)},R6=u._Neg=function(){return(R6=u._Neg=u.asm.ra).apply(null,arguments)},F6=u._NonMaxSuppressionV3=function(){return(F6=u._NonMaxSuppressionV3=u.asm.sa).apply(null,arguments)},M6=u._NonMaxSuppressionV4=function(){return(M6=u._NonMaxSuppressionV4=u.asm.ta).apply(null,arguments)},$6=u._NonMaxSuppressionV5=function(){return($6=u._NonMaxSuppressionV5=u.asm.ua).apply(null,arguments)},D6=u._NotEqual=function(){return(D6=u._NotEqual=u.asm.va).apply(null,arguments)},O6=u._OneHot=function(){return(O6=u._OneHot=u.asm.wa).apply(null,arguments)},z6=u._PadV2=function(){return(z6=u._PadV2=u.asm.xa).apply(null,arguments)},P6=u._Pow=function(){return(P6=u._Pow=u.asm.ya).apply(null,arguments)},L6=u._Prelu=function(){return(L6=u._Prelu=u.asm.za).apply(null,arguments)},W6=u._Prod=function(){return(W6=u._Prod=u.asm.Aa).apply(null,arguments)},B6=u._RealDiv=function(){return(B6=u._RealDiv=u.asm.Ba).apply(null,arguments)},V6=u._Relu=function(){return(V6=u._Relu=u.asm.Ca).apply(null,arguments)},U6=u._Relu6=function(){return(U6=u._Relu6=u.asm.Da).apply(null,arguments)},j6=u._ResizeBilinear=function(){return(j6=u._ResizeBilinear=u.asm.Ea).apply(null,arguments)},H6=u._Reverse=function(){return(H6=u._Reverse=u.asm.Fa).apply(null,arguments)},G6=u._RotateWithOffset=function(){return(G6=u._RotateWithOffset=u.asm.Ga).apply(null,arguments)},q6=u._Round=function(){return(q6=u._Round=u.asm.Ha).apply(null,arguments)},X6=u._Rsqrt=function(){return(X6=u._Rsqrt=u.asm.Ia).apply(null,arguments)},K6=u._ScatterNd=function(){return(K6=u._ScatterNd=u.asm.Ja).apply(null,arguments)},Z6=u._SelectV2=function(){return(Z6=u._SelectV2=u.asm.Ka).apply(null,arguments)},Y6=u._Sigmoid=function(){return(Y6=u._Sigmoid=u.asm.La).apply(null,arguments)},J6=u._Sin=function(){return(J6=u._Sin=u.asm.Ma).apply(null,arguments)},Q6=u._Softmax=function(){return(Q6=u._Softmax=u.asm.Na).apply(null,arguments)},ev=u._Sqrt=function(){return(ev=u._Sqrt=u.asm.Oa).apply(null,arguments)},tv=u._Square=function(){return(tv=u._Square=u.asm.Pa).apply(null,arguments)},nv=u._SquaredDifference=function(){return(nv=u._SquaredDifference=u.asm.Qa).apply(null,arguments)},rv=u._Step=function(){return(rv=u._Step=u.asm.Ra).apply(null,arguments)},av=u._StridedSlice=function(){return(av=u._StridedSlice=u.asm.Sa).apply(null,arguments)},sv=u._Sub=function(){return(sv=u._Sub=u.asm.Ta).apply(null,arguments)},iv=u._Sum=function(){return(iv=u._Sum=u.asm.Ua).apply(null,arguments)},ov=u._Tanh=function(){return(ov=u._Tanh=u.asm.Va).apply(null,arguments)},lv=u._Tile=function(){return(lv=u._Tile=u.asm.Wa).apply(null,arguments)},uv=u._TopK=function(){return(uv=u._TopK=u.asm.Xa).apply(null,arguments)},cv=u._Transpose=function(){return(cv=u._Transpose=u.asm.Ya).apply(null,arguments)},hv=u.__FusedMatMul=function(){return(hv=u.__FusedMatMul=u.asm.Za).apply(null,arguments)},Vl=u._malloc=function(){return(Vl=u._malloc=u.asm._a).apply(null,arguments)},Ul=u._free=function(){return(Ul=u._free=u.asm.$a).apply(null,arguments)},O2=u.___errno_location=function(){return(O2=u.___errno_location=u.asm.ab).apply(null,arguments)},z2=u._emscripten_get_global_libc=function(){return(z2=u._emscripten_get_global_libc=u.asm.bb).apply(null,arguments)},dv=u.___em_js__initPthreadsJS=function(){return(dv=u.___em_js__initPthreadsJS=u.asm.cb).apply(null,arguments)},P2=u._memalign=function(){return(P2=u._memalign=u.asm.db).apply(null,arguments)},L2=u.___pthread_tsd_run_dtors=function(){return(L2=u.___pthread_tsd_run_dtors=u.asm.eb).apply(null,arguments)},of=u._emscripten_main_thread_process_queued_calls=function(){return(of=u._emscripten_main_thread_process_queued_calls=u.asm.fb).apply(null,arguments)},pv=u._emscripten_current_thread_process_queued_calls=function(){return(pv=u._emscripten_current_thread_process_queued_calls=u.asm.gb).apply(null,arguments)},W2=u._emscripten_register_main_browser_thread_id=function(){return(W2=u._emscripten_register_main_browser_thread_id=u.asm.hb).apply(null,arguments)},fv=u._emscripten_main_browser_thread_id=function(){return(fv=u._emscripten_main_browser_thread_id=u.asm.ib).apply(null,arguments)},mv=u._emscripten_async_run_in_main_thread=function(){return(mv=u._emscripten_async_run_in_main_thread=u.asm.jb).apply(null,arguments)},Av=u._emscripten_sync_run_in_main_thread=function(){return(Av=u._emscripten_sync_run_in_main_thread=u.asm.kb).apply(null,arguments)},yv=u._emscripten_sync_run_in_main_thread_0=function(){return(yv=u._emscripten_sync_run_in_main_thread_0=u.asm.lb).apply(null,arguments)},gv=u._emscripten_sync_run_in_main_thread_1=function(){return(gv=u._emscripten_sync_run_in_main_thread_1=u.asm.mb).apply(null,arguments)},xv=u._emscripten_sync_run_in_main_thread_2=function(){return(xv=u._emscripten_sync_run_in_main_thread_2=u.asm.nb).apply(null,arguments)},wv=u._emscripten_sync_run_in_main_thread_xprintf_varargs=function(){return(wv=u._emscripten_sync_run_in_main_thread_xprintf_varargs=u.asm.ob).apply(null,arguments)},_v=u._emscripten_sync_run_in_main_thread_3=function(){return(_v=u._emscripten_sync_run_in_main_thread_3=u.asm.pb).apply(null,arguments)},B2=u._emscripten_sync_run_in_main_thread_4=function(){return(B2=u._emscripten_sync_run_in_main_thread_4=u.asm.qb).apply(null,arguments)},bv=u._emscripten_sync_run_in_main_thread_5=function(){return(bv=u._emscripten_sync_run_in_main_thread_5=u.asm.rb).apply(null,arguments)},vv=u._emscripten_sync_run_in_main_thread_6=function(){return(vv=u._emscripten_sync_run_in_main_thread_6=u.asm.sb).apply(null,arguments)},kv=u._emscripten_sync_run_in_main_thread_7=function(){return(kv=u._emscripten_sync_run_in_main_thread_7=u.asm.tb).apply(null,arguments)},V2=u._emscripten_run_in_main_runtime_thread_js=function(){return(V2=u._emscripten_run_in_main_runtime_thread_js=u.asm.ub).apply(null,arguments)},lf=u._emscripten_async_queue_on_thread_=function(){return(lf=u._emscripten_async_queue_on_thread_=u.asm.vb).apply(null,arguments)},Iv=u._emscripten_tls_init=function(){return(Iv=u._emscripten_tls_init=u.asm.wb).apply(null,arguments)},jl=u.stackSave=function(){return(jl=u.stackSave=u.asm.xb).apply(null,arguments)},Ri=u.stackAlloc=function(){return(Ri=u.stackAlloc=u.asm.yb).apply(null,arguments)},Fi=u.stackRestore=function(){return(Fi=u.stackRestore=u.asm.zb).apply(null,arguments)},U2=u.dynCall_vi=function(){return(U2=u.dynCall_vi=u.asm.Ab).apply(null,arguments)},Nv=u.dynCall_v=function(){return(Nv=u.dynCall_v=u.asm.Bb).apply(null,arguments)},Sv=u.dynCall_ii=function(){return(Sv=u.dynCall_ii=u.asm.Cb).apply(null,arguments)};u.asm=rh,u.cwrap=Oe,u.PThread=Ae,u.PThread=Ae,u._pthread_self=Tr,u.wasmMemory=Q,u.ExitStatus=j2;var Hl;u.then=function(v){if(Hl)v(u);else{var E=u.onRuntimeInitialized;u.onRuntimeInitialized=function(){E&&E(),v(u)}}return u};function j2(v){this.name="ExitStatus",this.message="Program terminated with exit("+v+")",this.status=v}ja=function v(){Hl||uf(),Hl||(ja=v)};function uf(v){if(v=v||p,Gr>0||(Qn(),Gr>0))return;function E(){Hl||(Hl=!0,u.calledRun=!0,!me&&(Uc(),r1(),u.onRuntimeInitialized&&u.onRuntimeInitialized(),a1()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),E()},1)):E()}if(u.run=uf,u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();return x||(se=!0),x||uf(),a}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),E8=at((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};var s=typeof a!="undefined"?a:{},i={},o;for(o in s)s.hasOwnProperty(o)&&(i[o]=s[o]);var l=[],c="./this.program",u=function(G,ne){throw ne},h=!1,d=!1,p=!1,f=!1;h=typeof window=="object",d=typeof importScripts=="function",p=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",f=!h&&!p&&!d;var m="";function A(G){return s.locateFile?s.locateFile(G,m):m+G}var y,g,w,x,_,b;p?(d?m=Wu().dirname(m)+"/":m=__dirname+"/",y=function(G,ne){return _||(_=require("fs")),b||(b=Wu()),G=b.normalize(G),_.readFileSync(G,ne?null:"utf8")},w=function(G){var ne=y(G,!0);return ne.buffer||(ne=new Uint8Array(ne)),W(ne.buffer),ne},process.argv.length>1&&(c=process.argv[1].replace(/\\/g,"/")),l=process.argv.slice(2),process.on("uncaughtException",function(G){if(!(G instanceof Ll))throw G}),process.on("unhandledRejection",Va),u=function(G){process.exit(G)},s.inspect=function(){return"[Emscripten Module object]"}):f?(typeof read!="undefined"&&(y=function(G){return read(G)}),w=function(G){var ne;return typeof readbuffer=="function"?new Uint8Array(readbuffer(G)):(ne=read(G,"binary"),W(typeof ne=="object"),ne)},typeof scriptArgs!="undefined"?l=scriptArgs:typeof arguments!="undefined"&&(l=arguments),typeof quit=="function"&&(u=function(G){quit(G)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||d)&&(d?m=self.location.href:document.currentScript&&(m=document.currentScript.src),r&&(m=r),m.indexOf("blob:")!==0?m=m.substr(0,m.lastIndexOf("/")+1):m="",y=function(G){var ne=new XMLHttpRequest;return ne.open("GET",G,!1),ne.send(null),ne.responseText},d&&(w=function(G){var ne=new XMLHttpRequest;return ne.open("GET",G,!1),ne.responseType="arraybuffer",ne.send(null),new Uint8Array(ne.response)}),g=function(G,ne,Ne){var Fe=new XMLHttpRequest;Fe.open("GET",G,!0),Fe.responseType="arraybuffer",Fe.onload=function(){if(Fe.status==200||Fe.status==0&&Fe.response){ne(Fe.response);return}Ne()},Fe.onerror=Ne,Fe.send(null)},x=function(G){document.title=G});var T=s.print||console.log.bind(console),S=s.printErr||console.warn.bind(console);for(o in i)i.hasOwnProperty(o)&&(s[o]=i[o]);i=null,s.arguments&&(l=s.arguments),s.thisProgram&&(c=s.thisProgram),s.quit&&(u=s.quit);var N;s.wasmBinary&&(N=s.wasmBinary);var C;s.noExitRuntime&&(C=s.noExitRuntime),typeof WebAssembly!="object"&&S("no native wasm support detected");var $,D=new WebAssembly.Table({initial:151,maximum:151+0,element:"anyfunc"}),O=!1,V=0;function W(G,ne){G||Va("Assertion failed: "+ne)}function Z(G){var ne=s["_"+G];return W(ne,"Cannot call unknown function "+G+", make sure it is exported"),ne}function K(G,ne,Ne,Fe,rt){var Tt={string:function(Pn){var da=0;if(Pn!=null&&Pn!==0){var lh=(Pn.length<<2)+1;da=Pl(lh),re(Pn,da,lh)}return da},array:function(Pn){var da=Pl(Pn.length);return ce(Pn,da),da}};function Ye(Pn){return ne==="string"?Q(Pn):ne==="boolean"?Boolean(Pn):Pn}var Xe=Z(G),Ut=[],Xr=0;if(Fe)for(var Kr=0;Kr=Fe);)++rt;if(rt-ne>16&&G.subarray&&J)return J.decode(G.subarray(ne,rt));for(var Tt="";ne>10,56320|Xr&1023)}}return Tt}function Q(G,ne){return G?se(ye,G,ne):""}function le(G,ne,Ne,Fe){if(!(Fe>0))return 0;for(var rt=Ne,Tt=Ne+Fe-1,Ye=0;Ye=55296&&Xe<=57343){var Ut=G.charCodeAt(++Ye);Xe=65536+((Xe&1023)<<10)|Ut&1023}if(Xe<=127){if(Ne>=Tt)break;ne[Ne++]=Xe}else if(Xe<=2047){if(Ne+1>=Tt)break;ne[Ne++]=192|Xe>>6,ne[Ne++]=128|Xe&63}else if(Xe<=65535){if(Ne+2>=Tt)break;ne[Ne++]=224|Xe>>12,ne[Ne++]=128|Xe>>6&63,ne[Ne++]=128|Xe&63}else{if(Ne+3>=Tt)break;ne[Ne++]=240|Xe>>18,ne[Ne++]=128|Xe>>12&63,ne[Ne++]=128|Xe>>6&63,ne[Ne++]=128|Xe&63}}return ne[Ne]=0,Ne-rt}function re(G,ne,Ne){return le(G,ye,ne,Ne)}function ce(G,ne){me.set(G,ne)}var he,me,ye,ge,Ee,Re,Oe,Ge,Ve;function et(G){he=G,s.HEAP8=me=new Int8Array(G),s.HEAP16=ge=new Int16Array(G),s.HEAP32=Re=new Int32Array(G),s.HEAPU8=ye=new Uint8Array(G),s.HEAPU16=Ee=new Uint16Array(G),s.HEAPU32=Oe=new Uint32Array(G),s.HEAPF32=Ge=new Float32Array(G),s.HEAPF64=Ve=new Float64Array(G)}var it=s.INITIAL_MEMORY||16777216;function je(G){for(;G.length>0;){var ne=G.shift();if(typeof ne=="function"){ne(s);continue}var Ne=ne.func;typeof Ne=="number"?ne.arg===void 0?s.dynCall_v(Ne):s.dynCall_vi(Ne,ne.arg):Ne(ne.arg===void 0?null:ne.arg)}}var lt=[],ut=[],zn=[],tt=[],wn=!1,Zt=!1;function _n(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Sr(s.preRun.shift());je(lt)}function Zn(){wn=!0,je(ut)}function dn(){je(zn)}function rn(){Zt=!0}function Yn(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)bn(s.postRun.shift());je(tt)}function Sr(G){lt.unshift(G)}function bn(G){tt.unshift(G)}var bi=Math.ceil,El=Math.floor,hr=0,Jn=null,dr=null;function vi(G){hr++,s.monitorRunDependencies&&s.monitorRunDependencies(hr)}function ki(G){if(hr--,s.monitorRunDependencies&&s.monitorRunDependencies(hr),hr==0&&(Jn!==null&&(clearInterval(Jn),Jn=null),dr)){var ne=dr;dr=null,ne()}}s.preloadedImages={},s.preloadedAudios={};function Va(G){throw s.onAbort&&s.onAbort(G),G+="",T(G),S(G),O=!0,V=1,G="abort("+G+"). Build with -s ASSERTIONS=1 for more info.",new WebAssembly.RuntimeError(G)}function Cl(G,ne){return String.prototype.startsWith?G.startsWith(ne):G.indexOf(ne)===0}var n1="data:application/octet-stream;base64,";function Rl(G){return Cl(G,n1)}var Vc="file://";function Fl(G){return Cl(G,Vc)}var Qn="tfjs-backend-wasm.wasm";Rl(Qn)||(Qn=A(Qn));function Uc(){try{if(N)return new Uint8Array(N);if(w)return w(Qn);throw"both async and sync fetching of the wasm failed"}catch(G){Va(G)}}function r1(){return!N&&(h||d)&&typeof fetch=="function"&&!Fl(Qn)?fetch(Qn,{credentials:"same-origin"}).then(function(G){if(!G.ok)throw"failed to load wasm binary file at '"+Qn+"'";return G.arrayBuffer()}).catch(function(){return Uc()}):new Promise(function(G,ne){G(Uc())})}function a1(){var G={env:qr,wasi_snapshot_preview1:qr};function ne(Ye,Xe){var Ut=Ye.exports;s.asm=Ut,$=Ut.memory,et($.buffer),ki("wasm-instantiate")}vi("wasm-instantiate");function Ne(Ye){ne(Ye.instance)}function Fe(Ye){return r1().then(function(Xe){return WebAssembly.instantiate(Xe,G)}).then(Ye,function(Xe){S("failed to asynchronously prepare wasm: "+Xe),Va(Xe)})}function rt(){if(!N&&typeof WebAssembly.instantiateStreaming=="function"&&!Rl(Qn)&&!Fl(Qn)&&typeof fetch=="function")fetch(Qn,{credentials:"same-origin"}).then(function(Ye){var Xe=WebAssembly.instantiateStreaming(Ye,G);return Xe.then(Ne,function(Ut){S("wasm streaming compile failed: "+Ut),S("falling back to ArrayBuffer instantiation"),Fe(Ne)})});else return Fe(Ne)}if(s.instantiateWasm)try{var Tt=s.instantiateWasm(G,ne);return Tt}catch(Ye){return S("Module.instantiateWasm callback failed with error: "+Ye),!1}return rt(),{}}ut.push();function s1(G){et($.buffer)}var Ua={splitPath:function(G){var ne=/^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;return ne.exec(G).slice(1)},normalizeArray:function(G,ne){for(var Ne=0,Fe=G.length-1;Fe>=0;Fe--){var rt=G[Fe];rt==="."?G.splice(Fe,1):rt===".."?(G.splice(Fe,1),Ne++):Ne&&(G.splice(Fe,1),Ne--)}if(ne)for(;Ne;Ne--)G.unshift("..");return G},normalize:function(G){var ne=G.charAt(0)==="/",Ne=G.substr(-1)==="/";return G=Ua.normalizeArray(G.split("/").filter(function(Fe){return!!Fe}),!ne).join("/"),!G&&!ne&&(G="."),G&&Ne&&(G+="/"),(ne?"/":"")+G},dirname:function(G){var ne=Ua.splitPath(G),Ne=ne[0],Fe=ne[1];return!Ne&&!Fe?".":(Fe&&(Fe=Fe.substr(0,Fe.length-1)),Ne+Fe)},basename:function(G){if(G==="/")return"/";var ne=G.lastIndexOf("/");return ne===-1?G:G.substr(ne+1)},extname:function(G){return Ua.splitPath(G)[3]},join:function(){var G=Array.prototype.slice.call(arguments,0);return Ua.normalize(G.join("/"))},join2:function(G,ne){return Ua.normalize(G+"/"+ne)}},Ii={mappings:{},buffers:[null,[],[]],printChar:function(G,ne){var Ne=Ii.buffers[G];ne===0||ne===10?((G===1?T:S)(se(Ne,0)),Ne.length=0):Ne.push(ne)},varargs:void 0,get:function(){Ii.varargs+=4;var G=Re[Ii.varargs-4>>2];return G},getStr:function(G){var ne=Q(G);return ne},get64:function(G,ne){return G}};function i1(G){return 0}function Gr(G,ne,Ne,Fe,rt){}function Ml(G,ne,Ne,Fe){for(var rt=0,Tt=0;Tt>2],Xe=Re[ne+(Tt*8+4)>>2],Ut=0;Ut>2]=rt,0}function ja(G){sh(G)}function o1(G){ja(G)}function l1(G){return G=+G,G>=0?+El(G+.5):+bi(G-.5)}var qr={emscripten_notify_memory_growth:s1,fd_close:i1,fd_seek:Gr,fd_write:Ml,proc_exit:o1,roundf:l1},$l=a1();s.asm=$l;var u1=s._init=function(){return(u1=s._init=s.asm.init).apply(null,arguments)},jc=s._register_tensor=function(){return(jc=s._register_tensor=s.asm.register_tensor).apply(null,arguments)},c1=s._dispose_data=function(){return(c1=s._dispose_data=s.asm.dispose_data).apply(null,arguments)},Hc=s._dispose=function(){return(Hc=s._dispose=s.asm.dispose).apply(null,arguments)},er=s._Abs=function(){return(er=s._Abs=s.asm.Abs).apply(null,arguments)},Gc=s._Add=function(){return(Gc=s._Add=s.asm.Add).apply(null,arguments)},h1=s._AddN=function(){return(h1=s._AddN=s.asm.AddN).apply(null,arguments)},d1=s._ArgMax=function(){return(d1=s._ArgMax=s.asm.ArgMax).apply(null,arguments)},p1=s._AvgPool=function(){return(p1=s._AvgPool=s.asm.AvgPool).apply(null,arguments)},f1=s._BatchMatMul=function(){return(f1=s._BatchMatMul=s.asm.BatchMatMul).apply(null,arguments)},qc=s._ClipByValue=function(){return(qc=s._ClipByValue=s.asm.ClipByValue).apply(null,arguments)},Xc=s._Conv2D=function(){return(Xc=s._Conv2D=s.asm.Conv2D).apply(null,arguments)},Kc=s._Conv2DBackpropInput=function(){return(Kc=s._Conv2DBackpropInput=s.asm.Conv2DBackpropInput).apply(null,arguments)},Ni=s._Cos=function(){return(Ni=s._Cos=s.asm.Cos).apply(null,arguments)},Dl=s._CropAndResize=function(){return(Dl=s._CropAndResize=s.asm.CropAndResize).apply(null,arguments)},Si=s._Cumsum=function(){return(Si=s._Cumsum=s.asm.Cumsum).apply(null,arguments)},Ti=s._DepthToSpace=function(){return(Ti=s._DepthToSpace=s.asm.DepthToSpace).apply(null,arguments)},m1=s._DepthwiseConv2dNative=function(){return(m1=s._DepthwiseConv2dNative=s.asm.DepthwiseConv2dNative).apply(null,arguments)},A1=s._Equal=function(){return(A1=s._Equal=s.asm.Equal).apply(null,arguments)},y1=s._Exp=function(){return(y1=s._Exp=s.asm.Exp).apply(null,arguments)},Ae=s._FlipLeftRight=function(){return(Ae=s._FlipLeftRight=s.asm.FlipLeftRight).apply(null,arguments)},g1=s._Floor=function(){return(g1=s._Floor=s.asm.Floor).apply(null,arguments)},x1=s._FloorDiv=function(){return(x1=s._FloorDiv=s.asm.FloorDiv).apply(null,arguments)},w1=s._FusedBatchNorm=function(){return(w1=s._FusedBatchNorm=s.asm.FusedBatchNorm).apply(null,arguments)},_1=s._FusedConv2D=function(){return(_1=s._FusedConv2D=s.asm.FusedConv2D).apply(null,arguments)},Ha=s._FusedDepthwiseConv2D=function(){return(Ha=s._FusedDepthwiseConv2D=s.asm.FusedDepthwiseConv2D).apply(null,arguments)},b1=s._Gather=function(){return(b1=s._Gather=s.asm.Gather).apply(null,arguments)},v1=s._GatherNd=function(){return(v1=s._GatherNd=s.asm.GatherNd).apply(null,arguments)},k1=s._Greater=function(){return(k1=s._Greater=s.asm.Greater).apply(null,arguments)},I1=s._GreaterEqual=function(){return(I1=s._GreaterEqual=s.asm.GreaterEqual).apply(null,arguments)},N1=s._LeakyRelu=function(){return(N1=s._LeakyRelu=s.asm.LeakyRelu).apply(null,arguments)},S1=s._Less=function(){return(S1=s._Less=s.asm.Less).apply(null,arguments)},T1=s._LessEqual=function(){return(T1=s._LessEqual=s.asm.LessEqual).apply(null,arguments)},E1=s._Log=function(){return(E1=s._Log=s.asm.Log).apply(null,arguments)},C1=s._LogicalAnd=function(){return(C1=s._LogicalAnd=s.asm.LogicalAnd).apply(null,arguments)},R1=s._Max=function(){return(R1=s._Max=s.asm.Max).apply(null,arguments)},ca=s._MaxPool=function(){return(ca=s._MaxPool=s.asm.MaxPool).apply(null,arguments)},Ga=s._Maximum=function(){return(Ga=s._Maximum=s.asm.Maximum).apply(null,arguments)},Ei=s._Mean=function(){return(Ei=s._Mean=s.asm.Mean).apply(null,arguments)},F1=s._Min=function(){return(F1=s._Min=s.asm.Min).apply(null,arguments)},M1=s._Minimum=function(){return(M1=s._Minimum=s.asm.Minimum).apply(null,arguments)},$1=s._Multiply=function(){return($1=s._Multiply=s.asm.Multiply).apply(null,arguments)},D1=s._Neg=function(){return(D1=s._Neg=s.asm.Neg).apply(null,arguments)},We=s._NonMaxSuppressionV3=function(){return(We=s._NonMaxSuppressionV3=s.asm.NonMaxSuppressionV3).apply(null,arguments)},O1=s._NonMaxSuppressionV4=function(){return(O1=s._NonMaxSuppressionV4=s.asm.NonMaxSuppressionV4).apply(null,arguments)},z1=s._NonMaxSuppressionV5=function(){return(z1=s._NonMaxSuppressionV5=s.asm.NonMaxSuppressionV5).apply(null,arguments)},P1=s._NotEqual=function(){return(P1=s._NotEqual=s.asm.NotEqual).apply(null,arguments)},L1=s._OneHot=function(){return(L1=s._OneHot=s.asm.OneHot).apply(null,arguments)},W1=s._PadV2=function(){return(W1=s._PadV2=s.asm.PadV2).apply(null,arguments)},B1=s._Pow=function(){return(B1=s._Pow=s.asm.Pow).apply(null,arguments)},Ol=s._Prelu=function(){return(Ol=s._Prelu=s.asm.Prelu).apply(null,arguments)},Zc=s._Prod=function(){return(Zc=s._Prod=s.asm.Prod).apply(null,arguments)},Yc=s._RealDiv=function(){return(Yc=s._RealDiv=s.asm.RealDiv).apply(null,arguments)},V1=s._Relu=function(){return(V1=s._Relu=s.asm.Relu).apply(null,arguments)},U1=s._Relu6=function(){return(U1=s._Relu6=s.asm.Relu6).apply(null,arguments)},j1=s._ResizeBilinear=function(){return(j1=s._ResizeBilinear=s.asm.ResizeBilinear).apply(null,arguments)},H1=s._Reverse=function(){return(H1=s._Reverse=s.asm.Reverse).apply(null,arguments)},G1=s._RotateWithOffset=function(){return(G1=s._RotateWithOffset=s.asm.RotateWithOffset).apply(null,arguments)},q1=s._Round=function(){return(q1=s._Round=s.asm.Round).apply(null,arguments)},He=s._Rsqrt=function(){return(He=s._Rsqrt=s.asm.Rsqrt).apply(null,arguments)},X1=s._ScatterNd=function(){return(X1=s._ScatterNd=s.asm.ScatterNd).apply(null,arguments)},K1=s._SelectV2=function(){return(K1=s._SelectV2=s.asm.SelectV2).apply(null,arguments)},Z1=s._Sigmoid=function(){return(Z1=s._Sigmoid=s.asm.Sigmoid).apply(null,arguments)},qa=s._Sin=function(){return(qa=s._Sin=s.asm.Sin).apply(null,arguments)},Ci=s._Softmax=function(){return(Ci=s._Softmax=s.asm.Softmax).apply(null,arguments)},Jc=s._Sqrt=function(){return(Jc=s._Sqrt=s.asm.Sqrt).apply(null,arguments)},Qc=s._Square=function(){return(Qc=s._Square=s.asm.Square).apply(null,arguments)},eh=s._SquaredDifference=function(){return(eh=s._SquaredDifference=s.asm.SquaredDifference).apply(null,arguments)},Y1=s._Step=function(){return(Y1=s._Step=s.asm.Step).apply(null,arguments)},J1=s._StridedSlice=function(){return(J1=s._StridedSlice=s.asm.StridedSlice).apply(null,arguments)},th=s._Sub=function(){return(th=s._Sub=s.asm.Sub).apply(null,arguments)},Q1=s._Sum=function(){return(Q1=s._Sum=s.asm.Sum).apply(null,arguments)},Tr=s._Tanh=function(){return(Tr=s._Tanh=s.asm.Tanh).apply(null,arguments)},ef=s._Tile=function(){return(ef=s._Tile=s.asm.Tile).apply(null,arguments)},tf=s._TopK=function(){return(tf=s._TopK=s.asm.TopK).apply(null,arguments)},nh=s._Transpose=function(){return(nh=s._Transpose=s.asm.Transpose).apply(null,arguments)},ha=s.__FusedMatMul=function(){return(ha=s.__FusedMatMul=s.asm._FusedMatMul).apply(null,arguments)},nf=s._malloc=function(){return(nf=s._malloc=s.asm.malloc).apply(null,arguments)},rf=s._free=function(){return(rf=s._free=s.asm.free).apply(null,arguments)},rh=s.__start=function(){return(rh=s.__start=s.asm._start).apply(null,arguments)},zl=s.stackSave=function(){return(zl=s.stackSave=s.asm.stackSave).apply(null,arguments)},Pl=s.stackAlloc=function(){return(Pl=s.stackAlloc=s.asm.stackAlloc).apply(null,arguments)},ah=s.stackRestore=function(){return(ah=s.stackRestore=s.asm.stackRestore).apply(null,arguments)};s.asm=$l,s.cwrap=te;var Xa;s.then=function(G){if(Xa)G(s);else{var ne=s.onRuntimeInitialized;s.onRuntimeInitialized=function(){ne&&ne(),G(s)}}return s};function Ll(G){this.name="ExitStatus",this.message="Program terminated with exit("+G+")",this.status=G}var af=!1;dr=function G(){Xa||Wl(),Xa||(dr=G)};function sf(G){var ne=s.__start;try{ne();var Ne=0;sh(Ne,!0)}catch(rt){if(rt instanceof Ll)return;if(rt=="unwind"){C=!0;return}else{var Fe=rt;rt&&typeof rt=="object"&&rt.stack&&(Fe=[rt,rt.stack]),S("exception thrown: "+Fe),u(1,rt)}}finally{af=!0}}function Wl(G){if(G=G||l,hr>0||(_n(),hr>0))return;function ne(){Xa||(Xa=!0,s.calledRun=!0,!O&&(Zn(),dn(),s.onRuntimeInitialized&&s.onRuntimeInitialized(),ih&&sf(G),Yn()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),ne()},1)):ne()}s.run=Wl;function sh(G,ne){ne&&C&&G===0||(C||(O=!0,V=G,rn(),s.onExit&&s.onExit(G)),u(G,new Ll(G)))}if(s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();var ih=!0;return s.noInitialRun&&(ih=!1),C=!0,Wl(),a}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),C8=at((e,t)=>{(function(n,r,a){function s(c){var u=this,h=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=h(" "),u.s1=h(" "),u.s2=h(" "),u.s0-=h(c),u.s0<0&&(u.s0+=1),u.s1-=h(c),u.s1<0&&(u.s1+=1),u.s2-=h(c),u.s2<0&&(u.s2+=1),h=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var h=new s(c),d=u&&u.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var c=4022871197,u=function(h){h=String(h);for(var d=0;d>>0,p-=c,p*=c,c=p>>>0,p-=c,c+=p*4294967296}return(c>>>0)*23283064365386963e-26};return u}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),R8=at((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),F8=at((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var h=0;h>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),M8=at((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.x,d=c.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,c.i=d+1&7,f};function u(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p0;--p)h.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.x&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),$8=at((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.w,d=c.X,p=c.i,f,m;return c.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,c.i=p,m+(h^h>>>16)|0};function u(h,d){var p,f,m,A,y,g=[],w=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,w=Math.max(w,d.length)),m=0,A=-32;A>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(g[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],p=g[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,g[m]=f^p;h.w=y,h.X=g,h.i=m}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.X&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),D8=at((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.b,p=c.c,f=c.d,m=c.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,c.b=d=d<<20^d>>>12^p,c.c=p=p-f|0,c.d=f<<16^p>>>16^m,c.a=m-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),O8=at((e,t)=>{(function(n,r,a){var s=256,i=6,o=52,l="random",c=a.pow(s,i),u=a.pow(2,o),h=u*2,d=s-1,p;function f(_,b,T){var S=[];b=b==!0?{entropy:!0}:b||{};var N=g(y(b.entropy?[_,x(r)]:_==null?w():_,3),S),C=new m(S),$=function(){for(var D=C.g(i),O=c,V=0;D=h;)D/=2,O/=2,V>>>=1;return(D+V)/O};return $.int32=function(){return C.g(4)|0},$.quick=function(){return C.g(4)/4294967296},$.double=$,g(x(C.S),r),(b.pass||T||function(D,O,V,W){return W&&(W.S&&A(W,C),D.state=function(){return A(C,{})}),V?(a[l]=D,O):D})($,N,"global"in b?b.global:this==a,b.state)}function m(_){var b,T=_.length,S=this,N=0,C=S.i=S.j=0,$=S.S=[];for(T||(_=[T++]);N{var n=C8(),r=R8(),a=F8(),s=M8(),i=$8(),o=D8(),l=O8();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),z8=at(()=>{}),P8="2.8.5",L8="2.8.5",W8="2.8.5",B8="2.8.5",V8="2.8.5",U8=1e-7,j8=1e-4,dh=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Ql=class{decComplexRef(e){}time(e){return Y("time")}read(e){return Y("read")}readSync(e){return Y("readSync")}numDataIds(){return Y("numDataIds")}disposeData(e){return Y("disposeData")}write(e,t,n){return Y("write")}move(e,t,n,r){return Y("move")}memory(){return Y("memory")}floatPrecision(){return Y("floatPrecision")}epsilon(){return this.floatPrecision()===32?U8:j8}batchMatMul(e,t,n,r){return Y("batchMatMul")}fusedBatchMatMul({a:e,b:t,transposeA:n,transposeB:r,bias:a,activation:s,preluActivationWeights:i}){return Y("fusedBatchMatMul")}slice(e,t,n){return Y("slice")}stridedSlice(e,t,n,r){return Y("stridedSlice")}unstack(e,t){return Y("unstack")}reverse(e,t){return Y("reverse")}concat(e,t){return Y("concat")}neg(e){return Y("neg")}add(e,t){return Y("add")}addN(e){return Y("addN")}subtract(e,t){return Y("subtract")}multiply(e,t){return Y("multiply")}realDivide(e,t){return Y("realDivide")}floorDiv(e,t){return Y("floorDiv")}sum(e,t){return Y("sum")}prod(e,t){return Y("prod")}unsortedSegmentSum(e,t,n){return Y("unsortedSegmentSum")}argMin(e,t){return Y("argMin")}argMax(e,t){return Y("argMax")}equal(e,t){return Y("equal")}notEqual(e,t){return Y("notEqual")}less(e,t){return Y("less")}lessEqual(e,t){return Y("lessEqual")}greater(e,t){return Y("greater")}greaterEqual(e,t){return Y("greaterEqual")}logicalNot(e){return Y("logicalNot")}logicalAnd(e,t){return Y("logicalAnd")}logicalOr(e,t){return Y("logicalOr")}where(e){return Y("where")}select(e,t,n){return Y("select")}topk(e,t,n){return Y("topk")}min(e,t){return Y("min")}minimum(e,t){return Y("minimum")}mod(e,t){return Y("mod")}max(e,t){return Y("max")}maximum(e,t){return Y("maximum")}all(e,t){return Y("all")}any(e,t){return Y("any")}squaredDifference(e,t){return Y("squaredDifference")}ceil(e){return Y("ceil")}floor(e){return Y("floor")}round(e){return Y("round")}sign(e){return Y("sign")}isNaN(e){return Y("isNaN")}isInf(e){return Y("isInf")}isFinite(e){return Y("isFinite")}pow(e,t){return Y("pow")}exp(e){return Y("exp")}expm1(e){return Y("expm1")}softmax(e,t){return Y("softmax")}log(e){return Y("log")}log1p(e){return Y("log1p")}sqrt(e){return Y("sqrt")}rsqrt(e){return Y("rsqrt")}square(e){return Y("square")}reciprocal(e){return Y("reciprocal")}relu(e){return Y("relu")}relu6(e){return Y("relu6")}prelu(e,t){return Y("prelu")}elu(e){return Y("elu")}eluDer(e,t){return Y("eluDer")}selu(e){return Y("selu")}int(e){return Y("int")}clip(e,t,n){return Y("clip")}abs(e){return Y("abs")}complexAbs(e){return Y("complexAbs")}sigmoid(e){return Y("sigmoid")}softplus(e){return Y("softplus")}sin(e){return Y("sin")}cos(e){return Y("cos")}tan(e){return Y("tan")}asin(e){return Y("asin")}acos(e){return Y("acos")}atan(e){return Y("atan")}atan2(e,t){return Y("atan2")}sinh(e){return Y("sinh")}cosh(e){return Y("cosh")}tanh(e){return Y("tanh")}asinh(e){return Y("asinh")}acosh(e){return Y("acosh")}atanh(e){return Y("atanh")}erf(e){return Y("erf")}step(e,t){return Y("step")}fusedConv2d({input:e,filter:t,convInfo:n,bias:r,activation:a,preluActivationWeights:s}){return Y("fusedConv2d")}conv2d(e,t,n){return Y("conv2d")}conv2dDerInput(e,t,n){return Y("conv2dDerInput")}conv2dDerFilter(e,t,n){return Y("conv2dDerFilter")}fusedDepthwiseConv2D({input:e,filter:t,convInfo:n,bias:r,activation:a,preluActivationWeights:s}){return Y("fusedDepthwiseConv2D")}depthwiseConv2D(e,t,n){return Y("depthwiseConv2D")}depthwiseConv2DDerInput(e,t,n){return Y("depthwiseConv2DDerInput")}depthwiseConv2DDerFilter(e,t,n){return Y("depthwiseConv2DDerFilter")}conv3d(e,t,n){return Y("conv3d")}conv3dDerInput(e,t,n){return Y("conv3dDerInput")}conv3dDerFilter(e,t,n){return Y("conv3dDerFilter")}maxPool(e,t){return Y("maxPool")}maxPoolBackprop(e,t,n,r){return Y("maxPoolBackprop")}avgPool(e,t){return Y("avgPool")}avgPoolBackprop(e,t,n){return Y("avgPoolBackprop")}avgPool3d(e,t){return Y("avgPool3d")}avgPool3dBackprop(e,t,n){return Y("avgPool3dBackprop")}maxPool3d(e,t){return Y("maxPool3d")}maxPool3dBackprop(e,t,n,r){return Y("maxPool3dBackprop")}reshape(e,t){return Y("reshape")}cast(e,t){return Y("cast")}tile(e,t){return Y("tile")}pad(e,t,n){return Y("pad")}transpose(e,t){return Y("transpose")}gather(e,t,n,r=0){return Y("gather")}gatherND(e,t){return Y("gatherND")}scatterND(e,t,n){return Y("scatterND")}batchToSpaceND(e,t,n){return Y("batchToSpaceND")}spaceToBatchND(e,t,n){return Y("spaceToBatchND")}resizeBilinear(e,t,n,r,a){return Y("resizeBilinear")}resizeBilinearBackprop(e,t,n){return Y("resizeBilinearBackprop")}resizeNearestNeighbor(e,t,n,r,a){return Y("resizeNearestNeighbor")}resizeNearestNeighborBackprop(e,t,n){return Y("resizeNearestNeighborBackprop")}batchNorm(e,t,n,r,a,s){return Y("batchNorm")}localResponseNormalization4D(e,t,n,r,a){return Y("localResponseNormalization4D")}LRNGrad(e,t,n,r,a,s,i){return Y("LRNGrad")}multinomial(e,t,n,r){return Y("multinomial")}oneHot(e,t,n,r){return Y("oneHot")}cumsum(e,t,n,r){return Y("cumsum")}nonMaxSuppression(e,t,n,r,a){return Y("nonMaxSuppression")}fft(e){return Y("fft")}ifft(e){return Y("ifft")}complex(e,t){return Y("complex")}real(e){return Y("real")}imag(e){return Y("imag")}cropAndResize(e,t,n,r,a,s){return Y("cropAndResize")}depthToSpace(e,t,n){return Y("depthToSpace")}split(e,t,n){return Y("split")}sparseToDense(e,t,n,r){return Y("sparseToDense")}diag(e){return Y("diag")}fill(e,t,n){return Y("fill")}onesLike(e){return Y("onesLike")}zerosLike(e){return Y("zerosLike")}linspace(e,t,n){return Y("linspace")}dispose(){return Y("dispose")}};function Y(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function T0(e){let t=e.length,n=0,r=0;for(;t>0;)r=Math.random()*t|0,t--,n=e[t],e[t]=e[r],e[r]=n}function Bu(e,t,n){return Math.max(e,Math.min(t,n))}function H8(e){return e%2==0?e:e+1}function G8(e){let t=0;for(let n=0;nn+` Shapes ${e} and ${t} must match`)}function Xs(e){M(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Ks(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||nn(e)&&!n)for(let r=0;r0,n){return new Promise((r,a)=>{let s=0,i=()=>{if(e()){r();return}s++;let o=t(s);if(n!=null&&s>=n){a();return}setTimeout(i,o)};i()})}function ek(e,t){let n=1,r=-1;for(let s=0;s=0)n*=e[s];else if(e[s]===-1){if(r!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${r} and dim ${s}`);r=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(r===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let a=e.slice();return a[r]=t/n,a}function sr(e,t){let n=t.length;return e=e==null?t.map((r,a)=>a):[].concat(e),M(e.every(r=>r>=-n&&r`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),M(e.every(r=>Gt(r)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(r=>r<0?n+r:r)}function E0(e,t){let n=[],r=[],a=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||a?null:sr(t,e).sort(),i=0;for(let o=0;oo)&&e[o]===1&&(n.push(e[o]),r.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),r.push(o))}return{newShape:n,keptDims:r}}function C0(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function R0(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function F0(e,t){for(let n=0;nt+=n.length),t}function ka(e){return typeof e=="string"||e instanceof String}function z0(e){return typeof e=="boolean"}function P0(e){return typeof e=="number"}function Sd(e){return Array.isArray(e)?Sd(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":P0(e)?"float32":ka(e)?"string":z0(e)?"bool":"float32"}function Ia(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Td(e,t){for(let n=t;n=0;--r)n[r]=n[r+1]*e[r+1];return n}function L0(e,t,n){let r=new Array;if(t.length===1){let a=t[0];for(let s=0;so*l);for(let o=0;or*a);if(n===0)return[];if(n!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}.`);return L0(0,e,t)}function om(e,t){let n=Ed(e,t);for(let r=0;rr*a,1);if(t==null||t==="float32")return Zo(e,new Float32Array(n));if(t==="int32")return Zo(e,new Int32Array(n));if(t==="bool")return Zo(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function lm(e){e.forEach(t=>{M(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function nk(e,t,n){if(t===0)return 0;if(t===1)return e[0];let r=e[e.length-1];for(let a=0;a{let[n,r]=t.split(":");this.urlFlags[n]=sk(n,r)})}};function ak(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...r)=>(ik(t,r[0],r[1]),r.join("="))),t}function ik(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function sk(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function ee(){return vn}var vn=null;function ok(e){vn=e}var cm;function B0(){if(cm==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");cm=e}return cm}function lk(){let e=B0();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function V0(e,t){let n=lk();if(n.has(e))return n.get(e);{let r=t();return n.set(e,r),n.get(e)}}var Di="Abs",Oi="Acos",zi="Acosh",fa="Add",Za="AddN",ph="All",fh="Any",Ya="ArgMax",eu="ArgMin",Pi="Asin",Li="Asinh",Wi="Atan",Bi="Atanh",Vi="Atan2",Ja="AvgPool",mh="AvgPoolGrad",tu="AvgPool3D",Ah="AvgPool3DGrad",Qa="BatchMatMul",nu="BatchToSpaceND",yh="Bincount",ng="BroadcastTo",es="Cast",Ui="Ceil",ma="ClipByValue",gh="Complex",ru="ComplexAbs",ji="Concat",ts="Conv2D",xh="Conv2DBackpropFilter",ns="Conv2DBackpropInput",au="Conv3D",wh="Conv3DBackpropFilterV2",_h="Conv3DBackpropInputV2",rs="Cos",Hi="Cosh",as="Cumsum",Gi="CropAndResize",bh="DenseBincount",qi="DepthToSpace",ss="DepthwiseConv2dNative",vh="DepthwiseConv2dNativeBackpropFilter",kh="DepthwiseConv2dNativeBackpropInput",Ih="Diag",su="Dilation2D",Nh="Dilation2DBackpropInput",Sh="Dilation2DBackpropFilter",is="RealDiv",Xi="Elu",Th="EluGrad",Ki="Erf",Zi="Equal",os="Exp",Yi="ExpandDims",Ji="Expm1",Eh="FFT",iu="Fill",Qi="FlipLeftRight",ls="Floor",us="FloorDiv",cs="FusedBatchNorm",eo="GatherV2",to="GatherNd",no="Greater",hs="GreaterEqual",ro="Identity",Ch="IFFT",Rh="Imag",ao="IsFinite",so="IsInf",io="IsNan",ds="LeakyRelu",oo="Less",lo="LessEqual",Fh="LinSpace",ps="Log",uo="Log1p",co="LogicalAnd",ou="LogicalNot",lu="LogicalOr",rg="LogSoftmax",uu="LRN",Mh="LRNGrad",fs="Max",ms="Maximum",As="MaxPool",$h="MaxPoolGrad",cu="MaxPool3D",Dh="MaxPool3DGrad",Oh="MaxPoolWithArgmax",ys="Mean",gs="Min",xs="Minimum",hu="MirrorPad",ho="Mod",zh="Multinomial",ws="Multiply",po="Neg",fo="NotEqual",mo="NonMaxSuppressionV3",Ao="NonMaxSuppressionV4",yo="NonMaxSuppressionV5",go="OnesLike",_s="OneHot",xo="Pack",bs="PadV2",o4="Pool",vs="Pow",ks="Prelu",wo="Prod",du="Range",Ph="Real",_o="Reciprocal",Is="Relu",bo="Reshape",pu="ResizeNearestNeighbor",Lh="ResizeNearestNeighborGrad",Ns="ResizeBilinear",Wh="ResizeBilinearGrad",Ss="Relu6",Ts="Reverse",Es="Round",Cs="Rsqrt",vo="ScatterNd",ko="Select",Io="Selu",No="Slice",Rs="Sin",So="Sinh",To="Sign",Fs="Sigmoid",Eo="Softplus",Ms="Sqrt",$s="Sum",fu="SpaceToBatchND",Co="SplitV",Ds="Softmax",Os="SquaredDifference",mu="Square",zs="Sub",Bh="SparseToDense",Ro="StridedSlice",Fo="Tan",Ps="Tanh",Aa="Tile",Mo="TopK",Ls="Transpose",Vh="Unique",$o="Unpack",Au="UnsortedSegmentSum",Do="ZerosLike",ya="Step",Uh="FromPixels",Oo="RotateWithOffset",Ws="_FusedMatMul",Bs="FusedConv2D",Vs="FusedDepthwiseConv2D",Yo=V0("kernelRegistry",()=>new Map),Uu=V0("gradRegistry",()=>new Map);function Af(e,t){let n=hm(e,t);return Yo.get(n)}function yf(e){return Uu.get(e)}function yu(e){let t=Yo.entries(),n=[];for(;;){let{done:r,value:a}=t.next();if(r)break;let[s,i]=a,[o]=s.split("_");o===e&&n.push(i)}return n}function zo(e){let{kernelName:t,backendName:n}=e,r=hm(t,n);Yo.has(r)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),Yo.set(r,e)}function ag(e){let{kernelName:t}=e;Uu.has(t)&&ee().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),Uu.set(t,e)}function l4(e,t){let n=hm(e,t);if(!Yo.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Yo.delete(n)}function u4(e){if(!Uu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Uu.delete(e)}function c4(e,t){yu(e).forEach(n=>{let r=Object.assign({},n,{backendName:t});zo(r)})}function hm(e,t){return`${t}_${e}`}var k={};Pe(k,{arraysEqual:()=>na,assert:()=>M,assertNonNegativeIntegerDimensions:()=>lm,assertNonNull:()=>Xs,assertShapesMatch:()=>st,bytesFromStringArray:()=>O0,bytesPerElement:()=>D0,checkConversionForErrors:()=>F0,clamp:()=>Bu,computeStrides:()=>Ko,createScalarValue:()=>uk,createShuffledIndices:()=>J8,decodeString:()=>Rd,distSquared:()=>X8,encodeString:()=>ju,fetch:()=>ck,flatten:()=>Ks,getArrayFromDType:()=>R0,getTypedArrayFromDType:()=>C0,hasEncodingLoss:()=>$0,indexToLoc:()=>rk,inferDtype:()=>Sd,inferFromImplicitShape:()=>ek,isBoolean:()=>z0,isFunction:()=>Ia,isInt:()=>Gt,isNumber:()=>P0,isPromise:()=>um,isScalarShape:()=>K8,isString:()=>ka,isTypedArray:()=>nn,isValidDtype:()=>M0,locToIndex:()=>nk,makeOnesTypedArray:()=>om,makeZerosNestedTypedArray:()=>tk,makeZerosTypedArray:()=>Ed,nearestDivisor:()=>Td,nearestLargerEven:()=>H8,now:()=>dm,parseAxisParam:()=>sr,randUniform:()=>q8,repeatedTry:()=>Q8,rightPad:()=>Vu,shuffle:()=>T0,sizeFromShape:()=>Pt,sizeToSquarishShape:()=>Y8,squeezeShape:()=>E0,sum:()=>G8,tanh:()=>Z8,toNestedArray:()=>Zo,toTypedArray:()=>Cd});function uk(e,t){return t==="string"?ju(e):Cd([e],t)}function hk(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Cd(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Ks(e)),ee().getBool("DEBUG")&&F0(e,t),hk(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let r=0;r{r=n()},s=this.backendTimer.time(a);if(ee().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let i=0;i{dk(l,o.dtype,e)})}return{kernelName:e,outputs:r,inputs:t,timeMs:s.then(i=>i.kernelMs),extraInfo:s.then(i=>i.getExtraProfileInfo!=null?i.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:r,inputs:a,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),r,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],a,o[2])})})}};function dk(e,t,n){if(t!=="float32")return!1;for(let r=0;r0?f:""} `}}console.log(`%c${o} %c${i} %c${l}D ${u} %c${c} %c${h} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function mk(e,t,n){let r={},a={};for(let l=0;lr[m.id]=!0),p=!0,a[c.id]=!0;break}if(p)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let c=e[l],u=c.inputs;for(let h=0;h=0;a--){let s=t[a],i=[];if(s.outputs.forEach(l=>{let c=e[l.id];c!=null?i.push(c):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let c=n(()=>o[l]());if(c.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${c.dtype}'`);let u=s.inputs[l];if(!na(c.shape,u.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${c.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=c;else{let h=e[u.id];e[u.id]=r(h,c),h.dispose()}}}}var U0=20,Hu=3,pm=7;function gk(e,t,n,r){let a=Ko(t),s=yk(e,t,n,a),i=t.length,o=Fd(e,t,n,a,s),l=["Tensor"];return r&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(c=>" "+c).join(` `)),l.join(` `)}function yk(e,t,n,r){let a=Pt(t),s=r[r.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?qu(e):e;if(o>1)for(let c=0;cU0){let A=Hu*i,y=Array.from(e.slice(0,A)),g=Array.from(e.slice((o-Hu)*i,o*i));return n==="complex64"&&(y=qu(y),g=qu(g)),["["+y.map((w,x)=>Gu(w,a[x],n)).join(", ")+", ..., "+g.map((w,x)=>Gu(w,a[o-Hu+x],n)).join(", ")+"]"]}let m=n==="complex64"?qu(e):Array.from(e);return["["+m.map((A,y)=>Gu(A,a[y],n)).join(", ")+"]"]}let c=t.slice(1),u=r.slice(1),h=r[0]*i,d=[];if(o>U0){for(let m=0;m`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||R0(t,this.size),this.strides=Ko(e)}set(e,...t){t.length===0&&(t=[0]),M(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let a=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(a)}t++}let n=e[e.length-1];for(let r=0;rRd(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Or().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Rd(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Or().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Or().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Jo.print(this,e)}clone(){return this.throwIfDisposed(),Jo.clone(this)}toString(e=!1){let t=this.dataSync();return gk(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Jo.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Or().makeVariable(this,e,t,n)}};Object.defineProperty(H,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});var gu=class extends H{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!na(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Or().disposeTensor(this),this.dataId=e.dataId,Or().incRef(this,null)}dispose(){Or().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(gu,Symbol.hasInstance,{value:e=>e instanceof H&&e.assign!=null&&e.assign instanceof Function});var mr={};Pe(mr,{assertTypesMatch:()=>H0,getTensorsInContainer:()=>fm,isTensorInList:()=>vk,makeTypesMatch:()=>Nt});var gf;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(gf||(gf={}));var mm;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(mm||(mm={}));var Am;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Am||(Am={}));var ym;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(ym||(ym={}));var gm;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(gm||(gm={}));var kk={float32:ym,int32:mm,bool:Am,complex64:gm};function nr(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return kk[e][t]}function jh(e){return nr(e,"int32")}function Nt(e,t){if(e.dtype===t.dtype)return[e,t];let n=nr(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function H0(e,t){M(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function vk(e,t){return t.some(n=>n.id===e.id)}function fm(e){let t=[],n=new Set;return G0(e,t,n),t}function G0(e,t,n){if(e==null)return;if(e instanceof H){t.push(e);return}if(!Ik(e))return;let r=e;for(let a in r){let s=r[a];n.has(s)||(n.add(s),G0(s,t,n))}}function Ik(e){return Array.isArray(e)||typeof e=="object"}var q0=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Xu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new q0}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){yu(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Ql)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,a=n.then(s=>r(rthis.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;tthis.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return Xu.nextTensorId++}nextVariableId(){return Xu.nextVariableId++}clone(e){let t=this.makeTensorFromDataId(e.dataId,e.shape,e.dtype),n={x:e},r=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return L.runKernelFunc(c=>c.cast(s,i),o,null,es,l)}}),a=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,a,{}),t}runKernel(e,t,n,r,a){let s=null,i=null;return this.runKernelFunc(s,t,i,e,n,r,a)}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),a=0;n.forEach(o=>{a+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=r-t-a-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e,t,n,r,a,s,i){let o,l=[],c=this.isTapeOn();r==null&&(r=this.state.activeScope!=null?this.state.activeScope.name:"");let u=this.state.numBytes,h=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let d;this.backendName==null&&this.backend;let p=Af(r,this.backendName),f;if(p!=null)d=()=>{let A=this.backend.numDataIds();f=p.kernelFunc({inputs:t,attrs:a,backend:this.backend});let y=Array.isArray(f)?f:[f];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(r,A,y);let g=y.map(w=>{if(w.rank!=null)return w;let{dataId:x,shape:_,dtype:b}=w;return this.makeTensorFromDataId(x,_,b)});if(c){let w=this.getTensorsForGradient(r,t,g);if(w==null){i==null&&(i=[]);let x=g.filter((_,b)=>i[b]);w=(s||[]).slice().concat(x)}l=this.saveTensorsForBackwardMode(w)}return g};else{if(e==null)throw new Error(`Error running ${r}: Neither modular kernel nor forward func passed`);let A=y=>{!c||(l=y.map(g=>this.keep(this.clone(g))))};d=()=>{let y=this.backend.numDataIds();f=this.tidy(()=>e(this.backend,A));let g=Array.isArray(f)?f:[f];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(r,y,g),g}}let m;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?o=d():(m=this.profiler.profileKernel(r,t,()=>d()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(m),o=m.outputs)}),c&&this.addTapeNode(r,t,o,n,l,a),this.state.profiling&&this.state.activeProfile.kernels.push({name:r,bytesAdded:this.state.numBytes-u,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-h,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(t).map(A=>t[A]!=null?t[A].shape:null),outputShapes:o.map(A=>A.shape),kernelTimeMs:m.timeMs,extraInfo:m.extraInfo}),Array.isArray(f)?o:o[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let r=yf(e);if(r!=null){let a=r.inputsToSave||[],s=r.outputsToSave||[],i;r.saveAllInputs?(M(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=a.map(l=>t[l]);let o=n.filter((l,c)=>s[c]);return i.concat(o)}return null}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let a=e;n==="string"&&ka(e[0])&&(a=e.map(o=>ju(o)));let s=r.write(a,t,n),i=new H(t,n,s,this.nextTensorId());if(this.incRef(i,r),n==="string"){let o=this.state.tensorInfo.get(s),l=O0(a);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,r){n=n||"float32";let a=new H(t,n,e,this.nextTensorId());return this.incRef(a,r),a}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let a=new gu(e,t,n,this.nextTensorId());if(this.state.registeredVariables[a.name]!=null)throw new Error(`Variable with name ${a.name} was already registered`);return this.state.registeredVariables[a.name]=a,this.incRef(a,this.backend),a}incRef(e,t){let n=this.state.tensorInfo.has(e.dataId)?this.state.tensorInfo.get(e.dataId).refCount:0;if(this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++,n===0){this.state.numDataBuffers++;let r=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(r=e.size*D0(e.dtype)),this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:r,refCount:0}),this.state.numBytes+=r}this.state.tensorInfo.get(e.dataId).refCount++,e instanceof gu||this.track(e)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;this.state.numTensors--,e.dtype==="string"&&this.state.numStringTensors--;let t=this.state.tensorInfo.get(e.dataId);t.refCount<=1?(e.dtype!=="complex64"&&(this.state.numBytes-=t.bytes),this.state.numDataBuffers--,t.backend.disposeData(e.dataId),this.state.tensorInfo.delete(e.dataId)):(t.backend.decComplexRef(e.dataId),this.state.tensorInfo.get(e.dataId).refCount--)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,a,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:a},o=yf(e);o!=null&&(r=o.gradFunc),r!=null&&(i.gradient=l=>(l=l.map((c,u)=>{if(c==null){let h=n[u],d=Ed(h.size,h.dtype);return this.makeTensor(d,h.shape,h.dtype)}return c}),r(l.length>1?l:l[0],a,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=fm(e),n=new Set(t.map(a=>a.id));for(let a=0;a{!a.kept&&a.scopeId===r.id&&this.track(a)})}gradients(e,t,n,r=!1){if(M(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let a=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));M(a instanceof H,()=>"The result y returned by f() must be a tensor.");let s=mk(this.state.activeTape,t,a);if(!r&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[a.id]=n==null?Nk(a.shape):n,Ak(i,s,l=>this.tidy(l),Sk);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:a,grads:o}})}customGrad(e){return M(Ia(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{M(t.every(a=>a instanceof H),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};return t.forEach((a,s)=>{r[s]=a}),this.runKernelFunc((a,s)=>(n=e(...t,s),M(n.value instanceof H,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),M(Ia(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),r,(a,s)=>{let i=n.gradFunc(a,s),o=Array.isArray(i)?i:[i];M(o.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),M(o.every(c=>c instanceof H),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let l={};return o.forEach((c,u)=>{l[u]=()=>c}),l})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=dm(),n=await this.backend.time(e);return n.wallMs=dm()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new q0;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Xu.nextTensorId=0;Xu.nextVariableId=0;function Nk(e){let t=om(Pt(e),"float32");return L.makeTensor(t,e,"float32")}function X0(){let e=B0();if(e._tfengine==null){let t=new tg(e);e._tfengine=new Xu(t)}return ok(e._tfengine.ENV),wk(()=>e._tfengine),e._tfengine}var L=X0();function Sk(e,t){let n={a:e,b:t};return L.runKernel(fa,n)}var Hh={};Pe(Hh,{isBrowser:()=>K0,isMobile:()=>Tk});function Ek(){return typeof navigator!="undefined"&&navigator!=null}function Tk(){if(Ek()){let e=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(e)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(e.substr(0,4))}return!1}function K0(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var zr=ee();zr.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});zr.registerFlag("IS_BROWSER",()=>K0());zr.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");zr.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));zr.registerFlag("PROD",()=>!1);zr.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>zr.getBool("DEBUG"));zr.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);zr.registerFlag("IS_TEST",()=>!1);zr.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);function Pr(e,t){let n=e;if(nn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||nn(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&ee().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&Z0(e,r,[]),r}function Z0(e,t,n){if(n=n||[],!Array.isArray(e)&&!nn(e)){M(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}M(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),M(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let a=0;a=0&&(a=r),Y0(r,a,t,n),e==null||!nn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Pr(e,a);!nn(e)&&!Array.isArray(e)&&(e=[e]);let i=a!=="string"?Cd(e,a):Ks(e,[],!0);return L.makeTensor(i,s,a)}function Ku(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,s)=>R(a,`${t}[${s}]`,n,r))}var sg="__op";function P(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+sg;let a=(...s)=>{L.startScope(n);try{let i=r(...s);return um(i)&&console.error("Cannot return a Promise inside of tidy."),L.endScope(i),i}catch(i){throw L.endScope(null),i}};return Object.defineProperty(a,"name",{value:n,configurable:!0}),a}function Ck(e,t){let n=R(e,"real","complex"),r=R(t,"imag","complex");st(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let a={real:n,imag:r};return L.runKernel(gh,a)}var ga=P({complex_:Ck});function Na(e,t,n,r){if(r==null&&(r=Sd(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!nn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){lm(t);let a=Pt(t),s=Pt(n);M(a===s,()=>`Based on the provided shape, [${t}], the tensor should have ${a} values but has ${s}`);for(let i=0;i`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!nn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?Cd(e,r):Ks(e,[],!0),L.makeTensor(e,t,r)}function Ar(e,t,n){let r=Pr(e,n);return Na(e,t,r,n)}var xm={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Md=4;async function Fk(e,t){let n=[],r=[],a=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i{let d=await l.bytes(),p=d.reduce((A,y)=>A+y.length,0)+Md*d.length,f=new Uint8Array(p),m=0;for(let A=0;A{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let r=new Uint8Array(t),a=0;return n.forEach(s=>{r.set(new Uint8Array(s.buffer),a),a+=s.byteLength}),r.buffer}var wm=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Q0(e){return wm?Buffer.byteLength(e):new Blob([e]).size}function $k(e){if(wm)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,a=t.length;r{t+=a.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(a=>{n.set(new Uint8Array(a),r),r+=a.byteLength}),n.buffer}function e5(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function Zu(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Q0(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Q0(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function Ok(){let e=n=>{let r=n<<13,a=0;for(;(r&8388608)==0;)a-=8388608,r<<=1;return r&=~8388608,a+=947912704,r|a},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function zk(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function Pk(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function Mk(){let e=Ok(),t=zk(),n=Pk();return r=>{let a=new ArrayBuffer(4*r.length),s=new Uint32Array(a);for(let i=0;i>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(a)}}var Et=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Et.instance==null&&(Et.instance=new Et),Et.instance}static registerSaveRouter(e){Et.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Et.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Et.getHandlers(e,"save")}static getLoadHandlers(e,t){return Et.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?Et.getInstance().loadRouters:Et.getInstance().saveRouters).forEach(a=>{let s=a(e,n);s!==null&&r.push(s)}),r}},Lk=e=>Et.registerSaveRouter(e),Wk=e=>Et.registerLoadRouter(e),Bk=e=>Et.getSaveHandlers(e),Vk=(e,t)=>Et.getLoadHandlers(e,t),bm="tensorflowjs",vm=1,Zs="models_store",Sa="model_info_store";function t5(){if(!ee().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function km(e){let t=e.result;t.createObjectStore(Zs,{keyPath:"modelPath"}),t.createObjectStore(Sa,{keyPath:"modelPath"})}var Ys=class{constructor(e){if(this.indexedDB=t5(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let a=this.indexedDB.open(bm,vm);a.onupgradeneeded=()=>km(a),a.onsuccess=()=>{let s=a.result;if(t==null){let i=s.transaction(Zs,"readonly"),o=i.objectStore(Zs).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),r(o.error)),i.oncomplete=()=>s.close()}else{let i=Zu(t),o=s.transaction(Sa,"readwrite"),l=o.objectStore(Sa),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),u;c.onsuccess=()=>{u=s.transaction(Zs,"readwrite");let h=u.objectStore(Zs).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>n({modelArtifactsInfo:i}),h.onerror=d=>{l=o.objectStore(Sa);let p=l.delete(this.modelPath);p.onsuccess=()=>(s.close(),r(h.error)),p.onerror=f=>(s.close(),r(h.error))}},c.onerror=h=>(s.close(),r(c.error)),o.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}}},a.onerror=s=>r(a.error)})}};Ys.URL_SCHEME="indexeddb://";var n5=e=>ee().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Ys.URL_SCHEME)?Uk(e.slice(Ys.URL_SCHEME.length)):null;Et.registerSaveRouter(n5);Et.registerLoadRouter(n5);function Uk(e){return new Ys(e)}function jk(e){return e.startsWith(Ys.URL_SCHEME)?e.slice(Ys.URL_SCHEME.length):e}var Hk=class{constructor(){this.indexedDB=t5()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(bm,vm);n.onupgradeneeded=()=>km(n),n.onsuccess=()=>{let r=n.result,a=r.transaction(Sa,"readonly"),s=a.objectStore(Sa).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(r.close(),t(s.error)),a.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=jk(e),new Promise((t,n)=>{let r=this.indexedDB.open(bm,vm);r.onupgradeneeded=()=>km(r),r.onsuccess=()=>{let a=r.result,s=a.transaction(Sa,"readwrite"),i=s.objectStore(Sa),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return a.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),u=()=>{l=a.transaction(Zs,"readwrite");let h=l.objectStore(Zs).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=d=>n(o.error)};c.onsuccess=u,c.onerror=h=>(u(),a.close(),n(o.error))}},o.onerror=c=>(a.close(),n(o.error)),s.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}},r.onerror=a=>n(r.error)})}},ra="/",Qo="tensorflowjs_models",r5="info",Gk="model_topology",qk="weight_specs",Xk="weight_data",Kk="model_metadata";function a5(e){return{info:[Qo,e,r5].join(ra),topology:[Qo,e,Gk].join(ra),weightSpecs:[Qo,e,qk].join(ra),weightData:[Qo,e,Xk].join(ra),modelMetadata:[Qo,e,Kk].join(ra)}}function Zk(e){let t=e.split(ra);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(ra)}function Yk(e){return e.startsWith(Js.URL_SCHEME)?e.slice(Js.URL_SCHEME.length):e}var Js=class{constructor(e){if(!ee().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=a5(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=Zu(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,$k(e.weightData));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:r}}catch(a){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let a=this.LS.getItem(this.keys.modelMetadata);if(a!=null){let i=JSON.parse(a);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=Dk(s),t}};Js.URL_SCHEME="localstorage://";var s5=e=>ee().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Js.URL_SCHEME)?Jk(e.slice(Js.URL_SCHEME.length)):null;Et.registerSaveRouter(s5);Et.registerLoadRouter(s5);function Jk(e){return new Js(e)}var Qk=class{constructor(){M(ee().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),M(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Qo+ra,n=ra+r5;for(let r=0;r"scheme must not be undefined or null."),e.endsWith(el)&&(e=e.slice(0,e.indexOf(el))),M(e.length>0,()=>"scheme must not be an empty string.");let n=Hn.getInstance();M(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function $d(e){if(e.indexOf(el)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Hn.getSchemes().join(",")}`);return{scheme:e.split(el)[0],path:e.split(el)[1]}}async function i5(e,t,n=!1){M(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=Et.getLoadHandlers(e);M(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),M(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let a=r[0],s=Et.getSaveHandlers(t);M(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),M(s.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let i=s[0],o=$d(e).scheme,l=$d(e).path,c=o===$d(e).scheme,u=await a.load();n&&c&&await Hn.getManager(o).removeModel(l);let h=await i.save(u);return n&&!c&&await Hn.getManager(o).removeModel(l),h.modelArtifactsInfo}async function e9(){let e=Hn.getSchemes(),t={};for(let n of e){let r=await Hn.getManager(n).listModels();for(let a in r){let s=n+el+a;t[s]=r[a]}}return t}async function t9(e){let t=$d(e);return Hn.getManager(t.scheme).removeModel(t.path)}async function n9(e,t){return i5(e,t,!1)}async function r9(e,t){return i5(e,t,!0)}var a9=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(ee().get("IS_BROWSER")){ee().setPlatform("browser",new a9);try{Hn.registerManager(Js.URL_SCHEME,new Qk)}catch(e){}try{Hn.registerManager(Ys.URL_SCHEME,new Hk)}catch(e){}}var s9={importFetch:()=>u8()},Im,i9=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return ee().global.fetch!=null?ee().global.fetch(e,t):(Im==null&&(Im=s9.importFetch()),Im(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};ee().get("IS_NODE")&&ee().setPlatform("node",new i9);function Ue(e,t="float32",n){return t=t||"float32",lm(e),new Ot(e,t,n)}function o9(e,t){let n=R(e,"x","cast");if(!M0(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},a={dtype:t};return L.runKernel(es,r,a)}var xe=P({cast_:o9});function l9(e){let t={x:R(e,"x","clone","string_or_numeric")};return L.runKernel(ro,t)}var Er=P({clone_:l9});function ig(e,t=!1){console.log(e.toString(t))}X0();var u9={buffer:Ue,cast:xe,clone:Er,print:ig};_k(u9);var pn={};Pe(pn,{browserFiles:()=>c9,browserHTTPRequest:()=>d9,concatenateArrayBuffers:()=>_m,copyModel:()=>n9,decodeWeights:()=>J0,encodeWeights:()=>Fk,fromMemory:()=>p9,getLoadHandlers:()=>Vk,getModelArtifactsInfoForJSON:()=>Zu,getSaveHandlers:()=>Bk,http:()=>Sm,isHTTPScheme:()=>Nm,listModels:()=>e9,loadWeights:()=>h9,moveModel:()=>r9,registerLoadRouter:()=>Wk,registerSaveRouter:()=>Lk,removeModel:()=>t9,weightsLoaderFactory:()=>o5,withSaveHandler:()=>f9});var m9="model",A9=".json",y9=".weights.bin";function l5(e){return new Promise(t=>setTimeout(t)).then(e)}var tl=class{constructor(e){if(!ee().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(tl.URL_SCHEME)&&(e=e.slice(tl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=m9),this.modelTopologyFileName=e+A9,this.weightDataFileName=e+y9}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer);let a=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=a,await l5(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await l5(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Zu(e)}}}};tl.URL_SCHEME="downloads://";var g9=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,r)=>{let a=new FileReader;a.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){r(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){r(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(l,t)}catch(p){r(p);return}let u=[],h=[],d=[];l.forEach(p=>{p.paths.forEach(f=>{h.push(f),d.push(null)}),u.push(...p.weights)}),l.forEach(p=>{p.paths.forEach(f=>{let m=new FileReader;m.onload=A=>{let y=A.target.result,g=h.indexOf(f);if(d[g]=y,d.indexOf(null)===-1){let w={modelTopology:o,weightSpecs:u,weightData:_m(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(w.signature=i.signature),i.userDefinedMetadata!=null&&(w.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(w.modelInitializer=i.modelInitializer),n(w)}},m.onerror=A=>r(`Failed to weights data from file of path '${f}'.`),m.readAsArrayBuffer(c[f])})})},a.onerror=s=>r(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),a.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],r=t.map(s=>e5(s.name)),a={};for(let s of e)s.paths.forEach(i=>{let o=e5(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),r.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);a[i]=t[r.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return a}},w9=e=>ee().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(tl.URL_SCHEME)?x9(e.slice(tl.URL_SCHEME.length)):null;Et.registerSaveRouter(w9);function x9(e="model"){return new tl(e)}function c9(e){return new g9(e)}function u5(e,t,n,r){i(e),n=n==null?0:n,r=r==null?1:r,o(n,r);let a=0,s=l=>(l.then(c=>{let u=n+ ++a/e.length*(r-n);return t(u),c}),l);function i(l){M(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,c){M(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),M(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),M(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(s))}async function c5(e,t){t==null&&(t={});let n=t.fetchFunc==null?ee().platform.fetch:t.fetchFunc,r=e.map(c=>n(c,t.requestInit,{isBinary:!0})),a=0,s=.5,i=(t.onProgress==null?await Promise.all(r):await u5(r,t.onProgress,a,s)).map(c=>c.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await u5(i,t.onProgress,o,l)}async function h9(e,t="",n,r){return o5(a=>c5(a,{requestInit:r}))(e,t,n)}function o5(e){return async(t,n="",r)=>{let a=t.map(()=>!1),s={},i=r!=null?r.map(()=>!1):[],o=[];if(t.forEach((p,f)=>{let m=0;p.weights.forEach(A=>{let y="quantization"in A?A.quantization.dtype:A.dtype,g=xm[y]*Pt(A.shape),w=()=>{a[f]=!0,s[f]==null&&(s[f]=[]),s[f].push({manifestEntry:A,groupOffset:m,sizeBytes:g})};r!=null?r.forEach((x,_)=>{x===A.name&&(w(),i[_]=!0)}):w(),o.push(A.name),m+=g})}),!i.every(p=>p)){let p=r.filter((f,m)=>!i[m]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}. Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=a.reduce((p,f,m)=>(f&&p.push(m),p),[]),c=[];l.forEach(p=>{t[p].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;c.push(m)})});let u=await e(c),h={},d=0;return l.forEach(p=>{let f=t[p].paths.length,m=0;for(let w=0;w{let x=A.slice(w.groupOffset,w.groupOffset+w.sizeBytes),_=J0(x,[w.manifestEntry]);for(let b in _)h[b]=_[b]}),d+=f}),h}}var _9="application/octet-stream",b9="application/json",Tm=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(M(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=ee().platform.fetch,M(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&M(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(r)],{type:b9}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:_9}),"model.weights.bin");let a=await this.fetch(this.path,t);if(a.ok)return{modelArtifactsInfo:Zu(e),responses:[a]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${a.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(p){let f=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?f+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":f+=" Please make sure the server is serving valid JSON for this request.",new Error(f)}let n=t.modelTopology,r=t.weightsManifest,a=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let c,u;r!=null&&([c,u]=await this.loadWeights(r));let h={modelTopology:n,weightSpecs:c,weightData:u,generatedBy:a,convertedBy:s,format:i};o!=null&&(h.signature=o),l!=null&&(h.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(h.modelInitializer=d),h}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=v9(t),a=this.weightPathPrefix||n,s=[];for(let c of e)s.push(...c.weights);let i=[],o=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(u)):i.push(a+u+r);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await c5(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,_m(l)]}};Tm.URL_SCHEME_REGEX=/^https?:\/\//;function v9(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),a=n>t?e.substring(n):"";return[r+"/",a]}function Nm(e){return e.match(Tm.URL_SCHEME_REGEX)!=null}var h5=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>Nm(r)):n=Nm(e),n)return Sm(e,t)}return null};Et.registerSaveRouter(h5);Et.registerLoadRouter(h5);function Sm(e,t){return new Tm(e,t)}function d9(e,t){return Sm(e,t)}var Em=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},k9=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function p9(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Em(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Em({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Em({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function f9(e){return new k9(e)}var og={};Pe(og,{confusionMatrix:()=>I9});function N9(e,t,n=!1,r=!1){let a=R(e,"a","matMul"),s=R(t,"b","matMul");[a,s]=Nt(a,s);let i={a,b:s},o={transposeA:n,transposeB:r};return L.runKernel(Qa,i,o)}var Ke=P({matMul_:N9});function S9(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:R(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:r};return L.runKernel(_s,a,s)}var Po=P({oneHot_:S9});function T9(e,t){let n=R(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{M(s>=0&&s`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},a={perm:t};return L.runKernel(Ls,r,a)}var ot=P({transpose_:T9});function E9(e,t,n){let r=R(e,"labels","confusionMatrix"),a=R(t,"predictions","confusionMatrix");M(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),M(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),M(a.rank===1,()=>`Expected the rank of predictions to be 1, but got ${a.rank}`),M(r.shape[0]===a.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${a.shape[0]}. Labels and predictions should have the same number of elements.`),M(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=Po(xe(r,"int32"),n),i=Po(xe(a,"int32"),n),o=ot(s),l=Ke(o,i);return xe(l,"int32")}var I9=P({confusionMatrix_:E9}),Jl={};Pe(Jl,{fromPixels:()=>R9,toPixels:()=>C9});function mf(e,t,n){if(Xs(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=Pr(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Na(e,t,r,n)}var nl;function F9(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,a=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)a=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(a){let d=2;if(a&&e.readyState element.")}if(Af(Uh,L.backendName)!=null){let d={pixels:e},p={numChannels:t};return L.runKernel(Uh,d,p)}let[l,c]=a?[e.videoWidth,e.videoHeight]:[e.width,e.height],u;i?u=e.getContext("2d").getImageData(0,0,l,c).data:r||n?u=e.data:(s||a||o)&&(nl==null&&(nl=document.createElement("canvas").getContext("2d")),nl.canvas.width=l,nl.canvas.height=c,nl.drawImage(e,0,0,l,c),u=nl.getImageData(0,0,l,c).data);let h;if(t===4)h=new Int32Array(u);else{let d=l*c;h=new Int32Array(d*t);for(let p=0;p4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(a*r*4);for(let c=0;c1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);s===1?(u[0]=p*o,u[1]=p*o,u[2]=p*o):u[d]=p*o}let h=c*4;l[h+0]=Math.round(u[0]),l[h+1]=Math.round(u[1]),l[h+2]=Math.round(u[2]),l[h+3]=Math.round(u[3])}if(t!=null){t.width=a,t.height=r;let c=t.getContext("2d"),u=new ImageData(l,a,r);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var R9=P({fromPixels_:F9}),xf={};Pe(xf,{prepareAndValidate:()=>d5});function d5(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(Pt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let a=t.shape,s=a[a.length-1],i=1;for(let h=0;hh/c),1].slice(0,s);return[l,i,c,u]}var wf={};Pe(wf,{calculateShapes:()=>p5,validateInput:()=>Rm,validateUpdateShape:()=>Cm});function Cm(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,a=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${a}.`;if(n.rank1?t.shape[r-1]:1,s=n.length,i=1;for(let h=a;hM9,computeFlatOffset:()=>D9,computeOutShape:()=>f5,getNormalizedAxes:()=>A5,isSliceContinous:()=>$9,maskToAxes:()=>Dd,parseSliceParams:()=>b5,sliceInfo:()=>O9,startForAxis:()=>w5,startIndicesWithElidedDims:()=>y5,stopForAxis:()=>_5,stopIndicesWithElidedDims:()=>g5,stridesForAxis:()=>x5,stridesWithElidedDims:()=>m5});function M9(e,t,n){let r=e.shape.length;M(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),M(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let a=0;a`Error in slice${r}D: begin[${a}] + size[${a}] (${t[a]+n[a]}) would overflow input.shape[${a}] (${e.shape[a]})`)}function Dd(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function f5(e,t,n){let r=[];for(let a=0;a0){let p=t[0],f=n+1;u=y5(i,p,f,r,e),h=g5(o,p,f,a,e),d=m5(s,p,f,e)}else for(let p=0;p-1)s[o]=0;else{let l=v5(t,n,o),c=r[l];e&1<-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=v5(t,n,o),c=r[l];e&1<0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),i=Bu(0,i,l-1),i}function _5(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),o>0?i=Bu(0,i,l):i=Bu(-1,i,l-1),i}function $9(e,t,n){let r=n.length;for(let a=0;a1){r=a;break}for(let a=r+1;a0||n[a]!==e[a])return!1;return!0}function D9(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r{M(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(a).fill(-1):typeof n=="number"?s=[n,...new Array(a-1).fill(-1)]:n.lengthi>=0?i:(M(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-r[o])),[r,s]}function O9(e,t,n,r,a,s,i,o,l){let c=t.slice(),u=n.slice(),h=r;r==null&&(h=new Array(c.length));let d=Dd(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-c.length,f=Dd(o),m=e.slice();f.forEach(b=>{c[b]=0,u[b]=1,m.splice(b,0,1)});let{begin:A,end:y,strides:g}=A5(m,d,p,c,u,h,a,s,i);c=A,u=y,h=g;let w=Dd(l);w.forEach(b=>{u[b]=c[b]+1,h[b]=1});let x=f5(c,u,h),_=x.filter((b,T)=>w.indexOf(T)===-1);return{nonStrided:h.every(b=>b===1),$begin:c,$end:u,$strides:h,size:x,newShape:m,outShape:_}}var ae={};Pe(ae,{Serializable:()=>I5,SerializationMap:()=>Qs,registerClass:()=>Ta});var I5=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Qs=class{constructor(){this.classNameMap={}}static getMap(){return Qs.instance==null&&(Qs.instance=new Qs),Qs.instance}static register(e){Qs.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Ta(e){M(e.className!=null,()=>"Class being registered does not have the static className property defined."),M(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),M(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Qs.register(e)}var lg={};Pe(lg,{TEST_EPSILON_FLOAT16:()=>N5,encodeStrings:()=>S5,expectArrayBuffersEqual:()=>V9,expectArraysClose:()=>z9,expectArraysEqual:()=>L9,expectNumbersClose:()=>W9,expectPromiseToFail:()=>P9,expectValuesInRange:()=>B9,testEpsilon:()=>Fm});var U9=.001,N5=.1;function z9(e,t,n){return n==null&&(n=Fm()),Mm(e,t,(r,a)=>$m(r,a,n))}function Fm(){return L.backend.floatPrecision()===32?U9:N5}function Mm(e,t,n){let r=!0;if((nn(e)||nn(t))&&(r=!1),nn(e)&&nn(t)&&(r=!0),r){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Pr(e),o=Pr(t);if(!na(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let a=nn(e)?e:Ks(e),s=nn(t)?t:Ks(t);if(a.length!==s.length)throw new Error(`Arrays have different lengths actual: ${a.length} vs expected: ${s.length}. Actual: ${a}. Expected: ${s}.`);for(let i=0;it.fail(),()=>t())}function L9(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return ka(e)||ka(e[0])||ka(t)||ka(t[0])?Mm(e,n,(r,a)=>r==a):Mm(e,t,(r,a)=>$m(r,a,0))}function W9(e,t,n){if(n==null&&(n=Fm()),!$m(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function $m(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function B9(e,t,n){for(let r=0;rn)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function V9(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function S5(e){for(let t=0;tt.dispose())}function jt(e){return L.keep(e)}function f4(e){return L.time(e)}function hg(e){return L.setBackend(e)}function dg(){return L.ready()}function qh(){return L.backendName}function m4(e){L.removeBackend(e)}function pg(e){return L.findBackend(e)}function A4(e){return L.findBackendFactory(e)}function xu(e,t,n=1){return L.registerBackend(e,t,n)}function _f(){return L.backend}function y4(e,t){ee().setPlatform(e,t)}function j9(e,t){let n=R(e,"a","add"),r=R(t,"b","add");[n,r]=Nt(n,r);let a={a:n,b:r};return L.runKernel(fa,a)}var ie=P({add_:j9});function H9(e,t){let n=R(e,"a","floorDiv"),r=R(t,"b","floorDiv");[n,r]=Nt(n,r);let a={a:n,b:r};return L.runKernel(us,a)}var Xh=P({floorDiv_:H9});function G9(e,t){let n=R(e,"a","div"),r=R(t,"b","div");if([n,r]=Nt(n,r),n.dtype==="int32"&&r.dtype==="int32")return Xh(n,r);let a={a:n,b:r},s={};return L.runKernel(is,a,s)}var Se=P({div_:G9});function q9(e,t){let n=R(e,"a","mul"),r=R(t,"b","mul");[n,r]=Nt(n,r);let a={a:n,b:r};return L.runKernel(ws,a)}var B=P({mul_:q9});function X9(e){let t=R(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return L.runKernel(ru,n)}else{let n={x:t};return L.runKernel(Di,n)}}var zt=P({abs_:X9});function K9(e){let t={x:R(e,"x","acos")};return L.runKernel(Oi,t)}var bf=P({acos_:K9});function Z9(e){let t={x:R(e,"x","acosh")};return L.runKernel(zi,t)}var vf=P({acosh_:Z9});function Y9(e){M(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),M(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((a,s)=>R(a,`tensors${s}`,"addN")),n=t[0];t.forEach(a=>{if(a.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(a=>{if(!na(a.