/* Human library homepage: author: ' */ var hv=Object.create,oh=Object.defineProperty,dv=Object.getPrototypeOf,pv=Object.prototype.hasOwnProperty,fv=Object.getOwnPropertyNames,mv=Object.getOwnPropertyDescriptor,K2=e=>oh(e,"__esModule",{value:!0}),ut=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),Av=(e,t)=>{K2(e);for(var n in t)oh(e,n,{get:t[n],enumerable:!0})},yv=(e,t,n)=>{if(K2(e),t&&typeof t=="object"||typeof t=="function")for(let r of fv(t))!pv.call(e,r)&&r!=="default"&&oh(e,r,{get:()=>t[r],enumerable:!(n=mv(t,r))||n.enumerable});return e},ze=e=>e&&e.__esModule?e:yv(oh(e!=null?hv(dv(e)):{},"default",{value:e,enumerable:!0}),e),gv=ut(e=>{var t=6;function n(u){let h={strides:[u/16,u/8],anchors:[2,6]},d=[];for(let p=0;p{u.startEndTensor.dispose(),u.startPoint.dispose(),u.endPoint.dispose()},a=u=>({startEndTensor:u,startPoint:Me(u,[0,0],[-1,2]),endPoint:Me(u,[0,2],[-1,2])}),s=(u,h)=>{let d=B(u.startPoint,h),p=B(u.endPoint,h),f=Zl([d,p],1);return a(f)};function i(u,h,d){let p=Me(u,[0,1],[-1,2]),f=ie(p,h),m=Me(u,[0,3],[-1,2]),A=Ne(m,d),y=Ne(f,d),g=Ne(A,2),w=_e(y,g),x=ie(y,g),_=B(w,d),b=B(x,d);return Zl([_,b],1)}function o(u,h){return H(()=>{let d=u.box?u.box:u;return s(d,h).startEndTensor.squeeze()})}var l=class{constructor(u,h){this.blazeFaceModel=u,this.width=h.face.detector.inputSize,this.height=h.face.detector.inputSize,this.anchorsData=n(h.face.detector.inputSize),this.anchors=dr(this.anchorsData),this.inputSize=Qt([this.width,this.height]),this.config=h,this.scaleFaces=.8}async getBoundingBoxes(u){if(!u||u.isDisposedInternal||u.shape.length!==4||u.shape[1]<1||u.shape[2]<1)return null;let[h,d,p]=H(()=>{let w=u.resizeBilinear([this.width,this.height]),x=_e(w.div(127.5),1),_=this.blazeFaceModel.predict(x),b;if(Array.isArray(_)){let C=_.sort((O,V)=>O.size-V.size),$=dt([C[0],C[2]],2),D=dt([C[1],C[3]],2);b=dt([D,$],1).squeeze(0)}else b=_.squeeze();let T=i(b,this.anchors,this.inputSize),S=Me(b,[0,0],[-1,1]),N=Jn(S).squeeze();return[b,T,N]}),f=await Et.nonMaxSuppressionAsync(d,p,this.config.face.detector.maxFaces,this.config.face.detector.iouThreshold,this.config.face.detector.scoreThreshold),m=f.arraySync();f.dispose();let A=m.map(w=>Me(d,[w,0],[1,-1])).map(w=>{let x=w.arraySync();return w.dispose(),x}),y=p.dataSync(),g=[];for(let w=0;wthis.config.face.detector.minConfidence){let b=a(A[w]),T=this.anchorsData[x],S=H(()=>Me(h,[x,t-1],[1,-1]).squeeze().reshape([t,-1]));g.push({box:b,landmarks:S,anchor:T,confidence:_})}}return h.dispose(),d.dispose(),p.dispose(),h.dispose(),{boxes:g,scaleFactor:[u.shape[2]/this.width,u.shape[1]/this.height]}}async estimateFaces(u){let{boxes:h,scaleFactor:d}=await this.getBoundingBoxes(u),p=[];for(let f of h){let m=f.landmarks.arraySync(),A=o(f,d),y=s.arraySync(),g=f.probability.arraySync(),w=f.anchor,[x,_]=d,b=m.map(S=>[(S[0]+w[0])*x,(S[1]+w[1])*_]),T={topLeft:y.slice(0,2),bottomRight:y.slice(2),landmarks:b,probability:g};r(f.box),f.landmarks.dispose(),f.probability.dispose(),A.dispose(),p.push(T)}return p}};async function c(u){let h=await Qn(u.face.detector.modelPath,{fromTFHub:u.face.detector.modelPath.includes("tfhub.dev")}),d=new l(h,u);return je(`load model: ${u.face.detector.modelPath.match(/\/(.*)\./)[1]}`),d}e.load=c,e.BlazeFaceModel=l,e.disposeBox=r}),xv=ut(e=>{function t(o,l){let c=[o.startPoint[0]*l[0],o.startPoint[1]*l[1]],u=[o.endPoint[0]*l[0],o.endPoint[1]*l[1]];return{startPoint:c,endPoint:u}}e.scaleBoxCoordinates=t;function n(o){return[Math.abs(o.endPoint[0]-o.startPoint[0]),Math.abs(o.endPoint[1]-o.startPoint[1])]}e.getBoxSize=n;function r(o){return[o.startPoint[0]+(o.endPoint[0]-o.startPoint[0])/2,o.startPoint[1]+(o.endPoint[1]-o.startPoint[1])/2]}e.getBoxCenter=r;function a(o,l,c){let u=l.shape[1],h=l.shape[2],d=[[o.startPoint[1]/u,o.startPoint[0]/h,o.endPoint[1]/u,o.endPoint[0]/h]];return Et.cropAndResize(l,d,[0],c)}e.cutBoxFromImageAndResize=a;function s(o,l=1.5){let c=r(o),u=n(o),h=[l*u[0]/2,l*u[1]/2],d=[c[0]-h[0],c[1]-h[1]],p=[c[0]+h[0],c[1]+h[1]];return{startPoint:d,endPoint:p,landmarks:o.landmarks}}e.enlargeBox=s;function i(o){let l=r(o),c=n(o),u=Math.max(...c)/2,h=[l[0]-u,l[1]-u],d=[l[0]+u,l[1]+u];return{startPoint:h,endPoint:d,landmarks:o.landmarks}}e.squarifyBox=i}),wv=ut(e=>{e.IDENTITY_MATRIX=[[1,0,0],[0,1,0],[0,0,1]];function t(d){return d-2*Math.PI*Math.floor((d+Math.PI)/(2*Math.PI))}e.normalizeRadians=t;function n(d,p){let f=Math.PI/2-Math.atan2(-(p[1]-d[1]),p[0]-d[0]);return t(f)}e.computeRotation=n;function r(d){return d*180/Math.PI}e.radToDegrees=r;function a(d,p){return[[1,0,d],[0,1,p],[0,0,1]]}function s(d,p){let f=0;for(let m=0;m{var t={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},n=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],r=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],a=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255],s=[0,1,36,0,36,17,1,2,41,1,41,36,2,3,31,2,31,41,3,4,48,3,48,31,4,5,48,5,6,48,6,7,59,6,59,48,7,8,58,7,58,59,8,9,56,8,56,57,8,57,58,9,10,55,9,55,56,10,11,54,10,54,55,11,12,54,12,13,54,13,14,35,13,35,54,14,15,46,14,46,35,15,16,45,15,45,46,16,26,45,17,36,18,18,37,19,18,36,37,19,38,20,19,37,38,20,39,21,20,38,39,21,39,27,22,42,23,22,27,42,23,43,24,23,42,43,24,44,25,24,43,44,25,45,26,25,44,45,27,39,28,27,28,42,28,39,29,28,29,42,29,31,30,29,30,35,29,40,31,29,35,47,29,39,40,29,47,42,30,31,32,30,32,33,30,33,34,30,34,35,31,50,32,31,40,41,31,48,49,31,49,50,32,51,33,32,50,51,33,51,34,34,52,35,34,51,52,35,46,47,35,52,53,35,53,54,36,41,37,37,40,38,37,41,40,38,40,39,42,47,43,43,47,44,44,46,45,44,47,46,48,60,49,48,59,60,49,61,50,49,60,61,50,62,51,50,61,62,51,62,52,52,63,53,52,62,63,53,64,54,53,63,64,54,64,55,55,65,56,55,64,65,56,66,57,56,65,66,57,66,58,58,67,59,58,66,67,59,67,60,60,67,61,61,66,62,61,67,66,62,66,63,63,65,64,63,66,65,21,27,22],i=[0,8,7,7,8,1,2,10,9,9,10,3,17,0,18,18,0,7,18,7,19,19,7,1,19,1,11,19,11,20,21,3,22,21,9,3,20,9,21,20,2,9,20,11,2,23,17,18,25,21,22,24,19,20,24,18,19,24,20,21,24,23,18,24,21,25,11,12,4,11,4,13,1,12,11,11,13,2,12,14,4,4,14,13,14,5,15,14,15,6,12,5,14,14,6,13,8,12,1,2,13,10,8,26,12,10,13,27,26,5,12,13,6,27,0,26,8,10,27,3,5,32,16,16,32,6,5,30,32,6,32,31,26,30,5,27,6,31,0,28,26,3,27,29,17,28,0,3,29,22,23,28,17,22,29,25,28,30,26,27,31,29],o=[0,4,1,2,4,3,4,5,6],l=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],c=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],u=[33,133,362,263,1,78,308];e.MESH_ANNOTATIONS=t,e.MESH_TO_IRIS_INDICES_MAP=n,e.TRI468=a,e.TRI68=s,e.TRI33=i,e.TRI7=o,e.UV468=r,e.UV68=l.map(h=>r[h]),e.UV33=c.map(h=>r[h]),e.UV7=u.map(h=>r[h])}),_v=ut(e=>{var t=ze(xv()),n=ze(wv()),r=ze(Z2()),a=468,s=13,i=[s,r.MESH_ANNOTATIONS.midwayBetweenEyes[0]],o=3,l=2,c=[o,l],u=r.MESH_ANNOTATIONS.leftEyeLower0,h=[u[0],u[u.length-1]],d=r.MESH_ANNOTATIONS.rightEyeLower0,p=[d[0],d[d.length-1]],f=3,m=4,A=71,y=76;function g(x,_,b,T){for(let S=0;S[N[0]*(W[0]-this.meshWidth/2),N[1]*(W[1]-this.meshHeight/2),W[2]]),$=b!==0?n.buildRotationMatrix(b,[0,0]):n.IDENTITY_MATRIX,D=b!==0?C.map(W=>[...n.rotatePoint(W,$),W[2]]):C,O=b!==0?n.invertTransformMatrix(T):n.IDENTITY_MATRIX,V=[...t.getBoxCenter({startPoint:_.startPoint,endPoint:_.endPoint}),1];return D.map(W=>[W[0]+n.dot(V,O[0]),W[1]+n.dot(V,O[1]),W[2]])}getLeftToRightEyeDepthDifference(x){let _=x[h[0]][2],b=x[p[0]][2];return _-b}getEyeBox(x,_,b,T,S=!1){let N=t.squarifyBox(t.enlargeBox(this.calculateLandmarksBoundingBox([x[b],x[T]]),this.irisEnlarge)),C=t.getBoxSize(N),$=Et.cropAndResize(_,[[N.startPoint[1]/this.meshHeight,N.startPoint[0]/this.meshWidth,N.endPoint[1]/this.meshHeight,N.endPoint[0]/this.meshWidth]],[0],[this.irisSize,this.irisSize]);return S&&($=Et.flipLeftRight($)),{box:N,boxSize:C,crop:$}}getEyeCoords(x,_,b,T=!1){let S=[];for(let N=0;N{let D=N;return $===2?D=T:$===4&&(D=S),[C[0],C[1],D]})}async predict(x,_){let b=!1,T;if((this.skipped===0||this.skipped>_.face.detector.skipFrames||!_.face.mesh.enabled||!_.videoOptimized)&&(T=await this.boundingBoxDetector.getBoundingBoxes(x),this.skipped=0),_.videoOptimized&&this.skipped++,T&&T.boxes&&(!_.face.mesh.enabled||T.boxes.length!==this.detectedFaces&&this.detectedFaces!==_.face.detector.maxFaces)){this.storedBoxes=[],this.detectedFaces=0;for(let N of T.boxes)this.storedBoxes.push({startPoint:N.box.startPoint.dataSync(),endPoint:N.box.endPoint.dataSync(),landmarks:N.landmarks,confidence:N.confidence});this.storedBoxes.length>0&&(b=!0)}if(b){if(!T||!T.boxes||T.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let N=0;N{N.box.startPoint.dispose(),N.box.endPoint.dispose(),N.landmarks.dispose()});let S=H(()=>this.storedBoxes.map((N,C)=>{let $,D=0,O;if(_.face.detector.rotation){let[ne,he]=N.landmarks.length>=a?i:c;D=n.computeRotation(N.landmarks[ne],N.landmarks[he]);let le=t.getBoxCenter({startPoint:N.startPoint,endPoint:N.endPoint}),me=[le[0]/x.shape[2],le[1]/x.shape[1]],Ae=Et.rotateWithOffset(x,D,0,me);O=n.buildRotationMatrix(-D,le),$=t.cutBoxFromImageAndResize({startPoint:N.startPoint,endPoint:N.endPoint},Ae,[this.meshHeight,this.meshWidth]).div(255)}else{O=n.IDENTITY_MATRIX;let ne=x.clone();$=t.cutBoxFromImageAndResize({startPoint:N.startPoint,endPoint:N.endPoint},ne,[this.meshHeight,this.meshWidth]).div(255)}if(!_.face.mesh.enabled)return{coords:null,box:N,faceConfidence:null,confidence:N.confidence,image:$};let[,V,W]=this.meshDetector.predict($),K=V.dataSync()[0];if(K<_.face.detector.minConfidence)return null;let X=q(W,[-1,3]).arraySync();if(_.face.iris.enabled){let{box:ne,boxSize:he,crop:le}=this.getEyeBox(X,$,h[0],h[1],!0),{box:me,boxSize:Ae,crop:we}=this.getEyeBox(X,$,p[0],p[1]),Te=this.irisModel.predict(dt([le,we])).dataSync(),Ce=Te.slice(0,y*3),{rawCoords:De,iris:Ge}=this.getEyeCoords(Ce,ne,he,!0),Be=Te.slice(y*3),{rawCoords:Qe,iris:st}=this.getEyeCoords(Be,me,Ae),Ue=this.getLeftToRightEyeDepthDifference(X);Math.abs(Ue)<30?(g(X,De,"left"),g(X,Qe,"right")):Ue<1?g(X,De,"left",["EyeUpper0","EyeLower0"]):g(X,Qe,"right",["EyeUpper0","EyeLower0"]);let ot=this.getAdjustedIrisCoords(X,Ge,"left"),lt=this.getAdjustedIrisCoords(X,st,"right");X=X.concat(ot).concat(lt)}let ee=this.transformRawCoords(X,N,D,O),Z=t.enlargeBox(this.calculateLandmarksBoundingBox(ee)),ae=t.squarifyBox(Z),J=dr(ee),oe={coords:J,box:Z,faceConfidence:K,confidence:N.confidence,image:$};return _.face.mesh.returnRawData&&(oe.rawCoords=X),this.storedBoxes[C]={...ae,landmarks:J.arraySync(),confidence:N.confidence,faceConfidence:K},oe}));return S=S.filter(N=>N!==null),this.detectedFaces=S.length,S}calculateLandmarksBoundingBox(x){let _=x.map(N=>N[0]),b=x.map(N=>N[1]),T=[Math.min(..._),Math.min(...b)],S=[Math.max(..._),Math.max(...b)];return{startPoint:T,endPoint:S,landmarks:x}}};e.Pipeline=w}),bv=ut(e=>{var t=ze(gv()),n=ze(_v()),r=ze(Z2()),a=class{constructor(o,l,c,u){this.facePipeline=new n.Pipeline(o,l,c,u),this.config=u}async estimateFaces(o,l){let c=await this.facePipeline.predict(o,l),u=[];for(let h of c||[]){if(h.isDisposedInternal)continue;let d=h.coords?h.coords.arraySync():null,p=h.rawCoords,f={};if(d&&d.length>0)for(let y of Object.keys(r.MESH_ANNOTATIONS))f[y]=r.MESH_ANNOTATIONS[y].map(g=>d[g]);let m=l.face.mesh.returnRawData&&h.box?{topLeft:h.box.startPoint,bottomRight:h.box.endPoint}:null,A=h.box?[Math.max(0,h.box.startPoint[0]),Math.max(0,h.box.startPoint[1]),Math.min(o.shape[2],h.box.endPoint[0])-h.box.startPoint[0],Math.min(o.shape[1],h.box.endPoint[1])-h.box.startPoint[1]]:0;u.push({confidence:h.confidence||0,box:A,mesh:d,boxRaw:m,meshRaw:p,annotations:f,image:h.image?Nr(h.image):null}),h.coords&&h.coords.dispose(),h.image&&h.image.dispose()}return u}},s=[null,null,null];async function i(o){s=await Promise.all([!s[0]&&o.face.enabled?t.load(o):null,!s[1]&&o.face.mesh.enabled?Qn(o.face.mesh.modelPath,{fromTFHub:o.face.mesh.modelPath.includes("tfhub.dev")}):null,!s[2]&&o.face.iris.enabled?Qn(o.face.iris.modelPath,{fromTFHub:o.face.iris.modelPath.includes("tfhub.dev")}):null]);let l=new a(s[0],s[1],s[2],o);return o.face.mesh.enabled&&je(`load model: ${o.face.mesh.modelPath.match(/\/(.*)\./)[1]}`),o.face.iris.enabled&&je(`load model: ${o.face.iris.modelPath.match(/\/(.*)\./)[1]}`),l}e.load=i,e.MediaPipeFaceMesh=a,e.triangulation=r.TRI468}),Mi=ut(e=>{var t={};function n(r,a){if(!a||!a.kernels)return;let s=5,i=a.kernels.filter(u=>u.kernelTimeMs>0).reduce((u,h)=>u+=h.kernelTimeMs,0),o=a.kernels.map((u,h)=>(u.id=h,u)).filter(u=>u.kernelTimeMs>0).sort((u,h)=>h.kernelTimeMs-u.kernelTimeMs),l=a.kernels.map((u,h)=>(u.id=h,u)).filter(u=>u.totalBytesSnapshot>0).sort((u,h)=>h.totalBytesSnapshot-u.totalBytesSnapshot);o.length>s&&(o.length=s),l.length>s&&(l.length=s);let c={newBytes:a.newBytes,newTensors:a.newTensors,peakBytes:a.peakBytes,numKernelOps:a.kernels.length,timeKernelOps:i,slowestKernelOps:o,largestKernelOps:l};t[r]=c,je("Human profiler",r,c)}e.run=n}),vv=ut(e=>{var t=ze(Mi()),n=class{constructor(a,s){this.model=a,this.config=s}async estimateFaces(a,s){s&&(this.config=s);let i=[],o=Et.resizeBilinear(a,[this.config.face.detector.inputSize,this.config.face.detector.inputSize]),l=o.toInt(),c,u;if(s.profile){let h=await $i(()=>this.model.executeAsync(l));c=h.result[0].dataSync(),u=h.result[1].squeeze().arraySync(),h.result.forEach(d=>d.dispose()),t.run("faceboxes",h)}else{let[h,d,p]=await this.model.executeAsync(l);c=h.dataSync();let f=d.squeeze();u=f.arraySync(),h.dispose(),d.dispose(),f.dispose(),p.dispose()}l.dispose(),o.dispose();for(let h in u)if(c[h]&&c[h]>this.config.face.detector.minConfidence){let d=1.05,p=[u[h][0]/d,u[h][1]/d,u[h][2]*d,u[h][3]*d],f=[p[1],p[0],p[3]-p[1],p[2]-p[0]],m=[parseInt(f[0]*a.shape[2]),parseInt(f[1]*a.shape[1]),parseInt(f[2]*a.shape[2]),parseInt(f[3]*a.shape[1])],A=Et.cropAndResize(a,[p],[0],[this.config.face.detector.inputSize,this.config.face.detector.inputSize]);i.push({confidence:c[h],box:m,boxRaw:f,image:A})}return i}};async function r(a){let s=await Qn(a.face.detector.modelPath);je(`load model: ${a.face.detector.modelPath.match(/\/(.*)\./)[1]}`);let i=new n(s,a);return a.face.mesh.enabled&&je(`load model: ${a.face.mesh.modelPath.match(/\/(.*)\./)[1]}`),a.face.iris.enabled&&je(`load model: ${a.face.iris.modelPath.match(/\/(.*)\./)[1]}`),i}e.load=r,e.FaceBoxes=n}),kv=ut(e=>{var t=ze(Mi()),n={},r={age:0},a=Number.MAX_SAFE_INTEGER;async function s(o){return n.age||(n.age=await Qn(o.face.age.modelPath),je(`load model: ${o.face.age.modelPath.match(/\/(.*)\./)[1]}`)),n.age}async function i(o,l){return n.age?a0?(a++,r):(l.videoOptimized?a=0:a=Number.MAX_SAFE_INTEGER,new Promise(async c=>{let u=Et.resizeBilinear(o,[l.face.age.inputSize,l.face.age.inputSize],!1),h=B(u,[255]);Re(u);let d,p={};if(!l.profile)l.face.age.enabled&&(d=await n.age.predict(h));else{let f=l.face.age.enabled?await $i(()=>n.age.predict(h)):{};d=f.result.clone(),f.result.dispose(),t.run("age",f)}if(h.dispose(),d){let f=d.dataSync();p.age=Math.trunc(10*f[0])/10}d.dispose(),r=p,c(p)})):null}e.predict=i,e.load=s}),Iv=ut(e=>{var t=ze(Mi()),n={},r={gender:""},a=Number.MAX_SAFE_INTEGER,s=!1,i=[.2989,.587,.114];async function o(c){return n.gender||(n.gender=await Qn(c.face.gender.modelPath),s=n.gender.inputs[0].shape[3]===1,je(`load model: ${c.face.gender.modelPath.match(/\/(.*)\./)[1]}`)),n.gender}async function l(c,u){return n.gender?a{let d=Et.resizeBilinear(c,[u.face.gender.inputSize,u.face.gender.inputSize],!1),p;s?p=H(()=>{let[A,y,g]=rn(d,3,3),w=B(A,i[0]),x=B(y,i[1]),_=B(g,i[2]);return lh([w,x,_]).sub(.5).mul(2)}):p=B(d,[255]),Re(d);let f,m={};if(!u.profile)u.face.gender.enabled&&(f=await n.gender.predict(p));else{let A=u.face.gender.enabled?await $i(()=>n.gender.predict(p)):{};f=A.result.clone(),A.result.dispose(),t.run("gender",A)}if(p.dispose(),f){let A=f.dataSync();if(s){let y=Math.trunc(100*Math.abs(A[0]-A[1]))/100;y>u.face.gender.minConfidence&&(m.gender=A[0]>A[1]?"female":"male",m.confidence=y)}else{let y=Math.trunc(200*Math.abs(A[0]-.5))/100;y>u.face.gender.minConfidence&&(m.gender=A[0]<=.5?"female":"male",m.confidence=Math.min(.99,y))}}f.dispose(),r=m,h(m)})):null}e.predict=l,e.load=o}),Nv=ut(e=>{var t=ze(Mi()),n=["angry","disgust","fear","happy","sad","surprise","neutral"],r={},a=[],s=Number.MAX_SAFE_INTEGER,i=[.2989,.587,.114],o=1;async function l(u){return r.emotion||(r.emotion=await Qn(u.face.emotion.modelPath),je(`load model: ${u.face.emotion.modelPath.match(/\/(.*)\./)[1]}`)),r.emotion}async function c(u,h){return r.emotion?s0?(s++,a):(h.videoOptimized?s=0:s=Number.MAX_SAFE_INTEGER,new Promise(async d=>{let p=Et.resizeBilinear(u,[h.face.emotion.inputSize,h.face.emotion.inputSize],!1),[f,m,A]=rn(p,3,3);p.dispose();let y=B(f,i[0]),g=B(m,i[1]),w=B(A,i[2]);f.dispose(),m.dispose(),A.dispose();let x=lh([y,g,w]);y.dispose(),g.dispose(),w.dispose();let _=H(()=>x.sub(.5).mul(2));x.dispose();let b=[];if(h.face.emotion.enabled){let T;if(h.profile){let S=await $i(()=>r.emotion.predict(_));T=S.result.dataSync(),S.result.dispose(),t.run("emotion",S)}else{let S=await r.emotion.predict(_);T=S.dataSync(),Re(S)}for(let S=0;Sh.face.emotion.minConfidence&&b.push({score:Math.min(.99,Math.trunc(100*o*T[S])/100),emotion:n[S]});b.sort((S,N)=>N.score-S.score)}_.dispose(),a=b,d(b)})):null}e.predict=c,e.load=l}),Sv=ut(e=>{var t=ze(Mi()),n={};async function r(i){return n.embedding||(n.embedding=await Qn(i.face.embedding.modelPath),je(`load model: ${i.face.embedding.modelPath.match(/\/(.*)\./)[1]}`)),n.embedding}function a(i,o){if((i==null?void 0:i.length)!