/** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ const tf = require('@tensorflow/tfjs'); const box = require('./box'); class HandDetector { constructor(model, inputSize, anchorsAnnotated) { this.model = model; this.anchors = anchorsAnnotated.map((anchor) => [anchor.x_center, anchor.y_center]); this.anchorsTensor = tf.tensor2d(this.anchors); this.inputSizeTensor = tf.tensor1d([inputSize, inputSize]); this.doubleInputSizeTensor = tf.tensor1d([inputSize * 2, inputSize * 2]); } normalizeBoxes(boxes) { return tf.tidy(() => { const boxOffsets = tf.slice(boxes, [0, 0], [-1, 2]); const boxSizes = tf.slice(boxes, [0, 2], [-1, 2]); const boxCenterPoints = tf.add(tf.div(boxOffsets, this.inputSizeTensor), this.anchorsTensor); const halfBoxSizes = tf.div(boxSizes, this.doubleInputSizeTensor); const startPoints = tf.mul(tf.sub(boxCenterPoints, halfBoxSizes), this.inputSizeTensor); const endPoints = tf.mul(tf.add(boxCenterPoints, halfBoxSizes), this.inputSizeTensor); return tf.concat2d([startPoints, endPoints], 1); }); } normalizeLandmarks(rawPalmLandmarks, index) { return tf.tidy(() => { const landmarks = tf.add(tf.div(rawPalmLandmarks.reshape([-1, 7, 2]), this.inputSizeTensor), this.anchors[index]); return tf.mul(landmarks, this.inputSizeTensor); }); } async getBoxes(input, config) { const batched = this.model.predict(input); const predictions = batched.squeeze(); batched.dispose(); const scores = tf.tidy(() => tf.sigmoid(tf.slice(predictions, [0, 0], [-1, 1])).squeeze()); const scoresVal = scores.dataSync(); const rawBoxes = tf.slice(predictions, [0, 1], [-1, 4]); const boxes = this.normalizeBoxes(rawBoxes); rawBoxes.dispose(); const filteredT = await tf.image.nonMaxSuppressionAsync(boxes, scores, config.maxHands, config.iouThreshold, config.scoreThreshold); const filtered = filteredT.arraySync(); scores.dispose(); filteredT.dispose(); const hands = []; for (const boxIndex of filtered) { if (scoresVal[boxIndex] >= config.minConfidence) { const matchingBox = tf.slice(boxes, [boxIndex, 0], [1, -1]); const rawPalmLandmarks = tf.slice(predictions, [boxIndex, 5], [1, 14]); const palmLandmarks = tf.tidy(() => this.normalizeLandmarks(rawPalmLandmarks, boxIndex).reshape([-1, 2])); rawPalmLandmarks.dispose(); hands.push({ box: matchingBox, palmLandmarks, confidence: scoresVal[boxIndex] }); } } predictions.dispose(); boxes.dispose(); return hands; } async estimateHandBounds(input, config) { const inputHeight = input.shape[1]; const inputWidth = input.shape[2]; const image = tf.tidy(() => input.resizeBilinear([config.inputSize, config.inputSize]).div(127.5).sub(1)); const predictions = await this.getBoxes(image, config); image.dispose(); if (!predictions || predictions.length === 0) return null; const hands = []; for (const prediction of predictions) { const boxes = prediction.box.dataSync(); const startPoint = boxes.slice(0, 2); const endPoint = boxes.slice(2, 4); const palmLandmarks = prediction.palmLandmarks.arraySync(); prediction.box.dispose(); prediction.palmLandmarks.dispose(); hands.push(box.scaleBoxCoordinates({ startPoint, endPoint, palmLandmarks, confidence: prediction.confidence }, [inputWidth / config.inputSize, inputHeight / config.inputSize])); } return hands; } } exports.HandDetector = HandDetector;