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return L.runKernel(Za,r)}var ch=P({addN_:Y9});function J9(e,t=null,n=!1){let r={x:R(e,"x","all","bool")},a={axis:t,keepDims:n};return L.runKernel(ph,r,a)}var Kh=P({all_:J9});function Q9(e,t=null,n=!1){let r={x:R(e,"x","any","bool")},a={axis:t,keepDims:n};return L.runKernel(fh,r,a)}var wu=P({any_:Q9});function eI(e,t=0){let n={x:R(e,"x","argMax")},r={axis:t};return L.runKernel(Ya,n,r)}var _u=P({argMax_:eI});function tI(e,t=0){let n={x:R(e,"x","argMin")},r={axis:t};return L.runKernel(eu,n,r)}var kf=P({argMin_:tI});function nI(e){let t={x:R(e,"x","asin")};return L.runKernel(Pi,t)}var If=P({asin_:nI});function rI(e){let t={x:R(e,"x","asinh")};return L.runKernel(Li,t)}var Nf=P({asinh_:rI});function aI(e){let t={x:R(e,"x","atan")};return L.runKernel(Wi,t)}var Sf=P({atan_:aI});function sI(e,t){let n=R(e,"a","atan2"),r=R(t,"b","atan2");[n,r]=Nt(n,r);let a={a:n,b:r};return L.runKernel(Vi,a)}var Tf=P({atan2_:sI});function iI(e){let t={x:R(e,"x","atanh")};return L.runKernel(Bi,t)}var Ef=P({atanh_:iI});function oI(e,t,n,r,a="NHWC",s){let i=e[3],o=[...t,i],l=T5(a);return Yu(e,o,n,s,r,null,null,l)}function E5(e,t,n,r,a,s,i="channelsLast"){let[o,l]=Od(t),c;if(i==="channelsLast")c=[o,l,e[3],e[3]];else if(i==="channelsFirst")c=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Yu(e,c,n,r,a,s,!1,i)}function lI(e,t,n,r,a,s,i="NDHWC"){let[o,l,c]=Dm(t),u,h;if(i==="NDHWC")h="channelsLast",u=[o,l,c,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",u=[o,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return C5(e,u,n,r,a,!1,h,s)}function Yu(e,t,n,r,a,s,i=!1,o="channelsLast"){let[l,c,u,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,h]=e;else if(o==="channelsFirst")[l,h,c,u]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,p,,f]=t,[m,A]=Od(n),[y,g]=Od(r),w=rl(d,y),x=rl(p,g),{padInfo:_,outHeight:b,outWidth:T}=uI(a,c,u,m,A,w,x,s,o),S=i?f*h:f,N;return o==="channelsFirst"?N=[l,S,b,T]:o==="channelsLast"&&(N=[l,b,T,S]),{batchSize:l,dataFormat:o,inHeight:c,inWidth:u,inChannels:h,outHeight:b,outWidth:T,outChannels:S,padInfo:_,strideHeight:m,strideWidth:A,filterHeight:d,filterWidth:p,effectiveFilterHeight:w,effectiveFilterWidth:x,dilationHeight:y,dilationWidth:g,inShape:e,outShape:N,filterShape:t}}function C5(e,t,n,r,a,s=!1,i="channelsLast",o){let[l,c,u,h,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,h,d]=e;else if(i==="channelsFirst")[l,d,c,u,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,f,m,,A]=t,[y,g,w]=Dm(n),[x,_,b]=Dm(r),T=rl(p,x),S=rl(f,_),N=rl(m,b),{padInfo:C,outDepth:$,outHeight:D,outWidth:O}=cI(a,c,u,h,y,g,w,T,S,N,o),V=s?A*d:A,W;return i==="channelsFirst"?W=[l,V,$,D,O]:i==="channelsLast"&&(W=[l,$,D,O,V]),{batchSize:l,dataFormat:i,inDepth:c,inHeight:u,inWidth:h,inChannels:d,outDepth:$,outHeight:D,outWidth:O,outChannels:V,padInfo:C,strideDepth:y,strideHeight:g,strideWidth:w,filterDepth:p,filterHeight:f,filterWidth:m,effectiveFilterDepth:T,effectiveFilterHeight:S,effectiveFilterWidth:N,dilationDepth:x,dilationHeight:_,dilationWidth:b,inShape:e,outShape:W,filterShape:t}}function hI(e,t,n,r,a){r==null&&(r=Om(e,t,n));let s=e[0],i=e[1],o=ei((s-t+2*r)/n+1,a),l=ei((i-t+2*r)/n+1,a);return[o,l]}function dI(e,t,n,r,a,s){a==null&&(a=Om(e,t,r));let i=e[0],o=e[1],l=e[2],c=ei((i-t+2*a)/r+1,s),u=ei((o-t+2*a)/r+1,s),h=ei((l-t+2*a)/r+1,s);return[c,u,h,n]}function Om(e,t,n,r=1){let a=rl(t,r);return Math.floor((e[0]*(n-1)-n+a)/2)}function Od(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Dm(e){return typeof e=="number"?[e,e,e]:e}function rl(e,t){return t<=1?e:e+(e-1)*(t-1)}function uI(e,t,n,r,a,s,i,o,l){let c,u,h;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=hI([t,n],s,r,e,o);u=d[0],h=d[1]}else if(e==="same"){u=Math.ceil(t/r),h=Math.ceil(n/a);let d=Math.max(0,(u-1)*r+s-t),p=Math.max(0,(h-1)*a+i-n),f=Math.floor(d/2),m=d-f,A=Math.floor(p/2),y=p-A;c={top:f,bottom:m,left:A,right:y,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-s+1)/r),h=Math.ceil((n-i+1)/a);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];c={top:d,bottom:p,left:f,right:m,type:d===0&&p===0&&f===0&&m===0?"VALID":"EXPLICIT"},u=ei((t-s+d+p)/r+1,o),h=ei((n-i+f+m)/a+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:h}}function cI(e,t,n,r,a,s,i,o,l,c,u){let h,d,p,f;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let m=dI([t,n,r,1],o,1,a,e,u);d=m[0],p=m[1],f=m[2]}else if(e==="same"){d=Math.ceil(t/a),p=Math.ceil(n/s),f=Math.ceil(r/i);let m=(d-1)*a+o-t,A=(p-1)*s+l-n,y=(f-1)*i+c-r,g=Math.floor(m/2),w=m-g,x=Math.floor(A/2),_=A-x,b=Math.floor(y/2),T=y-b;h={top:x,bottom:_,left:b,right:T,front:g,back:w,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/a),p=Math.ceil((n-l+1)/s),f=Math.ceil((r-c+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:d,outHeight:p,outWidth:f}}function ei(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Ea(e){let[t,n,r]=Od(e);return t===1&&n===1&&r===1}function Tn(e,t){return Ea(e)||Ea(t)}function T5(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function pI(e,t){let n={x:R(e,"x","reshape","string_or_numeric")},r={shape:t};return L.runKernel(bo,n,r)}var X=P({reshape_:pI});function fI(e,t,n,r,a){let s=R(e,"x","avgPool","float32"),i=1;M(Tn(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=X(s,[1,s.shape[0],s.shape[1],s.shape[2]])),M(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),a!=null&&M(Gt(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=L.runKernel(Ja,c,u);return h=xe(h,s.dtype),l?X(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var bu=P({avgPool_:fI});function mI(e,t,n,r,a,s="NDHWC",i){i==null?i=[1,1,1]:Ft("dilations is deprecated, this field will be gone in v3.0.0.");let o=R(e,"x","avgPool3d","float32"),l=o,c=!1;o.rank===4&&(c=!0,l=X(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(l.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${l.rank}.`),M(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),M(Tn(n,i),()=>`Error in avgPool3d: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&M(Gt(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:l},h={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s,dilations:i},d=L.runKernel(tu,u,h);return d=xe(d,l.dtype),c?X(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Cf=P({avgPool3d_:mI});function AI(e,t=0){M(e.length>=1,()=>"Pass at least one tensor to concat");let n=Ku(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor with dtype ${s.dtype}. `)}),n.length===1)return Er(n[0]);let r=n,a={axis:t};return L.runKernel(ji,r,a)}var pt=P({concat_:AI});function yI(e){let t={x:R(e,"x","sigmoid")};return L.runKernel(Fs,t)}var tr=P({sigmoid_:yI});function gI(e,t,n){let r=R(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let a={x:r},s={begin:t,size:n};return L.runKernel(No,a,s)}var Me=P({slice_:gI});function xI(e){let t={x:R(e,"x","tanh")};return L.runKernel(Ps,t)}var Lo=P({tanh_:xI});function wI(e,t,n,r,a,s){let i=R(e,"forgetBias","basicLSTMCell"),o=R(t,"lstmKernel","basicLSTMCell"),l=R(n,"lstmBias","basicLSTMCell"),c=R(r,"data","basicLSTMCell"),u=R(a,"c","basicLSTMCell"),h=R(s,"h","basicLSTMCell"),d=pt([c,h],1),p=Ke(d,o),f=ie(p,l),m=f.shape[0],A=f.shape[1]/4,y=[m,A],g=Me(f,[0,0],y),w=Me(f,[0,A],y),x=Me(f,[0,A*2],y),_=Me(f,[0,A*3],y),b=ie(B(tr(g),Lo(w)),B(u,tr(ie(i,x)))),T=B(Lo(b),tr(_));return[b,T]}var g4=P({basicLSTMCell_:wI});function _I(e,t,n){let r=R(e,"x","batchToSpaceND"),a=t.reduce((o,l)=>o*l);M(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),M(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),M(r.shape[0]%a==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${a}`);let s={x:r},i={blockShape:t,crops:n};return L.runKernel(nu,s,i)}var vu=P({batchToSpaceND_:_I});function bI(e){let t;return e.rank===0||e.rank===1?t=X(e,[1,1,1,e.size]):e.rank===2?t=X(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=X(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function vI(e,t,n,r,a,s){s==null&&(s=.001);let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;r!=null&&(u=R(r,"offset","batchNorm")),M(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),M(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),M(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:bI(i),scale:c,offset:u,mean:o,variance:l},d={varianceEpsilon:s},p=L.runKernel(cs,h,d);return X(p,i.shape)}var Us=P({batchNorm_:vI});function kI(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),M(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),M(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),M(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),Us(i,o,l,u,c,s)}var fg=P({batchNorm2d_:kI});function II(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),M(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),M(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),M(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),Us(i,o,l,u,c,s)}var mg=P({batchNorm3d_:II});function NI(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),M(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),M(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),M(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),Us(i,o,l,u,c,s)}var Ag=P({batchNorm4d_:NI});function SI(e,t,n){let r=R(e,"x","bincount"),a=R(t,"weights","bincount");M(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(a.size===r.size||a.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${a.shape}.`);let s={x:r,weights:a},i={size:n};return L.runKernel(yh,s,i)}var yg=P({bincount_:SI});function TI(e,t){let n=R(e,"broadcastTo","x"),r=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.lengthn.rank){let l=n.shape.slice();for(;l.length=0;l--)if(a[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(s.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return Er(n);let i={x:n},o={reps:s};return L.runKernel(Aa,i,o)}var ku=P({broadcastTo_:TI});function EI(e){let t={x:R(e,"x","ceil")};return L.runKernel(Ui,t)}var Rf=P({ceil_:EI});function CI(e,t,n){let r=R(e,"x","clipByValue");M(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let a={x:r},s={clipValueMin:t,clipValueMax:n};return L.runKernel(ma,a,s)}var fn=P({clipByValue_:CI});function RI(e){return pt(e,0)}var gg=P({concat1d_:RI});function FI(e,t){return pt(e,t)}var Xl=P({concat2d_:FI});function MI(e,t){return pt(e,t)}var xg=P({concat3d_:MI});function $I(e,t){return pt(e,t)}var wg=P({concat4d_:$I});function DI(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","conv2d"),l=R(t,"filter","conv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=X(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&M(Gt(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h=a==="NHWC"?c.shape[3]:c.shape[1];M(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),M(Tn(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:c,filter:l},p={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},f=L.runKernel(ts,d,p);return u?X(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Zr=P({conv2d_:DI});function OI(e,t,n,r,a="NWC",s=1,i){let o=R(e,"x","conv1d"),l=R(t,"filter","conv1d"),c=o,u=!1;o.rank===2&&(u=!0,c=X(o,[1,o.shape[0],o.shape[1]])),M(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),M(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&M(Gt(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),M(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),M(Tn(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),M(a==="NWC",()=>`Error in conv1d: got dataFormat of ${a} but only NWC is currently supported.`);let h=X(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=X(c,[c.shape[0],1,c.shape[1],c.shape[2]]),p=Zr(d,h,[1,n],r,"NHWC",[1,s],i);return u?X(p,[p.shape[2],p.shape[3]]):X(p,[p.shape[0],p.shape[2],p.shape[3]])}var Zh=P({conv1d_:OI});function zI(e,t,n,r,a,s="NHWC",i){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,c=!1;t.rank===3&&(c=!0,l=X(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),M(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),M(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),M(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];M(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),M(h===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${n.shape[3]}.`),i!=null&&M(Gt(a),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let d={dy:l,filter:n},p={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,inputShape:o},f=L.runKernel(ns,d,p);return c?X(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var zm=P({conv2DBackpropInput_:zI});function PI(e,t,n,r,a,s){let i=R(e,"x","conv2dTranspose"),o=R(t,"filter","conv2dTranspose");return zm(n,i,o,r,a,"NHWC",s)}var Yh=P({conv2dTranspose_:PI});function LI(e,t,n,r,a="NDHWC",s=[1,1,1]){let i=R(e,"x","conv3d"),o=R(t,"filter","conv3d"),l=i,c=!1;i.rank===4&&(c=!0,l=X(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),M(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),M(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),M(Tn(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),M(a==="NDHWC",()=>`Error in conv3d: got dataFormat of ${a} but only NDHWC is currently supported.`);let u={x:l,filter:o},h={strides:n,pad:r,dataFormat:a,dilations:s},d=L.runKernel(au,u,h);return c?X(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Ff=P({conv3d_:LI});function WI(e,t,n,r,a){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=X(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],c=i.shape[4];M(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),M(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),M(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),M(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),M(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:i,filter:n},h={pad:a,strides:r,inputShape:s},d=L.runKernel(_h,u,h);return o?X(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var R5=P({conv3DBackpropInput_:WI});function BI(e,t,n,r,a){let s=R(e,"x","conv3dTranspose"),i=R(t,"filter","conv3dTranspose");return R5(n,s,i,r,a)}var x4=P({conv3dTranspose_:BI});function VI(e){let t={x:R(e,"x","cos")};return L.runKernel(rs,t)}var Iu=P({cos_:VI});function UI(e){let t={x:R(e,"x","cosh")};return L.runKernel(Hi,t)}var Jh=P({cosh_:UI});function jI(e,t=0,n=!1,r=!1){let a={x:R(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:r};return L.runKernel(as,a,s)}var Qh=P({cumsum_:jI});function HI(e,t,n,r=!1){let a=R(e,"x","denseBincount"),s=R(t,"weights","denseBincount");M(a.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${a.dtype}`),M(a.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${a.rank}.`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(s.size===a.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${a.shape}, weights shape: ${s.shape}.`);let i={x:a,weights:s},o={size:n,binaryOutput:r};return L.runKernel(bh,i,o)}var _g=P({denseBincount_:HI});function GI(e,t,n="NHWC"){let r=R(e,"x","depthToSpace"),a=n==="NHWC"?r.shape[1]:r.shape[2],s=n==="NHWC"?r.shape[2]:r.shape[3],i=n==="NHWC"?r.shape[3]:r.shape[1];M(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${a} and ${t} for depthToSpace with input shape ${r.shape}`),M(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${s} and ${t} for depthToSpace with input shape ${r.shape}`),M(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${r.shape}`);let o={x:r},l={blockSize:t,dataFormat:n};return L.runKernel(qi,o,l)}var Mf=P({depthToSpace_:GI});function qI(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","depthwiseConv2d"),l=R(t,"filter","depthwiseConv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=X(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),M(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&M(Gt(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h={x:c,filter:l},d={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},p=L.runKernel(ss,h,d);return u?X(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var js=P({depthwiseConv2d_:qI});function XI(e){let t={x:R(e,"x","diag")};return L.runKernel(Ih,t)}var w4=P({diag_:XI});function KI(e,t,n,r,a=[1,1],s="NHWC"){let i=R(e,"x","dilation2d"),o=R(t,"filter","dilation2d");M(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),M(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),M(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,c=!1;i.rank===3&&(l=X(i,[1,i.shape[0],i.shape[1],i.shape[2]]),c=!0);let u={x:l,filter:o},h={strides:n,pad:r,dilations:a},d=L.runKernel(su,u,h);return c?X(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var $f=P({dilation2d_:KI});function ZI(e,t){let n=e.length,r=[];for(let a=0;a1&&i===1&&r.unshift(s)}return r}function Lt(e,t){let n=[];for(let r=0;r1)&&n.unshift(s)}return n}function xt(e,t){let n=[],r=Math.max(e.length,t.length);for(let a=0;a"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&st(s.shape,l.shape,"Error in where: ");let c={condition:s,t:o,e:l};return L.runKernel(ko,c)}var mn=P({where_:JI});function QI(e){let t={x:R(e,"x","zerosLike")};return L.runKernel(Do,t)}var qe=P({zerosLike_:QI});function eN(e,t){let n=R(e,"a","div"),r=R(t,"b","div");[n,r]=Nt(n,r);let a=Se(n,r),s=qe(a),i=Yr(r,s);return mn(i,s,a)}var Df=P({divNoNan_:eN});function tN(e,t){let n=R(e,"t1","dot"),r=R(t,"t2","dot");M((n.rank===1||n.rank===2)&&(r.rank===1||r.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let a=n.rank===1?n.size:n.shape[1],s=r.rank===1?r.size:r.shape[0];if(M(a===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${a} and ${s}.`),n.rank===1&&r.rank===1){let i=X(n,[1,-1]),o=X(r,[-1,1]),l=Ke(i,o);return X(l,[])}else if(n.rank===1&&r.rank===2){let i=X(n,[1,-1]),o=X(r,[r.shape[0],r.shape[1]]),l=Ke(i,o);return X(l,[l.size])}else if(n.rank===2&&r.rank===1){let i=X(r,[-1,1]),o=Ke(n,i);return X(o,[o.size])}else{let i=X(r,[r.shape[0],r.shape[1]]);return Ke(n,i)}}var bg=P({dot_:tN});function nN(e){let t={x:R(e,"x","elu")};return L.runKernel(Xi,t)}var Wo=P({elu_:nN});function rN(e){let t=R(e,"x","erf");M(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=xe(t,"float32"));let n={x:t};return L.runKernel(Ki,n)}var Of=P({erf_:rN});function aN(e){let t={x:R(e,"x","exp")};return L.runKernel(os,t)}var Bn=P({exp_:aN});function sN(e,t=0){let n=R(e,"x","expandDims","string_or_numeric");M(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},a={dim:t};return L.runKernel(Yi,r,a)}var Vn=P({expandDims_:sN});function iN(e){let t={x:R(e,"x","expm1")};return L.runKernel(Ji,t)}var zf=P({expm1_:iN});function oN(e,t){let n=R(e,"x","tile","string_or_numeric");M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},a={reps:t};return L.runKernel(Aa,r,a)}var xa=P({tile_:oN});function lN(e,t,n,r="float32"){t==null&&(t=e);let a=Ue([e,t],r),s=e<=t?e:t;for(let o=0;o`Error in localResponseNormalization: x must be rank 3 or 4 but got rank ${s.rank}.`),M(Gt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=X(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},c={depthRadius:t,bias:n,alpha:r,beta:a},u=L.runKernel(uu,l,c);return o?X(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Lf=P({localResponseNormalization_:wN});function _N(e){let t={x:R(e,"x","log")};return L.runKernel(ps,t)}var kn=P({log_:_N});function bN(e){let t={x:R(e,"x","log1p")};return L.runKernel(uo,t)}var td=P({log1p_:bN});function _4(e){return M(Ia(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=R(t,"x","tf.grad","string_or_numeric"),a=n!=null?R(n,"dy","tf.grad"):null;return L.tidy(()=>{let{value:s,grads:i}=L.gradients(()=>e(r),[r],a);return a!=null&&st(s.shape,a.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),zd(i),i[0]})}}function b4(e){return M(Ia(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{M(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=Ku(t,"args","tf.grads","string_or_numeric"),a=n!=null?R(n,"dy","tf.grads"):null;return L.tidy(()=>{let{value:s,grads:i}=L.gradients(()=>e(...r),r,a);return a!=null&&st(s.shape,a.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),zd(i),i})}}function v4(e){return M(Ia(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{M(t instanceof H,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),M(n==null||n instanceof H,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:a}=L.gradients(()=>e(t),[t],n);return zd(r),{grad:r[0],value:a}}}function k4(e){return M(Ia(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{M(Array.isArray(t)&&t.every(a=>a instanceof H),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),M(n==null||n instanceof H,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=L.gradients(()=>e(...t),t,n);return n!=null&&st(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),zd(r.grads),r}}function Sg(e,t){M(Ia(e),()=>"The f passed in variableGrads(f) must be a function"),M(t==null||Array.isArray(t)&&t.every(c=>c instanceof gu),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in L.registeredVariables)t.push(L.registeredVariables[c])}let r=n?t.filter(c=>!c.trainable):null,a=t.length;t=t.filter(c=>c.trainable),M(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${a} variables is trainable.`);let s=!0,{value:i,grads:o}=L.gradients(e,t,null,s);M(o.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),M(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((c,u)=>{o[u]!=null&&(l[c.name]=o[u])}),r!=null&&r.forEach(c=>l[c.name]=null),{value:i,grads:l}}function Cr(e){return L.customGrad(e)}function zd(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.`)}function vN(e){let t={x:R(e,"x","neg")};return L.runKernel(po,t)}var kt=P({neg_:vN});function kN(e){let t={x:R(e,"x","softplus")};return L.runKernel(Eo,t)}var Vo=P({softplus_:kN});function IN(e){let t=R(e,"x","logSigmoid");return Cr(n=>({value:kt(Vo(kt(n))),gradFunc:r=>B(r,tr(kt(n)))}))(t)}var Tg=P({logSigmoid_:IN});function NN(e,t=null,n=!1){let r={x:R(e,"x","max")},a={reductionIndices:t,keepDims:n};return L.runKernel(fs,r,a)}var jn=P({max_:NN});function SN(e,t){let n=R(e,"a","sub"),r=R(t,"b","sub");[n,r]=Nt(n,r);let a={a:n,b:r};return L.runKernel(zs,a)}var be=P({sub_:SN});function TN(e,t=null,n=!1){let r=R(e,"x","sum");r.dtype==="bool"&&(r=xe(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return L.runKernel($s,a,s)}var Ce=P({sum_:TN});function EN(e,t=-1){let n=R(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Cr((r,a)=>{let s=!0,i=jn(r,t,!0),o=be(r,i),l=be(xe(o,"float32"),kn(Ce(Bn(o),t,s)));return a([l]),{value:l,gradFunc:(c,u)=>{let[h]=u,d=!0,p=Bn(h);return be(c,B(Ce(c,t,d),p))}}})(n)}var nd=P({logSoftmax_:EN});function Pm(e,t){for(let n=0;ne[s]);return[n,a]}function ti(e,t){let n=t.map(r=>1);return F5(e,n,t)}function CN(e,t,n){M(Pm(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function $5(e,t){if(Pm(e,t))return null;let n=[];for(let r=0;rn.push(r)),n}function Lm(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function RN(e,t){let n=[];for(let r=t-e;r`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),M(Tn(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&M(Gt(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=L.runKernel(As,c,u);return l?X(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Cu=P({maxPool_:zN});function PN(e,t=[1,1,1],n,r,a,s="NDHWC",i){i==null?i=[1,1,1]:Ft("dilations is deprecated, this field will be gone in v3.0.0.");let o=R(e,"x","maxPool3d"),l=o,c=!1;o.rank===4&&(c=!0,l=X(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(l.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${l.rank}.`),M(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),M(Tn(n,i),()=>`Error in maxPool3d: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&M(Gt(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:l},h={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s,dilations:i},d=L.runKernel(cu,u,h);return c?X(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Bf=P({maxPool3d_:PN});function LN(e,t,n,r,a=!1){let s={x:R(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:a},o=L.runKernel(Oh,s,i);return{result:o[0],indexes:o[1]}}var Cg=P({maxPoolWithArgmax_:LN});function WN(e,t){let n=R(e,"a","maximum"),r=R(t,"b","maximum");[n,r]=Nt(n,r),n.dtype==="bool"&&(n=xe(n,"int32"),r=xe(r,"int32")),xt(n.shape,r.shape);let a={a:n,b:r};return L.runKernel(ms,a)}var yr=P({maximum_:WN});function BN(e,t=null,n=!1){let r={x:R(e,"x","mean")},a={axis:t,keepDims:n};return L.runKernel(ys,r,a)}var It=P({mean_:BN});function VN(e,t=null,n=!1){let r={x:R(e,"x","min")},a={axis:t,keepDims:n};return L.runKernel(gs,r,a)}var Uo=P({min_:VN});function UN(e,t){let n=R(e,"a","minimum"),r=R(t,"b","minimum");[n,r]=Nt(n,r),n.dtype==="bool"&&(n=xe(n,"int32"),r=xe(r,"int32")),xt(n.shape,r.shape);let a={a:n,b:r};return L.runKernel(xs,a)}var Gs=P({minimum_:UN});function jN(e,t,n){M(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=R(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");M(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let a=n==="reflect"?1:0;for(let o=0;o"Invalid number of paddings. Must be length of 2 each."),M(t[o][0]>=0&&t[o][0]<=r.shape[o]-a&&t[o][1]>=0&&t[o][1]<=r.shape[o]-a,()=>`Padding in dimension ${o} cannot be greater than or equal to ${r.shape[o]-a} or less than 0 for input of shape ${r.shape}`);let s={paddings:t,mode:n},i={x:r};return L.runKernel(hu,i,s)}var Vf=P({mirrorPad_:jN});function HN(e,t){let n=R(e,"a","mod"),r=R(t,"b","mod");[n,r]=Nt(n,r);let a={a:n,b:r};return L.runKernel(ho,a)}var ad=P({mod_:HN});function GN(e){let t=R(e,"x","square"),n={};return L.runKernel("Square",{x:t},n)}var dt=P({square_:GN});function qN(e,t=null,n=!1){e=R(e,"x","moments");let r=sr(t,e.shape),a=It(e,r,n),s=a.shape;n||(s=ti(a.shape,r));let i=dt(be(xe(e,"float32"),X(a,s))),o=It(i,r,n);return{mean:a,variance:o}}var sd=P({moments_:qN});function XN(e,t,n,r){let a=R(t,"data","multiRNNCell"),s=Ku(n,"c","multiRNNCell"),i=Ku(r,"h","multiRNNCell"),o=a,l=[];for(let h=0;h2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?X(a,[1,-1]):a},l={numSamples:t,seed:n,normalized:r},c=L.runKernel(zh,o,l);return i===1?X(c,[c.size]):c}var Rg=P({multinomial_:KN});function ZN(e,t){let n=R(e,"a","notEqual"),r=R(t,"b","notEqual");[n,r]=Nt(n,r),xt(n.shape,r.shape);let a={a:n,b:r};return L.runKernel(fo,a)}var _a=P({notEqual_:ZN});function Ct(e,t="float32"){if(t==="complex64"){let r=Ct(e,"float32"),a=Ct(e,"float32");return ga(r,a)}let n=Ed(Pt(e),t);return L.makeTensor(n,e,t)}function Rr(e,t="float32"){if(t==="complex64"){let r=Rr(e,"float32"),a=Ct(e,"float32");return ga(r,a)}let n=om(Pt(e),t);return L.makeTensor(n,e,t)}function YN(e){let t={x:R(e,"x","onesLike")};return L.runKernel(go,t)}var In=P({onesLike_:YN});function JN(e,t){let n=R(e,"v1","outerProduct"),r=R(t,"v2","outerProduct");M(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let a=X(n,[-1,1]),s=X(r,[1,-1]);return Ke(a,s)}var N4=P({outerProduct_:JN});function QN(e,t,n=0){let r=R(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let a={paddings:t,constantValue:n},s={x:r};return L.runKernel(bs,s,a)}var Qr=P({pad_:QN});function eS(e,t,n=0){return M(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Qr(e,[t],n)}var S4=P({pad1d_:eS});function tS(e,t,n=0){return M(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Qr(e,t,n)}var T4=P({pad2d_:tS});function nS(e,t,n=0){return M(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Qr(e,t,n)}var E4=P({pad3d_:nS});function rS(e,t,n=0){return M(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Qr(e,t,n)}var C4=P({pad4d_:rS});function aS(e,t,n){let r=R(e,"x","spaceToBatchND");M(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),M(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),M(r.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let a={x:r},s={blockShape:t,paddings:n};return L.runKernel(fu,a,s)}var Ru=P({spaceToBatchND_:aS});function oS(e,t,n,r,a,s){a==null&&(a=[1,1]),s==null&&(s=1),r===0&&(r="valid");let i=R(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=X(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(Tn(s,a),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${a}'`);let c=E5(o.shape,t,s,a,r),u=[c.dilationHeight,c.dilationWidth],h;r==="same"?h=iS([c.filterHeight,c.filterWidth],u):h=[[0,0],[0,0]];let d=u[0]===1&&u[1]===1,[p,f]=sS([c.inHeight,c.inWidth],u,h),m=d?r:"valid",A=d?o:Ru(o,u,p),y=(n==="avg"?()=>bu(A,t,s,m):()=>Cu(A,t,s,m))(),g=d?y:vu(y,u,f);return l?X(g,[g.shape[1],g.shape[2],g.shape[3]]):g}function sS(e,t,n){let r=n.map(u=>u[0]),a=n.map(u=>u[1]),s=e.concat(r,a),i=t.map((u,h)=>(u-s[h]%u)%u),o=a.map((u,h)=>u+i[h]),l=t.map((u,h)=>[r[h],o[h]]),c=t.map((u,h)=>[0,i[h]]);return[l,c]}function iS(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),r=n.map(s=>Math.floor(s/2)),a=n.map((s,i)=>s-r[i]);return n.map((s,i)=>[r[i],a[i]])}var Fg=P({pool_:oS});function lS(e,t){let n=R(e,"base","pow"),r=R(t,"exp","pow");[n,r]=Nt(n,r);let a={a:n,b:r};return L.runKernel(vs,a)}var Fr=P({pow_:lS});function uS(e,t){let n=R(e,"x","prelu"),r=R(t,"alpha","prelu"),a={x:n,alpha:r};return L.runKernel(ks,a)}var Fu=P({prelu_:uS});function cS(e,t=null,n=!1){let r=R(e,"x","prod");r.dtype==="bool"&&(r=xe(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return L.runKernel(wo,a,s)}var id=P({prod_:cS});function hS(e,t,n){let r=Pt(e),a=null;if(n==null||n==="float32")a=new Float32Array(r);else if(n==="int32")a=new Int32Array(r);else if(n==="bool")a=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let s=0;s=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*r*i,t=this.mean+this.stdDev*a*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},dS=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let a=r||Math.random();this.randu=Wm.alea(a.toString()),this.randn=new Bm(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,a,s;for(;;){do r=this.randn.nextValue(),s=1+this.c*r;while(s<=0);if(s*=s*s,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),a=this.randu(),athis.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Wm.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function fS(e,t,n=1,r="float32",a){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let s=new dS(t,n,r,a),i=Ue(e,r);for(let o=0;o`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Nn(t,0)}var M4=P({reverse1d_:bS});function vS(e,t){let n=R(e,"x","reverse");return M(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Nn(n,t)}var $4=P({reverse2d_:vS});function kS(e,t){let n=R(e,"x","reverse");return M(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Nn(n,t)}var D4=P({reverse3d_:kS});function IS(e,t){let n=R(e,"x","reverse");return M(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Nn(n,t)}var O4=P({reverse4d_:IS});function NS(e){let t={x:R(e,"x","round")};return L.runKernel(Es,t)}var jf=P({round_:NS});function SS(e){let t={x:R(e,"x","rsqrt")};return L.runKernel(Cs,t)}var ud=P({rsqrt_:SS});function Te(e,t){if((nn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&nn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Na(e,[],[],t)}function TS(e){let t={x:R(e,"x","selu")};return L.runKernel(Io,t)}var cd=P({selu_:TS});function ES(e,t,n,r,a,s=[1,1],i="NHWC"){let o=R(e,"x","separableConv2d"),l=R(t,"depthwiseFilter","separableConv2d"),c=R(n,"pointwiseFilter","separableConv2d"),u=o,h=!1;if(o.rank===3&&(h=!0,u=X(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");M(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),M(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),M(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),M(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let d=l.shape[2],p=l.shape[3];M(c.shape[2]===d*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*p}, but got ${c.shape[2]}.`);let f=js(u,l,r,a,i,s),m=Zr(f,c,1,"valid",i);return h?X(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Hf=P({separableConv2d_:ES});async function CS(e,t){let n=R(e,"x","setdiff1d"),r=R(t,"y","setdiff1d");M(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),M(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),M(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let a=await n.data(),s=await r.data(),i=new Set(s),o=0;for(let u=0;u`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),Me(r,[t],[n])}var pd=P({slice1d_:$S});function DS(e,t,n){let r=R(e,"x","slice2d");return M(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),Me(r,t,n)}var qf=P({slice2d_:DS});function OS(e,t,n){let r=R(e,"x","slice3d");return M(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),Me(r,t,n)}var fd=P({slice3d_:OS});function zS(e,t,n){let r=R(e,"x","slice4d");return M(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),Me(r,t,n)}var $u=P({slice4d_:zS});function PS(e,t=-1){let n=R(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},a={dim:t};return L.runKernel(Ds,r,a)}var Du=P({softmax_:PS});function LS(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(Eh,t)}var Ou=P({fft_:LS});function WS(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(Ch,t)}var Ho=P({ifft_:WS});function BS(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let a=X(e,[n,t]);r=Ho(a)}else{let a=[n,2*(t-1)],s=X(Mu(e),[n,t]),i=X(ed(e),[n,t]),o=Nn(Me(s,[0,1],[n,t-2]),1),l=B(Nn(Me(i,[0,1],[n,t-2]),1),Te(-1)),c=pt([s,o],1),u=pt([i,l],1),h=X(ga(c,u),[a[0],a[1]]);r=Ho(h)}if(r=Mu(r),e.rank===3&&e.shape[0]!==0){let a=r,s=e.shape[0];r=X(r,[s,r.shape[0]/s,r.shape[1]]),a.dispose()}return r}var md=P({irfft_:BS});function VS(e,t,n=0){let r={x:R(e,"x","split")},a={numOrSizeSplits:t,axis:n};return L.runKernel(Co,r,a)}var an=P({split_:VS});function US(e,t){M(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,a;if(t!=null&&t0),m=e.shape.map(A=>A);m[e.shape.length-1]=t,a=Me(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,a=pt([e,Ct(f)],e.shape.length-1),n=t}else a=e;let s=qe(a),i=X(ga(a,s),[r,n]),o=Ou(i),l=Math.floor(n/2)+1,c=Mu(o),u=ed(o),h=an(c,[l,n-l],c.shape.length-1),d=an(u,[l,n-l],u.shape.length-1),p=a.shape.slice();return p[a.shape.length-1]=l,X(ga(h[0],d[0]),p)}var zu=P({rfft_:US});function jS(e){let t={x:R(e,"x","sqrt")};return L.runKernel(Ms,t)}var Yt=P({sqrt_:jS});function HS(e,t){let n=R(e,"a","squaredDifference"),r=R(t,"b","squaredDifference");[n,r]=Nt(n,r),xt(n.shape,r.shape);let a={a:n,b:r},s={};return L.runKernel(Os,a,s)}var Pu=P({squaredDifference_:HS});function GS(e,t){let n=R(e,"x","squeeze");return X(n,E0(n.shape,t).newShape)}var ba=P({squeeze_:GS});function qS(e,t=0){let n=Ku(e,"tensors","stack","string_or_numeric");M(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&M(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,a={axis:t};return L.runKernel(xo,r,a)}var Sn=P({stack_:qS});function XS(e,t=0){let n={x:R(e,"x","step")},r={alpha:t};return L.runKernel(ya,n,r)}var Go=P({step_:XS});function KS(e,t,n,r,a=0,s=0,i=0,o=0,l=0){let c={x:R(e,"x","stridedSlice")},u={begin:t,end:n,strides:r,beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return L.runKernel(Ro,c,u)}var Xf=P({stridedSlice_:KS});function ZS(e){let t={x:R(e,"x","tan")};return L.runKernel(Fo,t)}var Kf=P({tan_:ZS});function tn(e,t){Xs(e);let n=Pr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Na(e,null,n,t)}function pr(e,t,n){if(Xs(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=Pr(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Na(e,t,r,n)}function z4(e,t,n){if(Xs(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=Pr(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Na(e,t,r,n)}function P4(e,t,n){if(Xs(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=Pr(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Na(e,t,r,n)}function L4(e,t,n){if(Xs(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=Pr(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,Na(e,t,r,n)}function YS(e,t=1,n=!0){let r=R(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let a=r.shape[r.shape.length-1];if(t>a)throw new Error(`'k' passed to topk() must be <= the last dimension (${a}) but got ${t}`);let s={x:r},i={k:t,sorted:n},[o,l]=L.runKernel(Mo,s,i);return{values:o,indices:l}}var Zf=P({topk_:YS});function JS(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Bm(t,n,r,!0,a),i=Ue(e,r);for(let o=0;o0,()=>"The input tensor must be at least 1D");let r={x:n},a={axis:t},[s,i]=L.runKernel(Vh,r,a);return{values:s,indices:i}}var yd=P({unique_:QS});function eT(e,t,n){let r=R(e,"x","unsortedSegmentSum"),a=R(t,"segmentIds","unsortedSegmentSum","int32");M(Gt(n),()=>"numSegments must be of dtype int");let s={x:r,segmentIds:a},i={numSegments:n};return L.runKernel(Au,s,i)}var Yf=P({unsortedSegmentSum_:eT});function tT(e,t=0){let n=R(e,"x","unstack","string_or_numeric");M(t>=-n.shape.length&&t`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},a={axis:t};return L.runKernel($o,r,a)}var ar=P({unstack_:tT});function Dg(e,t=!0,n,r){return L.makeVariable(e,t,n,r)}function D5(e,t){let n=[];for(let s=0;s0,()=>"mask cannot be scalar"),st(o.slice(s,s+i),a.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=s;m"Shape mismatch in v and x");let l=Te(1),c=be(l,o),u=B(be(i,s),c);if(a){M(r!=null,()=>"When using zeroDebias: true, step is required.");let h=R(r,"step","movingAverage");u=Se(u,be(l,Fr(o,h)))}return ie(s,u)}var B4=P({movingAverage_:wT});function _T(e,t,n){let r=R(e,"indices","scatterND","int32"),a=R(t,"updates","scatterND");Rm(a,r,n);let s={indices:r,updates:a},i={shape:n};return L.runKernel(vo,s,i)}var Yg=P({scatterND_:_T});function bT(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let a=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===a))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${a}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function vT(e,t,n,r=0){let a=R(e,"sparseIndices","sparseToDense","int32"),s=R(t,"sparseValues","sparseToDense"),i=R(r,"defaultValue","sparseToDense",s.dtype);bT(a,s,n,i);let o={sparseIndices:a,sparseValues:s,defaultValue:i},l={outputShape:n};return L.runKernel(Bh,o,l)}var Qf=P({sparseToDense_:vT});function kT(e,t){let n=R(t,"indices","gatherND","int32"),r={params:R(e,"x","gatherND"),indices:n};return L.runKernel(to,r)}var Jg=P({gatherND_:kT});function IT(e,t){if(t==null)return e.shape.slice();if(na(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r`x has to be a floating point tensor since it's going to be scaled, but got a ${a.dtype} tensor instead.`),M(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof H?a.clone():a;let s=IT(a,n),i=1-t,o=Se(Bo(ie(jo(s,0,1,"float32",r),i)),i);return B(a,o)}var Qg=P({dropout_:NT});function e0(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function em(e,t,n){let r=1-e%2,a=new Float32Array(e);for(let s=0;s1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),M(r.rank-1===a.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${a.rank}`),st(r.shape.slice(0,r.shape.length-1),a.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=r.shape[r.shape.length-1];M(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await r.data(),o=await a.data(),[l,c]=[i.length/s,s],u=C0("bool",l);for(let h=0;hA.value-m.value),u[h]=0;for(let m=0;mTT,depthwiseConv2d:()=>ET,matMul:()=>CT});function RT(e,t,n,r,a,s="NHWC",i){let o=e;e.rank===3&&(o=X(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=X(t,[1,t.shape[0],t.shape[1],t.shape[2]])),M(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),M(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),M(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=s==="NHWC"?o.shape[3]:o.shape[1],u=s==="NHWC"?l.shape[3]:l.shape[1];M(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),M(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),i!=null&&M(Gt(a),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let h={x:o,dy:l},d={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,filterShape:n};return L.runKernel(xh,h,d)}var Vm=P({conv2DBackpropFilter_:RT});function Pd(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return B(e,Go(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Ld(e,t){let n=t,r=Lt(e.shape,t.shape);return r.length>0&&(n=Ce(n,r)),X(n,e.shape)}function Wd(e,t,n,r){if(t==="linear")return e;if(t==="relu")return Mr(e);if(t==="elu")return Wo(e);if(t==="relu6")return ld(e);if(t==="prelu")return Fu(e,n);if(t==="leakyrelu")return Su(e,r);throw new Error(`Unknown fused activation ${t}.`)}var Bd=(e,t)=>!(e>0)||t==="linear";function FT({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",Bd(L.state.gradientDepth,l)===!1){let _=Zr(e,t,n,r,a,s,i);return o!=null&&(_=ie(_,o)),Wd(_,l,c,u)}let h=R(e,"x","conv2d"),d=R(t,"filter","conv2d"),p=h,f=!1;h.rank===3&&(f=!0,p=X(h,[1,h.shape[0],h.shape[1],h.shape[2]])),M(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),M(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&M(Gt(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),M(p.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${d.shape[2]}.`),M(Tn(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),M(a==="NHWC",()=>`Error in conv2d: got dataFormat of ${a} but only NHWC is currently supported.`);let m=Yu(p.shape,d.shape,n,s,r,i),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=Nt(A,h),xt(m.outShape,A.shape));let y;c!=null&&(y=R(c,"prelu weights","fused conv2d"));let g=(_,b)=>{let[T,S,N,C]=b,$=Pd(_,N,l);M(Ea(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let D=zm(S.shape,$,T,n,r),O=Vm(S,$,T.shape,n,r),V=[D,O];if(C!=null){let W=Ld(C,$);V.push(W)}return V},w={x:p,filter:d,bias:A,preluActivationWeights:y},x={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?Cr((_,b,T)=>{let S=L.runKernel(Bs,w,x);return T([b,_,S]),f&&(S=X(S,[S.shape[1],S.shape[2],S.shape[3]])),{value:S,gradFunc:g}})(p,d):Cr((_,b,T,S)=>{let N=L.runKernel(Bs,w,x);return S([b,_,N,T]),f&&(N=X(N,[N.shape[1],N.shape[2],N.shape[3]])),{value:N,gradFunc:g}})(p,d,A)}var TT=P({fusedConv2d_:FT});function MT(e,t,n,r,a,s=[1,1],i){let o=e;e.rank===3&&(o=X(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=X(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:o,dy:l},u={strides:r,pad:a,dimRoundingMode:i,dilations:s,filterShape:n};return L.runKernel(vh,c,u)}var z5=P({depthwiseConv2dNativeBackpropFilter_:MT});function $T(e,t,n,r,a,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=X(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:o,filter:n},u={strides:r,pad:a,dimRoundingMode:i,dilations:s,inputShape:e},h=L.runKernel(kh,c,u);return l?X(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var P5=P({depthwiseConv2dNativeBackpropInput_:$T});function DT({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(Bd(L.state.gradientDepth,l)===!1){let _=js(e,t,n,r,a,s,i);return o!=null&&(_=ie(_,o)),Wd(_,l,c,u)}let h=R(e,"x","depthwiseConv2d"),d=R(t,"filter","depthwiseConv2d"),p=h,f=!1;h.rank===3&&(f=!0,p=X(h,[1,h.shape[0],h.shape[1],h.shape[2]])),M(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),M(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),M(p.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),M(Tn(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&M(Gt(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${r}.`);let m=Yu(p.shape,d.shape,n,s,r,i,!0),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=Nt(A,h),xt(m.outShape,A.shape));let y;c!=null&&(y=R(c,"prelu weights","fused depthwiseConv2d"));let g=(_,b)=>{M(Ea(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[T,S,N,C]=b,$=Pd(_,N,l),D=P5(S.shape,$,T,n,r,s,i),O=z5(S,$,T.shape,n,r,s,i);if(C!=null){let V=Ld(A,$);return[D,O,V]}return[D,O]},w={x:p,filter:d,bias:A,preluActivationWeights:y},x={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?Cr((_,b,T)=>{let S=L.runKernel(Vs,w,x);return T([b,_,S]),f&&(S=X(S,[S.shape[1],S.shape[2],S.shape[3]])),{value:S,gradFunc:g}})(p,d):Cr((_,b,T,S)=>{let N=L.runKernel(Vs,w,x);return S([b,_,N,T]),f&&(N=X(N,[N.shape[1],N.shape[2],N.shape[3]])),{value:N,gradFunc:g}})(p,d,A)}var ET=P({fusedDepthwiseConv2d_:DT});function OT({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:a,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Bd(L.state.gradientDepth,s)===!1){let C=Ke(e,t,n,r);return a!=null&&(C=ie(C,a)),Wd(C,s,i,o)}let l=R(e,"a","fused matMul"),c=R(t,"b","fused matMul");[l,c]=Nt(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],h=r?c.shape[c.rank-1]:c.shape[c.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=r?c.shape[c.rank-2]:c.shape[c.rank-1],f=l.shape.slice(0,-2),m=c.shape.slice(0,-2),A=Pt(f),y=Pt(m);M(l.rank>=2&&c.rank>=2&&l.rank===c.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${c.rank}.`),M(na(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${c.shape} must match.`),M(u===h,()=>`Error in fused matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${r} must match.`);let g=l.shape.slice(0,-2).concat([d,p]),w=n?X(l,[A,u,d]):X(l,[A,d,u]),x=r?X(c,[y,p,h]):X(c,[y,h,p]),_;a!=null&&(_=R(a,"bias","fused matMul"),[_]=Nt(_,l),xt(g,_.shape));let b;i!=null&&(b=R(i,"prelu weights","fused matMul"));let T=(C,$)=>{let[D,O,V,W]=$,Z=Pd(X(C,V.shape),V,s),K,te;if(!n&&!r?(K=Ke(Z,O,!1,!0),te=Ke(D,Z,!0,!1)):!n&&r?(K=Ke(Z,O,!1,!1),te=Ke(Z,D,!0,!1)):n&&!r?(K=Ke(O,Z,!1,!0),te=Ke(D,Z,!1,!1)):(K=Ke(O,Z,!0,!0),te=Ke(Z,D,!0,!0)),a!=null){let J=Ld(W,Z);return[K,te,J]}else return[K,te]},S={a:w,b:x,bias:_,preluActivationWeights:b},N={transposeA:n,transposeB:r,activation:s,leakyreluAlpha:o};return a==null?Cr((C,$,D)=>{let O=L.runKernel(Ws,S,N);return D([C,$,O]),{value:X(O,g),gradFunc:T}})(w,x):Cr((C,$,D,O)=>{let V=L.runKernel(Ws,S,N);return O([C,$,V,D]),{value:X(V,g),gradFunc:T}})(w,x,_)}var CT=P({fusedMatMul_:OT});function zT(e){return em(e,.54,.46)}var PT=P({hammingWindow_:zT});function LT(e){return em(e,.5,.5)}var L5=P({hannWindow_:LT});function WT(e,t,n,r=!1,a=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Me(e,s,t)),s+=n;if(r)for(;s`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),M(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${o.shape}.`),M(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${o.shape}.`),M(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),M(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),M(a==="bilinear"||a==="nearest",()=>`method must be bilinear or nearest, but was ${a}`);let u={image:i,boxes:o,boxInd:l},h={method:a,extrapolationValue:s,cropSize:r};return L.runKernel(Gi,u,h)}var jT=P({cropAndResize_:UT});function HT(e){let t=R(e,"image","flipLeftRight","float32");M(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return L.runKernel(Qi,n,{})}var GT=P({flipLeftRight_:HT});function qT(e,t,n=0,r=.5){let a=R(e,"image","rotateWithOffset","float32");M(a.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${a.rank}.`);let s={image:a},i={radians:t,fillValue:n,center:r};return L.runKernel(Oo,s,i)}var XT=P({rotateWithOffset_:qT});function al(e,t,n,r,a,s){r==null&&(r=.5),a==null&&(a=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),M(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),M(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),M(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),M(t.rank===1,()=>"scores must be a 1D tensor"),M(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),M(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s}}function KT(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppression"),i=R(t,"scores","nonMaxSuppression"),o=al(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:r,scoreThreshold:a};return L.runKernel(mo,{boxes:s,scores:i},l)}var ZT=P({nonMaxSuppression_:KT});function JT(e,t,n){let r=YT(e,t,n),a=r<0?-(r+1):r;e.splice(a,0,t)}function YT(e,t,n){return eE(e,t,n||QT)}function QT(e,t){return e>t?1:e>>1);let o=n(t,e[s]);o>0?r=s+1:(a=s,i=!o)}return i?r:-r-1}function B5(e,t,n,r,a){return Um(e,t,n,r,a,0)}function V5(e,t,n,r,a,s){return Um(e,t,n,r,a,0,!1,s,!0)}function U5(e,t,n,r,a,s){return Um(e,t,n,r,a,s,!0)}function Um(e,t,n,r,a,s,i=!1,o=!1,l=!1){let c=[];for(let A=0;Aa&&c.push({score:t[A],boxIndex:A,suppressBeginIndex:0});c.sort(j5);let u=s>0?-.5/s:0,h=[],d=[];for(;h.length0;){let A=c.pop(),{score:y,boxIndex:g,suppressBeginIndex:w}=A;if(y=w;--_){let b=tE(e,g,h[_]);if(b>=r){x=!0;break}if(A.score=A.score*nE(r,u,b),A.score<=a)break}A.suppressBeginIndex=h.length,x||(A.score===y?(h.push(g),d.push(A.score)):A.score>a&&JT(c,A,j5))}let p=h.length,f=n-p;o&&f>0&&(h.push(...new Array(f).fill(0)),d.push(...new Array(f).fill(0)));let m={selectedIndices:h};return i&&(m.selectedScores=d),l&&(m.validOutputs=p),m}function tE(e,t,n){let r=e.subarray(t*4,t*4+4),a=e.subarray(n*4,n*4+4),s=Math.min(r[0],r[2]),i=Math.min(r[1],r[3]),o=Math.max(r[0],r[2]),l=Math.max(r[1],r[3]),c=Math.min(a[0],a[2]),u=Math.min(a[1],a[3]),h=Math.max(a[0],a[2]),d=Math.max(a[1],a[3]),p=(o-s)*(l-i),f=(h-c)*(d-u);if(p<=0||f<=0)return 0;let m=Math.max(s,c),A=Math.max(i,u),y=Math.min(o,h),g=Math.min(l,d),w=Math.max(y-m,0)*Math.max(g-A,0);return w/(p+f-w)}function nE(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function j5(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function rE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppressionAsync"),i=R(t,"scores","nonMaxSuppressionAsync"),o=al(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),c=l[0],u=l[1],{selectedIndices:h}=B5(c,u,n,r,a);return s!==e&&s.dispose(),i!==t&&i.dispose(),tn(h,"int32")}var aE=rE;function sE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=al(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let c={boxes:i,scores:o},u={maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s},h=L.runKernel(yo,c,u);return{selectedIndices:h[0],selectedScores:h[1]}}var iE=P({nonMaxSuppressionWithScore_:sE});async function oE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=al(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let c=await Promise.all([i.data(),o.data()]),u=c[0],h=c[1],{selectedIndices:d,selectedScores:p}=U5(u,h,n,r,a,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:tn(d,"int32"),selectedScores:tn(p)}}var lE=oE;function uE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=al(i,o,n,r,a,null),c=l.maxOutputSize,u=l.iouThreshold,h=l.scoreThreshold,d={boxes:i,scores:o},p={maxOutputSize:c,iouThreshold:u,scoreThreshold:h,padToMaxOutputSize:s},f=L.runKernel(Ao,d,p);return{selectedIndices:f[0],validOutputs:f[1]}}var cE=P({nonMaxSuppressionPadded_:uE});async function hE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=al(i,o,n,r,a,null),c=l.maxOutputSize,u=l.iouThreshold,h=l.scoreThreshold,[d,p]=await Promise.all([i.data(),o.data()]),{selectedIndices:f,validOutputs:m}=V5(d,p,c,u,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:tn(f,"int32"),validOutputs:Te(m,"int32")}}var dE=hE;function pE(e,t,n=!1,r=!1){let a=R(e,"images","resizeBilinear");M(a.rank===3||a.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${a.rank}.`),M(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),M(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=X(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},c=L.runKernel(Ns,o,l);return i?X(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var H5=P({resizeBilinear_:pE});function fE(e,t,n=!1,r=!1){let a=R(e,"images","resizeNearestNeighbor");M(a.rank===3||a.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${a.rank}.`),M(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),M(a.dtype==="float32"||a.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),M(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=X(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},c=L.runKernel(pu,o,l);return i?X(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var G5=P({resizeNearestNeighbor_:fE});function mE(e,t,n){M(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),M(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=R(e,"a","bandPart");M(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let a=r.shape,[s,i]=r.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=X(od(0,s,1,"int32"),[-1,1]),l=od(0,i,1,"int32"),c=be(o,l),u=rr(wa(c,Te(+t,"int32")),Jr(c,Te(-n,"int32"))),h=Ct([s,i],r.dtype);return X(Sn(ar(X(r,[-1,s,i])).map(d=>mn(u,d,h))),a)}var AE=P({bandPart_:mE});function yE(e){let t;if(Array.isArray(e)){t=!1,M(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let a=e[0].shape[0];for(let s=1;s`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${a})`)}else t=!0,e=an(e,e.shape[0],0).map(a=>ba(a,[0]));M(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let a=0;a{let s=r[a];if(a>0)for(let i=0;i=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return q5(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),r=ar(X(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),a=[],s=[];r.forEach(l=>{let[c,u]=q5(l,t);a.push(c),s.push(u)});let i=X(Sn(a,0),e.shape),o=X(Sn(s,0),e.shape);return[i,o]}}function q5(e,t=!1){return L.tidy(()=>{M(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],a=Pf(n),s=Er(e),i=pr([[1]],[1,1]),o=Er(i),l=n>=r?r:n;for(let c=0;c{let p=Me(s,[c,c],[n-c,1]),f=gd(p),m=Me(s,[c,c],[1,1]),A=mn(Un(m,0),pr([[-1]]),pr([[1]])),y=be(m,B(A,f)),g=Se(p,y);g.shape[0]===1?o=Er(i):o=pt([i,Me(g,[1,0],[g.shape[0]-1,g.shape[1]])],0);let w=kt(Se(Ke(A,y),f)),x=Me(s,[c,0],[n-c,r]),_=B(w,o),b=ot(o);if(c===0)s=be(x,Ke(_,Ke(b,x)));else{let N=be(x,Ke(_,Ke(b,x)));s=pt([Me(s,[0,0],[c,r]),N],0)}let T=ot(_),S=Me(a,[0,c],[n,a.shape[1]-c]);if(c===0)a=be(S,Ke(Ke(S,o),T));else{let N=be(S,Ke(Ke(S,o),T));a=pt([Me(a,[0,0],[n,c]),N],1)}return[o,s,a]}),$e([u,h,d])}return!t&&n>r&&(a=Me(a,[0,0],[n,r]),s=Me(s,[0,0],[r,r])),[a,s]})}var wE=P({qr_:xE}),on;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(on||(on={}));function _E(e,t,n=on.SUM_BY_NONZERO_WEIGHTS){let r=R(e,"losses","computeWeightedLoss"),a=null;t!=null&&(a=R(t,"weights","computeWeightedLoss"));let s=a==null?r:B(r,a);if(n===on.NONE)return s;if(n===on.SUM)return Ce(s);if(n===on.MEAN){if(a==null)return It(s);{let i=r.size/a.size,o=Se(Ce(s),Ce(a));return i>1?Se(o,Te(i)):o}}if(n===on.SUM_BY_NONZERO_WEIGHTS){if(a==null)return Se(Ce(s),Te(r.size));{let i=B(a,Rr(r.shape)),o=xe(Ce(_a(i,Te(0))),"float32");return Se(Ce(s),o)}}throw Error(`Unknown reduction: ${n}`)}var aa=P({computeWeightedLoss_:_E});function bE(e,t,n,r=on.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","absoluteDifference"),s=R(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=R(n,"weights","absoluteDifference")),st(a.shape,s.shape,"Error in absoluteDifference: ");let o=zt(be(a,s));return aa(o,i,r)}var vE=P({absoluteDifference_:bE});function kE(e,t,n,r,a=on.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","cosineDistance"),i=R(t,"predictions","cosineDistance"),o=null;r!=null&&(o=R(r,"weights","cosineDistance")),st(s.shape,i.shape,"Error in cosineDistance: ");let l=Te(1),c=be(l,Ce(B(s,i),n,!0));return aa(c,o,a)}var IE=P({cosineDistance_:kE});function NE(e,t,n,r=on.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","hingeLoss"),s=R(t,"predictions","hingeLoss"),i=null;n!=null&&(i=R(n,"weights","hingeLoss")),st(a.shape,s.shape,"Error in hingeLoss: ");let o=Te(1);a=be(B(Te(2),a),o);let l=Mr(be(o,B(a,s)));return aa(l,i,r)}var SE=P({hingeLoss_:NE});function TE(e,t,n,r=1,a=on.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","huberLoss"),i=R(t,"predictions","huberLoss"),o=null;n!=null&&(o=R(n,"weights","huberLoss")),st(s.shape,i.shape,"Error in huberLoss: ");let l=Te(r),c=zt(be(i,s)),u=Gs(c,l),h=be(c,u),d=ie(B(Te(.5),dt(u)),B(l,h));return aa(d,o,a)}var EE=P({huberLoss_:TE});function CE(e,t,n,r=1e-7,a=on.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","logLoss"),i=R(t,"predictions","logLoss"),o=null;n!=null&&(o=R(n,"weights","logLoss")),st(s.shape,i.shape,"Error in logLoss: ");let l=Te(1),c=Te(r),u=kt(B(s,kn(ie(i,c)))),h=B(be(l,s),kn(ie(be(l,i),c))),d=be(u,h);return aa(d,o,a)}var RE=P({logLoss_:CE});function FE(e,t,n,r=on.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","meanSquaredError"),s=R(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=R(n,"weights","meanSquaredError")),st(a.shape,s.shape,"Error in meanSquaredError: ");let o=Pu(a,s);return aa(o,i,r)}var ME=P({meanSquaredError_:FE});function $E(e,t){let n=R(e,"labels","sigmoidCrossEntropyWithLogits"),r=R(t,"logits","sigmoidCrossEntropyWithLogits");st(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let a=Mr(r),s=B(r,n),i=td(Bn(kt(zt(r))));return ie(be(a,s),i)}function DE(e,t,n,r=0,a=on.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"multiClassLabels","sigmoidCrossEntropy"),i=R(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","sigmoidCrossEntropy")),st(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),r>0){let c=Te(r),u=Te(1),h=Te(.5);s=ie(B(s,be(u,c)),B(h,c))}let l=$E(s,i);return aa(l,o,a)}var OE=P({sigmoidCrossEntropy_:DE});function zE(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Cr((r,a,s)=>{let i=Wf(a,[n],!0),o=be(xe(a,"float32"),i);s([r,o]);let l=kt(B(o,r));return{value:Ce(l,[n]),gradFunc:(c,u)=>{let[h,d]=u,p=ti(c.shape,[n]);return[B(X(c,p),be(xe(h,"float32"),Bn(d))),B(X(c,p),be(Bn(d),xe(h,"float32")))]}}})(e,t)}function PE(e,t,n,r=0,a=on.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"onehotLabels","softmaxCrossEntropy"),i=R(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","softmaxCrossEntropy")),st(s.shape,i.shape,"Error in softmaxCrossEntropy: "),r>0){let c=Te(r),u=Te(1),h=Te(s.shape[1]);s=ie(B(s,be(u,c)),Se(c,h))}let l=zE(s,i);return aa(l,o,a)}var LE=P({softmaxCrossEntropy_:PE}),U4={fft:Ou,ifft:Ho,rfft:zu,irfft:md},j4={hammingWindow:PT,hannWindow:L5,frame:W5,stft:VT},Dt={flipLeftRight:GT,resizeNearestNeighbor:G5,resizeBilinear:H5,rotateWithOffset:XT,cropAndResize:jT,nonMaxSuppression:ZT,nonMaxSuppressionAsync:aE,nonMaxSuppressionWithScore:iE,nonMaxSuppressionWithScoreAsync:lE,nonMaxSuppressionPadded:cE,nonMaxSuppressionPaddedAsync:dE},t0={bandPart:AE,gramSchmidt:gE,qr:wE},H4={absoluteDifference:vE,computeWeightedLoss:aa,cosineDistance:IE,hingeLoss:SE,huberLoss:EE,logLoss:RE,meanSquaredError:ME,sigmoidCrossEntropy:OE,softmaxCrossEntropy:LE},ea=class extends I5{minimize(e,t=!1,n){let{value:r,grads:a}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:a[i.name]}));this.applyGradients(s)}else this.applyGradients(a);return $e(a),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Sg(e,t)}dispose(){this.iterations_!=null&&$e(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Te(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(ea,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var xd=class extends ea{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=L.registeredVariables[t],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:j(()=>qe(r).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:j(()=>qe(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;j(()=>{let l=ie(B(i,this.rho),B(dt(s),1-this.rho)),c=B(Se(Yt(ie(o,this.epsilon)),Yt(ie(i,this.epsilon))),s),u=ie(B(o,this.rho),B(dt(c),1-this.rho));i.assign(l),o.assign(u);let h=ie(B(c,-this.learningRate),r);r.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&($e(this.accumulatedGrads.map(e=>e.variable)),$e(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};xd.className="Adadelta";Ta(xd);var wd=class extends ea{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=L.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:j(()=>Nu(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let s=this.accumulatedGrads[n].variable;j(()=>{let i=ie(s,dt(a));s.assign(i);let o=ie(B(Se(a,Yt(ie(i,L.backend.epsilon()))),-this.learningRate),r);r.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&$e(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};wd.className="Adagrad";Ta(wd);var _d=class extends ea{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],j(()=>{this.accBeta1=Te(t).variable(),this.accBeta2=Te(n).variable()}),r==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);j(()=>{let n=be(1,this.accBeta1),r=be(1,this.accBeta2);t.forEach((a,s)=>{let i=L.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:j(()=>qe(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${a}/v`,variable:j(()=>qe(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedSecondMoment[s].variable,h=ie(B(c,this.beta1),B(l,1-this.beta1)),d=ie(B(u,this.beta2),B(dt(l),1-this.beta2)),p=Se(h,n),f=Se(d,r);c.assign(h),u.assign(d);let m=ie(B(Se(p,ie(Yt(f),this.epsilon)),-this.learningRate),i);i.assign(m)}),this.accBeta1.assign(B(this.accBeta1,this.beta1)),this.accBeta2.assign(B(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&$e(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&$e(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),j(()=>{this.accBeta1.assign(Fr(this.beta1,this.iterations_+1)),this.accBeta2.assign(Fr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};_d.className="Adam";Ta(_d);var bd=class extends ea{constructor(e,t,n,r=null,a=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=a,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],j(()=>{this.iteration=Te(0).variable(),this.accBeta1=Te(t).variable()}),r==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);j(()=>{let n=be(1,this.accBeta1),r=Se(-this.learningRate,ie(B(this.iteration,this.decay),1));t.forEach((a,s)=>{let i=L.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:qe(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${a}/v`,variable:qe(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedWeightedInfNorm[s].variable,h=ie(B(c,this.beta1),B(l,1-this.beta1)),d=B(u,this.beta2),p=zt(l),f=yr(d,p);c.assign(h),u.assign(f);let m=ie(B(Se(r,n),Se(h,ie(f,this.epsilon))),i);i.assign(m)}),this.iteration.assign(ie(this.iteration,1)),this.accBeta1.assign(B(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&$e(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&$e(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};bd.className="Adamax";Ta(bd);var Lu=class extends ea{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let a=L.registeredVariables[t];j(()=>{let s=ie(B(this.c,r),a);a.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=jt(Te(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Lu.className="SGD";Ta(Lu);var vd=class extends Lu{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Te(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=L.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:j(()=>qe(r).variable(i))}}let a=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&j(()=>{let i,o=ie(B(this.m,a),s);this.useNesterov?i=ie(B(this.c,ie(s,B(o,this.m))),r):i=ie(B(this.c,o),r),a.assign(o),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&$e(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};vd.className="Momentum";Ta(vd);var kd=class extends ea{constructor(e,t=.9,n=0,r=null,a=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=a,r==null&&(this.epsilon=L.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=L.registeredVariables[t],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:j(()=>qe(r).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:j(()=>qe(r).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:j(()=>qe(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;j(()=>{let l=ie(B(i,this.decay),B(dt(s),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[n].variable,u=ie(B(c,this.decay),B(s,1-this.decay)),h=Se(B(s,this.learningRate),Yt(be(l,ie(dt(u),this.epsilon)))),d=ie(B(o,this.momentum),h);i.assign(l),c.assign(u),o.assign(d);let p=be(r,d);r.assign(p)}else{let c=ie(B(i,this.decay),B(dt(s),1-this.decay)),u=ie(B(o,this.momentum),Se(B(s,this.learningRate),Yt(ie(c,this.epsilon))));i.assign(c),o.assign(u);let h=be(r,u);r.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&$e(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&$e(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&$e(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};kd.className="RMSProp";Ta(kd);var ni=class{static sgd(e){return new Lu(e)}static momentum(e,t,n=!1){return new vd(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,a=!1){return new kd(e,t,n,r,a)}static adam(e=.001,t=.9,n=.999,r=null){return new _d(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new xd(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,a=0){return new bd(e,t,n,r,a)}static adagrad(e,t=.1){return new wd(e,t)}},qs={sgd:ni.sgd,momentum:ni.momentum,adadelta:ni.adadelta,adagrad:ni.adagrad,rmsprop:ni.rmsprop,adamax:ni.adamax,adam:ni.adam},WE=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Id(){return new Promise(e=>WE(()=>e()))}var F={};Pe(F,{ERF_A1:()=>YE,ERF_A2:()=>JE,ERF_A3:()=>QE,ERF_A4:()=>eC,ERF_A5:()=>tC,ERF_P:()=>ZE,PARALLELIZE_THRESHOLD:()=>jm,SELU_SCALE:()=>K5,SELU_SCALEALPHA:()=>X5,applyActivation:()=>Wd,assertAndGetBroadcastShape:()=>xt,assertAxesAreInnerMostDims:()=>CN,assertParamsConsistent:()=>BE,assignToTypedArray:()=>uC,axesAreInnerMostDims:()=>Pm,calculateShapes:()=>p5,castTensor:()=>pC,combineLocations:()=>F5,complexWithEvenIndex:()=>iC,complexWithOddIndex:()=>oC,computeConv2DInfo:()=>Yu,computeConv3DInfo:()=>C5,computeDefaultPad:()=>Om,computeDilation2DInfo:()=>oI,computeOptimalWindowSize:()=>UE,computeOutAndReduceShapes:()=>M5,computeOutShape:()=>VE,computePool2DInfo:()=>E5,computePool3DInfo:()=>lI,convertConv2DDataFormat:()=>T5,eitherStridesOrDilationsAreOne:()=>Tn,expandShapeToKeepDim:()=>ti,exponent:()=>hC,exponents:()=>cC,fromStringArrayToUint8:()=>AC,fromUint8ToStringArray:()=>mC,getAxesPermutation:()=>$5,getBroadcastDims:()=>ZI,getComplexWithIndex:()=>lC,getFusedBiasGradient:()=>Ld,getFusedDyActivation:()=>Pd,getImageCenter:()=>jE,getInnerMostAxes:()=>RN,getPermuted:()=>GE,getReductionAxes:()=>Lt,getReshaped:()=>HE,getReshapedPermuted:()=>qE,getSliceBeginCoords:()=>XE,getSliceSize:()=>KE,getUndoAxesPermutation:()=>Lm,log:()=>rC,mergeRealAndImagArrays:()=>aC,prepareAndValidate:()=>d5,prepareSplitSize:()=>dC,reshapeTensor:()=>fC,segment_util:()=>Z5,shouldFuse:()=>Bd,slice_util:()=>sn,splitRealAndImagArrays:()=>sC,tupleValuesAreOne:()=>Ea,upcastType:()=>nr,validateInput:()=>Rm,validateUpdateShape:()=>Cm,warn:()=>nC});function BE(e,t){let n=e[0].length;e.forEach((a,s)=>{M(a.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),M(t>=0&&t`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((a,s)=>{for(let i=0;i`Error in concat${n}D: Shape of tensors[${s}] (${a}) does not match the shape of the rest (${r}) along the non-concatenated axis ${s}.`)})}function VE(e,t){let n=e[0].slice();for(let r=1;r=t*2+1||i%2==1?s.push(i):a.push(i);r.push(...a),r.push(0),r.push(...s)}return r}function qE(e,t,n,r=!0){let a=[];r?a.push(e[0]/n):a.push(e[0]*n);for(let s=1;s"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let a=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);M(a<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}M(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var Z5={};Pe(Z5,{collectGatherOpShapeInfo:()=>xC,computeOutShape:()=>gC,segOpComputeOptimalWindowSize:()=>yC});function yC(e,t){let n=!1,r;for(e<=jm?(r=e,n=!0):r=Td(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=Td(e,r+1);return r}function gC(e,t,n){let r=[],a=e.length;for(let s=0;sa))throw new Error(`Expect batchDims in the range of [-${a}, ${a}], but got ${r}`);if(r<0&&(r+=a),r>s)throw new Error(`batchDims (${r}) must be less than rank(x) ( ${s}).`);if(nRd(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function AC(e){return e.map(t=>ju(t))}var $r={};Pe($r,{nonMaxSuppressionV3Impl:()=>B5,nonMaxSuppressionV4Impl:()=>V5,nonMaxSuppressionV5Impl:()=>U5,whereImpl:()=>D5});var Y5={kernelName:Di,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,Go(xe(n,"float32"),-1))}}},wC={kernelName:Oi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=dt(xe(n,"float32")),a=Yt(be(Te(1),r));return kt(Se(e,a))}}}},_C={kernelName:zi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Yt(be(dt(xe(n,"float32")),1));return Se(e,r)}}}},bC={kernelName:fa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=xt(n.shape,r.shape);return{a:()=>{let s=e,i=Lt(n.shape,a);return i.length>0&&(s=Ce(s,i)),X(s,n.shape)},b:()=>{let s=e,i=Lt(r.shape,a);return i.length>0&&(s=Ce(s,i)),X(s,r.shape)}}}},vC={kernelName:Za,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((r,a)=>{n[a]=()=>e.clone()}),n}},kC={kernelName:Ya,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>qe(n)}}},IC={kernelName:eu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>qe(n)}}},NC={kernelName:Pi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Se(e,Yt(be(Te(1),dt(xe(n,"float32")))))}}},SC={kernelName:Li,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Yt(ie(Te(1),dt(xe(n,"float32"))));return Se(e,r)}}}},TC={kernelName:Vi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=xt(n.shape,r.shape);return{a:()=>{let s=ie(dt(n),dt(r)),i=B(e,Se(r,s)),o=Lt(n.shape,a);return o.length>0&&(i=Ce(i,o)),X(i,n.shape)},b:()=>{let s=ie(dt(n),dt(r)),i=kt(B(e,Se(n,s))),o=Lt(r.shape,a);return o.length>0&&(i=Ce(i,o)),X(i,r.shape)}}}},EC={kernelName:Wi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Se(e,ie(dt(xe(n,"float32")),1))}}},CC={kernelName:Bi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Se(e,be(Te(1),dt(xe(n,"float32"))))}}};function RC(e,t,n,r,a=[1,1,1],s,i){let o=R(e,"dy","avgPool3dGrad"),l=R(t,"input","avgPool3dGrad"),c=o,u=l,h=!1;l.rank===4&&(h=!0,c=X(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),u=X(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]])),M(c.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),M(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),M(Tn(r,a),()=>`Error in avgPool3dGrad: Either strides or dilations must be 1. Got strides ${r} and dilations '${a}'`),i!=null&&M(Gt(s),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let d={dy:c,input:u},p={filterSize:n,strides:r,dilations:a,pad:s,dimRoundingMode:i},f=L.runKernel(Ah,d,p);return h?X(f,[f.shape[1],f.shape[2],f.shape[3],f.shape[4]]):f}var FC=P({avgPool3dGrad_:RC}),MC={kernelName:tu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,dilations:i,pad:o,dimRoundingMode:l}=n,c=i==null?[1,1,1]:i;return{x:()=>FC(e,r,a,s,c,o,l)}}};function $C(e,t,n,r,a){let s=R(e,"dy","avgPoolGrad"),i=R(t,"input","avgPoolGrad");M(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,c=!1;i.rank===3&&(c=!0,o=X(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=X(s,[1,s.shape[0],s.shape[1],s.shape[2]])),M(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),M(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let u={dy:l,input:o},h={filterSize:n,strides:r,pad:a},d=L.runKernel(mh,u,h);return c?X(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var DC=P({avgPoolGrad_:$C}),OC={kernelName:Ja,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i}=n;return{x:()=>DC(e,r,a,s,i)}}},zC={kernelName:Qa,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[r,a]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>Ke(e,a,!1,!0),b:()=>Ke(r,e,!0,!1)}:!s&&i?{a:()=>Ke(e,a,!1,!1),b:()=>Ke(e,r,!0,!1)}:s&&!i?{a:()=>Ke(a,e,!1,!0),b:()=>Ke(r,e,!1,!1)}:{a:()=>Ke(a,e,!0,!0),b:()=>Ke(e,r,!0,!0)}}},PC={kernelName:nu,gradFunc:(e,t,n)=>{let{blockShape:r,crops:a}=n;return{x:()=>Ru(e,r,a)}}},LC={kernelName:ng,gradFunc:(e,t,n)=>{let r=n,a=r.inputShape,s=r.shape,i=Array.from(s);for(let l=a.length-1;l>=0;l--)if(a[l]===s[l])i[l]=1;else if(a[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l1&&o.push(l);return{x:()=>Ce(e,o,!0)}}},WC={kernelName:es,gradFunc:e=>({x:()=>e.clone()})},BC={kernelName:Ui,gradFunc:e=>({x:()=>qe(e)})},VC={kernelName:ma,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{clipValueMin:a,clipValueMax:s}=n;return{x:()=>mn(rr(Jr(r,a),wa(r,s)),e,qe(e))}}},UC={kernelName:ru,inputsToSave:["x"],gradFunc:Y5.gradFunc},jC={kernelName:ji,saveAllInputs:!0,gradFunc:(e,t,n)=>{let r=t.map(o=>o.shape),{axis:a}=n,s=sr(a,t[0].shape)[0],i=r.map(o=>o[s]);return an(e,i,s).map(o=>()=>o)}},HC={kernelName:ts,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return M(Ea(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>zm(r.shape,e,a,i,o,l),filter:()=>Vm(r,e,a.shape,i,o,l)}}},GC={kernelName:ns,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>Zr(e,a,s,i,o,1,l),filter:()=>Vm(e,r,a.shape,s,i,o,l)}}};function qC(e,t,n,r,a){let s=e;e.rank===4&&(s=X(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=X(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),M(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),M(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),M(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),M(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),M(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:r,pad:a,filterShape:n};return L.runKernel(wh,o,l)}var XC=P({conv3DBackpropFilter_:qC}),KC={kernelName:au,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s}=n;M(Ea(r),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`);let[i,o]=t;return{x:()=>R5(i.shape,e,o,a,s),filter:()=>XC(i,e,o.shape,a,s)}}},ZC={kernelName:rs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(kt(hd(xe(n,"float32"))),e)}}},YC={kernelName:Hi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(dd(xe(n,"float32")),e)}}},JC={kernelName:as,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a,exclusive:s,reverse:i}=n;return{x:()=>{let o=$5([a],r.rank),l=Qh(e,a,s,!i);return o!=null&&(l=ot(l,o)),l}}}},QC={kernelName:ss,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s,dimRoundingMode:i}=n,o=r==null?[1,1]:r;M(Ea(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,c]=t;return M(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),M(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),M(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),M(Tn(a,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${o}'.`),i!=null&&M(Gt(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>P5(l.shape,e,c,a,s,r,i),filter:()=>z5(l,e,c.shape,a,s,r,i)}}},eR={kernelName:su,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,s={x:r,filter:a,dy:e},i={x:r,filter:a,dy:e};return{x:()=>L.runKernel(Nh,s,n),filter:()=>L.runKernel(Sh,i,n)}}},tR={kernelName:Xi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,r={dy:e,y:n};return{x:()=>L.runKernel(Th,r)}}},nR={kernelName:Ki,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=B(Bn(kt(dt(n))),2/Math.sqrt(Math.PI));return{x:()=>B(e,r)}}},rR={kernelName:os,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,n)}}},aR={kernelName:Yi,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>X(e,n.shape)}}},sR={kernelName:Ji,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,Bn(n))}}},iR={kernelName:ls,gradFunc:e=>({x:()=>qe(e)})},oR={kernelName:us,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=xt(n.shape,r.shape);return{a:()=>{let s=Se(e,xe(r,"float32")),i=Lt(n.shape,a);return i.length>0?X(Ce(s,i),n.shape):s},b:()=>{let s=B(e,xe(n,"float32")),i=Lt(r.shape,a);i.length>0&&(s=X(Ce(s,i),r.shape));let o=dt(r);return kt(Se(s,xe(o,"float32")))}}}},lR={kernelName:cs,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:r}=n,[a,s,i,o]=t,l=o==null?Te(1):o,c=Lt(s.shape,a.shape),u=[];if(s.rank===1){for(let m=0;ms.rank===1?X(B(B(e,xa(X(p,[1,1,1,s.shape[0]]),u)),l),a.shape):X(B(B(e,p),l),a.shape),mean:()=>{let m=B(B(p,Te(-1)),d);return s.rank===1&&(m=Ce(m,c)),X(m,s.shape)},variance:()=>{let m=B(B(f,h),d);return s.rank===1&&(m=Ce(m,c)),X(m,s.shape)},scale:()=>{let m=B(h,p),A=B(e,m);return s.rank===1&&(A=Ce(A,c)),X(A,s.shape)},offset:()=>{let m=e;return s.rank===1&&(m=Ce(m,c)),X(m,s.shape)}}}},uR={kernelName:eo,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[r,a]=t,{axis:s}=n,i=sr(s,r.shape)[0];return{x:()=>{let o=r.shape,l=a.size,c=o.slice(0,i),u=c.length,h=o.slice(s,o.length).slice(1),d=h.length,p=J5(0,u),f=J5(u+1,u+1+d),m=Q5([c,[l],h]),A=X(e,m),y=X(a,[l]),g=Q5([[u],p,f]),w=ot(A,g),x=Yf(w,y,r.shape[i]),_=Lm(g);return x=ot(x,_),x},indices:()=>a}}};function J5(e,t){let n=[];for(let r=e;r{let[n,r]=t;return{a:()=>qe(n),b:()=>qe(r)}}},hR={kernelName:ro,gradFunc:e=>({x:()=>xe(e,"float32")})},dR={kernelName:ao,gradFunc:e=>({x:()=>qe(e)})},pR={kernelName:so,gradFunc:e=>({x:()=>qe(e)})},fR={kernelName:io,gradFunc:e=>({x:()=>qe(e)})},mR={kernelName:ds,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{alpha:a}=n,s=Un(r,0);return{x:()=>mn(s,e,B(e,a))}}},AR={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Se(e,ie(n,1))}}},yR={kernelName:ps,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Se(e,xe(n,"float32"))}}},gR={kernelName:rg,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n;return{logits:()=>{let s=!0,i=Bn(r);return be(e,B(Ce(e,a,s),i))}}}};function xR(e,t,n,r=5,a=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:r,bias:a,alpha:s,beta:i};return L.runKernel(Mh,o,l)}var wR=P({localResponseNormalizationBackprop_:xR}),_R={kernelName:uu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>wR(r,a,e,s,i,o,l)}}};function ex(e,t,n,r){return t.rankB(e,xe(Yr(n,t),e.dtype))}}var tx={kernelName:fs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{reductionIndices:a}=r,s=t[0],i=t[1],o=sr(a,s.shape),l=ex(e,i,s,o);return{x:()=>l.x()}}},bR={kernelName:ms,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>B(e,xe(Jr(n,r),"float32")),b:()=>B(e,xe(Tu(n,r),"float32"))}}};function vR(e,t,n,r,a,s=[1,1,1],i,o){let l=R(e,"dy","maxPool3dGrad"),c=R(t,"input","maxPool3dGrad"),u=R(n,"output","maxPool3dGrad"),h=l,d=c,p=u,f=!1;c.rank===4&&(f=!0,h=X(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=X(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]]),p=X(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),M(h.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${h.rank}.`),M(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),M(p.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${p.rank}.`),M(Tn(a,s),()=>`Error in maxPool3dGrad: Either strides or dilations must be 1. Got strides ${a} and dilations '${s}'`),o!=null&&M(Gt(i),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${i}.`);let m={dy:h,input:d,output:p},A={filterSize:r,strides:a,dilations:s,pad:i,dimRoundingMode:o},y=L.runKernel(Dh,m,A);return f?X(y,[y.shape[1],y.shape[2],y.shape[3],y.shape[4]]):y}var kR=P({maxPool3dGrad_:vR}),IR={kernelName:cu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,dilations:o,pad:l,dimRoundingMode:c}=n,u=o==null?