==(o==null?void 0:o.length))return 0;let l=2,c=10*i.map((u,h)=>u-o[h]).reduce((u,h)=>u+h**l,0)**(1/l);return Math.trunc(1e3*(1-c))/1e3}async function s(i,o){return n.embedding?new Promise(async l=>{let c=Et.resizeBilinear(i,[o.face.embedding.inputSize,o.face.embedding.inputSize],!1),u=[];if(o.face.embedding.enabled)if(o.profile){let h=await $i(()=>n.embedding.predict({img_inputs:c}));u=[...h.result.dataSync()],h.result.dispose(),t.run("emotion",h)}else{let h=await n.embedding.predict({img_inputs:c});u=[...h.dataSync()],Re(h)}c.dispose(),l(u)}):null}e.predict=s,e.simmilarity=a,e.load=r}),Tv=ut(e=>{var t=[-123.15,-115.9,-103.06];function n(s){let[i,o,l,c]=s;return{offsets:i,heatmap:o,displacementFwd:l,displacementBwd:c}}function r(s){let[i,o,l,c]=s;return{offsets:l,heatmap:c,displacementFwd:i,displacementBwd:o}}var a=class{constructor(s){this.model=s}predict(s,i){return H(()=>{let o=(i.body.modelType==="ResNet"?s.toFloat().add(t):s.toFloat().div(127.5).sub(1)).expandDims(0),l=this.model.predict(o).map(u=>u.squeeze([0])),c=i.body.modelType==="ResNet"?r(l):n(l);return{heatmapScores:c.heatmap.sigmoid(),offsets:c.offsets,displacementFwd:c.displacementFwd,displacementBwd:c.displacementBwd}})}dispose(){this.model.dispose()}};e.BaseModel=a}),Ev=ut(e=>{function t(r){return Math.floor(r/2)}var n=class{constructor(r,a){this.priorityQueue=new Array(r),this.numberOfElements=-1,this.getElementValue=a}enqueue(r){this.priorityQueue[++this.numberOfElements]=r,this.swim(this.numberOfElements)}dequeue(){let r=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,r}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(r){for(;r>0&&this.less(t(r),r);)this.exchange(r,t(r)),r=t(r)}sink(r){for(;2*r<=this.numberOfElements;){let a=2*r;if(a{var t=ze(Ev());function n(a,s,i,o,l,c){let[u,h]=c.shape,d=!0,p=Math.max(i-l,0),f=Math.min(i+l+1,u);for(let m=p;ms){d=!1;break}if(!d)break}return d}function r(a,s,i){let[o,l,c]=i.shape,u=new t.MaxHeap(o*l*c,({score:h})=>h);for(let h=0;h{e.partNames=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],e.NUM_KEYPOINTS=e.partNames.length,e.partIds=e.partNames.reduce((n,r,a)=>(n[r]=a,n),{});var t=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]];e.connectedPartIndices=t.map(([n,r])=>[e.partIds[n],e.partIds[r]]),e.poseChain=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]],e.partChannels=["left_face","right_face","right_upper_leg_front","right_lower_leg_back","right_upper_leg_back","left_lower_leg_front","left_upper_leg_front","left_upper_leg_back","left_lower_leg_back","right_feet","right_lower_leg_front","left_feet","torso_front","torso_back","right_upper_arm_front","right_upper_arm_back","right_lower_arm_back","left_lower_arm_front","left_upper_arm_front","left_upper_arm_back","left_lower_arm_back","right_hand","right_lower_arm_front","left_hand"]}),Y2=ut(e=>{var t=ze(Yl());function n(c,u,h,d){return{y:d.get(c,u,h),x:d.get(c,u,h+t.NUM_KEYPOINTS)}}e.getOffsetPoint=n;function r(c,u,h){let{heatmapY:d,heatmapX:p,id:f}=c,{y:m,x:A}=n(d,p,f,h);return{x:c.heatmapX*u+A,y:c.heatmapY*u+m}}e.getImageCoords=r;function a(c,u){let h=new Array(u);for(let d=0;dh?h:c}e.clamp=s;function i(c,u,h,d){let p=h-c,f=d-u;return p*p+f*f}e.squaredDistance=i;function o(c,u){return{x:c.x+u.x,y:c.y+u.y}}e.addVectors=o;function l(c,u,h){return{y:s(c.y,u,h),x:s(c.x,u,h)}}e.clampVector=l}),Rv=ut(e=>{var t=ze(Yl());function n(l,c){let u=c.shape[0],h=new Float32Array(u);for(let d=0;dl.toTensor().mul(Se(c,"int32")).toFloat().add(a(l,u)))}e.getOffsetPoints=s;function i(l,c){return H(()=>{let u=l.div(Se(c,"int32"));return l.sub(u.mul(Se(c,"int32")))})}function o(l){let[c,u,h]=l.shape;return H(()=>{let d=l.reshape([c*u,h]).argMax(0),p=d.div(Se(u,"int32")).expandDims(1),f=i(d,u).expandDims(1);return dt([p,f],1)})}e.argmax2d=o}),J2=ut(e=>{var t=ze(Yl()),n=ze(Y2()),r=ze(Rv()),a=t.poseChain.map(([d,p])=>[t.partIds[d],t.partIds[p]]),s=a.map(([,d])=>d),i=a.map(([d])=>d);function o(d,p,f){let m=f.shape[2]/2;return{y:f.get(p.y,p.x,d),x:f.get(p.y,p.x,m+d)}}function l(d,p,f,m){return{y:n.clamp(Math.round(d.y/p),0,f-1),x:n.clamp(Math.round(d.x/p),0,m-1)}}function c(d,p,f,m,A,y,g,w=2){let[x,_]=m.shape,b=l(p.position,y,x,_),T=o(d,b,g),S=n.addVectors(p.position,T);for(let $=0;$=0;--S){let N=s[S],C=i[S];x[N]&&!x[C]&&(x[C]=c(S,x[N],C,p,f,m,y))}for(let S=0;S(m+=N,{position:{y:b.get(C,0),x:b.get(C,1)},part:t.partNames[C],score:N})),S=T.filter(N=>N.score>f.body.scoreThreshold);return A.dispose(),_.dispose(),{keypoints:S,score:m/T.length}}e.decodeSinglePose=h}),Fv=ut(e=>{var t=ze(Cv()),n=ze(J2()),r=ze(Y2()),a=1;function s(l,c,{x:u,y:h},d){return l.some(({keypoints:p})=>{let f=p[d].position;return r.squaredDistance(h,u,f.y,f.x)<=c})}function i(l,c,u){return u.reduce((h,{position:d,score:p},f)=>(s(l,c,d,f)||(h+=p),h),0)/u.length}function o(l,c,u,h,d){let p=[],f=t.buildPartWithScoreQueue(d.body.scoreThreshold,a,l),m=d.body.nmsRadius^2;for(;p.lengthd.body.scoreThreshold&&p.push({keypoints:g,score:w})}return p}e.decodeMultiplePoses=o}),Q2=ut(e=>{var t=ze(Yl());function n(d,p,f){return d(n(d[m].score,d[A].score,p)||f.push([d[m],d[A]]),f),[])}e.getAdjacentKeyPoints=r;var{NEGATIVE_INFINITY:a,POSITIVE_INFINITY:s}=Number;function i(d){return d.reduce(({maxX:p,maxY:f,minX:m,minY:A},{position:{x:y,y:g}})=>({maxX:Math.max(p,y),maxY:Math.max(f,g),minX:Math.min(m,y),minY:Math.min(A,g)}),{maxX:a,maxY:a,minX:s,minY:s})}e.getBoundingBox=i;function o(d){let{minX:p,minY:f,maxX:m,maxY:A}=i(d);return[{x:p,y:f},{x:m,y:f},{x:m,y:A},{x:p,y:A}]}e.getBoundingBoxPoints=o;async function l(d){return Promise.all(d.map(p=>p.buffer()))}e.toTensorBuffers3D=l;function c(d,p,f){return{score:d.score,keypoints:d.keypoints.map(({score:m,part:A,position:y})=>({score:m,part:A,position:{x:y.x*f,y:y.y*p}}))}}e.scalePose=c;function u(d,[p,f]){let m=d.squeeze(0),A=m.resizeBilinear([p,f]);return m.dispose(),A}e.resizeTo=u;function h(d,[p,f],[m,A]){return d.map(y=>c(y,p/m,f/A))}e.scaleAndFlipPoses=h}),Mv=ut(e=>{var t=ze(Tv()),n=ze(Fv()),r=ze(J2()),a=ze(Q2());async function s(c,u,h){return new Promise(async d=>{let p=c.shape[1],f=c.shape[2],m=await a.toTensorBuffers3D([u.heatmapScores,u.offsets,u.displacementFwd,u.displacementBwd]),A=m[0],y=m[1],g=m[2],w=m[3],x=await n.decodeMultiplePoses(A,y,g,w,h),_=a.scaleAndFlipPoses(x,[p,f],[h.body.inputSize,h.body.inputSize]);d(_)})}async function i(c,u,h){return new Promise(async d=>{let p=c.shape[1],f=c.shape[2],m=[await r.decodeSinglePose(u.heatmapScores,u.offsets,h)],A=a.scaleAndFlipPoses(m,[p,f],[h.body.inputSize,h.body.inputSize]);d(A)})}var o=class{constructor(c){this.baseModel=c}async estimatePoses(c,u){let h=a.resizeTo(c,[u.body.inputSize,u.body.inputSize]),d=this.baseModel.predict(h,u),p=u.body.maxDetections<2?await i(c,d,u):await s(c,d,u);return d.heatmapScores.dispose(),d.offsets.dispose(),d.displacementFwd.dispose(),d.displacementBwd.dispose(),h.dispose(),p}dispose(){this.baseModel.dispose()}};e.PoseNet=o;async function l(c){let u=await Qn(c.body.modelPath),h=new t.BaseModel(u);return je(`load model: ${c.body.modelPath.match(/\/(.*)\./)[1]}`),new o(h)}e.load=l}),$v=ut(e=>{var t=ze(Mv()),n=ze(Yl()),r=ze(Q2());e.load=t.load,e.PoseNet=t.PoseNet,e.partChannels=n.partChannels,e.partIds=n.partIds,e.partNames=n.partNames,e.poseChain=n.poseChain,e.getAdjacentKeyPoints=r.getAdjacentKeyPoints,e.getBoundingBox=r.getBoundingBox,e.getBoundingBoxPoints=r.getBoundingBoxPoints,e.scaleAndFlipPoses=r.scaleAndFlipPoses,e.scalePose=r.scalePose}),Ov=ut(e=>{var t=class{constructor(n,r,a){this.model=n,this.anchors=a.map(s=>[s.x_center,s.y_center]),this.anchorsTensor=dr(this.anchors),this.inputSizeTensor=Qt([r,r]),this.doubleInputSizeTensor=Qt([r*2,r*2])}normalizeBoxes(n){return H(()=>{let r=Me(n,[0,0],[-1,2]),a=Me(n,[0,2],[-1,2]),s=ie(Ne(r,this.inputSizeTensor),this.anchorsTensor),i=Ne(a,this.doubleInputSizeTensor),o=B(_e(s,i),this.inputSizeTensor),l=B(ie(s,i),this.inputSizeTensor);return Zl([o,l],1)})}normalizeLandmarks(n,r){return H(()=>{let a=ie(Ne(n.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[r]);return B(a,this.inputSizeTensor)})}async getBoxes(n,r){let a=this.model.predict(n),s=a.squeeze();a.dispose();let i=H(()=>Jn(Me(s,[0,0],[-1,1])).squeeze()),o=i.dataSync(),l=Me(s,[0,1],[-1,4]),c=this.normalizeBoxes(l);l.dispose();let u=await Et.nonMaxSuppressionAsync(c,o,r.hand.maxHands,r.hand.iouThreshold,r.hand.scoreThreshold),h=u.arraySync();i.dispose(),u.dispose();let d=[];for(let p of h)if(o[p]>=r.hand.minConfidence){let f=Me(c,[p,0],[1,-1]),m=Me(s,[p,5],[1,14]),A=H(()=>this.normalizeLandmarks(m,p).reshape([-1,2]));m.dispose(),d.push({box:f,palmLandmarks:A,confidence:o[p]})}return s.dispose(),c.dispose(),d}async estimateHandBounds(n,r){let a=n.shape[1],s=n.shape[2],i=H(()=>n.resizeBilinear([r.hand.inputSize,r.hand.inputSize]).div(127.5).sub(1)),o=await this.getBoxes(i,r);i.dispose();let l=[];if(!o||o.length===0)return l;for(let c of o){let u=c.box.dataSync(),h=u.slice(0,2),d=u.slice(2,4),p=c.palmLandmarks.arraySync();c.box.dispose(),c.palmLandmarks.dispose(),l.push(Dv({startPoint:h,endPoint:d,palmLandmarks:p,confidence:c.confidence},[s/r.hand.inputSize,a/r.hand.inputSize]))}return l}};e.HandDetector=t}),Wv=ut(e=>{var t=5,n=1.65,r=[0,5,9,13,17,1,2],a=0,s=2,i=class{constructor(o,l,c){this.handDetector=o,this.landmarkDetector=l,this.inputSize=c,this.storedBoxes=[],this.skipped=0,this.detectedHands=0}getBoxForPalmLandmarks(o,l){let c=o.map(h=>tg([...h,1],l)),u=this.calculateLandmarksBoundingBox(c);return pf(ff(u),t)}getBoxForHandLandmarks(o){let l=this.calculateLandmarksBoundingBox(o),c=pf(ff(l),n);c.palmLandmarks=[];for(let u=0;u[d[0]*(w[0]-this.inputSize/2),d[1]*(w[1]-this.inputSize/2),d[2]*w[2]]),f=eg(c,[0,0]),m=p.map(w=>[...tg(w,f),w[2]]),A=Lv(u),y=[...uh(l),1],g=[qa(y,A[0]),qa(y,A[1])];return m.map(w=>[w[0]+g[0],w[1]+g[1],w[2]])}async estimateHands(o,l){let c=!1,u;(this.skipped===0||this.skipped>l.hand.skipFrames||!l.hand.landmarks||!l.videoOptimized)&&(u=await this.handDetector.estimateHandBounds(o,l),this.skipped=0),l.videoOptimized&&this.skipped++,u&&u.length>0&&(u.length!==this.detectedHands&&this.detectedHands!==l.hand.maxHands||!l.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...u],this.storedBoxes.length>0&&(c=!0));let h=[];for(let d=0;d=l.hand.minConfidence){let N=q(T,[-1,3]),C=N.arraySync();T.dispose(),N.dispose();let $=this.transformRawCoords(C,w,f,g),D=this.getBoxForHandLandmarks($);this.storedBoxes[d]=D;let O={landmarks:$,confidence:S,box:{topLeft:D.startPoint,bottomRight:D.endPoint}};h.push(O)}else this.storedBoxes[d]=null;T.dispose()}else{let f=pf(ff(p),n),m={confidence:p.confidence,box:{topLeft:f.startPoint,bottomRight:f.endPoint}};h.push(m)}}return this.storedBoxes=this.storedBoxes.filter(d=>d!==null),this.detectedHands=h.length,h}calculateLandmarksBoundingBox(o){let l=o.map(d=>d[0]),c=o.map(d=>d[1]),u=[Math.min(...l),Math.min(...c)],h=[Math.max(...l),Math.max(...c)];return{startPoint:u,endPoint:h}}};e.HandPipeline=i}),Bv=ut(e=>{e.anchors=[{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375}]}),Vv=ut(e=>{var t=ze(Ov()),n=ze(Wv()),r=ze(Bv()),a={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},s=class{constructor(o){this.handPipeline=o}static getAnnotations(){return a}async estimateHands(o,l){let c=await this.handPipeline.estimateHands(o,l);if(!c)return[];let u=[];for(let h of c){let d={};if(h.landmarks)for(let f of Object.keys(a))d[f]=a[f].map(m=>h.landmarks[m]);let p=h.box?[Math.max(0,h.box.topLeft[0]),Math.max(0,h.box.topLeft[1]),Math.min(o.shape[2],h.box.bottomRight[0])-h.box.topLeft[0],Math.min(o.shape[1],h.box.bottomRight[1])-h.box.topLeft[1]]:0;u.push({confidence:h.confidence,box:p,landmarks:h.landmarks,annotations:d})}return u}};e.HandPose=s;async function i(o){let[l,c]=await Promise.all([o.hand.enabled?Qn(o.hand.detector.modelPath,{fromTFHub:o.hand.detector.modelPath.includes("tfhub.dev")}):null,o.hand.landmarks?Qn(o.hand.skeleton.modelPath,{fromTFHub:o.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),u=new t.HandDetector(l,o.hand.inputSize,r.anchors),h=new n.HandPipeline(u,c,o.hand.inputSize),d=new s(h);return o.hand.enabled&&je(`load model: ${o.hand.detector.modelPath.match(/\/(.*)\./)[1]}`),o.hand.landmarks&&je(`load model: ${o.hand.skeleton.modelPath.match(/\/(.*)\./)[1]}`),d}e.load=i}),Uv=ut(e=>{e.body=t=>{if(!t)return[];let n=[];for(let r=0;rc.part==="leftWrist"),s=t[r].keypoints.find(c=>c.part==="rightWrist"),i=t[r].keypoints.find(c=>c.part==="nose");i&&a&&s&&a.position.yc.part==="leftShoulder"),l=t[r].keypoints.find(c=>c.part==="rightShoulder");o&&l&&n.push({body:r,gesture:`leaning ${o.position.y>l.position.y?"left":"right"}`})}return n},e.face=t=>{if(!t)return[];let n=[];for(let r=0;r0){let a=t[r].mesh[35][2]-t[r].mesh[263][2];Math.abs(a)<10?n.push({face:r,gesture:"facing camera"}):n.push({face:r,gesture:`facing ${a<0?"right":"left"}`}),Math.abs(t[r].mesh[374][1]-t[r].mesh[386][1])/Math.abs(t[r].mesh[443][1]-t[r].mesh[450][1])<.2&&n.push({face:r,gesture:"blink left eye"}),Math.abs(t[r].mesh[145][1]-t[r].mesh[159][1])/Math.abs(t[r].mesh[223][1]-t[r].mesh[230][1])<.2&&n.push({face:r,gesture:"blink right eye"});let s=Math.min(100,500*Math.abs(t[r].mesh[13][1]-t[r].mesh[14][1])/Math.abs(t[r].mesh[10][1]-t[r].mesh[152][1]));s>10&&n.push({face:r,gesture:`mouth ${Math.trunc(s)}% open`});let i=t[r].mesh[152][2];Math.abs(i)>10&&n.push({face:r,gesture:`head ${i<0?"up":"down"}`})}return n},e.iris=t=>{if(!t)return[];let n=[];for(let r=0;r{if(!t)return[];let n=[];for(let r=0;r0){let s=a.reduce((o,l)=>o.position[2]o.position[1]{var t=function(r,a,s){let i=function(u,h,d){let p=new RegExp("\\b"+h+" \\w+ (\\w+)","ig");u.replace(p,(f,m)=>(d[m]=0,f))},o=function(u,h){let d=r.createShader(h);if(r.shaderSource(d,u),r.compileShader(d),!r.getShaderParameter(d,r.COMPILE_STATUS))throw new Error("Filter: GL compile failed",r.getShaderInfoLog(d));return d};this.uniform={},this.attribute={};let l=o(a,r.VERTEX_SHADER),c=o(s,r.FRAGMENT_SHADER);if(this.id=r.createProgram(),r.attachShader(this.id,l),r.attachShader(this.id,c),r.linkProgram(this.id),!r.getProgramParameter(this.id,r.LINK_STATUS))throw new Error("Filter: GL link failed",r.getProgramInfoLog(this.id));r.useProgram(this.id),i(a,"attribute",this.attribute);for(let u in this.attribute)this.attribute[u]=r.getAttribLocation(this.id,u);i(a,"uniform",this.uniform),i(s,"uniform",this.uniform);for(let u in this.uniform)this.uniform[u]=r.getUniformLocation(this.id,u)},n=function(r){r||(r={});let a=0,s=null,i=!1,o=-1,l=[null,null],c=[],u=-1,h=-1,d=null,p=null,f=r.canvas||document.createElement("canvas"),m={},A=f.getContext("webgl");if(!A)throw new Error("Filter: getContext() failed");this.addFilter=function(N){let C=Array.prototype.slice.call(arguments,1),$=S[N];c.push({func:$,args:C})},this.reset=function(){c=[]},this.apply=function(N){if(y(N.width,N.height),a=0,s||(s=A.createTexture()),A.bindTexture(A.TEXTURE_2D,s),A.texParameteri(A.TEXTURE_2D,A.TEXTURE_WRAP_S,A.CLAMP_TO_EDGE),A.texParameteri(A.TEXTURE_2D,A.TEXTURE_WRAP_T,A.CLAMP_TO_EDGE),A.texParameteri(A.TEXTURE_2D,A.TEXTURE_MIN_FILTER,A.NEAREST),A.texParameteri(A.TEXTURE_2D,A.TEXTURE_MAG_FILTER,A.NEAREST),A.texImage2D(A.TEXTURE_2D,0,A.RGBA,A.RGBA,A.UNSIGNED_BYTE,N),c.length===0)return x(),f;for(let C=0;C{var t=ze(Hv()),n=null,r=null;function a(s,i){let o;if(s instanceof tt)o=Nr(s);else{let l=s.naturalWidth||s.videoWidth||s.width||s.shape&&s.shape[1]>0,c=s.naturalHeight||s.videoHeight||s.height||s.shape&&s.shape[2]>0,u=l,h=c;if(i.filter.width>0?u=i.filter.width:i.filter.height>0&&(u=l*(i.filter.height/c)),i.filter.height>0?h=i.filter.height:i.filter.width>0&&(h=c*(i.filter.width/l)),!u||!h)return je("Human: invalid input",s),null;(!n||n.width!==u||n.height!==h)&&(n=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(u,h):document.createElement("canvas"),n.width!==u&&(n.width=u),n.height!==h&&(n.height=h));let d=n.getContext("2d");if(s instanceof ImageData?d.putImageData(s,0,0):d.drawImage(s,0,0,l,c,0,0,n.width,n.height),i.filter.enabled){if((!this.fx||!r||n.width!==r.width||n.height!==r.height)&&(r=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(n.width,n.height):document.createElement("canvas"),r.width!==n.width&&(r.width=n.width),r.height!==n.height&&(r.height=n.height),this.fx=bn.flags.IS_BROWSER?new t.Canvas({canvas:r}):null),!this.fx)return n;this.fx.reset(),this.fx.addFilter("brightness",i.filter.brightness),i.filter.contrast!==0&&this.fx.addFilter("contrast",i.filter.contrast),i.filter.sharpness!==0&&this.fx.addFilter("sharpen",i.filter.sharpness),i.filter.blur!==0&&this.fx.addFilter("blur",i.filter.blur),i.filter.saturation!==0&&this.fx.addFilter("saturation",i.filter.saturation),i.filter.hue!==0&&this.fx.addFilter("hue",i.filter.hue),i.filter.negative&&this.fx.addFilter("negative"),i.filter.sepia&&this.fx.addFilter("sepia"),i.filter.vintage&&this.fx.addFilter("brownie"),i.filter.sepia&&this.fx.addFilter("sepia"),i.filter.kodachrome&&this.fx.addFilter("kodachrome"),i.filter.technicolor&&this.fx.addFilter("technicolor"),i.filter.polaroid&&this.fx.addFilter("polaroid"),i.filter.pixelate!==0&&this.fx.addFilter("pixelate",i.filter.pixelate),this.fx.apply(n)}else r=n;let p;if(r.data){let m=[r.height,r.width,3];p=mf(r.data,m,"int32")}else if(i.backend==="webgl"||r instanceof ImageData)p=Jl.fromPixels(r);else{let m=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(u,h):document.createElement("canvas");m.width=u,m.height=h;let A=m.getContext("2d");A==null||A.drawImage(r,0,0);let y=A==null?void 0:A.getImageData(0,0,u,h);p=Jl.fromPixels(y)}let f=p.toFloat();o=f.expandDims(0),p.dispose(),f.dispose()}return{tensor:o,canvas:i.filter.return?r:null}}e.process=a});function je(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var ng={};Av(ng,{Abs:()=>Di,Acos:()=>Oi,Acosh:()=>zi,AdadeltaOptimizer:()=>xd,AdagradOptimizer:()=>wd,AdamOptimizer:()=>_d,AdamaxOptimizer:()=>bd,Add:()=>da,AddN:()=>Xa,All:()=>hh,Any:()=>dh,ArgMax:()=>Ka,ArgMin:()=>eu,Asin:()=>Pi,Asinh:()=>Li,Atan:()=>Wi,Atan2:()=>Vi,Atanh:()=>Bi,AvgPool:()=>Za,AvgPool3D:()=>tu,AvgPool3DGrad:()=>fh,AvgPoolGrad:()=>ph,BackendWasm:()=>Kg,BatchMatMul:()=>Ya,BatchToSpaceND:()=>nu,Bincount:()=>mh,BroadcastTo:()=>ag,Callback:()=>u0,CallbackList:()=>n0,Cast:()=>Ja,Ceil:()=>Ui,ClipByValue:()=>pa,Complex:()=>Ah,ComplexAbs:()=>ru,Concat:()=>Hi,Conv2D:()=>Qa,Conv2DBackpropFilter:()=>yh,Conv2DBackpropInput:()=>es,Conv3D:()=>au,Conv3DBackpropFilterV2:()=>gh,Conv3DBackpropInputV2:()=>xh,Cos:()=>ts,Cosh:()=>ji,CropAndResize:()=>Gi,Cumsum:()=>ns,CustomCallback:()=>a0,DataStorage:()=>ch,DenseBincount:()=>wh,DepthToSpace:()=>qi,DepthwiseConv2dNative:()=>rs,DepthwiseConv2dNativeBackpropFilter:()=>_h,DepthwiseConv2dNativeBackpropInput:()=>bh,Diag:()=>vh,Dilation2D:()=>su,Dilation2DBackpropFilter:()=>Ih,Dilation2DBackpropInput:()=>kh,ENV:()=>bn,EarlyStopping:()=>c0,Elu:()=>Xi,EluGrad:()=>Nh,Environment:()=>rg,Equal:()=>Zi,Erf:()=>Ki,Exp:()=>ss,ExpandDims:()=>Yi,Expm1:()=>Ji,FFT:()=>Sh,Fill:()=>iu,FlipLeftRight:()=>Qi,Floor:()=>is,FloorDiv:()=>os,FromPixels:()=>Bh,FusedBatchNorm:()=>ls,FusedConv2D:()=>Ls,FusedDepthwiseConv2D:()=>Ws,GPGPUContext:()=>am,GatherNd:()=>to,GatherV2:()=>eo,GraphModel:()=>h0,Greater:()=>no,GreaterEqual:()=>us,History:()=>r0,IFFT:()=>Th,Identity:()=>ro,Imag:()=>Eh,InputSpec:()=>Ut,IsFinite:()=>ao,IsInf:()=>so,IsNan:()=>io,KernelBackend:()=>Ql,LRN:()=>uu,LRNGrad:()=>Rh,LayerVariable:()=>t0,LayersModel:()=>Qr,LeakyRelu:()=>cs,Less:()=>oo,LessEqual:()=>lo,LinSpace:()=>Ch,Log:()=>hs,Log1p:()=>uo,LogSoftmax:()=>sg,LogicalAnd:()=>co,LogicalNot:()=>ou,LogicalOr:()=>lu,MathBackendCPU:()=>Ug,MathBackendWebGL:()=>sm,Max:()=>ds,MaxPool:()=>fs,MaxPool3D:()=>cu,MaxPool3DGrad:()=>Mh,MaxPoolGrad:()=>Fh,MaxPoolWithArgmax:()=>$h,Maximum:()=>ps,Mean:()=>ms,Min:()=>As,Minimum:()=>ys,MirrorPad:()=>hu,Mod:()=>ho,MomentumOptimizer:()=>vd,Multinomial:()=>Dh,Multiply:()=>gs,Neg:()=>po,NonMaxSuppressionV3:()=>mo,NonMaxSuppressionV4:()=>Ao,NonMaxSuppressionV5:()=>yo,NotEqual:()=>fo,OP_SCOPE_SUFFIX:()=>og,OneHot:()=>xs,OnesLike:()=>go,Optimizer:()=>Jr,Pack:()=>xo,PadV2:()=>ws,Pool:()=>Gv,Pow:()=>_s,Prelu:()=>bs,Prod:()=>wo,RMSPropOptimizer:()=>kd,RNN:()=>Fr,Range:()=>du,Rank:()=>yf,Real:()=>Oh,RealDiv:()=>as,Reciprocal:()=>_o,Reduction:()=>sn,Relu:()=>vs,Relu6:()=>Is,Reshape:()=>bo,ResizeBilinear:()=>ks,ResizeBilinearGrad:()=>Ph,ResizeNearestNeighbor:()=>pu,ResizeNearestNeighborGrad:()=>zh,Reverse:()=>Ns,RotateWithOffset:()=>Oo,Round:()=>Ss,Rsqrt:()=>Ts,SGDOptimizer:()=>zu,ScatterNd:()=>vo,Select:()=>ko,Selu:()=>Io,Sequential:()=>Ko,Sigmoid:()=>Cs,Sign:()=>To,Sin:()=>Es,Sinh:()=>So,Slice:()=>No,Softmax:()=>Ms,Softplus:()=>Eo,SpaceToBatchND:()=>fu,SparseToDense:()=>Lh,SplitV:()=>Co,Sqrt:()=>Rs,Square:()=>mu,SquaredDifference:()=>$s,Step:()=>ma,StridedSlice:()=>Ro,Sub:()=>Ds,Sum:()=>Fs,SymbolicTensor:()=>mr,Tan:()=>Fo,Tanh:()=>Os,Tensor:()=>tt,TensorBuffer:()=>$t,Tile:()=>fa,TopK:()=>Mo,Transpose:()=>zs,Unique:()=>Wh,Unpack:()=>$o,UnsortedSegmentSum:()=>Au,Variable:()=>gu,ZerosLike:()=>Do,_FusedMatMul:()=>Ps,abs:()=>Dt,acos:()=>bf,acosh:()=>vf,add:()=>ie,addN:()=>lh,all:()=>Xh,any:()=>wu,argMax:()=>_u,argMin:()=>kf,asin:()=>If,asinh:()=>Nf,atan:()=>Sf,atan2:()=>Tf,atanh:()=>Ef,avgPool:()=>bu,avgPool3d:()=>Cf,backend:()=>_f,backend_util:()=>R,basicLSTMCell:()=>r4,batchNorm:()=>Bs,batchNorm2d:()=>Ag,batchNorm3d:()=>yg,batchNorm4d:()=>gg,batchToSpaceND:()=>vu,bincount:()=>xg,booleanMaskAsync:()=>I4,broadcastTo:()=>ku,browser:()=>Jl,buffer:()=>Ve,callbacks:()=>z4,cast:()=>ye,ceil:()=>Rf,clipByValue:()=>pn,clone:()=>Nr,complex:()=>Aa,concat:()=>dt,concat1d:()=>wg,concat2d:()=>Zl,concat3d:()=>_g,concat4d:()=>bg,constraints:()=>Jg,conv1d:()=>Kh,conv2d:()=>Kr,conv2dTranspose:()=>Zh,conv3d:()=>Ff,conv3dTranspose:()=>a4,copyRegisteredKernels:()=>Kv,cos:()=>Iu,cosh:()=>Yh,cosineWindow:()=>tm,cumsum:()=>Jh,customGrad:()=>Sr,data:()=>d0,denseBincount:()=>vg,deprecationWarn:()=>wf,depthToSpace:()=>Mf,depthwiseConv2d:()=>Wo,deregisterOp:()=>L4,device_util:()=>Hh,diag:()=>s4,dilation2d:()=>$f,disableDeprecationWarnings:()=>Yv,dispose:()=>Re,disposeVariables:()=>Jv,div:()=>Ne,divNoNan:()=>Df,dot:()=>kg,dropout:()=>Wg,elu:()=>Bo,enableDebugMode:()=>Zv,enableProdMode:()=>dg,enclosingPowerOfTwo:()=>Bg,engine:()=>Ln,env:()=>Q,equal:()=>ya,erf:()=>Of,exp:()=>Wn,expandDims:()=>vn,expm1:()=>zf,eye:()=>Pf,fft:()=>Du,fill:()=>Nu,findBackend:()=>mg,findBackendFactory:()=>t4,floor:()=>Vo,floorDiv:()=>qh,forceHalfFloat:()=>Xg,fused:()=>_a,gather:()=>Vs,gatherND:()=>Lg,gather_util:()=>gf,getBackend:()=>Gh,getGradient:()=>Af,getKernel:()=>Vh,getKernelsForBackend:()=>yu,gpgpu_util:()=>Gg,grad:()=>i4,grads:()=>o4,greater:()=>tr,greaterEqual:()=>xa,ifft:()=>qo,imag:()=>Qh,image:()=>Et,inTopKAsync:()=>S4,initializers:()=>Qg,input:()=>s0,io:()=>dn,irfft:()=>fd,isFinite:()=>Ig,isInf:()=>Ng,isNaN:()=>Sg,keep:()=>Vt,kernel_impls:()=>Rr,layers:()=>e0,leakyRelu:()=>Su,less:()=>ed,lessEqual:()=>Us,linalg:()=>Vg,linspace:()=>Tg,loadGraphModel:()=>Qn,loadLayersModel:()=>D4,localResponseNormalization:()=>Lf,log:()=>kn,log1p:()=>td,logSigmoid:()=>Cg,logSoftmax:()=>nd,logSumExp:()=>Wf,logicalAnd:()=>nr,logicalNot:()=>Tu,logicalOr:()=>rd,logicalXor:()=>Rg,losses:()=>C4,matMul:()=>Ke,math:()=>ug,max:()=>Bn,maxPool:()=>Eu,maxPool3d:()=>Bf,maxPoolWithArgmax:()=>Fg,maximum:()=>Tr,mean:()=>kt,memory:()=>jh,metrics:()=>i0,min:()=>Ho,minimum:()=>jo,mirrorPad:()=>Vf,mod:()=>Uf,model:()=>M4,models:()=>o0,moments:()=>ad,movingAverage:()=>N4,mul:()=>B,multiRNNCell:()=>c4,multinomial:()=>Mg,neg:()=>vt,nextFrame:()=>Id,norm:()=>gd,notEqual:()=>Hs,oneHot:()=>Po,ones:()=>Er,onesLike:()=>In,op:()=>L,outerProduct:()=>h4,pad:()=>Zr,pad1d:()=>d4,pad2d:()=>p4,pad3d:()=>f4,pad4d:()=>m4,pool:()=>$g,pow:()=>Yr,prelu:()=>Ru,print:()=>lg,prod:()=>sd,profile:()=>$i,rand:()=>A4,randomGamma:()=>y4,randomNormal:()=>Dg,randomUniform:()=>Go,range:()=>id,ready:()=>fg,real:()=>Fu,reciprocal:()=>Hf,registerBackend:()=>xu,registerCallbackConstructor:()=>O4,registerGradient:()=>ig,registerKernel:()=>zo,registerOp:()=>P4,regularizers:()=>l0,relu:()=>Cr,relu6:()=>od,removeBackend:()=>e4,reshape:()=>q,reverse:()=>Nn,reverse1d:()=>g4,reverse2d:()=>x4,reverse3d:()=>w4,reverse4d:()=>_4,rfft:()=>Ou,round:()=>jf,rsqrt:()=>ld,scalar:()=>Se,scatterND:()=>Pg,scatter_util:()=>xf,selu:()=>ud,separableConv2d:()=>Gf,sequential:()=>$4,serialization:()=>re,setBackend:()=>pg,setPlatform:()=>n4,setWasmPath:()=>F4,setWasmPaths:()=>Zg,setWebGLContext:()=>rm,setdiff1dAsync:()=>Og,shared:()=>nm,sigmoid:()=>Jn,sign:()=>qf,signal:()=>E4,sin:()=>cd,sinh:()=>hd,slice:()=>Me,slice1d:()=>dd,slice2d:()=>Xf,slice3d:()=>pd,slice4d:()=>Mu,slice_util:()=>an,softmax:()=>$u,softplus:()=>Uo,spaceToBatchND:()=>Cu,sparseToDense:()=>em,spectral:()=>T4,split:()=>rn,sqrt:()=>Kt,square:()=>ht,squaredDifference:()=>md,squeeze:()=>wa,stack:()=>Sn,step:()=>Xo,stridedSlice:()=>Kf,sub:()=>_e,sum:()=>Ee,sumOutType:()=>Uh,tan:()=>Zf,tanh:()=>Lo,tensor:()=>fr,tensor1d:()=>Qt,tensor2d:()=>dr,tensor3d:()=>mf,tensor4d:()=>b4,tensor5d:()=>v4,tensor6d:()=>k4,tensor_util:()=>pr,test_util:()=>cg,tidy:()=>H,tile:()=>ga,time:()=>Qv,topk:()=>Yf,train:()=>js,transpose:()=>it,truncatedNormal:()=>Ad,unique:()=>yd,unregisterGradient:()=>Xv,unregisterKernel:()=>qv,unsortedSegmentSum:()=>Jf,unstack:()=>rr,upcastType:()=>er,util:()=>k,valueAndGrad:()=>l4,valueAndGrads:()=>u4,variable:()=>zg,variableGrads:()=>Eg,version:()=>B4,version_converter:()=>W4,version_core:()=>hg,version_cpu:()=>Hg,version_layers:()=>im,version_wasm:()=>Yg,version_webgl:()=>qg,webgl:()=>R4,webgl_util:()=>jg,where:()=>fn,whereAsync:()=>Qf,zeros:()=>Rt,zerosLike:()=>qe});var V4=Object.create,Nd=Object.defineProperty,U4=Object.getPrototypeOf,H4=Object.prototype.hasOwnProperty,j4=Object.getOwnPropertyNames,G4=Object.getOwnPropertyDescriptor,p0=e=>Nd(e,"__esModule",{value:!0}),at=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),Pe=(e,t)=>{p0(e);for(var n in t)Nd(e,n,{get:t[n],enumerable:!0})},q4=(e,t,n)=>{if(p0(e),t&&typeof t=="object"||typeof t=="function")for(let r of j4(t))!H4.call(e,r)&&r!=="default"&&Nd(e,r,{get:()=>t[r],enumerable:!(n=G4(t,r))||n.enumerable});return e},Zo=e=>e&&e.__esModule?e:q4(Nd(e!=null?V4(U4(e)):{},"default",{value:e,enumerable:!0}),e),X4=at(()=>{}),K4=at((e,t)=>{(function(n,r,a){function s(c){var u=this,h=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=h(" "),u.s1=h(" "),u.s2=h(" "),u.s0-=h(c),u.s0<0&&(u.s0+=1),u.s1-=h(c),u.s1<0&&(u.s1+=1),u.s2-=h(c),u.s2<0&&(u.s2+=1),h=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var h=new s(c),d=u&&u.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var c=4022871197,u=function(h){h=h.toString();for(var d=0;d>>0,p-=c,p*=c,c=p>>>0,p-=c,c+=p*4294967296}return(c>>>0)*23283064365386963e-26};return u}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Z4=at((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Y4=at((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var h=0;h>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),J4=at((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.x,d=c.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,c.i=d+1&7,f};function u(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p0;--p)h.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.x&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Q4=at((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.w,d=c.X,p=c.i,f,m;return c.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,c.i=p,m+(h^h>>>16)|0};function u(h,d){var p,f,m,A,y,g=[],w=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,w=Math.max(w,d.length)),m=0,A=-32;A>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(g[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],p=g[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,g[m]=f^p;h.w=y,h.X=g,h.i=m}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.X&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),e8=at((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.b,p=c.c,f=c.d,m=c.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,c.b=d=d<<20^d>>>12^p,c.c=p=p-f|0,c.d=f<<16^p>>>16^m,c.a=m-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),om=at(()=>{}),t8=at((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",c=r.pow(s,i),u=r.pow(2,o),h=u*2,d=s-1,p;function f(_,b,T){var S=[];b=b==!0?{entropy:!0}:b||{};var N=g(y(b.entropy?[_,x(n)]:_==null?w():_,3),S),C=new m(S),$=function(){for(var D=C.g(i),O=c,V=0;D=h;)D/=2,O/=2,V>>>=1;return(D+V)/O};return $.int32=function(){return C.g(4)|0},$.quick=function(){return C.g(4)/4294967296},$.double=$,g(x(C.S),n),(b.pass||T||function(D,O,V,W){return W&&(W.S&&A(W,C),D.state=function(){return A(C,{})}),V?(r[l]=D,O):D})($,N,"global"in b?b.global:this==r,b.state)}r["seed"+l]=f;function m(_){var b,T=_.length,S=this,N=0,C=S.i=S.j=0,$=S.S=[];for(T||(_=[T++]);N{var n=K4(),r=Z4(),a=Y4(),s=J4(),i=Q4(),o=e8(),l=t8();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),r8=at((e,t)=>{(function(n,r,a){function s(c){var u=this,h=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=h(" "),u.s1=h(" "),u.s2=h(" "),u.s0-=h(c),u.s0<0&&(u.s0+=1),u.s1-=h(c),u.s1<0&&(u.s1+=1),u.s2-=h(c),u.s2<0&&(u.s2+=1),h=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var h=new s(c),d=u&&u.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var c=4022871197,u=function(h){h=h.toString();for(var d=0;d>>0,p-=c,p*=c,c=p>>>0,p-=c,c+=p*4294967296}return(c>>>0)*23283064365386963e-26};return u}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),a8=at((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),s8=at((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var h=0;h>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),i8=at((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.x,d=c.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,c.i=d+1&7,f};function u(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p0;--p)h.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.x&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),o8=at((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.w,d=c.X,p=c.i,f,m;return c.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,c.i=p,m+(h^h>>>16)|0};function u(h,d){var p,f,m,A,y,g=[],w=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,w=Math.max(w,d.length)),m=0,A=-32;A>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(g[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],p=g[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,g[m]=f^p;h.w=y,h.X=g,h.i=m}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.X&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),l8=at((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.b,p=c.c,f=c.d,m=c.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,c.b=d=d<<20^d>>>12^p,c.c=p=p-f|0,c.d=f<<16^p>>>16^m,c.a=m-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),u8=at((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",c=r.pow(s,i),u=r.pow(2,o),h=u*2,d=s-1,p;function f(_,b,T){var S=[];b=b==!0?{entropy:!0}:b||{};var N=g(y(b.entropy?[_,x(n)]:_==null?w():_,3),S),C=new m(S),$=function(){for(var D=C.g(i),O=c,V=0;D=h;)D/=2,O/=2,V>>>=1;return(D+V)/O};return $.int32=function(){return C.g(4)|0},$.quick=function(){return C.g(4)/4294967296},$.double=$,g(x(C.S),n),(b.pass||T||function(D,O,V,W){return W&&(W.S&&A(W,C),D.state=function(){return A(C,{})}),V?(r[l]=D,O):D})($,N,"global"in b?b.global:this==r,b.state)}r["seed"+l]=f;function m(_){var b,T=_.length,S=this,N=0,C=S.i=S.j=0,$=S.S=[];for(T||(_=[T++]);N{var n=r8(),r=a8(),a=s8(),s=i8(),i=o8(),o=l8(),l=u8();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),Pu=at(()=>{}),h8=at(()=>{}),d8=at(()=>{}),p8=at((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};function s(){return J.buffer!=et&&_n(J.buffer),xn}function i(){return J.buffer!=et&&_n(J.buffer),Xt}function o(){return J.buffer!=et&&_n(J.buffer),hn}function l(){return J.buffer!=et&&_n(J.buffer),nn}function c(){return J.buffer!=et&&_n(J.buffer),kr}var u=typeof a!="undefined"?a:{},h={},d;for(d in u)u.hasOwnProperty(d)&&(h[d]=u[d]);var p=[],f="./this.program",m=function(v,E){throw E},A=!1,y=!1,g=!1,w=!1;A=typeof window=="object",y=typeof importScripts=="function",g=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",w=!A&&!g&&!y;var x=u.ENVIRONMENT_IS_PTHREAD||!1;x&&(et=u.buffer,Kn=u.DYNAMIC_BASE,hr=u.DYNAMICTOP_PTR);var _="";function b(v){return u.locateFile?u.locateFile(v,_):_+v}var T,S,N,C,$,D;if(g){y?_=Pu().dirname(_)+"/":_=__dirname+"/",T=function(v,E){return $||($=require("fs")),D||(D=Pu()),v=D.normalize(v),$.readFileSync(v,E?null:"utf8")},N=function(v){var E=T(v,!0);return E.buffer||(E=new Uint8Array(E)),we(E.buffer),E},process.argv.length>1&&(f=process.argv[1].replace(/\\/g,"/")),p=process.argv.slice(2),process.on("uncaughtException",function(v){if(!(v instanceof q2))throw v}),process.on("unhandledRejection",Gr),m=function(v){process.exit(v)},u.inspect=function(){return"[Emscripten Module object]"};var O;try{O=h8()}catch(v){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),v}Worker=O.Worker}else w?(typeof read!="undefined"&&(T=function(v){return read(v)}),N=function(v){var E;return typeof readbuffer=="function"?new Uint8Array(readbuffer(v)):(E=read(v,"binary"),we(typeof E=="object"),E)},typeof scriptArgs!="undefined"?p=scriptArgs:typeof arguments!="undefined"&&(p=arguments),typeof quit=="function"&&(m=function(v){quit(v)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(A||y)&&(y?_=self.location.href:document.currentScript&&(_=document.currentScript.src),typeof r!="undefined"&&r&&(_=r),_.indexOf("blob:")!==0?_=_.substr(0,_.lastIndexOf("/")+1):_="",g?(T=function(v,E){return $||($=require("fs")),D||(D=Pu()),v=D.normalize(v),$.readFileSync(v,E?null:"utf8")},N=function(v){var E=T(v,!0);return E.buffer||(E=new Uint8Array(E)),we(E.buffer),E}):(T=function(v){var E=new XMLHttpRequest;return E.open("GET",v,!1),E.send(null),E.responseText},y&&(N=function(v){var E=new XMLHttpRequest;return E.open("GET",v,!1),E.responseType="arraybuffer",E.send(null),new Uint8Array(E.response)}),S=function(v,E,z){var G=new XMLHttpRequest;G.open("GET",v,!0),G.responseType="arraybuffer",G.onload=function(){if(G.status==200||G.status==0&&G.response){E(G.response);return}z()},G.onerror=z,G.send(null)}),C=function(v){document.title=v});g&&typeof performance=="undefined"&&(performance=d8().performance);var V=u.print||console.log.bind(console),W=u.printErr||console.warn.bind(console);for(d in h)h.hasOwnProperty(d)&&(u[d]=h[d]);h=null,u.arguments&&(p=u.arguments),u.thisProgram&&(f=u.thisProgram),u.quit&&(m=u.quit);var K=Atomics.load,X=Atomics.store,ee=Atomics.compareExchange,Z;u.wasmBinary&&(Z=u.wasmBinary);var ae;u.noExitRuntime&&(ae=u.noExitRuntime),typeof WebAssembly!="object"&&W("no native wasm support detected");var J,oe=new WebAssembly.Table({initial:169,maximum:169+0,element:"anyfunc"}),ne,he=0,le=0,me=!1,Ae=0;function we(v,E){v||Gr("Assertion failed: "+E)}function Te(v){var E=u["_"+v];return we(E,"Cannot call unknown function "+v+", make sure it is exported"),E}function Ce(v,E,z,G,pe){var ce={string:function(Pn){var ha=0;if(Pn!=null&&Pn!==0){var Kl=(Pn.length<<2)+1;ha=Ei(Kl),st(Pn,ha,Kl)}return ha},array:function(Pn){var ha=Ei(Pn.length);return ot(Pn,ha),ha}};function ue(Pn){return E==="string"?Be(Pn):E==="boolean"?Boolean(Pn):Pn}var ve=Te(v),nt=[],Mt=0;if(G)for(var Jt=0;Jt=G);){var ce=v[E++];if(!ce)return pe;if(!(ce&128)){pe+=String.fromCharCode(ce);continue}var ue=v[E++]&63;if((ce&224)==192){pe+=String.fromCharCode((ce&31)<<6|ue);continue}var ve=v[E++]&63;if((ce&240)==224?ce=(ce&15)<<12|ue<<6|ve:ce=(ce&7)<<18|ue<<12|ve<<6|v[E++]&63,ce<65536)pe+=String.fromCharCode(ce);else{var nt=ce-65536;pe+=String.fromCharCode(55296|nt>>10,56320|nt&1023)}}return pe}function Be(v,E){return v?Ge(i(),v,E):""}function Qe(v,E,z,G){if(!(G>0))return 0;for(var pe=z,ce=z+G-1,ue=0;ue=55296&&ve<=57343){var nt=v.charCodeAt(++ue);ve=65536+((ve&1023)<<10)|nt&1023}if(ve<=127){if(z>=ce)break;E[z++]=ve}else if(ve<=2047){if(z+1>=ce)break;E[z++]=192|ve>>6,E[z++]=128|ve&63}else if(ve<=65535){if(z+2>=ce)break;E[z++]=224|ve>>12,E[z++]=128|ve>>6&63,E[z++]=128|ve&63}else{if(z+3>=ce)break;E[z++]=240|ve>>18,E[z++]=128|ve>>12&63,E[z++]=128|ve>>6&63,E[z++]=128|ve&63}}return E[z]=0,z-pe}function st(v,E,z){return Qe(v,i(),E,z)}function Ue(v){for(var E=0,z=0;z=55296&&G<=57343&&(G=65536+((G&1023)<<10)|v.charCodeAt(++z)&1023),G<=127?++E:G<=2047?E+=2:G<=65535?E+=3:E+=4}return E}function ot(v,E){s().set(v,E)}var lt=65536;function On(v,E){return v%E>0&&(v+=E-v%E),v}var et,xn,Xt,wn,qn,hn,nn,Xn,kr;function _n(v){et=v,u.HEAP8=xn=new Int8Array(v),u.HEAP16=wn=new Int16Array(v),u.HEAP32=hn=new Int32Array(v),u.HEAPU8=Xt=new Uint8Array(v),u.HEAPU16=qn=new Uint16Array(v),u.HEAPU32=nn=new Uint32Array(v),u.HEAPF32=Xn=new Float32Array(v),u.HEAPF64=kr=new Float64Array(v)}var wi=5256480,Rl=wi,cr=13600,Kn=5256480,hr=12672,_i=u.INITIAL_MEMORY||16777216;if(x)J=u.wasmMemory,et=u.buffer;else if(u.wasmMemory)J=u.wasmMemory;else if(J=new WebAssembly.Memory({initial:_i/lt,maximum:2147483648/lt,shared:!0}),!(J.buffer instanceof SharedArrayBuffer))throw W("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),g&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");J&&(et=J.buffer),_i=et.byteLength,_n(et),x||(o()[hr>>2]=Kn);function bi(v){for(;v.length>0;){var E=v.shift();if(typeof E=="function"){E(u);continue}var z=E.func;typeof z=="number"?E.arg===void 0?u.dynCall_v(z):u.dynCall_vi(z,E.arg):z(E.arg===void 0?null:E.arg)}}var Wa=[],Fl=[],n1=[],Ml=[],Wc=[],$l=!1;x&&($l=!0);function Zn(){if(!x){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)s1(u.preRun.shift());bi(Wa)}}function Bc(){$l=!0,bi(Fl)}function r1(){x||bi(n1)}function a1(){if(!x){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)Ba(u.postRun.shift());bi(Wc)}}function s1(v){Wa.unshift(v)}function Ba(v){Wc.unshift(v)}var vi=Math.ceil,i1=Math.floor,jr=0,Dl=null,Va=null;function o1(v){we(!x,"addRunDependency cannot be used in a pthread worker"),jr++,u.monitorRunDependencies&&u.monitorRunDependencies(jr)}function l1(v){if(jr--,u.monitorRunDependencies&&u.monitorRunDependencies(jr),jr==0&&(Dl!==null&&(clearInterval(Dl),Dl=null),Va)){var E=Va;Va=null,E()}}u.preloadedImages={},u.preloadedAudios={};function Gr(v){throw u.onAbort&&u.onAbort(v),x&&console.error("Pthread aborting at "+new Error().stack),v+="",V(v),W(v),me=!0,Ae=1,v="abort("+v+"). Build with -s ASSERTIONS=1 for more info.",new WebAssembly.RuntimeError(v)}function Ol(v,E){return String.prototype.startsWith?v.startsWith(E):v.indexOf(E)===0}var u1="data:application/octet-stream;base64,";function Vc(v){return Ol(v,u1)}var c1="file://";function Uc(v){return Ol(v,c1)}var Yn="tfjs-backend-wasm-threaded-simd.wasm";Vc(Yn)||(Yn=b(Yn));function Hc(){try{if(Z)return new Uint8Array(Z);if(N)return N(Yn);throw"both async and sync fetching of the wasm failed"}catch(v){Gr(v)}}function h1(){return!Z&&(A||y)&&typeof fetch=="function"&&!Uc(Yn)?fetch(Yn,{credentials:"same-origin"}).then(function(v){if(!v.ok)throw"failed to load wasm binary file at '"+Yn+"'";return v.arrayBuffer()}).catch(function(){return Hc()}):new Promise(function(v,E){v(Hc())})}function d1(){var v={a:rf};function E(ue,ve){var nt=ue.exports;if(u.asm=nt,ne=ve,!x){var Mt=fe.unusedWorkers.length;fe.unusedWorkers.forEach(function(Jt){fe.loadWasmModuleToWorker(Jt,function(){--Mt||l1("wasm-instantiate")})})}}x||o1("wasm-instantiate");function z(ue){E(ue.instance,ue.module)}function G(ue){return h1().then(function(ve){return WebAssembly.instantiate(ve,v)}).then(ue,function(ve){W("failed to asynchronously prepare wasm: "+ve),Gr(ve)})}function pe(){if(!Z&&typeof WebAssembly.instantiateStreaming=="function"&&!Vc(Yn)&&!Uc(Yn)&&typeof fetch=="function")fetch(Yn,{credentials:"same-origin"}).then(function(ue){var ve=WebAssembly.instantiateStreaming(ue,v);return ve.then(z,function(nt){W("wasm streaming compile failed: "+nt),W("falling back to ArrayBuffer instantiation"),G(z)})});else return G(z)}if(u.instantiateWasm)try{var ce=u.instantiateWasm(v,E);return ce}catch(ue){return W("Module.instantiateWasm callback failed with error: "+ue),!1}return pe(),{}}var p1={};function f1(){fe.initRuntime()}x||Fl.push({func:function(){Ll()}});var jc=0,Gc=0,qc=0;function ki(v,E,z){v=v|0,E=E|0,z=z|0,jc=v,qc=E,Gc=z}u.