/** * Human demo for NodeJS */ const log = require('@vladmandic/pilogger'); const fs = require('fs'); const process = require('process'); const canvas = require('canvas'); let fetch; // fetch is dynamically imported later // for NodeJS, `tfjs-node` or `tfjs-node-gpu` should be loaded before using Human // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars const tf = require('@tensorflow/tfjs-node'); // or const tf = require('@tensorflow/tfjs-node-gpu'); // load specific version of Human library that matches TensorFlow mode const Human = require('../../dist/human.node.js').default; // or const Human = require('../dist/human.node-gpu.js').default; let human = null; const myConfig = { backend: 'tensorflow', modelBasePath: 'file://models/', debug: false, async: true, filter: { enabled: false }, face: { enabled: true, detector: { enabled: true }, mesh: { enabled: true }, iris: { enabled: true }, description: { enabled: true }, emotion: { enabled: true }, }, hand: { enabled: true }, body: { enabled: true }, object: { enabled: true }, }; async function init() { // create instance of human human = new Human(myConfig); // wait until tf is ready await human.tf.ready(); // pre-load models log.info('Human:', human.version); await human.load(); const loaded = Object.keys(human.models).filter((a) => human.models[a]); log.info('Loaded:', loaded); log.info('Memory state:', human.tf.engine().memory()); } async function detect(input, output) { // read input image file and create tensor to be used for processing let buffer; log.info('Loading image:', input); if (input.startsWith('http:') || input.startsWith('https:')) { const res = await fetch(input); if (res && res.ok) buffer = await res.buffer(); else log.error('Invalid image URL:', input, res.status, res.statusText, res.headers.get('content-type')); } else { buffer = fs.readFileSync(input); } // decode image using tfjs-node so we don't need external depenencies // can also be done using canvas.js or some other 3rd party image library if (!buffer) return {}; const tensor = human.tf.tidy(() => { const decode = human.tf.node.decodeImage(buffer, 3); let expand; if (decode.shape[2] === 4) { // input is in rgba format, need to convert to rgb const channels = human.tf.split(decode, 4, 2); // tf.split(tensor, 4, 2); // split rgba to channels const rgb = human.tf.stack([channels[0], channels[1], channels[2]], 2); // stack channels back to rgb and ignore alpha expand = human.tf.reshape(rgb, [1, decode.shape[0], decode.shape[1], 3]); // move extra dim from the end of tensor and use it as batch number instead } else { expand = human.tf.expandDims(decode, 0); } const cast = human.tf.cast(expand, 'float32'); return cast; }); // image shape contains image dimensions and depth log.state('Processing:', tensor['shape']); // run actual detection let result; try { result = await human.detect(tensor, myConfig); } catch (err) { log.error('caught'); } // dispose image tensor as we no longer need it human.tf.dispose(tensor); // print data to console if (result) { // invoke persons getter const persons = result.persons; log.data('Detected:'); for (let i = 0; i < persons.length; i++) { const face = persons[i].face; const faceTxt = face ? `score:${face.score} age:${face.age} gender:${face.gender} iris:${face.iris}` : null; const body = persons[i].body; const bodyTxt = body ? `score:${body.score} keypoints:${body.keypoints?.length}` : null; log.data(` #${i}: Face:${faceTxt} Body:${bodyTxt} LeftHand:${persons[i].hands.left ? 'yes' : 'no'} RightHand:${persons[i].hands.right ? 'yes' : 'no'} Gestures:${persons[i].gestures.length}`); } } // load and draw original image const outputCanvas = new canvas.Canvas(tensor.shape[2], tensor.shape[1], 'image'); // decoded tensor shape tells us width and height const ctx = outputCanvas.getContext('2d'); const original = await canvas.loadImage(buffer); // we already have input as buffer, so lets reuse it ctx.drawImage(original, 0, 0, outputCanvas.width, outputCanvas.height); // draw original to new canvas // draw human results on canvas human.setCanvas(outputCanvas); // tell human to use this canvas human.draw.all(outputCanvas, result); // human will draw results as overlays on canvas // write canvas to new image file const out = fs.createWriteStream(output); out.on('finish', () => log.state('Created output image:', output)); out.on('error', (err) => log.error('Error creating image:', output, err)); const stream = outputCanvas.createJPEGStream({ quality: 0.5, progressive: true, chromaSubsampling: true }); stream.pipe(out); return result; } async function main() { log.header(); log.info('Current folder:', process.env.PWD); fetch = (await import('node-fetch')).default; await init(); const input = process.argv[2]; const output = process.argv[3]; if (process.argv.length !== 4) { log.error('Parameters: missing'); } else if (!fs.existsSync(input) && !input.startsWith('http')) { log.error(`File not found: ${process.argv[2]}`); } else { await detect(input, output); } } main();