[1,1,1]:o;return{x:()=>kR(e,r,a,s,i,u,l,c)}}};function NR(e,t,n,r,a,s,i){let o=R(e,"dy","maxPoolGrad"),l=R(t,"input","maxPoolGrad"),c=R(n,"output","maxPoolGrad");M(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),M(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),M(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&M(Gt(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let u={dy:o,input:l,output:c},h={filterSize:r,strides:a,pad:s,dimRoundingMode:i};return L.runKernel($h,u,h)}var SR=P({maxPoolGrad_:NR}),TR={kernelName:As,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>SR(e,r,a,s,i,o)}}},ER={kernelName:ys,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n,s=sr(a,r.shape),i=M5(r.shape,s)[1],o=Pt(i);return{x:()=>{let l=r.shape.slice();s.forEach(u=>{l[u]=1});let c=X(e,l);return Se(B(c,Rr(r.shape,"float32")),o)}}}},CR={kernelName:gs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{axis:a}=r,[s,i]=t,o=sr(a,s.shape),l=ex(e,i,s,o);return{x:()=>l.x()}}},RR={kernelName:xs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>B(e,xe(wa(n,r),"float32")),b:()=>B(e,xe(Un(n,r),"float32"))}}},FR={kernelName:hu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Me(e,s,r.shape)}}},MR={kernelName:ho,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=xt(n.shape,r.shape);return{a:()=>{let s=Lt(n.shape,a);return s.length>0?X(Ce(e,s),n.shape):e},b:()=>{let s=B(e,kt(Bo(Se(n,r)))),i=Lt(r.shape,a);return i.length>0?X(Ce(s,i),r.shape):s}}}},$R={kernelName:ws,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=xt(n.shape,r.shape);return{a:()=>{let s=B(e,xe(r,"float32")),i=Lt(n.shape,a);return i.length>0?X(Ce(s,i),n.shape):s},b:()=>{let s=B(e,xe(n,"float32")),i=Lt(r.shape,a);return i.length>0?X(Ce(s,i),r.shape):s}}}},DR={kernelName:po,gradFunc:e=>({x:()=>kt(e)})},OR={kernelName:_s,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Ct(n.shape,"float32")}}},zR={kernelName:go,gradFunc:e=>({x:()=>qe(e)})},PR={kernelName:xo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:r}=n;return ar(e,r).map(a=>()=>a)}},nx={kernelName:bs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Me(e,s,r.shape)}}},LR={kernelName:vs,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,r,a]=t,s=n,i=r,o=xt(s.shape,i.shape);return{a:()=>{let l=xe(i,"float32"),c=B(e,B(l,Fr(s,be(l,Te(1))))),u=Lt(s.shape,o);return u.length>0&&(c=Ce(c,u)),X(c,s.shape)},b:()=>{let l=Un(s,0),c=mn(l,kn(s),qe(s)),u=B(e,B(a,c)),h=Lt(i.shape,o);return h.length>0&&(u=Ce(u,h)),X(u,i.shape)}}}},WR={kernelName:ks,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,r]=t,a=Un(n,0);return{x:()=>mn(a,e,B(e,r)),alpha:()=>{let s=mn(a,qe(e),B(e,n)),i=Lt(r.shape,e.shape);return i.length>0&&(s=Ce(s,i)),X(s,r.shape)}}}},BR={kernelName:is,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=xt(n.shape,r.shape);return{a:()=>{let s=Se(e,xe(r,"float32")),i=Lt(n.shape,a);return i.length>0?X(Ce(s,i),n.shape):s},b:()=>{let s=B(e,xe(n,"float32")),i=Lt(r.shape,a);i.length>0&&(s=X(Ce(s,i),r.shape));let o=dt(r);return kt(Se(s,xe(o,"float32")))}}}},VR={kernelName:_o,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Se(e,kt(dt(n)))}}},UR={kernelName:Ss,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=B(wa(n,6),Go(n));return{x:()=>B(e,xe(r,"float32"))}}},jR={kernelName:Is,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,xe(Go(n),"float32"))}}},HR={kernelName:bo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>X(e,n.shape)}}},GR={kernelName:Ns,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>L.runKernel(Wh,a,n)}}},qR={kernelName:pu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>L.runKernel(Lh,a,n)}}},XR={kernelName:Ts,gradFunc:(e,t,n)=>{let{dims:r}=n,a=sr(r,e.shape);return{x:()=>Nn(e,a)}}},KR={kernelName:Es,gradFunc:e=>({x:()=>qe(e)})},ZR={kernelName:Cs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>kt(Se(e,B(Fr(n,1.5),2)))}}},YR={kernelName:ko,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>xe(qe(n),"float32"),t:()=>B(e,xe(n,e.dtype)),e:()=>B(e,xe(Eu(n),e.dtype))}}},JR={kernelName:Io,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Un(n,Te(0)),a=Te(X5),s=Te(K5),i=B(e,s),o=B(B(e,a),Bn(xe(n,"float32")));return mn(r,i,o)}}}},QR={kernelName:Fs,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(n,be(Te(1),n)))}}},eF={kernelName:To,gradFunc:e=>({x:()=>qe(e)})},tF={kernelName:Rs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(Iu(xe(n,"float32")),e)}}},nF={kernelName:So,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(Jh(xe(n,"float32")),e)}}},rF={kernelName:No,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{begin:a,size:s}=n,i=r.shape,[o,l]=b5(r,a,s),c=[];for(let u=0;uQr(e,c)}}},aF={kernelName:Ds,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{dim:a}=n,s=!0,i=B(e,r);return{logits:()=>be(i,B(Ce(i,[a],s),r))}}},sF={kernelName:Eo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,tr(n))}}},rx={kernelName:fu,gradFunc:(e,t,n)=>{let{blockShape:r,paddings:a}=n;return{x:()=>vu(e,r,a)}}},ax={kernelName:Co,gradFunc:(e,t,n)=>{let{axis:r}=n;return{x:()=>pt(e,r)}}},iF={kernelName:Ms,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Se(e,B(Yt(xe(n,"float32")),2))}}},oF={kernelName:mu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(xe(n,"float32"),2))}}},lF={kernelName:Os,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=Te(2);return{a:()=>B(e,B(a,be(n,r))),b:()=>B(e,B(a,be(r,n)))}}},uF={kernelName:ya,gradFunc:e=>({x:()=>qe(e)})},cF={kernelName:zs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=xt(n.shape,r.shape);return{a:()=>{let s=e,i=Lt(n.shape,a);return i.length>0&&(s=Ce(s,i)),X(s,n.shape)},b:()=>{let s=e,i=Lt(r.shape,a);return i.length>0&&(s=Ce(s,i)),X(kt(s),r.shape)}}}},hF={kernelName:$s,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,a=r.shape.slice(),{axis:s}=n;sr(s,r.shape).forEach(l=>{a[l]=1});let i=X(e,a),o=B(i,Rr(r.shape,"float32"));return{x:()=>o}}},dF={kernelName:Fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Se(e,dt(Iu(n)))}}},pF={kernelName:Ps,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(be(Te(1),dt(n)),e)}}},fF={kernelName:Aa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{reps:a}=n;return{x:()=>{let s=qe(r);if(r.rank===1)for(let i=0;i{let r=n,{perm:a}=r,s=Lm(a);return{x:()=>ot(e,s)}}},AF={kernelName:$o,gradFunc:(e,t,n)=>{let r=n,{axis:a}=r;return{value:()=>Sn(e,a)}}},gF={kernelName:Au,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>yF(e,n)}}};function yF(e,t){let n=yr(t,qe(t)),r=Hs(e,n),a=Jr(t,Te(0,"int32")),s=r.rank-a.rank;for(let o=0;o({x:()=>qe(e)})},wF=[Y5,wC,_C,bC,vC,kC,IC,NC,SC,TC,EC,CC,MC,OC,zC,PC,LC,WC,BC,VC,UC,jC,GC,HC,KC,ZC,YC,JC,QC,eR,BR,tR,nR,rR,aR,sR,oR,iR,lR,uR,cR,hR,dR,pR,fR,mR,AR,yR,gR,_R,tx,tx,bR,IR,TR,ER,CR,RR,FR,MR,$R,DR,OR,zR,PR,nx,nx,LR,WR,VR,UR,jR,HR,GR,qR,XR,KR,ZR,YR,JR,QR,eF,tF,nF,rF,aF,sF,rx,rx,ax,ax,iF,lF,oF,uF,cF,hF,dF,pF,fF,mF,AF,gF,xF];for(let e of wF)ag(e);H.prototype.abs=function(){return this.throwIfDisposed(),zt(this)};H.prototype.acos=function(){return this.throwIfDisposed(),bf(this)};H.prototype.acosh=function(){return this.throwIfDisposed(),vf(this)};H.prototype.addStrict=function(e){return this.throwIfDisposed(),Vg(this,e)};H.prototype.add=function(e){return this.throwIfDisposed(),ie(this,e)};H.prototype.all=function(e,t){return this.throwIfDisposed(),Kh(this,e,t)};H.prototype.any=function(e,t){return this.throwIfDisposed(),wu(this,e,t)};H.prototype.argMax=function(e){return this.throwIfDisposed(),_u(this,e)};H.prototype.argMin=function(e){return this.throwIfDisposed(),kf(this,e)};H.prototype.asScalar=function(){return this.throwIfDisposed(),M(this.size===1,()=>"The array must have only 1 element."),X(this,[])};H.prototype.asType=function(e){return this.throwIfDisposed(),xe(this,e)};H.prototype.as1D=function(){return this.throwIfDisposed(),X(this,[this.size])};H.prototype.as2D=function(e,t){return this.throwIfDisposed(),X(this,[e,t])};H.prototype.as3D=function(e,t,n){return this.throwIfDisposed(),X(this,[e,t,n])};H.prototype.as4D=function(e,t,n,r){return this.throwIfDisposed(),X(this,[e,t,n,r])};H.prototype.as5D=function(e,t,n,r,a){return this.throwIfDisposed(),X(this,[e,t,n,r,a])};H.prototype.asin=function(){return this.throwIfDisposed(),If(this)};H.prototype.asinh=function(){return this.throwIfDisposed(),Nf(this)};H.prototype.atan=function(){return this.throwIfDisposed(),Sf(this)};H.prototype.atan2=function(e){return this.throwIfDisposed(),Tf(this,e)};H.prototype.atanh=function(){return this.throwIfDisposed(),Ef(this)};H.prototype.avgPool=function(e,t,n,r){return this.throwIfDisposed(),bu(this,e,t,n,r)};H.prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),vu(this,e,t)};H.prototype.batchNorm=function(e,t,n,r,a){return this.throwIfDisposed(),Us(this,e,t,n,r,a)};H.prototype.broadcastTo=function(e){return this.throwIfDisposed(),ku(this,e)};H.prototype.cast=function(e){return this.throwIfDisposed(),xe(this,e)};H.prototype.ceil=function(){return this.throwIfDisposed(),Rf(this)};H.prototype.clipByValue=function(e,t){return this.throwIfDisposed(),fn(this,e,t)};H.prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof H&&(e=[e]),pt([this,...e],t)};H.prototype.conv1d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Zh(this,e,t,n,r,a,s)};H.prototype.conv2dTranspose=function(e,t,n,r,a){return this.throwIfDisposed(),Yh(this,e,t,n,r,a)};H.prototype.conv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Zr(this,e,t,n,r,a,s)};H.prototype.cos=function(){return this.throwIfDisposed(),Iu(this)};H.prototype.cosh=function(){return this.throwIfDisposed(),Jh(this)};H.prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Qh(this,e,t,n)};H.prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),Mf(this,e,t)};H.prototype.depthwiseConv2D=function(e,t,n,r,a,s){return Ft("depthwiseConv2D is deprecated, use depthwiseConv2d instead"),this.throwIfDisposed(),js(this,e,t,n,r,a,s)};H.prototype.depthwiseConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),js(this,e,t,n,r,a,s)};H.prototype.dilation2d=function(e,t,n,r,a){return this.throwIfDisposed(),$f(this,e,t,n,r,a)};H.prototype.divNoNan=function(e){return this.throwIfDisposed(),Df(this,e)};H.prototype.divStrict=function(e){return this.throwIfDisposed(),Ug(this,e)};H.prototype.div=function(e){return this.throwIfDisposed(),Se(this,e)};H.prototype.dot=function(e){return this.throwIfDisposed(),bg(this,e)};H.prototype.elu=function(){return this.throwIfDisposed(),Wo(this)};H.prototype.equalStrict=function(e){return this.throwIfDisposed(),Og(this,e)};H.prototype.equal=function(e){return this.throwIfDisposed(),Yr(this,e)};H.prototype.erf=function(){return this.throwIfDisposed(),Of(this)};H.prototype.exp=function(){return this.throwIfDisposed(),Bn(this)};H.prototype.expandDims=function(e){return this.throwIfDisposed(),Vn(this,e)};H.prototype.expm1=function(){return this.throwIfDisposed(),zf(this)};H.prototype.fft=function(){return this.throwIfDisposed(),Ou(this)};H.prototype.flatten=function(){return this.throwIfDisposed(),X(this,[this.size])};H.prototype.floor=function(){return this.throwIfDisposed(),Bo(this)};H.prototype.floorDiv=function(e){return this.throwIfDisposed(),Xh(this,e)};H.prototype.gather=function(e,t){return this.throwIfDisposed(),Hs(this,e,t)};H.prototype.greaterEqualStrict=function(e){return this.throwIfDisposed(),zg(this,e)};H.prototype.greaterEqual=function(e){return this.throwIfDisposed(),Jr(this,e)};H.prototype.greaterStrict=function(e){return this.throwIfDisposed(),Pg(this,e)};H.prototype.greater=function(e){return this.throwIfDisposed(),Un(this,e)};H.prototype.ifft=function(){return this.throwIfDisposed(),Ho(this)};H.prototype.irfft=function(){return this.throwIfDisposed(),md(this)};H.prototype.isFinite=function(){return this.throwIfDisposed(),vg(this)};H.prototype.isInf=function(){return this.throwIfDisposed(),kg(this)};H.prototype.isNaN=function(){return this.throwIfDisposed(),Ig(this)};H.prototype.leakyRelu=function(e){return this.throwIfDisposed(),Su(this,e)};H.prototype.lessEqualStrict=function(e){return this.throwIfDisposed(),Lg(this,e)};H.prototype.lessEqual=function(e){return this.throwIfDisposed(),wa(this,e)};H.prototype.lessStrict=function(e){return this.throwIfDisposed(),Wg(this,e)};H.prototype.less=function(e){return this.throwIfDisposed(),Tu(this,e)};H.prototype.localResponseNormalization=function(e,t,n,r){return this.throwIfDisposed(),Lf(this,e,t,n,r)};H.prototype.logSigmoid=function(){return this.throwIfDisposed(),Tg(this)};H.prototype.logSoftmax=function(e){return this.throwIfDisposed(),nd(this,e)};H.prototype.logSumExp=function(e,t){return this.throwIfDisposed(),Wf(this,e,t)};H.prototype.log=function(){return this.throwIfDisposed(),kn(this)};H.prototype.log1p=function(){return this.throwIfDisposed(),td(this)};H.prototype.logicalAnd=function(e){return this.throwIfDisposed(),rr(this,e)};H.prototype.logicalNot=function(){return this.throwIfDisposed(),Eu(this)};H.prototype.logicalOr=function(e){return this.throwIfDisposed(),rd(this,e)};H.prototype.logicalXor=function(e){return this.throwIfDisposed(),Eg(this,e)};H.prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Ke(this,e,t,n)};H.prototype.maxPool=function(e,t,n,r){return this.throwIfDisposed(),Cu(this,e,t,n,r)};H.prototype.max=function(e,t){return this.throwIfDisposed(),jn(this,e,t)};H.prototype.maximumStrict=function(e){return this.throwIfDisposed(),jg(this,e)};H.prototype.maximum=function(e){return this.throwIfDisposed(),yr(this,e)};H.prototype.mean=function(e,t){return this.throwIfDisposed(),It(this,e,t)};H.prototype.min=function(e,t){return this.throwIfDisposed(),Uo(this,e,t)};H.prototype.minimumStrict=function(e){return this.throwIfDisposed(),Hg(this,e)};H.prototype.minimum=function(e){return this.throwIfDisposed(),Gs(this,e)};H.prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),Vf(this,e,t)};H.prototype.modStrict=function(e){return this.throwIfDisposed(),Gg(this,e)};H.prototype.mod=function(e){return this.throwIfDisposed(),ad(this,e)};H.prototype.mulStrict=function(e){return this.throwIfDisposed(),qg(this,e)};H.prototype.mul=function(e){return this.throwIfDisposed(),B(this,e)};H.prototype.neg=function(){return this.throwIfDisposed(),kt(this)};H.prototype.norm=function(e,t,n){return this.throwIfDisposed(),gd(this,e,t,n)};H.prototype.notEqualStrict=function(e){return this.throwIfDisposed(),Bg(this,e)};H.prototype.notEqual=function(e){return this.throwIfDisposed(),_a(this,e)};H.prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),Po(this,e,t,n)};H.prototype.onesLike=function(){return this.throwIfDisposed(),In(this)};H.prototype.pad=function(e,t){return this.throwIfDisposed(),Qr(this,e,t)};H.prototype.pool=function(e,t,n,r,a){return this.throwIfDisposed(),Fg(this,e,t,n,r,a)};H.prototype.powStrict=function(e){return this.throwIfDisposed(),Xg(this,e)};H.prototype.pow=function(e){return this.throwIfDisposed(),Fr(this,e)};H.prototype.prelu=function(e){return this.throwIfDisposed(),Fu(this,e)};H.prototype.prod=function(e,t){return this.throwIfDisposed(),id(this,e,t)};H.prototype.reciprocal=function(){return this.throwIfDisposed(),Uf(this)};H.prototype.relu=function(){return this.throwIfDisposed(),Mr(this)};H.prototype.relu6=function(){return this.throwIfDisposed(),ld(this)};H.prototype.reshapeAs=function(e){return this.throwIfDisposed(),X(this,e.shape)};H.prototype.reshape=function(e){return this.throwIfDisposed(),X(this,e)};H.prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),H5(this,e,t,n)};H.prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),G5(this,e,t,n)};H.prototype.reverse=function(e){return this.throwIfDisposed(),Nn(this,e)};H.prototype.rfft=function(){return this.throwIfDisposed(),zu(this)};H.prototype.round=function(){return this.throwIfDisposed(),jf(this)};H.prototype.rsqrt=function(){return this.throwIfDisposed(),ud(this)};H.prototype.selu=function(){return this.throwIfDisposed(),cd(this)};H.prototype.separableConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Hf(this,e,t,n,r,a,s)};H.prototype.sigmoid=function(){return this.throwIfDisposed(),tr(this)};H.prototype.sign=function(){return this.throwIfDisposed(),Gf(this)};H.prototype.sin=function(){return this.throwIfDisposed(),hd(this)};H.prototype.sinh=function(){return this.throwIfDisposed(),dd(this)};H.prototype.slice=function(e,t){return this.throwIfDisposed(),Me(this,e,t)};H.prototype.softmax=function(e){return this.throwIfDisposed(),Du(this,e)};H.prototype.softplus=function(){return this.throwIfDisposed(),Vo(this)};H.prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Ru(this,e,t)};H.prototype.split=function(e,t){return this.throwIfDisposed(),an(this,e,t)};H.prototype.sqrt=function(){return this.throwIfDisposed(),Yt(this)};H.prototype.square=function(){return this.throwIfDisposed(),dt(this)};H.prototype.squaredDifference=function(e){return this.throwIfDisposed(),Pu(this,e)};H.prototype.squaredDifferenceStrict=function(e){return this.throwIfDisposed(),Kg(this,e)};H.prototype.squeeze=function(e){return this.throwIfDisposed(),ba(this,e)};H.prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof H?[this,e]:[this,...e];return Sn(n,t)};H.prototype.step=function(e){return this.throwIfDisposed(),Go(this,e)};H.prototype.stridedSlice=function(e,t,n,r,a,s,i,o){return this.throwIfDisposed(),Xf(this,e,t,n,r,a,s,i,o)};H.prototype.subStrict=function(e){return this.throwIfDisposed(),Zg(this,e)};H.prototype.sub=function(e){return this.throwIfDisposed(),be(this,e)};H.prototype.sum=function(e,t){return this.throwIfDisposed(),Ce(this,e,t)};H.prototype.tan=function(){return this.throwIfDisposed(),Kf(this)};H.prototype.tanh=function(){return this.throwIfDisposed(),Lo(this)};H.prototype.tile=function(e){return this.throwIfDisposed(),xa(this,e)};H.prototype.toBool=function(){return this.throwIfDisposed(),xe(this,"bool")};H.prototype.toFloat=function(){return this.throwIfDisposed(),xe(this,"float32")};H.prototype.toInt=function(){return this.throwIfDisposed(),xe(this,"int32")};H.prototype.topk=function(e,t){return this.throwIfDisposed(),Zf(this,e,t)};H.prototype.transpose=function(e){return this.throwIfDisposed(),ot(this,e)};H.prototype.unique=function(e){return this.throwIfDisposed(),yd(this,e)};H.prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),Yf(this,e,t)};H.prototype.unstack=function(e){return this.throwIfDisposed(),ar(this,e)};H.prototype.where=function(e,t){return this.throwIfDisposed(),mn(e,this,t)};H.prototype.zerosLike=function(){return this.throwIfDisposed(),qe(this)};function Ie(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var _F=$r.whereImpl,n0=class extends Ql{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new dh(this,Wn())}write(e,t,n){this.firstUse&&(this.firstUse=!1,ee().get("IS_NODE")&&F.warn(` ============================ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details. ============================`));let r={};return this.data.set(r,{values:e,dtype:n,refCount:1}),r}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let a=n.map(s=>k.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r){this.data.set(e,{values:t,dtype:r,refCount:1})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),a=this.readSync(n.imag.dataId);return F.mergeRealAndImagArrays(r,a)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>k.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ue(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return Wn().makeTensorFromDataId(r,t,n,this)}disposeData(e){if(this.data.has(e)){let{complexTensorInfos:t}=this.data.get(e);t!=null&&(this.disposeData(t.real.dataId),this.disposeData(t.imag.dataId)),this.data.delete(e)}}disposeIntermediateTensorInfo(e){let t=e.dataId;if(this.data.has(t)){let n=this.data.get(t);n.refCount--,n.refCount<1&&this.disposeData(t)}}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Ie([e],"where");let t=this.readSync(e.dataId);return _F(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}},tm={};Pe(tm,{addImpl:()=>ix,bincountImpl:()=>Hm,bincountReduceImpl:()=>ox,ceilImpl:()=>lx,concatImpl:()=>Gm,expImpl:()=>ux,expm1Impl:()=>cx,floorImpl:()=>hx,gatherV2Impl:()=>dx,greaterImpl:()=>px,lessImpl:()=>fx,linSpaceImpl:()=>mx,logImpl:()=>Ax,maxImpl:()=>yx,maximumImpl:()=>gx,minimumImpl:()=>xx,multiplyImpl:()=>qm,negImpl:()=>wx,notEqualImpl:()=>_x,prodImpl:()=>bx,rangeImpl:()=>Km,rsqrtImpl:()=>vx,simpleAbsImpl:()=>sx,sliceImpl:()=>Vd,squaredDifferenceImpl:()=>kx,stridedSliceImpl:()=>Ix,subImpl:()=>Nx,tileImpl:()=>Sx,topKImpl:()=>Tx,transposeImpl:()=>Xm,uniqueImpl:()=>Ex});function sx(e){let t=new Float32Array(e.length);for(let n=0;n{let{x:t}=e.inputs,n=e.backend;Ie(t,"abs");let r=new Float32Array(k.sizeFromShape(t.shape)),a=n.data.get(t.dataId).values;return r=sx(a),n.makeOutput(r,t.shape,"float32")},vF={kernelName:Di,backendName:"cpu",kernelFunc:bF};function Mt(e){return(t,n,r,a,s)=>{let i=F.assertAndGetBroadcastShape(t,n),o=i.length,l=k.computeStrides(i),c=k.sizeFromShape(i),u=k.getTypedArrayFromDType(s,c),h=t.length,d=n.length,p=k.computeStrides(t),f=k.computeStrides(n),m=F.getBroadcastDims(t,i),A=F.getBroadcastDims(n,i);if(m.length+A.length===0)for(let y=0;yw[T]=0);let x=k.locToIndex(w,h,p),_=g.slice(-d);A.forEach(T=>_[T]=0);let b=k.locToIndex(_,d,f);u[y]=e(r[x],a[b])}return[u,i]}}function En(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,o=n.makeTensorInfo(r.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",s),imag:n.makeTensorInfo(a.shape,"float32",i)},o}var kF={kernelName:gh,backendName:"cpu",kernelFunc:En};function Ud(e,t,n="float32"){if(n==="complex64"){let a=Ud(e,t,"float32"),s=Ud(e,t,"float32");return En({inputs:{real:a,imag:s},backend:e})}let r=k.makeZerosTypedArray(k.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function Lr(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var IF={kernelName:ro,backendName:"cpu",kernelFunc:Lr};function ri(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.real,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var NF={kernelName:Ph,backendName:"cpu",kernelFunc:ri};function Ca(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Lr({inputs:{x:a},backend:n});let i=Ud(n,a.shape,a.dtype),o=Ca({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=En({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=ri({inputs:{input:a},backend:n}),o=Ca({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(a.dtype,s)){let i=Lr({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(a.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(a.shape,"int32",o)}if(s==="bool"){let i=n.data.get(a.dataId).values,o=k.toTypedArray([0],a.dtype),[l,c]=Mt((u,h)=>u!==h?1:0)(a.shape,[],i,o,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var SF={kernelName:es,backendName:"cpu",kernelFunc:Ca};function qt(e,t,n,r){return n==null?({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;Ie([i,o],e);let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,c,u,h);return l.makeTensorInfo(p,h,d)}:({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let c=Ca({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),h=u.complexTensorInfos.real,d=u.complexTensorInfos.imag,p=l.data.get(h.dataId).values,f=l.data.get(d.dataId).values,m=Ca({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(m.dataId),y=A.complexTensorInfos.real,g=A.complexTensorInfos.imag,w=l.data.get(y.dataId).values,x=l.data.get(g.dataId).values,[_,b,T]=n(i.shape,o.shape,p,f,w,x),S=l.makeTensorInfo(T,"float32",_),N=l.makeTensorInfo(T,"float32",b),C=En({inputs:{real:S,imag:N},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(S),l.disposeIntermediateTensorInfo(N),C}else{let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,c,u,h);return l.makeTensorInfo(p,h,d)}}}function Zm(e){return(t,n,r,a,s,i)=>{let o=F.assertAndGetBroadcastShape(t,n),l=k.sizeFromShape(o),c=o.length,u=k.computeStrides(o),h=k.getTypedArrayFromDType("float32",l),d=k.getTypedArrayFromDType("float32",l),p=F.getBroadcastDims(t,o),f=F.getBroadcastDims(n,o),m=F.mergeRealAndImagArrays(r,a),A=F.mergeRealAndImagArrays(s,i),y=t.length,g=k.computeStrides(t),w=n.length,x=k.computeStrides(n);if(p.length+f.length===0)for(let _=0;_T[D]=0);let S=k.locToIndex(T,y,g),N=b.slice(-w);f.forEach(D=>N[D]=0);let C=k.locToIndex(N,w,x),$=e(m[S*2],m[S*2+1],A[C*2],A[C*2+1]);h[_]=$.real,d[_]=$.imag}return[h,d,o]}}var ix=Mt((e,t)=>e+t),TF=Zm((e,t,n,r)=>({real:e+n,imag:t+r})),Ju=qt(fa,ix,TF),EF={kernelName:fa,backendName:"cpu",kernelFunc:Ju};function Hm(e,t,n,r,a){let s=k.sizeFromShape(r),i=k.makeZerosTypedArray(a,n);for(let o=0;o=a||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function ox(e,t,n,r=!1){let a=e.shape[0],s=e.shape[1],i=Ue([a,n],t.dtype);for(let o=0;o=n||(r?i.set(1,o,c):t.size>0?i.set(i.get(o,c)+t.get(o,l),o,c):i.set(i.get(o,c)+1,o,c))}return i}function sl(e){return(t,n,r)=>{let a=k.getTypedArrayFromDType(n,t.length);for(let s=0;s{let{x:i}=r;if(Ie(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=k.sizeFromShape(i.shape),u=n||i.dtype,h=k.getArrayFromDType(u,c);for(let d=0;d{let{x:i}=r;if(Ie(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=n||i.dtype,u=t(l,c,a);return o.makeTensorInfo(i.shape,c,u)}}var lx=sl(e=>Math.ceil(e)),CF=il(Ui,lx),RF={kernelName:Ui,backendName:"cpu",kernelFunc:CF};function Gm(e,t,n,r){let a=k.getArrayFromDType(n,k.sizeFromShape(t));if(r&&n!=="string"){let s=0;e.forEach(i=>{let o=k.sizeFromShape(i.shape);a.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?F.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let c=0;cMath.exp(e)),Cx=il(os,ux),FF={kernelName:os,backendName:"cpu",kernelFunc:Cx},cx=sl(e=>Math.expm1(e)),MF=il(Ji,cx),$F={kernelName:Ji,backendName:"cpu",kernelFunc:MF},hx=sl(e=>Math.floor(e)),DF=il(ls,hx),OF={kernelName:ls,backendName:"cpu",kernelFunc:DF};function dx(e,t,n){let r=Ue(n,e.dtype);for(let a=0;ae>t?1:0),zF=qt(no,px,null,"bool"),PF={kernelName:no,backendName:"cpu",kernelFunc:zF},fx=Mt((e,t)=>eMath.log(e)),BF=il(ps,Ax),VF={kernelName:ps,backendName:"cpu",kernelFunc:BF};function yx(e,t,n,r){let a=k.getTypedArrayFromDType(r,k.sizeFromShape(n));for(let s=0;so&&(o=c)}a[s]=o}return a}var gx=Mt((e,t)=>Math.max(e,t)),UF=qt(ms,gx),jF={kernelName:ms,backendName:"cpu",kernelFunc:UF},xx=Mt((e,t)=>Math.min(e,t)),HF=qt(xs,xx),GF={kernelName:xs,backendName:"cpu",kernelFunc:HF},qm=Mt((e,t)=>e*t),qF=Zm((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),Ym=qt(ws,qm,qF),XF={kernelName:ws,backendName:"cpu",kernelFunc:Ym};function wx(e,t,n){let r=k.createScalarValue(-1,n);return qm([],t,r,e,n)}function KF(e){let{inputs:t,backend:n}=e,{x:r}=t;Ie(r,"neg");let a=n.data.get(r.dataId).values,[s,i]=wx(a,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,s)}var ZF={kernelName:po,backendName:"cpu",kernelFunc:KF},_x=Mt((e,t)=>e!==t?1:0),YF=qt(fo,_x,null,"bool"),JF={kernelName:fo,backendName:"cpu",kernelFunc:YF};function Xm(e,t,n,r,a){let s=t.length,i=k.sizeFromShape(t),o=k.computeStrides(t),l=k.computeStrides(a),c=k.getTypedArrayFromDType(n,k.sizeFromShape(a));for(let u=0;un.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(y,A,f)}var tM={kernelName:wo,backendName:"cpu",kernelFunc:eM};function Km(e,t,n,r){let a=e===t,s=e1;if(a||s||i)return k.makeZerosTypedArray(0,r);let o=Math.abs(Math.ceil((t-e)/n)),l=k.makeZerosTypedArray(o,r);t1/Math.sqrt(e)),nM=il(Cs,vx),rM={kernelName:Cs,backendName:"cpu",kernelFunc:nM};function Vd(e,t,n,r,a){let s=sn.isSliceContinous(r,t,n),i=k.sizeFromShape(n),o=k.computeStrides(r);if(s){let h=sn.computeFlatOffset(t,o);return a==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=a==="string"?F.fromUint8ToStringArray(e):e,c=Ue(r,a,l),u=Ue(n,a);for(let h=0;hf+t[m]);u.set(c.get(...p),...d)}return a==="string"?F.fromStringArrayToUint8(u.values):u.values}function ai(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r;Ie(a,"slice");let[o,l]=sn.parseSliceParams(a,s,i);sn.assertParamsValid(a,o,l);let c=n.data.get(a.dataId).values,u=Vd(c,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,u)}var aM={kernelName:No,backendName:"cpu",kernelFunc:ai},kx=Mt((e,t)=>{let n=e-t;return n*n}),sM=qt(Os,kx),iM={kernelName:Os,backendName:"cpu",kernelFunc:sM};function Ix(e,t,n,r){let a=Ue(e,t.dtype);for(let s=0;se-t),oM=Zm((e,t,n,r)=>({real:e-n,imag:t-r})),Jm=qt(zs,Nx,oM),lM={kernelName:zs,backendName:"cpu",kernelFunc:Jm};function Sx(e,t){let n=new Array(e.rank);for(let a=0;aw.value-g.value);let m=h*r,A=l.subarray(m,m+r),y=c.subarray(m,m+r);for(let g=0;g{for(let A=0;Anew n0,1);var Rx=ct(Xi,e=>e>=0?e:Math.exp(e)-1),uM={kernelName:Xi,backendName:"cpu",kernelFunc:Rx};function Fx(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r;Ie([a],"leakyRelu");let i=k.sizeFromShape(a.shape),o=n.data.get(a.dataId).values,l=k.getTypedArrayFromDType("float32",i);for(let c=0;ce<0?t*e:e);function Mx(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t;Ie([r,a],"prelu");let s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,[o,l]=hM(r.shape,a.shape,s,i,r.dtype);return n.makeTensorInfo(l,r.dtype,o)}var dM={kernelName:ks,backendName:"cpu",kernelFunc:Mx},$x=ct(Is,e=>Math.max(0,e)),pM={kernelName:Is,backendName:"cpu",kernelFunc:$x},Dx=ct(Ss,e=>Math.min(Math.max(0,e),6)),fM={kernelName:Ss,backendName:"cpu",kernelFunc:Dx};function Qm(e,t,n,r,a){if(n==="linear")return Lr({inputs:{x:t},backend:e});if(n==="relu")return $x({inputs:{x:t},backend:e});if(n==="elu")return Rx({inputs:{x:t},backend:e});if(n==="relu6")return Dx({inputs:{x:t},backend:e});if(n==="prelu")return Mx({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return Fx({inputs:{x:t},backend:e,attrs:{alpha:a}});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function wt(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=k.sizeFromShape(a.shape),o=k.inferFromImplicitShape(s,i),l=k.sizeFromShape(o);k.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${a.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(a.dataId);let c=n.data.get(a.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,h=c.complexTensorInfos.imag;u.shape=o,h.shape=o}return{dataId:a.dataId,shape:o,dtype:a.dtype}}var mM={kernelName:bo,backendName:"cpu",kernelFunc:wt};function Ox(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;Ie([a,s],"matMul");let l=a.shape.length,c=s.shape.length,u=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[c-1]:s.shape[c-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[c-2]:s.shape[c-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),A=k.sizeFromShape(f),y=k.sizeFromShape(m),g=A===y||A===1||y===1;k.assert(l>=2&&c>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let w=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);k.assert(u===h,()=>`Error in matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[A,u,d]:[A,d,u],_=o?[y,p,h]:[y,h,p],b=wt({inputs:{x:a},backend:n,attrs:{shape:x}}),T=wt({inputs:{x:s},backend:n,attrs:{shape:_}}),S=i?b.shape[1]:b.shape[2],N=i?b.shape[2]:b.shape[1],C=o?T.shape[1]:T.shape[2],$=Math.max(A,y),D=n.data.get(b.dataId).values,O=n.data.get(T.dataId).values,V=k.computeStrides(b.shape),W=k.computeStrides(T.shape),[Z,K,te]=i?[V[0],1,V[1]]:[V[0],V[1],1],[J,se,Q]=o?[1,W[1],W[0]]:[W[1],1,W[0]],le=N*C,re=Ue([$,N,C],b.dtype),ce=re.values,he=n.blockSize;for(let me=0;me<$;me++)for(let ye=0;yeMath.acos(e)),wM={kernelName:Oi,backendName:"cpu",kernelFunc:xM},_M=ct(zi,e=>Math.acosh(e)),bM={kernelName:zi,backendName:"cpu",kernelFunc:_M};function vM(e){let{inputs:t,backend:n}=e,r=t;Ie(t,"addN");let a=r.map(o=>n.data.get(o.dataId).values),s=Ue(r[0].shape,r[0].dtype),i=s.values;for(let o=0;og&&(g=_,w=x)}p[A]=w}return c.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",p)}var CM={kernelName:Ya,backendName:"cpu",kernelFunc:EM};function RM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;Ie(a,"argMin");let i=k.parseAxisParam(s,a.shape),o=F.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=ir({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=F.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],F.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[u,h]=F.computeOutAndReduceShapes(l.shape,i),d=k.sizeFromShape(u),p=k.makeZerosTypedArray(d,"int32"),f=k.sizeFromShape(h),m=n.data.get(l.dataId).values;for(let A=0;An.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",p)}var FM={kernelName:eu,backendName:"cpu",kernelFunc:RM},MM=ct(Pi,e=>Math.asin(e)),$M={kernelName:Pi,backendName:"cpu",kernelFunc:MM},DM=ct(Li,e=>Math.asinh(e)),OM={kernelName:Li,backendName:"cpu",kernelFunc:DM},zM=ct(Wi,e=>Math.atan(e)),PM={kernelName:Wi,backendName:"cpu",kernelFunc:zM},LM=Mt((e,t)=>Math.atan2(e,t)),WM=qt(Vi,LM),BM={kernelName:Vi,backendName:"cpu",kernelFunc:WM},VM=ct(Bi,e=>Math.atanh(e)),UM={kernelName:Bi,backendName:"cpu",kernelFunc:VM};function eA(e,t,n,r,a,s){let i=a.strideHeight,o=a.strideWidth,l=a.dilationHeight,c=a.dilationWidth,u=a.effectiveFilterHeight,h=a.effectiveFilterWidth,d=a.padInfo.top,p=a.padInfo.left,f=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=Ue(a.outShape,n),A=m.values,y=a.outShape[1]*a.outShape[2]*a.outShape[3],g=a.outShape[2]*a.outShape[3],w=a.outShape[3];for(let x=0;xK?K=he:s==="avg"&&(te+=he,J++)}if(isNaN(K))break}let se=D+O*w+T;A[se]=s==="avg"?te/J:K}}}return m}function zx(e,t,n,r,a=!1,s=!1){let i=Ue(r.outShape,"int32"),o=r.strideHeight,l=r.strideWidth,c=r.dilationHeight,u=r.dilationWidth,h=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,f=r.padInfo.left,m=Ue(t,n,e);for(let A=0;AC&&(C=Z,a?$=s?((A*r.inHeight+D)*r.inWidth+V)*r.inChannels+y:(D*r.inWidth+V)*r.inChannels+y:$=O*d+W)}}i.set($,A,g,b,y)}}return i}function Px(e,t,n,r,a,s){let i=a.strideDepth,o=a.strideHeight,l=a.strideWidth,c=a.dilationDepth,u=a.dilationHeight,h=a.dilationWidth,d=a.effectiveFilterDepth,p=a.effectiveFilterHeight,f=a.effectiveFilterWidth,m=a.padInfo.front,A=a.padInfo.top,y=a.padInfo.left,g=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,w=Ue(a.outShape,n),x=w.values,_=a.outShape[1]*a.outShape[2]*a.outShape[3]*a.outShape[4],b=a.outShape[2]*a.outShape[3]*a.outShape[4],T=a.outShape[3]*a.outShape[4],S=a.outShape[4];for(let N=0;Nge?ge=ut:s==="avg"&&(Ee+=ut,Re++),isNaN(ge))break}if(isNaN(ge))break}if(isNaN(ge))break}let Oe=ye+D;x[Oe]=s==="avg"?Ee/Re:ge}}}}return w}function jM(e,t){let n=Ue(t.outShape,"int32"),r=t.strideDepth,a=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,h=t.effectiveFilterWidth,d=t.padInfo.front,p=t.padInfo.top,f=t.padInfo.left;for(let m=0;m=O&&(O=Q,V=Z*u*h+te*u+se)}}}n.set(V,m,y,_,N,A)}}}return n}function HM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;Ie(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;k.assert(F.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=F.computePool2DInfo(a.shape,s,i,c,o,l),h;if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))h=Lr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=k.computeStrides(a.shape),f=eA(d,a.shape,a.dtype,p,u,"avg");h=n.makeTensorInfo(u.outShape,a.dtype,f.values)}return h}var GM={kernelName:Ja,backendName:"cpu",kernelFunc:HM};function qM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c,dilations:u}=r;Ie(a,"avgPool3d");let h=u;h==null&&(h=[1,1,1]);let d=F.computePool3DInfo(a.shape,s,i,h,o,l,c),p=n.data.get(a.dataId).values,f=Px(p,a.shape,a.dtype,k.computeStrides(a.shape),d,"avg");return n.makeTensorInfo(f.shape,"float32",f.values)}var XM={kernelName:tu,backendName:"cpu",kernelFunc:qM};function KM(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dilations:c,dimRoundingMode:u}=r;Ie([a,s],"avgPool3DGrad");let h=F.computePool3DInfo(s.shape,i,o,c,l,u),d=h.strideDepth,p=h.strideHeight,f=h.strideWidth,m=h.filterDepth,A=h.filterHeight,y=h.filterWidth,g=h.dilationDepth,w=h.dilationHeight,x=h.dilationWidth,_=h.effectiveFilterDepth,b=h.effectiveFilterHeight,T=h.effectiveFilterWidth,S=_-1-h.padInfo.front,N=T-1-h.padInfo.left,C=b-1-h.padInfo.top,$=Ue(s.shape,"float32"),D=1/(m*A*y),O=n.bufferSync(a);for(let V=0;V=h.outDepth||Math.floor(ce)!==ce))for(let he=0;he=h.outHeight||Math.floor(me)!==me))for(let ye=0;ye=h.outWidth||Math.floor(ge)!==ge||(le+=O.get(V,ce,me,ge,W))}}}$.set(le*D,V,Z,K,te,W)}return n.makeTensorInfo($.shape,$.dtype,$.values)}var ZM={kernelName:Ah,backendName:"cpu",kernelFunc:KM};function YM(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;Ie([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=r,u=F.computePool2DInfo(i.shape,o,l,1,c),h=u.strideHeight,d=u.strideWidth,p=u.filterHeight,f=u.filterWidth,m=u.dilationHeight,A=u.dilationWidth,y=u.effectiveFilterHeight,g=u.effectiveFilterWidth,w=g-1-u.padInfo.left,x=y-1-u.padInfo.top,_=Ue(i.shape,"float32"),b=1/(p*f),T=n.data.get(a.dataId).values,S=Ue(a.shape,"float32",T);for(let N=0;N=u.outHeight||Math.floor(K)!==K))for(let te=0;te=u.outWidth||Math.floor(J)!==J||(W+=S.get(N,K,J,C))}}_.set(W*b,N,$,D,C)}return n.makeTensorInfo(_.shape,_.dtype,_.values)}var JM={kernelName:mh,backendName:"cpu",kernelFunc:YM};function QM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,scale:s,offset:i,mean:o,variance:l}=t;k.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Ie([a,o,l,s,i],"batchNorm");let{varianceEpsilon:c}=r;c==null&&(c=.001);let u=n.data.get(a.dataId).values,h=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,p=s?n.data.get(s.dataId).values:new Float32Array([1]),f=i?n.data.get(i.dataId).values:new Float32Array([0]),m=new Float32Array(u.length),A=f.length,y=p.length,g=d.length,w=h.length,x=0,_=0,b=0,T=0;for(let S=0;S=A&&(x=0),_>=w&&(_=0),b>=y&&(b=0),T>=g&&(T=0);return n.makeTensorInfo(a.shape,a.dtype,m)}var e$={kernelName:cs,backendName:"cpu",kernelFunc:QM};function t$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;Ie([a],"batchToSpaceND");let o=s.reduce((y,g)=>y*g),l=F.getReshaped(a.shape,s,o),c=F.getPermuted(l.length,s.length),u=F.getReshapedPermuted(a.shape,s,o),h=F.getSliceBeginCoords(i,s.length),d=F.getSliceSize(u,i,s.length),p=wt({inputs:{x:a},backend:n,attrs:{shape:l}}),f=ir({inputs:{x:p},backend:n,attrs:{perm:c}}),m=wt({inputs:{x:f},backend:n,attrs:{shape:u}}),A=ai({inputs:{x:m},backend:n,attrs:{begin:h,size:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var n$={kernelName:nu,backendName:"cpu",kernelFunc:t$};function r$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.data.get(a.dataId).values,l=n.data.get(s.dataId).values,c=Hm(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var a$={kernelName:yh,backendName:"cpu",kernelFunc:r$},s$=ct(ma,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(k.sizeFromShape(t.shape)),a=n.data.get(t.dataId),s=a.complexTensorInfos.real,i=a.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let c=0;cm.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(m=>k.sizeFromShape(m.shape)>0);if(o.length===1)return Lr({inputs:{x:o[0]},backend:n});let l=o.map(m=>m.shape);if(F.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let m=o.map(x=>ri({inputs:{input:x},backend:n})),A=o.map(x=>ol({inputs:{input:x},backend:n})),y=ll({inputs:m,backend:n,attrs:{axis:s}}),g=ll({inputs:A,backend:n,attrs:{axis:s}}),w=En({inputs:{real:y,imag:g},backend:n});return m.forEach(x=>n.disposeIntermediateTensorInfo(x)),A.forEach(x=>n.disposeIntermediateTensorInfo(x)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),w}let c=o.map(m=>{let A=k.sizeFromShape(m.shape.slice(s));return wt({inputs:{x:m},backend:n,attrs:{shape:[-1,A]}})}),u=c.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));i=F.computeOutShape(c.map(m=>m.shape),1);let h=c[0].shape[0]===1,d=Gm(u,i,t[0].dtype,h),p=F.computeOutShape(o.map(m=>m.shape),s),f=n.makeTensorInfo(p,t[0].dtype,d);return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var c$={kernelName:ji,backendName:"cpu",kernelFunc:ll};function Lx(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=r;Ie([a,s],"conv2d");let h=F.convertConv2DDataFormat(l),d=F.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!1,h),p=d.filterHeight,f=d.filterWidth,m=d.dilationHeight,A=d.dilationWidth,y=d.padInfo.left,g=d.padInfo.top,w=d.dataFormat==="channelsLast",x=new Ot(d.outShape,a.dtype),_=k.computeStrides(a.shape),b=k.computeStrides(s.shape),T=_[0],S=w?_[1]:_[2],N=w?_[2]:1,C=w?1:_[1],$=x.strides[0],D=w?x.strides[1]:x.strides[2],O=w?x.strides[2]:1,V=w?1:x.strides[1],W=n.data.get(a.dataId).values,Z=n.data.get(s.dataId).values,K=x.values;for(let te=0;te=d.inHeight)continue;let me=ce*b[0],ye=J+he*S;for(let ge=0;ge=d.inWidth)continue;let Ve=me+Oe*b[1],et=ye+Ge*N,it=Ve;for(let je=0;je=c.inDepth)continue;let te=Z*N[0],J=$+K*S[1];for(let se=0;se=c.inHeight)continue;let he=te+re*N[1],me=J+ce*S[2];for(let ye=0;ye=c.inWidth)continue;let Ge=he+Re*N[2],Ve=me+Oe*c.inChannels,et=Ge;for(let it=0;itMath.cos(e)),v$={kernelName:rs,backendName:"cpu",kernelFunc:b$},k$=ct(Hi,e=>Math.cosh(e)),I$={kernelName:Hi,backendName:"cpu",kernelFunc:k$};function N$(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=r,[u,h,d,p]=a.shape,f=s.shape[0],[m,A]=o,y=Ue([f,m,A,p],"float32"),g=n.data.get(s.dataId).values,w=n.data.get(i.dataId).values,x=n.data.get(a.dataId).values,_=k.computeStrides(a.shape),b=k.computeStrides(y.shape);for(let T=0;T=u)continue;let V=m>1?($-N)*(h-1)/(m-1):0,W=A>1?(D-C)*(d-1)/(A-1):0;for(let Z=0;Z1?N*(h-1)+Z*V:.5*(N+$)*(h-1);if(K<0||K>h-1){for(let te=0;te1?C*(d-1)+Q*W:.5*(C+D)*(d-1);if(le<0||le>d-1){for(let me=0;me1?C*(d-1)+te*W:.5*(C+D)*(d-1);if(J<0||J>d-1){for(let le=0;ley+f-g-1:(y,g)=>y+g;for(let y=0;y`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=a.shape[1],c=a.shape[2],u=a.shape[3],h=l*s,d=c*s,p=u/(s*s),f=n.data.get(a.dataId).values,m=new Float32Array(o*h*d*p),A=0;for(let y=0;y`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let p=F.computeConv2DInfo(a.shape,s.shape,i,d,o,c,!0),{filterHeight:f,filterWidth:m,dilationHeight:A,dilationWidth:y,padInfo:g}=p,w=g.left,x=g.top,_=p.outChannels/p.inChannels,b=new Ot(p.outShape,a.dtype),T=n.data.get(a.dataId).values,S=n.data.get(s.dataId).values,N=b.values;for(let C=0;C=p.inHeight)continue;let te=Z*h[0],J=$+K*u[1];for(let se=0;se=p.inWidth)continue;let he=te+re*h[1],me=J+ce*p.inChannels,ye=Q,ge=he;for(let Ee=0;Ee{let{x:r,filter:a}=e,{strides:s,pad:i,dilations:o}=n,l=t,c=l.data.get(r.dataId).values,u=r.shape.length,h=l.data.get(a.dataId).values,d=a.shape.length,{batchSize:p,inHeight:f,inWidth:m,inChannels:A,outHeight:y,outWidth:g,padInfo:w,strideHeight:x,strideWidth:_,filterHeight:b,filterWidth:T,dilationHeight:S,dilationWidth:N,outShape:C}=F.computeDilation2DInfo(r.shape,a.shape,s,i,"NHWC",o),$=k.sizeFromShape(C),D=C.length,O=k.getArrayFromDType(r.dtype,$);for(let V=0;V=0&&re=0&&hese&&(se=ge)}}}let Q=k.locToIndex([V,W,K,J],D,k.computeStrides(C));O[Q]=se}}}return{dataId:l.write(k.toTypedArray(O,r.dtype),C,r.dtype),shape:C,dtype:r.dtype}}},V$={kernelName:Sh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=k.toNestedArray(r.shape,c.data.get(r.dataId).values),h=k.toNestedArray(a.shape,c.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:f,inChannels:m,outHeight:A,outWidth:y,padInfo:g,strideHeight:w,strideWidth:x,filterHeight:_,filterWidth:b,dilationHeight:T,dilationWidth:S,outShape:N}=F.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);k.assert(s.rank===N.length,()=>`Error in ${Sh}, dy must have the same rank as output ${N.length}, but got ${s.rank}`);let C=k.toNestedArray(N,c.data.get(s.dataId).values),$=k.makeZerosNestedTypedArray(a.shape,a.dtype);for(let D=0;D=0&&le=0&&cete&&(te=he,J=Q,se=re)}}}$[J][se][K]+=C[D][O][W][K]}}}return{dataId:c.write(k.toTypedArray($,r.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},U$={kernelName:Nh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=k.toNestedArray(r.shape,c.data.get(r.dataId).values),h=k.toNestedArray(a.shape,c.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:f,inChannels:m,outHeight:A,outWidth:y,padInfo:g,strideHeight:w,strideWidth:x,filterHeight:_,filterWidth:b,dilationHeight:T,dilationWidth:S,outShape:N}=F.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);k.assert(s.rank===N.length,()=>`Error in ${Nh}, dy must have the same rank as output ${N.length}, but got ${s.rank}`);let C=k.toNestedArray(N,c.data.get(s.dataId).values),$=k.makeZerosNestedTypedArray(r.shape,r.dtype);for(let D=0;D=0&&le=0&&cete&&(te=he,J=le,se=ce)}}}$[D][J][se][K]+=C[D][O][W][K]}}}return{dataId:c.write(k.toTypedArray($,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function j$(e){let{inputs:t,backend:n}=e,{dy:r,y:a}=t;Ie([r,a],"eluGrad");let s=new Float32Array(k.sizeFromShape(a.shape)),i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values;for(let l=0;l=1?s[l]=o[l]:s[l]=o[l]*(c+1)}return n.makeTensorInfo(a.shape,"float32",s)}var H$={kernelName:Th,backendName:"cpu",kernelFunc:j$},G$=Mt((e,t)=>e===t?1:0),Bx=qt(Zi,G$,null,"bool"),q$={kernelName:Zi,backendName:"cpu",kernelFunc:Bx},X$=F.ERF_P,K$=F.ERF_A1,Z$=F.ERF_A2,Y$=F.ERF_A3,J$=F.ERF_A4,Q$=F.ERF_A5,eD=ct(Ki,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+X$*n);return t*(1-((((Q$*r+J$)*r+Y$)*r+Z$)*r+K$)*r*Math.exp(-n*n))}),tD={kernelName:Ki,backendName:"cpu",kernelFunc:eD};function jd(e){let{inputs:t,backend:n,attrs:r}=e,{input:a}=t,{dim:s}=r,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),wt({inputs:{x:a},backend:n,attrs:{shape:o}})}var nD={kernelName:Yi,backendName:"cpu",kernelFunc:jd},rD=Mt((e,t)=>e/t),tA=qt(is,rD),nA={kernelName:is,backendName:"cpu",kernelFunc:tA};function Vx(e,t,n){let r=e.shape,a=r[0],s=r[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,c=[a,s],u=k.sizeFromShape(c),h=k.getTypedArrayFromDType("float32",u),d=k.getTypedArrayFromDType("float32",u);for(let A=0;A{let{image:r}=e,a=n,s=k.getTypedArrayFromDType(r.dtype,k.sizeFromShape(r.shape)),[i,o,l,c]=r.shape,u=a.data.get(r.dataId).values;for(let h=0;h=0&&wMath.floor(e/t)),pD=qt(us,dD,null,"int32"),fD={kernelName:us,backendName:"cpu",kernelFunc:pD};function mD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=Lx({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d}});if(i){let A=m;m=Ju({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=m;m=Qm(n,m,p,o,f),n.disposeIntermediateTensorInfo(A)}return m}var AD={kernelName:Bs,backendName:"cpu",kernelFunc:mD};function yD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=Wx({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d}});if(i){let A=m;m=Ju({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=m;m=Qm(n,m,p,o,f),n.disposeIntermediateTensorInfo(A)}return m}var gD={kernelName:Vs,backendName:"cpu",kernelFunc:yD};function xD(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=k.sizeFromShape(r.shape),i=a.shape,o=i[i.length-1],[l,c,u,h]=F.prepareAndValidate(r,a);if(c===0)return n.makeTensorInfo(l,r.dtype,[]);let d=Ue([c,u],r.dtype),p=n.data.get(a.dataId).values,f=n.data.get(r.dataId).values;for(let m=0;m=s/u)throw new Error(`Invalid indices: ${A} does not index into ${r.shape}`);for(let g=0;ge>=t?1:0),kD=qt(hs,vD,null,"bool"),ID={kernelName:hs,backendName:"cpu",kernelFunc:kD};function ND(e){let{inputs:t,backend:n}=e,{input:r}=t,a=k.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=wt({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=Vx(o,!0,n),c=wt({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var SD={kernelName:Ch,backendName:"cpu",kernelFunc:ND},TD=ct(ao,e=>Number.isFinite(e)?1:0,"bool"),ED={kernelName:ao,backendName:"cpu",kernelFunc:TD},CD=ct(so,e=>Math.abs(e)===Infinity?1:0,"bool"),RD={kernelName:so,backendName:"cpu",kernelFunc:CD},FD=ct(io,e=>Number.isNaN(e)?1:0,"bool"),MD={kernelName:io,backendName:"cpu",kernelFunc:FD},$D=Mt((e,t)=>e<=t?1:0),DD=qt(lo,$D,null,"bool"),OD={kernelName:lo,backendName:"cpu",kernelFunc:DD};function zD(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=mx(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var PD={kernelName:Fh,backendName:"cpu",kernelFunc:zD},LD=ct(uo,e=>Math.log1p(e)),WD={kernelName:uo,backendName:"cpu",kernelFunc:LD},BD=Mt((e,t)=>e&&t),VD=qt(co,BD,null,"bool"),UD={kernelName:co,backendName:"cpu",kernelFunc:VD},jD=ct(ou,e=>e?0:1,"bool"),HD={kernelName:ou,backendName:"cpu",kernelFunc:jD},GD=Mt((e,t)=>e||t),qD=qt(lu,GD,null,"bool"),XD={kernelName:lu,backendName:"cpu",kernelFunc:qD};function KD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r;Ie(a,"LRN");let c=a.shape[3],u=c-1,h=n.data.get(a.dataId).values,d=k.sizeFromShape(a.shape),p=new Float32Array(d);function f(m){let A=m%c,y=m-A+Math.max(0,A-s),g=m-A+Math.min(A+s,u),w=0;for(;y<=g;y++){let x=h[y];w+=x*x}return w}for(let m=0;m`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=F.computePool2DInfo(a.shape,s,i,c,o,l),h;if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))h=Lr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=k.computeStrides(a.shape),f=eA(d,a.shape,a.dtype,p,u,"max");h=n.makeTensorInfo(u.outShape,a.dtype,f.values)}return h}var tO={kernelName:As,backendName:"cpu",kernelFunc:eO};function nO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c,dilations:u}=r;Ie(a,"maxPool3d");let h=u;h==null&&(h=[1,1,1]);let d=F.computePool3DInfo(a.shape,s,i,h,o,l,c),p=n.data.get(a.dataId).values,f=Px(p,a.shape,a.dtype,k.computeStrides(a.shape),d,"max");return n.makeTensorInfo(f.shape,"float32",f.values)}var rO={kernelName:cu,backendName:"cpu",kernelFunc:nO};function aO(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dilations:c,dimRoundingMode:u}=r;Ie([a,s],"maxPool3DGrad");let h=F.computePool3DInfo(s.shape,i,o,c,l,u),d=n.bufferSync(s),p=jM(d,h),f=h.strideDepth,m=h.strideHeight,A=h.strideWidth,y=h.dilationDepth,g=h.dilationHeight,w=h.dilationWidth,x=h.effectiveFilterDepth,_=h.effectiveFilterHeight,b=h.effectiveFilterWidth,T=x-1-h.padInfo.front,S=b-1-h.padInfo.left,N=_-1-h.padInfo.top,C=Ue(s.shape,"float32"),$=n.bufferSync(a);for(let D=0;D=h.outDepth||Math.floor(le)!==le))for(let re=0;re<_;re+=g){let ce=(te+re)/m;if(!(ce<0||ce>=h.outHeight||Math.floor(ce)!==ce))for(let he=0;he=h.outWidth||Math.floor(me)!==me)continue;let ye=x*_*b-1-p.get(D,le,ce,me,O),ge=Q*_*b+re*b+he,Ee=ye===ge?1:0;Ee!==0&&(se+=$.get(D,le,ce,me,O)*Ee)}}}C.set(se,D,V,W,Z,O)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var sO={kernelName:Dh,backendName:"cpu",kernelFunc:aO};function iO(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;Ie([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:h}=r,d=F.computePool2DInfo(o.shape,l,c,1,u,h),p=n.data.get(o.dataId).values,f=Ue(d.outShape,o.dtype,zx(p,o.shape,o.dtype,d).values),m=d.strideHeight,A=d.strideWidth,y=d.dilationHeight,g=d.dilationWidth,w=d.effectiveFilterHeight,x=d.effectiveFilterWidth,_=x-1-d.padInfo.left,b=w-1-d.padInfo.top,T=Ue(o.shape,"float32"),S=n.data.get(a.dataId).values,N=Ue(a.shape,"float32",S);for(let C=0;C=d.outHeight||Math.floor(te)!==te))for(let J=0;J=d.outWidth||Math.floor(se)!==se)continue;let Q=w*x-1-f.get(C,te,se,$),le=K*x+J,re=Q===le?1:0;re!==0&&(Z+=N.get(C,te,se,$)*re)}}T.set(Z,C,D,O,$)}return n.makeTensorInfo(T.shape,T.dtype,T.values)}var oO={kernelName:$h,backendName:"cpu",kernelFunc:iO};function lO(e,t,n,r,a){let s=k.computeStrides(t),i=eA(e,t,n,s,a,"max"),o=zx(e,t,n,a,!0,r);return[i.values,o.values]}var uO={kernelName:Oh,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;Ie(r,"MaxPoolWithArgmax");let c=l.data.get(r.dataId).values,u=F.computePool2DInfo(r.shape,a,s,[1,1],i),[h,d]=lO(c,r.shape,r.dtype,o,u),p=l.write(h,u.outShape,r.dtype),f=l.write(d,u.outShape,r.dtype);return[{dataId:p,shape:u.outShape,dtype:r.dtype},{dataId:f,shape:u.outShape,dtype:"int32"}]}};function Hd(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;Ie(a,"sum");let o;a.dtype==="bool"?o=Ca({inputs:{x:a},backend:n,attrs:{dtype:"int32"}}):o=Lr({inputs:{x:a},backend:n});let l=o.shape.length,c=k.parseAxisParam(s,o.shape),u=F.getAxesPermutation(c,l),h=c,d=o;u!=null&&(d=ir({inputs:{x:o},backend:n,attrs:{perm:u}}),h=F.getInnerMostAxes(h.length,l)),F.assertAxesAreInnerMostDims("sum",h,d.shape.length);let[p,f]=F.computeOutAndReduceShapes(d.shape,h),m=F.upcastType(d.dtype,"int32"),A=Ud(n,p,m),y=k.sizeFromShape(f),g=n.data.get(A.dataId).values,w=n.data.get(d.dataId).values;for(let x=0;xn.disposeIntermediateTensorInfo(m)),f}var dO={kernelName:ys,backendName:"cpu",kernelFunc:hO};function pO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;Ie(a,"min");let o=k.parseAxisParam(s,a.shape),l=o,c=F.getAxesPermutation(l,a.shape.length),u=a;c!=null&&(u=ir({inputs:{x:a},backend:n,attrs:{perm:c}}),l=F.getInnerMostAxes(l.length,a.shape.length)),F.assertAxesAreInnerMostDims("min",l,u.shape.length);let[h,d]=F.computeOutAndReduceShapes(u.shape,l),p=k.sizeFromShape(d),f=k.makeZerosTypedArray(k.sizeFromShape(h),u.dtype),m=n.data.get(u.dataId).values;for(let y=0;yg[0]+a.shape[w]+g[1]),l=s.map(g=>g[0]),c=s.map((g,w)=>g[0]+a.shape[w]),u=i==="reflect"?0:1,h=n.data.get(a.dataId).values,d=a.shape.length,p=k.computeStrides(a.shape),f=k.sizeFromShape(o),m=o.length,A=k.computeStrides(o),y=k.getTypedArrayFromDType(a.dtype,f);for(let g=0;g=c[_]&&(w[_]=(c[_]-1)*2-w[_]+u);w=w.map((_,b)=>_-l[b]);let x=k.locToIndex(w,d,p);y[g]=h[x]}return{dataId:n.write(y,o,a.dtype),shape:o,dtype:a.dtype}}var AO={kernelName:hu,backendName:"cpu",kernelFunc:mO},yO=Mt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),gO=qt(ho,yO),xO={kernelName:ho,backendName:"cpu",kernelFunc:gO},wO=Xo(I8());function jx(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=a.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=k.parseAxisParam([o],a.shape),c=Ux({inputs:{x:a},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=F.expandShapeToKeepDim(c.shape,l),h=wt({inputs:{x:c},backend:n,attrs:{shape:u}}),d=Jm({inputs:{a,b:h},backend:n}),p=Cx({inputs:{x:d},backend:n}),f=Hd({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),m=wt({inputs:{x:f},backend:n,attrs:{shape:u}}),A=tA({inputs:{a:p,b:m},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var _O={kernelName:Ds,backendName:"cpu",kernelFunc:jx};function bO(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r;Ie(a,"multinomial");let l=o?a:jx({inputs:{logits:a},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],h=n.data.get(l.dataId).values,d=[c,s],p=k.makeZerosTypedArray(k.sizeFromShape(d),"int32");for(let f=0;f=0&&u[h]{k.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=jd({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=ll({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var zO={kernelName:xo,backendName:"cpu",kernelFunc:Gx};function PO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r;Ie(a,"pad");let o=s.map((y,g)=>y[0]+a.shape[g]+y[1]),l=s.map(y=>y[0]),c=n.data.get(a.dataId).values,u=k.sizeFromShape(a.shape),h=a.shape.length,d=k.computeStrides(a.shape),p=k.sizeFromShape(o),f=o.length,m=k.computeStrides(o),A=k.getTypedArrayFromDType(a.dtype,p);i!==0&&A.fill(i);for(let y=0;yx+l[_]),w=k.locToIndex(g,f,m);A[w]=c[y]}return{dataId:n.write(A,o,a.dtype),shape:o,dtype:a.dtype}}var qx={kernelName:bs,backendName:"cpu",kernelFunc:PO},LO=Mt((e,t)=>Math.pow(e,t)),WO=qt(vs,LO),BO={kernelName:vs,backendName:"cpu",kernelFunc:WO};function VO(e){let{backend:t,attrs:n}=e,{start:r,stop:a,dtype:s,step:i}=n,o=Km(r,a,i,s);return t.makeTensorInfo([o.length],s,o)}var UO={kernelName:du,backendName:"cpu",kernelFunc:VO},jO=ct(_o,e=>1/e),HO={kernelName:_o,backendName:"cpu",kernelFunc:jO};function GO(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;Ie(a,"resizeBilinear");let l=k.computeStrides(a.shape),[c,u]=o,[h,d,p,f]=a.shape,m=n.data.get(a.dataId).values,A=new Float32Array(k.sizeFromShape([h,c,u,f])),y=[s&&c>1?d-1:d,s&&u>1?p-1:p],g=[s&&c>1?c-1:c,s&&u>1?u-1:u],w=0,x=y[0]/g[0],_=y[1]/g[1];for(let b=0;b1?c-1:c,i&&p>1?u-1:u],A=[i&&d>1?d-1:d,i&&p>1?p-1:p],y=m[0]/A[0],g=m[1]/A[1],w=n.data.get(s.dataId).values,x=0;for(let _=0;_1?d-1:d,s&&u>1?p-1:p],g=[s&&c>1?c-1:c,s&&u>1?u-1:u],w=y[0]/g[0],x=y[1]/g[1],_=0;for(let b=0;b1?u-1:u,i&&f>1?h-1:h],g=[i&&p>1?p-1:p,i&&f>1?f-1:f],w=y[0]/g[0],x=y[1]/g[1],_=1/w,b=1/x,T=Math.ceil(_)*2+2,S=Math.ceil(b)*2+2;for(let N=0;N=p)continue;let re=C+le*l[1],ce=le*w,he=Math.min(u-1,i?Math.round(ce):Math.floor(ce));if($===he)for(let me=0;me=f)continue;let ge=re+ye*l[2],Ee=ye*x,Re=Math.min(h-1,i?Math.round(Ee):Math.floor(Ee));W===Re&&(se+=A[ge+J])}}m[Z+J]=se}}}}return n.makeTensorInfo(a.shape,a.dtype,m)}var QO={kernelName:Lh,backendName:"cpu",kernelFunc:JO};function ez(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r;Ie(a,"reverse");let i=a.shape.length,o=k.parseAxisParam(s,a.shape);if(i===0)return Lr({inputs:{x:a},backend:n});let l=new Ot(a.shape,a.dtype),c=n.bufferSync(a);for(let u=0;ud[p]=a.shape[p]-1-d[p]),l.set(c.get(...d),...h)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var tz={kernelName:Ts,backendName:"cpu",kernelFunc:ez},nz={kernelName:Oo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=k.getTypedArrayFromDType(r.dtype,k.sizeFromShape(r.shape)),[c,u,h,d]=r.shape,[p,f]=F.getImageCenter(i,u,h),m=255,A=Math.sin(a),y=Math.cos(a),g=o.data.get(r.dataId).values;for(let w=0;w=0&&O=0&&V{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),az={kernelName:Es,backendName:"cpu",kernelFunc:rz};function Xx(e,t,n,r,a,s,i,o,l,c){let u=[r/a,a],h=e.values,d=t.values;if(r===0)return Ue(n,t.dtype);let p=Ue(u,t.dtype);p.values.fill(l);for(let f=0;f=r/a)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let y=0;y1||a.shape.length===1?1:k.sizeFromShape(a.shape.slice(1));for(let f=0;fe>=0?cz*e:uz*(Math.exp(e)-1)),dz={kernelName:Io,backendName:"cpu",kernelFunc:hz},pz=ct(Fs,e=>1/(1+Math.exp(-e))),fz={kernelName:Fs,backendName:"cpu",kernelFunc:pz},mz=ct(To,e=>e<0?-1:e>0?1:0),Az={kernelName:To,backendName:"cpu",kernelFunc:mz},yz=ct(Rs,e=>Math.sin(e)),gz={kernelName:Rs,backendName:"cpu",kernelFunc:yz},xz=ct(So,e=>Math.sinh(e)),wz={kernelName:So,backendName:"cpu",kernelFunc:xz},_z=11920928955078125e-23,Kx=Math.log(_z)+2,bz=ct(Eo,e=>{let t=e>-Kx,n=e{let d=[...u];d[o]=h;let p=ai({inputs:{x:a},backend:n,attrs:{begin:c,size:d}});return c[o]+=h,p})}var Ez={kernelName:Co,backendName:"cpu",kernelFunc:Tz},Cz=ct(Ms,e=>Math.sqrt(e)),Rz={kernelName:Ms,backendName:"cpu",kernelFunc:Cz},Fz={kernelName:mu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;Ie(n,"square");let a=r.data.get(n.dataId).values,s=new Float32Array(a.length);for(let i=0;i{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),$z={kernelName:ya,backendName:"cpu",kernelFunc:Mz};function Dz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r;Ie(a,"stridedSlice");let{nonStrided:p,$begin:f,$strides:m,size:A,newShape:y,outShape:g}=sn.sliceInfo(a.shape,s,i,o,l,c,u,h,d),w=wt({inputs:{x:a},backend:n,attrs:{shape:y}}),x;if(p){let b=ai({inputs:{x:w},backend:n,attrs:{begin:f,size:A}});x=wt({inputs:{x:b},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(b)}else if(g.some(b=>b===0))x=n.makeTensorInfo(g,a.dtype,[]);else{let b=n.bufferSync(w),T=Ix(g,b,m,f);x=n.makeTensorInfo(T.shape,T.dtype,T.values)}let _=wt({inputs:{x},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(w),n.disposeIntermediateTensorInfo(x),_}var Oz={kernelName:Ro,backendName:"cpu",kernelFunc:Dz},zz=ct(Fo,e=>Math.tan(e)),Pz={kernelName:Fo,backendName:"cpu",kernelFunc:zz},Lz=ct(Ps,e=>Math.tanh(e)),Wz={kernelName:Ps,backendName:"cpu",kernelFunc:Lz};function Bz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;Ie(a,"tile");let i=Sx(n.bufferSync(a),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var Vz={kernelName:Aa,backendName:"cpu",kernelFunc:Bz};function Uz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r;Ie(a,"topk");let o=n.data.get(a.dataId).values,[l,c]=Tx(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var jz={kernelName:Mo,backendName:"cpu",kernelFunc:Uz};function Hz(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;Ie(s,"unique");let i=r.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:c}=Ex(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([c.length],"int32",c)]}var Gz={kernelName:Vh,backendName:"cpu",kernelFunc:Hz};function qz(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape.length,o=a.shape[s],l=new Array(i-1),c=0;for(let p=0;pn.disposeIntermediateTensorInfo(f)),p}var Zz={kernelName:Au,backendName:"cpu",kernelFunc:Kz},Yz=[gM,vF,wM,bM,EF,kM,NM,TM,CM,FM,$M,OM,PM,BM,UM,GM,XM,ZM,JM,AM,e$,n$,a$,SF,RF,i$,kF,l$,c$,p$,m$,h$,x$,_$,y$,v$,I$,S$,E$,R$,M$,$$,O$,P$,W$,B$,U$,V$,nA,uM,H$,q$,tD,FF,nD,$F,lD,cD,hD,OF,fD,AD,gD,wD,bD,PF,ID,IF,SD,u$,ED,RD,MD,cM,WF,OD,PD,VF,WD,UD,HD,XD,ZD,JD,jF,tO,rO,sO,oO,uO,QD,dO,fO,GF,AO,xO,vO,XF,ZF,NO,EO,FO,JF,$O,OO,zO,qx,BO,dM,tM,UO,NF,HO,pM,fM,mM,qO,KO,YO,QO,tz,nz,az,rM,iz,lz,dz,fz,Az,gz,wz,aM,_O,vz,Iz,Sz,Ez,Rz,Fz,iM,$z,Oz,lM,cO,Pz,Wz,Vz,jz,QF,Gz,Xz,Zz,DO];for(let e of Yz)zo(e);var a0={};Pe(a0,{assertNotComplex:()=>ul,bindCanvasToFramebuffer:()=>eP,bindColorTextureToFramebuffer:()=>Xd,bindTextureToProgramUniformSampler:()=>cw,bindTextureUnit:()=>ow,bindVertexBufferToProgramAttribute:()=>sA,callAndCheck:()=>ve,canBeRepresented:()=>Zx,createFragmentShader:()=>Qx,createFramebuffer:()=>iw,createProgram:()=>ew,createStaticIndexBuffer:()=>rw,createStaticVertexBuffer:()=>nw,createTexture:()=>aw,createVertexShader:()=>Jx,getBatchDim:()=>si,getExtensionOrThrow:()=>Qu,getFramebufferErrorMessage:()=>hw,getMaxTexturesInShader:()=>fw,getNumChannels:()=>Jz,getProgramUniformLocation:()=>uw,getProgramUniformLocationOrThrow:()=>lw,getRowsCols:()=>ii,getShapeAs3D:()=>Kd,getTextureShapeFromLogicalShape:()=>dw,getWebGLDisjointQueryTimerVersion:()=>mw,getWebGLErrorMessage:()=>Yx,getWebGLMaxTextureSize:()=>pw,hasExtension:()=>Gn,isCapableOfRenderingToFloatTexture:()=>Aw,isDownloadFloatTextureEnabled:()=>yw,isReshapeFree:()=>tc,isWebGLFenceEnabled:()=>gw,isWebGLVersionEnabled:()=>oA,linkProgram:()=>tw,resetMaxTextureSize:()=>tP,resetMaxTexturesInShader:()=>nP,unbindColorTextureFromFramebuffer:()=>iA,unbindTextureUnit:()=>Qz,validateFramebuffer:()=>ec,validateProgram:()=>qd,validateTextureSize:()=>sw});var oi={},lA={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function nm(e,t){oi[e]=t}function Wr(e){if(!(e in oi)){let n=rP(e);if(n!==null)oi[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=oi[e];return t.isContextLost()?(delete oi[e],Wr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),oi[e])}function aP(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function rP(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=aP(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete oi[e]},!1),e===1?t.getContext("webgl",lA)||t.getContext("experimental-webgl",lA):t.getContext("webgl2",lA)}var nc;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(nc||(nc={}));var qn;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(qn||(qn={}));var Jt;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Jt||(Jt={}));function rc(e,t){return[t,e]}function sP(e,t){return e*t}function ac(e){let t=k.sizeFromShape(e),n=Math.ceil(t/4);return k.sizeToSquarishShape(n)}function cl(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function iP(e,t){let[n,r]=cl(e,t);return n*r*4}function uA(e,t){let n=e,r,a,s,i,o,l,c,u,h,d;return ee().getNumber("WEBGL_VERSION")===2?(r=n.R32F,a=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,c=4,u=1,h=n.HALF_FLOAT,d=n.FLOAT):(r=e.RGBA,a=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,c=4,u=4,h=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:r,internalFormatHalfFloat:a,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:h,textureTypeFloat:d}}function ve(e,t){let n=t();return ee().getBool("DEBUG")&&oP(e),n}function oP(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+Yx(e,t))}var lP=596e-10,uP=65504;function Zx(e){return!!(ee().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||lPe.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function Jx(e,t){let n=sa(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(ve(e,()=>e.shaderSource(n,t)),ve(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function Qx(e,t){let n=sa(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(ve(e,()=>e.shaderSource(n,t)),ve(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw cP(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var hP=/ERROR: [0-9]+:([0-9]+):/g;function cP(e,t){let n=hP.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],a=e.split(` `),s=a.length.toString().length+2,i=a.map((h,d)=>k.rightPad((d+1).toString(),s)+h),o=0;for(let h=0;he.createProgram(),"Unable to create WebGLProgram.")}function tw(e,t){if(ve(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function qd(e,t){if(ve(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function nw(e,t){let n=sa(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ve(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),ve(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function rw(e,t){let n=sa(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ve(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),ve(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function Jz(){return ee().getNumber("WEBGL_VERSION")===2?1:4}function aw(e){return sa(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function sw(e,t){let n=ee().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,a=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+a+".")}}function iw(e){return sa(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function sA(e,t,n,r,a,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(ve(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),ve(e,()=>e.vertexAttribPointer(o,a,e.FLOAT,!1,s,i)),ve(e,()=>e.enableVertexAttribArray(o)),!0)}function ow(e,t,n){xw(e,n),ve(e,()=>e.activeTexture(e.TEXTURE0+n)),ve(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function Qz(e,t){xw(e,t),ve(e,()=>e.activeTexture(e.TEXTURE0+t)),ve(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function lw(e,t,n){return sa(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function uw(e,t,n){return e.getUniformLocation(t,n)}function cw(e,t,n,r){ve(e,()=>ow(e,t,r)),ve(e,()=>e.uniform1i(n,r))}function eP(e){ve(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ve(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),ve(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function Xd(e,t,n){ve(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),ve(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function iA(e,t){ve(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),ve(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function ec(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+hw(e,t))}function hw(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function sa(e,t,n){let r=ve(e,()=>t());if(r==null)throw new Error(n);return r}function xw(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(rn){let a=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${a}.`)}}function si(e,t=2){return k.sizeFromShape(e.slice(0,e.length-t))}function ii(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Kd(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[si(e),...ii(e)]),t}function dw(e,t=!1){let n=ee().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((a,s)=>s>=e.length-2?k.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=k.squeezeShape(e).newShape);let r=k.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let a=si(e),s=2,i=2;return e.length&&([s,i]=ii(e)),r=a*(s/2)*(i/2),k.sizeToSquarishShape(r).map(o=>o*2)}return k.sizeToSquarishShape(r)}function Zd(e){return e%2==0}function tc(e,t){if(e=e.slice(-2),t=t.slice(-2),k.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||Zd(n)&&Zd(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Zd(e[0])&&Zd(t[0])}var Yd,Jd;function pw(e){if(Yd==null){let t=Wr(e);Yd=t.getParameter(t.MAX_TEXTURE_SIZE)}return Yd}function tP(){Yd=null}function nP(){Jd=null}function fw(e){if(Jd==null){let t=Wr(e);Jd=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Jd)}function mw(e){if(e===0)return 0;let t,n=Wr(e);return Gn(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Gn(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Gn(e,t){return e.getExtension(t)!=null}function oA(e){try{if(Wr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function Aw(e){if(e===0)return!1;let t=Wr(e);if(e===1){if(!Gn(t,"OES_texture_float"))return!1}else if(!Gn(t,"EXT_color_buffer_float"))return!1;return cA(t)}function yw(e){if(e===0)return!1;let t=Wr(e);if(e===1){if(!Gn(t,"OES_texture_float")||!Gn(t,"WEBGL_color_buffer_float"))return!1}else{if(Gn(t,"EXT_color_buffer_float"))return cA(t);let n="EXT_color_buffer_half_float";if(Gn(t,n)){let r=t.getExtension(n);return dP(t,r)}return!1}return cA(t)}function cA(e){let t=uA(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,a,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function dP(e,t){let n=uA(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let a=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,a,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(i),o}function gw(e){return e!==2?!1:Wr(e).fenceSync!=null}function ul(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var De=ee();De.registerFlag("HAS_WEBGL",()=>De.getNumber("WEBGL_VERSION")>0);De.registerFlag("WEBGL_VERSION",()=>oA(2)?2:oA(1)?1:0);De.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);De.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>De.get("WEBGL_VERSION")===2);De.registerFlag("WEBGL_CPU_FORWARD",()=>!0);De.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);De.registerFlag("WEBGL_PACK",()=>De.getBool("HAS_WEBGL"));De.registerFlag("WEBGL_PACK_NORMALIZATION",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_CLIP",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);De.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_REDUCE",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_LAZILY_UNPACK",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_CONV_IM2COL",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>pw(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>fw(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=De.getNumber("WEBGL_VERSION");return e===0?0:mw(e)});De.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>De.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Hh.isMobile());De.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>Aw(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>De.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:De.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));De.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>yw(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_FENCE_API_ENABLED",()=>gw(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>De.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);De.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});function ln(){let e,t,n,r,a,s,i,o,l,c;return ee().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",a="texture",s="outputColor",i="out vec4 outputColor;",o=` bool isnan_custom(float val) { return (val > 0.0 || val < 0.0) ? false : val != 0.0; } bvec4 isnan_custom(vec4 val) { return bvec4(isnan_custom(val.x), isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w)); } #define isnan(value) isnan_custom(value) `,l="",c=` #define round(value) newRound(value) int newRound(float value) { return int(floor(value + 0.5)); } ivec4 newRound(vec4 value) { return ivec4(floor(value + vec4(0.5))); } `):(e="",t="attribute",n="varying",r="varying",a="texture2D",s="gl_FragColor",i="",o=` #define isnan(value) isnan_custom(value) bool isnan_custom(float val) { return (val > 0. || val < 1. || val == 0.) ? false : true; } bvec4 isnan_custom(vec4 val) { return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w)); } `,l=` uniform float INFINITY; bool isinf(float val) { return abs(val) == INFINITY; } bvec4 isinf(vec4 val) { return equal(abs(val), vec4(INFINITY)); } `,c=` int round(float value) { return int(floor(value + 0.5)); } ivec4 round(vec4 value) { return ivec4(floor(value + vec4(0.5))); } `),{version:e,attribute:t,varyingVs:n,varyingFs:r,texture2D:a,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:c}}function li(e,t,n="index"){let r=k.computeStrides(t);return r.map((a,s)=>{let i=`int ${e[s]} = ${n} / ${a}`,o=s===r.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${a}`:`index -= ${e[s]} * ${a}`;return`${i}; ${o};`}).join("")}function hA(e){let t=k.computeStrides(e).map(n=>n.toString());return` int getFlatIndex(ivec3 coords) { return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z; } `}var ww=` const float FLOAT_MAX = 1.70141184e38; const float FLOAT_MIN = 1.17549435e-38; lowp vec4 encode_float(highp float v) { if (isnan(v)) { return vec4(255, 255, 255, 255); } highp float av = abs(v); if(av < FLOAT_MIN) { return vec4(0.0, 0.0, 0.0, 0.0); } else if(v > FLOAT_MAX) { return vec4(0.0, 0.0, 128.0, 127.0) / 255.0; } else if(v < -FLOAT_MAX) { return vec4(0.0, 0.0, 128.0, 255.0) / 255.0; } highp vec4 c = vec4(0,0,0,0); highp float e = floor(log2(av)); highp float m = exp2(fract(log2(av))) - 1.0; c[2] = floor(128.0 * m); m -= c[2] / 128.0; c[1] = floor(32768.0 * m); m -= c[1] / 32768.0; c[0] = floor(8388608.0 * m); highp float ebias = e + 127.0; c[3] = floor(ebias / 2.0); ebias -= c[3] * 2.0; c[2] += floor(ebias) * 128.0; c[3] += 128.0 * step(0.0, -v); return c / 255.0; } `,pP=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=nc.DENSE;let t=ac(e),n=ln();this.outputShape=e,this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { ${li(["r","c","d"],e)} return ivec3(r, c, d); } void main() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y); vec4 result = vec4(0.); for (int i=0; i<4; i++) { int flatIndex = index + i; ivec3 rc = outCoordsFromFlatIndex(flatIndex); result[i] = getA(rc.x, rc.y, rc.z); } ${n.output} = result; } `}},fP=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=nc.DENSE;let t=ac(e),n=ln();this.outputShape=e,this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { ${li(["r","c","d"],e)} return ivec3(r, c, d); } void main() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y); vec4 result = vec4(0.); for (int i=0; i<4; i++) { int flatIndex = index + i; ivec3 rc = outCoordsFromFlatIndex(flatIndex); result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z)); } ${n.output} = result; } `}},mP=class{constructor(e){this.variableNames=["A"],this.outTexUsage=qn.DOWNLOAD;let t=ln();this.outputShape=e,this.userCode=` ${ww} void main() { float x = getAAtOutCoords(); ${t.output} = encode_float(x); } `}},AP=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=qn.DOWNLOAD;let t=ln();this.outputShape=e,this.userCode=` ${ww} void main() { ivec3 coords = getOutputCoords(); float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z)); ${t.output} = encode_float(x); } `}},yP=class{constructor(e,t,n=!1){this.variableNames=["A"];let r=ln(),[a,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=` ${hA(e)} void main() { ivec3 coords = getOutputCoords(); int flatIndex = getFlatIndex(coords); int offset = imod(flatIndex, 4); flatIndex = idiv(flatIndex, 4, 1.); int r = flatIndex / ${s}; int c = imod(flatIndex, ${s}); vec2 uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${a}.0); vec4 values = ${r.texture2D}(A, uv); float result; if(offset == 0) { result = values[0]; } else if(offset == 1) { result = values[1]; } else if(offset == 2) { result = values[2]; } else { result = values[3]; } ${r.output} = vec4(${i}, 0., 0., 0.); } `}},gP=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let r=ln(),[a,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let c=0;c<=1;c++){let u=l*2+c;i+=` localCoords = coords; if(localCoords[2] + ${c} < ${e[2]}) { localCoords[2] += ${c}; if(localCoords[1] + ${l} < ${e[1]}) { localCoords[1] += ${l}; flatIndex = getFlatIndex(localCoords); offset = imod(flatIndex, 4); flatIndex = idiv(flatIndex, 4, 1.); r = flatIndex / ${s}; c = imod(flatIndex, ${s}); uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${a}.0); values = ${r.texture2D}(A, uv); if(offset == 0) { result[${u}] = values[0]; } else if(offset == 1) { result[${u}] = values[1]; } else if(offset == 2) { result[${u}] = values[2]; } else { result[${u}] = values[3]; } } } `}this.userCode=` ${hA(e)} void main() { ivec3 coords = getOutputCoords(); vec4 result = vec4(0.); int flatIndex, r, c, offset; ivec3 localCoords; vec2 uv; vec4 values; ${i} ${r.output} = ${o}; } `}},s0={};Pe(s0,{bindVertexProgramAttributeStreams:()=>Ew,createBufferFromOutputTexture:()=>Fw,createFloat16MatrixTexture:()=>Iw,createFloat16PackedMatrixTexture:()=>Tw,createFloat32MatrixTexture:()=>kw,createIndexBuffer:()=>vw,createPackedMatrixTexture:()=>Sw,createUnsignedBytesMatrixTexture:()=>Nw,createVertexBuffer:()=>bw,createVertexShader:()=>_w,downloadByteEncodedFloatMatrixFromOutputTexture:()=>$w,downloadFloat32MatrixFromBuffer:()=>Mw,downloadMatrixFromPackedOutputTexture:()=>Ow,downloadPackedMatrixFromBuffer:()=>Dw,getInternalFormatForFloat16MatrixTexture:()=>pA,getInternalFormatForFloat16PackedMatrixTexture:()=>AA,getInternalFormatForFloat32MatrixTexture:()=>dA,getInternalFormatForPackedMatrixTexture:()=>mA,getInternalFormatForUnsignedBytesMatrixTexture:()=>fA,uploadDenseMatrixToTexture:()=>Cw,uploadPixelDataToTexture:()=>Rw});function _w(e){let t=ln(),n=`${t.version} precision highp float; ${t.attribute} vec3 clipSpacePos; ${t.attribute} vec2 uv; ${t.varyingVs} vec2 resultUV; void main() { gl_Position = vec4(clipSpacePos, 1); resultUV = uv; }`;return Jx(e,n)}function bw(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return nw(e,t)}function vw(e){let t=new Uint16Array([0,1,2,2,1,3]);return rw(e,t)}function sc(e,t,n,r,a,s){sw(t,n);let i=aw(e),o=e.TEXTURE_2D;return ve(e,()=>e.bindTexture(o,i)),ve(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),ve(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),ve(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),ve(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),ve(e,()=>e.texImage2D(o,0,r,t,n,0,a,s,null)),ve(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function dA(e){return e.internalFormatFloat}function kw(e,t,n,r){let[a,s]=rc(t,n);return sc(e,a,s,dA(r),r.textureFormatFloat,e.FLOAT)}function pA(e){return e.internalFormatHalfFloat}function Iw(e,t,n,r){let[a,s]=rc(t,n);return sc(e,a,s,pA(r),r.textureFormatFloat,r.textureTypeHalfFloat)}function fA(e){return e.downloadTextureFormat}function Nw(e,t,n,r){let[a,s]=rc(t,n);return sc(e,a,s,fA(r),e.RGBA,e.UNSIGNED_BYTE)}function mA(e){return e.internalFormatPackedFloat}function Sw(e,t,n,r){let[a,s]=cl(t,n);return sc(e,a,s,mA(r),e.RGBA,e.FLOAT)}function AA(e){return e.internalFormatPackedHalfFloat}function Tw(e,t,n,r){let[a,s]=cl(t,n);return sc(e,a,s,AA(r),e.RGBA,r.textureTypeHalfFloat)}function Ew(e,t,n){let r=0,a=3*4,s=3*4+2*4;return ve(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),sA(e,t,"clipSpacePos",n,3,s,r)&&sA(e,t,"uv",n,2,s,a)}function Cw(e,t,n,r,a,s){ve(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;a instanceof Uint8Array?