__register_pthread_ptr=ki;var zl={EPERM:63,ENOENT:44,ESRCH:71,EINTR:27,EIO:29,ENXIO:60,E2BIG:1,ENOEXEC:45,EBADF:8,ECHILD:12,EAGAIN:6,EWOULDBLOCK:6,ENOMEM:48,EACCES:2,EFAULT:21,ENOTBLK:105,EBUSY:10,EEXIST:20,EXDEV:75,ENODEV:43,ENOTDIR:54,EISDIR:31,EINVAL:28,ENFILE:41,EMFILE:33,ENOTTY:59,ETXTBSY:74,EFBIG:22,ENOSPC:51,ESPIPE:70,EROFS:69,EMLINK:34,EPIPE:64,EDOM:18,ERANGE:68,ENOMSG:49,EIDRM:24,ECHRNG:106,EL2NSYNC:156,EL3HLT:107,EL3RST:108,ELNRNG:109,EUNATCH:110,ENOCSI:111,EL2HLT:112,EDEADLK:16,ENOLCK:46,EBADE:113,EBADR:114,EXFULL:115,ENOANO:104,EBADRQC:103,EBADSLT:102,EDEADLOCK:16,EBFONT:101,ENOSTR:100,ENODATA:116,ETIME:117,ENOSR:118,ENONET:119,ENOPKG:120,EREMOTE:121,ENOLINK:47,EADV:122,ESRMNT:123,ECOMM:124,EPROTO:65,EMULTIHOP:36,EDOTDOT:125,EBADMSG:9,ENOTUNIQ:126,EBADFD:127,EREMCHG:128,ELIBACC:129,ELIBBAD:130,ELIBSCN:131,ELIBMAX:132,ELIBEXEC:133,ENOSYS:52,ENOTEMPTY:55,ENAMETOOLONG:37,ELOOP:32,EOPNOTSUPP:138,EPFNOSUPPORT:139,ECONNRESET:15,ENOBUFS:42,EAFNOSUPPORT:5,EPROTOTYPE:67,ENOTSOCK:57,ENOPROTOOPT:50,ESHUTDOWN:140,ECONNREFUSED:14,EADDRINUSE:3,ECONNABORTED:13,ENETUNREACH:40,ENETDOWN:38,ETIMEDOUT:73,EHOSTDOWN:142,EHOSTUNREACH:23,EINPROGRESS:26,EALREADY:7,EDESTADDRREQ:17,EMSGSIZE:35,EPROTONOSUPPORT:66,ESOCKTNOSUPPORT:137,EADDRNOTAVAIL:4,ENETRESET:39,EISCONN:30,ENOTCONN:53,ETOOMANYREFS:141,EUSERS:136,EDQUOT:19,ESTALE:72,ENOTSUP:138,ENOMEDIUM:148,EILSEQ:25,EOVERFLOW:61,ECANCELED:11,ENOTRECOVERABLE:56,EOWNERDEAD:62,ESTRPIPE:135},Ii=13584;function Ni(v,E){if(v<=0||v>s().length||v&!0||E<0)return-28;if(E==0)return 0;E>=2147483647&&(E=Infinity);var z=Atomics.load(o(),Ii>>2),G=0;if(z==v){var pe=Atomics.compareExchange(o(),Ii>>2,z,0);if(pe==z&&(--E,G=1,E<=0))return 1}var ce=Atomics.notify(o(),v>>2,E);if(ce>=0)return ce+G;throw"Atomics.notify returned an unexpected value "+ce}u._emscripten_futex_wake=Ni;function m1(v){if(x)throw"Internal Error! _kill_thread() can only ever be called from main application thread!";if(!v)throw"Internal Error! Null pthread_ptr in _kill_thread!";o()[v+12>>2]=0;var E=fe.pthreads[v];E.worker.terminate(),fe.freeThreadData(E),fe.runningWorkers.splice(fe.runningWorkers.indexOf(E.worker),1),E.worker.pthread=void 0}function A1(v){if(x)throw"Internal Error! _cancel_thread() can only ever be called from main application thread!";if(!v)throw"Internal Error! Null pthread_ptr in _cancel_thread!";var E=fe.pthreads[v];E.worker.postMessage({cmd:"cancel"})}function y1(v){if(x)throw"Internal Error! _cleanup_thread() can only ever be called from main application thread!";if(!v)throw"Internal Error! Null pthread_ptr in _cleanup_thread!";o()[v+12>>2]=0;var E=fe.pthreads[v];if(E){var z=E.worker;fe.returnWorkerToPool(z)}}var fe={MAIN_THREAD_ID:1,mainThreadInfo:{schedPolicy:0,schedPrio:0},unusedWorkers:[],runningWorkers:[],initRuntime:function(){ki(fe.mainThreadBlock,!y,1),U2(fe.mainThreadBlock)},initMainThreadBlock:function(){for(var v=8,E=0;E>2]=fe.mainThreadBlock;var z=fe.mainThreadBlock+156;o()[z>>2]=z;for(var G=13072,E=0;E<128;++E)l()[G/4+E]=0;Atomics.store(l(),fe.mainThreadBlock+104>>2,G),Atomics.store(l(),fe.mainThreadBlock+40>>2,fe.mainThreadBlock),Atomics.store(l(),fe.mainThreadBlock+44>>2,42)},initWorker:function(){},pthreads:{},exitHandlers:null,setThreadStatus:function(){},runExitHandlers:function(){if(fe.exitHandlers!==null){for(;fe.exitHandlers.length>0;)fe.exitHandlers.pop()();fe.exitHandlers=null}x&&he&&V2()},threadExit:function(v){var E=Ir();E&&(Atomics.store(l(),E+4>>2,v),Atomics.store(l(),E+0>>2,1),Atomics.store(l(),E+60>>2,1),Atomics.store(l(),E+64>>2,0),fe.runExitHandlers(),Ni(E+0,2147483647),ki(0,0,0),he=0,x&&postMessage({cmd:"exit"}))},threadCancel:function(){fe.runExitHandlers(),Atomics.store(l(),he+4>>2,-1),Atomics.store(l(),he+0>>2,1),Ni(he+0,2147483647),he=le=0,ki(0,0,0),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var v in fe.pthreads){var E=fe.pthreads[v];E&&E.worker&&fe.returnWorkerToPool(E.worker)}fe.pthreads={};for(var z=0;z>2];o()[v.threadInfoStruct+104>>2]=0,jl(E),jl(v.threadInfoStruct)}v.threadInfoStruct=0,v.allocatedOwnStack&&v.stackBase&&jl(v.stackBase),v.stackBase=0,v.worker&&(v.worker.pthread=null)}},returnWorkerToPool:function(v){delete fe.pthreads[v.pthread.thread],fe.unusedWorkers.push(v),fe.runningWorkers.splice(fe.runningWorkers.indexOf(v),1),fe.freeThreadData(v.pthread),v.pthread=void 0},receiveObjectTransfer:function(v){},loadWasmModuleToWorker:function(v,E){v.onmessage=function(z){var G=z.data,pe=G.cmd;if(v.pthread&&(fe.currentProxiedOperationCallerThread=v.pthread.threadInfoStruct),G.targetThread&&G.targetThread!=Ir()){var ce=fe.pthreads[G.targetThread];ce?ce.worker.postMessage(z.data,G.transferList):console.error('Internal error! Worker sent a message "'+pe+'" to target pthread '+G.targetThread+", but that thread no longer exists!"),fe.currentProxiedOperationCallerThread=void 0;return}if(pe==="processQueuedMainThreadWork")of();else if(pe==="spawnThread")Qc(z.data);else if(pe==="cleanupThread")y1(G.thread);else if(pe==="killThread")m1(G.thread);else if(pe==="cancelThread")A1(G.thread);else if(pe==="loaded")v.loaded=!0,E&&E(v),v.runPthread&&(v.runPthread(),delete v.runPthread);else if(pe==="print")V("Thread "+G.threadId+": "+G.text);else if(pe==="printErr")W("Thread "+G.threadId+": "+G.text);else if(pe==="alert")alert("Thread "+G.threadId+": "+G.text);else if(pe==="exit"){var ue=v.pthread&&Atomics.load(l(),v.pthread.thread+68>>2);ue&&fe.returnWorkerToPool(v)}else pe==="cancelDone"?fe.returnWorkerToPool(v):pe==="objectTransfer"?fe.receiveObjectTransfer(z.data):z.data.target==="setimmediate"?v.postMessage(z.data):W("worker sent an unknown command "+pe);fe.currentProxiedOperationCallerThread=void 0},v.onerror=function(z){W("pthread sent an error! "+z.filename+":"+z.lineno+": "+z.message)},g&&(v.on("message",function(z){v.onmessage({data:z})}),v.on("error",function(z){v.onerror(z)}),v.on("exit",function(z){console.log("worker exited - TODO: update the worker queue?")})),v.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||r,wasmMemory:J,wasmModule:ne,DYNAMIC_BASE:Kn,DYNAMICTOP_PTR:hr})},allocateUnusedWorker:function(){var v=b("tfjs-backend-wasm-threaded-simd.worker.js");fe.unusedWorkers.push(new Worker(v))},getNewWorker:function(){return fe.unusedWorkers.length==0&&(fe.allocateUnusedWorker(),fe.loadWasmModuleToWorker(fe.unusedWorkers[0])),fe.unusedWorkers.length>0?fe.unusedWorkers.pop():null},busySpinWait:function(v){for(var E=performance.now()+v;performance.now()>2]=v,v}function v1(v,E){if(x)return la(1,1,v,E);Ml.unshift({func:v,arg:E})}function k1(v,E){if(v==E)postMessage({cmd:"processQueuedMainThreadWork"});else if(x)postMessage({targetThread:v,cmd:"processThreadQueue"});else{var z=fe.pthreads[v],G=z&&z.worker;if(!G)return;G.postMessage({cmd:"processThreadQueue"})}return 1}function I1(){Gr()}function N1(v,E){v=v|0,E=E|0}function S1(v,E,z){if(v<=0||v>s().length||v&!0)return-28;if(y){var G=Atomics.wait(o(),v>>2,E,z);if(G==="timed-out")return-73;if(G==="not-equal")return-6;if(G==="ok")return 0;throw"Atomics.wait returned an unexpected value "+G}else{var pe=Atomics.load(o(),v>>2);if(E!=pe)return-6;var ce=performance.now(),ue=ce+z;Atomics.store(o(),Ii>>2,v);for(var ve=v;v==ve;){if(ce=performance.now(),ce>ue)return-73;of(),v=Atomics.load(o(),Ii>>2)}return 0}}function T1(){return qc|0}function E1(){return Gc|0}function C1(v,E,z){i().copyWithin(v,E,E+z)}function R1(){return navigator.hardwareConcurrency}function la(v,E){for(var z=arguments.length-2,G=Gl(),pe=Ei(z*8),ce=pe>>3,ue=0;ue>3]),E+=8):(E=E+3&~3,z.push(o()[E>>2]),E+=4);return z}function F1(v,E,z){Ha.length=E;for(var G=z>>3,pe=0;pe>>16),_n(J.buffer),1}catch(E){}}function D1(v){v=v>>>0;var E=M1();if(v<=E)return!1;var z=65536,G=2147483648;if(v>G)return!1;for(var pe=16777216,ce=1;ce<=4;ce*=2){var ue=E*(1+.2/ce);ue=Math.min(ue,v+100663296);var ve=Math.min(G,On(Math.max(pe,v,ue),z)),nt=$1(ve);if(nt)return!0}return!1}var We={keyEvent:0,mouseEvent:0,wheelEvent:0,uiEvent:0,focusEvent:0,deviceOrientationEvent:0,deviceMotionEvent:0,fullscreenChangeEvent:0,pointerlockChangeEvent:0,visibilityChangeEvent:0,touchEvent:0,previousFullscreenElement:null,previousScreenX:null,previousScreenY:null,removeEventListenersRegistered:!1,removeAllEventListeners:function(){for(var v=We.eventHandlers.length-1;v>=0;--v)We._removeHandler(v);We.eventHandlers=[],We.deferredCalls=[]},registerRemoveEventListeners:function(){We.removeEventListenersRegistered||(Ml.push(We.removeAllEventListeners),We.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(v,E,z){function G(ue,ve){if(ue.length!=ve.length)return!1;for(var nt in ue)if(ue[nt]!=ve[nt])return!1;return!0}for(var pe in We.deferredCalls){var ce=We.deferredCalls[pe];if(ce.targetFunction==v&&G(ce.argsList,z))return}We.deferredCalls.push({targetFunction:v,precedence:E,argsList:z}),We.deferredCalls.sort(function(ue,ve){return ue.precedence>2]=z,o()[ue+4>>2]=G,o()[ue+8>>2]=pe,lf(v,637534208,E,G,ue),Ci(ce)},getTargetThreadForEventCallback:function(v){switch(v){case 1:return 0;case 2:return fe.currentProxiedOperationCallerThread;default:return v}},getNodeNameForTarget:function(v){return v?v==window?"#window":v==screen?"#screen":v&&v.nodeName?v.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function O1(v){var E=Ue(v)+1,z=Hl(E);return st(v,z,E),z}function z1(v,E,z,G){var pe=Gl(),ce=Ei(12),ue=0;E&&(ue=O1(E)),o()[ce>>2]=ue,o()[ce+4>>2]=z,o()[ce+8>>2]=G,lf(v,657457152,0,ue,ce),Ci(pe)}function P1(v,E,z,G){E=E?Be(E):"",z1(v,E,z,G)}function L1(v){return v>2?Be(v):v}var W1=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function B1(v){v=L1(v);var E=W1[v]||(typeof document!="undefined"?document.querySelector(v):void 0);return E}function Pl(v){return B1(v)}function Xc(v,E,z){var G=Pl(v);if(!G)return-4;if(G.canvasSharedPtr&&(o()[G.canvasSharedPtr>>2]=E,o()[G.canvasSharedPtr+4>>2]=z),G.offscreenCanvas||!G.controlTransferredOffscreen){G.offscreenCanvas&&(G=G.offscreenCanvas);var pe=!1;if(G.GLctxObject&&G.GLctxObject.GLctx){var ce=G.GLctxObject.GLctx.getParameter(2978);pe=ce[0]===0&&ce[1]===0&&ce[2]===G.width&&ce[3]===G.height}G.width=E,G.height=z,pe&&G.GLctxObject.GLctx.viewport(0,0,E,z)}else if(G.canvasSharedPtr){var ue=o()[G.canvasSharedPtr+8>>2];return P1(ue,v,E,z),1}else return-4;return 0}function Kc(v,E,z){return x?la(2,1,v,E,z):Xc(v,E,z)}function V1(v,E,z){var G=Pl(v);return G?Xc(v,E,z):Kc(v,E,z)}function U1(v){v=v|0}function H1(v,E){v=v|0,E=E|0}function j1(v){var E=v.getExtension("ANGLE_instanced_arrays");if(E)return v.vertexAttribDivisor=function(z,G){E.vertexAttribDivisorANGLE(z,G)},v.drawArraysInstanced=function(z,G,pe,ce){E.drawArraysInstancedANGLE(z,G,pe,ce)},v.drawElementsInstanced=function(z,G,pe,ce,ue){E.drawElementsInstancedANGLE(z,G,pe,ce,ue)},1}function G1(v){var E=v.getExtension("OES_vertex_array_object");if(E)return v.createVertexArray=function(){return E.createVertexArrayOES()},v.deleteVertexArray=function(z){E.deleteVertexArrayOES(z)},v.bindVertexArray=function(z){E.bindVertexArrayOES(z)},v.isVertexArray=function(z){return E.isVertexArrayOES(z)},1}function q1(v){var E=v.getExtension("WEBGL_draw_buffers");if(E)return v.drawBuffers=function(z,G){E.drawBuffersWEBGL(z,G)},1}var He={counter:1,lastError:0,buffers:[],mappedBuffers:{},programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},currentContext:null,offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,init:function(){for(var v=new Float32Array(He.MINI_TEMP_BUFFER_SIZE),E=0;E>2]:-1;pe+=Be(o()[z+ce*4>>2],ue<0?void 0:ue)}return pe},createContext:function(v,E){var z=v.getContext("webgl",E);if(!z)return 0;var G=He.registerContext(z,E);return G},registerContext:function(v,E){var z=Hl(8);o()[z+4>>2]=Ir();var G={handle:z,attributes:E,version:E.majorVersion,GLctx:v};return v.canvas&&(v.canvas.GLctxObject=G),He.contexts[z]=G,(typeof E.enableExtensionsByDefault=="undefined"||E.enableExtensionsByDefault)&&He.initExtensions(G),z},makeContextCurrent:function(v){return He.currentContext=He.contexts[v],u.ctx=ua=He.currentContext&&He.currentContext.GLctx,!(v&&!ua)},getContext:function(v){return He.contexts[v]},deleteContext:function(v){He.currentContext===He.contexts[v]&&(He.currentContext=null),typeof We=="object"&&We.removeAllHandlersOnTarget(He.contexts[v].GLctx.canvas),He.contexts[v]&&He.contexts[v].GLctx.canvas&&(He.contexts[v].GLctx.canvas.GLctxObject=void 0),jl(He.contexts[v].handle),He.contexts[v]=null},initExtensions:function(v){if(v||(v=He.currentContext),!v.initExtensionsDone){v.initExtensionsDone=!0;var E=v.GLctx;j1(E),G1(E),q1(E),E.disjointTimerQueryExt=E.getExtension("EXT_disjoint_timer_query");var z=["OES_texture_float","OES_texture_half_float","OES_standard_derivatives","OES_vertex_array_object","WEBGL_compressed_texture_s3tc","WEBGL_depth_texture","OES_element_index_uint","EXT_texture_filter_anisotropic","EXT_frag_depth","WEBGL_draw_buffers","ANGLE_instanced_arrays","OES_texture_float_linear","OES_texture_half_float_linear","EXT_blend_minmax","EXT_shader_texture_lod","EXT_texture_norm16","WEBGL_compressed_texture_pvrtc","EXT_color_buffer_half_float","WEBGL_color_buffer_float","EXT_sRGB","WEBGL_compressed_texture_etc1","EXT_disjoint_timer_query","WEBGL_compressed_texture_etc","WEBGL_compressed_texture_astc","EXT_color_buffer_float","WEBGL_compressed_texture_s3tc_srgb","EXT_disjoint_timer_query_webgl2","WEBKIT_WEBGL_compressed_texture_pvrtc"],G=E.getSupportedExtensions()||[];G.forEach(function(pe){z.indexOf(pe)!=-1&&E.getExtension(pe)})}},populateUniformTable:function(v){for(var E=He.programs[v],z=He.programInfos[v]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},G=z.uniforms,pe=ua.getProgramParameter(E,35718),ce=0;ce>2;z.alpha=!!o()[G+(0>>2)],z.depth=!!o()[G+(4>>2)],z.stencil=!!o()[G+(8>>2)],z.antialias=!!o()[G+(12>>2)],z.premultipliedAlpha=!!o()[G+(16>>2)],z.preserveDrawingBuffer=!!o()[G+(20>>2)];var pe=o()[G+(24>>2)];z.powerPreference=X1[pe],z.failIfMajorPerformanceCaveat=!!o()[G+(28>>2)],z.majorVersion=o()[G+(32>>2)],z.minorVersion=o()[G+(36>>2)],z.enableExtensionsByDefault=o()[G+(40>>2)],z.explicitSwapControl=o()[G+(44>>2)],z.proxyContextToMainThread=o()[G+(48>>2)],z.renderViaOffscreenBackBuffer=o()[G+(52>>2)];var ce=Pl(v);if(!ce)return-4;if(z.explicitSwapControl)return-1;var ue=He.createContext(ce,z);return ue}function Z1(v,E){return K1(v,E)}var ja={splitPath:function(v){var E=/^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;return E.exec(v).slice(1)},normalizeArray:function(v,E){for(var z=0,G=v.length-1;G>=0;G--){var pe=v[G];pe==="."?v.splice(G,1):pe===".."?(v.splice(G,1),z++):z&&(v.splice(G,1),z--)}if(E)for(;z;z--)v.unshift("..");return v},normalize:function(v){var E=v.charAt(0)==="/",z=v.substr(-1)==="/";return v=ja.normalizeArray(v.split("/").filter(function(G){return!!G}),!E).join("/"),!v&&!E&&(v="."),v&&z&&(v+="/"),(E?"/":"")+v},dirname:function(v){var E=ja.splitPath(v),z=E[0],G=E[1];return!z&&!G?".":(G&&(G=G.substr(0,G.length-1)),z+G)},basename:function(v){if(v==="/")return"/";var E=v.lastIndexOf("/");return E===-1?v:v.substr(E+1)},extname:function(v){return ja.splitPath(v)[3]},join:function(){var v=Array.prototype.slice.call(arguments,0);return ja.normalize(v.join("/"))},join2:function(v,E){return ja.normalize(v+"/"+E)}},Ti={mappings:{},buffers:[null,[],[]],printChar:function(v,E){var z=Ti.buffers[v];E===0||E===10?((v===1?V:W)(Ge(z,0)),z.length=0):z.push(E)},varargs:void 0,get:function(){Ti.varargs+=4;var v=o()[Ti.varargs-4>>2];return v},getStr:function(v){var E=Be(v);return E},get64:function(v,E){return v}};function Zc(v){return x?la(3,1,v):0}function Yc(v,E,z,G,pe){if(x)return la(4,1,v,E,z,G,pe)}function Jc(v,E,z,G){if(x)return la(5,1,v,E,z,G);for(var pe=0,ce=0;ce>2],ve=o()[E+(ce*8+4)>>2],nt=0;nt>2]=pe,0}function Y1(v){var E=fe.exitHandlers.pop();v&&E()}function J1(v,E){fe.exitHandlers===null&&(fe.exitHandlers=[]),fe.exitHandlers.push(function(){G2(v,E)})}function Qc(v){if(x)throw"Internal Error! _spawn_thread() can only ever be called from main application thread!";var E=fe.getNewWorker();if(E.pthread!==void 0)throw"Internal error!";if(!v.pthread_ptr)throw"Internal error, no pthread ptr!";fe.runningWorkers.push(E);for(var z=Hl(128*4),G=0;G<128;++G)o()[z+G*4>>2]=0;var pe=v.stackBase+v.stackSize,ce=fe.pthreads[v.pthread_ptr]={worker:E,stackBase:v.stackBase,stackSize:v.stackSize,allocatedOwnStack:v.allocatedOwnStack,thread:v.pthread_ptr,threadInfoStruct:v.pthread_ptr},ue=ce.threadInfoStruct>>2;Atomics.store(l(),ue+(0>>2),0),Atomics.store(l(),ue+(4>>2),0),Atomics.store(l(),ue+(8>>2),0),Atomics.store(l(),ue+(68>>2),v.detached),Atomics.store(l(),ue+(104>>2),z),Atomics.store(l(),ue+(48>>2),0),Atomics.store(l(),ue+(40>>2),ce.threadInfoStruct),Atomics.store(l(),ue+(44>>2),42),Atomics.store(l(),ue+(108>>2),v.stackSize),Atomics.store(l(),ue+(84>>2),v.stackSize),Atomics.store(l(),ue+(80>>2),pe),Atomics.store(l(),ue+(108+8>>2),pe),Atomics.store(l(),ue+(108+12>>2),v.detached),Atomics.store(l(),ue+(108+20>>2),v.schedPolicy),Atomics.store(l(),ue+(108+24>>2),v.schedPrio);var ve=W2(),nt=ve+40;Atomics.store(l(),ue+(176>>2),nt),E.pthread=ce;var Mt={cmd:"run",start_routine:v.startRoutine,arg:v.arg,threadInfoStruct:v.pthread_ptr,selfThreadId:v.pthread_ptr,parentThreadId:v.parent_pthread_ptr,stackBase:v.stackBase,stackSize:v.stackSize};E.runPthread=function(){Mt.time=performance.now(),E.postMessage(Mt,v.transferList)},E.loaded&&(E.runPthread(),delete E.runPthread)}function Q1(v,E,z){if(!E&&!z)return zl.EINVAL;if(!v)return W("pthread_getschedparam called with a null thread pointer!"),zl.ESRCH;var G=o()[v+12>>2];if(G!==v)return W("pthread_getschedparam attempted on thread "+v+", which does not point to a valid thread, or does not exist anymore!"),zl.ESRCH;var pe=Atomics.load(l(),v+108+20>>2),ce=Atomics.load(l(),v+108+24>>2);return E&&(o()[E>>2]=pe),z&&(o()[z>>2]=ce),0}function Ir(){return jc|0}u._pthread_self=Ir;function ef(v,E,z,G){if(typeof SharedArrayBuffer=="undefined")return W("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!v)return W("pthread_create called with a null thread pointer!"),28;var pe=[],ce=0;if(x&&(pe.length===0||ce))return H2(687865856,v,E,z,G);if(ce)return ce;var ue=0,ve=0,nt=0,Mt=0,Jt=0;if(E){ue=o()[E>>2],ue+=81920,ve=o()[E+8>>2],nt=o()[E+12>>2]!==0;var Ri=o()[E+16>>2]===0;if(Ri){var Xl=o()[E+20>>2],Pn=o()[E+24>>2],ha=fe.currentProxiedOperationCallerThread?fe.currentProxiedOperationCallerThread:Ir();Q1(ha,E+20,E+24),Mt=o()[E+20>>2],Jt=o()[E+24>>2],o()[E+20>>2]=Xl,o()[E+24>>2]=Pn}else Mt=o()[E+20>>2],Jt=o()[E+24>>2]}else ue=2097152;var Kl=ve==0;Kl?ve=B2(16,ue):(ve-=ue,we(ve>0));for(var Fi=Hl(232),cf=0;cf<232>>2;++cf)l()[(Fi>>2)+cf]=0;o()[v>>2]=Fi,o()[Fi+12>>2]=Fi;var X2=Fi+156;o()[X2>>2]=X2;var hf={stackBase:ve,stackSize:ue,allocatedOwnStack:Kl,schedPolicy:Mt,schedPrio:Jt,detached:nt,startRoutine:z,pthread_ptr:Fi,parent_pthread_ptr:Ir(),arg:G,transferList:pe};return x?(hf.cmd="spawnThread",postMessage(hf,pe)):Qc(hf),0}function tf(v){return v=+v,v>=0?+i1(v+.5):+vi(v-.5)}function eh(v){if(x)return la(6,1,v);switch(v){case 30:return 16384;case 85:var E=2147483648;return E/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 80:case 81:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:case 79:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return b1(28),-1}x?fe.initWorker():fe.initMainThreadBlock();var ua;He.init();var nf=[null,v1,Kc,Zc,Yc,Jc,eh],rf={e:w1,r:_1,w:k1,a:I1,l:N1,d:S1,c:Ni,h:Ua,g:T1,x:E1,q:C1,B:R1,t:F1,A:D1,u:V1,k:U1,s:H1,v:Z1,m:Zc,o:Yc,i:Jc,p:f1,memory:J||u.wasmMemory,y:Y1,z:J1,j:ef,b:Ir,f:tf,n:eh,table:oe},th=d1();u.asm=th;var Ll=u.___wasm_call_ctors=function(){return(Ll=u.