/** * Human demo for NodeJS using http fetch to get image file * * Requires [node-fetch](https://www.npmjs.com/package/node-fetch) to provide `fetch` functionality in NodeJS environment */ const fs = require('fs'); const log = require('@vladmandic/pilogger'); // eslint-disable-line node/no-unpublished-require // in nodejs environments tfjs-node is required to be loaded before human const tf = require('@tensorflow/tfjs-node'); // eslint-disable-line node/no-unpublished-require // const human = require('@vladmandic/human'); // use this when human is installed as module (majority of use cases) const Human = require('../../dist/human.node.js'); // use this when using human in dev mode const humanConfig = { modelBasePath: 'https://vladmandic.github.io/human/models/', }; async function main(inputFile) { // @ts-ignore global.fetch = (await import('node-fetch')).default; // eslint-disable-line node/no-unpublished-import const human = new Human.Human(humanConfig); // create instance of human using default configuration log.info('Human:', human.version, 'TF:', tf.version_core); await human.load(); // optional as models would be loaded on-demand first time they are required await human.warmup(); // optional as model warmup is performed on-demand first time its executed const buffer = fs.readFileSync(inputFile); // read file data into buffer const tensor = human.tf.node.decodeImage(buffer); // decode jpg data const result = await human.detect(tensor); // run detection; will initialize backend and on-demand load models log.data(result.gesture); } main('samples/in/ai-body.jpg');