(i=new Uint8Array(n*r*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*r*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(a),ve(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,r,0,e.RGBA,o,i)),ve(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Rw(e,t,n){ve(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?ve(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):ve(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),ve(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Fw(e,t,n,r){let a=e.createBuffer();ve(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,a));let s=4*4*t*n;return ve(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),ve(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),ve(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),a}function Mw(e,t,n){let r=e,a=new Float32Array(n);return r.bindBuffer(r.PIXEL_PACK_BUFFER,t),r.getBufferSubData(r.PIXEL_PACK_BUFFER,0,a),r.bindBuffer(r.PIXEL_PACK_BUFFER,null),a}function $w(e,t,n,r){let[a,s]=rc(t,n),i=4,o=new Uint8Array(sP(t*n,i));return ve(e,()=>e.readPixels(0,0,a,s,r.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function Dw(e,t,n,r,a,s,i,o){let l=e,c=new Float32Array(iP(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function Ow(e,t,n){let r=new Float32Array(t*n*4);return ve(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,r)),r}var rm=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=ee().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,nm(t,e)):this.gl=Wr(t);let n="WEBGL_color_buffer_float",r="EXT_color_buffer_half_float";if(ee().getNumber("WEBGL_VERSION")===1){let a="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=Qu(this.gl,a),Gn(this.gl,s))this.textureHalfFloatExtension=Qu(this.gl,s);else if(ee().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Gn(this.gl,r))this.colorBufferHalfFloatExtension=Qu(this.gl,r);else if(ee().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Gn(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Gn(this.gl,r))this.colorBufferHalfFloatExtension=this.gl.getExtension(r);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=bw(this.gl),this.indexBuffer=vw(this.gl),this.framebuffer=iw(this.gl),this.textureConfig=uA(this.gl,this.textureHalfFloatExtension)}get debug(){return ee().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;ve(e,()=>e.finish()),ve(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ve(e,()=>e.deleteFramebuffer(this.framebuffer)),ve(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),ve(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),ve(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),kw(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),Iw(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),Nw(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),Rw(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,r){this.throwIfDisposed(),Cw(this.gl,e,t,n,r,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),Tw(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),Sw(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(iA(this.gl,this.framebuffer),this.outputTexture=null),ve(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>$w(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,r,a,s){return Dw(this.gl,e,t,n,r,a,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return Mw(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let r=Fw(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),r}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(ee().getBool("WEBGL_FENCE_API_ENABLED")){let r=e,a=r.fenceSync(r.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=r.clientWaitSync(a,0,0);return s===r.ALREADY_SIGNALED||s===r.CONDITION_SATISFIED},t=a}else ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>Ow(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=Qx(t,e),r=_w(t),a=ew(t);return ve(t,()=>t.attachShader(a,r)),ve(t,()=>t.attachShader(a,n)),tw(t,a),this.debug&&qd(t,a),this.vertexAttrsAreBound||(this.setProgram(a),this.vertexAttrsAreBound=Ew(t,this.program,this.vertexBuffer)),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&ve(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&qd(this.gl,this.program),ve(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?lw(this.gl,e,t):uw(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),ve(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),cw(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[r,a]=cl(t,n);this.setOutputMatrixTextureDriver(e,r,a)}setOutputMatrixWriteRegion(e,t,n,r){this.setOutputMatrixWriteRegionDriver(n,e,r,t)}setOutputPackedMatrixWriteRegion(e,t,n,r){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&qd(this.gl,this.program),ec(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),ve(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),ve(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Qu(this.gl,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.createQuery();return n.beginQuery(r.TIME_ELAPSED_EXT,a),a}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await k.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),a&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),r=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),r&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=xP(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&k.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Xd(this.gl,e,this.framebuffer),this.debug&&ec(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Xd(this.gl,this.outputTexture,this.framebuffer),this.debug&&ec(this.gl)):iA(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let r=this.gl;Xd(r,e,this.framebuffer),this.debug&&ec(r),this.outputTexture=e,ve(r,()=>r.viewport(0,0,t,n)),ve(r,()=>r.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,r){this.throwIfDisposed(),ve(this.gl,()=>this.gl.scissor(e,t,n,r))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function xP(e){let t=0;for(;t{let f=k.sizeFromShape(p.shapeInfo.logicalShape);p.shapeInfo.isUniform?a.push(`uniform float ${p.name}${f>1?`[${f}]`:""};`):(a.push(`uniform sampler2D ${p.name};`),a.push(`uniform int offset${p.name};`))});let s=a.join(` `),i=e.map(p=>wP(p,t,r)).join(` `),o=t.texShape,l=ln(),c=vP(l),u,h,d=NP(l);return t.isPacked?(u=_P(t.logicalShape,o),h=IP(l)):(u=bP(t.logicalShape,o),h=kP(l)),r&&(d+=SP),[d,c,h,s,u,i,n].join(` `)}function hl(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return EP(e);case 1:return CP(e);case 2:return RP(e);case 3:return FP(e);case 4:return MP(e);case 5:return $P(e);case 6:return DP(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function Pw(e){switch(e.shapeInfo.logicalShape.length){case 0:return OP(e);case 1:return zP(e);case 2:return PP(e);case 3:return LP(e);default:return WP(e)}}function wP(e,t,n=!1){let r="";n?r+=Pw(e):r+=hl(e);let a=e.shapeInfo.logicalShape,s=t.logicalShape;return a.length<=s.length&&(n?r+=BP(e,t):r+=VP(e,t)),r}function _P(e,t){switch(e.length){case 0:return Lw();case 1:return UP(e,t);case 2:return GP(e,t);case 3:return jP(e,t);default:return HP(e,t)}}function bP(e,t){switch(e.length){case 0:return Lw();case 1:return qP(e,t);case 2:return JP(e,t);case 3:return XP(e,t);case 4:return KP(e,t);case 5:return ZP(e,t);case 6:return YP(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function vP(e){return` float sampleTexture(sampler2D textureSampler, vec2 uv) { return ${e.texture2D}(textureSampler, uv).r; } `}function kP(e){return` void setOutput(float val) { ${e.output} = vec4(val, 0, 0, 0); } `}function IP(e){return` void setOutput(vec4 val) { ${e.output} = val; } `}function NP(e){return`${e.version} precision highp float; precision highp int; precision highp sampler2D; ${e.varyingFs} vec2 resultUV; ${e.defineOutput} const vec2 halfCR = vec2(0.5, 0.5); struct ivec5 { int x; int y; int z; int w; int u; }; struct ivec6 { int x; int y; int z; int w; int u; int v; }; uniform float NAN; ${e.defineSpecialNaN} ${e.defineSpecialInf} ${e.defineRound} int imod(int x, int y) { return x - y * (x / y); } int idiv(int a, int b, float sign) { int res = a / b; int mod = imod(a, b); if (sign < 0. && mod != 0) { res -= 1; } return res; } //Based on the work of Dave Hoskins //https://www.shadertoy.com/view/4djSRW #define HASHSCALE1 443.8975 float random(float seed){ vec2 p = resultUV * seed; vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1); p3 += dot(p3, p3.yzx + 19.19); return fract((p3.x + p3.y) * p3.z); } ${QP} ${eL} ${tL} `}var QP=` vec2 uvFromFlat(int texNumR, int texNumC, int index) { int texR = index / texNumC; int texC = index - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } vec2 packedUVfrom1D(int texNumR, int texNumC, int index) { int texelIndex = index / 2; int texR = texelIndex / texNumC; int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } `,eL=` vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR, int texNumC, int row, int col) { int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2); int texR = texelIndex / texNumC; int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } `,tL=` vec2 packedUVfrom3D(int texNumR, int texNumC, int texelsInBatch, int texelsInLogicalRow, int b, int row, int col) { int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2); int texR = index / texNumC; int texC = index - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } `,SP=` float getChannel(vec4 frag, vec2 innerDims) { vec2 modCoord = mod(innerDims, 2.); return modCoord.x == 0. ? (modCoord.y == 0. ? frag.r : frag.g) : (modCoord.y == 0. ? frag.b : frag.a); } float getChannel(vec4 frag, int dim) { float modCoord = mod(float(dim), 2.); return modCoord == 0. ? frag.r : frag.g; } `;function Lw(){return` int getOutputCoords() { return 0; } `}function UP(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?` int getOutputCoords() { return 2 * int(resultUV.x * ${n[1]}.0); } `:n[1]===1?` int getOutputCoords() { return 2 * int(resultUV.y * ${n[0]}.0); } `:` int getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]})); return 2 * (resTexRC.x * ${n[1]} + resTexRC.y); } `}function qP(e,t){return t[0]===1?` int getOutputCoords() { return int(resultUV.x * ${t[1]}.0); } `:t[1]===1?` int getOutputCoords() { return int(resultUV.y * ${t[0]}.0); } `:` int getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); return resTexRC.x * ${t[1]} + resTexRC.y; } `}function jP(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]})); int index = resTexRC.x * ${n[1]} + resTexRC.y; int b = index / ${a}; index -= b * ${a}; int r = 2 * (index / ${r}); int c = imod(index, ${r}) * 2; return ivec3(b, r, c); } `}function XP(e,t){let n=li(["r","c","d"],e);return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); int index = resTexRC.x * ${t[1]} + resTexRC.y; ${n} return ivec3(r, c, d); } `}function HP(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),s=a,i="",o="b, r, c";for(let l=2;l=1?u="coords = 0;":u=o.map(A=>`coords.${h[A+c]} = 0;`).join(` `);let d="";i<2&&s>0?d="coords":d=e.shapeInfo.logicalShape.map((A,y)=>`coords.${h[y+c]}`).join(", ");let p="return outputValue;",f=k.sizeFromShape(e.shapeInfo.logicalShape)===1,m=k.sizeFromShape(t.logicalShape)===1;if(s===1&&!f&&!m)p=` return vec4(outputValue.xy, outputValue.xy); `;else if(f&&!m)i===1?p=` return vec4(outputValue.x, outputValue.x, 0., 0.); `:p=` return vec4(outputValue.x); `;else if(o.length){let A=s-2,y=s-1;o.indexOf(A)>-1&&o.indexOf(y)>-1?p="return vec4(outputValue.x);":o.indexOf(A)>-1?p="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(p="return vec4(outputValue.xx, outputValue.zz);")}return` vec4 ${a}() { ${l} coords = getOutputCoords(); ${u} vec4 outputValue = get${r}(${d}); ${p} } `}function VP(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&k.arraysEqual(i,s))return` float ${a}() { return sampleTexture(${n}, resultUV); } `;let c=ft(l),u=zw(e.shapeInfo.logicalShape,t.logicalShape),h=l-o,d,p=["x","y","z","w","u","v"];o===0?d="":l<2&&u.length>=1?d="coords = 0;":d=u.map(m=>`coords.${p[m+h]} = 0;`).join(` `);let f="";return l<2&&o>0?f="coords":f=e.shapeInfo.logicalShape.map((m,A)=>`coords.${p[A+h]}`).join(", "),` float ${a}() { ${c} coords = getOutputCoords(); ${d} return get${r}(${f}); } `}function ft(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function pl(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function fl(e,t){return t.map(n=>e[n]).join(", ")}function nL(e,t,n,r){let a=t.userCode,s=n.map((p,f)=>{let m={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(m.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[f],shapeInfo:m}}),i=s.map(p=>p.shapeInfo),o={logicalShape:r.shape,texShape:r.texData.texShape,isUniform:!1,isPacked:r.texData.isPacked,flatOffset:null},l=TP(s,o,a,t.packedInputs),c=e.createProgram(l),u=null,h=e.getUniformLocation(c,"NAN",!1);ee().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(c,"INFINITY",!1));let d={};for(let p=0;p{let a=n.logicalShape,s=t[r],i=s.shape;if(!k.arraysEqual(a,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${a} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!k.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function rL(e,t,n,r,a){Ww(t.inShapeInfos,n),Ww([t.outShapeInfo],[r]);let s=r.texData.texture,i=r.texData.texShape;r.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),ee().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let c=t.program.variableNames[l],u=t.uniformLocations[c],h=t.uniformLocations[`offset${c}`];if(u!=null){if(o.isUniform){if(k.sizeFromShape(o.shape)<2)e.gl.uniform1f(u,o.uniformValues[0]);else{let d=o.uniformValues;d instanceof Float32Array||(d=new Float32Array(d)),e.gl.uniform1fv(u,d)}return}o.texData.slice!=null&&h!=null&&e.gl.uniform1i(h,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,u,l)}}),a!=null&&a(e,t.webGLProgram),e.executeProgram()}function aL(e,t,n){let r="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;r+=`${i.shape}_${l}_${o}`});let a=e.userCode,s=e.constructor.name;return s+="_"+r+"_"+a,s}var{addImpl:sL,bincountImpl:Bw,bincountReduceImpl:iL,ceilImpl:oL,concatImpl:lL,expImpl:uL,expm1Impl:cL,floorImpl:hL,gatherV2Impl:dL,greaterImpl:pL,lessImpl:fL,linSpaceImpl:mL,logImpl:AL,maxImpl:yL,maximumImpl:gL,minimumImpl:xL,multiplyImpl:wL,negImpl:_L,prodImpl:bL,rangeImpl:vL,rsqrtImpl:kL,simpleAbsImpl:Vw,sliceImpl:IL,stridedSliceImpl:NL,subImpl:SL,tileImpl:TL,topKImpl:EL,transposeImpl:yA,uniqueImpl:CL}=tm;function Uw(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function un(e,t){return t===1?[e]:Uw(e,t)}function RL(e,t){if(e===1)return"rc";let n="";for(let r=0;r ${t[0]}`;let r="";for(let a=e-2;a= ${t[a]}`,a= ${t}; bool rEdge = rp1 >= ${n}; `}function $L(e,t){let n=e.length,r=OL(n,t);return n===1?`getA(rc), rc + 1 >= ${e[0]} ? 0. : getA(rc + 1), 0, 0`:`getA(${r[0]}), cEdge ? 0. : getA(${r[1]}), rEdge ? 0. : getA(${r[2]}), rEdge || cEdge ? 0. : getA(${r[3]})`}var jw=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let r=0;r<4;r++){let a="thisRC = rc;";r%2==1&&(a+="thisRC.z += 1;"),r>1&&(a+="thisRC.y += 1;"),n+=` ${a} ${r>0?"if(thisRC.y < rows && thisRC.z < cols){":""} int flatIndex = getFlatIndex(thisRC); ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex); vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z)); result[${r}] = getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims); ${r>0?"}":""} `}this.userCode=` ${zL(t)} ${hA(e)} void main() { ivec3 rc = getOutputCoords(); vec4 result = vec4(0.); ivec3 thisRC; int rows = ${e[1]}; int cols = ${e[2]}; ${n} setOutput(result); } `}};function zL(e){return` ivec3 inputCoordsFromReshapedOutCoords(int index) { ${li(["r","c","d"],e)} return ivec3(r, c, d); } `}var PL=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let r=Gw(t,n),a=qw(e,r,n);a in this.freeTextures||(this.freeTextures[a]=[]),a in this.usedTextures||(this.usedTextures[a]=[]);let s=Hw(e,r,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[a].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[a].shift();return this.usedTextures[a].push(o),o}let i;return r===Jt.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):r===Jt.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):r===Jt.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):r===Jt.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):r===Jt.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[a].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,r){if(this.freeTextures==null)return;let a=Gw(n,r),s=qw(t,a,r);s in this.freeTextures||(this.freeTextures[s]=[]);let i=Hw(t,a,this.gpgpu.gl,this.gpgpu.textureConfig,r),o=ee().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function LL(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function Hw(e,t,n,r,a){let s=WL(t,r),i;if(a){let[l,c]=cl(e[0],e[1]);i=l*c}else{let[l,c]=rc(e[0],e[1]);i=l*c}let o=LL(n,s);return i*o}function WL(e,t){switch(e){case Jt.PACKED_2X2_FLOAT32:return mA(t);case Jt.PACKED_2X2_FLOAT16:return AA(t);case Jt.UNPACKED_FLOAT32:return dA(t);case Jt.UNPACKED_FLOAT16:return pA(t);case Jt.PACKED_4X1_UNSIGNED_BYTE:return fA(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function BL(e){return ee().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?Jt.PACKED_2X2_FLOAT32:Jt.UNPACKED_FLOAT32:e?Jt.PACKED_2X2_FLOAT16:Jt.UNPACKED_FLOAT16}function Gw(e,t){if(e===qn.UPLOAD)return Jt.PACKED_2X2_FLOAT32;if(e===qn.RENDER||e==null)return BL(t);if(e===qn.DOWNLOAD||e===qn.PIXELS)return Jt.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function qw(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Ra=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=` float unaryOperation(float x) { ${t} } void main() { float x = getAAtOutCoords(); float y = unaryOperation(x); setOutput(y); } `}},xr="if (isnan(x)) return x;",VL="return x;",Xw="return abs(x);",UL="return (x >= 0.0) ? x : (exp(x) - 1.0);",jL=xr+` return (x < 0.0) ? 0.0 : x; `,HL=xr+` return (x < 0.0) ? 0.0 : min(6.0, x); `,Qd="return x;",GL="return x;",qL=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0); result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0); result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; `,XL=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,KL=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,ml=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=` vec4 unaryOperation(vec4 x) { ${t} } void main() { vec4 x = getAAtOutCoords(); vec4 y = unaryOperation(x); setOutput(y); } `}},ZL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=un("rc",t),r=ft(t),a=RL(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=` void main() { ${r} rc = getOutputCoords(); vec4 packedInput = getA(${a}); setOutput(getChannel(packedInput, ${i})); } `}},YL=$r.whereImpl,JL=1e-7,QL=1e-4,gA={};function eW(e){return e in gA||(gA[e]={}),gA[e]}var tW=128,nW=600;function rW(){return ee().global.screen==null?1024:ee().global.screen.height*ee().global.screen.width*window.devicePixelRatio*nW/1024/1024}var am=class extends Ql{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!ee().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Wr(ee().getNumber("WEBGL_VERSION"));this.binaryCache=eW(ee().getNumber("WEBGL_VERSION")),this.gpgpu=new rm(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new PL(this.gpgpu),this.numMBBeforeWarning=rW(),this.texData=new dh(this,Wn())}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,n){if((ee().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||ee().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let r={};return this.texData.set(r,{shape:t,dtype:n,values:e,usage:qn.UPLOAD,refCount:1,complexParentRefCount:0}),r}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}decComplexRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.complexParentRefCount>0&&t.refCount--}}move(e,t,n,r){if(ee().getBool("DEBUG")&&this.checkNumericalProblems(t),r==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:r,values:t,usage:qn.UPLOAD,refCount:1,complexParentRefCount:0})}disposeIntermediateTensorInfo(e){let t=e.dataId;if(this.texData.has(t)){let n=this.texData.get(t);n.refCount--,n.refCount<1&&this.disposeData(t)}}readSync(e){let t=this.texData.get(e),{values:n,dtype:r,complexTensorInfos:a,slice:s,shape:i,isPacked:o}=t;if(s!=null){let h;o?h=new ml(i,Qd):h=new Ra(i,Qd);let d=this.runWebGLProgram(h,[{dataId:e,shape:i,dtype:r}],r),p=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),p}if(n!=null)return this.convertAndCacheOnCPU(e);if(r==="string")return n;let l=this.activeTimers!=null,c;l&&(c=k.now());let u;if(r==="complex64"){let h=this.readSync(a.real.dataId),d=this.readSync(a.imag.dataId);u=F.mergeRealAndImagArrays(h,d)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=k.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let p=this.pendingRead.get(e);return new Promise(f=>p.push(f))}let t=this.texData.get(e),{values:n,shape:r,slice:a,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(a!=null){let p;o?p=new ml(r,Qd):p=new Ra(r,Qd);let f=this.runWebGLProgram(p,[{dataId:e,shape:r,dtype:s}],s),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(!ee().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&ee().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(s!=="complex64"&&ee().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let p=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(p.texture,...ac(r))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(s==="complex64"){let p=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),f=p[0],m=p[1];u=F.mergeRealAndImagArrays(f,m)}else if(l==null)u=this.getValuesFromTexture(e);else{let p=k.sizeFromShape(r);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,p)}c!=null&&this.disposeIntermediateTensorInfo(c);let h=this.convertAndCacheOnCPU(e,u),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(p=>p(h)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e),this.pendingDeletes--),h}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>k.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ue(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;to.query)).filter(o=>o!=null),s=k.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,r&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(a);i.kernelMs=k.sum(o),i.getExtraProfileInfo=()=>o.map((l,c)=>({name:s[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:k.now(),endMs:null}}endTimer(e){return ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=k.now(),e)}async getQueryTime(e){if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e){if(this.pendingDisposal.has(e))return;if(this.pendingRead.has(e)){this.pendingDisposal.add(e),this.pendingDeletes++;return}if(!this.texData.has(e))return;if(this.texData.get(e).complexParentRefCount>0){this.texData.get(e).refCount--;return}this.releaseGPUData(e);let{complexTensorInfos:t}=this.texData.get(e);t!=null&&(this.texData.get(t.real.dataId).complexParentRefCount--,this.disposeIntermediateTensorInfo(t.real),this.texData.get(t.imag.dataId).complexParentRefCount--,this.disposeIntermediateTensorInfo(t.imag)),this.texData.delete(e)}releaseGPUData(e){let{texture:t,dtype:n,texShape:r,usage:a,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(r,n),this.textureManager.releaseTexture(t,r,a,s)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return ee().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=Wn().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=tW){let n=this.getCPUBackend();return!ee().getBool("IS_TEST")&&!this.warnedAboutCPUBackend&&n==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),n!=null&&e.every(r=>this.texData.get(r.dataId).texture==null&&k.sizeFromShape(r.shape)0&&k.isString(n[0])){let a=n.map(s=>k.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return this.texData.get(r).usage=null,{dataId:r,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:r}=this.makeTensorInfo(e,t,n);return Wn().makeTensorFromDataId(r,e,t,this)}unpackTensor(e){let t=new ZL(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new DL(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[si(e.shape),...ii(e.shape)],r={dtype:e.dtype,shape:n,dataId:e.dataId},a=[si(t),...ii(t)],s=new jw(a,n),i=!0,o=this.runWebGLProgram(s,[r],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:r,dtype:a}=t,s=Kd(r),i;n?i=new fP(s):i=new pP(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:a,dataId:e}],a,null,o);return{dtype:a,shape:r,dataId:l.dataId}}runWebGLProgram(e,t,n,r,a=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===nc.DENSE){let f=ac(e.outputShape);i.texShape=f.map(m=>m*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),k.sizeFromShape(s.shape)===0)return i.values=k.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let m=this.texData.get(f.dataId);if(m.texture==null){if(!e.packedInputs&&k.sizeFromShape(f.shape)<=ee().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:m.values};e.packedInputs&&(m.isPacked=!0,m.shape=f.shape)}else if(!!m.isPacked!=!!e.packedInputs)f=m.isPacked?this.unpackTensor(f):this.packTensor(f),o.push(f),m=this.texData.get(f.dataId);else if(m.isPacked&&!tc(m.shape,f.shape)){let A=f,y=f.shape;f.shape=m.shape,f=this.packedReshape(f,y),o.push(f),m=this.texData.get(f.dataId),A.shape=y}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:m,isUniform:!1}});this.uploadToGPU(s.dataId);let c={shape:s.shape,texData:i,isUniform:!1},u=aL(e,l,c),h=this.getAndSaveBinary(u,()=>nL(this.gpgpu,e,l,c)),d=this.activeTimers!=null,p;if(d&&(p=this.startTimer()),rL(this.gpgpu,h,l,c,r),o.forEach(f=>this.disposeIntermediateTensorInfo(f)),d&&(p=this.endTimer(p),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(p)})),!ee().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&a===!1){let f=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),f}return s}compileAndRun(e,t,n,r,a=!1){n=n||t[0].dtype;let s=this.runWebGLProgram(e,t,n,r,a);return Wn().makeTensorFromDataId(s.dataId,s.shape,s.dtype)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(ee().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=j(()=>{if(!ee().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=ee().getBool("DEBUG");ee().set("DEBUG",!1);let t=this.abs(Te(1e-8)).dataSync()[0];if(ee().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?JL:QL}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:r,values:a,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,c;l&&(c=k.now());let u=t.texShape;if(u==null&&(u=dw(n,o),t.texShape=u),a!=null){let h=Kd(n),d,p=u[1],f=u[0],m=a instanceof Uint8Array;o?([p,f]=cl(u[0],u[1]),d=new gP(h,[f,p],m)):d=new yP(h,[f,p],m);let A=this.makeTensorInfo([f,p],r);m?this.texData.get(A.dataId).usage=qn.PIXELS:this.texData.get(A.dataId).usage=qn.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),p,f,a);let y=!0,g=this.runWebGLProgram(d,[A],r,null,y),w=this.texData.get(g.dataId);t.texture=w.texture,t.texShape=w.texShape,t.isPacked=w.isPacked,t.usage=w.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(g.dataId),t.values=null,l&&(this.uploadWaitMs+=k.now()-c)}else{let h=this.acquireTexture(u,i,r,o);t.texture=h}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:r}=n;return this.releaseGPUData(e),t!=null&&(n.values=aW(t,r)),n.values}acquireTexture(e,t,n,r){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let a=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${a} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,r)}computeBytes(e,t){return e[0]*e[1]*k.bytesPerElement(t)}};function aW(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let r=0;rnew am,2);var G4={forceHalfFloat:o0},Kw=` if (isnan(a)) return a; if (isnan(b)) return b; `,Al=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=F.assertAndGetBroadcastShape(t,n),this.userCode=` float binaryOperation(float a, float b) { ${e} } void main() { float a = getAAtOutCoords(); float b = getBAtOutCoords(); setOutput(binaryOperation(a, b)); } `}},ep=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; `,ic=class{constructor(e,t,n,r=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=F.assertAndGetBroadcastShape(t,n);let a=this.outputShape.length,s="";if(r)if(a===0||k.sizeFromShape(this.outputShape)===1)s=` result.y = 0.; result.z = 0.; result.w = 0.; `;else if(s=` ${ft(a)} coords = getOutputCoords(); `,a===1)s+=` result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y; result.z = 0.; result.w = 0.; `;else{let i=un("coords",a);s+=` bool nextRowOutOfBounds = (${i[a-2]} + 1) >= ${this.outputShape[a-2]}; bool nextColOutOfBounds = (${i[a-1]} + 1) >= ${this.outputShape[a-1]}; result.y = nextColOutOfBounds ? 0. : result.y; result.z = nextRowOutOfBounds ? 0. : result.z; result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w; `}this.userCode=` vec4 binaryOperation(vec4 a, vec4 b) { ${e} } void main() { vec4 a = getAAtOutCoords(); vec4 b = getBAtOutCoords(); vec4 result = binaryOperation(a, b); ${s} setOutput(result); } `}};function Cn(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var sW={kernelName:ro,backendName:"webgl",kernelFunc:Cn};function Fa(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.makeTensorInfo(r.shape,"complex64"),i=n.texData.get(s.dataId),o=Cn({inputs:{x:r},backend:n}),l=n.texData.get(o.dataId);l.complexParentRefCount++;let c=Cn({inputs:{x:a},backend:n}),u=n.texData.get(c.dataId);return u.complexParentRefCount++,i.complexTensorInfos={real:o,imag:c},s}var iW={kernelName:gh,backendName:"webgl",kernelFunc:Fa},Zw="return (a < 0.) ? b * a : a;",Yw=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); `;function oW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r,i=n.makeTensorInfo([],"float32",k.createScalarValue(s,"float32")),o=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new ic(Yw,a.shape,i.shape):new Al(Zw,a.shape,i.shape),l=n.runWebGLProgram(o,[a,i],a.dtype);return n.disposeIntermediateTensorInfo(i),l}var lW={kernelName:ds,backendName:"webgl",kernelFunc:oW},Jw="return (a < 0.) ? b * a : a;",Qw=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); `;function uW(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new ic(Qw,r.shape,a.shape):new Al(Jw,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)}var cW={kernelName:ks,backendName:"webgl",kernelFunc:uW},e_="if (isnan(x)) return x;",hW=` if (isnan(a)) return a; if (isnan(b)) return b; `,dW=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; `;function Qe({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:r}){return({inputs:a,backend:s})=>{let{x:i}=a,o=s,l=r||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let h=o.texData.get(i.dataId),d=n(h.values,l);return o.makeTensorInfo(i.shape,l,d)}let c=ee().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new ml(i.shape,t):u=new Ra(i.shape,e),o.runWebGLProgram(u,[i],l)}}function Qt({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:r=!1,cpuKernelImpl:a,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:c}=i,u=o;if(r&&l.dtype==="complex64"){let f=u.texData.get(l.dataId),m=u.texData.get(c.dataId),[A,y]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(w=>{let[x,_]=w,b={dataId:x.dataId,dtype:x.dtype,shape:l.shape},T={dataId:_.dataId,dtype:_.dtype,shape:c.shape},S=new Al(e,l.shape,c.shape);return u.runWebGLProgram(S,[b,T],nr(x.dtype,_.dtype))}),g=Fa({inputs:{real:A,imag:y},backend:u});return u.disposeIntermediateTensorInfo(A),u.disposeIntermediateTensorInfo(y),g}let h=s||nr(l.dtype,c.dtype);if(u.shouldExecuteOnCPU([l,c])&&a!=null){let f=u.texData.get(l.dataId),m=u.texData.get(c.dataId),[A,y]=a(l.shape,c.shape,f.values,m.values,h),g=u.makeTensorInfo(y,h),w=u.texData.get(g.dataId);return w.values=A,g}let d=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,p;return d?p=new ic(t,l.shape,c.shape,n):p=new Al(e,l.shape,c.shape),u.runWebGLProgram(p,[l,c],h)}}function tp(e,t=!1){if(e==="linear")return t?GL:VL;if(e==="relu")return t?XL:jL;if(e==="elu")return t?qL:UL;if(e==="relu6")return t?KL:HL;if(e==="prelu")return t?Qw:Jw;if(e==="leakyrelu")return t?Yw:Zw;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var t_=class{constructor(e,t,n,r=!1,a=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let c=r?e[1]:e[2],u=Math.ceil(c/2),h=r?"i * 2, rc.y":"rc.y, i * 2",d=a?"rc.z, i * 2":"i * 2, rc.z",p=r?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=a?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",A="";i&&(o?m=`vec4 activation(vec4 a) { vec4 b = getPreluActivationWeightsAtOutCoords(); ${i} }`:l?m=`vec4 activation(vec4 a) { vec4 b = getLeakyreluAlphaAtOutCoords(); ${i} }`:m=`vec4 activation(vec4 x) { ${i} }`,A="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let g="rc.x",w="rc.x";e[0]`The new shape (${l}) has ${c} elements and the old shape (${a.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let u=i.texData.get(a.dataId);return u.isPacked&&!tc(a.shape,l)&&!(u.texture!==null&&tc(u.shape,l))?fW(a,l,i):(i.incRef(a.dataId),{dataId:a.dataId,shape:l,dtype:a.dtype})}var mW={kernelName:bo,backendName:"webgl",kernelFunc:we},i_=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${k.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";a%n>0&&(c=` if (inIdx < 0 || inIdx >= ${a}) { return 0.0; } `),this.userCode=` const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float getValue(int batch, int inIdx) { ${c} return getX(batch, inIdx); } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = outIdx * ${n}; float sumValue = 0.0; for (int i = 0; i < ${i}; i += 4) { int inIdx = inOffset + i; vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), getValue(batch, inIdx + 3) ); ${l} } int inIdx = inOffset + ${i}; if (${o===1}) { vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0); ${l} } else if (${o===2}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), 0.0, 0.0); ${l} } else if (${o===3}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), 0.0); ${l} } setOutput(sumValue); } `}},AW=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,h=` if (${t==="sum"}) { sumValue += dot(values, ones); } else if (${t==="prod"}) { vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]); prodValue *= tmp[0] * tmp[1]; } else { minMaxValue = ${o}(values, minMaxValue); } `,d="vec4";t==="all"?(i="1.0",h=` bool reducedAllValue = all(values); float floatedReducedAllValue = float(reducedAllValue); allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0); `,d="bvec4"):t==="any"&&(i="0.0",h=` bool reducedAnyValue = any(values); float floatedReducedAnyValue = float(reducedAnyValue); anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0); `,d="bvec4");let p="";a%n>0&&(p=` if (inIdx < 0 || inIdx >= ${a}) { return initializationValue; } `),this.userCode=` const float initializationValue = ${i}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float getValue(int batch, int inIdx) { ${p} return getX(batch, inIdx); } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = outIdx * ${n}; vec4 minMaxValue = vec4(${i}); float prodValue = 1.0; float sumValue = 0.0; float allValue = 1.0; float anyValue = 0.0; for (int i = 0; i < ${c}; i += 4) { int inIdx = inOffset + i; ${d} values = ${d}( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), getValue(batch, inIdx + 3) ); ${h} } int inIdx = inOffset + ${c}; if (${u===1}) { ${d} values = ${d}( getValue(batch, inIdx), initializationValue, initializationValue, initializationValue ); ${h} } else if (${u===2}) { ${d} values = ${d}( getValue(batch, inIdx), getValue(batch, inIdx + 1), initializationValue, initializationValue ); ${h} } else if (${u===3}) { ${d} values = ${d}( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), initializationValue ); ${h} } setOutput(${l}); } `}};function yW(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],r=F.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:r,outSize:Math.ceil(n/r)})}return t}function ci(e,t,n,r){let a=yW(e.shape),s=e;for(let i=0;i6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],r=new Array(t);for(let a=0;a6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let r=ft(this.rank),a=Uw("rc",this.rank),s=new Array(this.rank);for(let c=0;c=2&&u>=2&&w,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${A}).`);let x=(y>g?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([p,f]);k.assert(h===d,()=>`Error in matMul: inner shapes (${h}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${r} must match.`);let _=n?[y,h,p]:[y,p,h],b=r?[g,f,d]:[g,d,f],T=we({inputs:{x:e},backend:a,attrs:{shape:_}}),S=we({inputs:{x:t},backend:a,attrs:{shape:b}}),N=[T,S],C=Math.max(y,g),$=n?T.shape[1]:T.shape[2],D=s!=null,O=i!=null,V=l==="leakyrelu",W=l!=null?tp(l,!0):null,Z=D||O||V||W!=null,K;if((p===1||f===1)&&$>o_&&Z===!1){let J=T,se=S;n&&(J=An({inputs:{x:T},backend:a,attrs:{perm:[0,2,1]}}),N.push(J)),r&&(se=An({inputs:{x:S},backend:a,attrs:{perm:[0,2,1]}}),N.push(se));let Q=f!==1,le=f===1,re=J;Q&&(re=we({inputs:{x:J},backend:a,attrs:{shape:[C,$,1]}}),N.push(re));let ce=f===1?2:1,he=se;le&&(he=we({inputs:{x:se},backend:a,attrs:{shape:[C,1,$]}}),N.push(he));let me=s_({inputs:{a:re,b:he},backend:a});K=xA({inputs:{x:me},backend:a,attrs:{axis:ce,keepDims:!0}}),N.push(me)}else{let J=nr(e.dtype,t.dtype),se=new t_(_,b,[C,p,f],n,r,D,W,O,V),Q=[T,S];if(s!=null&&Q.push(s),O&&Q.push(i),V){let le=a.makeTensorInfo([],"float32",k.createScalarValue(o,"float32"));Q.push(le),N.push(le)}K=a.runWebGLProgram(se,Q,J)}let te=we({inputs:{x:K},backend:a,attrs:{shape:x}});N.push(K);for(let J of N)a.disposeIntermediateTensorInfo(J);return te}function kW(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r;return rp({a,b:s,transposeA:l,transposeB:c,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:u})}var IW={kernelName:Ws,backendName:"webgl",kernelFunc:kW},l_="return abs(x);";function NW(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])&&r.dtype!=="complex64"){let s=n.texData.get(r.dataId),i=Vw(s.values);return n.makeTensorInfo(r.shape,r.dtype,i)}let a;return ee().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new ml(r.shape,l_):a=new Ra(r.shape,l_),n.runWebGLProgram(a,[r],r.dtype)}var SW={kernelName:Di,backendName:"webgl",kernelFunc:NW},TW=xr+` if (abs(x) > 1.) { return NAN; } return acos(x); `,EW=Qe({opSnippet:TW}),CW={kernelName:Oi,backendName:"webgl",kernelFunc:EW},RW=xr+` if (x < 1.0) return NAN; return log(x + sqrt(x * x - 1.0));`,FW=Qe({opSnippet:RW}),MW={kernelName:zi,backendName:"webgl",kernelFunc:FW},u_="return a + b;",$W=Qt({opSnippet:u_,packedOpSnippet:u_,supportsComplex:!0,cpuKernelImpl:sL}),DW={kernelName:fa,backendName:"webgl",kernelFunc:$W},OW=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`float v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=` void main() { ${n.join(` `)} float result = ${r}; setOutput(result); } `}},zW=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`vec4 v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=` void main() { ${n.join(` `)} vec4 result = ${r}; setOutput(result); } `}};function ap(e){let{inputs:t,backend:n}=e,r=t;if(r.length===1)return Cn({inputs:{x:r[0]},backend:n});if(r.length>ee().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(r.length/2),l=ap({inputs:r.slice(0,o),backend:n}),c=ap({inputs:r.slice(o),backend:n});return ap({inputs:[l,c],backend:n})}let a=r.map(o=>o.dtype).reduce((o,l)=>nr(o,l)),s=r.map(o=>o.shape),i=ee().getBool("WEBGL_PACK")?new zW(r[0].shape,s):new OW(r[0].shape,s);return n.runWebGLProgram(i,r,a)}var PW={kernelName:Za,backendName:"webgl",kernelFunc:ap};function LW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=k.parseAxisParam(s,a.shape),c=l,u=F.getAxesPermutation(c,o),h=a;u!=null&&(h=An({inputs:{x:a},backend:n,attrs:{perm:u}}),c=F.getInnerMostAxes(c.length,o)),F.assertAxesAreInnerMostDims("all",c,o);let[d,p]=F.computeOutAndReduceShapes(h.shape,c),f=k.sizeFromShape(p),m=we({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=ci(m,m.dtype,"all",n),y;if(i){let g=F.expandShapeToKeepDim(d,l);y=we({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=we({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var WW={kernelName:ph,backendName:"webgl",kernelFunc:LW};function BW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=k.parseAxisParam(s,a.shape),c=l,u=F.getAxesPermutation(c,o),h=a;u!=null&&(h=An({inputs:{x:a},backend:n,attrs:{perm:u}}),c=F.getInnerMostAxes(c.length,o)),F.assertAxesAreInnerMostDims("any",c,o);let[d,p]=F.computeOutAndReduceShapes(h.shape,c),f=k.sizeFromShape(p),m=we({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=ci(m,m.dtype,"any",n),y;if(i){let g=F.expandShapeToKeepDim(d,l);y=we({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=we({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var VW={kernelName:fh,backendName:"webgl",kernelFunc:BW},UW=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:r,batchSize:a,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[a,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=` void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = outIdx * ${r}; int bestIndex = inOffset; float bestValue = getA(batch, bestIndex); for (int i = 0; i < ${r}; i++) { int inIdx = ${o}; float candidate = getA(batch, inIdx); if (candidate ${i} bestValue) { bestValue = candidate; bestIndex = inIdx; } } setOutput(float(bestIndex)); } `}},jW=class{constructor(e,t,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,k.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let a=e[e.length-1],s=Math.ceil(a/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),r||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=ft(o),c=un("coords",o),u,h;if(s===1){h=o+1;let T=ft(h);u=` ${T} sourceLocR = ${T}(${c.join()}, 0); ++${c[o-1]}; ${T} sourceLocG = ${T}(${c.join()}, 0); ++${c[o-2]}; ${T} sourceLocA = ${T}(${c.join()}, 0); --${c[o-1]}; ${T} sourceLocB = ${T}(${c.join()}, 0); --${c[o-2]};`}else h=o,u=` ${l} sourceLocR = coords; ++${c[o-1]}; ${l} sourceLocG = coords; ++${c[o-2]}; ${l} sourceLocA = coords; --${c[o-1]}; ${l} sourceLocB = coords; --${c[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,h),p="."+d[h-1],f=d.map(T=>"int "+T),m=un("sourceLocR",h-1).concat("inIdx.r"),A=un("sourceLocG",h-1).concat("inIdx.g"),y=un("sourceLocB",h-1).concat("inIdx.b"),g=un("sourceLocA",h-1).concat("inIdx.a"),w=n==="max"?"greaterThan":"lessThan",x=r?"":` inIdx = round(vec4(getBestIndicesAChannel(${m.join()}), getBestIndicesAChannel(${A.join()}), getBestIndicesAChannel(${y.join()}), getBestIndicesAChannel(${g.join()})));`,_=`vec4( getAChannel(${m.join()}), hasNextCol ? getAChannel(${A.join()}) : 0., hasNextRow ? getAChannel(${y.join()}) : 0., hasNextRow && hasNextCol ? getAChannel(${g.join()}) : 0.)`,b=r?"":` float getBestIndicesAChannel(${f.join()}) { return getChannel(getBestIndicesA(${d.join()}), vec2(${d.slice(-2).join()})); }`;this.userCode=` float getAChannel(${f.join()}) { return getChannel(getA(${d.join()}), vec2(${d.slice(-2).join()})); } ${b} void main() { ${l} coords = getOutputCoords(); bool hasNextCol = ${c[o-1]} < ${i[o-1]-1}; bool hasNextRow = ${c[o-2]} < ${i[o-2]-1}; ${u} ivec4 srcIdx = ivec4(sourceLocR${p}, sourceLocG${p}, sourceLocB${p}, sourceLocA${p}) * ${t}; ivec4 inIdx = srcIdx; vec4 bestIndex = vec4(inIdx); vec4 bestValue = ${_}; for (int i = 0; i < ${t}; i++) { inIdx = srcIdx; ${x} vec4 candidate = ${_}; bvec4 nan = isnan(candidate); bvec4 replace = bvec4( vec4(${w}(candidate, bestValue)) * (vec4(1.0) - vec4(nan))); bestValue = vec4(replace.x ? candidate.x : bestValue.x, replace.y ? candidate.y : bestValue.y, replace.z ? candidate.z : bestValue.z, replace.w ? candidate.w : bestValue.w); bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace)); srcIdx++; } setOutput(bestIndex); } `}};function c_(e,t,n,r=null){let a=t.shape[0],s=t.shape[1];r!=null&&(a=r.shape[0],s=r.shape[1]);let i=F.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:a,outSize:Math.ceil(s/i)},l=new UW(o,n,r==null),c=[t];r!=null&&c.push(r);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let h=c_(e,t,n,u);return e.disposeIntermediateTensorInfo(u),h}function h_(e,t,n,r=null){let a=r!=null?r.shape:t.shape,s=a[a.length-1],i=F.computeOptimalWindowSize(s),o=new jW(a,i,n,r==null),l=r==null?[t]:[t,r],c=e.runWebGLProgram(o,l,"int32");if(c.shape.length===t.shape.length){let u=h_(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function d_(e,t,n,r){let a=[n];if(F.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),a,t.shape.length),!ee().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=F.computeOutAndReduceShapes(t.shape,a),l=k.sizeFromShape(o),c=we({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(c);let u=c_(e,c,r);s.push(u);let h=we({inputs:{x:u},backend:e,attrs:{shape:i}});return s.forEach(d=>e.disposeIntermediateTensorInfo(d)),h}return h_(e,t,r)}function HW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=k.parseAxisParam(s,a.shape),o=F.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=An({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=F.getInnerMostAxes(i.length,l.shape.length)),F.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let u=d_(n,l,i[0],"max");return c.forEach(h=>n.disposeIntermediateTensorInfo(h)),u}var GW={kernelName:Ya,backendName:"webgl",kernelFunc:HW};function qW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=k.parseAxisParam(s,a.shape),o=F.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=An({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=F.getInnerMostAxes(i.length,l.shape.length)),F.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let u=d_(n,l,i[0],"min");return c.forEach(h=>n.disposeIntermediateTensorInfo(h)),u}var XW={kernelName:eu,backendName:"webgl",kernelFunc:qW},KW=xr+` if (abs(x) > 1.) { return NAN; } return asin(x); `,ZW=Qe({opSnippet:KW}),YW={kernelName:Pi,backendName:"webgl",kernelFunc:ZW},JW=xr+"return log(x + sqrt(x * x + 1.0));",QW=Qe({opSnippet:JW}),eB={kernelName:Li,backendName:"webgl",kernelFunc:QW},tB=xr+` return atan(x); `,nB=Qe({opSnippet:tB}),rB={kernelName:Wi,backendName:"webgl",kernelFunc:nB},aB=hW+` return atan(a, b); `,sB=` vec4 result = atan(a, b); vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0)); `+dW+` return result; `,iB=Qt({opSnippet:aB,packedOpSnippet:sB}),oB={kernelName:Vi,backendName:"webgl",kernelFunc:iB},lB=xr+` if ((x < -1.0) || (x > 1.0)) return NAN; return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,uB=Qe({opSnippet:lB}),cB={kernelName:Bi,backendName:"webgl",kernelFunc:uB},oc=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,h=e.effectiveFilterWidth,d=e.padInfo.top,p=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,A=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(f||(y="-1.0 / 1e-20"),n){let T=">=";this.userCode=` const ivec2 strides = ivec2(${i}, ${o}); const ivec2 pads = ivec2(${d}, ${p}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d = coords[3]; ivec2 xRCCorner = coords.yz * strides - pads; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // max/min x(?, ?, d) to get y(yR, yC, d). // ? = to be determined float minMaxValue = 0.0; float minMaxValueFound = 0.0; int minMaxPosition = 0; float avgValue = 0.0; for (int wR = 0; wR < ${u}; wR += ${l}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${h}; wC += ${c}) { int xC = xCCorner + wC; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float value = getX(batch, xR, xC, d); // If a min / max value has already been found, use it. If not, // use the current value. float currMinMaxValue = mix( value, minMaxValue, minMaxValueFound); if (value ${T} currMinMaxValue) { minMaxValue = value; minMaxValueFound = 1.0; minMaxPosition = ${r?a?m:A:`wR * ${h} + wC`}; } } } setOutput(float(minMaxPosition)); } `;return}let g="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let x=Math.floor(s/4)*4,_=s%4,b=` if (${f}) { avgValue += dot(values, ones); } else { minMaxValue = ${g}(values, minMaxValue); } `;this.userCode=` const ivec2 strides = ivec2(${i}, ${o}); const ivec2 pads = ivec2(${d}, ${p}); const float initializationValue = ${y}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float count = 0.0; float getValue(int batch, int xR, int xC, int d) { if (xC < 0 || xC >= ${e.inWidth}) { return initializationValue; } count += 1.0; return getX(batch, xR, xC, d); } void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d = coords[3]; ivec2 xRCCorner = coords.yz * strides - pads; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // max/min x(?, ?, d) to get y(yR, yC, d). // ? = to be determined vec4 minMaxValue = vec4(${y}); float avgValue = 0.0; count = 0.0; for (int wR = 0; wR < ${u}; wR += ${l}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${x}; wC += 4) { int xC = xCCorner + wC * ${c}; vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${c}, d), getValue(batch, xR, xC + 2 * ${c}, d), getValue(batch, xR, xC + 3 * ${c}, d) ); ${b} } int xC = xCCorner + ${x}; if (${_===1}) { vec4 values = vec4( getValue(batch, xR, xC, d), initializationValue, initializationValue, initializationValue ); ${b} } else if (${_===2}) { vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${c}, d), initializationValue, initializationValue ); ${b} } else if (${_===3}) { vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${c}, d), getValue(batch, xR, xC + 2 * ${c}, d), initializationValue ); ${b} } } setOutput(${w}); } `}},wA=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,h=e.dilationWidth,d=e.effectiveFilterDepth,p=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,A=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let g=t==="avg",w="0.0";if(g||(w="-1.0 / 1e-20"),n){let N=">=";this.userCode=` const ivec3 strides = ivec3(${i}, ${o}, ${l}); const ivec3 pads = ivec3(${m}, ${A}, ${y}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads; int xDCorner = xCorner.x; int xRCorner = xCorner.y; int xCCorner = xCorner.z; // max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch). // ? = to be determined float minMaxValue = 0.0; float minMaxValueFound = 0.0; int minMaxPosition = 0; for (int wD = 0; wD < ${d}; wD += ${c}) { int xD = xDCorner + wD; if (xD < 0 || xD >= ${e.inDepth}) { continue; } for (int wR = 0; wR < ${p}; wR += ${u}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${f}; wC += ${h}) { int xC = xCCorner + wC; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float value = getX(batch, xD, xR, xC, ch); // If a min / max value has already been found, use it. If not, // use the current value. float currMinMaxValue = mix( value, minMaxValue, minMaxValueFound); if (value ${N} currMinMaxValue) { minMaxValue = value; minMaxValueFound = 1.0; minMaxPosition = ${r?a?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${p} * ${f} + wR * ${f} + wC`}; } } } } setOutput(float(minMaxPosition)); } `;return}let x="max",_=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(_="avgValue / count");let b=Math.floor(s/4)*4,T=s%4,S=` if (${g}) { avgValue += dot(values, ones); } else { minMaxValue = ${x}(values, minMaxValue); } `;this.userCode=` const ivec3 strides = ivec3(${i}, ${o}, ${l}); const ivec3 pads = ivec3(${m}, ${A}, ${y}); const float initializationValue = ${w}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float count = 0.0; float getValue(int batch, int xD, int xR, int xC, int ch) { if (xC < 0 || xC >= ${e.inWidth}) { return initializationValue; } count += 1.0; return getX(batch, xD, xR, xC, ch); } void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads; int xDCorner = xCorner.x; int xRCorner = xCorner.y; int xCCorner = xCorner.z; // max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch). // ? = to be determined vec4 minMaxValue = vec4(${w}); float avgValue = 0.0; count = 0.0; for (int wD = 0; wD < ${d}; wD += ${c}) { int xD = xDCorner + wD; if (xD < 0 || xD >= ${e.inDepth}) { continue; } for (int wR = 0; wR < ${p}; wR += ${u}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${b}; wC += 4) { int xC = xCCorner + wC * ${h}; vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${h}, ch), getValue(batch, xD, xR, xC + 2 * ${h}, ch), getValue(batch, xD, xR, xC + 3 * ${h}, ch) ); ${S} } int xC = xCCorner + ${b}; if (${T===1}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), initializationValue, initializationValue, initializationValue ); ${S} } else if (${T===2}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${h}, ch), initializationValue, initializationValue ); ${S} } else if (${T===3}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${h}, ch), getValue(batch, xD, xR, xC + 2 * ${h}, ch), initializationValue ); ${S} } } setOutput(${_}); } } `}};function hB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;ul(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;k.assert(F.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=F.computePool2DInfo(a.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))return Cn({inputs:{x:a},backend:n});let h=new oc(u,"avg",!1);return n.runWebGLProgram(h,[a],"float32")}var dB={kernelName:Ja,backendName:"webgl",kernelFunc:hB};function pB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r,u=[1,1,1],h=F.computePool3DInfo(a.shape,s,i,u,o,l,c),d=new wA(h,"avg",!1);return n.runWebGLProgram(d,[a],"float32")}var fB={kernelName:tu,backendName:"webgl",kernelFunc:pB},mB=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=o-1-e.padInfo.top,u=l-1-e.padInfo.left,h=1/(t*n);this.userCode=` const ivec2 pads = ivec2(${c}, ${u}); const float avgMultiplier = float(${h}); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 dyRCCorner = coords.yz - pads; int dyRCorner = dyRCCorner.x; int dyCCorner = dyRCCorner.y; // Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${o}; wR += ${s}) { float dyR = float(dyRCorner + wR) / ${r}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${l}; wC+= ${i}) { float dyC = float(dyCCorner + wC) / ${a}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(b, idyR, idyC, d); dotProd += dyValue * avgMultiplier; } } setOutput(dotProd); } `}},AB=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,h=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=u-1-e.padInfo.front,f=h-1-e.padInfo.top,m=d-1-e.padInfo.left,A=1/(t*n*r);this.userCode=` const ivec3 pads = ivec3(${p}, ${f}, ${m}); const float avgMultiplier = float(${A}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads; int dyDCorner = dyCorner.x; int dyRCorner = dyCorner.y; int dyCCorner = dyCorner.z; // Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get // dx(xD, xR, xC, ch). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wD = 0; wD < ${u}; wD += ${o}) { float dyD = float(dyDCorner + wD) / ${a}.0; if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) { continue; } int idyD = int(dyD); for (int wR = 0; wR < ${h}; wR += ${l}) { float dyR = float(dyRCorner + wR) / ${s}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${d}; wC += ${c}) { float dyC = float(dyCCorner + wC) / ${i}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(batch, idyD, idyR, idyC, ch); dotProd += dyValue * avgMultiplier; } } } setOutput(dotProd); } `}};function yB(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=r,h=[1,1,1],d=F.computePool3DInfo(i.shape,o,l,h,c,u),p=new AB(d);return n.runWebGLProgram(p,[a],i.dtype)}var gB={kernelName:Ah,backendName:"webgl",kernelFunc:yB};function xB(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;ul([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=r,u=F.computePool2DInfo(i.shape,o,l,1,c),h=new mB(u);return n.runWebGLProgram(h,[a],i.dtype)}var wB={kernelName:mh,backendName:"webgl",kernelFunc:xB};function _B(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;return rp({a,b:s,transposeA:i,transposeB:o,backend:n})}var bB={kernelName:Qa,backendName:"webgl",kernelFunc:_B},vB=class{constructor(e,t,n,r,a,s){this.outputShape=[],this.variableNames=["x","mean","variance"],F.assertAndGetBroadcastShape(e,t),F.assertAndGetBroadcastShape(e,n);let i="0.0";r!=null&&(F.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";a!=null&&(F.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` void main() { float x = getXAtOutCoords(); float mean = getMeanAtOutCoords(); float variance = getVarianceAtOutCoords(); float offset = ${i}; float scale = ${o}; float inv = scale * inversesqrt(variance + float(${s})); setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1))); } `}},kB=class{constructor(e,t,n,r,a,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],F.assertAndGetBroadcastShape(e,t),F.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";r!=null&&(F.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";a!=null&&(F.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` void main() { vec4 offset = ${i}; vec4 scale = ${o}; vec4 x = getXAtOutCoords(); vec4 mean = getMeanAtOutCoords(); vec4 variance = getVarianceAtOutCoords(); vec4 inv = scale * inversesqrt(variance + vec4(${s})); setOutput((x - mean) * inv + offset); } `}},IB=({inputs:e,backend:t,attrs:n})=>{let{x:r,mean:a,variance:s,offset:i,scale:o}=e;k.assert(a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(o==null||a.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[r,a,s],u=null;i!=null&&(u=i.shape,c.push(i));let h=null;o!=null&&(h=o.shape,c.push(o));let d=ee().getBool("WEBGL_PACK_NORMALIZATION")?new kB(r.shape,a.shape,s.shape,u,h,l):new vB(r.shape,a.shape,s.shape,u,h,l);return t.runWebGLProgram(d,c,c[0].dtype)},NB={kernelName:cs,backendName:"webgl",kernelFunc:IB},TB=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=ft(this.rank),n=`uniform int start[${this.rank}];`,r=SB(this.rank),a,s=e.map((i,o)=>`sourceLoc.${_A[o]} = start[${o}] + coords.${_A[o]};`);a=` ${t} sourceLoc; ${t} coords = getOutputCoords(); ${s.join(` `)} `,this.userCode=` ${n} void main() { ${a} setOutput(getSource(${r})); } `}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},_A=["x","y","z","w","u","v"];function SB(e){if(e===1)return"sourceLoc";if(e<=6)return _A.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var EB=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=ft(this.rank),n=un("coords",this.rank),r=un("sourceLoc",this.rank),a=this.rank===1?"sourceLoc":`vec2(${r.slice(-2).join()})`,s=`getChannel(getSource(${r.join()}), ${a})`,i=` result.x = ${s}; if (++${n[this.rank-1]} < ${e[this.rank-1]}) { ++${r[this.rank-1]}; result.y = ${s}; --${r[this.rank-1]}; } `,o=this.rank===1?"":` --${n[this.rank-1]}; if (++${n[this.rank-2]} < ${e[this.rank-2]}) { ++${r[this.rank-2]}; result.z = ${s}; if (++${n[this.rank-1]} < ${e[this.rank-1]}) { ++${r[this.rank-1]}; result.w = ${s}; } } `,l=this.rank<=4?`sourceLoc = coords + ${t}(${e.map((c,u)=>`start[${u}]`).join()});`:e.map((c,u)=>`${r[u]} = ${n[u]} + start[${u}];`).join(` `);this.userCode=` uniform int start[${this.rank}]; void main() { ${t} coords = getOutputCoords(); ${t} sourceLoc; ${l} vec4 result = vec4(0.); ${i} ${o} setOutput(result); } `}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function CB(e,t,n,r){let a=r.texData.get(e.dataId),s=r.makeTensorInfo(n,e.dtype),i=r.texData.get(s.dataId);Object.assign(i,a),i.complexParentRefCount=0,i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=sn.computeFlatOffset(t,k.computeStrides(e.shape));a.slice&&(o+=a.slice.flatOffset),i.slice={flatOffset:o,origDataId:a.slice&&a.slice.origDataId||e.dataId};let l=r.dataRefCount.get(i.slice.origDataId)||1;return r.dataRefCount.set(i.slice.origDataId,l+1),s}function lc(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r,[o,l]=sn.parseSliceParams(a,s,i);if(sn.assertParamsValid(a,o,l),k.sizeFromShape(l)===0)return n.makeTensorInfo(l,a.dtype,[]);if(n.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=n.texData.get(a.dataId),d=IL(h.values,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,d)}let{isPacked:c}=n.texData.get(a.dataId),u=sn.isSliceContinous(a.shape,o,l);if(c||!u){let h=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new EB(l):new TB(l),d=h.getCustomSetupFunc(o);return n.runWebGLProgram(h,[a],a.dtype,d)}return n.uploadToGPU(a.dataId),CB(a,o,l,n)}var RB={kernelName:No,backendName:"webgl",kernelFunc:lc},FB=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;k.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((g,w)=>g*w),l=F.getReshaped(a.shape,s,o),c=F.getPermuted(l.length,s.length),u=F.getReshapedPermuted(a.shape,s,o),h=F.getSliceBeginCoords(i,s.length),d=F.getSliceSize(u,i,s.length),p=[],f=we({inputs:{x:a},backend:n,attrs:{shape:l}}),m=An({inputs:{x:f},backend:n,attrs:{perm:c}}),A=we({inputs:{x:m},backend:n,attrs:{shape:u}}),y=lc({inputs:{x:A},backend:n,attrs:{begin:h,size:d}});return p.push(f),p.push(m),p.push(A),p.forEach(g=>n.disposeIntermediateTensorInfo(g)),y},MB={kernelName:nu,backendName:"webgl",kernelFunc:FB};function $B(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.readSync(a.dataId),l=n.readSync(s.dataId),c=Bw(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var DB={kernelName:yh,backendName:"webgl",kernelFunc:$B},OB="return float(a != b);",p_=Qt({opSnippet:OB,dtype:"bool"}),zB={kernelName:fo,backendName:"webgl",kernelFunc:p_};function uc(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Cn({inputs:{x:a.complexTensorInfos.real},backend:n})}var PB={kernelName:Ph,backendName:"webgl",kernelFunc:uc},LB="return float(int(x));";function WB(e,t){let n=new Ra(e.shape,LB),r=t.runWebGLProgram(n,[e],"int32");return{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function bA(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Cn({inputs:{x:a},backend:n});let i=Ct(a.shape),o=bA({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Fa({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=uc({inputs:{input:a},backend:n}),o=bA({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(a.dtype,s)){let i=Cn({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return WB(a,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",k.getTypedArrayFromDType("bool",1)),o=p_({inputs:{a,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var BB={kernelName:es,backendName:"webgl",kernelFunc:bA},f_="return ceil(x);",VB=Qe({opSnippet:f_,packedOpSnippet:f_,cpuKernelImpl:oL}),UB={kernelName:Ui,backendName:"webgl",kernelFunc:VB},jB=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=` uniform float minVal; uniform float maxVal; void main() { float value = getAAtOutCoords(); if (isnan(value)) { setOutput(value); return; } setOutput(clamp(value, minVal, maxVal)); } `}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},HB=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=` uniform float minVal; uniform float maxVal; void main() { vec4 value = getAAtOutCoords(); if (any(isnan(value))) { setOutput(value); return; } setOutput(clamp(value, vec4(minVal), vec4(maxVal))); } `}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function GB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o;ee().getBool("WEBGL_PACK_CLIP")?o=new HB(a.shape):o=new jB(a.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[a],a.dtype,l)}var qB={kernelName:ma,backendName:"webgl",kernelFunc:GB},XB=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=` void main() { float re = abs(getRealAtOutCoords()); float im = abs(getImagAtOutCoords()); float mx = max(re, im); // sadly the length function in glsl is not underflow-safe // (at least not on Intel GPUs). So the safe solution is // to ensure underflow-safety in all cases. setOutput( mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx)) ); } `}};function m_(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function KB(e){let{inputs:t,backend:n}=e,{x:r}=t,a=n.texData.get(r.dataId),s=new XB(r.shape),i=[m_(r,a.complexTensorInfos.real),m_(r,a.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var ZB={kernelName:ru,backendName:"webgl",kernelFunc:KB},YB=class{constructor(e){this.outputShape=[],this.outputShape=F.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s`T${m}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let f=1;f= ${o[f-1]}) { return getChannel( getT${f}(${sp(i,l,m)}), vec2(${sp(c,l,m)})); }`}let d=o.length,p=o[o.length-1];h+=` return getChannel( getT${d}(${sp(i,l,p)}), vec2(${sp(c,l,p)}));`,this.userCode=` float getValue(${i.map(f=>"int "+f)}) { ${h} } void main() { ${a} coords = getOutputCoords(); vec4 result = vec4(getValue(${s}), 0., 0., 0.); ${s[r-1]} = ${s[r-1]} + 1; if (${s[r-1]} < ${n[r-1]}) { result.g = getValue(${s}); } ${s[r-2]} = ${s[r-2]} + 1; if (${s[r-2]} < ${n[r-2]}) { result.a = getValue(${s}); } ${s[r-1]} = ${s[r-1]} - 1; if (${s[r-2]} < ${n[r-2]} && ${s[r-1]} < ${n[r-1]}) { result.b = getValue(${s}); } setOutput(result); } `}};function sp(e,t,n){let r=e.indexOf(t);return e.map((a,s)=>s===r?`${a} - ${n}`:a).join()}function ip(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Cn({inputs:{x:a.complexTensorInfos.imag},backend:n})}var QB={kernelName:Rh,backendName:"webgl",kernelFunc:ip};function yl(e,t,n){let r=e[0].dtype;if(r==="complex64"){let c=e.map(f=>uc({inputs:{input:f},backend:n})),u=e.map(f=>ip({inputs:{input:f},backend:n})),h=yl(c,t,n),d=yl(u,t,n),p=Fa({inputs:{real:h,imag:d},backend:n});return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),u.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),p}if(r==="string"){let{tensors2D:c,outShape:u}=A_(e,t,n),h=c.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),d=c[0].shape[0]===1,p=lL(h,u,r,d),f=F.computeOutShape(e.map(A=>A.shape),t),m=n.makeTensorInfo(f,r,p);return c.forEach(A=>n.disposeIntermediateTensorInfo(A)),m}if(e.length>ee().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(e.length/2),u=yl(e.slice(0,c),t,n),h=yl(e.slice(c),t,n),d=yl([u,h],t,n);return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),d}if(ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let c=new JB(e.map(u=>u.shape),t);return n.runWebGLProgram(c,e,r)}let{tensors2D:a,outShape:s}=A_(e,t,n),i=new YB(a.map(c=>c.shape)),o=n.runWebGLProgram(i,a,r);a.forEach(c=>n.disposeIntermediateTensorInfo(c));let l=we({inputs:{x:o},attrs:{shape:s},backend:n});return n.disposeIntermediateTensorInfo(o),l}function A_(e,t,n){let r=F.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>we({inputs:{x:a},attrs:{shape:[-1,k.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:r}}function y_(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=k.parseAxisParam(a,t[0].shape)[0],i=F.computeOutShape(t.map(c=>c.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(c=>k.sizeFromShape(c.shape)>0);if(o.length===1)return Cn({inputs:{x:o[0]},backend:n});let l=o.map(c=>c.shape);return F.assertParamsConsistent(l,s),yl(o,s,n)}var eV={kernelName:ji,backendName:"webgl",kernelFunc:y_},g_=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",A=m?1:2,y=m?2:3,g=m?3:1,w="",x="";n&&(r?w=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${n} }`:a?w=`float activation(float a) { float b = getLeakyreluAlphaAtOutCoords(); ${n} }`:w=` float activation(float x) { ${n} } `,x="result = activation(result);");let _=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=` ${w} const ivec2 strides = ivec2(${o}, ${l}); const ivec2 pads = ivec2(${s}, ${i}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d2 = coords[${g}]; ivec2 xRCCorner = ivec2(coords[${A}], coords[${y}]) * strides - pads; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${h}; wR++) { int xR = xRCorner + wR * ${c}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${d}; wC++) { int xC = xCCorner + wC * ${u}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } for (int d1 = 0; d1 < ${p}; d1 += 4) { vec4 wValues = vec4( getW(wR, wC, d1, d2), getW(wR, wC, d1 + 1, d2), getW(wR, wC, d1 + 2, d2), getW(wR, wC, d1 + 3, d2) ); if (${m}) { vec4 xValues = vec4( getX(batch, xR, xC, d1), getX(batch, xR, xC, d1 + 1), getX(batch, xR, xC, d1 + 2), getX(batch, xR, xC, d1 + 3) ); dotProd += dot(xValues, wValues); } else { vec4 xValues = vec4( getX(batch, d1, xR, xC), getX(batch, d1 + 1, xR, xC), getX(batch, d1 + 2, xR, xC), getX(batch, d1 + 3, xR, xC) ); dotProd += dot(xValues, wValues); } } if (${f===1}) { if (${m}) { dotProd += getX(batch, xR, xC, ${p}) * getW(wR, wC, ${p}, d2); } else { dotProd += getX(batch, ${p}, xR, xC) * getW(wR, wC, ${p}, d2); } } else if (${f===2}) { vec2 wValues = vec2( getW(wR, wC, ${p}, d2), getW(wR, wC, ${p} + 1, d2) ); if (${m}) { vec2 xValues = vec2( getX(batch, xR, xC, ${p}), getX(batch, xR, xC, ${p} + 1) ); dotProd += dot(xValues, wValues); } else { vec2 xValues = vec2( getX(batch, ${p}, xR, xC), getX(batch, ${p} + 1, xR, xC) ); dotProd += dot(xValues, wValues); } } else if (${f===3}) { vec3 wValues = vec3( getW(wR, wC, ${p}, d2), getW(wR, wC, ${p} + 1, d2), getW(wR, wC, ${p} + 2, d2) ); if (${m}) { vec3 xValues = vec3( getX(batch, xR, xC, ${p}), getX(batch, xR, xC, ${p} + 1), getX(batch, xR, xC, ${p} + 2) ); dotProd += dot(xValues, wValues); } else { vec3 xValues = vec3( getX(batch, ${p}, xR, xC), getX(batch, ${p} + 1, xR, xC), getX(batch, ${p} + 2, xR, xC) ); dotProd += dot(xValues, wValues); } } } } float result = dotProd; ${_} ${x} setOutput(result); } `}},tV=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,r=e.padInfo.left,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=` const ivec3 strides = ivec3(${a}, ${s}, ${i}); const ivec3 pads = ivec3(${t}, ${n}, ${r}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int d2 = coords.u; ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads; int xFCorner = xFRCCorner.x; int xRCorner = xFRCCorner.y; int xCCorner = xFRCCorner.z; // Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get // y(yF, yR, yC, d2). ? = to be determined. : = across all // values in that axis. float dotProd = 0.0; for (int wF = 0; wF < ${u}; wF++) { int xF = xFCorner + wF * ${o}; if (xF < 0 || xF >= ${e.inDepth}) { continue; } for (int wR = 0; wR < ${h}; wR++) { int xR = xRCorner + wR * ${l}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${d}; wC++) { int xC = xCCorner + wC * ${c}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } for (int d1 = 0; d1 < ${p}; d1 += 4) { vec4 xValues = vec4( getX(batch, xF, xR, xC, d1), getX(batch, xF, xR, xC, d1 + 1), getX(batch, xF, xR, xC, d1 + 2), getX(batch, xF, xR, xC, d1 + 3) ); vec4 wValues = vec4( getW(wF, wR, wC, d1, d2), getW(wF, wR, wC, d1 + 1, d2), getW(wF, wR, wC, d1 + 2, d2), getW(wF, wR, wC, d1 + 3, d2) ); dotProd += dot(xValues, wValues); } if (${f===1}) { dotProd += getX(batch, xF, xR, xC, ${p}) * getW(wF, wR, wC, ${p}, d2); } else if (${f===2}) { vec2 xValues = vec2( getX(batch, xF, xR, xC, ${p}), getX(batch, xF, xR, xC, ${p} + 1) ); vec2 wValues = vec2( getW(wF, wR, wC, ${p}, d2), getW(wF, wR, wC, ${p} + 1, d2) ); dotProd += dot(xValues, wValues); } else if (${f===3}) { vec3 xValues = vec3( getX(batch, xF, xR, xC, ${p}), getX(batch, xF, xR, xC, ${p} + 1), getX(batch, xF, xR, xC, ${p} + 2) ); vec3 wValues = vec3( getW(wF, wR, wC, ${p}, d2), getW(wF, wR, wC, ${p} + 1, d2), getW(wF, wR, wC, ${p} + 2, d2) ); dotProd += dot(xValues, wValues); } } } } setOutput(dotProd); } `}},nV=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:r,inChannels:a,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:c,dilationHeight:u,dataFormat:h}=n,{left:d,top:p}=o,f=a*r,m=ln(),A=h==="channelsLast",y=A?0:1,g=A?1:2,w="";for(let x=0;x<=1;x++)for(let _=0;_<=1;_++)w+=` blockIndex = rc.y + ${_}; pos = rc.x + ${x}; if(blockIndex < ${e[1]} && pos < ${e[0]}) { offsetY = int(blockIndex / (${l})) * ${i} - ${p}; d0 = offsetY + ${u} * (pos / ${f}); if(d0 < ${t[y]} && d0 >= 0) { offsetX = int(mod(float(blockIndex), ${l}.) * ${s}. - ${d}.); d1 = offsetX + ${c} * (int(mod(float(pos), ${f}.) / ${a}.)); if(d1 < ${t[g]} && d1 >= 0) { ch = int(mod(float(pos), ${a}.)); if (${A}) { innerDims = vec2(d1, ch); result[${x*2+_}] = getChannel( getA(d0, int(innerDims.x), int(innerDims.y)), innerDims); } else { innerDims = vec2(d0, d1); result[${x*2+_}] = getChannel( getA(ch, int(innerDims.x), int(innerDims.y)), innerDims); } } } } `;this.userCode=` void main() { ivec2 rc = getOutputCoords(); vec4 result = vec4(0); int blockIndex, pos, offsetY, d0, offsetX, d1, ch; vec2 innerDims; ${w} ${m.output} = result; } `}};function x_({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,c=r.texData.get(e.dataId),u=n.inChannels,h=l[0]*l[1]*l[2],d=n.outChannels,p=n.dataFormat==="channelsLast",f=!1,m=!1,A,y=[],g=(h===1||d===1)&&u>o_,w=l[2]%2!=0&&!!c.isPacked;if(g||!ee().getBool("WEBGL_LAZILY_UNPACK")||!ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!w){let x=p?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],_=we({inputs:{x:e},backend:r,attrs:{shape:[1,x,n.inChannels]}}),b=we({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}}),T=rp({a:_,b,transposeA:f,transposeB:m,backend:r,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});A=we({inputs:{x:T},backend:r,attrs:{shape:n.outShape}}),y.push(_),y.push(b),y.push(T)}else{let x=p?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),_={dataId:e.dataId,shape:[1,x,n.inChannels],dtype:e.dtype},b=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,k.assert(tc(c.shape,_.shape),()=>`packed reshape ${c.shape} to ${_.shape} isn't free`);let T=we({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(T);let S=rp({a:_,b:T,backend:r,transposeA:f,transposeB:m,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),N=r.texData.get(S.dataId);k.assert(N.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=b,N.shape=n.outShape,A=Cn({inputs:{x:S},backend:r}),A.shape=n.outShape,y.push(S)}for(let x of y)r.disposeIntermediateTensorInfo(x);return A}function w_({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:h,outHeight:d,dataFormat:p}=n,f=p==="channelsLast",m=l*c*u,A=d*h,y=[m,A],g=!0,w=!1,x=[],_=we({inputs:{x:e},backend:r,attrs:{shape:e.shape.slice(1)}}),b=we({inputs:{x:t},backend:r,attrs:{shape:[1,m,k.sizeFromShape(t.shape)/m]}});x.push(_),x.push(b);let T=new nV(y,_.shape,n),S=r.runWebGLProgram(T,[_],"float32"),N=we({inputs:{x:S},backend:r,attrs:{shape:[1,y[0],y[1]]}});x.push(S),x.push(N);let C=a!=null,$=s!=null,D=o==="leakyrelu",O=o?tp(o,!0):null,V=new t_(N.shape,b.shape,[1,A,n.outChannels],g,w,C,O,$,D),W=[N,b];if(a&&W.push(a),$&&W.push(s),D){let J=r.makeTensorInfo([],"float32",k.createScalarValue(i,"float32"));W.push(J),x.push(J)}let Z=r.runWebGLProgram(V,W,"float32"),K=f?[1,d,h,n.outChannels]:[1,n.outChannels,d,h],te=we({inputs:{x:Z},backend:r,attrs:{shape:K}});x.push(Z);for(let J of x)r.disposeIntermediateTensorInfo(J);return te}function rV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=r,h=F.convertConv2DDataFormat(l),d=F.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!1,h),p;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))p=x_({x:a,filter:s,convInfo:d,backend:n});else if(ee().