___wasm_call_ctors=u.asm.C).apply(null,arguments)},Wl=u._init=function(){return(Wl=u._init=u.asm.D).apply(null,arguments)},nh=u._register_tensor=function(){return(nh=u._register_tensor=u.asm.E).apply(null,arguments)},Ga=u._dispose_data=function(){return(Ga=u._dispose_data=u.asm.F).apply(null,arguments)},Bl=u._dispose=function(){return(Bl=u._dispose=u.asm.G).apply(null,arguments)},af=u._Abs=function(){return(af=u._Abs=u.asm.H).apply(null,arguments)},sf=u._Add=function(){return(sf=u._Add=u.asm.I).apply(null,arguments)},Vl=u._AddN=function(){return(Vl=u._AddN=u.asm.J).apply(null,arguments)},rh=u._ArgMax=function(){return(rh=u._ArgMax=u.asm.K).apply(null,arguments)},ah=u._AvgPool=function(){return(ah=u._AvgPool=u.asm.L).apply(null,arguments)},j=u._BatchMatMul=function(){return(j=u._BatchMatMul=u.asm.M).apply(null,arguments)},te=u._ClipByValue=function(){return(te=u._ClipByValue=u.asm.N).apply(null,arguments)},Ie=u._Conv2D=function(){return(Ie=u._Conv2D=u.asm.O).apply(null,arguments)},Fe=u._Conv2DBackpropInput=function(){return(Fe=u._Conv2DBackpropInput=u.asm.P).apply(null,arguments)},rt=u._Cos=function(){return(rt=u._Cos=u.asm.Q).apply(null,arguments)},St=u._CropAndResize=function(){return(St=u._CropAndResize=u.asm.R).apply(null,arguments)},Ye=u._Cumsum=function(){return(Ye=u._Cumsum=u.asm.S).apply(null,arguments)},Xe=u._DepthToSpace=function(){return(Xe=u._DepthToSpace=u.asm.T).apply(null,arguments)},Bt=u._DepthwiseConv2dNative=function(){return(Bt=u._DepthwiseConv2dNative=u.asm.U).apply(null,arguments)},qr=u._Equal=function(){return(qr=u._Equal=u.asm.V).apply(null,arguments)},Xr=u._Exp=function(){return(Xr=u._Exp=u.asm.W).apply(null,arguments)},sh=u._FlipLeftRight=function(){return(sh=u._FlipLeftRight=u.asm.X).apply(null,arguments)},Ul=u._Floor=function(){return(Ul=u._Floor=u.asm.Y).apply(null,arguments)},zn=u._FloorDiv=function(){return(zn=u._FloorDiv=u.asm.Z).apply(null,arguments)},ca=u._FusedBatchNorm=function(){return(ca=u._FusedBatchNorm=u.asm._).apply(null,arguments)},ih=u._FusedConv2D=function(){return(ih=u._FusedConv2D=u.asm.$).apply(null,arguments)},Y7=u._FusedDepthwiseConv2D=function(){return(Y7=u._FusedDepthwiseConv2D=u.asm.aa).apply(null,arguments)},J7=u._Gather=function(){return(J7=u._Gather=u.asm.ba).apply(null,arguments)},Q7=u._GatherNd=function(){return(Q7=u._GatherNd=u.asm.ca).apply(null,arguments)},e6=u._Greater=function(){return(e6=u._Greater=u.asm.da).apply(null,arguments)},t6=u._GreaterEqual=function(){return(t6=u._GreaterEqual=u.asm.ea).apply(null,arguments)},n6=u._LeakyRelu=function(){return(n6=u._LeakyRelu=u.asm.fa).apply(null,arguments)},r6=u._Less=function(){return(r6=u._Less=u.asm.ga).apply(null,arguments)},a6=u._LessEqual=function(){return(a6=u._LessEqual=u.asm.ha).apply(null,arguments)},s6=u._Log=function(){return(s6=u._Log=u.asm.ia).apply(null,arguments)},i6=u._LogicalAnd=function(){return(i6=u._LogicalAnd=u.asm.ja).apply(null,arguments)},o6=u._Max=function(){return(o6=u._Max=u.asm.ka).apply(null,arguments)},l6=u._MaxPool=function(){return(l6=u._MaxPool=u.asm.la).apply(null,arguments)},u6=u._Maximum=function(){return(u6=u._Maximum=u.asm.ma).apply(null,arguments)},c6=u._Mean=function(){return(c6=u._Mean=u.asm.na).apply(null,arguments)},h6=u._Min=function(){return(h6=u._Min=u.asm.oa).apply(null,arguments)},d6=u._Minimum=function(){return(d6=u._Minimum=u.asm.pa).apply(null,arguments)},p6=u._Multiply=function(){return(p6=u._Multiply=u.asm.qa).apply(null,arguments)},f6=u._Neg=function(){return(f6=u._Neg=u.asm.ra).apply(null,arguments)},m6=u._NonMaxSuppressionV3=function(){return(m6=u._NonMaxSuppressionV3=u.asm.sa).apply(null,arguments)},A6=u._NonMaxSuppressionV4=function(){return(A6=u._NonMaxSuppressionV4=u.asm.ta).apply(null,arguments)},y6=u._NonMaxSuppressionV5=function(){return(y6=u._NonMaxSuppressionV5=u.asm.ua).apply(null,arguments)},g6=u._NotEqual=function(){return(g6=u._NotEqual=u.asm.va).apply(null,arguments)},x6=u._OneHot=function(){return(x6=u._OneHot=u.asm.wa).apply(null,arguments)},w6=u._PadV2=function(){return(w6=u._PadV2=u.asm.xa).apply(null,arguments)},_6=u._Pow=function(){return(_6=u._Pow=u.asm.ya).apply(null,arguments)},b6=u._Prelu=function(){return(b6=u._Prelu=u.asm.za).apply(null,arguments)},v6=u._Prod=function(){return(v6=u._Prod=u.asm.Aa).apply(null,arguments)},k6=u._RealDiv=function(){return(k6=u._RealDiv=u.asm.Ba).apply(null,arguments)},I6=u._Relu=function(){return(I6=u._Relu=u.asm.Ca).apply(null,arguments)},N6=u._Relu6=function(){return(N6=u._Relu6=u.asm.Da).apply(null,arguments)},S6=u._ResizeBilinear=function(){return(S6=u._ResizeBilinear=u.asm.Ea).apply(null,arguments)},T6=u._Reverse=function(){return(T6=u._Reverse=u.asm.Fa).apply(null,arguments)},E6=u._RotateWithOffset=function(){return(E6=u._RotateWithOffset=u.asm.Ga).apply(null,arguments)},C6=u._Round=function(){return(C6=u._Round=u.asm.Ha).apply(null,arguments)},R6=u._Rsqrt=function(){return(R6=u._Rsqrt=u.asm.Ia).apply(null,arguments)},F6=u._ScatterNd=function(){return(F6=u._ScatterNd=u.asm.Ja).apply(null,arguments)},M6=u._SelectV2=function(){return(M6=u._SelectV2=u.asm.Ka).apply(null,arguments)},$6=u._Sigmoid=function(){return($6=u._Sigmoid=u.asm.La).apply(null,arguments)},D6=u._Sin=function(){return(D6=u._Sin=u.asm.Ma).apply(null,arguments)},O6=u._Softmax=function(){return(O6=u._Softmax=u.asm.Na).apply(null,arguments)},z6=u._Sqrt=function(){return(z6=u._Sqrt=u.asm.Oa).apply(null,arguments)},P6=u._Square=function(){return(P6=u._Square=u.asm.Pa).apply(null,arguments)},L6=u._SquaredDifference=function(){return(L6=u._SquaredDifference=u.asm.Qa).apply(null,arguments)},W6=u._Step=function(){return(W6=u._Step=u.asm.Ra).apply(null,arguments)},B6=u._StridedSlice=function(){return(B6=u._StridedSlice=u.asm.Sa).apply(null,arguments)},V6=u._Sub=function(){return(V6=u._Sub=u.asm.Ta).apply(null,arguments)},U6=u._Sum=function(){return(U6=u._Sum=u.asm.Ua).apply(null,arguments)},H6=u._Tanh=function(){return(H6=u._Tanh=u.asm.Va).apply(null,arguments)},j6=u._Tile=function(){return(j6=u._Tile=u.asm.Wa).apply(null,arguments)},G6=u._TopK=function(){return(G6=u._TopK=u.asm.Xa).apply(null,arguments)},q6=u._Transpose=function(){return(q6=u._Transpose=u.asm.Ya).apply(null,arguments)},X6=u.__FusedMatMul=function(){return(X6=u.__FusedMatMul=u.asm.Za).apply(null,arguments)},Hl=u._malloc=function(){return(Hl=u._malloc=u.asm._a).apply(null,arguments)},jl=u._free=function(){return(jl=u._free=u.asm.$a).apply(null,arguments)},K6=u.___em_js__initPthreadsJS=function(){return(K6=u.___em_js__initPthreadsJS=u.asm.ab).apply(null,arguments)},L2=u.___errno_location=function(){return(L2=u.___errno_location=u.asm.bb).apply(null,arguments)},W2=u._emscripten_get_global_libc=function(){return(W2=u._emscripten_get_global_libc=u.asm.cb).apply(null,arguments)},B2=u._memalign=function(){return(B2=u._memalign=u.asm.db).apply(null,arguments)},V2=u.___pthread_tsd_run_dtors=function(){return(V2=u.___pthread_tsd_run_dtors=u.asm.eb).apply(null,arguments)},of=u._emscripten_main_thread_process_queued_calls=function(){return(of=u._emscripten_main_thread_process_queued_calls=u.asm.fb).apply(null,arguments)},Z6=u._emscripten_current_thread_process_queued_calls=function(){return(Z6=u._emscripten_current_thread_process_queued_calls=u.asm.gb).apply(null,arguments)},U2=u._emscripten_register_main_browser_thread_id=function(){return(U2=u._emscripten_register_main_browser_thread_id=u.asm.hb).apply(null,arguments)},Y6=u._emscripten_main_browser_thread_id=function(){return(Y6=u._emscripten_main_browser_thread_id=u.asm.ib).apply(null,arguments)},J6=u._emscripten_async_run_in_main_thread=function(){return(J6=u._emscripten_async_run_in_main_thread=u.asm.jb).apply(null,arguments)},Q6=u._emscripten_sync_run_in_main_thread=function(){return(Q6=u._emscripten_sync_run_in_main_thread=u.asm.kb).apply(null,arguments)},ev=u._emscripten_sync_run_in_main_thread_0=function(){return(ev=u._emscripten_sync_run_in_main_thread_0=u.asm.lb).apply(null,arguments)},tv=u._emscripten_sync_run_in_main_thread_1=function(){return(tv=u._emscripten_sync_run_in_main_thread_1=u.asm.mb).apply(null,arguments)},nv=u._emscripten_sync_run_in_main_thread_2=function(){return(nv=u._emscripten_sync_run_in_main_thread_2=u.asm.nb).apply(null,arguments)},rv=u._emscripten_sync_run_in_main_thread_xprintf_varargs=function(){return(rv=u._emscripten_sync_run_in_main_thread_xprintf_varargs=u.asm.ob).apply(null,arguments)},av=u._emscripten_sync_run_in_main_thread_3=function(){return(av=u._emscripten_sync_run_in_main_thread_3=u.asm.pb).apply(null,arguments)},H2=u._emscripten_sync_run_in_main_thread_4=function(){return(H2=u._emscripten_sync_run_in_main_thread_4=u.asm.qb).apply(null,arguments)},sv=u._emscripten_sync_run_in_main_thread_5=function(){return(sv=u._emscripten_sync_run_in_main_thread_5=u.asm.rb).apply(null,arguments)},iv=u._emscripten_sync_run_in_main_thread_6=function(){return(iv=u._emscripten_sync_run_in_main_thread_6=u.asm.sb).apply(null,arguments)},ov=u._emscripten_sync_run_in_main_thread_7=function(){return(ov=u._emscripten_sync_run_in_main_thread_7=u.asm.tb).apply(null,arguments)},j2=u._emscripten_run_in_main_runtime_thread_js=function(){return(j2=u._emscripten_run_in_main_runtime_thread_js=u.asm.ub).apply(null,arguments)},lf=u._emscripten_async_queue_on_thread_=function(){return(lf=u._emscripten_async_queue_on_thread_=u.asm.vb).apply(null,arguments)},lv=u._emscripten_tls_init=function(){return(lv=u._emscripten_tls_init=u.asm.wb).apply(null,arguments)},Gl=u.stackSave=function(){return(Gl=u.stackSave=u.asm.xb).apply(null,arguments)},Ei=u.stackAlloc=function(){return(Ei=u.stackAlloc=u.asm.yb).apply(null,arguments)},Ci=u.stackRestore=function(){return(Ci=u.stackRestore=u.asm.zb).apply(null,arguments)},G2=u.dynCall_vi=function(){return(G2=u.dynCall_vi=u.asm.Ab).apply(null,arguments)},uv=u.dynCall_v=function(){return(uv=u.dynCall_v=u.asm.Bb).apply(null,arguments)},cv=u.dynCall_ii=function(){return(cv=u.dynCall_ii=u.asm.Cb).apply(null,arguments)};u.asm=th,u.cwrap=De,u.PThread=fe,u.PThread=fe,u._pthread_self=Ir,u.wasmMemory=J,u.ExitStatus=q2;var ql;u.then=function(v){if(ql)v(u);else{var E=u.onRuntimeInitialized;u.onRuntimeInitialized=function(){E&&E(),v(u)}}return u};function q2(v){this.name="ExitStatus",this.message="Program terminated with exit("+v+")",this.status=v}Va=function v(){ql||uf(),ql||(Va=v)};function uf(v){if(v=v||p,jr>0||(Zn(),jr>0))return;function E(){ql||(ql=!0,u.calledRun=!0,!me&&(Bc(),r1(),u.onRuntimeInitialized&&u.onRuntimeInitialized(),a1()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),E()},1)):E()}if(u.run=uf,u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();return x||(ae=!0),x||uf(),a}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),f8=at((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};var s=typeof a!="undefined"?a:{},i={},o;for(o in s)s.hasOwnProperty(o)&&(i[o]=s[o]);var l=[],c="./this.program",u=function(j,te){throw te},h=!1,d=!1,p=!1,f=!1;h=typeof window=="object",d=typeof importScripts=="function",p=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",f=!h&&!p&&!d;var m="";function A(j){return s.locateFile?s.locateFile(j,m):m+j}var y,g,w,x,_,b;p?(d?m=Pu().dirname(m)+"/":m=__dirname+"/",y=function(j,te){return _||(_=require("fs")),b||(b=Pu()),j=b.normalize(j),_.readFileSync(j,te?null:"utf8")},w=function(j){var te=y(j,!0);return te.buffer||(te=new Uint8Array(te)),W(te.buffer),te},process.argv.length>1&&(c=process.argv[1].replace(/\\/g,"/")),l=process.argv.slice(2),process.on("uncaughtException",function(j){if(!(j instanceof Bl))throw j}),process.on("unhandledRejection",Wa),u=function(j){process.exit(j)},s.inspect=function(){return"[Emscripten Module object]"}):f?(typeof read!="undefined"&&(y=function(j){return read(j)}),w=function(j){var te;return typeof readbuffer=="function"?new Uint8Array(readbuffer(j)):(te=read(j,"binary"),W(typeof te=="object"),te)},typeof scriptArgs!="undefined"?l=scriptArgs:typeof arguments!="undefined"&&(l=arguments),typeof quit=="function"&&(u=function(j){quit(j)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||d)&&(d?m=self.location.href:document.currentScript&&(m=document.currentScript.src),r&&(m=r),m.indexOf("blob:")!==0?m=m.substr(0,m.lastIndexOf("/")+1):m="",y=function(j){var te=new XMLHttpRequest;return te.open("GET",j,!1),te.send(null),te.responseText},d&&(w=function(j){var te=new XMLHttpRequest;return te.open("GET",j,!1),te.responseType="arraybuffer",te.send(null),new Uint8Array(te.response)}),g=function(j,te,Ie){var Fe=new XMLHttpRequest;Fe.open("GET",j,!0),Fe.responseType="arraybuffer",Fe.onload=function(){if(Fe.status==200||Fe.status==0&&Fe.response){te(Fe.response);return}Ie()},Fe.onerror=Ie,Fe.send(null)},x=function(j){document.title=j});var T=s.print||console.log.bind(console),S=s.printErr||console.warn.bind(console);for(o in i)i.hasOwnProperty(o)&&(s[o]=i[o]);i=null,s.arguments&&(l=s.arguments),s.thisProgram&&(c=s.thisProgram),s.quit&&(u=s.quit);var N;s.wasmBinary&&(N=s.wasmBinary);var C;s.noExitRuntime&&(C=s.noExitRuntime),typeof WebAssembly!="object"&&S("no native wasm support detected");var $,D=new WebAssembly.Table({initial:151,maximum:151+0,element:"anyfunc"}),O=!1,V=0;function W(j,te){j||Wa("Assertion failed: "+te)}function K(j){var te=s["_"+j];return W(te,"Cannot call unknown function "+j+", make sure it is exported"),te}function X(j,te,Ie,Fe,rt){var St={string:function(zn){var ca=0;if(zn!=null&&zn!==0){var ih=(zn.length<<2)+1;ca=Wl(ih),ne(zn,ca,ih)}return ca},array:function(zn){var ca=Wl(zn.length);return he(zn,ca),ca}};function Ye(zn){return te==="string"?J(zn):te==="boolean"?Boolean(zn):zn}var Xe=K(j),Bt=[],qr=0;if(Fe)for(var Xr=0;Xr=Fe);)++rt;if(rt-te>16&&j.subarray&&Z)return Z.decode(j.subarray(te,rt));for(var St="";te>10,56320|qr&1023)}}return St}function J(j,te){return j?ae(Ae,j,te):""}function oe(j,te,Ie,Fe){if(!(Fe>0))return 0;for(var rt=Ie,St=Ie+Fe-1,Ye=0;Ye=55296&&Xe<=57343){var Bt=j.charCodeAt(++Ye);Xe=65536+((Xe&1023)<<10)|Bt&1023}if(Xe<=127){if(Ie>=St)break;te[Ie++]=Xe}else if(Xe<=2047){if(Ie+1>=St)break;te[Ie++]=192|Xe>>6,te[Ie++]=128|Xe&63}else if(Xe<=65535){if(Ie+2>=St)break;te[Ie++]=224|Xe>>12,te[Ie++]=128|Xe>>6&63,te[Ie++]=128|Xe&63}else{if(Ie+3>=St)break;te[Ie++]=240|Xe>>18,te[Ie++]=128|Xe>>12&63,te[Ie++]=128|Xe>>6&63,te[Ie++]=128|Xe&63}}return te[Ie]=0,Ie-rt}function ne(j,te,Ie){return oe(j,Ae,te,Ie)}function he(j,te){me.set(j,te)}var le,me,Ae,we,Te,Ce,De,Ge,Be;function Qe(j){le=j,s.HEAP8=me=new Int8Array(j),s.HEAP16=we=new Int16Array(j),s.HEAP32=Ce=new Int32Array(j),s.HEAPU8=Ae=new Uint8Array(j),s.HEAPU16=Te=new Uint16Array(j),s.HEAPU32=De=new Uint32Array(j),s.HEAPF32=Ge=new Float32Array(j),s.HEAPF64=Be=new Float64Array(j)}var st=s.INITIAL_MEMORY||16777216;function Ue(j){for(;j.length>0;){var te=j.shift();if(typeof te=="function"){te(s);continue}var Ie=te.func;typeof Ie=="number"?te.arg===void 0?s.dynCall_v(Ie):s.dynCall_vi(Ie,te.arg):Ie(te.arg===void 0?null:te.arg)}}var ot=[],lt=[],On=[],et=[],xn=!1,Xt=!1;function wn(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)kr(s.preRun.shift());Ue(ot)}function qn(){xn=!0,Ue(lt)}function hn(){Ue(On)}function nn(){Xt=!0}function Xn(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)_n(s.postRun.shift());Ue(et)}function kr(j){ot.unshift(j)}function _n(j){et.unshift(j)}var wi=Math.ceil,Rl=Math.floor,cr=0,Kn=null,hr=null;function _i(j){cr++,s.monitorRunDependencies&&s.monitorRunDependencies(cr)}function bi(j){if(cr--,s.monitorRunDependencies&&s.monitorRunDependencies(cr),cr==0&&(Kn!==null&&(clearInterval(Kn),Kn=null),hr)){var te=hr;hr=null,te()}}s.preloadedImages={},s.preloadedAudios={};function Wa(j){throw s.onAbort&&s.onAbort(j),j+="",T(j),S(j),O=!0,V=1,j="abort("+j+"). Build with -s ASSERTIONS=1 for more info.",new WebAssembly.RuntimeError(j)}function Fl(j,te){return String.prototype.startsWith?j.startsWith(te):j.indexOf(te)===0}var n1="data:application/octet-stream;base64,";function Ml(j){return Fl(j,n1)}var Wc="file://";function $l(j){return Fl(j,Wc)}var Zn="tfjs-backend-wasm.wasm";Ml(Zn)||(Zn=A(Zn));function Bc(){try{if(N)return new Uint8Array(N);if(w)return w(Zn);throw"both async and sync fetching of the wasm failed"}catch(j){Wa(j)}}function r1(){return!N&&(h||d)&&typeof fetch=="function"&&!$l(Zn)?fetch(Zn,{credentials:"same-origin"}).then(function(j){if(!j.ok)throw"failed to load wasm binary file at '"+Zn+"'";return j.arrayBuffer()}).catch(function(){return Bc()}):new Promise(function(j,te){j(Bc())})}function a1(){var j={env:Gr,wasi_snapshot_preview1:Gr};function te(Ye,Xe){var Bt=Ye.exports;s.asm=Bt,$=Bt.memory,Qe($.buffer),bi("wasm-instantiate")}_i("wasm-instantiate");function Ie(Ye){te(Ye.instance)}function Fe(Ye){return r1().then(function(Xe){return WebAssembly.instantiate(Xe,j)}).then(Ye,function(Xe){S("failed to asynchronously prepare wasm: "+Xe),Wa(Xe)})}function rt(){if(!N&&typeof WebAssembly.instantiateStreaming=="function"&&!Ml(Zn)&&!$l(Zn)&&typeof fetch=="function")fetch(Zn,{credentials:"same-origin"}).then(function(Ye){var Xe=WebAssembly.instantiateStreaming(Ye,j);return Xe.then(Ie,function(Bt){S("wasm streaming compile failed: "+Bt),S("falling back to ArrayBuffer instantiation"),Fe(Ie)})});else return Fe(Ie)}if(s.instantiateWasm)try{var St=s.instantiateWasm(j,te);return St}catch(Ye){return S("Module.instantiateWasm callback failed with error: "+Ye),!1}return rt(),{}}lt.push();function s1(j){Qe($.buffer)}var Ba={splitPath:function(j){var te=/^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;return te.exec(j).slice(1)},normalizeArray:function(j,te){for(var Ie=0,Fe=j.length-1;Fe>=0;Fe--){var rt=j[Fe];rt==="."?j.splice(Fe,1):rt===".."?(j.splice(Fe,1),Ie++):Ie&&(j.splice(Fe,1),Ie--)}if(te)for(;Ie;Ie--)j.unshift("..");return j},normalize:function(j){var te=j.charAt(0)==="/",Ie=j.substr(-1)==="/";return j=Ba.normalizeArray(j.split("/").filter(function(Fe){return!!Fe}),!te).join("/"),!j&&!te&&(j="."),j&&Ie&&(j+="/"),(te?"/":"")+j},dirname:function(j){var te=Ba.splitPath(j),Ie=te[0],Fe=te[1];return!Ie&&!Fe?".":(Fe&&(Fe=Fe.substr(0,Fe.length-1)),Ie+Fe)},basename:function(j){if(j==="/")return"/";var te=j.lastIndexOf("/");return te===-1?j:j.substr(te+1)},extname:function(j){return Ba.splitPath(j)[3]},join:function(){var j=Array.prototype.slice.call(arguments,0);return Ba.normalize(j.join("/"))},join2:function(j,te){return Ba.normalize(j+"/"+te)}},vi={mappings:{},buffers:[null,[],[]],printChar:function(j,te){var Ie=vi.buffers[j];te===0||te===10?((j===1?T:S)(ae(Ie,0)),Ie.length=0):Ie.push(te)},varargs:void 0,get:function(){vi.varargs+=4;var j=Ce[vi.varargs-4>>2];return j},getStr:function(j){var te=J(j);return te},get64:function(j,te){return j}};function i1(j){return 0}function jr(j,te,Ie,Fe,rt){}function Dl(j,te,Ie,Fe){for(var rt=0,St=0;St>2],Xe=Ce[te+(St*8+4)>>2],Bt=0;Bt>2]=rt,0}function Va(j){rh(j)}function o1(j){Va(j)}function l1(j){return j=+j,j>=0?+Rl(j+.5):+wi(j-.5)}var Gr={emscripten_notify_memory_growth:s1,fd_close:i1,fd_seek:jr,fd_write:Dl,proc_exit:o1,roundf:l1},Ol=a1();s.asm=Ol;var u1=s._init=function(){return(u1=s._init=s.asm.init).apply(null,arguments)},Vc=s._register_tensor=function(){return(Vc=s._register_tensor=s.asm.register_tensor).apply(null,arguments)},c1=s._dispose_data=function(){return(c1=s._dispose_data=s.asm.dispose_data).apply(null,arguments)},Uc=s._dispose=function(){return(Uc=s._dispose=s.asm.dispose).apply(null,arguments)},Yn=s._Abs=function(){return(Yn=s._Abs=s.asm.Abs).apply(null,arguments)},Hc=s._Add=function(){return(Hc=s._Add=s.asm.Add).apply(null,arguments)},h1=s._AddN=function(){return(h1=s._AddN=s.asm.AddN).apply(null,arguments)},d1=s._ArgMax=function(){return(d1=s._ArgMax=s.asm.ArgMax).apply(null,arguments)},p1=s._AvgPool=function(){return(p1=s._AvgPool=s.asm.AvgPool).apply(null,arguments)},f1=s._BatchMatMul=function(){return(f1=s._BatchMatMul=s.asm.BatchMatMul).apply(null,arguments)},jc=s._ClipByValue=function(){return(jc=s._ClipByValue=s.asm.ClipByValue).apply(null,arguments)},Gc=s._Conv2D=function(){return(Gc=s._Conv2D=s.asm.Conv2D).apply(null,arguments)},qc=s._Conv2DBackpropInput=function(){return(qc=s._Conv2DBackpropInput=s.asm.Conv2DBackpropInput).apply(null,arguments)},ki=s._Cos=function(){return(ki=s._Cos=s.asm.Cos).apply(null,arguments)},zl=s._CropAndResize=function(){return(zl=s._CropAndResize=s.asm.CropAndResize).apply(null,arguments)},Ii=s._Cumsum=function(){return(Ii=s._Cumsum=s.asm.Cumsum).apply(null,arguments)},Ni=s._DepthToSpace=function(){return(Ni=s._DepthToSpace=s.asm.DepthToSpace).apply(null,arguments)},m1=s._DepthwiseConv2dNative=function(){return(m1=s._DepthwiseConv2dNative=s.asm.DepthwiseConv2dNative).apply(null,arguments)},A1=s._Equal=function(){return(A1=s._Equal=s.asm.Equal).apply(null,arguments)},y1=s._Exp=function(){return(y1=s._Exp=s.asm.Exp).apply(null,arguments)},fe=s._FlipLeftRight=function(){return(fe=s._FlipLeftRight=s.asm.FlipLeftRight).apply(null,arguments)},g1=s._Floor=function(){return(g1=s._Floor=s.asm.Floor).apply(null,arguments)},x1=s._FloorDiv=function(){return(x1=s._FloorDiv=s.asm.FloorDiv).apply(null,arguments)},w1=s._FusedBatchNorm=function(){return(w1=s._FusedBatchNorm=s.asm.FusedBatchNorm).apply(null,arguments)},_1=s._FusedConv2D=function(){return(_1=s._FusedConv2D=s.asm.FusedConv2D).apply(null,arguments)},Ua=s._FusedDepthwiseConv2D=function(){return(Ua=s._FusedDepthwiseConv2D=s.asm.FusedDepthwiseConv2D).apply(null,arguments)},b1=s._Gather=function(){return(b1=s._Gather=s.asm.Gather).apply(null,arguments)},v1=s._GatherNd=function(){return(v1=s._GatherNd=s.asm.GatherNd).apply(null,arguments)},k1=s._Greater=function(){return(k1=s._Greater=s.asm.Greater).apply(null,arguments)},I1=s._GreaterEqual=function(){return(I1=s._GreaterEqual=s.asm.GreaterEqual).apply(null,arguments)},N1=s._LeakyRelu=function(){return(N1=s._LeakyRelu=s.asm.LeakyRelu).apply(null,arguments)},S1=s._Less=function(){return(S1=s._Less=s.asm.Less).apply(null,arguments)},T1=s._LessEqual=function(){return(T1=s._LessEqual=s.asm.LessEqual).apply(null,arguments)},E1=s._Log=function(){return(E1=s._Log=s.asm.Log).apply(null,arguments)},C1=s._LogicalAnd=function(){return(C1=s._LogicalAnd=s.asm.LogicalAnd).apply(null,arguments)},R1=s._Max=function(){return(R1=s._Max=s.asm.Max).apply(null,arguments)},la=s._MaxPool=function(){return(la=s._MaxPool=s.asm.MaxPool).apply(null,arguments)},Ha=s._Maximum=function(){return(Ha=s._Maximum=s.asm.Maximum).apply(null,arguments)},Si=s._Mean=function(){return(Si=s._Mean=s.asm.Mean).apply(null,arguments)},F1=s._Min=function(){return(F1=s._Min=s.asm.Min).apply(null,arguments)},M1=s._Minimum=function(){return(M1=s._Minimum=s.asm.Minimum).apply(null,arguments)},$1=s._Multiply=function(){return($1=s._Multiply=s.asm.Multiply).apply(null,arguments)},D1=s._Neg=function(){return(D1=s._Neg=s.asm.Neg).apply(null,arguments)},We=s._NonMaxSuppressionV3=function(){return(We=s._NonMaxSuppressionV3=s.asm.NonMaxSuppressionV3).apply(null,arguments)},O1=s._NonMaxSuppressionV4=function(){return(O1=s._NonMaxSuppressionV4=s.asm.NonMaxSuppressionV4).apply(null,arguments)},z1=s._NonMaxSuppressionV5=function(){return(z1=s._NonMaxSuppressionV5=s.asm.NonMaxSuppressionV5).apply(null,arguments)},P1=s._NotEqual=function(){return(P1=s._NotEqual=s.asm.NotEqual).apply(null,arguments)},L1=s._OneHot=function(){return(L1=s._OneHot=s.asm.OneHot).apply(null,arguments)},W1=s._PadV2=function(){return(W1=s._PadV2=s.asm.PadV2).apply(null,arguments)},B1=s._Pow=function(){return(B1=s._Pow=s.asm.Pow).apply(null,arguments)},Pl=s._Prelu=function(){return(Pl=s._Prelu=s.asm.Prelu).apply(null,arguments)},Xc=s._Prod=function(){return(Xc=s._Prod=s.asm.Prod).apply(null,arguments)},Kc=s._RealDiv=function(){return(Kc=s._RealDiv=s.asm.RealDiv).apply(null,arguments)},V1=s._Relu=function(){return(V1=s._Relu=s.asm.Relu).apply(null,arguments)},U1=s._Relu6=function(){return(U1=s._Relu6=s.asm.Relu6).apply(null,arguments)},H1=s._ResizeBilinear=function(){return(H1=s._ResizeBilinear=s.asm.ResizeBilinear).apply(null,arguments)},j1=s._Reverse=function(){return(j1=s._Reverse=s.asm.Reverse).apply(null,arguments)},G1=s._RotateWithOffset=function(){return(G1=s._RotateWithOffset=s.asm.RotateWithOffset).apply(null,arguments)},q1=s._Round=function(){return(q1=s._Round=s.asm.Round).apply(null,arguments)},He=s._Rsqrt=function(){return(He=s._Rsqrt=s.asm.Rsqrt).apply(null,arguments)},X1=s._ScatterNd=function(){return(X1=s._ScatterNd=s.asm.ScatterNd).apply(null,arguments)},K1=s._SelectV2=function(){return(K1=s._SelectV2=s.asm.SelectV2).apply(null,arguments)},Z1=s._Sigmoid=function(){return(Z1=s._Sigmoid=s.asm.Sigmoid).apply(null,arguments)},ja=s._Sin=function(){return(ja=s._Sin=s.asm.Sin).apply(null,arguments)},Ti=s._Softmax=function(){return(Ti=s._Softmax=s.asm.Softmax).apply(null,arguments)},Zc=s._Sqrt=function(){return(Zc=s._Sqrt=s.asm.Sqrt).apply(null,arguments)},Yc=s._Square=function(){return(Yc=s._Square=s.asm.Square).apply(null,arguments)},Jc=s._SquaredDifference=function(){return(Jc=s._SquaredDifference=s.asm.SquaredDifference).apply(null,arguments)},Y1=s._Step=function(){return(Y1=s._Step=s.asm.Step).apply(null,arguments)},J1=s._StridedSlice=function(){return(J1=s._StridedSlice=s.asm.StridedSlice).apply(null,arguments)},Qc=s._Sub=function(){return(Qc=s._Sub=s.asm.Sub).apply(null,arguments)},Q1=s._Sum=function(){return(Q1=s._Sum=s.asm.Sum).apply(null,arguments)},Ir=s._Tanh=function(){return(Ir=s._Tanh=s.asm.Tanh).apply(null,arguments)},ef=s._Tile=function(){return(ef=s._Tile=s.asm.Tile).apply(null,arguments)},tf=s._TopK=function(){return(tf=s._TopK=s.asm.TopK).apply(null,arguments)},eh=s._Transpose=function(){return(eh=s._Transpose=s.asm.Transpose).apply(null,arguments)},ua=s.__FusedMatMul=function(){return(ua=s.__FusedMatMul=s.asm._FusedMatMul).apply(null,arguments)},nf=s._malloc=function(){return(nf=s._malloc=s.asm.malloc).apply(null,arguments)},rf=s._free=function(){return(rf=s._free=s.asm.free).apply(null,arguments)},th=s.__start=function(){return(th=s.__start=s.asm._start).apply(null,arguments)},Ll=s.stackSave=function(){return(Ll=s.stackSave=s.asm.stackSave).apply(null,arguments)},Wl=s.stackAlloc=function(){return(Wl=s.stackAlloc=s.asm.stackAlloc).apply(null,arguments)},nh=s.stackRestore=function(){return(nh=s.stackRestore=s.asm.stackRestore).apply(null,arguments)};s.asm=Ol,s.cwrap=ee;var Ga;s.then=function(j){if(Ga)j(s);else{var te=s.onRuntimeInitialized;s.onRuntimeInitialized=function(){te&&te(),j(s)}}return s};function Bl(j){this.name="ExitStatus",this.message="Program terminated with exit("+j+")",this.status=j}var af=!1;hr=function j(){Ga||Vl(),Ga||(hr=j)};function sf(j){var te=s.__start;try{te();var Ie=0;rh(Ie,!0)}catch(rt){if(rt instanceof Bl)return;if(rt=="unwind"){C=!0;return}else{var Fe=rt;rt&&typeof rt=="object"&&rt.stack&&(Fe=[rt,rt.stack]),S("exception thrown: "+Fe),u(1,rt)}}finally{af=!0}}function Vl(j){if(j=j||l,cr>0||(wn(),cr>0))return;function te(){Ga||(Ga=!0,s.calledRun=!0,!O&&(qn(),hn(),s.onRuntimeInitialized&&s.onRuntimeInitialized(),ah&&sf(j),Xn()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),te()},1)):te()}s.run=Vl;function rh(j,te){te&&C&&j===0||(C||(O=!0,V=j,nn(),s.onExit&&s.onExit(j)),u(j,new Bl(j)))}if(s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();var ah=!0;return s.noInitialRun&&(ah=!1),C=!0,Vl(),a}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),m8=at((e,t)=>{(function(n,r,a){function s(c){var u=this,h=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=h(" "),u.s1=h(" "),u.s2=h(" "),u.s0-=h(c),u.s0<0&&(u.s0+=1),u.s1-=h(c),u.s1<0&&(u.s1+=1),u.s2-=h(c),u.s2<0&&(u.s2+=1),h=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var h=new s(c),d=u&&u.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var c=4022871197,u=function(h){h=String(h);for(var d=0;d>>0,p-=c,p*=c,c=p>>>0,p-=c,c+=p*4294967296}return(c>>>0)*23283064365386963e-26};return u}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),A8=at((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),y8=at((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var h=0;h>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),g8=at((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.x,d=c.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,c.i=d+1&7,f};function u(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p0;--p)h.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.x&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),x8=at((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.w,d=c.X,p=c.i,f,m;return c.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,c.i=p,m+(h^h>>>16)|0};function u(h,d){var p,f,m,A,y,g=[],w=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,w=Math.max(w,d.length)),m=0,A=-32;A>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(g[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],p=g[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,g[m]=f^p;h.w=y,h.X=g,h.i=m}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.X&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),w8=at((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.b,p=c.c,f=c.d,m=c.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,c.b=d=d<<20^d>>>12^p,c.c=p=p-f|0,c.d=f<<16^p>>>16^m,c.a=m-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),_8=at((e,t)=>{(function(n,r,a){var s=256,i=6,o=52,l="random",c=a.pow(s,i),u=a.pow(2,o),h=u*2,d=s-1,p;function f(_,b,T){var S=[];b=b==!0?{entropy:!0}:b||{};var N=g(y(b.entropy?[_,x(r)]:_==null?w():_,3),S),C=new m(S),$=function(){for(var D=C.g(i),O=c,V=0;D=h;)D/=2,O/=2,V>>>=1;return(D+V)/O};return $.int32=function(){return C.g(4)|0},$.quick=function(){return C.g(4)/4294967296},$.double=$,g(x(C.S),r),(b.pass||T||function(D,O,V,W){return W&&(W.S&&A(W,C),D.state=function(){return A(C,{})}),V?(a[l]=D,O):D})($,N,"global"in b?b.global:this==a,b.state)}function m(_){var b,T=_.length,S=this,N=0,C=S.i=S.j=0,$=S.S=[];for(T||(_=[T++]);N{var n=m8(),r=A8(),a=y8(),s=g8(),i=x8(),o=w8(),l=_8();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),b8=at(()=>{}),v8="3.0.0",k8="3.0.0",I8="3.0.0",N8="3.0.0",S8="3.0.0",T8=1e-7,E8=1e-4,ch=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Ql=class{decComplexRef(e){}time(e){return Mr("time")}read(e){return Mr("read")}readSync(e){return Mr("readSync")}numDataIds(){return Mr("numDataIds")}disposeData(e){return Mr("disposeData")}write(e,t,n){return Mr("write")}move(e,t,n,r){return Mr("move")}memory(){return Mr("memory")}floatPrecision(){return Mr("floatPrecision")}epsilon(){return this.floatPrecision()===32?T8:E8}dispose(){return Mr("dispose")}};function Mr(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function m0(e){let t=e.length,n=0,r=0;for(;t>0;)r=Math.random()*t|0,t--,n=e[t],e[t]=e[r],e[r]=n}function C8(e,t){if(e.length!==t.length)throw Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,r,a,s=0;for(;n>0;)s=Math.random()*n|0,n--,r=e[n],a=t[n],e[n]=e[s],t[n]=t[s],e[s]=r,t[s]=a}function Lu(e,t,n){return Math.max(e,Math.min(t,n))}function R8(e){return e%2==0?e:e+1}function F8(e){let t=0;for(let n=0;nn+` Shapes ${e} and ${t} must match`)}function Gs(e){M(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function qs(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||tn(e)&&!n)for(let r=0;r0,n){return new Promise((r,a)=>{let s=0,i=()=>{if(e()){r();return}s++;let o=t(s);if(n!=null&&s>=n){a();return}setTimeout(i,o)};i()})}function W8(e,t){let n=1,r=-1;for(let s=0;s=0)n*=e[s];else if(e[s]===-1){if(r!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${r} and dim ${s}`);r=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(r===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let a=e.slice();return a[r]=t/n,a}function ar(e,t){let n=t.length;return e=e==null?t.map((r,a)=>a):[].concat(e),M(e.every(r=>r>=-n&&r`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),M(e.every(r=>Ht(r)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(r=>r<0?n+r:r)}function A0(e,t){let n=[],r=[],a=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||a?null:ar(t,e).sort(),i=0;for(let o=0;oo)&&e[o]===1&&(n.push(e[o]),r.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),r.push(o))}return{newShape:n,keptDims:r}}function y0(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function g0(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function x0(e,t){for(let n=0;nt+=n.length),t}function ba(e){return typeof e=="string"||e instanceof String}function v0(e){return typeof e=="boolean"}function k0(e){return typeof e=="number"}function Sd(e){return Array.isArray(e)?Sd(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":k0(e)?"float32":ba(e)?"string":v0(e)?"bool":"float32"}function va(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Td(e,t){for(let n=t;n=0;--r)n[r]=n[r+1]*e[r+1];return n}function I0(e,t,n){let r=new Array;if(t.length===1){let a=t[0];for(let s=0;so*l);for(let o=0;or*a);if(n===0)return[];if(n!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}.`);return I0(0,e,t)}function lm(e,t){let n=Ed(e,t);for(let r=0;rr*a,1);if(t==null||t==="float32")return Jo(e,new Float32Array(n));if(t==="int32")return Jo(e,new Int32Array(n));if(t==="bool")return Jo(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function um(e){e.forEach(t=>{M(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function U8(e,t,n){if(t===0)return 0;if(t===1)return e[0];let r=e[e.length-1];for(let a=0;a{let[n,r]=t.split(":");this.urlFlags[n]=G8(n,r)})}};function j8(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...r)=>(q8(t,r[0],r[1]),r.join("="))),t}function q8(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function G8(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function Q(){return bn}var bn=null;function X8(e){bn=e}var hm;function S0(){if(hm==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");hm=e}return hm}function K8(){let e=S0();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function dm(e,t){let n=K8();if(n.has(e))return n.get(e);{let r=t();return n.set(e,r),n.get(e)}}var Di="Abs",Oi="Acos",zi="Acosh",da="Add",Xa="AddN",hh="All",dh="Any",Ka="ArgMax",eu="ArgMin",Pi="Asin",Li="Asinh",Wi="Atan",Bi="Atanh",Vi="Atan2",Za="AvgPool",ph="AvgPoolGrad",tu="AvgPool3D",fh="AvgPool3DGrad",Ya="BatchMatMul",nu="BatchToSpaceND",mh="Bincount",ag="BroadcastTo",Ja="Cast",Ui="Ceil",pa="ClipByValue",Ah="Complex",ru="ComplexAbs",Hi="Concat",Qa="Conv2D",yh="Conv2DBackpropFilter",es="Conv2DBackpropInput",au="Conv3D",gh="Conv3DBackpropFilterV2",xh="Conv3DBackpropInputV2",ts="Cos",ji="Cosh",ns="Cumsum",Gi="CropAndResize",wh="DenseBincount",qi="DepthToSpace",rs="DepthwiseConv2dNative",_h="DepthwiseConv2dNativeBackpropFilter",bh="DepthwiseConv2dNativeBackpropInput",vh="Diag",su="Dilation2D",kh="Dilation2DBackpropInput",Ih="Dilation2DBackpropFilter",as="RealDiv",Xi="Elu",Nh="EluGrad",Ki="Erf",Zi="Equal",ss="Exp",Yi="ExpandDims",Ji="Expm1",Sh="FFT",iu="Fill",Qi="FlipLeftRight",is="Floor",os="FloorDiv",ls="FusedBatchNorm",eo="GatherV2",to="GatherNd",no="Greater",us="GreaterEqual",ro="Identity",Th="IFFT",Eh="Imag",ao="IsFinite",so="IsInf",io="IsNan",cs="LeakyRelu",oo="Less",lo="LessEqual",Ch="LinSpace",hs="Log",uo="Log1p",co="LogicalAnd",ou="LogicalNot",lu="LogicalOr",sg="LogSoftmax",uu="LRN",Rh="LRNGrad",ds="Max",ps="Maximum",fs="MaxPool",Fh="MaxPoolGrad",cu="MaxPool3D",Mh="MaxPool3DGrad",$h="MaxPoolWithArgmax",ms="Mean",As="Min",ys="Minimum",hu="MirrorPad",ho="Mod",Dh="Multinomial",gs="Multiply",po="Neg",fo="NotEqual",mo="NonMaxSuppressionV3",Ao="NonMaxSuppressionV4",yo="NonMaxSuppressionV5",go="OnesLike",xs="OneHot",xo="Pack",ws="PadV2",Gv="Pool",_s="Pow",bs="Prelu",wo="Prod",du="Range",Oh="Real",_o="Reciprocal",vs="Relu",bo="Reshape",pu="ResizeNearestNeighbor",zh="ResizeNearestNeighborGrad",ks="ResizeBilinear",Ph="ResizeBilinearGrad",Is="Relu6",Ns="Reverse",Ss="Round",Ts="Rsqrt",vo="ScatterNd",ko="Select",Io="Selu",No="Slice",Es="Sin",So="Sinh",To="Sign",Cs="Sigmoid",Eo="Softplus",Rs="Sqrt",Fs="Sum",fu="SpaceToBatchND",Co="SplitV",Ms="Softmax",$s="SquaredDifference",mu="Square",Ds="Sub",Lh="SparseToDense",Ro="StridedSlice",Fo="Tan",Os="Tanh",fa="Tile",Mo="TopK",zs="Transpose",Wh="Unique",$o="Unpack",Au="UnsortedSegmentSum",Do="ZerosLike",ma="Step",Bh="FromPixels",Oo="RotateWithOffset",Ps="_FusedMatMul",Ls="FusedConv2D",Ws="FusedDepthwiseConv2D",Qo=dm("kernelRegistry",()=>new Map),Bu=dm("gradRegistry",()=>new Map);function Vh(e,t){let n=pm(e,t);return Qo.get(n)}function Af(e){return Bu.get(e)}function yu(e){let t=Qo.entries(),n=[];for(;;){let{done:r,value:a}=t.next();if(r)break;let[s,i]=a,[o]=s.split("_");o===e&&n.push(i)}return n}function zo(e){let{kernelName:t,backendName:n}=e,r=pm(t,n);Qo.has(r)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),Qo.set(r,e)}function ig(e){let{kernelName:t}=e;Bu.has(t)&&Q().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),Bu.set(t,e)}function qv(e,t){let n=pm(e,t);if(!Qo.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Qo.delete(n)}function Xv(e){if(!Bu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Bu.delete(e)}function Kv(e,t){yu(e).forEach(n=>{let r=Object.assign({},n,{backendName:t});zo(r)})}function pm(e,t){return`${t}_${e}`}var k={};Pe(k,{arraysEqual:()=>ea,assert:()=>M,assertNonNegativeIntegerDimensions:()=>um,assertNonNull:()=>Gs,assertShapesMatch:()=>en,bytesFromStringArray:()=>b0,bytesPerElement:()=>_0,checkConversionForErrors:()=>x0,clamp:()=>Lu,computeStrides:()=>Yo,createScalarValue:()=>Z8,createShuffledIndices:()=>P8,decodeString:()=>Rd,distSquared:()=>$8,encodeString:()=>Vu,fetch:()=>Y8,flatten:()=>qs,getArrayFromDType:()=>g0,getTypedArrayFromDType:()=>y0,hasEncodingLoss:()=>B8,indexToLoc:()=>H8,inferDtype:()=>Sd,inferFromImplicitShape:()=>W8,isBoolean:()=>v0,isFunction:()=>va,isInt:()=>Ht,isNumber:()=>k0,isPromise:()=>cm,isScalarShape:()=>D8,isString:()=>ba,isTypedArray:()=>tn,isValidDtype:()=>w0,locToIndex:()=>U8,makeOnesTypedArray:()=>lm,makeZerosNestedTypedArray:()=>V8,makeZerosTypedArray:()=>Ed,nearestDivisor:()=>Td,nearestLargerEven:()=>R8,now:()=>fm,parseAxisParam:()=>ar,randUniform:()=>M8,repeatedTry:()=>L8,rightPad:()=>Wu,shuffle:()=>m0,shuffleCombo:()=>C8,sizeFromShape:()=>Ot,sizeToSquarishShape:()=>z8,squeezeShape:()=>A0,sum:()=>F8,tanh:()=>O8,toNestedArray:()=>Jo,toTypedArray:()=>Cd});function Z8(e,t){return t==="string"?Vu(e):Cd([e],t)}function J8(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Cd(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=qs(e)),Q().getBool("DEBUG")&&x0(e,t),J8(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let r=0;r{r=n()},s=this.backendTimer.time(a);if(Q().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let i=0;i{Q8(l,o.dtype,e)})}return{kernelName:e,outputs:r,inputs:t,timeMs:s.then(i=>i.kernelMs),extraInfo:s.then(i=>i.getExtraProfileInfo!=null?i.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:r,inputs:a,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),r,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],a,o[2])})})}};function Q8(e,t,n){if(t!=="float32")return!1;for(let r=0;r0?f:""} `}}console.log(`%c${o} %c${i} %c${l}D ${u} %c${c} %c${h} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function nk(e,t,n){let r={},a={};for(let l=0;lr[m.id]=!0),p=!0,a[c.id]=!0;break}if(p)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let c=e[l],u=c.inputs;for(let h=0;h=0;a--){let s=t[a],i=[];if(s.outputs.forEach(l=>{let c=e[l.id];c!=null?i.push(c):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let c=n(()=>o[l]());if(c.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${c.dtype}'`);let u=s.inputs[l];if(!ea(c.shape,u.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${c.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=c;else{let h=e[u.id];e[u.id]=r(h,c),h.dispose()}}}}var T0=20,Uu=3,mm=7;function sk(e,t,n,r){let a=Yo(t),s=ak(e,t,n,a),i=t.length,o=Fd(e,t,n,a,s),l=["Tensor"];return r&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(c=>" "+c).join(` `)),l.join(` `)}function ak(e,t,n,r){let a=Ot(t),s=r[r.