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)p=w_({x:a,filter:s,convInfo:d,backend:n});else{let m=new g_(d);p=n.runWebGLProgram(m,[a,s],"float32")}let f=we({inputs:{x:p},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(p),f}var aV={kernelName:ts,backendName:"webgl",kernelFunc:rV},sV=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; int wC = coords.y; int d1 = coords.z; int d2 = coords.w; // Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int b = 0; b < ${e.batchSize}; b++) { for (int yR = 0; yR < ${e.outHeight}; yR++) { int xR = wR + yR * ${t} - ${r}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int yC = 0; yC < ${e.outWidth}; yC++) { int xC = wC + yC * ${n} - ${a}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } if (${s}) { float dyValue = getDy(b, yR, yC, d2); float xValue = getX(b, xR, xC, d1); dotProd += (xValue * dyValue); } else { float dyValue = getDy(b, d2, yR, yC); float xValue = getX(b, d1, xR, xC); dotProd += (xValue * dyValue); } } } } setOutput(dotProd); } `}},iV=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,c=s?2:3,u=s?3:1;this.userCode=` const ivec2 pads = ivec2(${i}, ${o}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d1 = coords[${u}]; ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads; int dyRCorner = dyCorner.x; int dyCCorner = dyCorner.y; // Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${t}; wR++) { float dyR = float(dyRCorner + wR) / ${r}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); int wRPerm = ${t} - 1 - wR; for (int wC = 0; wC < ${n}; wC++) { float dyC = float(dyCCorner + wC) / ${a}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); int wCPerm = ${n} - 1 - wC; for (int d2 = 0; d2 < ${e.outChannels}; d2++) { if (${s}) { float xValue = getDy(batch, idyR, idyC, d2); float wValue = getW(wRPerm, wCPerm, d1, d2); dotProd += xValue * wValue; } else { float xValue = getDy(batch, d2, idyR, idyC); float wValue = getW(wRPerm, wCPerm, d1, d2); dotProd += xValue * wValue; } } } } setOutput(dotProd); } `}},oV=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=` void main() { ivec5 coords = getOutputCoords(); int wF = coords.x; int wR = coords.y; int wC = coords.z; int d1 = coords.w; int d2 = coords.u; float dotProd = 0.0; for (int b = 0; b < ${e.batchSize}; b++) { for (int yF = 0; yF < ${e.outDepth}; yF++) { int xF = wF + yF * ${t} - ${a}; if (xF < 0 || xF >= ${e.inDepth}) { continue; } for (int yR = 0; yR < ${e.outHeight}; yR++) { int xR = wR + yR * ${n} - ${s}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int yC = 0; yC < ${e.outWidth}; yC++) { int xC = wC + yC * ${r} - ${i}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float dyValue = getDy(b, yF, yR, yC, d2); float xValue = getX(b, xF, xR, xC, d1); dotProd += (xValue * dyValue); } } } } setOutput(dotProd); } `}},lV=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=r-1-e.padInfo.left;this.userCode=` const ivec3 pads = ivec3(${o}, ${l}, ${c}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int d1 = coords.u; ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads; int dyFCorner = dyCorner.x; int dyRCorner = dyCorner.y; int dyCCorner = dyCorner.z; float dotProd = 0.0; for (int wF = 0; wF < ${t}; wF++) { float dyF = float(dyFCorner + wF) / ${a}.0; if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) { continue; } int idyF = int(dyF); int wFPerm = ${t} - 1 - wF; for (int wR = 0; wR < ${n}; wR++) { float dyR = float(dyRCorner + wR) / ${s}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); int wRPerm = ${n} - 1 - wR; for (int wC = 0; wC < ${r}; wC++) { float dyC = float(dyCCorner + wC) / ${i}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); int wCPerm = ${r} - 1 - wC; for (int d2 = 0; d2 < ${e.outChannels}; d2++) { float xValue = getDy(batch, idyF, idyR, idyC, d2); float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2); dotProd += xValue * wValue; } } } } setOutput(dotProd); } `}};function uV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,filterShape:u}=r,h=F.convertConv2DDataFormat(l),d=F.computeConv2DInfo(a.shape,u,i,1,o,c,!1,h),p=new sV(d);return n.runWebGLProgram(p,[a,s],"float32")}var cV={kernelName:xh,backendName:"webgl",kernelFunc:uV};function hV(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:c,dimRoundingMode:u}=r,h=F.convertConv2DDataFormat(c),d=F.computeConv2DInfo(i,s.shape,o,1,l,u,!1,h),p=new iV(d);return n.runWebGLProgram(p,[a,s],"float32")}var dV={kernelName:ns,backendName:"webgl",kernelFunc:hV};function pV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,c=F.computeConv3DInfo(a.shape,s.shape,i,l,o),u=new tV(c);return n.runWebGLProgram(u,[a,s],"float32")}var fV={kernelName:au,backendName:"webgl",kernelFunc:pV};function mV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r,c=F.computeConv3DInfo(a.shape,l,i,1,o),u=new oV(c);return n.runWebGLProgram(u,[a,s],"float32")}var AV={kernelName:wh,backendName:"webgl",kernelFunc:mV};function yV(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r,c=F.computeConv3DInfo(l,s.shape,o,1,i),u=new lV(c);return n.runWebGLProgram(u,[a,s],"float32")}var gV={kernelName:_h,backendName:"webgl",kernelFunc:yV},xV=e_+` return cos(x); `,wV=Qe({opSnippet:xV}),_V={kernelName:rs,backendName:"webgl",kernelFunc:wV},bV=` float e2x = exp(-x); return (e2x + 1.0 / e2x) / 2.0; `,vV=Qe({opSnippet:bV}),kV={kernelName:Hi,backendName:"webgl",kernelFunc:vV},IV=class{constructor(e,t,n,r,a){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[c]=t,[u,h]=n;this.outputShape=[c,u,h,l];let d=r==="bilinear"?1:0,[p,f]=[`${i-1}.0`,`${o-1}.0`],[m,A,y]=u>1?[`${(i-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${p} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${p}`],[g,w,x]=h>1?[`${(o-1)/(h-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=` const float height_ratio = float(${m}); const float width_ratio = float(${g}); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int y = coords[1]; int x = coords[2]; int d = coords[3]; // get box vals float y1 = getBoxes(b,0); float x1 = getBoxes(b,1); float y2 = getBoxes(b,2); float x2 = getBoxes(b,3); // get image in batch index int bInd = round(getBoxInd(b)); if(bInd < 0 || bInd >= ${s}) { return; } float height_scale = ${A}; float width_scale = ${w}; float in_y = ${y}; if( in_y < 0.0 || in_y > ${p} ) { setOutput(float(${a})); return; } float in_x = ${x}; if( in_x < 0.0 || in_x > ${f} ) { setOutput(float(${a})); return; } vec2 sourceFracIndexCR = vec2(in_x,in_y); if(${d} == 1) { // Compute the four integer indices. ivec2 sourceFloorCR = ivec2(sourceFracIndexCR); ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR)); float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d); float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d); float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d); float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d); vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR); float top = topLeft + (topRight - topLeft) * fracCR.x; float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x; float newValue = top + (bottom - top) * fracCR.y; setOutput(newValue); } else { // Compute the coordinators of nearest neighbor point. ivec2 sourceNearestCR = ivec2(floor( sourceFracIndexCR + vec2(0.5,0.5))); float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d); setOutput(newValue); } } `}},NV=e=>{let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=r,u=new IV(a.shape,s.shape,o,l,c);return n.runWebGLProgram(u,[a,s,i],"float32")},SV={kernelName:Gi,backendName:"webgl",kernelFunc:NV},v_=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let r=e.length,a=t?"0.0":`getX(${__(r,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=` uniform float index; void main() { ${ft(r)} coords = getOutputCoords(); int end = ${b_(r,"coords")}; float val = ${a}; int pow2 = int(pow(2.0, index)); if (${i}) { int idx = ${o}; ${b_(r,"coords")} = idx; val += getX(${__(r,"coords")}); } setOutput(val); } `}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function __(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function b_(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function TV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length,c=F.getAxesPermutation([s],l),u=a;c!=null&&(u=An({inputs:{x:a},backend:n,attrs:{perm:c}}));let h=F.getInnerMostAxes(1,l)[0];if(h!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${a.shape.length-1} but got axis=${s}`);let d=a.shape[h],p=Cn({inputs:{x:u},backend:n});for(let f=0;f<=Math.ceil(Math.log2(d))-1;f++){let m=new v_(u.shape,!1,o),A=m.getCustomSetupFunc(f),y=p;p=n.runWebGLProgram(m,[p],p.dtype,A),n.disposeIntermediateTensorInfo(y)}if(i){let f=new v_(u.shape,i,o),m=p;p=n.runWebGLProgram(f,[p],p.dtype),n.disposeIntermediateTensorInfo(m)}if(c!=null){let f=F.getUndoAxesPermutation(c),m=An({inputs:{x:p},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(u),m}return p}var EV={kernelName:as,backendName:"webgl",kernelFunc:TV};function CV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.readSync(a.dataId),c=n.readSync(s.dataId),u=Bw(l,c,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(a.shape.length===2){let l=n.bufferSync(a),c=n.bufferSync(s),u=iL(l,c,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var RV={kernelName:bh,backendName:"webgl",kernelFunc:CV},FV=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int h = ${this.getHeightCoordString()}; int w = ${this.getWidthCoordString()}; int d = ${this.getDepthCoordString()}; int in_h = h / ${t}; int offset_h = imod(h, ${t}); int in_w = w / ${t}; int offset_w = imod(w, ${t}); int offset_d = (offset_h * ${t} + offset_w) * ${this.getOutputDepthSize()}; int in_d = d + offset_d; float result = ${this.getInputSamplingString()}; setOutput(result); } `}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function MV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],c=i==="NHWC"?a.shape[2]:a.shape[3],u=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=c*s,p=u/(s*s),f=i==="NHWC"?[o,h,d,p]:[o,p,h,d],m=new FV(f,s,i);return n.runWebGLProgram(m,[a],a.dtype)}var $V={kernelName:qi,backendName:"webgl",kernelFunc:MV},k_=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,f=e.filterWidth,m=e.outChannels/e.inChannels,A="",y="";n&&(r?A=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${n} }`:a?A=`float activation(float a) { float b = getLeakyreluAlphaAtOutCoords(); ${n} }`:A=` float activation(float x) { ${n} } `,y="result = activation(result);");let g=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=` ${A} const ivec2 strides = ivec2(${c}, ${u}); const ivec2 pads = ivec2(${o}, ${l}); void main() { ivec4 coords = getOutputCoords(); int batch = coords.x; ivec2 xRCCorner = coords.yz * strides - pads; int d2 = coords.w; int d1 = d2 / ${m}; int q = d2 - d1 * ${m}; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; // TO DO(dsmilkov): Flatten the two for loops and vec4 the operations. for (int wR = 0; wR < ${p}; wR++) { int xR = xRCorner + wR * ${h}; if (xR < 0 || xR >= ${s}) { continue; } for (int wC = 0; wC < ${f}; wC++) { int xC = xCCorner + wC * ${d}; if (xC < 0 || xC >= ${i}) { continue; } float xVal = getX(batch, xR, xC, d1); float wVal = getW(wR, wC, d1, q); dotProd += xVal * wVal; } } float result = dotProd; ${g} ${y} setOutput(result); } `}},I_=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,f=e.filterWidth,m=f,A="int xR; int xC; int xCOffset;";for(let x=0;x= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) { xTexelR${x}C${b} = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if(xCOffset + 1 >= ${i}) { xTexelR${x}C${b}.zw = vec2(0.); } } else { xTexelR${x}C${b} = vec4(0.); } xCOffset = xC + 1 - 2; if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) { vec4 previous = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if(xCOffset + 1 >= ${i}) { previous.zw = vec2(0.); } xR${x}C${b} = vec4(previous.zw, xTexelR${x}C${b}.xy); } else { xR${x}C${b} = vec4(0, 0, xTexelR${x}C${b}.xy); } `:A+=` if(xR >= 0 && xR < ${s} && xC >= 0 && xC < ${i}) { xTexelR${x}C${b} = getX(batch, xR, xC, d1); } else { xTexelR${x}C${b} = vec4(0.); } xR${x}C${b} = xTexelR${x}C${b}; `,b+1= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) { xTexelR${x}C${b+2} = getX(batch, xR, xCOffset, d1); } `,d>1&&(A+=` xCOffset -= 2; if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) { xTexelR${x}C${b} = getX(batch, xR, xCOffset, d1); } else { xTexelR${x}C${b} = vec4(0.); } `),A+=` xR${x}C${b+1} = vec4( xTexelR${x}C${b}.zw, xTexelR${x}C${b+2}.xy); `):A+=` xCOffset = xC + ${T}; if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) { xTexelR${x}C${b+2} = getX(batch, xR, xCOffset, d1); } xR${x}C${b+1} = xTexelR${x}C${b+2}; `}}else b= 0 && xR < ${s}) { `,l%2==1?(A+=` xCOffset = xC + 1 - ${u}; if(xCOffset >= 0 && xCOffset < ${i}) { xTexelR${x}C${b} = getX(batch, xR, xCOffset, d1); } else { xTexelR${x}C${b} = vec4(0.); } if(xC + 1 >= 0 && xC + 1 < ${i}) { xTexelR${x}C${b+2} = getX(batch, xR, xC + 1, d1); } else { xTexelR${x}C${b+2} = vec4(0.); } xR${x}C${b} = vec4( xTexelR${x}C${b}.zw, xTexelR${x}C${b+2}.zw); `,b+1= 0 && xCOffset < ${i}) { final = getX(batch, xR, xCOffset, d1); } xR${x}C${b+1} = vec4(xTexelR${x}C${b+2}.xy, final.xy); `)):(A+=` if(xC >= 0 && xC < ${i}) { xTexelR${x}C${b} = getX(batch, xR, xC, d1); } else { xTexelR${x}C${b} = vec4(0.); } xCOffset = xC + ${u}; if(xCOffset >= 0 && xCOffset < ${i}) { xTexelR${x}C${b+2} = getX(batch, xR, xCOffset, d1); } else { xTexelR${x}C${b+2} = vec4(0.); } xR${x}C${b} = vec4( xTexelR${x}C${b}.xy, xTexelR${x}C${b+2}.xy); `,b+1`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let h=F.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!0),d;return ee().getBool("WEBGL_PACK_DEPTHWISECONV")&&h.strideWidth<=2&&h.outChannels/h.inChannels==1?d=new I_(h):d=new k_(h),n.runWebGLProgram(d,[a,s],"float32")}var OV={kernelName:ss,backendName:"webgl",kernelFunc:DV},zV=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; int wC = coords.y; int d1 = coords.z; int dm = coords.w; int d2 = d1 * ${s} + dm; float dotProd = 0.0; // TO DO: Vec4 over the batch size for (int b = 0; b < ${e.batchSize}; b++) { for (int yR = 0; yR < ${e.outHeight}; yR++) { int xR = wR + yR * ${t} - ${r}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int yC = 0; yC < ${e.outWidth}; yC++) { int xC = wC + yC * ${n} - ${a}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float dyValue = getDy(b, yR, yC, d2); float xValue = getX(b, xR, xC, d1); dotProd += (xValue * dyValue); } } } setOutput(dotProd); } `}},PV=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=` const ivec2 pads = ivec2(${s}, ${i}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d1 = coords[3]; ivec2 dyCorner = coords.yz - pads; int dyRCorner = dyCorner.x; int dyCCorner = dyCorner.y; float dotProd = 0.0; for (int wR = 0; wR < ${t}; wR++) { float dyR = float(dyRCorner + wR) / ${r}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); int wRPerm = ${t} - 1 - wR; for (int wC = 0; wC < ${n}; wC++) { float dyC = float(dyCCorner + wC) / ${a}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); int wCPerm = ${n} - 1 - wC; // TO DO: Vec4 over the channelMul for (int dm = 0; dm < ${o}; dm++) { int d2 = d1 * ${o} + dm; float xValue = getDy(batch, idyR, idyC, d2); float wValue = getW(wRPerm, wCPerm, d1, dm); dotProd += xValue * wValue; } } } setOutput(dotProd); } `}};function LV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,filterShape:u}=r,h=F.computeConv2DInfo(a.shape,u,i,o,l,c,!0),d=new zV(h);return n.runWebGLProgram(d,[a,s],"float32")}var WV={kernelName:vh,backendName:"webgl",kernelFunc:LV};function BV(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,inputShape:u}=r,h=F.computeConv2DInfo(u,s.shape,i,o,l,c,!0),d=new PV(h);return n.runWebGLProgram(d,[a,s],"float32")}var VV={kernelName:kh,backendName:"webgl",kernelFunc:BV},UV=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=` void main() { ivec2 coords = getOutputCoords(); float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0; setOutput(val); } `}};function jV(e){let{inputs:t,backend:n}=e,{x:r}=t,a=[...r.shape,...r.shape],s=k.sizeFromShape(r.shape),i=we({inputs:{x:r},backend:n,attrs:{shape:[s]}}),o=new UV(s),l=n.runWebGLProgram(o,[i],i.dtype),c=we({inputs:{x:l},backend:n,attrs:{shape:a}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var HV={kernelName:Ih,backendName:"webgl",kernelFunc:jV},GV=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:r,strideHeight:a,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:c}=e,{top:u,left:h}=r;this.userCode=` const ivec2 strides = ivec2(${a}, ${s}); const ivec2 pads = ivec2(${u}, ${h}); const float neg_infinity = -3.4e38; void main() { ivec4 coords = getOutputCoords(); int batch = coords.x; int d1 = coords.w; ivec2 outTopLeftCorner = coords.yz * strides - pads; int hBeg = outTopLeftCorner.x; int wBeg = outTopLeftCorner.y; float curVal = neg_infinity; for (int h = 0; h < ${i}; h++) { int hIn = hBeg + h * ${l}; if (hIn >= 0 && hIn < ${t}) { for (int w = 0; w < ${o}; w++) { int wIn = wBeg + w * ${c}; if (wIn >= 0 && wIn < ${n}) { float xVal = getX(batch, hIn, wIn, d1); float wVal = getW(h, w, d1); float val = xVal + wVal; if (val > curVal) { curVal = val; } } } } } float result = curVal; setOutput(result); } `}};function qV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,c=F.computeDilation2DInfo(a.shape,s.shape,i,o,"NHWC",l),u,h=new GV(c);u=n.runWebGLProgram(h,[a,s],"float32");let d=we({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),d}var XV={kernelName:su,backendName:"webgl",kernelFunc:qV},KV="return (x >= 0.0) ? x : (exp(x) - 1.0);",ZV=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0); result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0); result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; `,YV=Qe({opSnippet:KV,packedOpSnippet:ZV}),JV={kernelName:Xi,backendName:"webgl",kernelFunc:YV},QV="return (b >= 1.0) ? a : a * (b + 1.0);",eU=` vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.))); return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0)))); `,tU=e=>{let{inputs:t,backend:n}=e,{dy:r,y:a}=t,s=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new ic(eU,r.shape,a.shape):new Al(QV,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)},nU={kernelName:Th,backendName:"webgl",kernelFunc:tU},rU=` return vec4(equal(a, b)); `,aU="return float(a == b);",sU=Qt({opSnippet:aU,packedOpSnippet:rU,dtype:"bool"}),iU={kernelName:Zi,backendName:"webgl",kernelFunc:sU},oU=` // Error function is calculated approximately with elementary function. // See "Handbook of Mathematical Functions with Formulas, // Graphs, and Mathematical Tables", Abramowitz and Stegun. float p = ${F.ERF_P}; float a1 = ${F.ERF_A1}; float a2 = ${F.ERF_A2}; float a3 = ${F.ERF_A3}; float a4 = ${F.ERF_A4}; float a5 = ${F.ERF_A5}; float sign = sign(x); x = abs(x); float t = 1.0 / (1.0 + p * x); return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x)); `,lU=Qe({opSnippet:oU}),uU={kernelName:Ki,backendName:"webgl",kernelFunc:lU},N_="return exp(x);",S_=Qe({opSnippet:N_,packedOpSnippet:N_,cpuKernelImpl:uL}),cU={kernelName:os,backendName:"webgl",kernelFunc:S_};function vA(e){let{inputs:t,attrs:n,backend:r}=e,{dim:a}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(k.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),we({inputs:{x:s},backend:r,attrs:{shape:o}})}var hU={kernelName:Yi,backendName:"webgl",kernelFunc:vA},T_="return exp(x) - 1.0;",dU=Qe({opSnippet:T_,packedOpSnippet:T_,cpuKernelImpl:cL}),pU={kernelName:Ji,backendName:"webgl",kernelFunc:dU},E_=class{constructor(e,t,n){this.variableNames=["real","imag"];let r=t[1];this.outputShape=t;let a=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${r}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=` const float exponentMultiplier = ${a}; float unaryOpComplex(float real, float expR, float imag, float expI) { ${i} } float mulMatDFT(int batch, int index) { float indexRatio = float(index) / float(${r}); float exponentMultiplierTimesIndexRatio = exponentMultiplier * indexRatio; float result = 0.0; for (int i = 0; i < ${r}; i++) { // x = (-2|2 * PI / N) * index * i; float x = exponentMultiplierTimesIndexRatio * float(i); float expR = cos(x); float expI = sin(x); float real = getReal(batch, i); float imag = getImag(batch, i); result += unaryOpComplex(real, expR, imag, expI) / ${s}; } return result; } void main() { ivec2 coords = getOutputCoords(); setOutput(mulMatDFT(coords[0], coords[1])); } `}};function C_(e,t,n){let r=n.texData.get(e.dataId),a=k.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=a/s,o=we({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,c=new E_("real",l,t),u=new E_("imag",l,t),h=[{dataId:r.complexTensorInfos.real.dataId,dtype:r.complexTensorInfos.real.dtype,shape:l},{dataId:r.complexTensorInfos.imag.dataId,dtype:r.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(c,h,"float32"),p=n.runWebGLProgram(u,h,"float32"),f=Fa({inputs:{real:d,imag:p},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p);let m=we({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(f),m}function fU(e){let{inputs:t,backend:n}=e,{input:r}=t;return C_(r,!1,n)}var mU={kernelName:Eh,backendName:"webgl",kernelFunc:fU},AU=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=` uniform float value; void main() { // Input can be obtained from uniform value. setOutput(value); } `}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function kA(e){let{backend:t,attrs:n}=e,{shape:r,value:a}=n,{dtype:s}=n;if(s=s||k.inferDtype(a),s==="string"){let i=k.getArrayFromDType(s,k.sizeFromShape(r));return i.fill(a),t.makeTensorInfo(r,s,i)}else{let i=new AU(r,a),o=i.getCustomSetupFunc(a);return t.runWebGLProgram(i,[],s,o)}}var yU={kernelName:iu,backendName:"webgl",kernelFunc:kA},gU=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int x = coords[2]; int coordX = ${t} - x; float outputValue; if(coordX >= 0 && coordX < ${t}) { outputValue = getImage(coords[0], coords[1], coordX, coords[3]); } else { outputValue = getImage(coords[0], coords[1], coords[2], coords[3]); } setOutput(outputValue); } `}},xU={kernelName:Qi,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,r=t,a=new gU(n.shape);return r.runWebGLProgram(a,[n],n.dtype)}},R_="return floor(x);",wU=Qe({opSnippet:R_,packedOpSnippet:R_,cpuKernelImpl:hL}),_U={kernelName:ls,backendName:"webgl",kernelFunc:wU},bU=` float s = sign(a) * sign(b); int ia = round(a); int ib = round(b); if (ib != 0) { // Windows (D3D) wants guaranteed non-zero int division at compile-time. return float(idiv(ia, ib, s)); } else { return NAN; } `,vU=` ivec4 ia = round(a); ivec4 ib = round(b); bvec4 cond = notEqual(ib, ivec4(0)); ivec4 result = ivec4(0); vec4 s = sign(a) * sign(b); // Windows (D3D) wants guaranteed non-zero int division at compile-time. if (cond[0]) { result[0] = idiv(ia[0], ib[0], s[0]); } if (cond[1]) { result[1] = idiv(ia[1], ib[1], s[1]); } if (cond[2]) { result[2] = idiv(ia[2], ib[2], s[2]); } if (cond[3]) { result[3] = idiv(ia[3], ib[3], s[3]); } return vec4(result); `,kU=Qt({opSnippet:bU,packedOpSnippet:vU,dtype:"int32"}),IU={kernelName:us,backendName:"webgl",kernelFunc:kU},NU=class{constructor(e){this.variableNames=["A"];let t=ln(),[n,r]=e;this.outputShape=e,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; int texC = coords[1]; int depth = coords[2]; vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${r}.0, ${n}.0); vec4 values = ${t.texture2D}(A, uv); float value; if (depth == 0) { value = values.r; } else if (depth == 1) { value = values.g; } else if (depth == 2) { value = values.b; } else if (depth == 3) { value = values.a; } setOutput(floor(value * 255.0 + 0.5)); } `}},SU=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=ln(),[n,r]=e;this.outputShape=e,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; int texC = coords[1]; int depth = coords[2]; vec4 result = vec4(0.); for(int row=0; row<=1; row++) { for(int col=0; col<=1; col++) { texC = coords[1] + row; depth = coords[2] + col; vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${r}.0, ${n}.0); vec4 values = ${t.texture2D}(A, uv); float value; if (depth == 0) { value = values.r; } else if (depth == 1) { value = values.g; } else if (depth == 2) { value = values.b; } else if (depth == 3) { value = values.a; } result[row * 2 + col] = floor(value * 255.0 + 0.5); } } ${t.output} = result; } `}},EU={kernelName:Uh,backendName:"webgl",kernelFunc:TU},gl;function TU(e){let{inputs:t,backend:n,attrs:r}=e,{pixels:a}=t,{numChannels:s}=r,i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,l=typeof ImageBitmap!="undefined"&&a instanceof ImageBitmap,[c,u]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],h=[u,c],d=[u,c,s];(o||i||l)&&(gl==null&&(gl=document.createElement("canvas").getContext("2d")),gl.canvas.width=c,gl.canvas.height=u,gl.drawImage(a,0,0,c,u),a=gl.canvas);let p=n.makeTensorInfo(h,"int32");n.texData.get(p.dataId).usage=qn.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(p.dataId),a);let f=ee().getBool("WEBGL_PACK")?new SU(d):new NU(d),m=n.runWebGLProgram(f,[p],"int32");return n.disposeData(p.dataId),m}function CU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=F.convertConv2DDataFormat(u),A=F.computeConv2DInfo(a.shape,s.shape,l,h,c,d,!1,m),y,g=[];if(A.filterHeight===1&&A.filterWidth===1&&A.dilationHeight===1&&A.dilationWidth===1&&A.strideHeight===1&&A.strideWidth===1&&(A.padInfo.type==="SAME"||A.padInfo.type==="VALID"))y=x_({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:f});else if(ee().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)y=w_({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:f});else{let x=i!=null,_=o!=null,b=p==="leakyrelu",T=p?tp(p,!1):null,S=new g_(A,x,T,_,b),N=[a,s];if(i&&N.push(i),o&&N.push(o),b){let C=n.makeTensorInfo([],"float32",k.createScalarValue(f,"float32"));N.push(C),g.push(C)}y=n.runWebGLProgram(S,N,"float32")}let w=we({inputs:{x:y},backend:n,attrs:{shape:A.outShape}});return g.push(y),g.forEach(x=>n.disposeIntermediateTensorInfo(x)),w}var RU={kernelName:Bs,backendName:"webgl",kernelFunc:CU};function FU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:h,activation:d,leakyreluAlpha:p}=r,f=[],m=u;m==null&&(m=[1,1]),k.assert(F.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let A=F.computeConv2DInfo(a.shape,s.shape,l,m,c,h,!0),y=ee().getBool("WEBGL_PACK_DEPTHWISECONV")&&A.strideWidth<=2&&A.outChannels/A.inChannels==1,g=d?tp(d,y):null,w=[a,s],x=i!=null,_=o!=null,b=d==="leakyrelu";if(x&&w.push(i),_&&w.push(o),b){let N=n.makeTensorInfo([],"float32",k.createScalarValue(p,"float32"));w.push(N),f.push(N)}let T;y?T=new I_(A,x,g,_,b):T=new k_(A,x,g,_,b);let S=n.runWebGLProgram(T,w,"float32");return f.forEach(N=>n.disposeIntermediateTensorInfo(N)),S}var MU={kernelName:Vs,backendName:"webgl",kernelFunc:FU},$U=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let r=ft(t.length),a=ft(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=` ${r} strides = ${r}(${this.strides}); void main() { ${a} coords = getOutputCoords(); int flattenIndex = 0; for (int j = 0; j < ${this.sliceDim}; j++) { int index = round(getIndices(coords[0], j)); flattenIndex += index * ${s}; } setOutput(getX(flattenIndex, coords[1])); } `}};function DU(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=a.shape,i=s[s.length-1],[o,l,c,u]=F.prepareAndValidate(r,a),h=we({inputs:{x:a},backend:n,attrs:{shape:[l,i]}}),d=we({inputs:{x:r},backend:n,attrs:{shape:[k.sizeFromShape(r.shape)/c,c]}}),p=new $U(i,u,[l,c]),f=n.runWebGLProgram(p,[d,h],d.dtype),m=we({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(f),m}var OU={kernelName:to,backendName:"webgl",kernelFunc:DU},PU=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=ft(this.rank),r=zU(e,2);this.userCode=` void main() { ${n} resRC = getOutputCoords(); setOutput(getA(${r})); } `}};function zU(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let a=0;an.disposeIntermediateTensorInfo(_)),n.makeTensorInfo(c.outputShape,x.dtype,x.values)}let m=new PU(d.shape,f),A=n.runWebGLProgram(m,[d,p],d.dtype);h.push(A);let y=we({inputs:{x:A},backend:n,attrs:{shape:c.outputShape}});return h.forEach(g=>n.disposeIntermediateTensorInfo(g)),y}var WU={kernelName:eo,backendName:"webgl",kernelFunc:LU},BU="return float(a > b);",VU=` return vec4(greaterThan(a, b)); `,UU=Qt({opSnippet:BU,packedOpSnippet:VU,cpuKernelImpl:pL,dtype:"bool"}),jU={kernelName:no,backendName:"webgl",kernelFunc:UU},HU="return float(a >= b);",GU=` return vec4(greaterThanEqual(a, b)); `,qU=Qt({opSnippet:HU,packedOpSnippet:GU,dtype:"bool"}),XU={kernelName:hs,backendName:"webgl",kernelFunc:qU};function KU(e){let{inputs:t,backend:n}=e,{input:r}=t;return C_(r,!0,n)}var ZU={kernelName:Ch,backendName:"webgl",kernelFunc:KU},YU="return float(!isnan(x) && !isinf(x));",JU=Qe({opSnippet:YU,dtype:"bool"}),QU={kernelName:ao,backendName:"webgl",kernelFunc:JU},ej="return float(isinf(x));",tj=Qe({opSnippet:ej,dtype:"bool"}),nj={kernelName:so,backendName:"webgl",kernelFunc:tj},rj="return float(isnan(x));",aj=Qe({opSnippet:rj,dtype:"bool"}),sj={kernelName:io,backendName:"webgl",kernelFunc:aj},ij="return float(a < b);",oj=` return vec4(lessThan(a, b)); `,lj=Qt({opSnippet:ij,packedOpSnippet:oj,cpuKernelImpl:fL,dtype:"bool"}),uj={kernelName:oo,backendName:"webgl",kernelFunc:lj},cj="return float(a <= b);",hj=` return vec4(lessThanEqual(a, b)); `,dj=Qt({opSnippet:cj,packedOpSnippet:hj,dtype:"bool"}),pj={kernelName:lo,backendName:"webgl",kernelFunc:dj};function fj(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=mL(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var mj={kernelName:Fh,backendName:"webgl",kernelFunc:fj},Aj=`if (x < 0.0) return NAN; return log(x);`,yj=` vec4 result = log(x); vec4 isNaN = vec4(lessThan(x, vec4(0.0))); result.r = isNaN.r == 1.0 ? NAN : result.r; result.g = isNaN.g == 1.0 ? NAN : result.g; result.b = isNaN.b == 1.0 ? NAN : result.b; result.a = isNaN.a == 1.0 ? NAN : result.a; return result; `,gj=Qe({opSnippet:Aj,packedOpSnippet:yj,cpuKernelImpl:AL}),xj={kernelName:ps,backendName:"webgl",kernelFunc:gj},wj="return log(1.0 + x);",_j=Qe({opSnippet:wj}),bj={kernelName:uo,backendName:"webgl",kernelFunc:_j},vj="return float(a >= 1.0 && b >= 1.0);",kj=` return vec4( vec4(greaterThanEqual(a, vec4(1.0))) * vec4(greaterThanEqual(b, vec4(1.0)))); `,Ij=Qt({opSnippet:vj,packedOpSnippet:kj,dtype:"bool"}),Nj={kernelName:co,backendName:"webgl",kernelFunc:Ij},Sj="return float(!(x >= 1.0));",Tj=Qe({opSnippet:Sj}),Ej={kernelName:ou,backendName:"webgl",kernelFunc:Tj},Cj="return float(a >= 1.0 || b >= 1.0);",Rj=` return min( vec4(greaterThanEqual(a, vec4(1.0))) + vec4(greaterThanEqual(b, vec4(1.0))), vec4(1.0)); `,Fj=Qt({opSnippet:Cj,packedOpSnippet:Rj,dtype:"bool"}),Mj={kernelName:lu,backendName:"webgl",kernelFunc:Fj},$j=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int r = coords[1]; int c = coords[2]; int d = coords[3]; float x = getX(b, r, c, d); float sum = 0.0; for (int j = -${s}; j <= ${s}; j++) { int idx = d + j; if (idx >= 0 && idx <= ${i}) { float z = getX(b, r, c, idx); sum += z * z; } } float val = x * ${o}; setOutput(val); } `}},Dj=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords.x; int r = coords.y; int c = coords.z; int d = coords.w; bool hasNextCol = d < ${this.outputShape[3]}; bool hasNextRow = c < ${this.outputShape[2]}; vec4 sum = vec4(0.); vec4 xFragAtOutputCoords = getX(b, r, c, d); vec4 xAtOutputCoords = vec4( getChannel(xFragAtOutputCoords, vec2(c, d)), hasNextCol ? getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0, hasNextRow ? getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0, (hasNextRow && hasNextCol) ? getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0 ); int firstChannel = d - ${s}; vec2 cache = vec2(0.); if(firstChannel >= 0){ vec4 firstChannelFrag = getX(b, r, c, firstChannel); cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel)); if(hasNextRow){ cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel)); } } ivec2 depth = ivec2(d, d + 1); for (int j = - ${s}; j <= ${s}; j++) { ivec2 idx = depth + j; bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0)); bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i})); bool depthInRange = aboveLowerBound.x && belowUpperBound.x; bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y; if(depthInRange || depthPlusOneInRange){ vec4 z = vec4(0.); vec4 xFragAtCurrentDepth; z.xz = cache.xy; if(depthPlusOneInRange && hasNextCol){ xFragAtCurrentDepth = idx.y != d ? getX(b, r, c, idx.y) : xFragAtOutputCoords; z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y)); if(hasNextRow){ z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y)); } } cache.xy = z.yw; sum += z * z; } } vec4 result = xAtOutputCoords * ${o}; setOutput(result); } `}},Oj=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r,c=ee().getBool("WEBGL_PACK_NORMALIZATION")?new Dj(a.shape,s,i,o,l):new $j(a.shape,s,i,o,l);return n.runWebGLProgram(c,[a],a.dtype)},zj={kernelName:uu,backendName:"webgl",kernelFunc:Oj},Pj=class{constructor(e,t,n,r,a){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=r,this.beta=a,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int r = coords[1]; int c = coords[2]; float result = 0.0; for (int d = 0; d < ${this.depth}; ++d) { int depthBegin = int(max(0.0, float(d - ${t}))); int depthEnd = int(min(float(${this.depth}), float(d + ${t} + 1))); const int MIN_DEPTH_BEGIN = 0; const int MAX_DEPTH_END = ${this.depth}; float norm = 0.0; for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) { if (k < depthBegin){ continue; } else if (k >= depthBegin && k < depthEnd) { norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k); } else { break; } } norm = float(${r}) * norm + float(${n}); for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){ if (k < depthBegin){ continue; } else if (k >= depthBegin && k < depthEnd){ float dyi = -2.0 * float(${r}) * float(${a}) * getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d) / norm; if (k == d) { dyi += pow(norm, -1.0 * ${a}); } if (k == coords[3]) { dyi *= getDy(b, r, c, d); result += dyi; } } else { break; } } } setOutput(result); } `}},Lj=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:c,beta:u}=r,h=new Pj(a.shape,o,l,c,u);return n.runWebGLProgram(h,[a,s,i],a.dtype)},Wj={kernelName:Mh,backendName:"webgl",kernelFunc:Lj};function Bj(e,t,n,r){let a=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/a,i=we({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=ci(i,e.dtype,"max",r),l=we({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}function F_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=a.shape.length,l=k.parseAxisParam(s,a.shape),c=l,u=F.getAxesPermutation(c,o),h=u!=null,d=n.shouldExecuteOnCPU([a]),p=a;if(h){if(d){let g=n.texData.get(p.dataId).values,w=new Array(o);for(let b=0;b`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=F.computePool2DInfo(a.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))return Cn({inputs:{x:a},backend:n});let h=new oc(u,"max",!1);return n.runWebGLProgram(h,[a],a.dtype)}var Xj={kernelName:As,backendName:"webgl",kernelFunc:qj};function Kj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:c}=r,u=[1,1,1],h=F.computePool3DInfo(a.shape,s,i,u,o,c,l),d=new wA(h,"max",!1);return n.runWebGLProgram(d,[a],a.dtype)}var Zj={kernelName:cu,backendName:"webgl",kernelFunc:Kj},Yj=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,r=e.dilationHeight,a=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=a-1-e.padInfo.top,o=s-1-e.padInfo.left,l=a*s-1;this.userCode=` const ivec2 pads = ivec2(${i}, ${o}); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 dyRCCorner = coords.yz - pads; int dyRCorner = dyRCCorner.x; int dyCCorner = dyRCCorner.y; // Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${a}; wR += ${r}) { float dyR = float(dyRCorner + wR) / ${t}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${s}; wC++) { float dyC = float(dyCCorner + wC) / ${n}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(b, idyR, idyC, d); int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d)); // Get the current value, check it against the value from the // position matrix. int curPosValue = wR * ${s} + wC; float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0); dotProd += dyValue * mask; } } setOutput(dotProd); } `}},Jj=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=o-1-e.padInfo.front,h=l-1-e.padInfo.top,d=c-1-e.padInfo.left,p=o*l*c-1;this.userCode=` const ivec3 pads = ivec3(${u}, ${h}, ${d}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads; int dyDCorner = dyCorner.x; int dyRCorner = dyCorner.y; int dyCCorner = dyCorner.z; // Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get // dx(xD, xR, xC, ch). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wD = 0; wD < ${o}; wD += ${a}) { float dyD = float(dyDCorner + wD) / ${t}.0; if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) { continue; } int idyD = int(dyD); for (int wR = 0; wR < ${l}; wR += ${s}) { float dyR = float(dyRCorner + wR) / ${n}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${c}; wC += ${i}) { float dyC = float(dyCCorner + wC) / ${r}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(batch, idyD, idyR, idyC, ch); int maxPosValue = ${p} - int(getMaxPos(batch, idyD, idyR, idyC, ch)); // Get the current value, check it against the value from the // position matrix. int curPosValue = wD * ${l} * ${c} + wR * ${c} + wC; float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0); dotProd += dyValue * mask; } } } setOutput(dotProd); } `}};function Qj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=r,h=[1,1,1],d=F.computePool3DInfo(i.shape,o,l,h,c,u),p=new wA(d,"max",!0),f=n.runWebGLProgram(p,[i],i.dtype),m=new Jj(d),A=n.runWebGLProgram(m,[a,f],i.dtype);return n.disposeIntermediateTensorInfo(f),A}var eH={kernelName:Dh,backendName:"webgl",kernelFunc:Qj};function tH(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;ul([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:h}=r,d=F.computePool2DInfo(o.shape,l,c,1,u,h),p=!0,f=new oc(d,"max",p),m=n.runWebGLProgram(f,[o],o.dtype),A=new Yj(d),y=n.runWebGLProgram(A,[a,m],o.dtype);return n.disposeIntermediateTensorInfo(m),y}var nH={kernelName:$h,backendName:"webgl",kernelFunc:tH};function rH(e,t,n,r){let a=new oc(n,"max",!1),s=r.runWebGLProgram(a,[e],"float32");a=new oc(n,"max",!0,!0,t);let i=r.runWebGLProgram(a,[e],"float32");return[s,i]}var aH={kernelName:Oh,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;k.assert(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let c=[1,1];k.assert(F.eitherStridesOrDilationsAreOne(s,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${c}'`);let u=F.computePool2DInfo(r.shape,a,s,c,i),[h,d]=rH(r,o,u,l);return[h,d]}};function sH(e,t,n,r){let a=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/a,i=we({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=ci(i,"float32","mean",r),l=we({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}var iH={kernelName:ys,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{keepDims:a,axis:s}=t,i=n,o=r.shape.length,l=k.parseAxisParam(s,r.shape),c=l,u=F.getAxesPermutation(c,o),h=u!=null,d=i.shouldExecuteOnCPU([r]),p=[],f=r;if(h){if(d){let w=i.texData.get(f.dataId).values,x=new Array(o);for(let T=0;Tc[0]+e[u]+c[1]);let r=e.length,a=ft(r),s=t.map(c=>c[0]).join(","),i=t.map((c,u)=>c[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r),l=n==="reflect"?0:1;if(r===1){this.userCode=` int start = ${s}; int end = ${i}; void main() { int outC = getOutputCoords(); if (outC < start) { outC = start * 2 - outC - ${l}; } else if(outC >= end) { outC = (end - 1) * 2 - outC + ${l}; } setOutput(getX(outC - start)); } `;return}this.userCode=` ${a} start = ${a}(${s}); ${a} end = ${a}(${i}); void main() { ${a} outC = getOutputCoords(); for (int i = 0; i < ${r}; i++) { if (outC[i] < start[i]) { outC[i] = start[i] * 2 - outC[i] - ${l}; } else if(outC[i] >= end[i]) { outC[i] = (end[i] - 1) * 2 - outC[i] + ${l}; } } ${a} coords = outC - start; setOutput(getX(${o})); } `}},fH=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((p,f)=>p[0]+e[f]+p[1]);let r=e.length,a=ft(r),s=t.map(p=>p[0]).join(","),i=t.map((p,f)=>p[0]+e[f]).join(","),o=un("rc",r),l=un("source",r),c=`${o[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${l.slice(-2).join()})`,h=n==="reflect"?0:1,d="";if(r===1){let p=` ${a} source = rc; if (source < start) { source = start * 2 - source - ${h}; } else if (source >= end) { source = (end - 1) * 2 - source + ${h}; } source -= start; `;d=` ${a} rc = outputLoc; ${p} result[0] = getChannel(getX(${l.join()}), ${u}); ${o[r-1]} += 1; if(${c}) { ${p} result[1] = getChannel(getX(${l.join()}), ${u}); } `}else{let p=` ${a} source = rc; ${a} lt = ${a}(lessThan(source, start)); ${a} gte = ${a}(greaterThanEqual(source, end)); ${a} orig = 1 - (lt + gte); source = orig * source + lt * (start * 2 - source - ${h}) + gte * ((end - 1) * 2 - source + ${h}); source -= start; `;d=` ${a} rc = outputLoc; ${p} result[0] = getChannel(getX(${l.join()}), ${u}); ${o[r-1]} += 1; if(${c}) { ${p} result[1] = getChannel(getX(${l.join()}), ${u}); } rc = outputLoc; ${o[r-2]} += 1; if(${o[r-2]} < ${this.outputShape[r-2]}) { ${p} result[2] = getChannel(getX(${l.join()}), ${u}); ${o[r-1]} += 1; if(${c}) { ${p} result[3] = getChannel(getX(${l.join()}), ${u}); } } `}this.userCode=` const ${a} start = ${a}(${s}); const ${a} end = ${a}(${i}); void main() { ${a} outputLoc = getOutputCoords(); vec4 result = vec4(0.); ${d} setOutput(result); } `}},mH=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{paddings:a,mode:s}=n,i=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new fH(r.shape,a,s):new pH(r.shape,a,s);return t.runWebGLProgram(i,[r],r.dtype)},AH={kernelName:hu,backendName:"webgl",kernelFunc:mH},yH=`if (b == 0.0) return NAN; return mod(a, b);`,gH=` vec4 result = mod(a, b); vec4 isNaN = vec4(equal(b, vec4(0.0))); `+ep+` return result; `,xH=Qt({opSnippet:yH,packedOpSnippet:gH}),wH={kernelName:ho,backendName:"webgl",kernelFunc:xH},_H=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=` uniform float seed; void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; float r = random(seed); float cdf = 0.0; for (int i = 0; i < ${t-1}; i++) { cdf += getProbs(batch, i); if (r < cdf) { setOutput(float(i)); return; } } // If no other event happened, last event happened. setOutput(float(${t-1})); } `}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},bH=` if (a == b) { return 1.0; }; return a / b;`,vH=` // vec4 one = vec4(equal(a, b)); // return one + (vec4(1.0) - one) * a / b; vec4 result = a / b; if(a.x == b.x) { result.x = 1.; } if(a.y == b.y) { result.y = 1.; } if(a.z == b.z) { result.z = 1.; } if(a.w == b.w) { result.w = 1.; } return result; `,M_=Qt({opSnippet:bH,packedOpSnippet:vH,checkOutOfBounds:!0}),kH={kernelName:is,backendName:"webgl",kernelFunc:M_},$_="return a - b;",D_=Qt({opSnippet:$_,packedOpSnippet:$_,supportsComplex:!0,cpuKernelImpl:SL}),IH={kernelName:zs,backendName:"webgl",kernelFunc:D_};function O_(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=k.parseAxisParam([s],a.shape),o=F_({inputs:{x:a},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=F.expandShapeToKeepDim(o.shape,i),c=we({inputs:{x:o},backend:n,attrs:{shape:l}}),u=D_({inputs:{a,b:c},backend:n}),h=S_({inputs:{x:u},backend:n}),d=xA({inputs:{x:h},backend:n,attrs:{axis:i,keepDims:!1}}),p=we({inputs:{x:d},backend:n,attrs:{shape:l}}),f=M_({inputs:{a:h,b:p},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),f}var NH={kernelName:Ds,backendName:"webgl",kernelFunc:O_};function SH(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r,l=o?a:O_({inputs:{logits:a},backend:n,attrs:{dim:a.shape.length-1}}),c=l.shape[0],u=l.shape[1],h=new _H(c,u,s),d=h.getCustomSetupFunc(i),p=n.runWebGLProgram(h,[l],"int32",d);return o||n.disposeIntermediateTensorInfo(l),p}var TH={kernelName:zh,backendName:"webgl",kernelFunc:SH},z_="return -x;";function EH(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])){let s=n.texData.get(r.dataId),[i,o]=_L(s.values,r.shape,r.dtype);return n.makeTensorInfo(o,r.dtype,i)}let a;return ee().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new ml(r.shape,z_):a=new Ra(r.shape,z_),n.runWebGLProgram(a,[r],r.dtype)}var CH={kernelName:po,backendName:"webgl",kernelFunc:EH},RH=$r.nonMaxSuppressionV3Impl;function FH(e){F.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r,c=n.readSync(a.dataId),u=n.readSync(s.dataId),{selectedIndices:h}=RH(c,u,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var MH={kernelName:mo,backendName:"webgl",kernelFunc:FH},$H=$r.nonMaxSuppressionV4Impl;function DH(e){F.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:c}=r,u=n.readSync(a.dataId),h=n.readSync(s.dataId),{selectedIndices:d,validOutputs:p}=$H(u,h,i,o,l,c);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var OH={kernelName:Ao,backendName:"webgl",kernelFunc:DH},zH=$r.nonMaxSuppressionV5Impl;function PH(e){F.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:c}=r,u=n.readSync(a.dataId),h=n.readSync(s.dataId),d=i,p=o,f=l,m=c,{selectedIndices:A,selectedScores:y}=zH(u,h,d,p,f,m);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var LH={kernelName:yo,backendName:"webgl",kernelFunc:PH},WH=class{constructor(e,t,n,r){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=` void main() { ivec2 coords = getOutputCoords(); int index = round(getIndices(coords.x)); setOutput(mix(float(${r}), float(${n}), float(index == coords.y))); } `}},BH=e=>{let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=k.sizeFromShape(a.shape),c=new WH(l,s,i,o),u=we({inputs:{x:a},backend:n,attrs:{shape:[l]}}),h=n.runWebGLProgram(c,[u],a.dtype);n.disposeIntermediateTensorInfo(u);let d=[...a.shape,s],p=we({inputs:{x:h},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(h),p},VH={kernelName:_s,backendName:"webgl",kernelFunc:BH};function op(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="complex64"){let a=uc({inputs:{input:r},backend:n}),s=op({inputs:{x:a},backend:n}),i=ip({inputs:{input:r},backend:n}),o=op({inputs:{x:i},backend:n}),l=Fa({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return kA({attrs:{shape:r.shape,dtype:r.dtype,value:r.dtype==="string"?"":0},backend:n})}var UH={kernelName:Do,backendName:"webgl",kernelFunc:op};function P_(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(r.dtype==="complex64"){let a=uc({inputs:{input:r},backend:n}),s=P_({inputs:{x:a},backend:n}),i=ip({inputs:{input:r},backend:n}),o=op({inputs:{x:i},backend:n}),l=Fa({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return kA({attrs:{shape:r.shape,dtype:r.dtype,value:1},backend:n})}var jH={kernelName:go,backendName:"webgl",kernelFunc:P_};function HH(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return vA({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{k.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=vA({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=y_({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var GH={kernelName:xo,backendName:"webgl",kernelFunc:HH},qH=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let r=e.length,a=ft(r),s=t.map(l=>l[0]).join(","),i=t.map((l,c)=>l[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r);if(r===1){this.userCode=` int start = ${s}; int end = ${i}; void main() { int outC = getOutputCoords(); if (outC < start || outC >= end) { setOutput(float(${n})); } else { setOutput(getX(outC - start)); } } `;return}this.userCode=` ${a} start = ${a}(${s}); ${a} end = ${a}(${i}); void main() { ${a} outC = getOutputCoords(); if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) { setOutput(float(${n})); } else { ${a} coords = outC - start; setOutput(getX(${o})); } } `}},XH=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let r=e.length,a=ft(r),s=t.map(f=>f[0]).join(","),i=t.map((f,m)=>f[0]+e[m]).join(","),o=un("rc",r),l=un("source",r),c=`${o[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${l.slice(-2).join()})`,h=[`${a} rc = outputLoc;`,`${o[r-1]} += 1; if(${c}) { `,r===1?"":`} rc = outputLoc; ${o[r-2]} += 1; if(${o[r-2]} < ${this.outputShape[r-2]}) {`,r===1?"":` ${o[r-1]} += 1; if(${c}) {`],d=r===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",p="";for(let f=0,m=r===1?2:4;f{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r,o=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new XH(a.shape,s,i):new qH(a.shape,s,i);return n.runWebGLProgram(o,[a],a.dtype)},KH={kernelName:bs,backendName:"webgl",kernelFunc:L_},ZH=` if(a < 0.0 && floor(b) < b){ return NAN; } if (b == 0.0) { return 1.0; } return (round(mod(b, 2.0)) != 1) ? pow(abs(a), b) : sign(a) * pow(abs(a), b); `,YH=` // isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise. vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1))); vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1); vec4 result = multiplier * pow(abs(a), b); // Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS bvec4 isExpZero = equal(b, vec4(0.0)); result.r = isExpZero.r ? 1.0 : result.r; result.g = isExpZero.g ? 1.0 : result.g; result.b = isExpZero.b ? 1.0 : result.b; result.a = isExpZero.a ? 1.0 : result.a; vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b)); `+ep+` return result; `,JH=Qt({opSnippet:ZH,packedOpSnippet:YH}),QH={kernelName:vs,backendName:"webgl",kernelFunc:JH};function eG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=[],c=k.parseAxisParam(s,a.shape),u=c,h=F.getAxesPermutation(u,o),d=a;h!=null&&(d=An({inputs:{x:a},backend:n,attrs:{perm:h}}),u=F.getInnerMostAxes(u.length,o),l.push(d)),F.assertAxesAreInnerMostDims("prod",u,o);let p;if(n.shouldExecuteOnCPU([d])){let f=n.texData.get(d.dataId).values,{outVals:m,outShape:A,outDtype:y}=bL(d.shape,d.dtype,f,u);p=n.makeTensorInfo(A,y,m)}else{let[f,m]=F.computeOutAndReduceShapes(d.shape,u),A=k.sizeFromShape(m),y=we({inputs:{x:d},backend:n,attrs:{shape:[-1,A]}}),g=jh(a.dtype),w=ci(y,g,"prod",n);p=we({inputs:{x:w},backend:n,attrs:{shape:f}}),l.push(y),l.push(w)}if(i){l.push(p);let f=F.expandShapeToKeepDim(p.shape,c);p=we({inputs:{x:p},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),p}var tG={kernelName:wo,backendName:"webgl",kernelFunc:eG},W_=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=vL(r,a,s,i);return t.makeTensorInfo([o.length],i,o)},nG={kernelName:du,backendName:"webgl",kernelFunc:W_},rG="return 1.0 / x;",aG=Qe({opSnippet:rG}),sG={kernelName:_o,backendName:"webgl",kernelFunc:aG},iG=xr+` return (x < 0.0) ? 0.0 : x; `,oG=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,lG=Qe({opSnippet:iG,packedOpSnippet:oG}),uG={kernelName:Is,backendName:"webgl",kernelFunc:lG},cG=xr+` return (x < 0.0) ? 0.0 : min(6.0, x); `,hG=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,dG=Qe({opSnippet:cG,packedOpSnippet:hG}),pG={kernelName:Ss,backendName:"webgl",kernelFunc:dG},fG=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${c[0]/u[0]}, ${c[1]/u[1]}); const vec2 inputShapeRC = vec2(${i}.0, ${o}.0); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 yRC = coords.yz; // Fractional source index. vec2 sourceFracIndexRC = ${h}; // Compute the four integer indices. ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0))); ivec2 sourceCeilRC = ivec2( min(inputShapeRC - 1.0, ceil(sourceFracIndexRC))); float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d); float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d); float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d); float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d); vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC); float top = topLeft + (topRight - topLeft) * fracRC.y; float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y; float newValue = top + (bottom - top) * fracRC.x; setOutput(newValue); } `}},mG=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec3 effectiveInputOverOutputRatioRC = vec3( ${c[0]/u[0]}, ${c[1]/u[1]}, ${c[1]/u[1]}); const vec3 inputShapeRC = vec3(${i}.0, ${o}.0, ${o}.0); float getAValue(int b, int r, int c, int d) { return getChannel(getA(b, r, c, d), vec2(c, d)); } void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; // Calculate values for next column in yRC.z. ivec3 yRC = coords.yzz + ivec3(0, 0, 1); // Fractional source index. vec3 sourceFracIndexRC = ${h}; // Compute the four integer indices. ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0))); ivec3 sourceCeilRC = ivec3( min(inputShapeRC - 1.0, ceil(sourceFracIndexRC))); // Should we calculate next column and row elements in 2x2 packed cell. bool hasNextCol = d < ${l-1}; bool hasNextRow = coords.z < ${n-1}; // In parallel, construct four corners for all four components in // packed 2x2 cell. vec4 topLeft = vec4( getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d), hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0); vec4 bottomLeft = vec4( getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d), hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0); vec4 topRight = vec4( getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d), hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0); vec4 bottomRight = vec4( getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d), hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0); vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC); vec4 top = mix(topLeft, topRight, fracRC.yyzz); vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz); vec4 newValue = mix(top, bottom, fracRC.x); setOutput(newValue); } `}};function AG(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,u=ee().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new mG(a.shape,l,c,s,i):new fG(a.shape,l,c,s,i);return n.runWebGLProgram(u,[a],"float32")}var yG={kernelName:Ns,backendName:"webgl",kernelFunc:AG},gG=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],h=1/c,d=1/u,p=Math.ceil(h)*2+2,f=Math.ceil(d)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; int r = coords[1]; int c = coords[2]; float accumulator = 0.0; const float heightScale = float(${c}); const float widthScale = float(${u}); const float invHeightScale = float(${h}); const float invWidthScale = float(${d}); const int winHeight = int(${p}); const int winWidth = int(${f}); // Compute bounds for where in dy we will look float startRLerp = floor(float(r) * invHeightScale); int startDyR = int(startRLerp - float(winHeight / 2)); float startCLerp = floor(float(c) * invWidthScale); int startDyC = int(startCLerp - float(winWidth / 2)); // Loop over dy for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) { int dyR = dyROffset + startDyR; // Guard against the window exceeding the bounds of dy if (dyR < 0 || dyR >= ${s}) { continue; } for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) { int dyC = dyCOffset + startDyC; // Guard against the window exceeding the bounds of dy if (dyC < 0 || dyC >= ${i}) { continue; } float dxR = float(dyR) * heightScale; int topDxRIndex = int(floor(dxR)); int bottomDxRIndex = int(min(ceil(dxR), ${r-1}.0)); float dxRLerp = dxR - float(topDxRIndex); float inverseDxRLerp = 1.0 - dxRLerp; float dxC = float(dyC) * widthScale; int leftDxCIndex = int(floor(dxC)); int rightDxCIndex = int(min(ceil(dxC), ${a-1}.0)); float dxCLerp = dxC - float(leftDxCIndex); float inverseDxCLerp = 1.0 - dxCLerp; if (r == topDxRIndex && c == leftDxCIndex) { // topLeft accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp; } if (r == topDxRIndex && c == rightDxCIndex) { // topRight accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp; } if (r == bottomDxRIndex && c == leftDxCIndex) { // bottomLeft accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp; } if (r == bottomDxRIndex && c == rightDxCIndex) { // bottomRight accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp; } } } // End loop over dy setOutput(accumulator); } `}};function xG(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new gG(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var wG={kernelName:Wh,backendName:"webgl",kernelFunc:xG},_G=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h=r?"0.5":"0.0",d;a?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${c[0]/u[0]}, ${c[1]/u[1]}); const vec2 inputShapeRC = vec2(${i}.0, ${o}.0); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 yRC = coords.yz; // Fractional source index. vec2 sourceFracIndexRC = ${d}; // Compute the coordinators of nearest neighbor point. ivec2 sourceNearestRC = ivec2( min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${h}))); float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d); setOutput(newValue); } `}};function bG(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,u=new _G(a.shape,l,c,s,i);return n.runWebGLProgram(u,[a],a.dtype)}var vG={kernelName:pu,backendName:"webgl",kernelFunc:bG},kG=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],h=1/c,d=1/u,p=Math.ceil(h)*2+2,f=Math.ceil(d)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; int r = coords[1]; int c = coords[2]; float accumulator = 0.0; const float heightScale = float(${c}); const float widthScale = float(${u}); const float invHeightScale = float(${h}); const float invWidthScale = float(${d}); const int winHeight = int(${p}); const int winWidth = int(${f}); // Compute bounds for where in dy we will look float startRLerp = floor(float(r) * invHeightScale); int startDyR = int(floor(startRLerp - float(winHeight / 2))); float startCLerp = floor(float(c) * invWidthScale); int startDyC = int(floor(startCLerp - float(winWidth / 2))); // Loop over dy for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) { int dyR = dyROffset + startDyR; // Guard against the window exceeding the bounds of dy if (dyR < 0 || dyR >= ${s}) { continue; } for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) { int dyC = dyCOffset + startDyC; // Guard against the window exceeding the bounds of dy if (dyC < 0 || dyC >= ${i}) { continue; } float sourceFracRow = float(${o[0]}) * (float(dyR) / float(${l[0]})); float sourceFracCol = float(${o[1]}) * (float(dyC) / float(${l[1]})); int sourceNearestRow = int(min( float(int(${r}) - 1), ${n} ? float(round(sourceFracRow)) : float(floor(sourceFracRow)))); int sourceNearestCol = int(min( float(int(${a}) - 1), ${n} ? float(round(sourceFracCol)) : float(floor(sourceFracCol)))); if (r == sourceNearestRow && c == sourceNearestCol) { accumulator += getDy(b, dyR, dyC, d); } } } // End loop over dy setOutput(accumulator); } `}};function IG(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new kG(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var NG={kernelName:Lh,backendName:"webgl",kernelFunc:IG},SG=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=` void main() { int coord = getOutputCoords(); setOutput(getX(${e[0]} - coord - 1)); } `;return}let r=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,a=e.map((i,o)=>r(o)).join(","),s=ft(n);this.userCode=` void main() { ${s} coords = getOutputCoords(); setOutput(getX(${a})); } `}},TG=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let r=un("rc",n),a=`${r[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${r[n-2]} + 1 < ${this.outputShape[n-2]}`,i=ft(n);n===1?this.userCode=` void main(){ int rc = getOutputCoords(); vec4 result = vec4(0.); result.r = getChannel(getX(${e[0]} - rc - 1), ${e[0]} - rc - 1); if(${a}){ result.g = getChannel(getX(${e[0]} - (rc + 1) - 1), ${e[0]} - (rc + 1) - 1); } setOutput(result); } `:this.userCode=` void main() { ${i} rc = getOutputCoords(); vec4 result = vec4(0.); result.r = ${o(r.slice())}; if(${a}){ result.g = ${l(r.slice())}; } if(${s}) { result.b = ${c(r.slice())}; if(${a}) { result.a = ${u(r.slice())}; } } setOutput(result); } `;function o(p){return h(p)}function l(p){return p[n-1]="("+p[n-1]+" + 1)",h(p)}function c(p){return p[n-2]="("+p[n-2]+" + 1)",h(p)}function u(p){return p[n-1]="("+p[n-1]+" + 1)",p[n-2]="("+p[n-2]+" + 1)",h(p)}function h(p){let f=e.map((y,g)=>d(g,p)),m=f.join(","),A=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${A}))`}function d(p,f){return t.indexOf(p)!==-1&&e[p]!==1?`${e[p]} - ${f[p]} - 1`:`${f[p]}`}}};function EG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=a.shape.length,o=k.parseAxisParam(s,a.shape);if(i===0)return Cn({inputs:{x:a},backend:n});let l=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new TG(a.shape,o):new SG(a.shape,o);return n.runWebGLProgram(l,[a],a.dtype)}var CG={kernelName:Ts,backendName:"webgl",kernelFunc:EG},RG=class{constructor(e,t,n,r){this.variableNames=["Image"],this.outputShape=[];let a=e[1],s=e[2],i=Math.sin(t).toFixed(3),o=Math.cos(t).toFixed(3);this.outputShape=e;let[l,c]=F.getImageCenter(r,a,s),u=l.toFixed(3),h=c.toFixed(3),d="";typeof n=="number"?d=`float outputValue = ${n.toFixed(2)};`:d=` vec3 fill = vec3(${n.join(",")}); float outputValue = fill[coords[3]];`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int x = coords[2]; int y = coords[1]; float coordXFloat = (float(x) - ${u}) * ${o} - (float(y) - ${h}) * ${i}; float coordYFloat = (float(x) - ${u}) * ${i} + (float(y) - ${h}) * ${o}; int coordX = int(round(coordXFloat + ${u})); int coordY = int(round(coordYFloat + ${h})); ${d} if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${a}) { outputValue = getImage(coords[0], coordY, coordX, coords[3]); } setOutput(outputValue); } `}},FG={kernelName:Oo,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=new RG(r.shape,a,s,i);return o.runWebGLProgram(l,[r],r.dtype)}},MG=` // OpenGL ES does not support round function. // The algorithm is based on banker's rounding. float base = floor(x); if ((x - base) < 0.5) { return floor(x); } else if ((x - base) > 0.5) { return ceil(x); } else { if (mod(base, 2.0) == 0.0) { return base; } else { return base + 1.0; } } `,$G=Qe({opSnippet:MG}),DG={kernelName:Es,backendName:"webgl",kernelFunc:$G},OG="return inversesqrt(x);",zG=Qe({opSnippet:OG,cpuKernelImpl:kL}),PG={kernelName:Cs,backendName:"webgl",kernelFunc:zG},B_=class{constructor(e,t,n,r,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=ft(a.length),l=ft(s.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,h="";r===1?h="i":r===2&&(h="i, coords[1]");let d=`getUpdates(${h})`,p=t>1?"strides[j]":"strides";this.userCode=` ${o} strides = ${o}(${a}); void main() { ${l} coords = getOutputCoords(); float sum = 0.0; bool found = false; for (int i = 0; i < ${e}; i++) { int flattenedIndex = 0; for (int j = 0; j < ${t}; j++) { int index = round(${u}); flattenedIndex += index * ${p}; } if (flattenedIndex == coords[0]) { sum += ${d}; found = true; } } setOutput(mix(getDefaultValue(), sum, float(found))); } `}};function LG(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a,updates:s}=t,{shape:i}=r,{sliceRank:o,numUpdates:l,sliceSize:c,strides:u,outputSize:h}=F.calculateShapes(s,a,i),d=[h/c,c];if(h===0)return n.makeTensorInfo(i,a.dtype);let p=we({inputs:{x:a},backend:n,attrs:{shape:[l,o]}}),f=we({inputs:{x:s},backend:n,attrs:{shape:[l,c]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),A=new B_(l,o,p.shape.length,f.shape.length,u,d),y=n.runWebGLProgram(A,[f,p,m],f.dtype),g=we({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(m),g}var WG={kernelName:vo,backendName:"webgl",kernelFunc:LG},BG=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let r,a;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)a="resRC",r="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let c=0;c= 1.0) { setOutput(getA(${a})); } else { setOutput(getB(${a})); } } `}};function VG(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=new BG(r.shape.length,a.shape,a.shape.length);return n.runWebGLProgram(i,[r,a,s],nr(a.dtype,s.dtype))}var UG={kernelName:ko,backendName:"webgl",kernelFunc:VG},jG=` // Stable and Attracting Fixed Point (0, 1) for Normalized Weights. // see: https://arxiv.org/abs/1706.02515 float scaleAlpha = ${F.SELU_SCALEALPHA}; float scale = ${F.SELU_SCALE}; return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0); `,HG=Qe({opSnippet:jG}),GG={kernelName:Io,backendName:"webgl",kernelFunc:HG},qG="return 1.0 / (1.0 + exp(-1.0 * x));",XG=Qe({opSnippet:qG}),KG={kernelName:Fs,backendName:"webgl",kernelFunc:XG},ZG=` if (isnan(x)) { return 0.0; } return sign(x); `,YG=Qe({opSnippet:ZG}),JG={kernelName:To,backendName:"webgl",kernelFunc:YG},QG=e_+` return sin(x); `,eq=Qe({opSnippet:QG}),tq={kernelName:Rs,backendName:"webgl",kernelFunc:eq},nq=` float e2x = exp(x); return (e2x - 1.0 / e2x) / 2.0; `,rq=Qe({opSnippet:nq}),aq={kernelName:So,backendName:"webgl",kernelFunc:rq},sq=` float epsilon = 1.1920928955078125e-7; float threshold = log(epsilon) + 2.0; bool too_large = x > -threshold; bool too_small = x < threshold; float result; float exp_x = exp(x); if (too_large){ result = x; } else if (too_small){ result = exp_x; } else{ result = log(exp_x + 1.0); } return result; `,iq=Qe({opSnippet:sq}),oq={kernelName:Eo,backendName:"webgl",kernelFunc:iq},lq=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;k.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,g)=>y*g),l=[[0,0]];l.push(...i);for(let y=1+s.length;yn.disposeIntermediateTensorInfo(y)),A},uq={kernelName:fu,backendName:"webgl",kernelFunc:lq};function cq(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:c,strides:u,outputSize:h}=F.calculateShapes(s,a,o),d=!1,p=new B_(c,l,a.shape.length,s.shape.length,u,[h,1],d),f=n.runWebGLProgram(p,[s,a,i],s.dtype),m=we({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(f),m}var hq={kernelName:Bh,backendName:"webgl",kernelFunc:cq};function dq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=k.parseAxisParam(i,a.shape)[0],l=F.prepareSplitSize(a,s,o),c=a.shape.length,u=new Array(c).fill(0),h=a.shape.slice();return l.map(d=>{let p=[...h];p[o]=d;let f=lc({inputs:{x:a},backend:n,attrs:{begin:u,size:p}});return u[o]+=d,f})}var pq={kernelName:Co,backendName:"webgl",kernelFunc:dq},fq="return sqrt(x);",mq=Qe({opSnippet:fq}),Aq={kernelName:Ms,backendName:"webgl",kernelFunc:mq},yq="return x * x;",gq=Qe({opSnippet:yq}),xq={kernelName:mu,backendName:"webgl",kernelFunc:gq},V_="return (a - b) * (a - b);",wq=Qt({opSnippet:V_,packedOpSnippet:V_}),_q={kernelName:Os,backendName:"webgl",kernelFunc:wq};function bq({inputs:e,attrs:t,backend:n}){let{x:r}=e,a=xr+` return x > 0.0 ? 1.0 : float(${t.alpha}); `,s=new Ra(r.shape,a);return n.runWebGLProgram(s,[r],r.dtype)}var vq={kernelName:ya,backendName:"webgl",kernelFunc:bq},kq=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let r=n.length,a=ft(n.length),s=ft(n.length),i="";if(r===1)i="coords * strides + begin";else{let o=0;i=n.map((l,c)=>(o++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${o-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=` ${a} begin = ${a}(${e}); ${a} strides = ${a}(${t}); void main() { ${s} coords = getOutputCoords(); setOutput(getX(${i})); } `}};function Iq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r,{nonStrided:p,$begin:f,$strides:m,size:A,newShape:y,outShape:g}=sn.sliceInfo(a.shape,s,i,o,l,c,u,h,d),w=we({inputs:{x:a},backend:n,attrs:{shape:y}}),x;if(p){let b=lc({inputs:{x:w},backend:n,attrs:{begin:f,size:A}});x=we({inputs:{x:b},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(b)}else if(g.some(b=>b===0))x=n.makeTensorInfo(g,a.dtype,[]);else if(n.shouldExecuteOnCPU([w])){let b=n.texData.get(w.dataId).values,T=Ue(w.shape,w.dtype,b),S=NL(g,T,m,f);x=n.makeTensorInfo(g,w.dtype,S.values)}else{let b=new kq(f,m,g);x=n.runWebGLProgram(b,[w],w.dtype)}let _=we({inputs:{x},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(w),n.disposeIntermediateTensorInfo(x),_}var Nq={kernelName:Ro,backendName:"webgl",kernelFunc:Iq},Sq="return tan(x);",Tq=Qe({opSnippet:Sq}),Eq={kernelName:Fo,backendName:"webgl",kernelFunc:Tq},Cq=` float e2x = exp(-2.0 * abs(x)); return sign(x) * (1.0 - e2x) / (1.0 + e2x); `,Rq=Qe({opSnippet:Cq}),Fq={kernelName:Ps,backendName:"webgl",kernelFunc:Rq},$q=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],r=[];for(let a=0;ak.decodeString(u)),l=Ue(a.shape,a.dtype,o),c=TL(l,s);return n.makeTensorInfo(c.shape,c.dtype,c.values)}let i=new $q(a.shape,s);return n.runWebGLProgram(i,[a],a.dtype)}var Dq={kernelName:Aa,backendName:"webgl",kernelFunc:U_};function Oq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r,o=n.readSync(a.dataId),[l,c]=EL(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var zq={kernelName:Mo,backendName:"webgl",kernelFunc:Oq};function Pq(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;ul(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=r.readSync(s.dataId),{outputValues:o,outputShape:l,indices:c}=CL(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([c.length],"int32",c)]}var Lq={kernelName:Vh,backendName:"webgl",kernelFunc:Pq};function Wq(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],c=new Array(o-1),u=0;for(let m=0;mn.disposeIntermediateTensorInfo(m)),f}var Bq={kernelName:$o,backendName:"webgl",kernelFunc:Wq},Vq=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,r=e.batchSize,a=e.inSize,s=e.numSegments,i=s*Math.ceil(a/n);this.outputShape=[r,i];let o="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,h=` sumValue += dot(values, segFilter); `,d="";a%n>0&&(d=` if (inIdx < 0 || inIdx >= ${a}) { return initializationValue; } `);let p="";a%n>0&&(p=` if (inIdx < 0 || inIdx >= ${a}) { return -1.0; } `),this.userCode=` const float initializationValue = ${o}; float getValue(int batch, int inIdx) { ${d} return getX(batch, inIdx); } float getSegmentIdAtIndex(int inIdx) { ${p} return getSegmentIds(inIdx); } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = int(floor(float(outIdx) / float( ${s})) * float(${n})); int currentSeg = int(mod(float(outIdx), float(${s}))); float sumValue = 0.0; for (int i = 0; i < ${c}; i += 4) { int inIdx = inOffset + i; vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), getValue(batch, inIdx + 3) ); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0 ); ${h} } int inIdx = inOffset + ${c}; if (${u===1}) { vec4 values = vec4( getValue(batch, inIdx), initializationValue, initializationValue, initializationValue ); int inIdxSeg = int(getSegmentIdAtIndex(inIdx)); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, 0, 0, 0 ); ${h} } else if (${u===2}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), initializationValue, initializationValue ); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0, 0, 0 ); ${h} } else if (${u===3}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), initializationValue ); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0, 0 ); ${h} } setOutput(${l}); } `}};function Uq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r,o=a.shape.length,l=[],c=0,u=F.getAxesPermutation([c],o),h=a;u!=null&&(h=An({inputs:{x:a},backend:n,attrs:{perm:u}}),l.push(h),c=F.getInnerMostAxes(1,o)[0]);let d=F.segment_util.computeOutShape(h.shape,c,i),p=k.sizeFromShape([h.shape[c]]),f=we({inputs:{x:h},backend:n,attrs:{shape:[-1,p]}});l.push(f);let m=jh(a.dtype),A=(x,_,b,T,S)=>{let N=x.shape[0],C=x.shape[1],$=F.segment_util.segOpComputeOptimalWindowSize(C,S),D={windowSize:$,inSize:C,batchSize:N,numSegments:S},O=new Vq(D,_),V=n.compileAndRun(O,[x,b],T);if(l.push(V),V.shape[1]===S)return V;let W=W_({backend:n,attrs:{start:0,stop:S,step:1,dtype:"float32"}}),Z=U_({inputs:{x:W},backend:n,attrs:{reps:[C/$]}});return l.push(W),l.push(Z),A(V,_,Z,T,S)},y=A(f,"unsortedSegmentSum",s,m,i),g=we({inputs:{x:y},backend:n,attrs:{shape:d}}),w=g;if(u!=null){l.push(g);let x=F.getUndoAxesPermutation(u);w=An({inputs:{x:w},backend:n,attrs:{perm:x}})}return l.forEach(x=>n.disposeIntermediateTensorInfo(x)),w}var jq={kernelName:Au,backendName:"webgl",kernelFunc:Uq},Hq=[zj,Wj,IW,SW,CW,MW,DW,PW,WW,VW,GW,XW,YW,eB,oB,rB,cB,fB,dB,gB,wB,bB,NB,MB,DB,BB,UB,qB,ZB,iW,eV,cV,dV,aV,AV,gV,fV,_V,kV,SV,EV,RV,$V,WV,VV,OV,HV,XV,JV,nU,iU,uU,cU,hU,pU,mU,yU,xU,_U,IU,EU,RU,MU,OU,WU,jU,XU,sW,ZU,QB,QU,nj,sj,lW,uj,pj,mj,bj,xj,Nj,Ej,Mj,Vj,Zj,Xj,eH,nH,aH,Gj,iH,lH,dH,AH,wH,TH,pW,CH,MH,OH,LH,zB,VH,jH,GH,KH,QH,cW,tG,nG,PB,kH,sG,pG,uG,mW,yG,wG,vG,NG,CG,FG,DG,PG,WG,UG,GG,KG,JG,tq,aq,RB,NH,oq,uq,hq,pq,Aq,xq,_q,vq,Nq,IH,bW,Eq,Fq,Dq,zq,vW,Lq,Bq,jq,UH];for(let e of Hq)zo(e);var Rn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Rn||(Rn={}));var cc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu"})(cc||(cc={}));var j_;function Gq(e){j_=e.wasm.cwrap(Ws,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function qq(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r,d=n.dataIdMap.get(a.dataId).id,p=n.dataIdMap.get(s.dataId).id,f=0;if(i!=null){let S=n.dataIdMap.get(i.dataId);if(S.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${S.shape.length}.`);f=S.id}let m=o==null?0:n.dataIdMap.get(o.dataId).id,A=cc[u];if(A==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?a.shape[2]:a.shape[1],g=c?s.shape[1]:s.shape[2],w=a.shape[0],x=n.makeOutput([w,y,g],a.dtype),_=n.dataIdMap.get(x.dataId).id,b=new Uint8Array(new Int32Array(a.shape).buffer),T=new Uint8Array(new Int32Array(s.shape).buffer);return j_(d,b,a.shape.length,p,T,s.shape.length,l,c,A,f,m,h||0,_),x}var Xq={kernelName:Ws,backendName:"wasm",setupFunc:Gq,kernelFunc:qq};function Fn(e){let t;function n(a){t=a.wasm.cwrap(e,null,["number","number"])}function r(a){let{backend:s,inputs:{x:i}}=a,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),c=s.dataIdMap.get(l.dataId).id;return k.sizeFromShape(l.shape)===0||t(o,c),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:r}}var Kq=Fn(Di);function cn(e,t,n){let r;function a(i){r=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:c,b:u}=l,h=o.dataIdMap.get(c.dataId).id,d=o.dataIdMap.get(u.dataId).id,p=n!=null?n:c.dtype,f=F.assertAndGetBroadcastShape(c.shape,u.shape),m=o.makeOutput(f,p);if(k.sizeFromShape(f)===0)return m;let A=new Uint8Array(new Int32Array(c.shape).buffer),y=new Uint8Array(new Int32Array(u.shape).buffer),g=o.dataIdMap.get(m.dataId).id,w=()=>r(h,A,c.shape.length,d,y,u.shape.length,Rn[c.dtype],g);if(t&&c.dtype==="float32")return w(),m;let x=F.getBroadcastDims(c.shape,f),_=F.getBroadcastDims(u.shape,f),b=x.every((S,N)=>S===N),T=_.every((S,N)=>S===N);if(b&&T)return w(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:s}}var Zq=!0,Yq=cn(fa,Zq),H_;function Jq(e){H_=e.wasm.cwrap(Za,null,["array","number","number","number"])}function Qq(e){let{inputs:t,backend:n}=e,r=n.makeOutput(t[0].shape,t[0].dtype);if(k.sizeFromShape(r.shape)===0)return r;let a=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(a).buffer),i=n.dataIdMap.get(r.dataId).id;return H_(s,a.length,Rn[r.dtype],i),r}var eX={kernelName:Za,backendName:"wasm",setupFunc:Jq,kernelFunc:Qq};function lp(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype),a=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(r).set(a),r}var tX={kernelName:ro,backendName:"wasm",kernelFunc:lp},G_;function nX(e){G_=e.wasm.cwrap(Ls,null,["number","array","number","number","number","array","number"])}function up(e){let{inputs:t,backend:n,attrs:r}=e,[a,s]=aX(t.x.shape,r.perm),i=!0;for(let f=0;f=a&&(s===-1||r[s]>r[i])&&(s=i);r[s]=a}return[n,r]}var sX={kernelName:Ls,backendName:"wasm",kernelFunc:up,setupFunc:nX};function xl(e,t,n){let r=e.shape,a=e.shape.length,s=k.parseAxisParam(t,r),i=s,o=F.getAxesPermutation(i,a),l=null,c=!1;if(o!=null){let u=new Array(a);for(let d=0;d`new shape: ${i}, old shape: ${r.shape}. New shape and old shape must have the same number of elements.`),{dataId:r.dataId,shape:i,dtype:r.dtype}}var dX={kernelName:bo,backendName:"wasm",kernelFunc:wr},K_;function pX(e){K_=e.wasm.cwrap(Qa,null,["number","array","number","number","array","number","number","number","number"])}function fX(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=a.shape.length,c=s.shape.length,u=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[c-1]:s.shape[c-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[c-2]:s.shape[c-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),A=k.sizeFromShape(f),y=k.sizeFromShape(m),g=A===y||A===1||y===1;k.assert(l>=2&&c>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let w=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);k.assert(u===h,()=>`Error in matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[A,u,d]:[A,d,u],_=o?[y,p,h]:[y,h,p],b=wr({inputs:{x:a},backend:n,attrs:{shape:x}}),T=wr({inputs:{x:s},backend:n,attrs:{shape:_}}),S=n.dataIdMap.get(b.dataId).id,N=n.dataIdMap.get(T.dataId).id,C=i?b.shape[2]:b.shape[1],$=o?T.shape[1]:T.shape[2],D=Math.max(A,y),O=n.makeOutput([D,C,$],b.dtype),V=n.dataIdMap.get(O.dataId).id,W=new Uint8Array(new Int32Array(b.shape).buffer),Z=new Uint8Array(new Int32Array(T.shape).buffer);return K_(S,W,b.shape.length,N,Z,T.shape.length,i,o,V),O.shape=w,O}var mX={kernelName:Qa,backendName:"wasm",setupFunc:pX,kernelFunc:fX};function cp(e){let{inputs:{x:t},attrs:{dtype:n},backend:r}=e,a=r.makeOutput(t.shape,n),s=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(a).set(s),a}var AX={kernelName:es,backendName:"wasm",kernelFunc:cp},Z_;function yX(e){Z_=e.wasm.cwrap(ma,null,["number","number","number","number"])}function gX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o=n.dataIdMap.get(a.dataId).id,l=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(l.dataId).id;return Z_(o,s,i,c),l}var xX={kernelName:ma,backendName:"wasm",setupFunc:yX,kernelFunc:gX};function Y_(e){let{inputs:t,backend:n}=e,r=k.parseAxisParam(e.attrs.axis,t[0].shape)[0],a=F.computeOutShape(t.map(p=>p.shape),r),s=t.filter(p=>k.sizeFromShape(p.shape)>0);if(s.length===1)return lp({inputs:{x:s[0]},backend:n});let i=n.makeOutput(a,t[0].dtype);if(k.sizeFromShape(a)===0)return i;let o=s.map(p=>p.shape);if(F.assertParamsConsistent(o,r),s[0].dtype==="string"){let p=s.map(w=>{let x=k.sizeFromShape(w.shape.slice(r));return wr({inputs:{x:w},backend:n,attrs:{shape:[-1,x]}})}),f=p.map(w=>({vals:n.readSync(w.dataId),shape:w.shape}));a=F.computeOutShape(p.map(w=>w.shape),1);let m=p[0].shape[0]===1,A=Gm(f,a,t[0].dtype,m),y=F.computeOutShape(s.map(w=>w.shape),r);i.shape=y;let g=n.dataIdMap.get(i.dataId);return g.stringBytes=F.fromStringArrayToUint8(A),i}let l=k.sizeFromShape(s[0].shape.slice(0,r)),c=0,u=s.map(p=>{let f=k.sizeFromShape(p.shape.slice(r));return c+=f,f}),h=s.map(p=>n.typedArrayFromHeap(p)),d=n.typedArrayFromHeap(i);for(let p=0;p`cumsum does not support ${a.dtype} tensors in the WASM backend`);let c=F.getAxesPermutation([s],l),u=a;c!==null&&(u=up({inputs:{x:a},attrs:{perm:c},backend:n}));let h=F.getInnerMostAxes(1,l)[0];F.assertAxesAreInnerMostDims("cumsum",[h],l);let d=n.makeOutput(u.shape,u.dtype),p=u.shape[h],f=n.dataIdMap.get(u.dataId).id,m=n.dataIdMap.get(d.dataId).id;tb(f,i?1:0,o?1:0,p,m,Rn[a.dtype]);let A=d;if(c!==null){let y=F.getUndoAxesPermutation(c);A=up({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(u.dataId),n.disposeData(d.dataId)}return A}var MX={kernelName:as,backendName:"wasm",setupFunc:RX,kernelFunc:FX},nb;function $X(e){nb=e.wasm.cwrap(qi,null,["number","number","number","array","number","array","array","number","number"])}function DX(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{blockSize:s,dataFormat:i}=r;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],c=i==="NHWC"?a.shape[2]:a.shape[3],u=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=c*s,p=u/(s*s),f=i==="NHWC"?