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?ju(e):e;if(o>1)for(let c=0;cT0){let A=Uu*i,y=Array.from(e.slice(0,A)),g=Array.from(e.slice((o-Uu)*i,o*i));return n==="complex64"&&(y=ju(y),g=ju(g)),["["+y.map((w,x)=>Hu(w,a[x],n)).join(", ")+", ..., "+g.map((w,x)=>Hu(w,a[o-Uu+x],n)).join(", ")+"]"]}let m=n==="complex64"?ju(e):Array.from(e);return["["+m.map((A,y)=>Hu(A,a[y],n)).join(", ")+"]"]}let c=t.slice(1),u=r.slice(1),h=r[0]*i,d=[];if(o>T0){for(let m=0;m`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||g0(t,this.size),this.strides=Yo(e)}set(e,...t){t.length===0&&(t=[0]),M(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let a=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(a)}t++}let n=e[e.length-1];for(let r=0;rRd(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=$r().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Rd(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await $r().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||($r().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return el.print(this,e)}clone(){return this.throwIfDisposed(),el.clone(this)}toString(e=!1){let t=this.dataSync();return sk(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),el.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),$r().makeVariable(this,e,t,n)}};Object.defineProperty(tt,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Y(){return dm("Tensor",()=>tt)}Y();var gu=class extends tt{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!ea(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);$r().disposeTensor(this),this.dataId=e.dataId,$r().incRef(this,null)}dispose(){$r().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(gu,Symbol.hasInstance,{value:e=>e instanceof tt&&e.assign!=null&&e.assign instanceof Function});var pr={};Pe(pr,{assertTypesMatch:()=>C0,getTensorsInContainer:()=>Am,isTensorInList:()=>ck,makeTypesMatch:()=>It});var yf;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(yf||(yf={}));var ym;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(ym||(ym={}));var gm;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(gm||(gm={}));var xm;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(xm||(xm={}));var wm;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(wm||(wm={}));var hk={float32:xm,int32:ym,bool:gm,complex64:wm};function er(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return hk[e][t]}function Uh(e){return er(e,"int32")}function It(e,t){if(e.dtype===t.dtype)return[e,t];let n=er(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function C0(e,t){M(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function ck(e,t){return t.some(n=>n.id===e.id)}function Am(e){let t=[],n=new Set;return R0(e,t,n),t}function R0(e,t,n){if(e==null)return;if(e instanceof tt){t.push(e);return}if(!dk(e))return;let r=e;for(let a in r){let s=r[a];n.has(s)||(n.add(s),R0(s,t,n))}}function dk(e){return Array.isArray(e)||typeof e=="object"}function _m(e){return e.kernelName!=null}var F0=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Gu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new F0}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){yu(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Ql)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,a=n.then(s=>r(rthis.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;tthis.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return Gu.nextTensorId++}nextVariableId(){return Gu.nextVariableId++}clone(e){let t=this.makeTensorFromDataId(e.dataId,e.shape,e.dtype),n={x:e},r=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return P.runKernel(Ja,o,l)}}),a=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,a,{}),t}runKernel(e,t,n){if(Vh(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),a=0;n.forEach(o=>{a+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=r-t-a-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],r=this.isTapeOn(),a=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=_m(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(_m(e)){let{kernelName:p,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let A=Vh(p,this.backendName);M(A!=null,()=>`Cannot find registered kernel '${p}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=A.kernelFunc({inputs:f,attrs:m,backend:this.backend});let g=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,y,g);let w=g.map(x=>{if(x.rank!=null)return x;let{dataId:_,shape:b,dtype:T}=x;return this.makeTensorFromDataId(_,b,T)});if(r){let x=this.getTensorsForGradient(p,f,w);n=this.saveTensorsForBackwardMode(x)}return w}}else{let{forwardFunc:p}=e,f=m=>{!r||(n=m.map(A=>this.keep(this.clone(A))))};i=()=>{let m=this.backend.numDataIds();o=this.tidy(()=>p(this.backend,f));let A=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,A),A}}let{inputs:c,attrs:u}=e,h=_m(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(l,c,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),r&&this.addTapeNode(l,c,t,h,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-a,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(p=>c[p]!=null?c[p].shape:null),outputShapes:t.map(p=>p.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let r=Af(e);if(r!=null){let a=r.inputsToSave||[],s=r.outputsToSave||[],i;r.saveAllInputs?(M(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=a.map(l=>t[l]);let o=n.filter((l,c)=>s[c]);return i.concat(o)}return[]}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let a=e;n==="string"&&ba(e[0])&&(a=e.map(o=>Vu(o)));let s=r.write(a,t,n),i=new tt(t,n,s,this.nextTensorId());if(this.incRef(i,r),n==="string"){let o=this.state.tensorInfo.get(s),l=b0(a);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,r){n=n||"float32";let a=new tt(t,n,e,this.nextTensorId());return this.incRef(a,r),a}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let a=new gu(e,t,n,this.nextTensorId());if(this.state.registeredVariables[a.name]!=null)throw new Error(`Variable with name ${a.name} was already registered`);return this.state.registeredVariables[a.name]=a,this.incRef(a,this.backend),a}incRef(e,t){let n=this.state.tensorInfo.has(e.dataId)?this.state.tensorInfo.get(e.dataId).refCount:0;if(this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++,n===0){this.state.numDataBuffers++;let r=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(r=e.size*_0(e.dtype)),this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:r,refCount:0}),this.state.numBytes+=r}this.state.tensorInfo.get(e.dataId).refCount++,e instanceof gu||this.track(e)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;this.state.numTensors--,e.dtype==="string"&&this.state.numStringTensors--;let t=this.state.tensorInfo.get(e.dataId);t.refCount<=1?(e.dtype!=="complex64"&&(this.state.numBytes-=t.bytes),this.state.numDataBuffers--,t.backend.disposeData(e.dataId),this.state.tensorInfo.delete(e.dataId)):(t.backend.decComplexRef(e.dataId),this.state.tensorInfo.get(e.dataId).refCount--)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,a,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:a},o=Af(e);o!=null&&(r=o.gradFunc),r!=null&&(i.gradient=l=>(l=l.map((c,u)=>{if(c==null){let h=n[u],d=Ed(h.size,h.dtype);return this.makeTensor(d,h.shape,h.dtype)}return c}),r(l.length>1?l:l[0],a,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Am(e),n=new Set(t.map(a=>a.id));for(let a=0;a{!a.kept&&a.scopeId===r.id&&this.track(a)})}gradients(e,t,n,r=!1){if(M(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let a=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));M(a instanceof tt,()=>"The result y returned by f() must be a tensor.");let s=nk(this.state.activeTape,t,a);if(!r&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[a.id]=n==null?pk(a.shape):n,rk(i,s,l=>this.tidy(l),fk);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:a,grads:o}})}customGrad(e){return M(va(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{M(t.every(i=>i instanceof tt),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};t.forEach((i,o)=>{r[o]=i});let a=(i,o)=>(n=e(...t,o),M(n.value instanceof tt,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),M(va(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),c=Array.isArray(l)?l:[l];M(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),M(c.every(h=>h instanceof tt),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return c.forEach((h,d)=>{u[d]=()=>h}),u};return this.runKernelFunc({forwardFunc:a,backwardsFunc:s,inputs:r})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=fm(),n=await this.backend.time(e);return n.wallMs=fm()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new F0;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Gu.nextTensorId=0;Gu.nextVariableId=0;function pk(e){let t=lm(Ot(e),"float32");return P.makeTensor(t,e,"float32")}function M0(){let e=S0();if(e._tfengine==null){let t=new rg(e);e._tfengine=new Gu(t)}return X8(e._tfengine.ENV),ok(()=>e._tfengine),e._tfengine}var P=M0();function fk(e,t){let n={a:e,b:t};return P.runKernel(da,n)}var Hh={};Pe(Hh,{isBrowser:()=>$0,isMobile:()=>mk});function Ak(){return typeof navigator!="undefined"&&navigator!=null}function mk(){if(Ak()){let e=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(e)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(e.substr(0,4))}return!1}function $0(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Dr=Q();Dr.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Dr.registerFlag("IS_BROWSER",()=>$0());Dr.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Dr.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Dr.registerFlag("PROD",()=>!1);Dr.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Dr.getBool("DEBUG"));Dr.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Dr.registerFlag("IS_TEST",()=>!1);Dr.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);function Or(e,t){let n=e;if(tn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||tn(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&Q().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&D0(e,r,[]),r}function D0(e,t,n){if(n=n||[],!Array.isArray(e)&&!tn(e)){M(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}M(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),M(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let a=0;a=0&&(a=r),O0(r,a,t,n),e==null||!tn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Or(e,a);!tn(e)&&!Array.isArray(e)&&(e=[e]);let i=a!=="string"?Cd(e,a):qs(e,[],!0);return P.makeTensor(i,s,a)}function qu(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,s)=>F(a,`${t}[${s}]`,n,r))}var og="__op";function L(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+og;let a=(...s)=>{P.startScope(n);try{let i=r(...s);return cm(i)&&console.error("Cannot return a Promise inside of tidy."),P.endScope(i),i}catch(i){throw P.endScope(null),i}};return Object.defineProperty(a,"name",{value:n,configurable:!0}),a}function yk(e,t){let n=F(e,"real","complex"),r=F(t,"imag","complex");en(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let a={real:n,imag:r};return P.runKernel(Ah,a)}var Aa=L({complex_:yk});function ka(e,t,n,r){if(r==null&&(r=Sd(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!tn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){um(t);let a=Ot(t),s=Ot(n);M(a===s,()=>`Based on the provided shape, [${t}], the tensor should have ${a} values but has ${s}`);for(let i=0;i`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!tn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?Cd(e,r):qs(e,[],!0),P.makeTensor(e,t,r)}function fr(e,t,n){let r=Or(e,n);return ka(e,t,r,n)}var bm={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Md=4;async function xk(e,t){let n=[],r=[],a=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i{let d=await l.bytes(),p=d.reduce((A,y)=>A+y.length,0)+Md*d.length,f=new Uint8Array(p),m=0;for(let A=0;A{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let r=new Uint8Array(t),a=0;return n.forEach(s=>{r.set(new Uint8Array(s.buffer),a),a+=s.byteLength}),r.buffer}var vm=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function P0(e){return vm?Buffer.byteLength(e):new Blob([e]).size}function _k(e){if(vm)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,a=t.length;r{t+=a.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(a=>{n.set(new Uint8Array(a),r),r+=a.byteLength}),n.buffer}function L0(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function Xu(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:P0(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:P0(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function vk(){let e=n=>{let r=n<<13,a=0;for(;(r&8388608)==0;)a-=8388608,r<<=1;return r&=~8388608,a+=947912704,r|a},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function kk(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function Ik(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function wk(){let e=vk(),t=kk(),n=Ik();return r=>{let a=new ArrayBuffer(4*r.length),s=new Uint32Array(a);for(let i=0;i>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(a)}}var Tt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Tt.instance==null&&(Tt.instance=new Tt),Tt.instance}static registerSaveRouter(e){Tt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Tt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Tt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Tt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?Tt.getInstance().loadRouters:Tt.getInstance().saveRouters).forEach(a=>{let s=a(e,n);s!==null&&r.push(s)}),r}},Nk=e=>Tt.registerSaveRouter(e),Sk=e=>Tt.registerLoadRouter(e),Tk=e=>Tt.getSaveHandlers(e),Ek=(e,t)=>Tt.getLoadHandlers(e,t),Im="tensorflowjs",Nm=1,Xs="models_store",Ia="model_info_store";function W0(){if(!Q().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Sm(e){let t=e.result;t.createObjectStore(Xs,{keyPath:"modelPath"}),t.createObjectStore(Ia,{keyPath:"modelPath"})}var Ks=class{constructor(e){if(this.indexedDB=W0(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let a=this.indexedDB.open(Im,Nm);a.onupgradeneeded=()=>Sm(a),a.onsuccess=()=>{let s=a.result;if(t==null){let i=s.transaction(Xs,"readonly"),o=i.objectStore(Xs).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),r(o.error)),i.oncomplete=()=>s.close()}else{let i=Xu(t),o=s.transaction(Ia,"readwrite"),l=o.objectStore(Ia),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),u;c.onsuccess=()=>{u=s.transaction(Xs,"readwrite");let h=u.objectStore(Xs).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>n({modelArtifactsInfo:i}),h.onerror=d=>{l=o.objectStore(Ia);let p=l.delete(this.modelPath);p.onsuccess=()=>(s.close(),r(h.error)),p.onerror=f=>(s.close(),r(h.error))}},c.onerror=h=>(s.close(),r(c.error)),o.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}}},a.onerror=s=>r(a.error)})}};Ks.URL_SCHEME="indexeddb://";var B0=e=>Q().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Ks.URL_SCHEME)?Ck(e.slice(Ks.URL_SCHEME.length)):null;Tt.registerSaveRouter(B0);Tt.registerLoadRouter(B0);function Ck(e){return new Ks(e)}function Rk(e){return e.startsWith(Ks.URL_SCHEME)?e.slice(Ks.URL_SCHEME.length):e}var Fk=class{constructor(){this.indexedDB=W0()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Im,Nm);n.onupgradeneeded=()=>Sm(n),n.onsuccess=()=>{let r=n.result,a=r.transaction(Ia,"readonly"),s=a.objectStore(Ia).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(r.close(),t(s.error)),a.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=Rk(e),new Promise((t,n)=>{let r=this.indexedDB.open(Im,Nm);r.onupgradeneeded=()=>Sm(r),r.onsuccess=()=>{let a=r.result,s=a.transaction(Ia,"readwrite"),i=s.objectStore(Ia),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return a.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),u=()=>{l=a.transaction(Xs,"readwrite");let h=l.objectStore(Xs).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=d=>n(o.error)};c.onsuccess=u,c.onerror=h=>(u(),a.close(),n(o.error))}},o.onerror=c=>(a.close(),n(o.error)),s.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}},r.onerror=a=>n(r.error)})}},ta="/",tl="tensorflowjs_models",V0="info",Mk="model_topology",$k="weight_specs",Dk="weight_data",Ok="model_metadata";function U0(e){return{info:[tl,e,V0].join(ta),topology:[tl,e,Mk].join(ta),weightSpecs:[tl,e,$k].join(ta),weightData:[tl,e,Dk].join(ta),modelMetadata:[tl,e,Ok].join(ta)}}function zk(e){let t=e.split(ta);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(ta)}function Pk(e){return e.startsWith(Zs.URL_SCHEME)?e.slice(Zs.URL_SCHEME.length):e}var Zs=class{constructor(e){if(!Q().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=U0(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=Xu(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,_k(e.weightData));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:r}}catch(a){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let a=this.LS.getItem(this.keys.modelMetadata);if(a!=null){let i=JSON.parse(a);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=bk(s),t}};Zs.URL_SCHEME="localstorage://";var H0=e=>Q().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Zs.URL_SCHEME)?Lk(e.slice(Zs.URL_SCHEME.length)):null;Tt.registerSaveRouter(H0);Tt.registerLoadRouter(H0);function Lk(e){return new Zs(e)}var Wk=class{constructor(){M(Q().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),M(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=tl+ta,n=ta+V0;for(let r=0;r"scheme must not be undefined or null."),e.endsWith(nl)&&(e=e.slice(0,e.indexOf(nl))),M(e.length>0,()=>"scheme must not be an empty string.");let n=Vn.getInstance();M(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function $d(e){if(e.indexOf(nl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Vn.getSchemes().join(",")}`);return{scheme:e.split(nl)[0],path:e.split(nl)[1]}}async function j0(e,t,n=!1){M(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=Tt.getLoadHandlers(e);M(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),M(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let a=r[0],s=Tt.getSaveHandlers(t);M(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),M(s.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let i=s[0],o=$d(e).scheme,l=$d(e).path,c=o===$d(e).scheme,u=await a.load();n&&c&&await Vn.getManager(o).removeModel(l);let h=await i.save(u);return n&&!c&&await Vn.getManager(o).removeModel(l),h.modelArtifactsInfo}async function Bk(){let e=Vn.getSchemes(),t={};for(let n of e){let r=await Vn.getManager(n).listModels();for(let a in r){let s=n+nl+a;t[s]=r[a]}}return t}async function Vk(e){let t=$d(e);return Vn.getManager(t.scheme).removeModel(t.path)}async function Uk(e,t){return j0(e,t,!1)}async function Hk(e,t){return j0(e,t,!0)}var jk=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(Q().get("IS_BROWSER")){Q().setPlatform("browser",new jk);try{Vn.registerManager(Zs.URL_SCHEME,new Wk)}catch(e){}try{Vn.registerManager(Ks.URL_SCHEME,new Fk)}catch(e){}}var Gk={importFetch:()=>X4()},Tm,qk=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return Q().global.fetch!