[o,h,d,p]:[o,p,h,d],m=t.makeOutput(f,"float32"),A=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(k.computeStrides(a.shape)).buffer),g=new Uint8Array(new Int32Array(f).buffer),w=new Uint8Array(new Int32Array(k.computeStrides(f)).buffer),x=t.dataIdMap.get(m.dataId).id;return nb(A,s,i==="NHWC"?1:0,y,a.shape.length-1,g,w,f.length,x),m}var OX={kernelName:qi,backendName:"wasm",setupFunc:$X,kernelFunc:DX},rb;function zX(e){rb=e.wasm.cwrap(ss,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function PX(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:h}=n,d=c==null?[1,1]:c,p=F.computeConv2DInfo(a.shape,s.shape,l,d,u,h,!0),f=p.filterHeight,m=p.filterWidth,A=p.padInfo.top,y=p.padInfo.right,g=p.padInfo.bottom,w=p.padInfo.left,x=p.dilationHeight,_=p.dilationWidth,b=p.strideHeight,T=p.strideWidth,S=p.inChannels,N=p.outChannels,C=p.padInfo.type==="SAME"?1:0;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let $=r.makeOutput(p.outShape,"float32"),D=r.dataIdMap.get($.dataId).id;return rb(i,a.shape[0],a.shape[1],a.shape[2],o,f,m,A,y,g,w,C,x,_,b,T,S,N,D),$}var LX={kernelName:ss,backendName:"wasm",setupFunc:zX,kernelFunc:PX},WX=!1,BX=cn(Zi,WX,"bool"),VX=Fn(os);function NA(e){let{inputs:t,attrs:n,backend:r}=e,{input:a}=t,{dim:s}=n,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),wr({inputs:{x:a},backend:r,attrs:{shape:o}})}var UX={kernelName:Yi,backendName:"wasm",kernelFunc:NA};function jX(e){let{attrs:{shape:t,value:n,dtype:r},backend:a}=e,s=a.makeOutput(t,r);return a.typedArrayFromHeap(s).fill(n),s}var HX={kernelName:iu,backendName:"wasm",kernelFunc:jX},ab;function GX(e){ab=e.wasm.cwrap(Qi,null,["number","number","number","number","number","number"])}function qX(e){let{inputs:t,backend:n}=e,{image:r}=t,a=n.makeOutput(r.shape,r.dtype),s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,[o,l,c,u]=r.shape;return ab(s,o,l,c,u,i),a}var XX={kernelName:Qi,backendName:"wasm",kernelFunc:qX,setupFunc:GX},KX=Fn(ls),ZX=!1,YX=cn(us,ZX),sb;function JX(e){sb=e.wasm.cwrap(cs,null,["number","number","number","number","number","number","number"])}function QX(e){let{backend:t,inputs:n,attrs:r}=e,{varianceEpsilon:a}=r,{x:s,mean:i,variance:o,offset:l,scale:c}=n,u=t.dataIdMap.get(s.dataId).id,h=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=l!=null?t.dataIdMap.get(l.dataId).id:0,f=c!=null?t.dataIdMap.get(c.dataId).id:0,m=t.makeOutput(s.shape,s.dtype);if(k.sizeFromShape(s.shape)===0)return m;let A=t.dataIdMap.get(m.dataId).id;return sb(u,h,d,p,f,a,A),m}var eK={kernelName:cs,backendName:"wasm",setupFunc:JX,kernelFunc:QX},ib;function tK(e){ib=e.wasm.cwrap(Bs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function nK(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=n,m=F.computeConv2DInfo(a.shape,s.shape,l,u,c,d),A=cc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,w=m.outChannels,x=0;if(i!=null){let re=r.dataIdMap.get(i.dataId);if(re.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${re.shape.length}.`);if(re.shape[0]!==w)throw new Error(`FusedConv2D bias shape (${re.shape}) does not match the number of output channels (${w})`);x=re.id}let _=m.filterHeight,b=m.filterWidth,T=m.padInfo.top,S=m.padInfo.right,N=m.padInfo.bottom,C=m.padInfo.left,$=m.dilationHeight,D=m.dilationWidth,O=m.strideHeight,V=m.strideWidth,W=m.inChannels,Z=m.padInfo.type==="SAME"?1:0,K=m.batchSize,te=m.inHeight,J=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let se=r.makeOutput(m.outShape,"float32"),Q=r.dataIdMap.get(se.dataId).id,le=o==null?0:r.dataIdMap.get(o.dataId).id;return ib(y,K,te,J,g,_,b,x,T,S,N,C,Z,$,D,O,V,W,w,A,le,f||0,Q),se}var rK={kernelName:Bs,backendName:"wasm",setupFunc:tK,kernelFunc:nK},ob;function aK(e){ob=e.wasm.cwrap(Vs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function sK(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=n,m=F.computeConv2DInfo(a.shape,s.shape,l,u,c,d,!0),A=cc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,w=m.outChannels,x=0;if(i!=null){let re=r.dataIdMap.get(i.dataId);if(re.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${re.shape.length}.`);if(re.shape[0]!==w)throw new Error(`FusedDepthwiseConv2D bias shape (${re.shape}) does not match the number of output channels (${w})`);x=re.id}let _=m.filterHeight,b=m.filterWidth,T=m.padInfo.top,S=m.padInfo.right,N=m.padInfo.bottom,C=m.padInfo.left,$=m.dilationHeight,D=m.dilationWidth,O=m.strideHeight,V=m.strideWidth,W=m.inChannels,Z=m.padInfo.type==="SAME"?1:0,K=m.batchSize,te=m.inHeight,J=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let se=r.makeOutput(m.outShape,"float32"),Q=r.dataIdMap.get(se.dataId).id,le=o==null?0:r.dataIdMap.get(o.dataId).id;return ob(y,K,te,J,g,_,b,x,T,S,N,C,Z,$,D,O,V,W,w,A,le,f||0,Q),se}var iK={kernelName:Vs,backendName:"wasm",setupFunc:aK,kernelFunc:sK},lb;function oK(e){lb=e.wasm.cwrap(to,null,["number","number","number","number","number","number","array","number"])}function lK(e){let{backend:t,inputs:n}=e,{params:r,indices:a}=n,[s,i,o,l]=xf.prepareAndValidate(r,a),c=t.makeOutput(s,r.dtype);if(i===0)return c;let u=a.shape,h=u[u.length-1],d=t.dataIdMap.get(r.dataId).id,p=t.dataIdMap.get(a.dataId).id,f=new Uint8Array(new Int32Array(l).buffer),m=t.dataIdMap.get(c.dataId).id;return lb(d,Rn[r.dtype],p,i,h,o,f,m),c}var uK={kernelName:to,backendName:"wasm",setupFunc:oK,kernelFunc:lK},ub;function cK(e){ub=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function hK(e){let{backend:t,inputs:n,attrs:r}=e,{x:a,indices:s}=n,{axis:i,batchDims:o}=r,l=k.parseAxisParam(i,a.shape)[0],c=F.segment_util.collectGatherOpShapeInfo(a,s,l,o),u=wr({inputs:{x:a},attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]},backend:t}),h=k.sizeFromShape(s.shape),d=wr({inputs:{x:s},attrs:{shape:[c.batchSize,h/c.batchSize]},backend:t}),p=[c.batchSize,c.outerSize,h/c.batchSize,c.sliceSize],f=t.makeOutput(p,a.dtype);if(k.sizeFromShape(a.shape)===0)return f;let m=u.shape.length-1,A=t.dataIdMap.get(u.dataId).id,y=t.dataIdMap.get(d.dataId).id,g=t.dataIdMap.get(f.dataId).id,w=new Uint8Array(new Int32Array(k.computeStrides(u.shape)).buffer),x=new Uint8Array(new Int32Array(k.computeStrides(p)).buffer);return ub(A,Rn[a.dtype],w,m,y,c.batchSize,x,g),f.shape=c.outputShape,f}var dK={kernelName:eo,backendName:"wasm",setupFunc:cK,kernelFunc:hK},pK=!1,fK=cn(no,pK,"bool"),mK=!1,AK=cn(hs,mK,"bool"),cb;function yK(e){cb=e.wasm.cwrap(ds,null,["number","number","number"])}function gK(e){let{inputs:{x:t},attrs:{alpha:n},backend:r}=e,a=r.dataIdMap.get(t.dataId).id,s=r.makeOutput(t.shape,t.dtype);if(k.sizeFromShape(t.shape)!==0){let i=r.dataIdMap.get(s.dataId).id;cb(a,n,i)}return s}var xK={kernelName:ds,backendName:"wasm",setupFunc:yK,kernelFunc:gK},wK=!1,_K=cn(oo,wK,"bool"),bK=!1,vK=cn(lo,bK,"bool"),kK=Fn(ps),IK=!1,NK=cn(co,IK,"bool"),hb;function SK(e){hb=e.wasm.cwrap(fs,null,["number, number, number"])}function TK(e){let{backend:t,inputs:n,attrs:r}=e,{reductionIndices:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:u,originalAxes:h,inputWasTransposed:d}=xl(i,a,t);if(d){let g=t.dataIdMap.get(c.dataId).id;l=c,o=g}let p=l.shape.length;F.assertAxesAreInnerMostDims("max",u,p);let[f,m]=F.computeOutAndReduceShapes(l.shape,u),A=k.sizeFromShape(m),y=t.makeOutput(f,i.dtype);if(k.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;hb(o,A,g)}if(d&&t.disposeData(c.dataId),s){let g=F.expandShapeToKeepDim(y.shape,h);y.shape=g}return y}var EK={kernelName:fs,backendName:"wasm",setupFunc:SK,kernelFunc:TK},CK=!1,RK=cn(ms,CK),db;function FK(e){db=e.wasm.cwrap(As,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function MK(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=F.computePool2DInfo(a.shape,i,o,1,l,c),h=u.filterHeight,d=u.filterWidth,p=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,A=u.padInfo.left,y=u.dilationHeight,g=u.dilationWidth,w=u.strideHeight,x=u.strideWidth,_=u.inChannels,b=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let T=r.makeOutput(u.outShape,"float32"),S=r.dataIdMap.get(T.dataId).id;return db(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,f,m,A,y,g,w,x,_,b,S),T}var $K={kernelName:As,backendName:"wasm",setupFunc:FK,kernelFunc:MK},pb;function DK(e){pb=e.wasm.cwrap(ys,null,["number, number, number"])}function OK(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=xl(i,a,t),f=h;if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,f=F.getInnerMostAxes(f.length,c.shape.length))}F.assertAxesAreInnerMostDims("mean",f,c.shape.length);let[m,A]=F.computeOutAndReduceShapes(c.shape,f),y=k.sizeFromShape(A),g=c;c.dtype!=="float32"&&(g=cp({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(g.dataId).id);let w=t.makeOutput(m,"float32");if(k.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(w.dataId).id;pb(l,y,x)}if(p&&t.disposeData(u.dataId),s){let x=F.expandShapeToKeepDim(w.shape,d);w.shape=x}return c.dtype!=="float32"&&t.disposeData(g.dataId),w}var zK={kernelName:ys,backendName:"wasm",setupFunc:DK,kernelFunc:OK},fb;function PK(e){fb=e.wasm.cwrap(gs,null,["number, number, number"])}function LK(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=xl(i,a,t);if(p){let w=t.dataIdMap.get(u.dataId).id;w!==o&&(c=u,l=w)}let f=c.shape.length;F.assertAxesAreInnerMostDims("min",h,f);let[m,A]=F.computeOutAndReduceShapes(c.shape,h),y=k.sizeFromShape(A),g=t.makeOutput(m,c.dtype);if(k.sizeFromShape(c.shape)!==0){let w=t.dataIdMap.get(g.dataId).id;fb(l,y,w)}if(p&&t.disposeData(u.dataId),s){let w=F.expandShapeToKeepDim(g.shape,d);g.shape=w}return g}var WK={kernelName:gs,backendName:"wasm",setupFunc:PK,kernelFunc:LK},BK=!1,VK=cn(xs,BK),UK=!0,jK=cn(ws,UK),HK=Fn(po);function SA(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),r=n[0],a=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:r,selectedSize:a,pSelectedScores:s,pValidOutputs:i}}var mb;function GK(e){mb=e.wasm.cwrap(mo,"number",["number","number","number","number","number"])}function qK(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i}=r,{boxes:o,scores:l}=n,c=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(l.dataId).id,h=mb(c,u,s,a,i),{pSelectedIndices:d,selectedSize:p,pSelectedScores:f,pValidOutputs:m}=SA(t,h);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([p],"int32",d)}var XK={kernelName:mo,backendName:"wasm",setupFunc:GK,kernelFunc:qK},Ab;function KK(e){Ab=e.wasm.cwrap(Ao,"number",["number","number","number","number","number","bool"])}function ZK(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=r,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(c.dataId).id,d=Ab(u,h,s,a,i,o),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:A}=SA(t,d);t.wasm._free(m);let y=t.makeOutput([f],"int32",p),g=t.makeOutput([],"int32",A);return[y,g]}var YK={kernelName:Ao,backendName:"wasm",setupFunc:KK,kernelFunc:ZK},yb;function JK(e){yb=e.wasm.cwrap(yo,"number",["number","number","number","number","number","number"])}function QK(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=r,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(c.dataId).id,d=yb(u,h,s,a,i,o),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:A}=SA(t,d);t.wasm._free(A);let y=t.makeOutput([f],"int32",p),g=t.makeOutput([f],"float32",m);return[y,g]}var eZ={kernelName:yo,backendName:"wasm",setupFunc:JK,kernelFunc:QK},tZ=!1,nZ=cn(fo,tZ,"bool"),gb;function rZ(e){gb=e.wasm.cwrap(_s,null,["number","number","number","number","number"])}function aZ(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=n.makeOutput([...a.shape,s],"int32"),c=n.dataIdMap.get(l.dataId).id,u=n.dataIdMap.get(a.dataId).id;return gb(u,s,i,o,c),l}var sZ={kernelName:_s,backendName:"wasm",setupFunc:rZ,kernelFunc:aZ};function iZ(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(1),r}var oZ={kernelName:go,backendName:"wasm",kernelFunc:iZ};function lZ(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return NA({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(l=>{k.assertShapesMatch(s,l.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===l.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=t.map(l=>NA({inputs:{input:l},backend:n,attrs:{dim:a}}));return Y_({inputs:o,backend:n,attrs:{axis:a}})}var uZ={kernelName:xo,backendName:"wasm",kernelFunc:lZ},xb;function cZ(e){xb=e.wasm.cwrap(bs,null,["number","array","number","number","array","array","number","number"])}function hZ(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,constantValue:a}}=e,s=r.map((f,m)=>f[0]+t.shape[m]+f[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=r.map(f=>f[0]),h=r.map(f=>f[1]),d=new Uint8Array(new Int32Array(u).buffer),p=new Uint8Array(new Int32Array(h).buffer);return xb(i,c,t.shape.length,Rn[t.dtype],d,p,a,l),o}var dZ={kernelName:bs,backendName:"wasm",kernelFunc:hZ,setupFunc:cZ},pZ=!1,fZ=cn(vs,pZ),wb;function mZ(e){wb=e.wasm.cwrap(ks,null,["number","number","number"])}function AZ(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return wb(s,i,l),o}var yZ={kernelName:ks,backendName:"wasm",setupFunc:mZ,kernelFunc:AZ},_b;function gZ(e){_b=e.wasm.cwrap(wo,null,["number","number","number","number"])}function xZ(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=xl(i,a,t),f=h;if(p){let w=t.dataIdMap.get(u.dataId).id;w!==o&&(c=u,l=w,f=F.getInnerMostAxes(f.length,c.shape.length))}F.assertAxesAreInnerMostDims("prod",f,c.shape.length);let[m,A]=F.computeOutAndReduceShapes(c.shape,f),y=k.sizeFromShape(A),g=t.makeOutput(m,c.dtype);if(k.sizeFromShape(c.shape)!==0){let w=t.dataIdMap.get(g.dataId).id;_b(l,y,Rn[g.dtype],w)}if(p&&t.disposeData(u.dataId),s){let w=F.expandShapeToKeepDim(g.shape,d);g.shape=w}return g}var wZ={kernelName:wo,backendName:"wasm",setupFunc:gZ,kernelFunc:xZ},_Z=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=Km(r,a,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},bZ={kernelName:du,backendName:"wasm",kernelFunc:_Z},vZ=!0,kZ=cn(is,vZ),IZ=Fn(Is),NZ=Fn(Ss),bb;function SZ(e){bb=e.wasm.cwrap(Ns,null,["number","number","number","number","number","number","number","number","number","number"])}function TZ(e){let{backend:t,inputs:n,attrs:r}=e,{images:a}=n,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,[u,h,d,p]=a.shape,f=[u,l,c,p],m=t.dataIdMap.get(a.dataId),A;m.dtype!=="float32"&&(A=cp({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(A.dataId));let y=m.id,g=t.makeOutput(f,"float32");if(k.sizeFromShape(a.shape)===0)return g;let w=t.dataIdMap.get(g.dataId).id;return bb(y,u,h,d,p,l,c,s?1:0,i?1:0,w),A!=null&&t.disposeData(A.dataId),g}var EZ={kernelName:Ns,backendName:"wasm",setupFunc:SZ,kernelFunc:TZ},vb;function CZ(e){vb=e.wasm.cwrap(Ts,null,["number","array","number","array","number","number"])}function RZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=k.parseAxisParam(s,a.shape);if(a.shape.length===0)return lp({inputs:{x:a},backend:n});let o=n.makeOutput(a.shape,a.dtype),l=n.dataIdMap.get(a.dataId).id,c=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(i).buffer),h=new Uint8Array(new Int32Array(a.shape).buffer);return vb(l,u,i.length,h,a.shape.length,c),wr({inputs:{x:o},attrs:{shape:a.shape},backend:n})}var FZ={kernelName:Ts,backendName:"wasm",kernelFunc:RZ,setupFunc:CZ},kb;function MZ(e){kb=e.wasm.cwrap(Oo,null,["number","number","number","number","number","number","number","number","array","number","number"])}function $Z(e){let{inputs:t,backend:n,attrs:r}=e,{image:a}=t,{radians:s,fillValue:i,center:o}=r,l=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(a.dataId).id,u=n.dataIdMap.get(l.dataId).id,[h,d,p,f]=a.shape,[m,A]=F.getImageCenter(o,d,p),y=i===0,g=255,w=typeof i=="number"?[i,i,i,y?0:g]:[...i,g],x=new Uint8Array(new Int32Array(w).buffer);return kb(c,h,d,p,f,s,m,A,x,w.length,u),l}var DZ={kernelName:Oo,backendName:"wasm",kernelFunc:$Z,setupFunc:MZ},OZ=Fn(Es),zZ=Fn(Cs),Ib;function PZ(e){Ib=e.wasm.cwrap(vo,null,["number","number","number","number","number","number","array","number","number"])}function LZ(e){let{backend:t,inputs:n,attrs:r}=e,{indices:a,updates:s}=n,{shape:i}=r,o=t.makeOutput(i,s.dtype);if(k.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:h,outputSize:d}=wf.calculateShapes(s,a,i),p=t.dataIdMap.get(a.dataId).id,f=t.dataIdMap.get(s.dataId).id,m=new Uint8Array(new Int32Array(h).buffer),A=t.dataIdMap.get(o.dataId).id;return Ib(p,f,Rn[s.dtype],l,c,u,m,d,A),o}var WZ={kernelName:vo,backendName:"wasm",setupFunc:PZ,kernelFunc:LZ},Nb;function BZ(e){Nb=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function VZ(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(a.dataId).id,l=n.dataIdMap.get(s.dataId).id,c=n.makeOutput(a.shape,a.dtype),u=n.dataIdMap.get(c.dataId).id,h=r.shape.length,d=a.shape.length,p=h===0||h>1||d===1?1:k.sizeFromShape(a.shape.slice(1));return Nb(i,o,l,p,u),c}var UZ={kernelName:ko,backendName:"wasm",kernelFunc:VZ,setupFunc:BZ},Sb;function jZ(e){Sb=e.wasm.cwrap(Fs,null,["number","number"])}function HZ(e){let{backend:t,inputs:{x:n}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(a.dataId).id;return k.sizeFromShape(a.shape)===0||Sb(r,s),a}var GZ={kernelName:"Sigmoid",backendName:"wasm",setupFunc:jZ,kernelFunc:HZ},qZ=Fn(Rs);function hp(e){let{inputs:{x:t},attrs:{begin:n,size:r},backend:a}=e,[s,i]=sn.parseSliceParams(t,n,r),o=sn.isSliceContinous(t.shape,s,i),l=a.readSync(t.dataId),c=a.makeOutput(i,t.dtype),u=k.computeStrides(t.shape),h=a.dataIdMap.get(c.dataId);if(o){let f=sn.computeFlatOffset(s,u);return t.dtype==="string"?h.stringBytes=l.slice(f,f+k.sizeFromShape(i)):a.typedArrayFromHeap(c).set(l.subarray(f,f+k.sizeFromShape(i))),c}if(t.dtype==="string"){let f=Vd(l,s,i,t.shape,t.dtype);return h.stringBytes=f,c}let d=a.typedArrayFromHeap(c),p=t.shape.length;if(p===2)XZ(l,u[0],d,s,i);else if(p===3)KZ(l,u[0],u[1],d,s,i);else if(p===4)ZZ(l,u[0],u[1],u[2],d,s,i);else{let f=Vd(l,s,i,t.shape,t.dtype);d.set(f)}return c}function XZ(e,t,n,r,a){let s=0,i=r[0],o=r[1],l=i+a[0];for(let c=i;c{let d=[...u];d[o]=h;let p=hp({inputs:{x:a},attrs:{begin:c,size:d},backend:r});return c[o]+=h,p})}var nY={kernelName:Co,backendName:"wasm",kernelFunc:tY},rY=Fn(Ms),aY=Fn(mu),sY=!0,iY=cn(Os,sY),Eb;function oY(e){Eb=e.wasm.cwrap(ya,null,["number","number","number"])}function lY(e){let{backend:t,inputs:n,attrs:r}=e,{alpha:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return Eb(i,a,l),o}var uY={kernelName:ya,backendName:"wasm",setupFunc:oY,kernelFunc:lY},Cb;function cY(e){Cb=e.wasm.cwrap(Ro,null,["number","array","number","array","array","array","array","array","number","number"])}function hY(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{begin:s,end:i,strides:o}=r;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r,p=F.slice_util.maskToAxes(u);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&h!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=a.shape.length-s.length,m=F.slice_util.maskToAxes(h),A=a.shape.slice();m.forEach(N=>{s[N]=0,i[N]=1,A.splice(N,0,1)});let y=wr({inputs:{x:a},attrs:{shape:A},backend:t}),{begin:g,end:w,strides:x}=F.slice_util.getNormalizedAxes(y.shape,p,f,s,i,o,l,c,u);s=g,i=w,o=x;let _=F.slice_util.maskToAxes(d);_.forEach(N=>{i[N]=s[N]+1,o[N]=1});let b=F.slice_util.computeOutShape(s,i,o),T=b.filter((N,C)=>_.indexOf(C)===-1);if(o.every(N=>N===1)){let N=hp({inputs:{x:a},attrs:{begin:s,size:b},backend:t});return wr({inputs:{x:N},attrs:{shape:T},backend:t})}let S=t.makeOutput(T,"float32");if(!T.some(N=>N===0)){let N=t.dataIdMap.get(y.dataId).id,C=new Uint8Array(new Int32Array(k.computeStrides(y.shape)).buffer),$=new Uint8Array(new Int32Array(s).buffer),D=new Uint8Array(new Int32Array(i).buffer),O=new Uint8Array(new Int32Array(o).buffer),V=new Uint8Array(new Int32Array(T).buffer),W=new Uint8Array(new Int32Array(k.computeStrides(T)).buffer),Z=t.dataIdMap.get(S.dataId).id;Cb(N,C,y.shape.length,$,D,O,V,W,T.length,Z)}return wr({inputs:{x:S},attrs:{shape:T},backend:t})}var dY={kernelName:Ro,backendName:"wasm",setupFunc:cY,kernelFunc:hY},pY=!0,fY=cn(zs,pY),Rb;function mY(e){Rb=e.wasm.cwrap($s,null,["number, number, number"])}function AY(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=xl(i,a,t),f=h;if(p){let w=t.dataIdMap.get(u.dataId).id;w!==o&&(c=u,l=w,f=F.getInnerMostAxes(f.length,c.shape.length))}F.assertAxesAreInnerMostDims("sum",f,c.shape.length);let[m,A]=F.computeOutAndReduceShapes(c.shape,f),y=k.sizeFromShape(A),g=t.makeOutput(m,c.dtype);if(k.sizeFromShape(c.shape)!==0){let w=t.dataIdMap.get(g.dataId).id;Rb(l,y,w)}if(p&&t.disposeData(u.dataId),s){let w=F.expandShapeToKeepDim(g.shape,d);g.shape=w}return g}var yY={kernelName:$s,backendName:"wasm",setupFunc:mY,kernelFunc:AY},gY=Fn(Ps),Fb;function xY(e){Fb=e.wasm.cwrap(Aa,null,["number","array","number","array","number","number"])}function wY(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,s=n.dataIdMap.get(a.dataId).id,{reps:i}=r,o=new Array(a.shape.length);for(let d=0;d{let{x:r}=e,{k:a,sorted:s}=n,i=t.dataIdMap.get(r.dataId).id,o=new Uint8Array(new Int32Array(r.shape).buffer),l=r.shape.slice();l[l.length-1]=a;let c=t.makeOutput(l,r.dtype),u=t.dataIdMap.get(c.dataId).id,h=t.makeOutput(l,"int32"),d=t.dataIdMap.get(h.dataId).id;return Mb(i,o,r.shape.length,Rn[r.dtype],a,s,u,d),[c,h]},kY={kernelName:Mo,backendName:"wasm",setupFunc:bY,kernelFunc:vY};function IY(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape[s],o=a.shape.length,l=new Array(o-1),c=0;for(let p=0;p({dataId:p,dtype:f,shape:l}))}var NY={kernelName:$o,backendName:"wasm",kernelFunc:IY};function SY(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(0),r}var TY={kernelName:Do,backendName:"wasm",kernelFunc:SY},EY=[Kq,Yq,eX,lX,hX,mX,AX,xX,wX,vX,NX,SX,CX,MX,OX,LX,BX,VX,UX,HX,XX,KX,YX,Xq,eK,rK,iK,uK,dK,fK,AK,tX,xK,_K,vK,kK,NK,EK,RK,$K,zK,WK,VK,jK,HK,XK,YK,eZ,nZ,sZ,oZ,uZ,dZ,fZ,yZ,wZ,bZ,kZ,IZ,NZ,dX,EZ,FZ,DZ,zZ,OZ,WZ,UZ,GZ,qZ,YZ,eY,nY,rY,aY,iY,uY,dY,fY,yY,gY,_Y,kY,sX,NY,TY];for(let e of EY)zo(e);var TA=ee();TA.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));TA.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(TA.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var $b=Xo(T8()),CY='var threadInfoStruct=0;var selfThreadId=0;var parentThreadId=0;var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:selfThreadId})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["DYNAMIC_BASE"]=e.data.DYNAMIC_BASE;Module["DYNAMICTOP_PTR"]=e.data.DYNAMICTOP_PTR;Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}Module=WasmBackendModuleThreadedSimd(Module);postMessage({"cmd":"loaded"})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;threadInfoStruct=e.data.threadInfoStruct;Module["__register_pthread_ptr"](threadInfoStruct,0,0);selfThreadId=e.data.selfThreadId;parentThreadId=e.data.parentThreadId;var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["dynCall_ii"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){Atomics.store(Module["HEAPU32"],threadInfoStruct+4>>2,ex instanceof Module["ExitStatus"]?ex.status:-2);Atomics.store(Module["HEAPU32"],threadInfoStruct+0>>2,1);Module["_emscripten_futex_wake"](threadInfoStruct+0,2147483647);if(!(ex instanceof Module["ExitStatus"]))throw ex}}}else if(e.data.cmd==="cancel"){if(threadInfoStruct){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(threadInfoStruct){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',RY=Xo(E8()),l0=class extends Ql{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new dh(this,Wn())}write(e,t,n){let r={};return this.move(r,e,t,n),r}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}move(e,t,n,r){let a=this.dataIdNextNumber++;if(r==="string"){let l=t;this.dataIdMap.set(e,{id:a,stringBytes:l,shape:n,dtype:r,memoryOffset:null});return}let s=k.sizeFromShape(n),i=s*k.bytesPerElement(r),o=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:o,shape:n,dtype:r}),this.wasm.tfjs.registerTensor(a,s,o),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),o)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:r,stringBytes:a}=this.dataIdMap.get(e);if(n==="string")return a;let s=this.wasm.HEAPU8.slice(t,t+k.sizeFromShape(r)*k.bytesPerElement(n));return FY(s.buffer,n)}disposeData(e){let t=this.dataIdMap.get(e);this.wasm._free(t.memoryOffset),this.wasm.tfjs.disposeData(t.id),this.dataIdMap.delete(e)}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let r;if(n==null)r=this.write(null,e,t);else{r={};let a=this.dataIdNextNumber++;this.dataIdMap.set(r,{id:a,memoryOffset:n,shape:e,dtype:t});let s=k.sizeFromShape(e);this.wasm.tfjs.registerTensor(a,s,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let r=this.wasm.HEAPU8.buffer,{memoryOffset:a}=this.dataIdMap.get(n),s=k.sizeFromShape(e);switch(t){case"float32":return new Float32Array(r,a,s);case"int32":return new Int32Array(r,a,s);case"bool":return new Uint8Array(r,a,s);default:throw new Error(`Unknown dtype ${t}`)}}};function MY(e){return(t,n)=>(k.fetch(e,{credentials:"same-origin"}).then(r=>{r.ok||t.env.a(`failed to load wasm binary file at '${e}'`),r.arrayBuffer().then(a=>{WebAssembly.instantiate(a,t).then(s=>{n(s.instance)})})}),{})}function Db(e,t,n){if(dp!=null)return dp;let r="tfjs-backend-wasm.wasm";return e&&t?r="tfjs-backend-wasm-threaded-simd.wasm":e&&(r="tfjs-backend-wasm-simd.wasm"),hc!=null&&hc[r]!=null?hc[r]:n+r}async function $Y(){let[e,t]=await Promise.all([ee().getAsync("WASM_HAS_SIMD_SUPPORT"),ee().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,r)=>{let a={};a.locateFile=(l,c)=>{if(l.endsWith(".worker.js")){let u=CY,h=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(h)}return l.endsWith(".wasm")?Db(e,t,dc!=null?dc:c):c+l},EA&&(a.instantiateWasm=MY(Db(e,t,dc!=null?dc:"")));let s;t&&e&&dp==null?(s=$b.default(a),s.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+$b.default.toString()],{type:"text/javascript"})):s=RY.default(a);let i=null;s.tfjs={init:s.cwrap("init",null,[]),registerTensor:s.cwrap("register_tensor",null,["number","number","number"]),disposeData:s.cwrap("dispose_data",i,["number"]),dispose:s.cwrap("dispose",i,[])};let o=!1;s.onRuntimeInitialized=()=>{o=!0,pc=!1,n({wasm:s})},s.onAbort=()=>{o||pc||(pc=!0,r({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))}})}function FY(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var DY=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],dp=null,dc=null,hc={},pc=!1,EA=!1;function q4(e,t=!1){if(Ft("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),pc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");dp=e,EA=t}function u0(e,t=!1){if(pc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")dc=e;else{hc=e;let n=DY.filter(r=>hc[r]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}EA=t}var c0="2.8.5",OY=2;xu("wasm",async()=>{let{wasm:e}=await $Y();return new l0(e)},OY);var h0={};Pe(h0,{maxNorm:()=>zY,minMaxNorm:()=>WY,nonNeg:()=>LY,unitNorm:()=>PY});var CA;function Wt(){return CA==null&&(CA=_f().epsilon()),CA}function _r(){return"channelsLast"}var ia=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ia.prototype)}},br=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,br.prototype)}},U=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,U.prototype)}},ze=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ze.prototype)}},Ob=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ob.prototype)}},BY=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,BY.prototype)}};function hi(e,t){if(Array.isArray(e)){let n=[];for(let r=0;rn.toUpperCase())}var or={};function RA(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function FA(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>FA(t));else{let t=Object.keys(e);for(let n of t){let r=e[n];r!=null&&typeof r=="object"&&(!Array.isArray(r)&&r.type==="ndarray"&&typeof r.value=="number"?e[n]=r.value:FA(r))}}}function fc(e,t={},n={},r="object",a=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in or)i=or[s];else if(i=t[s],i==null)throw new U(`Unknown ${r}: ${e}. This may be due to one of the following reasons: 1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. 2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new U(`${r}: Improper config format: ${JSON.stringify(s)}. 'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in or?[o,l]=or.className:i in t&&([o,l]=t[i]),o==null)throw new U(`Unknown ${r}: ${i}. This may be due to one of the following reasons: 1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. 2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let p of Object.keys(or))c[p]=or[p];for(let p of Object.keys(n))c[p]=n[p];let u=s.config;u.customObjects=c;let h=Object.assign({},or);for(let p of Object.keys(n))or[p]=n[p];FA(s.config);let d=l(o,s.config,n,a);return or=Object.assign({},h),d}else{let c=Object.assign({},or);for(let h of Object.keys(n))or[h]=n[h];let u=new o(s.config);return or=Object.assign({},c),u}}}function VY(e,t){return et?1:0}function pp(e,t){return-1*VY(e,t)}function Ma(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function UY(e){if(e==null)throw new U(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function pi(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new U(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function MA(e,t,n=0,r=Infinity){return Br(n>=0),Br(r>=n),Array.isArray(e)&&e.length>=n&&e.length<=r&&e.every(a=>typeof a===t)}function Xt(e,t){Array.isArray(e)?(k.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,r)=>Xt(n,`element ${r+1} of ${t}`))):k.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${Pb(e)}.`)}function Pb(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>Pb(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function jY(e,t){let n=k.now(),r;return(...a)=>{let s=k.now();return s-nYt(Ce(B(e,e),t,!0)))}var mc=class extends ae.Serializable{getConfig(){return{}}},DA=class extends mc{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return j(()=>{let t=$A(e,this.axis),n=fn(t,0,this.maxValue);return B(e,Se(n,ie(Wt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};DA.className="MaxNorm";ae.registerClass(DA);var OA=class extends mc{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return j(()=>Se(e,ie(Wt(),$A(e,this.axis))))}getConfig(){return{axis:this.axis}}};OA.className="UnitNorm";ae.registerClass(OA);var zA=class extends mc{apply(e){return Mr(e)}};zA.className="NonNeg";ae.registerClass(zA);var PA=class extends mc{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return j(()=>{let t=$A(e,this.axis),n=ie(B(this.rate,fn(t,this.minValue,this.maxValue)),B(1-this.rate,t));return B(e,Se(n,ie(Wt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};PA.className="MinMaxNorm";ae.registerClass(PA);var Wb={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Bt(e){return RA(e)}function Bb(e,t={}){return fc(e,ae.SerializationMap.getMap().classNameMap,t,"constraint")}function Vt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in Wb?Wb[e]:e,config:{}};return Bb(t)}else return e instanceof mc?e:Bb(e)}function zY(e){return new DA(e)}function PY(e){return new OA(e)}function LY(){return new zA}function WY(e){return new PA(e)}var d0={};Pe(d0,{constant:()=>qY,glorotNormal:()=>eJ,glorotUniform:()=>QY,heNormal:()=>tJ,heUniform:()=>nJ,identity:()=>YY,leCunNormal:()=>rJ,leCunUniform:()=>aJ,ones:()=>GY,orthogonal:()=>sJ,randomNormal:()=>KY,randomUniform:()=>XY,truncatedNormal:()=>ZY,varianceScaling:()=>JY,zeros:()=>HY});var iJ=["channelsFirst","channelsLast"],oJ=["nearest","bilinear"],lJ=["valid","same","causal"],uJ=["max","avg"],cJ=["sum","mul","concat","ave"],wl=new Map;function Rt(e){pi(iJ,"DataFormat",e)}function hJ(e){pi(oJ,"InterpolationFormat",e)}function Xn(e){pi(lJ,"PaddingMode",e)}function Vb(e){pi(uJ,"PoolMode",e)}var Ac=[],Ub="/";function fi(e,t){Ac.push(e);try{let n=t();return Ac.pop(),n}catch(n){throw Ac.pop(),n}}function dJ(){return Ac.length===0?"":Ac.join(Ub)+Ub}function Hb(e){if(!jb(e))throw new Error("Not a valid tensor name: '"+e+"'");return dJ()+e}function Gb(e){if(!jb(e))throw new Error("Not a valid tensor name: '"+e+"'");wl.has(e)||wl.set(e,0);let t=wl.get(e);if(wl.set(e,wl.get(e)+1),t>0){let n=`${e}_${t}`;return wl.set(n,1),n}else return e}var pJ=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function jb(e){return!!e.match(pJ)}function fJ(e){return e===parseInt(e.toString(),10)}function $a(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let r=1;for(let a=t;a{if(e.shape.length!==2)throw new U(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=gc(e,1);return LA(n,[1,t,1])})}function AJ(e){let t=[$a(e.shape)];return e.reshape(t)}function yJ(e){if(e.rank<=1)throw new U(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],$a(e.shape,1)];return e.reshape(t)}function mi(e,t,n){return j(()=>{switch(e.rank){case 1:return pd(e,t,n);case 2:return qf(e,[t,0],[n,e.shape[1]]);case 3:return fd(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return $u(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Me(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Me(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new U(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function WA(e,t,n){return j(()=>{switch(e.rank){case 1:return pd(e,t,n);case 2:return qf(e,[0,t],[e.shape[0],n]);case 3:return fd(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return $u(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new U(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function fp(e,t,n,r){return j(()=>{switch(e.rank){case 1:return pd(e,t,n);case 2:switch(r){case 1:return mi(e,t,n);case 2:return WA(e,t,n);default:throw new U(`The axis is not within the rank of the tensor ${r}`)}case 3:switch(r){case 1:return mi(e,t,n);case 2:return fd(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return WA(e,t,n);default:throw new U(`The axis is not within the rank of the tensor ${r}`)}case 4:switch(r){case 1:return mi(e,t,n);case 2:return $u(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return $u(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return WA(e,t,n);default:throw new U(`The axis is not within the rank of the tensor ${r}`)}default:throw new U(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function BA(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),pt(e,t)}function Xb(e,t){switch(e.rank){case 1:return gg([e,t]);case 2:return Xl([e,t],0);case 3:return xg([e,t],0);case 4:return wg([e,t],0);default:throw new U(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function LA(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new U(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return xa(e,t)}function mp(e,t=0,n=1,r,a){return Mg(e,t,n,r,a)}function Vr(e,t,n,r){if(e.rank<2||t.rank<2)throw new ze(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let a=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(a!==s)throw new ze(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let a=!1,s=!1;return va.matMul({a:e,b:t,transposeA:a,transposeB:s,bias:r?VA(e.rank,r,_r()):null,activation:n})}else{let a=e.shape.slice(),s=a.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),c=[...i,o],u=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=t.transpose(u).reshape([l,-1]);let h=[...a,...c],d=!1,p=!1;return va.matMul({a:e,b:t,transposeA:d,transposeB:p,bias:r?VA(e.rank,r,_r()):null,activation:n}).reshape(h)}}function Kb(e,t,n){return j(()=>(Array.isArray(t)?t=tn(t,"int32"):t=t.toInt(),Hs(e,t,n)))}function xc(e){return B(e,e)}function VA(e,t,n){let r=t.shape;if(t.rank!==1&&t.rank!==e)throw new U(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1,1]):t.reshape([1,r[3],r[0],r[1],r[2]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===4){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1]):t.reshape([1,r[2],r[0],r[1]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===3){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1]):t.reshape([1,r[1],r[0]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,r[0]]):t.reshape([1].concat(r))}else if(e<3)return t;throw new U(`Unsupported input rank by biasAdd: ${t.rank}`)}function Ur(e,t,n){return j(()=>(n==null&&(n=_r()),Rt(n),e.add(VA(e.rank,t,n))))}function gJ(e,t=1){if(t!==1)throw new ze(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Wo(e)}function xJ(e){return j(()=>Se(e,zt(e).add(1)))}function Zb(e,t,n,r){return j(()=>Qg(e,t,n,r))}function wJ(e){return j(()=>{let t=ie(.5,B(.2,e));return fn(t,0,1)})}function wc(e,t,n=!1){return n?e():t()}var _J=["fanIn","fanOut","fanAvg"],bJ=["normal","uniform","truncatedNormal"];function vJ(e){pi(_J,"FanMode",e)}function kJ(e){pi(bJ,"Distribution",e)}var lr=class extends ae.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},UA=class extends lr{apply(e,t){return Ct(e,t)}};UA.className="Zeros";ae.registerClass(UA);var Ap=class extends lr{apply(e,t){return Rr(e,t)}};Ap.className="Ones";ae.registerClass(Ap);var jA=class extends lr{constructor(e){super();if(typeof e!="object")throw new U(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new U(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return j(()=>B(Te(this.value),Rr(e,t)))}getConfig(){return{value:this.value}}};jA.className="Constant";ae.registerClass(jA);var HA=class extends lr{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return jo(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};HA.className="RandomUniform";ae.registerClass(HA);var GA=class extends lr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new ze(`randomNormal does not support dType ${t}.`);return mp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};GA.className="RandomNormal";ae.registerClass(GA);var qA=class extends lr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new ze(`truncatedNormal does not support dType ${t}.`);return Ad(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};qA.className="TruncatedNormal";ae.registerClass(qA);var XA=class extends lr{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return j(()=>{if(e.length!==2||e[0]!==e[1])throw new U("Identity matrix initializer can only be used for 2D square matrices.");return B(this.gain,Pf(e[0]))})}getConfig(){return{gain:this.gain}}};XA.className="Identity";ae.registerClass(XA);function IJ(e,t="channelsLast"){let n,r;if(Rt(t),e.length===2)n=e[0],r=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let a=$a(e,2);n=e[1]*a,r=e[0]*a}else if(t==="channelsLast"){let a=$a(e,0,e.length-2);n=e[e.length-2]*a,r=e[e.length-1]*a}}else{let a=$a(e);n=Math.sqrt(a),r=Math.sqrt(a)}return[n,r]}var gn=class extends lr{constructor(e){super();if(e.scale<0)throw new U(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,vJ(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,kJ(this.distribution),this.seed=e.seed}apply(e,t){let n=IJ(e),r=n[0],a=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,r):this.mode==="fanOut"?s/=Math.max(1,a):s/=Math.max(1,(r+a)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new ze(`${this.getClassName()} does not support dType ${t}.`);return Ad(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return jo(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};gn.className="VarianceScaling";ae.registerClass(gn);var yp=class extends gn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return gn.className}};yp.className="GlorotUniform";ae.registerClass(yp);var gp=class extends gn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return gn.className}};gp.className="GlorotNormal";ae.registerClass(gp);var xp=class extends gn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return gn.className}};xp.className="HeNormal";ae.registerClass(xp);var wp=class extends gn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return gn.className}};wp.className="HeUniform";ae.registerClass(wp);var _p=class extends gn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return gn.className}};_p.className="LeCunNormal";ae.registerClass(_p);var bp=class extends gn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return gn.className}};bp.className="LeCunNormal";ae.registerClass(bp);var KA=class extends lr{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new ze("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return j(()=>{if(e.length<2)throw new ze("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,r=mp(n,0,1,"float32"),a=t0.gramSchmidt(r);return e[0]>e[1]&&(a=a.transpose()),B(this.gain,a)})}getConfig(){return{gain:this.gain,seed:this.seed}}};KA.className="Orthogonal";ae.registerClass(KA);var Yb={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function Jb(e,t={}){return fc(e,ae.SerializationMap.getMap().classNameMap,t,"initializer")}function St(e){return RA(e)}function _t(e){if(typeof e=="string"){let t=e in Yb?Yb[e]:e;if(t==="GlorotNormal")return new gp;if(t==="GlorotUniform")return new yp;if(t==="HeNormal")return new xp;if(t==="HeUniform")return new wp;if(t==="LeCunNormal")return new _p;if(t==="LeCunUniform")return new bp;{let n={};return n.className=t,n.config={},Jb(n)}}else return e instanceof lr?e:Jb(e)}function HY(){return new UA}function GY(){return new Ap}function qY(e){return new jA(e)}function XY(e){return new HA(e)}function KY(e){return new GA(e)}function ZY(e){return new qA(e)}function YY(e){return new XA(e)}function JY(e){return new gn(e)}function QY(e){return new yp(e)}function eJ(e){return new gp(e)}function tJ(e){return new xp(e)}function nJ(e){return new wp(e)}function rJ(e){return new _p(e)}function aJ(e){return new bp(e)}function sJ(e){return new KA(e)}var p0={};Pe(p0,{Layer:()=>Ze,RNN:()=>Dr,RNNCell:()=>_c,activation:()=>BJ,add:()=>ZJ,alphaDropout:()=>MQ,average:()=>YJ,averagePooling1d:()=>ZA,averagePooling2d:()=>YA,averagePooling3d:()=>JA,avgPool1d:()=>iQ,avgPool2d:()=>lQ,avgPool3d:()=>cQ,avgPooling1d:()=>oQ,avgPooling2d:()=>uQ,avgPooling3d:()=>hQ,batchNormalization:()=>rQ,bidirectional:()=>IQ,concatenate:()=>JJ,conv1d:()=>MJ,conv2d:()=>$J,conv2dTranspose:()=>DJ,conv3d:()=>OJ,convLstm2d:()=>_Q,convLstm2dCell:()=>bQ,cropping2D:()=>PJ,dense:()=>VJ,depthwiseConv2d:()=>WJ,dot:()=>nQ,dropout:()=>UJ,elu:()=>SJ,embedding:()=>KJ,flatten:()=>HJ,gaussianDropout:()=>FQ,gaussianNoise:()=>RQ,globalAveragePooling1d:()=>dQ,globalAveragePooling2d:()=>pQ,globalMaxPool1d:()=>SQ,globalMaxPool2d:()=>TQ,globalMaxPooling1d:()=>Qb,globalMaxPooling2d:()=>e3,gru:()=>mQ,gruCell:()=>AQ,input:()=>g0,inputLayer:()=>NJ,layerNormalization:()=>aQ,leakyReLU:()=>EJ,lstm:()=>yQ,lstmCell:()=>gQ,masking:()=>$Q,maxPool1d:()=>EQ,maxPool2d:()=>CQ,maxPooling1d:()=>t3,maxPooling2d:()=>n3,maxPooling3d:()=>fQ,maximum:()=>QJ,minimum:()=>eQ,multiply:()=>tQ,permute:()=>XJ,prelu:()=>CJ,reLU:()=>TJ,repeatVector:()=>GJ,reshape:()=>qJ,rnn:()=>vQ,separableConv2d:()=>zJ,simpleRNN:()=>xQ,simpleRNNCell:()=>wQ,softmax:()=>RJ,spatialDropout1d:()=>jJ,stackedRNNCells:()=>kQ,thresholdedReLU:()=>FJ,timeDistributed:()=>NQ,upSampling2d:()=>LJ,zeroPadding2d:()=>sQ});var DQ=0;function r3(){return DQ++}var vp={};function kp(e=""){return e in vp||(vp[e]=0),vp[e]+=1,e+vp[e].toString()}function QA(e){return Array.isArray(e)&&Array.isArray(e[0])}function Ip(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Le(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new U(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function mt(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new U(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Np(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((r,a)=>r*a);return t}var a3="Variable",f0=class{constructor(e,t="float32",n=a3,r=!0,a=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=r3(),n=n==null?a3:n,this.originalName=Hb(n),this.name=Gb(this.originalName),this.trainable_=r,this.constraint=a,this.val=Dg(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),OQ(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function OQ(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function ey(e){return e.map(t=>t.read())}function ty(e){e.forEach(t=>{t[0].write(t[1])})}var Ht=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},gr=class{constructor(e,t,n,r,a,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=r,this.callArgs=a,this.outputTensorIndex=i,this.id=r3(),s!=null&&(this.originalName=Hb(s),this.name=Gb(this.originalName)),this.rank=t.length}},zQ=0,Sp=class{constructor(e,t){this.callArgs=t,this.id=zQ++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},PQ=0,Ze=class extends ae.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=PQ++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=oa(n)+"_"+kp(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let a=null;e.batchSize!=null&&(a=e.batchSize),n=[a].concat(e.inputShape)}this.batchInputShape=n;let r=e.dtype;r==null&&(r=e.inputDType),r==null&&(r="float32"),this.dtype=r}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new br(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new U(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return yn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return yn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new ia(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new ia(`Layer ${this.name} is not connected, no input to return.`);return yn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new ia(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new ia(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return yn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=gt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=gt(this.inputSpec);if(e.length!==t.length)throw new U(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;na.maxNDim)throw new U(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${a.maxNDim}, found ndim=${s}`);if(a.minNDim!=null&&s=0?i[l]:i[i.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new U(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${i}.`)}}if(a.shape!=null)for(let i=0;i{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of gt(e))s.push(i.shape);this.build(yn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&a&&(this._refCount=1)}if(this.assertInputCompatibility(e),a){let s=this.call(e,t),i=gt(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=yn(o),this.activityRegularizer!=null)throw new ze("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=LQ(e),i=this.computeOutputShape(s),o,l=WQ(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((c,u)=>new gr(l,c,this,gt(e),t,this.name,u)):o=new gr(l,i,this,gt(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new ze("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,r)=>{n!=null&&e[r]!=null&&e[r]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new ia(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new ia(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new br(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Np(this.weights)}build(e){this.built=!0}getWeights(e=!1){return ey(e?this.trainableWeights:this.weights)}setWeights(e){j(()=>{let t=this.weights;if(t.length!==e.length)throw new U(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],r=ey(t);for(let a=0;aa.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=gt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,r,a,s,i=null){let o=gt(e);t=gt(t),n=gt(n),r=gt(r),a=Ip(a),s=Ip(s);let l=[],c=[],u=[];for(let h of o)l.push(h.sourceLayer),c.push(h.nodeIndex),u.push(h.tensorIndex);new Sp({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:r,inputShapes:a,outputShapes:s},i);for(let h=0;he.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function LQ(e){e=gt(e);let t=[];for(let n of e)t.push(n.shape);return yn(t)}function WQ(e){return"float32"}function s3(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let r=t.inboundNodes[n];if(r.inboundLayers.length===0)return r.inputTensors;{let a=[];for(let s=0;s0){let a=await Promise.all(t);for(let s=0;sie(this.totals[r],B(a,n)));this.totals[r]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:j(()=>{let r=B(Se(1,this.seen),this.totals[n]);t[n]=r,this.totals[n].dispose(),jt(t[n])}))}},A0=class extends vl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let a in this.history){let s=this.history[a];for(let i=0;inew y0(n,t))}var ur=class{constructor(){}static registerCallbackConstructor(e,t){k.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),ur.checkForDuplicate(t),ur.constructors[e]==null&&(ur.constructors[e]=[]),ur.constructors[e].push(t)}static checkForDuplicate(e){for(let t in ur.constructors)ur.constructors[+t].forEach(n=>{if(n===e)throw new U("Duplicate callback constructor.")})}static clear(){ur.constructors={}}static createCallbacks(e){let t=[];for(let n in ur.constructors){let r=+n;e>=r&&t.push(...ur.constructors[r])}return t.map(n=>new n)}};ur.constructors={};function c3(e,t,n,r,a,s,i,o,l){let c=new A0,u=[new VQ,...ur.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let h=new m0(u);return h.setParams({epochs:n,initialEpoch:r,samples:a,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:h,history:c}}function kr(e,t={},n=!1){return fc(e,ae.SerializationMap.getMap().classNameMap,t,"layer",n)}function Tp(e,t){return j(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Ce(xc(e),t,!0),r=Nu(n.shape,Wt()),a=Yt(yr(n,r));return Se(e,a)})}function Ai(e,t){return j(()=>It(xc(be(t,e)),-1))}function Ep(e,t){return j(()=>It(zt(be(t,e)),-1))}function kl(e,t){return j(()=>{let n=be(e,t),r=fn(zt(e),Wt(),Number.MAX_VALUE),a=zt(Se(n,r));return B(100,It(a,-1))})}function UQ(e,t){return j(()=>{let n=fn(t,Wt(),Number.MAX_VALUE),r=kn(ie(1,n)),a=fn(e,Wt(),Number.MAX_VALUE),s=kn(ie(1,a));return It(xc(be(r,s)),-1)})}function jQ(e,t){return j(()=>{let n=yr(0,be(1,B(e,t)));return It(xc(n),-1)})}function HQ(e,t){return j(()=>{let n=yr(0,be(1,B(e,t)));return It(n,-1)})}function GQ(e,t){return j(()=>{let n=Ce(B(e,t),-1),r=jn(B(be(1,e),t),-1);return yr(0,ie(1,be(r,n)))})}function qQ(e,t){return j(()=>{let n=Math.log(2),r=be(t,e),a=be(ie(r,Vo(B(-2,r))),n);return It(a,-1)})}function bc(e,t,n=!1){return j(()=>{if(n)t=Du(t);else{let r=Ce(t,t.shape.length-1,!0);t=Se(t,r)}return t=fn(t,Wt(),1-Wt()),kt(Ce(B(e.toFloat(),kn(t)),t.shape.length-1))})}function Cp(e,t,n=!1){return j(()=>{let r=Bo(AJ(e)).toInt();t=fn(t,Wt(),1-Wt());let a=t.shape,s=Po(r,a[a.length-1]).reshape(a);return bc(s,t,n)})}function XQ(e,t){if(!k.arraysEqual(e.shape,t.shape))throw new U(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return j(()=>{let n=t.relu(),r=t.abs().neg();return n.sub(t.mul(e)).add(r.exp().log1p())})}function Rp(e,t){return j(()=>{let n;return n=fn(t,Wt(),1-Wt()),n=kn(Se(n,be(1,n))),It(XQ(e,n),-1)})}function KQ(e,t){return j(()=>{let n=fn(e,Wt(),1),r=fn(t,Wt(),1);return Ce(B(e,kn(Se(n,r))),-1)})}function ZQ(e,t){return j(()=>{let n=kn(ie(Wt(),t));return It(be(t,B(e,n)),-1)})}function ny(e,t){return j(()=>{let n=Tp(e,-1),r=Tp(t,-1),a=B(n,r);return kt(Ce(a,-1))})}var Fp={meanSquaredError:Ai,meanAbsoluteError:Ep,meanAbsolutePercentageError:kl,meanSquaredLogarithmicError:UQ,squaredHinge:jQ,hinge:HQ,categoricalHinge:GQ,logcosh:qQ,categoricalCrossentropy:bc,sparseCategoricalCrossentropy:Cp,binaryCrossentropy:Rp,kullbackLeiblerDivergence:KQ,poisson:ZQ,cosineProximity:ny};function ry(e){if(typeof e=="string"){if(e in Fp)return Fp[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new U(t)}else return e}function ay(e,t){return j(()=>{let n=B(.5,In(t)),r=yc(Un(t,n),e.dtype);return It(Yr(e,r),-1)})}function sy(e,t){return j(()=>yc(Yr(_u(e,-1),_u(t,-1)),"float32"))}function h3(e,t){return j(()=>rr(e.equal(1),t.equal(1)).sum().cast("float32"))}function YQ(e,t){return j(()=>rr(e.equal(1),t.equal(0)).sum().cast("float32"))}function JQ(e,t){return j(()=>rr(e.equal(0),t.equal(1)).sum().cast("float32"))}function d3(e,t){return j(()=>{let n=h3(e,t),r=JQ(e,t),a=n.add(r);return mn(Un(a,0),n.div(a),0).cast("float32")})}function QQ(e,t){return j(()=>{let n=h3(e,t),r=YQ(e,t),a=n.add(r);return mn(Un(a,0),n.div(a),0).cast("float32")})}function p3(e,t){return Rp(e,t)}function f3(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),Yr(e,t).asType("float32")}var eee=Ai,tee=Ai,nee=Ep,ree=Ep,aee=kl,see=kl,iy=bc,iee=ny,m3=Cp,Mp={binaryAccuracy:ay,categoricalAccuracy:sy,precision:d3,categoricalCrossentropy:iy,sparseCategoricalCrossentropy:m3,mse:eee,MSE:tee,mae:nee,MAE:ree,mape:aee,MAPE:see,cosine:iee};function oee(e){if(typeof e=="string"&&e in Mp)return Mp[e];if(typeof e!="string"&&e!=null)return e;throw new U(`Unknown metric ${e}`)}function $p(e){if(Br(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Fp))if(Fp[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Mp))if(Mp[n]===e){t=n;break}return t!==void 0?t:e.name}}function lee(e){let t={Adagrad:()=>qs.adagrad(.01),Adadelta:()=>qs.adadelta(1,.95,Wt()),Adam:()=>qs.adam(.001,.9,.999,Wt()),Adamax:()=>qs.adamax(.002,.9,.999,Wt(),0),RMSProp:()=>qs.rmsprop(.001,.9,0,Wt()),SGD:()=>qs.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new U(`Unknown Optimizer ${e}`)}var A3=1*1024*1024;function y3(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!oy(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let r=JSON.stringify(e);r.length>A3&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${r.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${A3}.`)}}function oy(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!oy(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!oy(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function pee(e,t,n,r=console.log){let a=cee(e),s=["Layer (type)","Output shape","Param #"];a?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let i;if(!a){s.push("Receives inputs"),i=[];for(let u in e.nodesByDepth)i.push(...e.nodesByDepth[u])}r("_".repeat(t)),Dp(s,n,r),r("=".repeat(t));let o=e.layers;for(let u=0;u1||a.length===1&&a[0].inboundLayers.length>1){t=!1;break}r.push(...a)}if(t)for(let a of e.layers){let s=!1;for(let i of a.inboundNodes)if(r.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function Dp(e,t,n=console.log){let r="";for(let a=0;a0&&(r=r.slice(0,r.length-1)+" "),r+=e[a],r=r.slice(0,t[a]),r+=" ".repeat(t[a]-r.length);n(r)}function hee(e,t,n){let r;try{r=JSON.stringify(e.outputShape)}catch(o){r="multiple"}let a=e.name,s=e.getClassName(),i=[`${a} (${s})`,r,e.countParams().toString()];Dp(i,t,n)}function dee(e,t,n,r){let a;try{a=JSON.stringify(e.outputShape)}catch(u){a="multiple"}let s=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let h=0;hf.name),l=[],c=t.names();for(let f of o)c.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);r!=null&&(r.maxNumTensors=-Infinity,r.minNumTensors=Infinity);let u=o.join(",")+"|"+t.names().join(","),h,d;if(uy[u]==null){let f=mee(i,t);h=f.sorted,d=f.recipientCounts,uy[u]=h,x3[u]=d}h=uy[u],d={},a||Object.assign(d,x3[u]);let p=new yi(t);for(let f=0;fr.maxNumTensors&&(r.maxNumTensors=N),N0,()=>"Expected at least one fetch, got none");let n=[],r={};if(e.length===1){let a=w3(e[0],t);n=a.sorted,r=a.recipientMap}else{let a=new Set;for(let s of e){let{sorted:i,recipientMap:o}=w3(s,t);for(let l of i)a.has(l.name)||(n.push(l),a.add(l.name));for(let l in o)r[l]==null&&(r[l]=new Set),o[l].forEach(c=>r[l].add(c))}}return{sorted:n,recipientCounts:yee(r)}}function yee(e){let t={};for(let n in e)t[n]=e[n].size;return t}function w3(e,t){let n=new Set,r=[],a={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),r.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let c of o.inputs)a[c.name]==null&&(a[c.name]=new Set),a[c.name].add(o.name),!n.has(c.name)&&s.push(c)}}return{sorted:r,recipientMap:a}}function Aee(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let r=0;ry.name)}`);Ma(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let g=y.sourceLayer,w=y.nodeIndex,x=y.tensorIndex;this.outputLayers.push(g),this.outputLayersNodeIndices.push(w),this.outputLayersTensorIndices.push(x)}for(let y of this.inputs){let g=y.sourceLayer,w=y.nodeIndex,x=y.tensorIndex;Br(w===0,"input layer has >1 nodes"),Br(x===0,"input layer has >1 tensors"),this.inputLayers.push(g),this.inputLayersNodeIndices.push(w),this.inputLayersTensorIndices.push(x)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;yy.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},r={},a={},s={},i=[],o=(y,g,w,x,_,b)=>{(x==null||_==null||b==null)&&(x=y.sourceLayer,_=y.nodeIndex,b=y.tensorIndex);let T=x.inboundNodes[_];if(w.indexOf(T)!==-1)throw new br(`The tensor ${y.name} at layer "${x.name}" is part of a cycle.`);if(g.indexOf(T)!==-1)return;this.containerNodes.add(jr.nodeKey(x,_)),x.id in s||(s[x.id]=Object.keys(s).length),w.indexOf(T)===-1&&w.push(T);let S=T.inboundLayers.length;for(let N=0;N=0;)w.splice(w.indexOf(T),1);i.push(T)},l=[],c=[];for(let y of this.outputs)o(y,l,c);let u=i.slice().reverse();for(let y of u){n[y.id]=y,y.id in t||(t[y.id]=0);let g=t[y.id],w=r[y.outboundLayer.id]==null?0:r[y.outboundLayer.id];g=Math.max(g,w),r[y.outboundLayer.id]=g,a[y.outboundLayer.id]=y.outboundLayer,t[y.id]=g;for(let x=0;xparseInt(y,10)).sort(pp);this.layers=[];for(let y of p){let g=d[y];g.sort((w,x)=>{let _=s[w.id],b=s[x.id];return _b?1:0});for(let w of g)w instanceof jr&&this.internalContainerRefs.push(w),this.layers.push(w)}this.layersByDepth=d,p=Object.keys(h).map(y=>parseInt(y,10)).sort(pp);let f=this.inputs.slice(),m=[];for(let y of p)for(let g of h[y]){let w=g.outboundLayer;if(w!=null){for(let x of g.inputTensors)if(f.indexOf(x)===-1)throw new br(`Graph disconnected: cannot obtain value for tensor ${x} at layer "${w.name}". The following previous layers were accessed without issue: ${m}`);for(let x of g.outputTensors)f.push(x);m.push(w.name)}}this.nodesByDepth=h;let A=this.layers.map(y=>y.name);for(let y of A){let g=A.filter(w=>w===y).length;if(g!==1)throw new br(`The name "${y}" is used ${g} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(A))}this.outboundNodes=[],this.inboundNodes=[],new Sp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new U("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},r=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new U(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,r++}let a=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)a.push([n[i],e[s]]);else if(t)throw new U(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new U(`${s.length} of ${r} weights are not set: ${s}`)}ty(a)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${sm}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=ly(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return j(()=>{e=gt(e);let n=new yi;for(let r=0;r{e=gt(e);let n;return t==null?n=hi(null,e.length):n=gt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Ip(e);if(t.length!==this.inputLayers.length)throw new U(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;iparseInt(i,10)).sort(pp);if(r.length>1)for(let i of r){let o=this.nodesByDepth[i];for(let l of o){let c=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(c.id)!==-1)continue;let u=[];for(let f=0;fparseInt(o,10)).sort(pp);for(let o of r){let l=this.nodesByDepth[o];for(let c of l){let u=c.outboundLayer,h=c.inputTensors,d=c.outputTensors,p=new Array;for(let f of h)f.id in n&&p.push(n[f.id]);if(p.length===h.length){let f={},m,A,y,g;if(c.callArgs!=null&&(f=c.callArgs),p.length===1){let[w,x]=p[0];f.mask==null&&(f.mask=x),y=gt(u.call(w,f)),g=gt(u.computeMask(w,x)),m=[w],A=[x]}else m=p.map(w=>w[0]),A=p.map(w=>w[1]),f.mask==null&&(f.mask=A),y=gt(u.call(m,f)),g=gt(u.computeMask(m,A));if(u.activityRegularizer)throw new ze("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let w=0;w{let e=[];for(let t of this.layers)for(let n=0;n0){let f=[];for(let m=0;m0&&m.apply(yn(y),g)}function l(m){let A=m.name,y=kr(m,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(r),a[A]=y,m.inboundNodes.forEach(g=>{if(!(g instanceof Array))throw new U(`Corrupted configuration, expected array for nodeData: ${g}`);i(y,g)})}let c=t.name,u=t.layers;for(let m of u)l(m);for(;!UY(s);)for(let m of u){let A=a[m.name];if(A.name in s){let y=s[A.name];delete s[A.name];for(let g of y)o(A,g)}}let h=[],d=[],p=t.inputLayers;for(let m of p){let A=m[0],y=m[1],g=m[2];Br(A in a);let w=a[A].inboundNodes[y].outputTensors;h.push(w[g])}let f=t.outputLayers;for(let m of f){let A=m[0],y=m[1],g=m[2];Br(A in a);let w=a[A].inboundNodes[y].outputTensors;d.push(w[g])}return new e({inputs:h,outputs:d,name:c})}get stateful(){if(this._stateful)throw new U("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){j(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function gee(e,t,n){let r=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>null);if(r===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==r)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${r} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let a=[];return t.forEach(s=>{s in e?a.push(e[s]):a.push(null)}),a}else throw new Error(`The model has multiple (${r}) outputs, so ${n} must be either an array with ${r} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function _3(e,t){return gee(e,t,"classWeight")}async function b3(e,t,n,r){if(t!=null||r!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let a=j(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await a.data());$e(a);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),tn(i,"float32")}else return null}function xee(e,t){return B(e,t)}var wee=32;function k3(e,t){let n,r,a=t;n=a.xs,r=a.ys,k.assert(n!=null&&r!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=v3("input",e.inputNames,n),i=v3("output",e.outputNames,r),o=s[0].shape[0];k.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),k.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function v3(e,t,n){if(n instanceof H)return[n];if(Array.isArray(n))return k.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let r=[];for(let a of t){if(n[a]==null)throw new U(`The feature data generated by the dataset lacks the required ${e} key '${a}'.`);r.push(n[a])}return r}}function _ee(e){if(e.length===3)throw new ze("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function vee(e,t,n){let r=n.batchesPerEpoch!=null;if(k.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),k.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),k.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),k.assert(!r||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),k.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let a=n.validationData!=null,s,i;if(a)if(I3(n.validationData))k.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let A=_ee(n.validationData);s=A.xs,i=A.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;a?c=l.slice().concat(l.map(A=>"val_"+A)):c=l.slice();let u=u3(n.callbacks,n.yieldEvery),h=n.verbose==null?1:n.verbose,{callbackList:d,history:p}=c3(u,h,n.epochs,null,null,bee(t,n),null,a,c);d.setModel(e),e.history=p,await d.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f=n.batchesPerEpoch:w.done){if(a){let x;I3(n.validationData)?x=gt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):x=gt(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?wee:n.validationBatchSize,verbose:0}));for(let _=0;_0)throw new ze("Verbose mode is not implemented yet.");k.assert(!r||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=kee(t)?t:await t.iterator(),o=0,l=0;for(;r?l{if(c.value){let{xs:u,ys:h}=k3(e,c.value),d=u.concat(h),p=j(()=>a(d));if($e(d),l===0)for(let m=0;mie(s[m],B(f,A))),l>0&&$e(y)}$e(p),o+=f,++l}return s}),c.done){r&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Ic(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(r=>mi(r,t,n-t)):mi(e,t,n-t)}function hy(e,t){return j(()=>e==null?null:Array.isArray(e)?e.map(n=>hy(n,t)):Kb(e,t.dtype==="int32"?t:t.toInt()))}function dy(e,t){let n=[],r=0,a=null;for(;r=e&&(a=e),n.push([r,a]),r=a;return n}async function Nee(e,t,n,r,a,s,i,o,l,c,u,h,d,p,f){a==null&&(a=32),s==null&&(s=1),u==null&&(u=!0),d==null&&(d=0);let m=!1;if(l!=null&&c!=null&&(m=!0),f!=null&&(m=!0,p==null))throw new U("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let A=e.checkNumSamples(n,a,p,"steps_per_epoch"),y;A!=null&&(y=vr(0,A)),i==null&&(i=1);let{callbackList:g,history:w}=c3(o,i,s,d,A,p,a,m,h);g.setModel(e),e.history=w,await g.onTrainBegin(),e.stopTraining_=!1;for(let x=d;x{let C=T[S][0],$=T[S][1],D=mi(b,C,$-C);N.batch=S,N.size=$-C;let O=hy(n,D),V=t(O);for(let W=0;W0){if(f=!0,r.validationData.length===2)i=r.validationData[0],o=r.validationData[1];else throw r.validationData.length===3?new ze("validationData including sample weights is not supported yet."):new U(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${r.validationData} is invalid.`);let b=!0,T=await e.standardizeUserData(i,o,null,null,b,h);l=T[0],c=T[1],m=l.concat(c)}else if(r.validationSplit!=null&&r.validationSplit>0&&r.validationSplit<1){f=!0;let b=Math.floor(a[0].shape[0]*(1-r.validationSplit)),T=a[0].shape[0];l=Ic(a,b,T),a=Ic(a,0,b),c=Ic(s,b,T),s=Ic(s,0,b),m=l.concat(c)}else r.validationSteps!=null&&(f=!0);let A=a.concat(s).concat(u);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),g=e.getDedupedMetricsNames(),w,x;f?(e.makeTestFunction(),w=e.testFunction,x=g.slice().concat(g.map(b=>"val_"+b))):(w=null,m=[],x=g.slice());let _=u3(r.callbacks,r.yieldEvery);return await Nee(e,y,A,g,h,r.epochs,r.verbose,_,w,m,r.shuffle,x,r.initialEpoch,null,null)}finally{e.isTraining=!1,gi(a,t),gi(s,n),gi(l,i),gi(c,o),u!=null&&$e(u)}}function N3(e){let t=[];e instanceof H&&(e=[e]);for(let n=0;nn.push(a.id));else if(t!=null)for(let a in t){let s=t[a];n.push(s.id)}let r=[];if(e instanceof H)n.indexOf(e.id)===-1&&r.push(e);else if(Array.isArray(e))e.forEach(a=>{n.indexOf(a.id)===-1&&r.push(a)});else if(e!=null)for(let a in e){let s=e[a];n.indexOf(s.id)===-1&&r.push(s)}r.forEach(a=>{a.isDisposed||a.dispose()})}function Tee(e){return e instanceof H}function py(e){return Array.isArray(e)}function S3(e){return!Tee(e)&&!py(e)}function T3(e,t,n,r=!0,a=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(py(e)&&e.length>0)i=!0;else if(S3(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new U(`Error when checking model ${a} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(S3(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new U(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(py(e)){if(e=e,e.length!==t.length)throw new U(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new U(`The model ${a} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=N3(s),n!=null)for(let i=0;i=0&&c!==u)throw new U(`Error when checking ${a}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function Eee(e,t,n){let r=Ma(e.map(s=>s.shape[0]));r.sort();let a=Ma(t.map(s=>s.shape[0]));if(a.sort(),r.length>1)throw new U(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(a.length>1)throw new U(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(r.length>0&&a.length>0&&!k.arraysEqual(r,a))throw new U(`Input Tensors should have the same number of samples as target Tensors. Found ${r[0]} input sample(s) and ${a[0]} target sample(s).`)}function Cee(e,t,n){let r=[Ai,Rp,bc];for(let a=0;a1)throw new U(`The model expects ${t.length} ${a} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(r=>n);{let r=[];for(let a of t){let s=n.hasOwnProperty(a)?n[a]:[];Array.isArray(s)||(s=[s]),r.push(s)}return r}}var Fee="layers-model",ta=class extends jr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new U("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");pee(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=lee(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof ea))throw new U("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new U(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(ry(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new U(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>ry(s))}else{let s=ry(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s{for(let s=0;s1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let r=Ree(e.metrics,this.outputNames),a=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};fi("metric",()=>{for(let s=0;s{let l="",c,u,h;for(let d of o){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let f=this.internalOutputShapes[s];f[f.length-1]===1||this.lossFunctions[s]===Rp?["accuracy","acc"].indexOf(d)!==-1?u=ay:["crossentropy","ce"].indexOf(d)!==-1&&(u=p3):this.lossFunctions[s]===Cp?["accuracy","acc"].indexOf(d)!==-1?u=f3:["crossentropy","ce"].indexOf(d)!==-1&&(u=m3):["accuracy","acc"].indexOf(d)!==-1?u=sy:["crossentropy","ce"].indexOf(d)!==-1&&(u=iy);let m;["accuracy","acc"].indexOf(d)!==-1?m="acc":["crossentropy","ce"].indexOf(d)!==-1&&(m="ce"),h=u,c=l+m}else h=oee(d),c=l+$p(d);let p;fi(c,()=>{p=h}),a(s,c,p)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let r=n.batchSize==null?32:n.batchSize;cy(r);let a=!0,s=this.standardizeUserDataXY(e,t,a,r);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,r,n.verbose,n.steps);return yn(l)}finally{gi(s[0],e),gi(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),Iee(this,e,t)}checkNumSamples(e,t,n,r="steps"){let a;if(n!=null){if(a=null,t!=null)throw new U(`If ${r} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?a=e[0].shape[0]:a=e.shape[0];else throw new U(`Either the input data should have a defined shape, or ${r} shoud be specified.`);return a}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new U("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),r=n?t:[t],a=this.retrieveSymbolicTensors(r),s=new yi;if(e instanceof H&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new U(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;oi.name);for(let i=0;i0){let r=[];throw t.forEach((a,s)=>{a==null&&r.push(e[s])}),new U(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(r)}`)}return t}predictLoop(e,t=32,n=!1){return j(()=>{let r=this.checkNumSamples(e);if(n)throw new ze("Verbose predictLoop() is not implemented yet.");let a=dy(r,t),s=this.outputs.map(i=>[]);for(let i=0;i{let o=a[i][0],l=a[i][1],c=Ic(e,o,l),u=[];if(Array.isArray(c))for(let d=0;ds[l].push(o));return yn(s.map(i=>pt(i,0)))})}predict(e,t={}){let n=N3(e);E3(n,this.inputNames,this.feedInputShapes,!1);try{let r=t.batchSize==null?32:t.batchSize;return cy(r),this.predictLoop(n,r)}finally{gi(n,e)}}predictOnBatch(e){E3(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,r){if(this.optimizer_==null)throw new br("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let a=[];for(let s=0;s0&&e[0].shape[0]%r!=0)throw new U(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${r}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,r,a=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,a,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(r!=null){let c=_3(r,this.outputNames);l=[];for(let u=0;u{let s=this.checkNumSamples(t,n,a,"steps"),i=[];if(r>0)throw new ze("Verbose mode is not implemented yet.");if(a!=null)throw new ze("steps mode in testLoop() is not implemented yet");{let o=dy(s,n),l=tn(vr(0,s));for(let c=0;c1&&(a+=`_${zb(e.slice(0,n),r)}`),t.push(a)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let c=[];for(let p=0;p1&&p{d=ie(d,p)}),d},o=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>j(()=>{let t=[],n,r=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;loa(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let r of t)if(typeof n[r]=="string")e[r]=oa(n[r]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[oa($p(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>oa($p(e)));{let e={};for(let t in this.metrics)e[t]=oa($p(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=vc(e.optimizer_config),n=kr(t),r;if(typeof e.loss=="string")r=di(e.loss);else if(Array.isArray(e.loss))r=e.loss.map(s=>di(s));else if(e.loss!=null){r={};for(let s in e.loss)r[s]=di(e.loss[s])}let a;if(Array.isArray(e.metrics))a=e.metrics.map(s=>di(s));else if(e.metrics!=null){a={};for(let s in e.metrics)a[s]=di(e.metrics[s])}this.compile({loss:r,metrics:a,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=pn.getSaveHandlers(e);if(i.length===0)throw new U(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new U(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new U("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await pn.encodeWeights(this.getNamedWeights(t)),r=!1,a=null,s={modelTopology:this.toJSON(a,r),format:Fee,generatedBy:`TensorFlow.js tfjs-layers v${sm}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await pn.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=pn.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;y3(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){y3(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};ta.className="Model";ae.registerClass(ta);var C3=class extends ta{};C3.className="Functional";ae.registerClass(C3);async function Mee(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let r=vc(n),a=kr(r,t);if(e.weightsManifest!=null){let s=await pn.loadWeights(e.weightsManifest,e.pathPrefix,a.weights.map(o=>o.originalName)),i={};for(let o of a.weights)i[o.originalName]=s[o.originalName];a.loadWeights(i),$e(s)}return a}async function Dee(e,t){if(t==null&&(t={}),typeof e=="string"){let n=pn.getLoadHandlers(e,t);if(n.length===0)n.push(pn.browserHTTPRequest(e,t));else if(n.length>1)throw new U(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return $ee(e,void 0,t)}async function $ee(e,t,n){if(n==null&&(n={}),e.load==null)throw new U("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let r=await e.load(),a=r.modelTopology;a.model_config!=null&&(a=a.model_config);let s=n.strict==null?!0:n.strict,i=r.weightData!=null&&r.weightSpecs!=null&&s,o=kr(vc(a),t,i),l=r.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),r.userDefinedMetadata!=null&&o.setUserDefinedMetadata(r.userDefinedMetadata),r.weightData!=null){if(r.weightSpecs==null)throw new U("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=Oee(r.weightData,r.weightSpecs);o.loadWeights(c,s),o.optimizer!=null&&u.length>0&&await o.optimizer.setWeights(u),$e(c),$e(u.map(h=>h.tensor))}return o}function Oee(e,t){let n=pn.decodeWeights(e,t),r={},a=[];return t.forEach(s=>{s.group==="optimizer"?a.push({name:s.name,tensor:n[s.name]}):r[s.name]=n[s.name]}),{modelWeights:r,optimizerWeights:a}}var qo=class extends ta{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:kp("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new U(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof qo||e instanceof ta,n;if(t){if(n=e,n.outputs.length!==1)throw new U("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new U("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new U("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let r=i3({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(r)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new U(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new U("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=s3(this.outputs[0])}this.inboundNodes=[],new Sp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:hi(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(r=>r.shape),outputShapes:this.outputs[0].shape})}else{let r=e.apply(this.outputs[0]);if(Array.isArray(r))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[r],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(mt(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new ta({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new br("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new br("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new br("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new br("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},r=!1){let a,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new U("Legacy serialization format not supported yet.");a=t}else k.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),a=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof qo))throw new ze(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of a){let l=kr(o,void 0,r);r&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new U("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new U("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};qo.className="Sequential";ae.registerClass(qo);function X4(e){return new ta(e)}function K4(e){return new qo(e)}function Z4(e,t){return t==null&&(t={}),Dee(e,t)}function g0(e){return i3(e)}function Y4(e,t){ur.registerCallbackConstructor(e,t)}var Mn=class extends ae.Serializable{getConfig(){return{}}},R3=class extends Mn{apply(e,t=1){return gJ(e,t)}};R3.className="elu";ae.registerClass(R3);var F3=class extends Mn{apply(e){return cd(e)}};F3.className="selu";ae.registerClass(F3);var M3=class extends Mn{apply(e){return Mr(e)}};M3.className="relu";ae.registerClass(M3);var $3=class extends Mn{apply(e){return j(()=>Gs(6,Mr(e)))}};$3.className="relu6";ae.registerClass($3);var D3=class extends Mn{apply(e){return e}};D3.className="linear";ae.registerClass(D3);var O3=class extends Mn{apply(e){return tr(e)}};O3.className="sigmoid";ae.registerClass(O3);var z3=class extends Mn{apply(e){return wJ(e)}};z3.className="hardSigmoid";ae.registerClass(z3);var P3=class extends Mn{apply(e){return Vo(e)}};P3.className="softplus";ae.registerClass(P3);var L3=class extends Mn{apply(e){return xJ(e)}};L3.className="softsign";ae.registerClass(L3);var W3=class extends Mn{apply(e){return Lo(e)}};W3.className="tanh";ae.registerClass(W3);var fy=class extends Mn{apply(e,t=-1){return Du(e,t)}};fy.className="softmax";ae.registerClass(fy);var B3=class extends Mn{apply(e,t=-1){return nd(e,t)}};B3.className="logSoftmax";ae.registerClass(B3);var V3=class extends Mn{apply(e,t=1){return j(()=>tr(e.mul(t)).mul(e))}};V3.className="swish";ae.registerClass(V3);function za(e){return e.getClassName()}function my(e,t={}){return fc(e,ae.SerializationMap.getMap().classNameMap,t,"activation")}function Pa(e){if(e==null){let t={};return t.className="linear",t.config={},my(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},my(t)}else return e instanceof Mn?e:my(e)}function Ay(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var U3=class extends ae.Serializable{},Nc=class extends U3{constructor(e){super();Ay(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return j(()=>{let t=Ct([1]);return this.hasL1&&(t=ie(t,Ce(B(this.l1,zt(e))))),this.hasL2&&(t=ie(t,Ce(B(this.l2,xc(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Nc.className="L1L2";ae.registerClass(Nc);function zee(e){return Ay(e),new Nc({l1:e!=null?e.l1:null,l2:0})}function Pee(e){return Ay(e),new Nc({l2:e!=null?e.l2:null,l1:0})}var j3={l1l2:"L1L2"};function At(e){return RA(e)}function H3(e,t={}){return fc(e,ae.SerializationMap.getMap().classNameMap,t,"regularizer")}function bt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in j3?j3[e]:e,config:{}};return H3(t)}else return e instanceof U3?e:H3(e)}var yy=class extends Ze{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Le(e);let n=Mr(e);return this.maxValue!=null&&(n=fn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};yy.className="ReLU";ae.registerClass(yy);var gy=class extends Ze{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Le(e);return Su(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};gy.className="LeakyReLU";ae.registerClass(gy);var xy=class extends Ze{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=_t(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=bt(e.alphaRegularizer),this.alphaConstraint=Vt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new U(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=mt(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let r of this.sharedAxes)t[r-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let r=1;r(Rt(t),t==="channelsFirst"?ot(e,[0,2,3,1]):e))}function G3(e,t){return j(()=>(Rt(t),t==="channelsFirst"?ot(e,[0,2,3,4,1]):e))}function Lee(e,t,n,r=1,a="valid",s,i=1){return j(()=>{if(s==null&&(s=_r()),Rt(s),e.shape.length!==3)throw new U(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new U(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new U(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=ot(e,[0,2,1])),a==="causal")throw new ze("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=Zh(e,t,r,a==="same"?"same":"valid","NWC",i);return n!=null&&(o=Ur(o,n)),o})}function q3(e,t,n,r=[1,1],a="valid",s,i,o=null){return j(()=>{if(s==null&&(s=_r()),Rt(s),e.rank!==3&&e.rank!==4)throw new U(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new U(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=vy(e,s);if(a==="causal")throw new ze("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=va.conv2d({x:l,filter:t,strides:r,pad:a==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=ot(l,[0,3,1,2])),l})}function Wee(e,t,n,r=[1,1,1],a="valid",s,i){return j(()=>{if(s==null&&(s=_r()),Rt(s),e.rank!==4&&e.rank!==5)throw new U(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new U(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=G3(e,s);if(a==="causal")throw new ze("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=Ff(o,t,r,a==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Ur(o,n)),s==="channelsFirst"&&(o=ot(o,[0,4,1,2,3])),o})}var ky=class extends Ze{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",ky.verifyArgs(t),this.rank=e,Xt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new ze(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Il(t.kernelSize,e,"kernelSize"),this.strides=Il(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Xn(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Rt(this.dataFormat),this.activation=Pa(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=_t(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Vt(t.biasConstraint),this.biasRegularizer=bt(t.biasRegularizer),this.activityRegularizer=bt(t.activityRegularizer),this.dilationRate=Il(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new U(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new U(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new U(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Br("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!MA(e.kernelSize,"number",1,3))throw new U(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:za(this.activation),useBias:this.useBias,biasInitializer:St(this.biasInitializer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),biasConstraint:Bt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Sc=class extends ky{constructor(e,t){super(e,t);this.kernel=null,Sc.verifyArgs(t),this.filters=t.filters,Xt(this.filters,"filters"),this.kernelInitializer=_t(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Vt(t.kernelConstraint),this.kernelRegularizer=bt(t.kernelRegularizer)}build(e){e=mt(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new U(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],r=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",r,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return j(()=>{e=Le(e);let n,r=this.bias==null?null:this.bias.read(),a=Lb(this.activation.getClassName());if(a!=null&&this.rank===2)n=q3(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate,a);else{if(this.rank===1)n=Lee(e,this.kernel.read(),r,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=q3(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=Wee(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new ze("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=mt(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let a=0;a 0 but got ${JSON.stringify(e.filters)}`)}},Tc=class extends Sc{constructor(e){super(2,e);Tc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!MA(e.kernelSize,"number",1,2))throw new U(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Tc.className="Conv2D";ae.registerClass(Tc);var zp=class extends Sc{constructor(e){super(3,e);zp.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new U(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};zp.className="Conv3D";ae.registerClass(zp);var Iy=class extends Tc{constructor(e){super(e);if(this.inputSpec=[new Ht({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new U(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=mt(e),e.length!==4)throw new U("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new U("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ht({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return j(()=>{let n=Le(e);if(n.shape.length!==4)throw new U(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=r[s],l=r[i],c=this.kernelSize[0],u=this.kernelSize[1],h=this.strides[0],d=this.strides[1],p=Op(o,h,c,this.padding),f=Op(l,d,u,this.padding),m=[a,p,f,this.filters];this.dataFormat!=="channelsLast"&&(n=ot(n,[0,2,3,1]));let A=Yh(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(A=ot(A,[0,3,1,2])),this.bias!=null&&(A=Ur(A,this.bias.read(),this.dataFormat)),this.activation!=null&&(A=this.activation.apply(A)),A})}computeOutputShape(e){e=mt(e);let t=e.slice(),n,r,a;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3):(n=3,r=1,a=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[r]=Op(t[r],o,s,this.padding),t[a]=Op(t[a],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Iy.className="Conv2DTranspose";ae.registerClass(Iy);var X3=class extends Sc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new U("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new U("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new U(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=_t(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=bt(t.depthwiseRegularizer),this.depthwiseConstraint=Vt(t.depthwiseConstraint),this.pointwiseInitializer=_t(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=bt(t.pointwiseRegularizer),this.pointwiseConstraint=Vt(t.pointwiseConstraint)}build(e){if(e=mt(e),e.length{e=Le(e);let n;if(this.rank===1)throw new ze("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=ot(e,[0,2,3,1])),n=Hf(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Ur(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=ot(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=St(this.depthwiseInitializer),e.pointwiseInitializer=St(this.pointwiseInitializer),e.depthwiseRegularizer=At(this.depthwiseRegularizer),e.pointwiseRegularizer=At(this.pointwiseRegularizer),e.depthwiseConstraint=Bt(this.depthwiseConstraint),e.pointwiseConstraint=Bt(this.pointwiseConstraint),e}};X3.className="SeparableConv";var Ny=class extends X3{constructor(e){super(2,e)}};Ny.className="SeparableConv2D";ae.registerClass(Ny);var Pp=class extends Sc{constructor(e){super(1,e);Pp.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!MA(e.kernelSize,"number",1,1))throw new U(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Pp.className="Conv1D";ae.registerClass(Pp);var Sy=class extends Ze{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return j(()=>{if(e=Le(e),this.dataFormat==="channelsLast"){let n=fp(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return fp(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=fp(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return fp(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Sy.className="Cropping2D";ae.registerClass(Sy);var Ty=class extends Ze{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,hJ(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return j(()=>{let n=Le(e),r=n.shape;if(this.dataFormat==="channelsFirst"){n=ot(n,[0,2,3,1]);let a=this.size[0]*r[2],s=this.size[1]*r[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s]);return ot(i,[0,3,1,2])}else{let a=this.size[0]*r[1],s=this.size[1]*r[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Ty.className="UpSampling2D";ae.registerClass(Ty);function Bee(e,t,n=[1,1],r="valid",a,s){return j(()=>{a==null&&(a=_r()),Rt(a);let i=vy(e,a);if(e.rank!==4)throw new U(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new U(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=js(i,t,n,r==="same"?"same":"valid","NHWC",s),a==="channelsFirst"&&(i=ot(i,[0,3,1,2])),i})}var Ey=class extends ky{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=_t(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Vt(e.depthwiseConstraint),this.depthwiseRegularizer=bt(e.depthwiseRegularizer)}build(e){if(e=mt(e),e.length<4)throw new U(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new U(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],r=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",r,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return j(()=>{e=Le(e);let n=Bee(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Ur(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=mt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,a=Ir(t,this.kernelSize[0],this.padding,this.strides[0]),s=Ir(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],r,a,s]:[e[0],a,s,r]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=St(this.depthwiseInitializer),e.depthwiseRegularizer=At(this.depthwiseRegularizer),e.depthwiseConstraint=Bt(this.depthwiseRegularizer),e}};Ey.className="DepthwiseConv2D";ae.registerClass(Ey);function K3(e,t,n,r){if(Array.isArray(e)){if(t!=null||n!=null)throw new U("When inputs is an array, neither initialState or constants should be provided");r!=null&&(n=e.slice(e.length-r,e.length),e=e.slice(0,e.length-r)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function a(s){return s==null||Array.isArray(s)?s:[s]}return t=a(t),n=a(n),{inputs:e,initialState:t,constants:n}}function Z3(e,t,n,r=!1,a,s,i=!1,o=!1){return j(()=>{let l=t.shape.length;if(l<3)throw new U(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(vr(2,l));if(t=ot(t,c),s!=null)throw new ze("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),a!=null&&(a=a.asType("bool").asType("float32"),a.rank===l-1&&(a=Vn(a,-1)),a=ot(a,c)),r&&(t=Nn(t,0),a!=null&&(a=Nn(a,0)));let u=[],h,d=n,p=t.shape[0],f=ar(t),m;a!=null&&(m=ar(a));for(let y=0;ye(g,d));if(a==null)h=w[0],d=w[1];else{let x=j(()=>{let _=m[y],b=In(_).sub(_),T=w[0].mul(_).add(d[0].mul(b)),S=d.map((N,C)=>w[1][C].mul(_).add(N.mul(b)));return{output:T,newStates:S}});h=x.output,d=x.newStates}o&&u.push(h)}let A;return o&&(A=Sn(u,1)),[h,A,d]})}var Dr=class extends Ze{constructor(e){super(e);let t;if(e.cell==null)throw new U("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Lp({cells:e.cell}):t=e.cell,t.stateSize==null)throw new U("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Ht({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return vr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){QA(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],r;if(this.returnSequences?r=[e[0],e[1],n]:r=[e[0],n],this.returnState){let a=[];for(let s of t)a.push([e[0],s]);return[r].concat(a)}else return r}computeMask(e,t){return j(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let r=this.states.map(a=>null);return[n].concat(r)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;ni.shape[i.shape.length-1]),s))throw new U(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Ht({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){j(()=>{if(!this.stateful)throw new ia("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new U("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Ct([n,r])):this.states_=[Ct([n,this.cell.stateSize])];else if(e==null)$e(this.states_),this.keptStates!=null&&($e(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Ct([n,r])):this.states_[0]=Ct([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new U(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):$e(this.states_);for(let r=0;rjt(r.clone()))})}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=K3(e,n,r,this.numConstants);e=a.inputs,n=a.initialState,r=a.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Ht({shape:o.shape}));i=i.concat(this.stateSpec)}if(r!=null&&(t.constants=r,s=s.concat(r),this.numConstants=r.length),s[0]instanceof gr){let o=[e].concat(s),l=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=l;let u=super.apply(o,t);return this.inputSpec=c,u}else return super.apply(e,t)}call(e,t){return j(()=>{let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;e=Le(e),a==null&&(this.stateful?a=this.states_:a=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(a.length!==s)throw new U(`RNN Layer has ${s} state(s) but was passed ${a.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:r},o=Z3((d,p)=>{let f=this.cell.call([d].concat(p),i);return[f[0],f.slice(1)]},e,a,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],c=o[1],u=o[2];this.stateful&&this.resetStates(u,r);let h=this.returnSequences?c:l;return this.returnState?[h].concat(u):h})}getInitialState(e){return j(()=>{let t=Ct(e.shape);return t=Ce(t,[1,2]),t=gc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?LA(t,[1,n]):t):this.cell.stateSize>1?[LA(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Dr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let r=t.cell,a=kr(r,n);return new e(Object.assign(t,{cell:a}))}};Dr.className="RNN";ae.registerClass(Dr);var _c=class extends Ze{},Wp=class extends _c{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Xt(this.units,"units"),this.activation=Pa(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=_t(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=_t(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=_t(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=bt(e.kernelRegularizer),this.recurrentRegularizer=bt(e.recurrentRegularizer),this.biasRegularizer=bt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=_l([1,Da([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=_l([1,Da([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=mt(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return j(()=>{if(e=e,e.length!==2)throw new U(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let r=t.training==null?!1:t.training;0In(e),rate:this.dropout,training:r})),0In(n),rate:this.recurrentDropout,training:r}));let a,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?a=Vr(B(e,s),this.kernel.read()):a=Vr(e,this.kernel.read()),this.bias!=null&&(a=Ur(a,this.bias.read())),i!=null&&(n=B(n,i));let o=ie(a,Vr(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:za(this.activation),useBias:this.useBias,kernelInitializer:St(this.kernelInitializer),recurrentInitializer:St(this.recurrentInitializer),biasInitializer:St(this.biasInitializer),kernelRegularizer:At(this.kernelRegularizer),recurrentRegularizer:At(this.recurrentRegularizer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),kernelConstraint:Bt(this.kernelConstraint),recurrentConstraint:Bt(this.recurrentConstraint),biasConstraint:Bt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};Wp.className="SimpleRNNCell";ae.registerClass(Wp);var Cy=class extends Dr{constructor(e){e.cell=new Wp(e),super(e)}call(e,t){return j(()=>{this.cell.dropoutMask!=null&&($e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&($e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return new e(t)}};Cy.className="SimpleRNN";ae.registerClass(Cy);var Bp=class extends _c{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new U("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Xt(this.units,"units"),this.activation=Pa(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Pa(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=_t(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=_t(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=_t(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=bt(e.kernelRegularizer),this.recurrentRegularizer=bt(e.recurrentRegularizer),this.biasRegularizer=bt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=_l([1,Da([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=_l([1,Da([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=mt(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return j(()=>{if(e=e,e.length!==2)throw new U(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,r=e[1];e=e[0],0In(e),rate:this.dropout,training:n,count:3})),0In(r),rate:this.recurrentDropout,training:n,count:3}));let a=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0{this.cell.dropoutMask!=null&&($e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&($e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Ry.className="GRU";ae.registerClass(Ry);var Ec=class extends _c{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Xt(this.units,"units"),this.activation=Pa(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Pa(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=_t(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=_t(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=_t(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=bt(e.kernelRegularizer),this.recurrentRegularizer=bt(e.recurrentRegularizer),this.biasRegularizer=bt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=_l([1,Da([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=_l([1,Da([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=mt(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let r;if(this.useBias){if(this.unitForgetBias){let a=this.biasInitializer,s=this.units;r=new(t=class extends lr{apply(i,o){let l=a.apply([s]),c=new Ap().apply([s]),u=a.apply([s*2]);return Xb(Xb(l,c),u)}},t.className="CustomInit",t)}else r=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,r,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return j(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new U(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=e[1],a=e[2];e=e[0],0In(e),rate:this.dropout,training:n,count:4})),0In(r),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,c,u;0{this.cell.dropoutMask!=null&&($e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&($e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Fy.className="LSTM";ae.registerClass(Fy);var Lp=class extends _c{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return j(()=>{e=e;let n=e.slice(1),r=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?r.push(n.splice(0,i.stateSize.length)):r.push(n.splice(0,1));r.reverse();let a=[],s;for(let i=0;i{fi(`RNNCell_${r}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let r=[];for(let a of t.cells)r.push(kr(a,n));return new e({cells:r})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return ey(e)}setWeights(e){let t=[];for(let n of this.cells){let r=n.weights.length,a=e.splice(r);for(let s=0;sZb(t(),n),i=()=>wc(s,t,r);return!a||a<=1?jt(i().clone()):Array(a).fill(void 0).map(i).map(o=>jt(o.clone()))}var Vee=function(e,t){var n={};for(var r in e)Object.prototype.hasOwnProperty.call(e,r)&&t.indexOf(r)<0&&(n[r]=e[r]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var a=0,r=Object.getOwnPropertySymbols(e);a{if(this.cell.dropoutMask!=null&&($e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&($e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new U("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return j(()=>{let{stateSize:t}=this.cell,n=e.shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)],s=Ct(a);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){j(()=>{if(!this.stateful)throw new ia("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)];if(n[0]==null)throw new U("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ct(a)):this.states_=[Ct(a)];else if(e==null)$e(this.states_),this.keptStates!=null&&($e(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ct(a)):this.states_[0]=Ct(a);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new U(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):$e(this.states_);for(let s=0;sjt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:r,padding:a,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],c=e[o?4:3],u=Ir(l,r[0],a,s[0],i[0]),h=Ir(c,r[1],a,s[1],i[1]);return[...e.slice(0,2),...o?[n,u,h]:[u,h,n]]}};Y3.className="ConvRNN2D";var Vp=class extends Ec{constructor(e){let{filters:t,kernelSize:n,strides:r,padding:a,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Xt(this.filters,"filters"),this.kernelSize=Il(n,2,"kernelSize"),this.kernelSize.forEach(o=>Xt(o,"kernelSize")),this.strides=Il(r||1,2,"strides"),this.strides.forEach(o=>Xt(o,"strides")),this.padding=a||"valid",Xn(this.padding),this.dataFormat=s||"channelsLast",Rt(this.dataFormat),this.dilationRate=Il(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Xt(o,"dilationRate"))}build(e){var t;e=mt(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new U(`The channel dimension of the input should be defined. Found ${e[n]}`);let r=e[n],a=4,s=this.kernelSize.concat([r,this.filters*a]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*a]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;o=new(t=class extends lr{apply(u,h){let d=l.apply([c]),p=Rr([c]),f=l.apply([c*2]);return BA([d,p,f])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*a],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return j(()=>{if(e.length!==3)throw new U(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,r=e[0],a=e[1],s=e[2],i=4;0In(r),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(J,se,Q)=>!se||!se[Q]?J:B(se[Q],J),c=l(r,o,0),u=l(r,o,1),h=l(r,o,2),d=l(r,o,3);0In(a),rate:this.recurrentDropout,training:n,count:i}));let p=this.recurrentDropoutMask,f=l(a,p,0),m=l(a,p,1),A=l(a,p,2),y=l(a,p,3),g=3,[w,x,_,b]=an(this.kernel.read(),i,g),[T,S,N,C]=this.useBias?an(this.bias.read(),i):[null,null,null,null];c=this.inputConv(c,w,T,this.padding),u=this.inputConv(u,x,S,this.padding),h=this.inputConv(h,_,N,this.padding),d=this.inputConv(d,b,C,this.padding);let[$,D,O,V]=an(this.recurrentKernel.read(),i,g);f=this.recurrentConv(f,$),m=this.recurrentConv(m,D),A=this.recurrentConv(A,O),y=this.recurrentConv(y,V);let W=this.recurrentActivation.apply(ie(c,f)),Z=this.recurrentActivation.apply(ie(u,m)),K=ie(B(Z,s),B(W,this.activation.apply(ie(h,A)))),te=B(this.recurrentActivation.apply(ie(d,y)),this.activation.apply(K));return[te,te,K]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=Vee(e,["units"]),r={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,r)}inputConv(e,t,n,r){let a=Zr(e,t,this.strides,r||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Ur(a,n,this.dataFormat):a}recurrentConv(e,t){return Zr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Vp.className="ConvLSTM2DCell";ae.registerClass(Vp);var My=class extends Y3{constructor(e){let t=new Vp(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};My.className="ConvLSTM2D";ae.registerClass(My);var Up=class extends Ze{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let r=0;r{this.invokeCallHook(e,t);let n=Le(e);if(0Zb(n,this.rate,a,this.seed),()=>n,r)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Up.className="Dropout";ae.registerClass(Up);var $y=class extends Up{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};$y.className="SpatialDropout1D";ae.registerClass($y);var Dy=class extends Ze{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Xt(this.units,"units"),this.activation=Pa(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=_t(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=_t(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Vt(e.kernelConstraint),this.biasConstraint=Vt(e.biasConstraint),this.kernelRegularizer=bt(e.kernelRegularizer),this.biasRegularizer=bt(e.biasRegularizer),this.activityRegularizer=bt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=mt(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=mt(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e),r=Lb(this.activation.getClassName()),a;return r!=null?a=Vr(n,this.kernel.read(),r,this.bias?this.bias.read():null):(a=Vr(n,this.kernel.read()),this.bias!=null&&(a=Ur(a,this.bias.read())),this.activation!=null&&(a=this.activation.apply(a))),a})}getConfig(){let e={units:this.units,activation:za(this.activation),useBias:this.useBias,kernelInitializer:St(this.kernelInitializer),biasInitializer:St(this.biasInitializer),kernelRegularizer:At(this.kernelRegularizer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),kernelConstraint:Bt(this.kernelConstraint),biasConstraint:Bt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Dy.className="Dense";ae.registerClass(Dy);var Oy=class extends Ze{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=mt(e);for(let t of e.slice(1))if(t==null)throw new U(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],$a(e,1)]}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let r=[0];for(let a=2;a{this.invokeCallHook(e,t);let n=Le(e);return this.activation.apply(n)})}getConfig(){let e={activation:za(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};zy.className="Activation";ae.registerClass(zy);var Py=class extends Ze{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return j(()=>(e=Le(e),mJ(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Py.className="RepeatVector";ae.registerClass(Py);var Ly=class extends Ze{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t{this.invokeCallHook(e,t);let n=Le(e),r=n.shape,a=r.slice(0,1).concat(this.fixUnknownDimension(r.slice(1),this.targetShape));return n.reshape(a)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Ly.className="Reshape";ae.registerClass(Ly);var Wy=class extends Ze{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=vr(1,e.dims.length+1);if(!k.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Ht({ndim:this.dims.length+1})]}computeOutputShape(e){e=mt(e);let t=e.slice();return this.dims.forEach((n,r)=>{t[r+1]=e[n]}),t}call(e,t){return ot(Le(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Wy.className="Permute";ae.registerClass(Wy);var By=class extends Ze{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Le(e),r=-1;return wu(_a(n,this.maskValue),r)}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e),r=-1,a=!0,s=wu(_a(n,this.maskValue),r,a);return n.mul(s.asType(n.dtype))})}};By.className="Masking";ae.registerClass(By);var Vy=class extends Ze{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(gt(e.inputLength))}this.inputDim=e.inputDim,Xt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Xt(this.outputDim,"outputDim"),this.embeddingsInitializer=_t(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=bt(e.embeddingsRegularizer),this.activityRegularizer=bt(e.activityRegularizer),this.embeddingsConstraint=Vt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return j(()=>this.maskZero?(e=Le(e),_a(e,qe(e))):null)}computeOutputShape(e){if(e=mt(e),this.inputLength==null)return[...e,this.outputDim];let t=gt(this.inputLength);if(t.length!==e.length-1)throw new U(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let r=0;r{this.invokeCallHook(e,t);let n=Le(e);return n.dtype!=="int32"&&(n=yc(n,"int32")),Kb(this.embeddings.read(),n.as1D()).reshape(mt(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:St(this.embeddingsInitializer),embeddingsRegularizer:At(this.embeddingsRegularizer),activityRegularizer:At(this.activityRegularizer),embeddingsConstraint:Bt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};Vy.className="Embedding";ae.registerClass(Vy);var xi=class extends Ze{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new ze}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length1)throw new U(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let a=1;aa.length);e.indexOf(null)===-1&&Ma(r).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return j(()=>{if(e=e,this.reshapeRequired){let n=[],r=e.map(a=>a.rank);if(r.indexOf(null)===-1){let a=Da(r);for(let s of e){let i=s.rank;for(let o=0;o1){let c=vr(1,l).concat([0]);n.push(ot(o,c)),a=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(a){if(i==null){let o=s.shape,l=o.length,c=o[l-1],u=[c].concat(o.slice(0,o.length-1));s=ot(s.reshape([-1,c]),[1,0]).reshape(u)}else if(i>1){let o=[i-1].concat(vr(0,i-1));s=ot(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let r=1;r{if(t==null)return null;if(!Array.isArray(t))throw new U("`mask` should be an Array");if(!Array.isArray(e))throw new U("`inputs` should be an Array");if(t.length!==e.length)throw new U(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(r=>r==null))return null;t=t.map(r=>r==null?r:Vn(r,0));let n=t[0];for(let r=1;r{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0];for(let n=1;n{let t=e[0];for(let n=1;n1)throw new U("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return j(()=>BA(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new U("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),r=this.axis<0?n.length+this.axis:this.axis;for(let a of t.slice(1)){if(n[r]==null||a[r]==null){n[r]=null;break}n[r]+=a[r]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new U("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new U("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new U(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return j(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let r=[];for(let s=0;s3||t.shape.length>3)throw new ze("batchDot is not implemented for tensors of 4D or higher rank yet");if(k.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),k.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new ze("batchDot is not implemented for complex64-type Tensors yet.");let r=e.shape.length,a=t.shape.length;n==null&&(n=[r-1,a-2]);let s=n;return j(()=>{let i;if(r>a){i=r-a;let l=[];for(let c=0;cr){i=a-r;let l=[];for(let c=0;c0){let l;r>a?l=r+a-3:l=r-1;let c=[];for(let u=l;u"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new ze("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);if(t[r[0]]!==n[r[1]])throw new U(`Dimension incompatibility: ${t[r[0]]} !== ${n[r[1]]}`)}mergeFunction(e){if(e.length!==2)throw new U(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],r;return Array.isArray(this.axes)?r=this.axes.map((a,s)=>Cc(a,e[s].shape.length)):r=[Cc(this.axes,t.shape.length),Cc(this.axes,n.shape.length)],this.normalize&&(t=Tp(t,r[0]),n=Tp(n,r[1])),Uee(t,n,r)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Cc(this.axes,e.length),Cc(this.axes,t.length)],n}computeOutputShape(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new ze("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);t.splice(r[0],1),n.splice(r[1],1),n.splice(0,1);let a=t.concat(n);return a.length===1&&a.push(1),a}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Ky.className="Dot";ae.registerClass(Ky);var Zy=class extends Ze{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e);return wc(()=>mp(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};Zy.className="GaussianNoise";ae.registerClass(Zy);var Yy=class extends Ze{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e);return this.rate>0&&this.rate<1?wc(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return n.mul(mp(n.shape,1,r))},()=>n,t.training||!1):n})}};Yy.className="GaussianDropout";ae.registerClass(Yy);var Jy=class extends Ze{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Le(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return j(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return wc(()=>{let r=Le(e),a=1.6732632423543772,s=1.0507009873554805,i=-a*s,o=Jr(jo(n),this.rate);o=yc(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-l*i*this.rate;return r.mul(o).add(o.add(-1).mul(i)).mul(l).add(c)},()=>Le(e),t.training||!1)}return e})}};Jy.className="AlphaDropout";ae.registerClass(Jy);function Rc(e,t,n,r,a,s=.001){let i;if(e.rank===2)i=fg(e,t,n,r,a,s);else if(e.rank===3)i=mg(e,t,n,r,a,s);else if(e.rank===4)i=Ag(e,t,n,r,a,s);else throw new ze(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function jee(e,t,n,r,a=.001){return j(()=>{let s=sd(e,r),i=s.mean,o=s.variance;return[Rc(e,i,o,n,t,a),i,o]})}function Hee(e,t,n,r,a=.001){return j(()=>{let s=sd(e,r),i=s.mean,o=s.variance,l=[];for(let p of vr(0,e.rank))r.indexOf(p)!==-1?l.push(1):l.push(e.shape[p]);let c=i.reshape(l),u=o.reshape(l),h=t==null?null:t.reshape(l),d=n==null?null:n.reshape(l);return[Rc(e,c,u,d,h,a),i,o]})}function Gee(e,t,n,r,a=.001){return k.arraysEqual(r.slice().sort(),vr(0,e.rank-1))?jee(e,t,n,r,a):Hee(e,t,n,r,a)}var Qy=class extends Ze{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=_t(e.betaInitializer||"zeros"),this.gammaInitializer=_t(e.gammaInitializer||"ones"),this.movingMeanInitializer=_t(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=_t(e.movingVarianceInitializer||"ones"),this.betaConstraint=Vt(e.betaConstraint),this.gammaConstraint=Vt(e.gammaConstraint),this.betaRegularizer=bt(e.betaRegularizer),this.gammaRegularizer=bt(e.gammaRegularizer)}build(e){e=mt(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new U(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Ht({ndim:e.length,axes:{[t]:n}})];let r=[n];this.scale&&(this.gamma=this.addWeight("gamma",r,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",r,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",r,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",r,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return j(()=>{let n=t.training==null?!1:t.training,r=Le(e),a=r.shape,s=a.length,i=vr(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=hi(1,s);l[o]=a[o];let c=i.slice();c.sort();let u=!k.arraysEqual(c,vr(0,s).slice(0,s-1)),h=()=>{if(u){let A=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),g=this.center?this.beta.read().reshape(l):null,w=this.scale?this.gamma.read().reshape(l):null;return Rc(r,A,y,g,w,this.epsilon)}else return Rc(r,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return h();let[d,p,f]=Gee(r,this.gamma.read(),this.beta.read(),i,this.epsilon),m=(A,y,g)=>{j(()=>{let w=1-g,x=A.read(),_=x.sub(y).mul(w);A.write(x.sub(_))})};return(()=>{m(this.movingMean,p,this.momentum),m(this.movingVariance,f,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:St(this.betaInitializer),gammaInitializer:St(this.gammaInitializer),movingMeanInitializer:St(this.movingMeanInitializer),movingVarianceInitializer:St(this.movingVarianceInitializer),betaRegularizer:At(this.betaRegularizer),gammaRegularizer:At(this.gammaRegularizer),betaConstraint:Bt(this.betaConstraint),gammaConstraint:Bt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Qy.className="BatchNormalization";ae.registerClass(Qy);var e2=class extends Ze{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=_t(e.betaInitializer||"zeros"),this.gammaInitializer=_t(e.gammaInitializer||"ones"),this.betaRegularizer=bt(e.betaRegularizer),this.gammaRegularizer=bt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=mt(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let a=0;a=t)throw new Error(`Invalid axis: ${a}`);if(this.axis.length!==Ma(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(a=>e[a]),r=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,r):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,r):this.beta=null,this.built=!0}call(e,t){let n=Le(e),r=n.shape,a=r.length;return j(()=>{let s=!0,{mean:i,variance:o}=sd(n,this.axis,s),l=hi(1,a);for(let f of this.axis)l[f]=r[f];let c=f=>f!=null&&f.shape.length!==a&&this.axis!==[a-1]?f.reshape(l):f,u=c(this.gamma.read()),h=c(this.beta.read()),d=[],p=[];for(let f=0;f{if(e.rank!==4)throw new U(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new U("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=_r()),n!=="channelsLast"&&n!=="channelsFirst")throw new U(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let r;return n==="channelsFirst"?r=[[0,0],[0,0],t[0],t[1]]:r=[[0,0],t[0],t[1],[0,0]],Qr(e,r)})}var t2=class extends Ze{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?_r():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new U(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new U(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new U(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Ht({ndim:4})]}computeOutputShape(e){e=mt(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return j(()=>qee(Le(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};t2.className="ZeroPadding2D";ae.registerClass(t2);function jp(e,t,n,r,a,s){return j(()=>{Rt(a),Vb(s),Xn(r),n==null&&(n=[1,1]),r==null&&(r="valid"),a==null&&(a=_r()),s==null&&(s="max"),e=vy(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=Cu(e,t,n,o):i=bu(e,t,n,o),a==="channelsFirst"&&(i=ot(i,[0,3,1,2])),i})}function J3(e,t,n,r,a,s){return j(()=>{Rt(a),Vb(s),Xn(r),n==null&&(n=[1,1,1]),r==null&&(r="valid"),a==null&&(a=_r()),s==null&&(s="max"),e=G3(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=Bf(e,t,n,o):i=Cf(e,t,n,o),a==="channelsFirst"&&(i=ot(i,[0,4,1,2,3])),i})}var Q3=class extends Ze{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new U(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Xt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new U(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Xt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Xn(this.padding),this.inputSpec=[new Ht({ndim:3})]}computeOutputShape(e){e=mt(e);let t=Ir(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return j(()=>{this.invokeCallHook(e,t),e=gc(Le(e),2);let n=this.poolingFunction(Le(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return ba(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},n2=class extends Q3{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Rt(a),Xn(r),jp(e,t,n,r,a,"max")}};n2.className="MaxPooling1D";ae.registerClass(n2);var r2=class extends Q3{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Rt(a),Xn(r),jp(e,t,n,r,a,"avg")}};r2.className="AveragePooling1D";ae.registerClass(r2);var e7=class extends Ze{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new U(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Xt(this.poolSize,"poolSize"),Xt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),Xn(this.padding),this.inputSpec=[new Ht({ndim:4})]}computeOutputShape(e){e=mt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Ir(t,this.poolSize[0],this.padding,this.strides[0]),n=Ir(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return j(()=>(this.invokeCallHook(e,t),this.poolingFunction(Le(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},a2=class extends e7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Rt(a),Xn(r),jp(e,t,n,r,a,"max")}};a2.className="MaxPooling2D";ae.registerClass(a2);var s2=class extends e7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Rt(a),Xn(r),jp(e,t,n,r,a,"avg")}};s2.className="AveragePooling2D";ae.registerClass(s2);var t7=class extends Ze{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new U(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Xt(this.poolSize,"poolSize"),Xt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),Xn(this.padding),this.inputSpec=[new Ht({ndim:5})]}computeOutputShape(e){e=mt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Ir(t,this.poolSize[0],this.padding,this.strides[0]),n=Ir(n,this.poolSize[1],this.padding,this.strides[1]),r=Ir(r,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,r]:[e[0],t,n,r,e[4]]}call(e,t){return j(()=>(this.invokeCallHook(e,t),this.poolingFunction(Le(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},i2=class extends t7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Rt(a),Xn(r),J3(e,t,n,r,a,"max")}};i2.className="MaxPooling3D";ae.registerClass(i2);var o2=class extends t7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Rt(a),Xn(r),J3(e,t,n,r,a,"avg")}};o2.className="AveragePooling3D";ae.registerClass(o2);var n7=class extends Ze{constructor(e){super(e);this.inputSpec=[new Ht({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new ze}},l2=class extends n7{constructor(e){super(e||{})}call(e,t){return j(()=>{let n=Le(e);return It(n,1)})}};l2.className="GlobalAveragePooling1D";ae.registerClass(l2);var u2=class extends n7{constructor(e){super(e||{})}call(e,t){return j(()=>{let n=Le(e);return jn(n,1)})}};u2.className="GlobalMaxPooling1D";ae.registerClass(u2);var r7=class extends Ze{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),this.inputSpec=[new Ht({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new ze}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},c2=class extends r7{call(e,t){return j(()=>{let n=Le(e);return this.dataFormat==="channelsLast"?It(n,[1,2]):It(n,[2,3])})}};c2.className="GlobalAveragePooling2D";ae.registerClass(c2);var h2=class extends r7{call(e,t){return j(()=>{let n=Le(e);return this.dataFormat==="channelsLast"?jn(n,[1,2]):jn(n,[2,3])})}};h2.className="GlobalMaxPooling2D";ae.registerClass(h2);var a7=class extends Ze{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let r=t.layer,a=kr(r,n);delete t.layer;let s={layer:a};return Object.assign(s,t),new e(s)}},d2=class extends a7{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=mt(e),e.length<3)throw new U(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=mt(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),r=e[1];return[n[0],r].concat(n.slice(1))}call(e,t){return j(()=>(e=Le(e),Z3((n,r)=>[Le(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};d2.className="TimeDistributed";ae.registerClass(d2);function Xee(e){pi(cJ,"BidirectionalMergeMode",e)}var Kee="concat",p2=class extends a7{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=kr(n),t.goBackwards=t.goBackwards!==!0;let r={};if(r.className=e.layer.getClassName(),r.config=t,this.backwardLayer=kr(r),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?Kee:e.mergeMode,Xee(this.mergeMode),e.weights)throw new ze("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,r,a;return this.returnState&&(a=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,r=[n]):this.mergeMode==null?r=[n,n.slice()]:r=[n],this.returnState?this.mergeMode==null?r.concat(a).concat(a.slice()):[n].concat(a).concat(a.slice()):yn(r)}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=K3(e,n,r,this.numConstants);if(e=a.inputs,n=a.initialState,r=a.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&r==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new U("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let c=n.map(u=>new Ht({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),i.push(...c)}if(r!=null)throw new ze("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof gr;for(let l of s)if(l instanceof gr!==o)throw new U("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),c=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=c;let h=super.apply(l,t);return this.inputSpec=u,h}else return super.apply(e,t)}call(e,t){return j(()=>{let n=t.initialState,r,a;if(n==null)r=this.forwardLayer.call(e,t),a=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);r=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),a=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(r)&&(s=r.slice(1).concat(a.slice(1))),r=r[0],a=a[0]),this.returnSequences&&(a=Nn(a,1));let i;return this.mergeMode==="concat"?i=BA([r,a]):this.mergeMode==="sum"?i=ie(r,a):this.mergeMode==="ave"?i=B(.5,ie(r,a)):this.mergeMode==="mul"?i=B(r,a):this.mergeMode==null&&(i=[r,a]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){fi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),fi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=kr(t.layer);if(delete t.layer,t.numConstants!=null)throw new ze("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let r=t;return r.layer=n,new e(r)}};p2.className="Bidirectional";ae.registerClass(p2);function NJ(e){return new bl(e)}function SJ(e){return new wy(e)}function TJ(e){return new yy(e)}function EJ(e){return new gy(e)}function CJ(e){return new xy(e)}function RJ(e){return new by(e)}function FJ(e){return new _y(e)}function MJ(e){return new Pp(e)}function $J(e){return new Tc(e)}function DJ(e){return new Iy(e)}function OJ(e){return new zp(e)}function zJ(e){return new Ny(e)}function PJ(e){return new Sy(e)}function LJ(e){return new Ty(e)}function WJ(e){return new Ey(e)}function BJ(e){return new zy(e)}function VJ(e){return new Dy(e)}function UJ(e){return new Up(e)}function jJ(e){return new $y(e)}function HJ(e){return new Oy(e)}function GJ(e){return new Py(e)}function qJ(e){return new Ly(e)}function XJ(e){return new Wy(e)}function KJ(e){return new Vy(e)}function ZJ(e){return new Uy(e)}function YJ(e){return new Hy(e)}function JJ(e){return new Xy(e)}function QJ(e){return new Gy(e)}function eQ(e){return new qy(e)}function tQ(e){return new jy(e)}function nQ(e){return new Ky(e)}function rQ(e){return new Qy(e)}function aQ(e){return new e2(e)}function sQ(e){return new t2(e)}function ZA(e){return new r2(e)}function iQ(e){return ZA(e)}function oQ(e){return ZA(e)}function YA(e){return new s2(e)}function lQ(e){return YA(e)}function uQ(e){return YA(e)}function JA(e){return new o2(e)}function cQ(e){return JA(e)}function hQ(e){return JA(e)}function dQ(e){return new l2(e)}function pQ(e){return new c2(e)}function Qb(e){return new u2(e)}function e3(e){return new h2(e)}function t3(e){return new n2(e)}function n3(e){return new a2(e)}function fQ(e){return new i2(e)}function mQ(e){return new Ry(e)}function AQ(e){return new Bp(e)}function yQ(e){return new Fy(e)}function gQ(e){return new Ec(e)}function xQ(e){return new Cy(e)}function wQ(e){return new Wp(e)}function _Q(e){return new My(e)}function bQ(e){return new Vp(e)}function vQ(e){return new Dr(e)}function kQ(e){return new Lp(e)}function IQ(e){return new p2(e)}function NQ(e){return new d2(e)}var SQ=Qb,TQ=e3,EQ=t3,CQ=n3;function RQ(e){return new Zy(e)}function FQ(e){return new Yy(e)}function MQ(e){return new Jy(e)}function $Q(e){return new By(e)}var x0={};Pe(x0,{MAPE:()=>ite,MSE:()=>ute,binaryAccuracy:()=>Zee,binaryCrossentropy:()=>Yee,categoricalAccuracy:()=>Qee,categoricalCrossentropy:()=>ete,cosineProximity:()=>rte,mape:()=>ote,meanAbsoluteError:()=>ate,meanAbsolutePercentageError:()=>ste,meanSquaredError:()=>lte,mse:()=>cte,precision:()=>tte,recall:()=>nte,sparseCategoricalAccuracy:()=>Jee});function Zee(e,t){return ay(e,t)}function Yee(e,t){return p3(e,t)}function Jee(e,t){return f3(e,t)}function Qee(e,t){return sy(e,t)}function ete(e,t){return iy(e,t)}function tte(e,t){return d3(e,t)}function nte(e,t){return QQ(e,t)}function rte(e,t){return ny(e,t)}function ate(e,t){return Ep(e,t)}function ste(e,t){return kl(e,t)}function ite(e,t){return kl(e,t)}function ote(e,t){return kl(e,t)}function lte(e,t){return Ai(e,t)}function ute(e,t){return Ai(e,t)}function cte(e,t){return Ai(e,t)}var w0={};Pe(w0,{modelFromJSON:()=>Mee});var _0={};Pe(_0,{l1:()=>dte,l1l2:()=>hte,l2:()=>pte});function hte(e){return new Nc(e)}function dte(e){return zee(e)}function pte(e){return Pee(e)}var b0=class extends vl{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof ta))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Hp(e,t){return et}var v0=class extends b0{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new ze("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Hp:this.mode==="max"?this.monitorFunc=s7:this.monitor.indexOf("acc")!==-1?this.monitorFunc=s7:this.monitorFunc=Hp,this.monitorFunc===Hp&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Hp?Infinity:-Infinity}async onEpochEnd(e,t){await Oa(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function fte(e){return new v0(e)}var J4={earlyStopping:fte},Nr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Nr||(Nr={}));var i7;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(i7||(i7={}));var f2={};function Q4(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};f2[e]=n}function o7(e){return f2[e]}function e8(e){delete f2[e]}function I(e,t,n,r,a){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return xn(t.inputNames[s.inputIndexStart],n,r,a);if(s.type==="tensors")return t.inputNames.slice(o,l).map(h=>xn(h,n,r,a));let c=xn(t.inputNames.slice(o)[0],n,r,a),u=c.dataSync();return s.type==="number"?u[0]:k.toNestedArray(c.shape,u)}let i=t.attrParams[e];return i&&i.value}function xn(e,t,n,r){let[a,s]=$n(e);if(r!=null){let o=r.getHashTableHandleByName(a);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[Gp(a,o)]);return i!==void 0?t[Gp(a,i)][s]:void 0}function mte(e,t,n){return t[Gp(e,n.currentContextId)]}function la(e,t){let[n,r]=$n(e);return[Gp(n,t&&t.currentContextId),r]}function Gp(e,t){return t?`${e}-${t}`:e}function $n(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function qp(e,t,n){let r=I("pad",e,t,n);if(r==="explicit"){r=I("explicitPaddings",e,t,n);let a=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)a[s][0]=r[s*2],a[s][1]=r[s*2+1];return a}return r}function ua(e){return e.kept?e:Er(e)}var l7={};Pe(l7,{json:()=>Ate});var Ate=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],u7={};Pe(u7,{json:()=>yte});var yte=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],c7={};Pe(c7,{json:()=>gte});var gte=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],h7={};Pe(h7,{json:()=>xte});var xte=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],d7={};Pe(d7,{json:()=>wte});var wte=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],p7={};Pe(p7,{json:()=>_te});var _te=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],f7={};Pe(f7,{json:()=>bte});var bte=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],m7={};Pe(m7,{json:()=>vte});var vte=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],A7={};Pe(A7,{json:()=>kte});var kte=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]}],y7={};Pe(y7,{json:()=>Ite});var Ite=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],g7={};Pe(g7,{json:()=>Nte});var Nte=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],x7={};Pe(x7,{json:()=>Ste});var Ste=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],w7={};Pe(w7,{json:()=>Tte});var Tte=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],_7={};Pe(_7,{json:()=>Ete});var Ete=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],b7={};Pe(b7,{json:()=>Cte});var Cte=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],v7={};Pe(v7,{json:()=>Rte});var Rte=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],k7={};Pe(k7,{json:()=>Fte});var Fte=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],N7=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[l7,u7,c7,h7,d7,p7,f7,g7,y7,m7,x7,w7,_7,b7,v7,k7,A7],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,r)=>(n[r.tfOpName]=r,n),{})}transformGraph(e,t={}){let n=e.node,r=[],a=[],s=[],i=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?r.push(f[m.name]):m.op==="Const"?a.push(f[m.name]):(m.input==null||m.input.length===0)&&s.push(f[m.name]),f),{}),o=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let h=Object.keys(i);h.forEach(f=>{let m=i[f];m.inputNames.forEach(A=>{let[y]=la(A);m.inputs.push(i[y]),i[y].children.push(m)})}),Object.keys(u).length===0?h.forEach(f=>{let m=i[f];m.children.length===0&&l.push(m)}):Object.keys(u).forEach(f=>{let[m]=la(f),A=i[m];A!=null&&(A.signatureKey=u[f],l.push(A))}),Object.keys(c).length>0?Object.keys(c).forEach(f=>{let[m]=la(f),A=i[m];A&&(A.signatureKey=c[f],o.push(A))}):o=r;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let p={nodes:i,inputs:o,outputs:l,weights:a,placeholders:r,signature:t,functions:d};return s.length>0&&(p.initNodes=s),p}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=o7(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(r=>r.startsWith("^")?r.substr(1):r),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((r,a)=>(r[a.name]={type:a.type,inputIndexStart:a.start,inputIndexEnd:a.end},r),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((r,a)=>{let s=a.type,i;switch(a.type){case"string":i=m2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=m2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"string[]":i=v2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=v2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number":i=y2(e.attr,a.tfName,a.defaultValue||0),i===void 0&&!!a.tfDeprecatedName&&(i=y2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number[]":i=b2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=b2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool":i=A2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=A2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool[]":i=I2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=I2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape":i=_2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=_2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape[]":i=k2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=k2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype":i=x2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=x2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype[]":i=w2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=w2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"func":i=I7(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=I7(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${a.type} for op: ${e.op}`)}return r[a.name]={value:i,type:s},r},{})),n}mapFunction(e){let t=e.nodeDef,n=[],r=[],a={};t!=null&&(a=t.reduce((c,u)=>(c[u.name]=this.mapNode(u),u.op==="Const"&&r.push(c[u.name]),c),{}));let s=[],i=[];e.signature.inputArg.forEach(c=>{let[u]=la(c.name),h={name:u,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:g2(c.type),type:"dtype"}},children:[]};h.signatureKey=c.name,s.push(h),a[u]=h}),Object.keys(a).forEach(c=>{let u=a[c];u.inputNames.forEach(h=>{let[d]=la(h);u.inputs.push(a[d]),a[d].children.push(u)})});let o=e.ret;e.signature.outputArg.forEach(c=>{let[u,h]=la(o[c.name]),d=a[u];d!=null&&(d.defaultOutput=h,i.push(d))});let l=this.mapArgsToSignature(e);return{nodes:a,inputs:s,outputs:i,weights:r,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function Mte(e){let t=ee().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function S7(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):Mte(e);return t?n:n.toLowerCase()}function m2(e,t,n,r=!1){let a=e[t];return a!=null?S7(a.s,r):n}function A2(e,t,n){let r=e[t];return r?r.b:n}function y2(e,t,n){let r=e[t]||{},a=r.i!=null?r.i:r.f!=null?r.f:n;return typeof a=="number"?a:parseInt(a,10)}function g2(e){switch(typeof e=="string"&&(e=Nr[e]),e){case Nr.DT_FLOAT:return"float32";case Nr.DT_INT32:case Nr.DT_INT64:case Nr.DT_INT8:case Nr.DT_UINT8:return"int32";case Nr.DT_BOOL:return"bool";case Nr.DT_DOUBLE:return"float32";case Nr.DT_STRING:return"string";default:return null}}function I7(e,t,n){let r=e[t];return r&&r.func?r.func.name:n}function x2(e,t,n){let r=e[t];return r&&r.type?g2(r.type):n}function w2(e,t,n){let r=e[t];return r&&r.list&&r.list.type?r.list.type.map(a=>g2(a)):n}function T7(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function _2(e,t,n){let r=e[t];return r&&r.shape?T7(r.shape):n}function b2(e,t,n){let r=e[t];return r?((r.list.f&&r.list.f.length?r.list.f:r.list.i)||[]).map(a=>typeof a=="number"?a:parseInt(a,10)):n}function v2(e,t,n,r=!1){let a=e[t];return a&&a.list&&a.list.s?a.list.s.map(s=>S7(s,r)):n}function k2(e,t,n){let r=e[t];return r&&r.list&&r.list.shape?r.list.shape.map(a=>T7(a)):n}function I2(e,t,n){let r=e[t];return r&&r.list&&r.list.b?r.list.b:n}var $te=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(r=>this.getInput(r)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((r,a)=>(r[a]=this.getAttr(a),r),{}))}getInput(e){return xn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return xn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return y2(this.node.rawAttrs,e,t);if(n.s!=null)return m2(this.node.rawAttrs,e,t);if(n.b!=null)return A2(this.node.rawAttrs,e,t);if(n.shape!=null)return _2(this.node.rawAttrs,e,t);if(n.type!=null)return x2(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return b2(this.node.rawAttrs,e,t);if(n.list.s!=null)return v2(this.node.rawAttrs,e,t);if(n.list.shape!=null)return k2(this.node.rawAttrs,e,t);if(n.list.b!=null)return I2(this.node.rawAttrs,e,t);if(n.list.type!=null)return w2(this.node.rawAttrs,e,t)}return t}},Dte=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[ie(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[ch(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[ad(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[B(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[Se(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[Df(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[Xh(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[be(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[Gs(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[yr(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[Fr(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[Pu(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ote=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[zt(I("x",e,t,n))];case"Acos":return[bf(I("x",e,t,n))];case"Acosh":return[vf(I("x",e,t,n))];case"Asin":return[If(I("x",e,t,n))];case"Asinh":return[Nf(I("x",e,t,n))];case"Atan":return[Sf(I("x",e,t,n))];case"Atan2":return[Tf(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[Ef(I("x",e,t,n))];case"Ceil":return[Rf(I("x",e,t,n))];case"Complex":return[ga(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[Iu(I("x",e,t,n))];case"Cosh":return[Jh(I("x",e,t,n))];case"Elu":return[Wo(I("x",e,t,n))];case"Erf":return[Of(I("x",e,t,n))];case"Exp":return[Bn(I("x",e,t,n))];case"Expm1":return[zf(I("x",e,t,n))];case"Floor":return[Bo(I("x",e,t,n))];case"Log":return[kn(I("x",e,t,n))];case"Log1p":return[td(I("x",e,t,n))];case"Imag":return[ed(I("x",e,t,n))];case"Neg":return[kt(I("x",e,t,n))];case"Reciprocal":return[Uf(I("x",e,t,n))];case"Real":return[Mu(I("x",e,t,n))];case"Relu":return[Mr(I("x",e,t,n))];case"Round":return[jf(I("x",e,t,n))];case"Selu":return[cd(I("x",e,t,n))];case"Sigmoid":return[tr(I("x",e,t,n))];case"Sin":return[hd(I("x",e,t,n))];case"Sign":return[Gf(I("x",e,t,n))];case"Sinh":return[dd(I("x",e,t,n))];case"Softplus":return[Vo(I("x",e,t,n))];case"Sqrt":return[Yt(I("x",e,t,n))];case"Square":return[dt(I("x",e,t,n))];case"Tanh":return[Lo(I("x",e,t,n))];case"Tan":return[Kf(I("x",e,t,n))];case"ClipByValue":return[fn(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[ld(I("x",e,t,n))];case"Rsqrt":return[ud(xn(e.inputNames[0],t,n))];case"Prod":return[id(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[Su(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[Fu(I("x",e,t,n),I("alpha",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function cr(e,t,n=""){k.assert(zte(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function zte(e,t){if(e.length!==t.length)return!1;for(let n=0;n{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),cr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,jt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,r)=>this.write(n,t[r]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let r=0;r=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,ar(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,r=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is ${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let a=n===0?0:t.size/n,s=[];j(()=>{t=X(t,[1,n,a]);for(let o=0;o{if(n!==a.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${a.dtype}`);cr(t,a.shape,"TensorList shape mismatch: "),jt(a)}),this.idTensor=Te(0),this.maxNumElements=r,jt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Fc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);return cr(e,this.elementShape,"TensorList shape mismatch: "),j(()=>{let r=this.tensors.map(a=>X(a,e));return Sn(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=this.tensors.pop();return cr(n.shape,e,"TensorList shape mismatch: "),X(n,e)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(cr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");jt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);return cr(this.tensors[e].shape,t,"TensorList shape mismatch: "),this.tensors[e]}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);cr(this.elementShape,t.shape,"TensorList shape mismatch: "),jt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);return cr(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size()),e.length===0?Ar([],[0].concat(this.elementShape)):j(()=>{let r=e.map(a=>X(this.tensors[a],n));return Sn(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);return cr(this.elementShape,t,"TensorList shape mismatch: "),this.size()===0?Ar([],[0].concat(this.elementShape)):j(()=>{let n=this.tensors.map(r=>X(r,t));return pt(n,0)})}};function Lte(e,t,n){let r=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let a=e.shape.slice(1);cr(a,t,"TensorList shape mismatch: ");let s=ar(e);return new Fc(s,t,r)}function Wte(e,t,n){return new Fc([],e,t,n)}function Bte(e,t,n,r){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let a=Math.max(...t);if(r!=null&&r!==-1&&a>=r)throw new Error(`Max index must be < array size (${a} vs. ${r})`);let s=new Fc([],n,e.dtype,r),i=ar(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function Vte(e,t,n){let r=0,a=t.map(l=>(r+=l,r));if(r!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is ${r}, and tensor's shape is: ${e.shape}`);let s=r===0?0:e.size/r,i=j(()=>{let l=[];e=X(e,[1,r,s]);for(let c=0;c{switch(e.op){case"If":case"StatelessIf":{let r=I("thenBranch",e,t,n),a=I("elseBranch",e,t,n),s=I("cond",e,t,n),i=I("args",e,t,n);return(await s.data())[0]?n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let r=I("body",e,t,n),a=I("cond",e,t,n),s=I("args",e,t,n),i=await n.functionMap[a].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(u=>u.id),l=await i[0].data();i.forEach(u=>{!u.kept&&o.indexOf(u.id)===-1&&u.dispose()});let c=s;for(;l[0];){let u=c;c=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let h=c.map(p=>p.id);u.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()});let d=await n.functionMap[a].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()})}return c}case"LoopCond":{let r=I("pred",e,t,n);return[ua(r)]}case"Switch":{let r=I("pred",e,t,n),a=I("data",e,t,n);return a.kept||(a=ua(a)),(await r.data())[0]?[void 0,a]:[a,void 0]}case"Merge":{let r=e.inputNames.find(a=>xn(a,t,n)!==void 0);if(r){let a=xn(r,t,n);return[ua(a)]}return}case"Enter":{let r=I("frameName",e,t,n),a=I("tensor",e,t,n);return n.enterFrame(r),[ua(a)]}case"Exit":{let r=I("tensor",e,t,n);return n.exitFrame(),[ua(r)]}case"NextIteration":{let r=I("tensor",e,t,n);return n.nextIteration(),[ua(r)]}case"TensorArrayV3":{let r=I("size",e,t,n),a=I("dtype",e,t,n),s=I("elementShape",e,t,n),i=I("dynamicSize",e,t,n),o=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),c=I("name",e,t,n),u=new Pte(c,a,r,s,l,i,o);return n.addTensorArray(u),[u.idTensor,Te(1)]}case"TensorArrayWriteV3":{let r=I("tensorArrayId",e,t,n),a=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(r.id);return i.write(a,s),[i.idTensor]}case"TensorArrayReadV3":{let r=I("tensorArrayId",e,t,n),a=I("index",e,t,n);return[n.getTensorArray(r.id).read(a)]}case"TensorArrayGatherV3":{let r=I("tensorArrayId",e,t,n),a=I("indices",e,t,n),s=I("dtype",e,t,n);return[n.getTensorArray(r.id).gather(a,s)]}case"TensorArrayScatterV3":{let r=I("tensorArrayId",e,t,n),a=I("indices",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(r.id);return i.scatter(a,s),[i.idTensor]}case"TensorArrayConcatV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id),s=I("dtype",e,t,n);return[a.concat(s)]}case"TensorArraySplitV3":{let r=I("tensorArrayId",e,t,n),a=I("tensor",e,t,n),s=I("lengths",e,t,n),i=n.getTensorArray(r.id);return i.split(s,a),[i.idTensor]}case"TensorArraySizeV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return[Te(a.size(),"int32")]}case"TensorArrayCloseV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return a.clearAndClose(),[a.idTensor]}case"TensorListSetItem":{let r=I("tensorListId",e,t,n),a=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorList(r.id);return i.setItem(a,s),[i.idTensor]}case"TensorListGetItem":{let r=I("tensorListId",e,t,n),a=I("index",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(r.id).getItem(a,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let r=I("indices",e,t,n),a=I("tensor",e,t,n),s=I("elementShape",e,t,n),i=I("numElements",e,t,n),o=Bte(a,r,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=I(s,e,t,n),o=Wte(r,a,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let r=I("tensorListId",e,t,n),a=I("indices",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(r.id).gather(a,i,s)]}case"TensorListStack":{let r=I("tensorListId",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=I("numElements",e,t,n);return[n.getTensorList(r.id).stack(a,s,i)]}case"TensorListFromTensor":{let r=I("tensor",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=Lte(r,a,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let r=I("tensorListId",e,t,n),a=n.getTensorList(r.id),s=I("dtype",e,t,n),i=I("elementShape",e,t,n);return[a.concat(s,i)]}case"TensorListPushBack":{let r=I("tensorListId",e,t,n),a=I("tensor",e,t,n),s=n.getTensorList(r.id);return s.pushBack(a),[s.idTensor]}case"TensorListPopBack":{let r=I("tensorListId",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n);return[n.getTensorList(r.id).popBack(a,s)]}case"TensorListSplit":{let r=I("tensor",e,t,n),a=I("elementShape",e,t,n),s=I("lengths",e,t,n),i=Vte(r,s,a);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function E7(e,t,n){let[r,a]=I("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=r==="fusedbatchnorm",l=I("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");let c=I("strides",e,t,n),u=qp(e,t,n),h=I("dataFormat",e,t,n).toUpperCase(),d=I("dilations",e,t,n),[p,f]=I("args",e,t,n),m=I("leakyreluAlpha",e,t,n);return{stride:c,pad:u,dataFormat:h,dilations:d,biasArg:p,preluArg:f,activationFunc:a,leakyreluAlpha:m}}var jte=(e,t,n)=>{switch(e.op){case"Conv1D":{let r=I("stride",e,t,n),a=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[Zh(I("x",e,t,n),I("filter",e,t,n),r,a,s,i)]}case"Conv2D":{let r=I("strides",e,t,n),a=qp(e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[Zr(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=E7(e,t,n);return[va.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=E7(e,t,n);return[va.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=I("outputShape",e,t,n),a=I("strides",e,t,n),s=qp(e,t,n);return[Yh(I("x",e,t,n),I("filter",e,t,n),r,[a[1],a[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=I("strides",e,t,n),a=qp(e,t,n),s=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[js(I("input",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,i,[s[1],s[2]])]}case"Conv3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[Ff(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2],r[3]],a,s,[i[1],i[2],i[3]])]}case"AvgPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[bu(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Cu(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPoolWithArgmax":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:o,indexes:l}=Cg(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a,i);return[o,l]}case"AvgPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Cf(I("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"MaxPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Bf(I("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"Dilation2D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("dilations",e,t,n),i=r[1],o=r[2],l=s[1],c=s[2];return[$f(I("x",e,t,n),I("filter",e,t,n),[i,o],a,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Hte=(e,t,n)=>{switch(e.op){case"Fill":{let r=I("shape",e,t,n),a=I("dtype",e,t,n),s=I("value",e,t,n);return[Nu(r,s,a)]}case"LinSpace":{let r=I("start",e,t,n),a=I("stop",e,t,n),s=I("num",e,t,n);return[Ng(r,a,s)]}case"Multinomial":{let r=I("logits",e,t,n),a=I("numSamples",e,t,n),s=I("seed",e,t,n);return[Rg(r,a,s)]}case"OneHot":{let r=I("indices",e,t,n),a=I("depth",e,t,n),s=I("onValue",e,t,n),i=I("offValue",e,t,n);return[Po(r,a,s,i)]}case"Ones":return[Rr(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[In(I("x",e,t,n))];case"RandomUniform":return[jo(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let r=I("start",e,t,n),a=I("stop",e,t,n),s=I("step",e,t,n);return[od(r,a,s,I("dtype",e,t,n))]}case"TruncatedNormal":{let r=I("shape",e,t,n),a=I("mean",e,t,n),s=I("stdDev",e,t,n),i=I("seed",e,t,n);return[Ad(r,a,s,I("dtype",e,t,n),i)]}case"Zeros":return[Ct(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[qe(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function N2(e,t,n){let r=I("boxes",e,t,n),a=I("scores",e,t,n),s=I("maxOutputSize",e,t,n),i=I("iouThreshold",e,t,n),o=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var Gte=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=N2(e,t,n),c=await Dt.nonMaxSuppressionWithScoreAsync(r,a,s,i,o,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=N2(e,t,n),l=I("padToMaxOutputSize",e,t,n),c=await Dt.nonMaxSuppressionPaddedAsync(r,a,s,i,o,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=N2(e,t,n);return[await Dt.nonMaxSuppressionAsync(r,a,s,i,o)]}case"Where":{let r=xe(I("condition",e,t,n),"bool"),a=[await Jf(r)];return r.dispose(),a}case"ListDiff":return $g(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},qte=(e,t,n)=>{switch(e.op){case"TopKV2":{let r=I("x",e,t,n),a=I("k",e,t,n),s=I("sorted",e,t,n),i=Zf(r,a,s);return[i.values,i.indices]}case"Unique":{let r=I("x",e,t,n),a=yd(r);return[a.values,a.indices]}case"UniqueV2":{let r=I("x",e,t,n),a=I("axis",e,t,n),s=yd(r,a);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Xte=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=I("default",e,t,n);return[xn(e.name,t,n)||r];case"Placeholder":return[xn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=I("x",e,t,n);return[ua(c)]}case"IdentityN":return I("x",e,t,n).map(c=>ua(c));case"Snapshot":let a=I("x",e,t,n);return[ua(a)];case"Shape":return[tn(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(c=>tn(c.shape));case"Size":return[Te(I("x",e,t,n).size,"int32")];case"Rank":return[Te(I("x",e,t,n).rank,"int32")];case"NoOp":return[Te(1)];case"Print":let s=I("x",e,t,n),i=I("data",e,t,n),o=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let c=0;ce.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(r=>r.dispose()),this.tensorMap.clear(),j(()=>{let r=ar(t),a=n.length,s=r.length;k.assert(a===s,()=>`The number of elements doesn't match, keys has ${a} elements, the values has ${s} elements.`);for(let i=0;i{let r=[];for(let a=0;a{switch(e.op){case"HashTable":case"HashTableV2":{let a=I("keyDType",e,t,n),s=I("valueDType",e,t,n),i=new Kte(a,s);return r.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let a=I("tableHandle",e,t,n,r),s=I("keys",e,t,n),i=I("values",e,t,n);return[await r.getHashTableById(a.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let a=I("tableHandle",e,t,n,r),s=I("keys",e,t,n),i=I("defaultValue",e,t,n);return[await r.getHashTableById(a.id).find(s,i)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Yte=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let r=I("images",e,t,n),a=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Dt.resizeBilinear(r,[a[0],a[1]],s,i)]}case"ResizeNearestNeighbor":{let r=I("images",e,t,n),a=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Dt.resizeNearestNeighbor(r,[a[0],a[1]],s,i)]}case"CropAndResize":{let r=I("image",e,t,n),a=I("boxes",e,t,n),s=I("boxInd",e,t,n),i=I("cropSize",e,t,n),o=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[Dt.cropAndResize(r,a,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Jte=(e,t,n)=>{switch(e.op){case"Equal":return[Yr(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[_a(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[Un(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[Jr(I("a",e,t,n),I("b",e,t,n))];case"Less":return[Tu(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[wa(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[rr(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[Eu(I("a",e,t,n))];case"LogicalOr":return[rd(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[mn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Qte=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ke(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Transpose":return[ot(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[r,a]=I("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=I("args",e,t,n);return[va.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:c,activation:a,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},ene=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Us(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[Us(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[Lf(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[Du(I("x",e,t,n))];case"LogSoftmax":return[nd(I("x",e,t,n))];case"SparseToDense":return[Qf(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},tne=(e,t,n)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[jn(I("x",e,t,n),i,o)]}case"Mean":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[It(I("x",e,t,n),i,o)]}case"Min":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Uo(I("x",e,t,n),i,o)]}case"Sum":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Ce(I("x",e,t,n),i,o)]}case"All":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Kh(I("x",e,t,n),i,o)]}case"Any":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[wu(I("x",e,t,n),i,o)]}case"ArgMax":{let i=I("axis",e,t,n);return[_u(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[kf(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[id(I("x",e,t,n),i,o)]}case"Cumsum":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[Qh(I("x",e,t,n),i,o,l)]}case"Bincount":let r=I("x",e,t,n),a=I("weights",e,t,n),s=I("size",e,t,n);return[yg(r,a,s)];case"DenseBincount":{let i=I("x",e,t,n),o=I("weights",e,t,n),l=I("size",e,t,n),c=I("binaryOutput",e,t,n);return[_g(i,o,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},nne=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=I("n",e,t,n),a=I("axis",e,t,n),s=I("tensors",e,t,n);return s=s.slice(0,r),[pt(s,a)]}case"Gather":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[Hs(r,xe(a,"int32"),0)]}case"GatherV2":{let r=I("axis",e,t,n),a=I("batchDims",e,t,n),s=I("x",e,t,n),i=I("indices",e,t,n);return[Hs(s,xe(i,"int32"),r,a)]}case"Reverse":{let r=I("dims",e,t,n),a=[];for(let i=0;i{let r=I("axis",e,t,n),a=I("tensors",e,t,n),s=a[0].shape,i=ba(a[0]).shape,o=a.map(l=>{let c=k.arraysEqual(l.shape,s);if(!c&&!k.arraysEqual(ba(l).shape,i))throw new Error("the input tensors shape does not match");return c?l:X(l,s)});return[Sn(o,r)]});case"Unpack":{let r=I("axis",e,t,n),a=I("tensor",e,t,n);return ar(a,r)}case"Tile":{let r=I("reps",e,t,n);return[xa(I("x",e,t,n),r)]}case"Split":case"SplitV":{let r=I("axis",e,t,n),a=I("numOrSizeSplits",e,t,n),s=I("x",e,t,n);return an(s,a,r)}case"ScatterNd":{let r=I("indices",e,t,n),a=I("values",e,t,n),s=I("shape",e,t,n);return[Yg(r,a,s)]}case"GatherNd":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[Jg(r,a)]}case"SparseToDense":{let r=I("sparseIndices",e,t,n),a=I("outputShape",e,t,n),s=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[Qf(r,s,a,s.dtype===i.dtype?i:xe(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},rne=(e,t,n)=>{switch(e.op){case"FFT":return[Ou(I("x",e,t,n))];case"IFFT":return[Ho(I("x",e,t,n))];case"RFFT":return[zu(I("x",e,t,n))];case"IRFFT":return[md(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},ane=(e,t,n)=>{switch(e.op){case"Cast":return[xe(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let r=I("axis",e,t,n);return[Vn(I("x",e,t,n),r)]}case"Squeeze":{let r=I("axis",e,t,n);return[ba(I("x",e,t,n),r)]}case"Reshape":return[X(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[Vf(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[Qr(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let r=I("blockShape",e,t,n),a=I("paddings",e,t,n);return[Ru(I("x",e,t,n),r,a)]}case"BatchToSpaceND":{let r=I("blockShape",e,t,n),a=I("crops",e,t,n);return[vu(I("x",e,t,n),r,a)]}case"DepthToSpace":{let r=I("blockSize",e,t,n),a=I("dataFormat",e,t,n).toUpperCase();return[Mf(I("x",e,t,n),r,a)]}case"BroadcastTo":return[ku(I("x",e,t,n),I("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function C7(e,t,n,r){let a=((s,i,o)=>{switch(s.category){case"arithmetic":return j(()=>Dte(s,i,o));case"basic_math":return j(()=>Ote(s,i,o));case"control":return Ute(s,i,o);case"convolution":return j(()=>jte(s,i,o));case"creation":return j(()=>Hte(s,i,o));case"dynamic":return Gte(s,i,o);case"evaluation":return j(()=>qte(s,i,o));case"image":return j(()=>Yte(s,i,o));case"graph":return j(()=>Xte(s,i,o));case"logical":return j(()=>Jte(s,i,o));case"matrices":return j(()=>Qte(s,i,o));case"normalization":return j(()=>ene(s,i,o));case"reduction":return j(()=>tne(s,i,o));case"slice_join":return j(()=>nne(s,i,o));case"spectral":return j(()=>rne(s,i,o));case"transformation":return j(()=>ane(s,i,o));case"hash_table":return Zte(s,i,o,r);case"custom":let l=o7(s.op);if(l&&l.customExecutor)return l.customExecutor(new $te(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return k.isPromise(a)?a.then(s=>[].concat(s)):[].concat(a)}var R7=class{constructor(e={},t={},n={},r={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;tt.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function M7(e,t,n,r){let a=new Set,s=[],i=null,o=null,l=new Set,c=Object.keys(e).map(d=>$n(d)[0]),u=[];r!=null&&(u=r.map(d=>$n(d.name)[0]));let h=[...t];for(;h.length>0;){let d=h.pop();if((F7(d)||sne(d)||ine(d))&&i==null&&(i=d,o=i.children.map(p=>p.name).filter(p=>a.has(p))),a.add(d.name),n[d.name]==null&&c.indexOf(d.name)===-1&&u.indexOf(d.name)===-1){if(d.inputs.length===0){s.push(d.name);continue}d.inputs.forEach(p=>{l.has(p.name)||(l.add(p.name),h.push(p))})}}return{inputs:e,outputs:t,usedNodes:a,missingInputs:s,dynamicNode:i,syncInputs:o}}function one(e,t,n){let{usedNodes:r,inputs:a}=n,s=[],i=Object.keys(a).map(u=>$n(u)[0]).map(u=>e.nodes[u]),o=e.initNodes;i.forEach(u=>{r.has(u.name)&&s.push(u)}),e.weights.forEach(u=>{r.has(u.name)&&s.push(u)}),o!=null&&o.forEach(u=>{r.has(u.name)&&s.push(u)});let l=new Set,c=[];for(;s.length>0;){let u=s.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(h=>{!l.has(h.name)&&r.has(h.name)&&h.inputs.every(d=>l.has(d.name))&&s.push(h)})}return c}var lne=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],une=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],cne=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2"];function F7(e){return lne.indexOf(e.op)>=0}function sne(e){return une.indexOf(e.op)>=0}function ine(e){return cne.indexOf(e.op)>=0}var S2=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new S2(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(r=>r.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(a=>a.name).sort(),r=t.map(a=>a.name).sort();return n.join(this.SEPERATOR)+"--"+r.join(this.SEPERATOR)}compile(e,t){let n=M7(e,t,this.weightMap,this._initNodes),{missingInputs:r,dynamicNode:a,syncInputs:s}=n;if(a!=null)throw new Error(`This execution contains the node '${a.name}', which has the dynamic op '${a.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(r.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${r}]`)}return one(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let r=n.map(u=>this.graph.nodes[$n(u)[0]]),a=t.map(u=>$n(u)[0]),s=a.map(u=>this.graph.nodes[u]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(r,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},c={};return j(()=>{let u=new R7(this.weightMap,l,c,this.functionExecutorMap),h=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,A]=$n(f),y=[];y[A]=e[f],h[m]=y});let d=this.getFrozenTensorIds(h),p={};for(let f=0;fxn(f,h,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(r=>r.id)));return new Set(t)}checkTensorForDisposal(e,t,n,r,a,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=mte(o.name,n,r);l!=null&&l.forEach(c=>{if(c&&!a.has(c.id)){let u=i[c.id];u===1?(c.dispose(),delete i[c.id]):u!=null&&i[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,r={},a={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new R7(this.weightMap,r,a,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(h=>xn(h,i,s)),l=o.map(h=>h.id),c=Object.keys(e).map(h=>e[h].id),u=new Set([...l,...c,...this.weightIds]);return Object.keys(i).forEach(h=>{i[h].forEach(d=>{d&&!d.isDisposed&&!u.has(d.id)&&d.dispose()})}),this.parent==null&&s.dispose(u),o}async executeFunctionAsync(e,t,n){let r=e.reduce((a,s,i)=>(a[this.inputs[i].name]=s,a),{});return this._executeAsync(r,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,r){let a=Object.keys(e),s=a.map(g=>this.graph.nodes[$n(g)[0]]),i=n.map(g=>$n(g)[0]),o=i.map(g=>this.graph.nodes[g]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:h}=M7(e,o,this.weightMap,this._initNodes),d=[...s,...this.graph.weights,...this._initNodes||[]].map(g=>({node:g,contexts:t.currentContext})),p=Object.assign({},this.weightMap);Object.keys(e).forEach(g=>{let[w,x]=$n(g),_=[];_[x]=e[g],p[w]=_});let f={},m=this.getFrozenTensorIds(p),A={};for(;d.length>0;){let g=this.processStack(s,d,t,p,A,m,i,f,l);await Promise.all(g)}u==null&&!r&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(g=>!F7(g)&&!xn(g.name,p,t)).map(g=>g.name);if(y.length>0){let g="";throw u!=null&&(g=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${h}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${a}]. Consider providing the following inputs: [${c}]. ${g}`)}return p}processStack(e,t,n,r,a,s,i,o,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let h="";if(u.node.op==="Enter"&&I("isConstant",u.node,r,n)&&([h]=la(u.node.name,n)),r[u.node.name]==null){let d=C7(u.node,r,n,this._resourceManager);h||([h]=la(u.node.name,n));let p=n.currentContext;k.isPromise(d)?c.push(d.then(f=>(r[h]=f,n.currentContext=p,this.checkTensorForDisposal(h,u.node,r,n,s,i,o),this.processChildNodes(u.node,t,n,r,a,l),f))):(r[h]=d,this.checkTensorForDisposal(h,u.node,r,n,s,i,o),this.processChildNodes(u.node,t,n,r,a,l))}else this.processChildNodes(u.node,t,n,r,a,l)}return c}processChildNodes(e,t,n,r,a,s){e.children.forEach(i=>{let[o]=la(i.name,n);a[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!xn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!xn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[r]=$n(t),a=this.graph.nodes[r];if(a.attrParams.shape&&a.attrParams.shape.value){let s=a.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);k.assert(i,()=>`The shape of dict['${a.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}a.attrParams.dtype&&a.attrParams.dtype.value&&k.assert(n.dtype===a.attrParams.dtype.value,()=>`The dtype of dict['${a.name}'] provided in model.execute(dict) must be ${a.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let r=this._signature.inputs[n];t[r.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[r]=$n(n);return this.graph.nodes[r]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=$n(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},hne=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},dne="?tfjs-format=file",pne="model.json",k0=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new hne}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=pn.browserHTTPRequest(e,this.loadOptions);else{let t=pn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(pn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let r=pn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new S2(N7.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(r),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let a=N7.Instance.transformGraph(e.modelInitializer);this.initializer=new S2(a),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=pn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof H)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,r)=>(t[n]=e[r],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function fr(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${pne}${dne}`);let n=new k0(e,t);return await n.load(),n}var t8="2.8.5",I0={};Pe(I0,{CSVDataset:()=>D7,Dataset:()=>Nl,FileDataSource:()=>O7,TextLineDataset:()=>$7,URLDataSource:()=>z7,array:()=>fne,csv:()=>Ane,func:()=>yne,generator:()=>gne,microphone:()=>wne,version_data:()=>_ne,webcam:()=>xne,zip:()=>mne});var bne=Xo(S0()),vne=Xo(S0());function kne(e,t){return Xp(e,t)}function Xp(e,t,n=new Map,r=new Set){if(e==null)return null;if(r.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(a.recurse)if(Sl(e)){let s=Array.isArray(e)?[]:{};r.add(e);for(let i in e){let o=e[i],l=Xp(o,t,n,r);s[i]=l}return r.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,a.value),a.value}function Ine(e,t=L7){return P7(e,t)}function P7(e,t,n=new Set){let r=e[0];if(n.has(r))throw new Error("Circular references are not supported.");let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(a.recurse)if(Sl(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let i in r){let o=e.map(c=>c[i]),l=P7(o,t,n);s[i]=l}return n.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return a.value}function L7(e){return e===null?null:Sl(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function W7(e,t){let n=new Map;Xp(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(k.isPromise(a)){let s=await a;n.set(r,s)}}return Xp(e,t,n)}function Sl(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof H))}function Sne(e){return e==null||Nne(e)||Array.isArray(e)||typeof e=="object"&&e instanceof H||k.isTypedArray(e)}function Nne(e){return e===null||typeof e!="object"&&typeof e!="function"}function Ene(e){return kne(e,Tne)}function Tne(e){return e instanceof H?{value:e.clone(),recurse:!1}:Sl(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var B7=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},T2=class extends B7{constructor(){super(T2.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let r=0;rt===!0)}rowMajorBatch(e,t=!0){return new Pne(this,e,t)}columnMajorBatch(e,t=!0,n=L7){return this.rowMajorBatch(e,t).map(r=>Ine(r,n))}concatenate(e,t){return new U7(V7([this,e]),t)}take(e){return e<0||e==null?this:new zne(this,e)}skip(e){return e<0||e==null?this:new One(this,e)}prefetch(e){return new H7(this,e)}shuffle(e,t){return new Une(this,e,t)}serial(){return new Dne(this)}},Cne=class extends Kt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:Ene(e),done:!1}}},Rne=class extends Kt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},Dne=class extends Kt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},One=class extends Kt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++ Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},Pne=class extends Kt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},Lne=class extends Kt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;$e(e.value)}}},Wne=class extends Kt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=mr.getTensorsInContainer(e.value),n=this.transform(e.value),r=mr.getTensorsInContainer(n);for(let a of t)mr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},Bne=class extends Kt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},j7=class extends Kt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=mr.getTensorsInContainer(e.value),n=await this.transform(e.value),r=mr.getTensorsInContainer(n);for(let a of t)mr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},C2=class extends Kt{constructor(){super();this.outputQueue=new T2,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},Vne=class extends C2{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=mr.getTensorsInContainer(e.value),n=this.transform(e.value),r=mr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let a of t)mr.isTensorInList(a,r)||a.dispose();return!0}},U7=class extends Kt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Wa;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Wa||(Wa={}));var Mne=class extends Kt{constructor(e,t=Wa.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function r(s){return s instanceof Kt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let a=await W7(this.iterators,r);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Wa.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Wa.SHORTEST:return{value:null,done:!0};case Wa.LONGEST:default:}return this.count++,{value:a,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},H7=class extends Kt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new B7(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},Une=class extends H7{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=vne.alea(n||k.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Nl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;k.assert(e>0,()=>`batchSize needs to be positive, but it is ${e}`);let r;return this.size===Infinity||this.size==null?r=this.size:t?r=Math.ceil(this.size/e):r=Math.floor(this.size/e),Dn(async()=>(await n.iterator()).columnMajorBatch(e,t,jne),r)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Dn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,Dn(async()=>(await t.iterator()).filter(r=>j(()=>e(r))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Dn(async()=>(await t.iterator()).map(n=>j(()=>e(n))),this.size)}mapAsync(e){let t=this;return Dn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Dn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,Dn(async()=>{let r=E2(async()=>({value:await t.iterator(),done:!1}));return Fne(r.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let r=this,a=bne.alea(t||k.now().toString());return Dn(async()=>{let s=a.int32();return n&&(s+=a.int32()),(await r.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Dn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Nl.MAX_BUFFER_SIZE=1e4;function Dn(e,t=null){return new class extends Nl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function fne(e){return Dn(async()=>V7(e),e.length)}function mne(e){if(!Sl(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n{let n=await W7(e,r=>{if(r instanceof Nl)return{value:r.iterator(),recurse:!1};if(Sl(r))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return $ne(n,Wa.SHORTEST)},t)}function jne(e){if(e===null)return null;let t=e[0];return Sne(t)?{value:Hne(e),recurse:!1}:{value:null,recurse:!0}}function Hne(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof H?Sn(e):Ar(e)}var $7=class extends Nl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(` `).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},Kp='"',Mc=Symbol("out"),G7=Symbol("field"),Zp=Symbol("quote"),R2=Symbol("quoteafterquote"),q7=Symbol("quoteinquote"),D7=class extends Nl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new $7(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(k.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&k.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((r,a)=>(r[a]=r[a]+1||1,r),{}),n=Object.keys(t).filter(r=>t[r]>1);if(k.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let r of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(r)===-1)throw new Error('The key "'+r+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},r={};for(let a=0;a14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(ee().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new X7(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let r=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(r,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let r=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(r,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(r=>{let a=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&r({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(a),r({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((r,a)=>n.set(r,a*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(k.sizeFromShape(t));return n.set(e,n.length-e.length),Ar(n,t)}},K7=class extends Kt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=tn([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,r=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,a=(1-n)/2,s=(1-r)/2,i=a+n,o=r+s;this.cropBox=pr([s,a,o,i],[1,4])}else this.cropBox=pr([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(ee().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new K7(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&k.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Jl.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return j(()=>{let t=e.toFloat().expandDims(0),n;n=Dt.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let r=n.shape;return n.reshape(r.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},Z7=class{},Y7=class extends Kt{split(e){return new Gne(this,e)}},Gne=class extends Y7{constructor(e,t){super();this.upstream=e,this.impl=new qne(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},qne=class extends C2{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},Kne=class extends Kt{decodeUTF8(){return new Xne(this)}},Xne=class extends Y7{constructor(e){super();this.upstream=e,this.impl=new Zne(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Zne=class extends C2{constructor(e){super();if(this.upstream=e,ee().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=z8();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return ee().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},J7=class extends Kne{constructor(e,t={}){super();this.file=e,this.options=t,k.assert(e instanceof Uint8Array||(ee().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let r=new FileReader;r.onload=s=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},r.onabort=s=>t(new Error("Aborted")),r.onerror=s=>t(new Error(s.type));let a=this.file.slice(this.offset,n);r.readAsArrayBuffer(a)}this.offset=n}),done:!1}}};async function Jne(e,t={}){let n,r;typeof e=="string"?n=e:(n=e.url,r=Yne(e));let a=await k.fetch(n,r);if(a.ok){let s=new Uint8Array(await a.arrayBuffer());return new J7(s,t)}else throw new Error(a.statusText)}var Yne=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function Q7(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var O7=class extends Z7{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(Q7(this.input)&&ee().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new J7(this.input,this.options)}},z7=class extends Z7{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return Q7(this.url)?new O7(this.url,this.fileOptions).iterator():Jne(this.url,this.fileOptions)}};function Ane(e,t={}){return new D7(new z7(e),t)}function yne(e){let t=E2(e);return Dn(async()=>t)}function gne(e){return Dn(async()=>{let t=await e();return E2(()=>t.next())})}async function xne(e,t){return K7.create(e,t)}async function wne(e){return X7.create(e)}var _ne="2.8.5",n8={tfjs:P8,"tfjs-core":L8,"tfjs-data":W8,"tfjs-layers":B8,"tfjs-converter":V8,"tfjs-backend-cpu":r0,"tfjs-backend-webgl":i0,"tfjs-backend-wasm":c0},hn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function Qne(){if(!pg(hn.name)){Je("backend registration:",hn.name);try{hn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(hn.width,hn.height):document.createElement("canvas")}catch(e){Je("error: cannot create canvas:",e);return}try{hn.gl=hn.canvas.getContext("webgl2",hn.webGLattr)}catch(e){Je("error: cannot get WebGL2 context:",e);return}try{nm(2,hn.gl)}catch(e){Je("error: cannot set WebGL2 context:",e);return}try{let e=new rm(hn.gl);xu(hn.name,()=>new am(e),hn.priority)}catch(e){Je("error: cannot register WebGL backend:",e);return}try{yu("webgl").forEach(e=>{let t={...e,backendName:hn.name};zo(t)})}catch(e){Je("error: cannot update WebGL backend registration:",e);return}try{vn.set("WEBGL_VERSION",2),vn.set("WEBGL_MAX_TEXTURE_SIZE",hn.gl.getParameter(hn.gl.MAX_TEXTURE_SIZE)),vn.set("WEBGL_FORCE_F16_TEXTURES",!0),vn.set("WEBGL_PACK_DEPTHWISECONV",!0)}catch(e){Je("error: cannot set WebGL backend flags:",e);return}Je("backend registered:",hn.name)}}var F2=Be(Pv()),$c=Be(Lv()),Dc=Be(Wv()),Oc=Be(Bv()),zc=Be(Vv()),M2=Be(Kv());function df(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function hh(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function Jv(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Dt.cropAndResize(t,s,[0],n)}function Zv(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],a=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:r,palmLandmarks:a,confidence:e.confidence}}function pf(e,t=1.5){let n=hh(e),r=df(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function ff(e){let t=hh(e),n=df(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],s=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:s,palmLandmarks:e.palmLandmarks}}function ere(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function Qv(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return ere(n)}var e6=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function Ka(e,t){let n=0;for(let r=0;rr6});var r6={backend:"webgl",wasmPath:"../assets/",async:!0,profile:!1,deallocate:!1,scoped:!1,videoOptimized:!0,warmup:"face",filter:{enabled:!0,width:0,height:0,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"../models/blazeface-back.json",inputSize:256,rotation:!1,maxFaces:10,skipFrames:11,minConfidence:.5,iouThreshold:.2,scoreThreshold:.5},mesh:{enabled:!0,modelPath:"../models/facemesh.json",inputSize:192,returnRawData:!1},iris:{enabled:!0,modelPath:"../models/iris.json",inputSize:64},age:{enabled:!0,modelPath:"../models/age-ssrnet-imdb.json",inputSize:64,skipFrames:31},gender:{enabled:!0,minConfidence:.1,modelPath:"../models/gender-ssrnet-imdb.json",inputSize:64,skipFrames:41},emotion:{enabled:!0,inputSize:64,minConfidence:.2,skipFrames:21,modelPath:"../models/emotion-large.json"},embedding:{enabled:!1,inputSize:112,modelPath:"../models/mobilefacenet.json"}},body:{enabled:!0,modelPath:"../models/posenet.json",inputSize:257,maxDetections:10,scoreThreshold:.5,nmsRadius:20,outputStride:16,modelType:"MobileNet"},hand:{enabled:!0,rotation:!1,inputSize:256,skipFrames:12,minConfidence:.1,iouThreshold:.1,scoreThreshold:.5,maxHands:1,landmarks:!0,detector:{modelPath:"../models/handdetect.json"},skeleton:{modelPath:"../models/handskeleton.json"}}},a6=` /9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1 tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/ AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z 5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9 zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6 8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6 GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4 HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD 1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX +BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3 GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0 nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8 87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681 ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF 63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2 ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4 /wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5 rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru /DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1 jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk 4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6 wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP 1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1 H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ 1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe 5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69 MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn 0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb 0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz 9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu 6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd 9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8 VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+ 5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh 05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ 5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8 1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4 B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA 3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn 3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx 1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6 f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup 6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM 350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0 /AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt 4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1 8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3 ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,s6=` /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj +s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp +alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2 ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67 d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/ Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+ r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc 0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w +PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4 Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6 rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ 9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/ /OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6 jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN +SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX 12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf 0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4 ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6 tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+ fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9 lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV 5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/ +bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0 77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8 5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8 to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/ w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS 34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn 26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf 3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q 6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN 3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8 2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc 1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK 0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9 dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218 8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1 axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/ tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1 izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2 crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4 OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2 r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz +THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095 YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE 9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8 mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6 Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3 6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1 Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0 5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1 mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO 1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7 ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T +PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+ O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1 +UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY 36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY 3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr 1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z 1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+ n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O 8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0 Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8 8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1 lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+ oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm 9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2 +To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37 O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1 L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4 izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt 1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12 CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh 5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3 6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9 XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr 79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223 2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p 7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7 x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz 5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2 IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1 vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0 ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm 6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22 gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX 6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn 1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u 7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O 8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx 5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm 2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9 RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8 cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF 0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK 66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9 XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK 7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI 3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m 1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9 8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8 elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL +Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl 5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q 7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv 6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa 0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/ AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5 6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX 0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK 3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0 vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2 O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz 0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O 1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi 0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY 5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L /tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3 Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ 3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI 6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/ AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ 92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp +0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0 vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP 8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3 7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P 0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG 0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv 9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1 rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+ x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4 5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2 H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF +NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN 3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi /j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00 +FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2 M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp 5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL /Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3 GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4 qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2 rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc 3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3 Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h 2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7 cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7 mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu 9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1 8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5 PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX 6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2 JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI 6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5 K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7 Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ 2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4 eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7 piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61 rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2 f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2 SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/ 2Q==`,rre="0.10.1",yt=()=>typeof performance!="undefined"?performance.now():parseInt(Number(process.hrtime.bigint())/1e3/1e3);function Tl(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,r)=>(Object.keys(r||{}).forEach(a=>{let s=n[a],i=r[a];Array.isArray(s)&&Array.isArray(i)?n[a]=s.concat(...i):t(s)&&t(i)?n[a]=Tl(s,i):n[a]=i}),n),{})}var i6=class{constructor(e={}){this.tf=eg,this.version=rre,this.config=Tl(r6,e),this.fx=null,this.state="idle",this.numTensors=0,this.analyzeMemoryLeaks=!1,this.checkSanity=!1,this.firstRun=!0,this.perf={},this.models={facemesh:null,posenet:null,handpose:null,iris:null,age:null,gender:null,emotion:null},this.facemesh=F2,this.age=$c,this.gender=Dc,this.emotion=Oc,this.body=M2,this.hand=$2}profile(){return this.config.profile?nre.data:{}}analyze(...e){if(!this.analyzeMemoryLeaks)return;let t=Wn().state.numTensors,n=this.numTensors;this.numTensors=t;let r=t-n;r!==0&&Je(...e,r)}sanity(e){if(!this.checkSanity)return null;if(!e)return"input is not defined";if(vn.flags.IS_NODE&&!(e instanceof H))return"input must be a tensor";try{qh()}catch(t){return"backend not loaded"}return null}simmilarity(e,t){return this.config.face.embedding.enabled?zc.simmilarity(e,t):0}async load(e){this.state="load";let t=yt();e&&(this.config=Tl(this.config,e)),this.firstRun&&(Je(`version: ${this.version} TensorFlow/JS version: ${ug}`),await this.checkBackend(!0),vn.flags.IS_BROWSER&&(Je("configuration:",this.config),Je("tf flags:",vn.flags))),this.config.async?[this.models.facemesh,this.models.age,this.models.gender,this.models.emotion,this.models.embedding,this.models.posenet,this.models.handpose]=await Promise.all([this.models.facemesh||(this.config.face.enabled?F2.load(this.config):null),this.models.age||(this.config.face.enabled&&this.config.face.age.enabled?$c.load(this.config):null),this.models.gender||(this.config.face.enabled&&this.config.face.gender.enabled?Dc.load(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?Oc.load(this.config):null),this.models.embedding||(this.config.face.enabled&&this.config.face.embedding.enabled?zc.load(this.config):null),this.models.posenet||(this.config.body.enabled?M2.load(this.config):null),this.models.handpose||(this.config.hand.enabled?$2.load(this.config):null)]):(this.config.face.enabled&&!this.models.facemesh&&(this.models.facemesh=await F2.load(this.config)),this.config.face.enabled&&this.config.face.age.enabled&&!this.models.age&&(this.models.age=await $c.load(this.config)),this.config.face.enabled&&this.config.face.gender.enabled&&!this.models.gender&&(this.models.gender=await Dc.load(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await Oc.load(this.config)),this.config.face.enabled&&this.config.face.embedding.enabled&&!this.models.embedding&&(this.models.embedding=await zc.load(this.config)),this.config.body.enabled&&!this.models.posenet&&(this.models.posenet=await M2.load(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await $2.load(this.config))),this.firstRun&&(Je("tf engine state:",Wn().state.numBytes,"bytes",Wn().state.numTensors,"tensors"),this.firstRun=!1);let n=Math.trunc(yt()-t);n>(this.perf.load||0)&&(this.perf.load=n)}async checkBackend(e){if(this.config.backend&&this.config.backend!==""&&e||qh()!==this.config.backend){let t=yt();this.state="backend",Je("setting backend:",this.config.backend),this.config.backend==="wasm"&&(Je("settings wasm path:",this.config.wasmPath),u0(this.config.wasmPath),await ee().getAsync("WASM_HAS_SIMD_SUPPORT")||Je("warning: wasm simd support is not enabled")),this.config.backend==="humangl"&&Qne();try{await hg(this.config.backend)}catch(n){Je("error: cannot set backend:",this.config.backend,n)}if(cg(),qh()==="webgl"){this.config.deallocate&&(Je("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",this.config.deallocate),vn.set("WEBGL_DELETE_TEXTURE_THRESHOLD",this.config.deallocate?0:-1)),vn.set("WEBGL_FORCE_F16_TEXTURES",!0),vn.set("WEBGL_PACK_DEPTHWISECONV",!0);let n=await _f().getGPGPUContext().gl;Je(`gl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`)}await dg(),this.perf.backend=Math.trunc(yt()-t)}}async detectFace(e){var t;let n,r,a,s,i,o=[];this.state="run:face",n=yt();let l=await((t=this.models.facemesh)==null?void 0:t.estimateFaces(e,this.config));this.perf.face=Math.trunc(yt()-n);for(let c of l){if(this.analyze("Get Face"),!c.image||c.image.isDisposedInternal){Je("Face object is disposed:",c.image);continue}this.analyze("Start Age:"),this.config.async?r=this.config.face.age.enabled?$c.predict(c.image,this.config):{}:(this.state="run:age",n=yt(),r=this.config.face.age.enabled?await $c.predict(c.image,this.config):{},this.perf.age=Math.trunc(yt()-n)),this.analyze("Start Gender:"),this.config.async?a=this.config.face.gender.enabled?Dc.predict(c.image,this.config):{}:(this.state="run:gender",n=yt(),a=this.config.face.gender.enabled?await Dc.predict(c.image,this.config):{},this.perf.gender=Math.trunc(yt()-n)),this.analyze("Start Emotion:"),this.config.async?s=this.config.face.emotion.enabled?Oc.predict(c.image,this.config):{}:(this.state="run:emotion",n=yt(),s=this.config.face.emotion.enabled?await Oc.predict(c.image,this.config):{},this.perf.emotion=Math.trunc(yt()-n)),this.analyze("End Emotion:"),this.analyze("Start Embedding:"),this.config.async?i=this.config.face.embedding.enabled?zc.predict(c.image,this.config):{}:(this.state="run:embedding",n=yt(),i=this.config.face.embedding.enabled?await zc.predict(c.image,this.config):{},this.perf.embedding=Math.trunc(yt()-n)),this.analyze("End Emotion:"),this.config.async&&([r,a,s,i]=await Promise.all([r,a,s,i])),this.analyze("Finish Face:"),c.image.dispose(),this.config.face.iris.enabled||(delete c.annotations.leftEyeIris,delete c.annotations.rightEyeIris);let u=c.annotations.leftEyeIris&&c.annotations.rightEyeIris?11.7*Math.max(Math.abs(c.annotations.leftEyeIris[3][0]-c.annotations.leftEyeIris[1][0]),Math.abs(c.annotations.rightEyeIris[4][1]-c.annotations.rightEyeIris[2][1])):0;o.push({confidence:c.confidence,box:c.box,mesh:c.mesh,boxRaw:c.boxRaw,meshRaw:c.meshRaw,annotations:c.annotations,age:r.age,gender:a.gender,genderConfidence:a.confidence,emotion:s,embedding:i,iris:u!==0?Math.trunc(u)/100:0}),this.analyze("End Face")}return this.analyze("End FaceMesh:"),this.config.async&&(this.perf.face&&delete this.perf.face,this.perf.age&&delete this.perf.age,this.perf.gender&&delete this.perf.gender,this.perf.emotion&&delete this.perf.emotion),o}async image(e,t={}){this.state="image",this.config=Tl(this.config,t);let n=n6.process(e,this.config);return n.tensor.dispose(),n.canvas}async detect(e,t={}){return new Promise(async n=>{var r,a,s,i;this.state="config";let o;this.config=Tl(this.config,t),this.state="check";let l=this.sanity(e);l&&(Je(l,e),n({error:l}));let c,u,h,d=yt();await this.checkBackend(),await this.load(),this.config.scoped&&Wn().startScope(),this.analyze("Start Scope:"),o=yt();let p=n6.process(e,this.config);if(!p||!p.tensor){Je("could not convert input to tensor"),n({error:"could not convert input to tensor"});return}this.perf.image=Math.trunc(yt()-o),this.analyze("Get Image:"),this.config.async?(h=this.config.face.enabled?this.detectFace(p.tensor):[],this.perf.face&&delete this.perf.face):(this.state="run:face",o=yt(),h=this.config.face.enabled?await this.detectFace(p.tensor):[],this.perf.face=Math.trunc(yt()-o)),this.analyze("Start Body:"),this.config.async?(c=this.config.body.enabled?(r=this.models.posenet)==null?void 0:r.estimatePoses(p.tensor,this.config):[],this.perf.body&&delete this.perf.body):(this.state="run:body",o=yt(),c=this.config.body.enabled?await((a=this.models.posenet)==null?void 0:a.estimatePoses(p.tensor,this.config)):[],this.perf.body=Math.trunc(yt()-o)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(u=this.config.hand.enabled?(s=this.models.handpose)==null?void 0:s.estimateHands(p.tensor,this.config):[],this.perf.hand&&delete this.perf.hand):(this.state="run:hand",o=yt(),u=this.config.hand.enabled?await((i=this.models.handpose)==null?void 0:i.estimateHands(p.tensor,this.config)):[],this.perf.hand=Math.trunc(yt()-o)),this.analyze("End Hand:"),this.config.async&&([h,c,u]=await Promise.all([h,c,u])),p.tensor.dispose(),this.config.scoped&&Wn().endScope(),this.analyze("End Scope:");let f=[];this.config.gesture.enabled&&(o=yt(),f=[...Yp.face(h),...Yp.body(c),...Yp.hand(u),...Yp.iris(h)],this.config.async?this.perf.gesture&&delete this.perf.gesture:this.perf.gesture=Math.trunc(yt()-o)),this.perf.total=Math.trunc(yt()-d),this.state="idle",n({face:h,body:c,hand:u,gesture:f,performance:this.perf,canvas:p.canvas})})}async warmupBitmap(){let e=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(s=>s.blob()),t,n;switch(this.config.warmup){case"face":t=await e(a6);break;case"full":t=await e(s6);break;default:t=null}if(t){let r=await createImageBitmap(t);n=await this.detect(r,D2),r.close()}return n}async warmupCanvas(){return new Promise(e=>{let t,n=0;switch(this.config.warmup){case"face":n=256,t="data:image/jpeg;base64,"+a6;break;case"full":n=1200,t="data:image/jpeg;base64,"+s6;break;default:t=null}let r=new Image(n,n);r.onload=()=>{let a=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(n,n):document.createElement("canvas");a.width=n,a.height=n;let s=a.getContext("2d");s.drawImage(r,0,0);let i=s.getImageData(0,0,n,n);this.detect(i,D2).then(o=>e(o))},t?r.src=t:e(null)})}async warmup(e){let t=yt();e&&(this.config=Tl(this.config,e));let n=this.config.videoOptimized;this.config.videoOptimized=!1;let r;typeof createImageBitmap=="function"?r=await this.warmupBitmap():r=await this.warmupCanvas(),this.config.videoOptimized=n;let a=yt();return Je("Warmup",this.config.warmup,Math.round(a-t),"ms",r),r}};async function are(e,t,n){if(!e)return;let r=t.getContext("2d");r.font=n.baseFont,r.fillStyle=n.baseLabel;let a=1;for(let s=0;s1&&o[1].length>0){let l=i[1]>0?`#${i[1]}`:"",c=`${i[0]} ${l}: ${o[1]}`;r.fillStyle="black",r.fillText(c,8,2+a*n.baseLineHeight),r.fillStyle=n.baseLabel,r.fillText(c,6,0+a*n.baseLineHeight),a+=1}}}async function sre(e,t,n,r){if(!e)return;let a=t.getContext("2d");for(let s of e){a.font=n.baseFont,a.strokeStyle=n.baseColor,a.fillStyle=n.baseColor,a.lineWidth=n.baseLineWidth,a.beginPath(),n.drawBoxes&&a.rect(s.box[0],s.box[1],s.box[2],s.box[3]);let i=[];if(s.genderConfidence&&i.push(`${s.gender||""} ${Math.trunc(100*s.genderConfidence)}% confident`),s.age&&i.push(`age: ${s.age||""}`),s.iris&&i.push(`iris distance: ${s.iris}`),s.emotion&&s.emotion.length>0){let o=s.emotion.map(l=>`${Math.trunc(100*l.score)}% ${l.emotion}`);i.push(o.join(" "))}i.length===0&&i.push("face"),a.fillStyle=n.baseLabel;for(let o=0;os.mesh[u]),c=new Path2D;c.moveTo(l[0][0],l[0][1]);for(let u of l)c.lineTo(u[0],u[1]);c.closePath(),a.strokeStyle=n.useDepth?`rgba(${127.5+2*l[0][2]}, ${127.5-2*l[0][2]}, 255, 0.3)`:n.baseColor,a.stroke(c),n.fillPolygons&&(a.fillStyle=n.useDepth?`rgba(${127.5+2*l[0][2]}, ${127.5-2*l[0][2]}, 255, 0.3)`:n.baseColor,a.fill(c))}if(s.annotations&&s.annotations.leftEyeIris){a.strokeStyle=n.useDepth?"rgba(255, 200, 255, 0.3)":n.baseColor,a.beginPath();let o=Math.abs(s.annotations.leftEyeIris[3][0]-s.annotations.leftEyeIris[1][0])/2,l=Math.abs(s.annotations.leftEyeIris[4][1]-s.annotations.leftEyeIris[2][1])/2;a.ellipse(s.annotations.leftEyeIris[0][0],s.annotations.leftEyeIris[0][1],o,l,0,0,2*Math.PI),a.stroke(),n.fillPolygons&&(a.fillStyle=n.useDepth?"rgba(255, 255, 200, 0.3)":n.baseColor,a.fill())}if(s.annotations&&s.annotations.rightEyeIris){a.strokeStyle=n.useDepth?"rgba(255, 200, 255, 0.3)":n.baseColor,a.beginPath();let o=Math.abs(s.annotations.rightEyeIris[3][0]-s.annotations.rightEyeIris[1][0])/2,l=Math.abs(s.annotations.rightEyeIris[4][1]-s.annotations.rightEyeIris[2][1])/2;a.ellipse(s.annotations.rightEyeIris[0][0],s.annotations.rightEyeIris[0][1],o,l,0,0,2*Math.PI),a.stroke(),n.fillPolygons&&(a.fillStyle=n.useDepth?"rgba(255, 255, 200, 0.3)":n.baseColor,a.fill())}}}}}var Ba=[];async function ire(e,t,n){if(!e)return;let r=t.getContext("2d");r.lineJoin="round";for(let a=0;al.part==="leftShoulder"),i&&(s.moveTo(i.position.x,i.position.y),o=e[a].keypoints.find(l=>l.part==="rightShoulder"),o&&s.lineTo(o.position.x,o.position.y),o=e[a].keypoints.find(l=>l.part==="rightHip"),o&&s.lineTo(o.position.x,o.position.y),o=e[a].keypoints.find(l=>l.part==="leftHip"),o&&s.lineTo(o.position.x,o.position.y),o=e[a].keypoints.find(l=>l.part==="leftShoulder"),o&&s.lineTo(o.position.x,o.position.y)),i=e[a].keypoints.find(l=>l.part==="leftHip"),i&&(s.moveTo(i.position.x,i.position.y),o=e[a].keypoints.find(l=>l.part==="leftKnee"),o&&s.lineTo(o.position.x,o.position.y),o=e[a].keypoints.find(l=>l.part==="leftAnkle"),o&&s.lineTo(o.position.x,o.position.y)),i=e[a].keypoints.find(l=>l.part==="rightHip"),i&&(s.moveTo(i.position.x,i.position.y),o=e[a].keypoints.find(l=>l.part==="rightKnee"),o&&s.lineTo(o.position.x,o.position.y),o=e[a].keypoints.find(l=>l.part==="rightAnkle"),o&&s.lineTo(o.position.x,o.position.y)),i=e[a].keypoints.find(l=>l.part==="leftShoulder"),i&&(s.moveTo(i.position.x,i.position.y),o=e[a].keypoints.find(l=>l.part==="leftElbow"),o&&s.lineTo(o.position.x,o.position.y),o=e[a].keypoints.find(l=>l.part==="leftWrist"),o&&s.lineTo(o.position.x,o.position.y)),i=e[a].keypoints.find(l=>l.part==="rightShoulder"),i&&(s.moveTo(i.position.x,i.position.y),o=e[a].keypoints.find(l=>l.part==="rightElbow"),o&&s.lineTo(o.position.x,o.position.y),o=e[a].keypoints.find(l=>l.part==="rightWrist"),o&&s.lineTo(o.position.x,o.position.y)),r.stroke(s)}}}async function ore(e,t,n){if(!e)return;let r=t.getContext("2d");r.lineJoin="round";for(let a of e){if(r.font=n.baseFont,r.lineWidth=n.baseLineWidth,n.drawBoxes&&(r.lineWidth=n.baseLineWidth,r.beginPath(),r.strokeStyle=n.baseColor,r.fillStyle=n.baseColor,r.rect(a.box[0],a.box[1],a.box[2],a.box[3]),r.fillStyle="black",r.fillText("hand",a.box[0]+3,1+a.box[1]+n.baseLineHeight,a.box[2]),r.fillStyle=n.baseLabel,r.fillText("hand",a.box[0]+2,0+a.box[1]+n.baseLineHeight,a.box[2]),r.stroke()),n.drawPoints&&a.landmarks&&a.landmarks.length>0)for(let s of a.landmarks)r.fillStyle=n.useDepth?`rgba(${127.5+2*s[2]}, ${127.5-2*s[2]}, 255, 0.5)`:n.baseColor,r.beginPath(),r.arc(s[0],s[1],2,0,2*Math.PI),r.fill();if(n.drawPolygons){let s=i=>{if(!!i)for(let o=0;o0?o-1:0][0],i[o>0?o-1:0][1]),r.lineTo(i[o][0],i[o][1]),r.stroke()};s(a.annotations.indexFinger),s(a.annotations.middleFinger),s(a.annotations.ringFinger),s(a.annotations.pinky),s(a.annotations.thumb)}}}var Pc={face:sre,body:ire,hand:ore,gesture:are};var Lc=0,o6=!1,vt={background:"darkslategray",hover:"lightgray",itemBackground:"black",itemColor:"white",buttonBackground:"lightblue",buttonHover:"lightgreen",checkboxOn:"lightgreen",checkboxOff:"lightcoral",rangeBackground:"lightblue",rangeLabel:"white",chartColor:"lightblue"};function lre(){if(o6)return;let e=` :root { --rounded: 0.2rem; } .menu { position: absolute; top: 0rem; right: 0; width: max-content; padding: 0 0.2rem 0 0.2rem; line-height: 1.8rem; z-index: 10; box-shadow: 0 0 8px dimgrey; background: ${vt.background}; border-radius: var(--rounded); border-color: black; border-style: solid; border-width: thin; } .menu:hover { box-shadow: 0 0 8px ${vt.hover}; } .menu-container { display: block; max-height: 100vh; } .menu-container-fadeout { max-height: 0; overflow: hidden; transition: max-height, 0.5s ease; } .menu-container-fadein { max-height: 100vh; overflow: hidden; transition: max-height, 0.5s ease; } .menu-item { display: flex; white-space: nowrap; padding: 0.2rem; cursor: default; width: 100%; } .menu-title { cursor: pointer; } .menu-hr { margin: 0.2rem; border: 1px solid rgba(0, 0, 0, 0.5) } .menu-label { padding: 0; font-weight: 800; } .menu-list { margin-right: 0.8rem; } select:focus { outline: none; } .menu-list-item { background: ${vt.itemBackground}; color: ${vt.itemColor}; border: none; padding: 0.2rem; font-family: inherit; font-variant: inherit; border-radius: var(--rounded); font-weight: 800; } .menu-chart-title { padding: 0; font-size: 0.8rem; font-weight: 800; align-items: center} .menu-chart-canvas { background: transparent; margin: 0.2rem 0 0.2rem 0.6rem; } .menu-button { border: 0; background: ${vt.buttonBackground}; width: -webkit-fill-available; padding: 8px; margin: 8px; cursor: pointer; box-shadow: 4px 4px 4px 0 dimgrey; border-radius: var(--rounded); justify-content: center; font-family: inherit; font-variant: inherit; font-size: 1rem; font-weight: 800; } .menu-button:hover { background: ${vt.buttonHover}; box-shadow: 4px 4px 4px 0 black; } .menu-button:focus { outline: none; } .menu-checkbox { width: 2.8rem; height: 1rem; background: ${vt.itemBackground}; margin: 0.5rem 0.5rem 0 0; position: relative; border-radius: var(--rounded); } .menu-checkbox:after { content: 'OFF'; color: ${vt.checkboxOff}; position: absolute; right: 0.2rem; top: -0.4rem; font-weight: 800; font-size: 0.5rem; } .menu-checkbox:before { content: 'ON'; color: ${vt.checkboxOn}; position: absolute; left: 0.3rem; top: -0.4rem; font-weight: 800; font-size: 0.5rem; } .menu-checkbox-label { width: 1.3rem; height: 0.8rem; cursor: pointer; position: absolute; top: 0.1rem; left: 0.1rem; z-index: 1; background: ${vt.checkboxOff}; border-radius: var(--rounded); transition: left 0.6s ease; } input[type=checkbox] { visibility: hidden; } input[type=checkbox]:checked + label { left: 1.4rem; background: ${vt.checkboxOn}; } .menu-range { margin: 0.2rem 0.5rem 0 0; width: 3.5rem; background: transparent; color: ${vt.rangeBackground}; } .menu-range:before { color: ${vt.rangeLabel}; margin: 0 0.4rem 0 0; font-weight: 800; font-size: 0.6rem; position: relative; top: 0.3rem; content: attr(value); } input[type=range] { -webkit-appearance: none; } input[type=range]::-webkit-slider-runnable-track { width: 100%; height: 1rem; cursor: pointer; background: ${vt.itemBackground}; border-radius: var(--rounded); border: 1px; } input[type=range]::-moz-range-track { width: 100%; height: 1rem; cursor: pointer; background: ${vt.itemBackground}; border-radius: var(--rounded); border: 1px; } input[type=range]::-webkit-slider-thumb { border: 1px solid #000000; margin-top: 0.05rem; height: 0.9rem; width: 1rem; border-radius: var(--rounded); background: ${vt.rangeBackground}; cursor: pointer; -webkit-appearance: none; } input[type=range]::-moz-range-thumb { border: 1px solid #000000; margin-top: 0.05rem; height: 0.9rem; width: 1rem; border-radius: var(--rounded); background: ${vt.rangeBackground}; cursor: pointer; -webkit-appearance: none; } .svg-background { fill:darkslategrey; cursor:pointer; opacity: 0.6; } .svg-foreground { fill:white; cursor:pointer; opacity: 0.8; } `,t=document.createElement("style");t.innerHTML=e,document.getElementsByTagName("head")[0].appendChild(t),o6=!0}var l6=class{constructor(t,n,r,a){a&&(vt={...vt,...a}),lre(),this.createMenu(t,n,r),this.id=0,this.instance=Lc,Lc++,this._maxFPS=0,this.hidden=0}createMenu(t,n="",r={top:null,left:null,bottom:null,right:null}){this.menu=document.createElement("div"),this.menu.id=`menu-${Lc}`,this.menu.className="menu",r&&(r.top&&(this.menu.style.top=r.top),r.bottom&&(this.menu.style.bottom=r.bottom),r.left&&(this.menu.style.left=r.left),r.right&&(this.menu.style.right=r.right)),this.container=document.createElement("div"),this.container.id=`menu-container-${Lc}`,this.container.className="menu-container menu-container-fadein";let a=document.createElement("div");a.className="menu-title",a.id=`menu-title-${Lc}`;let s=` `;n&&(a.innerHTML=`${n}${s}`),this.menu.appendChild(a),a.addEventListener("click",()=>{this.container.classList.toggle("menu-container-fadeout"),this.container.classList.toggle("menu-container-fadein"),this.menu.style.borderStyle=this.container.classList.contains("menu-container-fadeout")?"none":"solid"}),this.menu.appendChild(this.container),typeof t=="object"?t.appendChild(this.menu):document.getElementById(t).appendChild(this.menu)}get newID(){return this.id++,`menu-${this.instance}-${this.id}`}get ID(){return`menu-${this.instance}-${this.id}`}get width(){return this.menu.offsetWidth}get height(){return this.menu.offsetHeight}hide(){this.container.classList.contains("menu-container-fadein")&&(this.container.classList.toggle("menu-container-fadeout"),this.container.classList.toggle("menu-container-fadein"))}visible(){return this.container.classList.contains("menu-container-fadein")}toggle(t){if(this.container.classList.toggle("menu-container-fadeout"),this.container.classList.toggle("menu-container-fadein"),this.container.classList.contains("menu-container-fadein")&&t){let n=t.x||(t.touches&&t.touches[0]?t.touches[0].pageX:null);n&&(this.menu.style.left=`${n-this.menu.offsetWidth/2}px`),this.menu.offsetLeft<0&&(this.menu.style.left=0),this.menu.offsetLeft+this.menu.offsetWidth>window.innerWidth&&(this.menu.style.left=null,this.menu.style.right=0),this.menu.style.borderStyle="solid"}else this.menu.style.borderStyle="none"}addTitle(t){let n=document.createElement("div");return n.className="menu-title",n.id=this.newID,n.innerHTML=t,this.menu.appendChild(n),n.addEventListener("click",()=>{this.hidden=!this.hidden;let r=document.getElementsByClassName("menu");for(let a of r)a.style.display=this.hidden?"none":"block"}),n}addLabel(t){let n=document.createElement("div");return n.className="menu-item menu-label",n.id=this.newID,n.innerHTML=t,this.container.appendChild(n),n}addBool(t,n,r,a){let s=document.createElement("div");return s.className="menu-item",s.innerHTML=`${t}`,this.container.appendChild(s),s.addEventListener("change",i=>{n[r]=i.target.checked,a&&a(i.target.checked)}),s}async addList(t,n,r,a){let s=document.createElement("div");s.className="menu-item";let i="";for(let o of n)i+=``;return s.innerHTML=`${t}`,s.style.fontFamily=document.body.style.fontFamily,s.style.fontSize=document.body.style.fontSize,s.style.fontVariant=document.body.style.fontVariant,this.container.appendChild(s),s.addEventListener("change",o=>{a&&a(n[o.target.selectedIndex])}),s}addRange(t,n,r,a,s,i,o){let l=document.createElement("div");return l.className="menu-item",l.innerHTML=`${t}`,this.container.appendChild(l),l.addEventListener("change",c=>{n[r]=parseInt(c.target.value)===parseFloat(c.target.value)?parseInt(c.target.value):parseFloat(c.target.value),c.target.setAttribute("value",c.target.value),o&&o(c.target.value)}),l.input=l.children[0],l}addHTML(t){let n=document.createElement("div");return n.className="menu-item",n.id=this.newID,t&&(n.innerHTML=t),this.container.appendChild(n),n}addButton(t,n,r){let a=document.createElement("button");return a.className="menu-item menu-button",a.style.fontFamily=document.body.style.fontFamily,a.style.fontSize=document.body.style.fontSize,a.style.fontVariant=document.body.style.fontVariant,a.type="button",a.id=this.newID,a.innerText=t,this.container.appendChild(a),a.addEventListener("click",()=>{a.innerText===t?a.innerText=n:a.innerText=t,r&&r(a.innerText!==t)}),a}addValue(t,n,r=""){let a=document.createElement("div");return a.className="menu-item",a.id=`menu-val-${t}`,a.innerText=`${t}: ${n}${r}`,this.container.appendChild(a),a}updateValue(t,n,r=""){let a=document.getElementById(`menu-val-${t}`);a?a.innerText=`${t}: ${n}${r}`:this.addValue(t,n)}addChart(t,n,r=150,a=40,s){s&&(vt.chartColor=s);let i=document.createElement("div");return i.className="menu-item menu-chart-title",i.id=this.newID,i.innerHTML=`${t}`,this.container.appendChild(i),i}async updateChart(t,n){if(!n||n.length===0)return;let r=document.getElementById(`menu-canvas-${t}`);if(!r)return;let a=r.getContext("2d");a.fillStyle=vt.background,a.fillRect(0,0,r.width,r.height);let s=r.width/n.length,i=1+Math.max(...n),o=r.height/i;for(let l=0;l 00 FPS `,u6=class{constructor(t,n={}){this.css=ure,this.svg=cre,this.paramLogger=()=>{},this.chartLogger=()=>{},this.chartLen=20,this.chartHz=20,this.names=[],this.cpuAccums=[],this.gpuAccums=[],this.activeAccums=[],this.chart=new Array(this.chartLen),this.now=()=>performance&&performance.now?performance.now():Date.now(),this.updateUI=()=>{[].forEach.call(this.nodes["gl-gpu-svg"],o=>o.style.display=this.trackGPU?"inline":"none")},Object.assign(this,n),this.detected=0,this.finished=[],this.isFramebuffer=0,this.frameId=0;let r,a=0,s,i=o=>{++a<20?r=requestAnimationFrame(i):(this.detected=Math.ceil(1e3*a/(o-s)/70),cancelAnimationFrame(r)),s||(s=o)};if(requestAnimationFrame(i),t){let o=async(u,h)=>Promise.resolve(setTimeout(()=>{t.getError();let d=this.now()-u;h.forEach((p,f)=>{p&&(this.gpuAccums[f]+=d)})},0)),l=(u,h,d)=>{let p=h.now();u.apply(d,arguments),h.trackGPU&&h.finished.push(o(p,h.activeAccums.slice(0)))},c="drawElements";t[c]?t[c]=l(t[c],this,t):console.log("bench: cannot attach to webgl function")}if(!this.withoutUI){this.dom||(this.dom=document.body);let o=document.createElement("div");o.id="gl-bench",this.dom.appendChild(o),this.dom.insertAdjacentHTML("afterbegin",'"),this.dom=o,this.dom.addEventListener("click",()=>{this.trackGPU=!this.trackGPU,this.updateUI()}),this.paramLogger=((l,c,u)=>{let h=["gl-cpu","gl-gpu","gl-mem","gl-fps","gl-gpu-svg","gl-chart"],d={...h};return h.forEach(p=>d[p]=c.getElementsByClassName(p)),this.nodes=d,(p,f,m,A,y,g,w)=>{d["gl-cpu"][p].style.strokeDasharray=(f*.27).toFixed(0)+" 100",d["gl-gpu"][p].style.strokeDasharray=(m*.27).toFixed(0)+" 100",d["gl-mem"][p].innerHTML=u[p]?u[p]:A?"mem: "+A.toFixed(0)+"mb":"",d["gl-fps"][p].innerHTML="FPS: "+y.toFixed(1),l(u[p],f,m,A,y,g,w)}})(this.paramLogger,this.dom,this.names),this.chartLogger=((l,c)=>{let u={"gl-chart":c.getElementsByClassName("gl-chart")};return(h,d,p)=>{let f="",m=d.length;for(let A=0;A=1e3){let a=this.frameId-this.paramFrame,s=a/r*1e3;for(let i=0;i{this.gpuAccums[i]=0,this.finished=[]})}this.paramFrame=this.frameId,this.paramTime=n}}if(!this.detected||!this.chartFrame)this.chartFrame=this.frameId,this.chartTime=n,this.circularId=0;else{let r=n-this.chartTime,a=this.chartHz*r/1e3;for(;--a>0&&this.detected;){let i=(this.frameId-this.chartFrame)/r*1e3;this.chart[this.circularId%this.chartLen]=i;for(let o=0;o0&&((r=e==null?void 0:e.face[0].embedding)==null?void 0:r.length)!==192)return;_i||(_i=e,document.getElementById("compare-canvas").getContext("2d").drawImage(_i.canvas,0,0,200,200));let t=pe.simmilarity((a=_i==null?void 0:_i.face[0])==null?void 0:a.embedding,(s=e==null?void 0:e.face[0])==null?void 0:s.embedding);document.getElementById("simmilarity").innerText=`simmilarity: ${Math.trunc(1e3*t)/10}%`}var h6=performance.now();async function e1(e){let t=Qp,n=document.getElementById("canvas");oe.drawFPS.push(1e3/(performance.now()-h6)),oe.drawFPS.length>oe.maxFPSframes&&oe.drawFPS.shift(),h6=performance.now(),await _e.process.updateChart("FPS",oe.detectFPS),(oe.buffered||!t.canvas)&&(t.canvas=await pe.image(e,Hr));let r=n.getContext("2d");r.fillStyle=oe.baseBackground,r.fillRect(0,0,n.width,n.height),t.canvas?(t.canvas.width!==n.width&&(n.width=t.canvas.width),t.canvas.height!==n.height&&(n.height=t.canvas.height),r.drawImage(t.canvas,0,0,t.canvas.width,t.canvas.height,0,0,t.canvas.width,t.canvas.height)):r.drawImage(e,0,0,e.width,e.height,0,0,n.width,n.height),await Pc.face(t.face,n,oe,pe.facemesh.triangulation),await Pc.body(t.body,n,oe),await Pc.hand(t.hand,n,oe),await Pc.gesture(t.gesture,n,oe),await dre(t);let a=pe.tf.engine(),s=a.backendInstance?`gpu: ${(a.backendInstance.numBytesInGPU?a.backendInstance.numBytesInGPU:0).toLocaleString()} bytes`:"",i=`system: ${a.state.numBytes.toLocaleString()} bytes ${s} | tensors: ${a.state.numTensors.toLocaleString()}`,o=t.canvas?`processing: ${t.canvas.width} x ${t.canvas.height}`:"",l=Math.trunc(10*oe.detectFPS.reduce((h,d)=>h+d,0)/oe.detectFPS.length)/10,c=Math.trunc(10*oe.drawFPS.reduce((h,d)=>h+d,0)/oe.drawFPS.length)/10,u=oe.detectFPS.length>5&&l<5?'warning: your performance is low: try switching to higher performance backend, lowering resolution or disabling some models':"";document.getElementById("log").innerHTML=` video: ${oe.camera.name} | facing: ${oe.camera.facing} | screen: ${window.innerWidth} x ${window.innerHeight} camera: ${oe.camera.width} x ${oe.camera.height} ${o}
backend: ${pe.tf.getBackend()} | ${i}
performance: ${hre(t.performance)}ms FPS process:${l} refresh:${c}
${u}
`,oe.framesDraw++,oe.lastFrame=performance.now(),oe.buffered?oe.drawThread=requestAnimationFrame(()=>e1(e,n)):!oe.buffered&&oe.drawThread&&(On("stopping buffered refresh"),cancelAnimationFrame(oe.drawThread),oe.drawThread=null)}async function t1(){var c;if(oe.busy)return null;oe.busy=!0;let e=document.getElementById("video"),t=document.getElementById("canvas"),n=document.getElementById("log"),r=e.srcObject?e.srcObject.getVideoTracks()[0].readyState==="live"&&e.readyState>2&&!e.paused:!1,a="";if(Kn("setting up camera"),!navigator.mediaDevices)return a="camera access not supported",n.innerText+=` ${a}`,On(a),Kn(a),oe.busy=!1,a;let s,i={audio:!1,video:{facingMode:oe.facing?"user":"environment",resizeMode:oe.crop?"crop-and-scale":"none"}};window.innerWidth>window.innerHeight?i.video.width={ideal:window.innerWidth}:i.video.height={ideal:window.innerHeight-document.getElementById("menubar").offsetHeight};try{s=await navigator.mediaDevices.getUserMedia(i)}catch(u){return u.name==="PermissionDeniedError"||u.name==="NotAllowedError"?a="camera permission denied":u.name==="SourceUnavailableError"?a="camera not available":a=`camera error: ${u.message||u}`,n.innerText+=` ${a}`,Kn(a),On("camera error:",u),oe.busy=!1,a}if(s)e.srcObject=s;else return oe.busy=!1,"camera stream empty";let o=s.getVideoTracks()[0],l=o.getSettings();return oe.camera={name:(c=o.label)==null?void 0:c.toLowerCase(),width:l.width,height:l.height,facing:l.facingMode==="user"?"front":"back"},new Promise(u=>{e.onloadeddata=async()=>{e.width=e.videoWidth,e.height=e.videoHeight,t.width=e.width,t.height=e.height,t.style.width=t.width>t.height?"100vw":"",t.style.height=t.width>t.height?"":"100vh",oe.menuWidth.input.setAttribute("value",e.width),oe.menuHeight.input.setAttribute("value",e.height);let h=Math.trunc(window.devicePixelRatio*(8+4*t.width/window.innerWidth));oe.baseFont=oe.baseFontProto.replace(/{size}/,`${h}px`),oe.baseLineHeight=h+2,r&&e.play(),r&&!oe.detectThread&&Bc(e,t),oe.busy=!1,Kn(""),u()}})}function d6(){if(!wi){let e=null;wi=new c6(e,{trackGPU:!1,chartHz:20,chartLen:20}),wi.begin()}}function pre(e,t,n,r){Jp||(On("creating worker thread"),Jp=new Worker(oe.worker,{type:"module"}),Jp.addEventListener("message",a=>{a.data.result.performance&&a.data.result.performance.total&&oe.detectFPS.push(1e3/a.data.result.performance.total),oe.detectFPS.length>oe.maxFPSframes&&oe.detectFPS.shift(),oe.bench&&(wi||d6(),wi.nextFrame(r)),document.getElementById("gl-bench")&&(document.getElementById("gl-bench").style.display=oe.bench?"block":"none"),Qp=a.data.result,oe.framesDetect++,oe.drawThread||e1(e),oe.detectThread=requestAnimationFrame(s=>Bc(e,n,s))})),Jp.postMessage({image:t.data.buffer,width:n.width,height:n.height,userConfig:Hr},[t.data.buffer])}function Bc(e,t,n){var a;if(!(e.srcObject&&e.srcObject.getVideoTracks()[0].readyState==="live"&&e.readyState>2&&!e.paused)&&e.srcObject){oe.drawThread&&cancelAnimationFrame(oe.drawThread),oe.detectThread&&cancelAnimationFrame(oe.detectThread),oe.drawThread=null,oe.detectThread=null,e.paused?On("camera paused"):e.srcObject.getVideoTracks()[0].readyState==="live"&&e.readyState<=2?setTimeout(()=>Bc(e,t),500):On(`camera not ready: track state: ${(a=e.srcObject)==null?void 0:a.getVideoTracks()[0].readyState} stream state: ${e.readyState}`),clearTimeout(oe.drawThread),oe.drawThread=null,On("frame statistics: process:",oe.framesDetect,"refresh:",oe.framesDraw),On("memory",pe.tf.engine().memory());return}if(Kn(""),oe.useWorker){let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t.width,t.height):document.createElement("canvas");s.width=t.width,s.height=t.height;let i=s.getContext("2d");i.drawImage(e,0,0,e.width,e.height,0,0,t.width,t.height);let o=i.getImageData(0,0,t.width,t.height);pre(e,o,t,Hr,n)}else pe.detect(e,Hr).then(s=>{s.performance&&s.performance.total&&oe.detectFPS.push(1e3/s.performance.total),oe.detectFPS.length>oe.maxFPSframes&&oe.detectFPS.shift(),oe.bench&&(wi||d6(),wi.nextFrame(n)),document.getElementById("gl-bench")&&(document.getElementById("gl-bench").style.display=oe.bench?"block":"none"),s.error?(On(s.error),document.getElementById("log").innerText+=` Human error: ${s.error}`):(Qp=s,oe.drawThread||e1(e),oe.framesDetect++,oe.detectThread=requestAnimationFrame(i=>Bc(e,t,i)))})}async function fre(e){return new Promise(t=>{let n=new Image;n.onload=async()=>{On("Processing image:",n.src);let r=document.getElementById("canvas");n.width=n.naturalWidth,n.height=n.naturalHeight,r.width=pe.config.filter.width&&pe.config.filter.width>0?pe.config.filter.width:n.naturalWidth,r.height=pe.config.filter.height&&pe.config.filter.height>0?pe.config.filter.height:n.naturalHeight,Qp=await pe.detect(n,Hr),await e1(n);let s=document.createElement("canvas");s.className="thumbnail",s.width=window.innerWidth/(oe.columns+.1),s.height=r.height/(window.innerWidth/s.width),s.getContext("2d").drawImage(r,0,0,r.width,r.height,0,0,s.width,s.height),document.getElementById("samples-container").appendChild(s),n.src="",t(!0)},n.src=e})}async function p6(){Hr.videoOptimized=!0,document.getElementById("samples-container").style.display="none",document.getElementById("canvas").style.display="block";let e=document.getElementById("video"),t=document.getElementById("canvas");if(e.srcObject!==null&&!e.paused)document.getElementById("play").style.display="block",document.getElementById("btnStart").className="button button-start",document.getElementById("btnStart").innerHTML="start
video",Kn("paused"),e.pause();else{let n=await t1();if(n)Kn(n);else{document.getElementById("play").style.display="none";for(let r of Object.values(_e))r.hide();Kn(""),document.getElementById("btnStart").className="button button-stop",document.getElementById("btnStart").innerHTML="pause
video",await e.play(),oe.detectThread||Bc(e,t)}}}async function mre(){document.getElementById("play").style.display="none",Hr.videoOptimized=!1;let e=Math.trunc(window.devicePixelRatio*(8+4*oe.columns));oe.baseFont=oe.baseFontProto.replace(/{size}/,`${e}px`),oe.baseLineHeight=e+2,document.getElementById("canvas").style.display="none",document.getElementById("samples-container").style.display="block",On("Running detection of sample images"),Kn("processing images"),document.getElementById("samples-container").innerHTML="";for(let t of oe.samples)await fre(t);Kn("")}function Are(){let e=[];window.innerWidth>800?e=[`${document.getElementById("btnDisplay").offsetLeft-50}px`,`${document.getElementById("btnImage").offsetLeft-50}px`,`${document.getElementById("btnProcess").offsetLeft-50}px`,`${document.getElementById("btnModel").offsetLeft-50}px`]:e=["0rem","11rem","21.1rem","33rem"],_e.display=new Wc(document.body,"",{top:`${document.getElementById("menubar").offsetHeight}px`,left:e[0]}),_e.display.addBool("perf monitor",oe,"bench",t=>oe.bench=t),_e.display.addBool("buffered output",oe,"buffered",t=>oe.buffered=t),_e.display.addBool("crop & scale",oe,"crop",()=>t1()),_e.display.addBool("camera facing",oe,"facing",()=>t1()),_e.display.addHTML('
'),_e.display.addBool("use 3D depth",oe,"useDepth"),_e.display.addBool("draw boxes",oe,"drawBoxes"),_e.display.addBool("draw polygons",oe,"drawPolygons"),_e.display.addBool("Fill Polygons",oe,"fillPolygons"),_e.display.addBool("draw points",oe,"drawPoints"),_e.image=new Wc(document.body,"",{top:`${document.getElementById("menubar").offsetHeight}px`,left:e[1]}),_e.image.addBool("enabled",pe.config.filter,"enabled"),oe.menuWidth=_e.image.addRange("image width",pe.config.filter,"width",0,3840,10,t=>pe.config.filter.width=parseInt(t)),oe.menuHeight=_e.image.addRange("image height",pe.config.filter,"height",0,2160,10,t=>pe.config.filter.height=parseInt(t)),_e.image.addHTML('
'),_e.image.addRange("brightness",pe.config.filter,"brightness",-1,1,.05,t=>pe.config.filter.brightness=parseFloat(t)),_e.image.addRange("contrast",pe.config.filter,"contrast",-1,1,.05,t=>pe.config.filter.contrast=parseFloat(t)),_e.image.addRange("sharpness",pe.config.filter,"sharpness",0,1,.05,t=>pe.config.filter.sharpness=parseFloat(t)),_e.image.addRange("blur",pe.config.filter,"blur",0,20,1,t=>pe.config.filter.blur=parseInt(t)),_e.image.addRange("saturation",pe.config.filter,"saturation",-1,1,.05,t=>pe.config.filter.saturation=parseFloat(t)),_e.image.addRange("hue",pe.config.filter,"hue",0,360,5,t=>pe.config.filter.hue=parseInt(t)),_e.image.addRange("pixelate",pe.config.filter,"pixelate",0,32,1,t=>pe.config.filter.pixelate=parseInt(t)),_e.image.addHTML('
'),_e.image.addBool("negative",pe.config.filter,"negative"),_e.image.addBool("sepia",pe.config.filter,"sepia"),_e.image.addBool("vintage",pe.config.filter,"vintage"),_e.image.addBool("kodachrome",pe.config.filter,"kodachrome"),_e.image.addBool("technicolor",pe.config.filter,"technicolor"),_e.image.addBool("polaroid",pe.config.filter,"polaroid"),_e.process=new Wc(document.body,"",{top:`${document.getElementById("menubar").offsetHeight}px`,left:e[2]}),_e.process.addList("backend",["cpu","webgl","wasm","humangl"],pe.config.backend,t=>pe.config.backend=t),_e.process.addBool("async operations",pe.config,"async",t=>pe.config.async=t),_e.process.addBool("enable profiler",pe.config,"profile",t=>pe.config.profile=t),_e.process.addBool("memory shield",pe.config,"deallocate",t=>pe.config.deallocate=t),_e.process.addBool("use web worker",oe,"useWorker"),_e.process.addHTML('
'),_e.process.addLabel("model parameters"),_e.process.addRange("max objects",pe.config.face.detector,"maxFaces",1,50,1,t=>{pe.config.face.detector.maxFaces=parseInt(t),pe.config.body.maxDetections=parseInt(t),pe.config.hand.maxHands=parseInt(t)}),_e.process.addRange("skip frames",pe.config.face.detector,"skipFrames",0,50,1,t=>{pe.config.face.detector.skipFrames=parseInt(t),pe.config.face.emotion.skipFrames=parseInt(t),pe.config.face.age.skipFrames=parseInt(t),pe.config.hand.skipFrames=parseInt(t)}),_e.process.addRange("min confidence",pe.config.face.detector,"minConfidence",0,1,.05,t=>{pe.config.face.detector.minConfidence=parseFloat(t),pe.config.face.gender.minConfidence=parseFloat(t),pe.config.face.emotion.minConfidence=parseFloat(t),pe.config.hand.minConfidence=parseFloat(t)}),_e.process.addRange("score threshold",pe.config.face.detector,"scoreThreshold",.1,1,.05,t=>{pe.config.face.detector.scoreThreshold=parseFloat(t),pe.config.hand.scoreThreshold=parseFloat(t),pe.config.body.scoreThreshold=parseFloat(t)}),_e.process.addRange("overlap",pe.config.face.detector,"iouThreshold",.1,1,.05,t=>{pe.config.face.detector.iouThreshold=parseFloat(t),pe.config.hand.iouThreshold=parseFloat(t)}),_e.process.addBool("detection rotation",pe.config.face.detector,"rotation",t=>{pe.config.face.detector.rotation=t,pe.config.hand.rotation=t}),_e.process.addHTML('
'),_e.process.addButton("process sample images","process images",()=>mre()),_e.process.addHTML('
'),_e.process.addChart("FPS","FPS"),_e.models=new Wc(document.body,"",{top:`${document.getElementById("menubar").offsetHeight}px`,left:e[3]}),_e.models.addBool("face detect",pe.config.face,"enabled"),_e.models.addBool("face mesh",pe.config.face.mesh,"enabled"),_e.models.addBool("face iris",pe.config.face.iris,"enabled"),_e.models.addBool("face age",pe.config.face.age,"enabled"),_e.models.addBool("face gender",pe.config.face.gender,"enabled"),_e.models.addBool("face emotion",pe.config.face.emotion,"enabled"),_e.models.addHTML('
'),_e.models.addBool("body pose",pe.config.body,"enabled"),_e.models.addBool("hand pose",pe.config.hand,"enabled"),_e.models.addHTML('
'),_e.models.addBool("gestures",pe.config.gesture,"enabled"),_e.models.addHTML('
'),_e.models.addBool("face compare",pe.config.face.embedding,"enabled",t=>{_i=null,pe.config.face.embedding.enabled=t}),document.getElementById("btnDisplay").addEventListener("click",t=>_e.display.toggle(t)),document.getElementById("btnImage").addEventListener("click",t=>_e.image.toggle(t)),document.getElementById("btnProcess").addEventListener("click",t=>_e.process.toggle(t)),document.getElementById("btnModel").addEventListener("click",t=>_e.models.toggle(t)),document.getElementById("btnStart").addEventListener("click",()=>p6()),document.getElementById("play").addEventListener("click",()=>p6())}async function yre(){On("Demo starting ..."),On("Browser:",navigator==null?void 0:navigator.userAgent),Are(),document.getElementById("log").innerText=`Human: version ${pe.version}`,oe.modelsPreload&&!oe.useWorker&&(Kn("loading"),await pe.load(Hr)),oe.useWorker||(Kn("initializing"),await pe.warmup(Hr)),Kn("human: ready"),document.getElementById("loader").style.display="none",document.getElementById("play").style.display="block",On("Demo ready...")}window.onload=yre;window.onresize=t1; /** * @license * Copyright 2017 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2018 Google LLC * * Use of this source code is governed by an MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT. * ============================================================================= */ /** * @license * Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * ============================================================================= */ /** * @license * Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2019 Google LLC * * Use of this source code is governed by an MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT. * ============================================================================= */ /** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * ============================================================================= */ /** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2020 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2020 Google LLC * * Use of this source code is governed by an MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT. * ============================================================================= */ /** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the License); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2021 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** @license See the LICENSE file. */ //# sourceMappingURL=demo-browser-index.js.map