=null?Q().global.fetch(e,t):(Tm==null&&(Tm=Gk.importFetch()),Tm(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};Q().get("IS_NODE")&&Q().setPlatform("node",new qk);function Ve(e,t="float32",n){return t=t||"float32",um(e),new $t(e,t,n)}function Xk(e,t){let n=F(e,"x","cast");if(!w0(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},a={dtype:t};return P.runKernel(Ja,r,a)}var ye=L({cast_:Xk});function Kk(e){let t={x:F(e,"x","clone","string_or_numeric")};return P.runKernel(ro,t)}var Nr=L({clone_:Kk});function lg(e,t=!1){console.log(e.toString(t))}M0();var Zk={buffer:Ve,cast:ye,clone:Nr,print:lg};lk(Zk);var dn={};Pe(dn,{browserFiles:()=>Yk,browserHTTPRequest:()=>Qk,concatenateArrayBuffers:()=>km,copyModel:()=>Uk,decodeWeights:()=>z0,encodeWeights:()=>xk,fromMemory:()=>e9,getLoadHandlers:()=>Ek,getModelArtifactsInfoForJSON:()=>Xu,getSaveHandlers:()=>Tk,http:()=>Cm,isHTTPScheme:()=>Em,listModels:()=>Bk,loadWeights:()=>Jk,moveModel:()=>Hk,registerLoadRouter:()=>Sk,registerSaveRouter:()=>Nk,removeModel:()=>Vk,weightsLoaderFactory:()=>G0,withSaveHandler:()=>t9});var n9="model",r9=".json",a9=".weights.bin";function q0(e){return new Promise(t=>setTimeout(t)).then(e)}var rl=class{constructor(e){if(!Q().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(rl.URL_SCHEME)&&(e=e.slice(rl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=n9),this.modelTopologyFileName=e+r9,this.weightDataFileName=e+a9}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer);let a=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=a,await q0(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await q0(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Xu(e)}}}};rl.URL_SCHEME="downloads://";var s9=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,r)=>{let a=new FileReader;a.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){r(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){r(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(l,t)}catch(p){r(p);return}let u=[],h=[],d=[];l.forEach(p=>{p.paths.forEach(f=>{h.push(f),d.push(null)}),u.push(...p.weights)}),l.forEach(p=>{p.paths.forEach(f=>{let m=new FileReader;m.onload=A=>{let y=A.target.result,g=h.indexOf(f);if(d[g]=y,d.indexOf(null)===-1){let w={modelTopology:o,weightSpecs:u,weightData:km(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(w.signature=i.signature),i.userDefinedMetadata!=null&&(w.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(w.modelInitializer=i.modelInitializer),n(w)}},m.onerror=A=>r(`Failed to weights data from file of path '${f}'.`),m.readAsArrayBuffer(c[f])})})},a.onerror=s=>r(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),a.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],r=t.map(s=>L0(s.name)),a={};for(let s of e)s.paths.forEach(i=>{let o=L0(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),r.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);a[i]=t[r.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return a}},o9=e=>Q().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(rl.URL_SCHEME)?i9(e.slice(rl.URL_SCHEME.length)):null;Tt.registerSaveRouter(o9);function i9(e="model"){return new rl(e)}function Yk(e){return new s9(e)}function X0(e,t,n,r){i(e),n=n==null?0:n,r=r==null?1:r,o(n,r);let a=0,s=l=>(l.then(c=>{let u=n+ ++a/e.length*(r-n);return t(u),c}),l);function i(l){M(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,c){M(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),M(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),M(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(s))}async function K0(e,t){t==null&&(t={});let n=t.fetchFunc==null?Q().platform.fetch:t.fetchFunc,r=e.map(c=>n(c,t.requestInit,{isBinary:!0})),a=0,s=.5,i=(t.onProgress==null?await Promise.all(r):await X0(r,t.onProgress,a,s)).map(c=>c.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await X0(i,t.onProgress,o,l)}async function Jk(e,t="",n,r){return G0(a=>K0(a,{requestInit:r}))(e,t,n)}function G0(e){return async(t,n="",r)=>{let a=t.map(()=>!1),s={},i=r!=null?r.map(()=>!1):[],o=[];if(t.forEach((p,f)=>{let m=0;p.weights.forEach(A=>{let y="quantization"in A?A.quantization.dtype:A.dtype,g=bm[y]*Ot(A.shape),w=()=>{a[f]=!0,s[f]==null&&(s[f]=[]),s[f].push({manifestEntry:A,groupOffset:m,sizeBytes:g})};r!=null?r.forEach((x,_)=>{x===A.name&&(w(),i[_]=!0)}):w(),o.push(A.name),m+=g})}),!i.every(p=>p)){let p=r.filter((f,m)=>!i[m]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}. Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=a.reduce((p,f,m)=>(f&&p.push(m),p),[]),c=[];l.forEach(p=>{t[p].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;c.push(m)})});let u=await e(c),h={},d=0;return l.forEach(p=>{let f=t[p].paths.length,m=0;for(let w=0;w{let x=A.slice(w.groupOffset,w.groupOffset+w.sizeBytes),_=z0(x,[w.manifestEntry]);for(let b in _)h[b]=_[b]}),d+=f}),h}}var l9="application/octet-stream",u9="application/json",Rm=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(M(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=Q().platform.fetch,M(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&M(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(r)],{type:u9}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:l9}),"model.weights.bin");let a=await this.fetch(this.path,t);if(a.ok)return{modelArtifactsInfo:Xu(e),responses:[a]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${a.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(p){let f=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?f+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":f+=" Please make sure the server is serving valid JSON for this request.",new Error(f)}let n=t.modelTopology,r=t.weightsManifest,a=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let c,u;r!=null&&([c,u]=await this.loadWeights(r));let h={modelTopology:n,weightSpecs:c,weightData:u,generatedBy:a,convertedBy:s,format:i};o!=null&&(h.signature=o),l!=null&&(h.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(h.modelInitializer=d),h}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=c9(t),a=this.weightPathPrefix||n,s=[];for(let c of e)s.push(...c.weights);let i=[],o=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(u)):i.push(a+u+r);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await K0(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,km(l)]}};Rm.URL_SCHEME_REGEX=/^https?:\/\//;function c9(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),a=n>t?e.substring(n):"";return[r+"/",a]}function Em(e){return e.match(Rm.URL_SCHEME_REGEX)!=null}var Z0=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>Em(r)):n=Em(e),n)return Cm(e,t)}return null};Tt.registerSaveRouter(Z0);Tt.registerLoadRouter(Z0);function Cm(e,t){return new Rm(e,t)}function Qk(e,t){return Cm(e,t)}var Fm=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},h9=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function e9(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Fm(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Fm({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Fm({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function t9(e){return new h9(e)}var ug={};Pe(ug,{confusionMatrix:()=>d9});function p9(e,t,n=!1,r=!1){let a=F(e,"a","matMul"),s=F(t,"b","matMul");[a,s]=It(a,s);let i={a,b:s},o={transposeA:n,transposeB:r};return P.runKernel(Ya,i,o)}var Ke=L({matMul_:p9});function f9(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:F(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:r};return P.runKernel(xs,a,s)}var Po=L({oneHot_:f9});function m9(e,t){let n=F(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{M(s>=0&&s`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},a={perm:t};return P.runKernel(zs,r,a)}var it=L({transpose_:m9});function A9(e,t,n){let r=F(e,"labels","confusionMatrix"),a=F(t,"predictions","confusionMatrix");M(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),M(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),M(a.rank===1,()=>`Expected the rank of predictions to be 1, but got ${a.rank}`),M(r.shape[0]===a.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${a.shape[0]}. Labels and predictions should have the same number of elements.`),M(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=Po(ye(r,"int32"),n),i=Po(ye(a,"int32"),n),o=it(s),l=Ke(o,i);return ye(l,"int32")}var d9=L({confusionMatrix_:A9}),Jl={};Pe(Jl,{fromPixels:()=>g9,toPixels:()=>y9});function mf(e,t,n){if(Gs(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=Or(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return ka(e,t,r,n)}var al;function x9(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,a=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)a=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(a){let d=2;if(a&&e.readyState element.")}if(Vh(Bh,P.backendName)!=null){let d={pixels:e},p={numChannels:t};return P.runKernel(Bh,d,p)}let[l,c]=a?[e.videoWidth,e.videoHeight]:[e.width,e.height],u;i?u=e.getContext("2d").getImageData(0,0,l,c).data:r||n?u=e.data:(s||a||o)&&(al==null&&(al=document.createElement("canvas").getContext("2d")),al.canvas.width=l,al.canvas.height=c,al.drawImage(e,0,0,l,c),u=al.getImageData(0,0,l,c).data);let h;if(t===4)h=new Int32Array(u);else{let d=l*c;h=new Int32Array(d*t);for(let p=0;p4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(a*r*4);for(let c=0;c1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);s===1?(u[0]=p*o,u[1]=p*o,u[2]=p*o):u[d]=p*o}let h=c*4;l[h+0]=Math.round(u[0]),l[h+1]=Math.round(u[1]),l[h+2]=Math.round(u[2]),l[h+3]=Math.round(u[3])}if(t!=null){t.width=a,t.height=r;let c=t.getContext("2d"),u=new ImageData(l,a,r);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var g9=L({fromPixels_:x9}),gf={};Pe(gf,{prepareAndValidate:()=>Y0});function Y0(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(Ot(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let a=t.shape,s=a[a.length-1],i=1;for(let h=0;hh/c),1].slice(0,s);return[l,i,c,u]}var xf={};Pe(xf,{calculateShapes:()=>J0,validateInput:()=>$m,validateUpdateShape:()=>Mm});function Mm(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,a=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${a}.`;if(n.rank1?t.shape[r-1]:1,s=n.length,i=1;for(let h=a;hw9,computeFlatOffset:()=>b9,computeOutShape:()=>Q0,getNormalizedAxes:()=>t5,isSliceContinous:()=>_9,maskToAxes:()=>Dd,parseSliceParams:()=>o5,sliceInfo:()=>v9,startForAxis:()=>s5,startIndicesWithElidedDims:()=>n5,stopForAxis:()=>i5,stopIndicesWithElidedDims:()=>r5,stridesForAxis:()=>a5,stridesWithElidedDims:()=>e5});function w9(e,t,n){let r=e.shape.length;M(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),M(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let a=0;a`Error in slice${r}D: begin[${a}] + size[${a}] (${t[a]+n[a]}) would overflow input.shape[${a}] (${e.shape[a]})`)}function Dd(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function Q0(e,t,n){let r=[];for(let a=0;a0){let p=t[0],f=n+1;u=n5(i,p,f,r,e),h=r5(o,p,f,a,e),d=e5(s,p,f,e)}else for(let p=0;p-1)s[o]=0;else{let l=l5(t,n,o),c=r[l];e&1<-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=l5(t,n,o),c=r[l];e&1<0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),i=Lu(0,i,l-1),i}function i5(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),o>0?i=Lu(0,i,l):i=Lu(-1,i,l-1),i}function _9(e,t,n){let r=n.length;for(let a=0;a1){r=a;break}for(let a=r+1;a0||n[a]!==e[a])return!1;return!0}function b9(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r{M(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(a).fill(-1):typeof n=="number"?s=[n,...new Array(a-1).fill(-1)]:n.lengthi>=0?i:(M(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-r[o])),[r,s]}function v9(e,t,n,r,a,s,i,o,l){let c=t.slice(),u=n.slice(),h=r;r==null&&(h=new Array(c.length));let d=Dd(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-c.length,f=Dd(o),m=e.slice();f.forEach(b=>{c[b]=0,u[b]=1,m.splice(b,0,1)});let{begin:A,end:y,strides:g}=t5(m,d,p,c,u,h,a,s,i);c=A,u=y,h=g;let w=Dd(l);w.forEach(b=>{u[b]=c[b]+1,h[b]=1});let x=Q0(c,u,h),_=x.filter((b,T)=>w.indexOf(T)===-1);return{nonStrided:h.every(b=>b===1),$begin:c,$end:u,$strides:h,size:x,newShape:m,outShape:_}}var re={};Pe(re,{Serializable:()=>c5,SerializationMap:()=>Ys,registerClass:()=>Na});var c5=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Ys=class{constructor(){this.classNameMap={}}static getMap(){return Ys.instance==null&&(Ys.instance=new Ys),Ys.instance}static register(e){Ys.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Na(e){M(e.className!=null,()=>"Class being registered does not have the static className property defined."),M(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),M(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Ys.register(e)}var cg={};Pe(cg,{TEST_EPSILON_FLOAT16:()=>h5,encodeStrings:()=>d5,expectArrayBuffersEqual:()=>E9,expectArraysClose:()=>k9,expectArraysEqual:()=>N9,expectNumbersClose:()=>S9,expectPromiseToFail:()=>I9,expectValuesInRange:()=>T9,testEpsilon:()=>Dm});var C9=.001,h5=.1;function k9(e,t,n){return n==null&&(n=Dm()),Om(e,t,(r,a)=>zm(r,a,n))}function Dm(){return P.backend.floatPrecision()===32?C9:h5}function Om(e,t,n){let r=!0;if((tn(e)||tn(t))&&(r=!1),tn(e)&&tn(t)&&(r=!0),r){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Or(e),o=Or(t);if(!ea(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let a=tn(e)?e:qs(e),s=tn(t)?t:qs(t);if(a.length!==s.length)throw new Error(`Arrays have different lengths actual: ${a.length} vs expected: ${s.length}. Actual: ${a}. Expected: ${s}.`);for(let i=0;it.fail(),()=>t())}function N9(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return ba(e)||ba(e[0])||ba(t)||ba(t[0])?Om(e,n,(r,a)=>r==a):Om(e,t,(r,a)=>zm(r,a,0))}function S9(e,t,n){if(n==null&&(n=Dm()),!zm(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function zm(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function T9(e,t,n){for(let r=0;rn)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function E9(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function d5(e){for(let t=0;tt.dispose())}function Vt(e){return P.keep(e)}function Qv(e){return P.time(e)}function pg(e){return P.setBackend(e)}function fg(){return P.ready()}function Gh(){return P.backendName}function e4(e){P.removeBackend(e)}function mg(e){return P.findBackend(e)}function t4(e){return P.findBackendFactory(e)}function xu(e,t,n=1){return P.registerBackend(e,t,n)}function _f(){return P.backend}function n4(e,t){Q().setPlatform(e,t)}function R9(e,t){let n=F(e,"a","add"),r=F(t,"b","add");[n,r]=It(n,r);let a={a:n,b:r};return P.runKernel(da,a)}var ie=L({add_:R9});function F9(e,t){let n=F(e,"a","floorDiv"),r=F(t,"b","floorDiv");[n,r]=It(n,r);let a={a:n,b:r};return P.runKernel(os,a)}var qh=L({floorDiv_:F9});function M9(e,t){let n=F(e,"a","div"),r=F(t,"b","div");if([n,r]=It(n,r),n.dtype==="int32"&&r.dtype==="int32")return qh(n,r);let a={a:n,b:r},s={};return P.runKernel(as,a,s)}var Ne=L({div_:M9});function $9(e,t){let n=F(e,"a","mul"),r=F(t,"b","mul");[n,r]=It(n,r);let a={a:n,b:r};return P.runKernel(gs,a)}var B=L({mul_:$9});function D9(e){let t=F(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return P.runKernel(ru,n)}else{let n={x:t};return P.runKernel(Di,n)}}var Dt=L({abs_:D9});function O9(e){let t={x:F(e,"x","acos")};return P.runKernel(Oi,t)}var bf=L({acos_:O9});function z9(e){let t={x:F(e,"x","acosh")};return P.runKernel(zi,t)}var vf=L({acosh_:z9});function P9(e){M(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),M(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((a,s)=>F(a,`tensors${s}`,"addN")),n=t[0];t.forEach(a=>{if(a.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(a=>{if(!ea(a.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return P.runKernel(Xa,r)}var lh=L({addN_:P9});function L9(e,t=null,n=!1){let r={x:F(e,"x","all","bool")},a={axis:t,keepDims:n};return P.runKernel(hh,r,a)}var Xh=L({all_:L9});function W9(e,t=null,n=!1){let r={x:F(e,"x","any","bool")},a={axis:t,keepDims:n};return P.runKernel(dh,r,a)}var wu=L({any_:W9});function B9(e,t=0){let n={x:F(e,"x","argMax")},r={axis:t};return P.runKernel(Ka,n,r)}var _u=L({argMax_:B9});function V9(e,t=0){let n={x:F(e,"x","argMin")},r={axis:t};return P.runKernel(eu,n,r)}var kf=L({argMin_:V9});function U9(e){let t={x:F(e,"x","asin")};return P.runKernel(Pi,t)}var If=L({asin_:U9});function H9(e){let t={x:F(e,"x","asinh")};return P.runKernel(Li,t)}var Nf=L({asinh_:H9});function j9(e){let t={x:F(e,"x","atan")};return P.runKernel(Wi,t)}var Sf=L({atan_:j9});function G9(e,t){let n=F(e,"a","atan2"),r=F(t,"b","atan2");[n,r]=It(n,r);let a={a:n,b:r};return P.runKernel(Vi,a)}var Tf=L({atan2_:G9});function q9(e){let t={x:F(e,"x","atanh")};return P.runKernel(Bi,t)}var Ef=L({atanh_:q9});function X9(e,t,n,r,a="NHWC",s){let i=e[3],o=[...t,i],l=p5(a);return Ku(e,o,n,s,r,null,null,l)}function f5(e,t,n,r,a,s,i="channelsLast"){let[o,l]=Od(t),c;if(i==="channelsLast")c=[o,l,e[3],e[3]];else if(i==="channelsFirst")c=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Ku(e,c,n,r,a,s,!1,i)}function K9(e,t,n,r,a,s,i="NDHWC"){let[o,l,c]=Pm(t),u,h;if(i==="NDHWC")h="channelsLast",u=[o,l,c,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",u=[o,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return m5(e,u,n,r,a,!1,h,s)}function Ku(e,t,n,r,a,s,i=!1,o="channelsLast"){let[l,c,u,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,h]=e;else if(o==="channelsFirst")[l,h,c,u]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,p,,f]=t,[m,A]=Od(n),[y,g]=Od(r),w=sl(d,y),x=sl(p,g),{padInfo:_,outHeight:b,outWidth:T}=Z9(a,c,u,m,A,w,x,s,o),S=i?f*h:f,N;return o==="channelsFirst"?N=[l,S,b,T]:o==="channelsLast"&&(N=[l,b,T,S]),{batchSize:l,dataFormat:o,inHeight:c,inWidth:u,inChannels:h,outHeight:b,outWidth:T,outChannels:S,padInfo:_,strideHeight:m,strideWidth:A,filterHeight:d,filterWidth:p,effectiveFilterHeight:w,effectiveFilterWidth:x,dilationHeight:y,dilationWidth:g,inShape:e,outShape:N,filterShape:t}}function m5(e,t,n,r,a,s=!1,i="channelsLast",o){let[l,c,u,h,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,h,d]=e;else if(i==="channelsFirst")[l,d,c,u,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,f,m,,A]=t,[y,g,w]=Pm(n),[x,_,b]=Pm(r),T=sl(p,x),S=sl(f,_),N=sl(m,b),{padInfo:C,outDepth:$,outHeight:D,outWidth:O}=Y9(a,c,u,h,y,g,w,T,S,N,o),V=s?A*d:A,W;return i==="channelsFirst"?W=[l,V,$,D,O]:i==="channelsLast"&&(W=[l,$,D,O,V]),{batchSize:l,dataFormat:i,inDepth:c,inHeight:u,inWidth:h,inChannels:d,outDepth:$,outHeight:D,outWidth:O,outChannels:V,padInfo:C,strideDepth:y,strideHeight:g,strideWidth:w,filterDepth:p,filterHeight:f,filterWidth:m,effectiveFilterDepth:T,effectiveFilterHeight:S,effectiveFilterWidth:N,dilationDepth:x,dilationHeight:_,dilationWidth:b,inShape:e,outShape:W,filterShape:t}}function J9(e,t,n,r,a){r==null&&(r=Lm(e,t,n));let s=e[0],i=e[1],o=Js((s-t+2*r)/n+1,a),l=Js((i-t+2*r)/n+1,a);return[o,l]}function Q9(e,t,n,r,a,s){a==null&&(a=Lm(e,t,r));let i=e[0],o=e[1],l=e[2],c=Js((i-t+2*a)/r+1,s),u=Js((o-t+2*a)/r+1,s),h=Js((l-t+2*a)/r+1,s);return[c,u,h,n]}function Lm(e,t,n,r=1){let a=sl(t,r);return Math.floor((e[0]*(n-1)-n+a)/2)}function Od(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Pm(e){return typeof e=="number"?[e,e,e]:e}function sl(e,t){return t<=1?e:e+(e-1)*(t-1)}function Z9(e,t,n,r,a,s,i,o,l){let c,u,h;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=J9([t,n],s,r,e,o);u=d[0],h=d[1]}else if(e==="same"){u=Math.ceil(t/r),h=Math.ceil(n/a);let d=Math.max(0,(u-1)*r+s-t),p=Math.max(0,(h-1)*a+i-n),f=Math.floor(d/2),m=d-f,A=Math.floor(p/2),y=p-A;c={top:f,bottom:m,left:A,right:y,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-s+1)/r),h=Math.ceil((n-i+1)/a);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];c={top:d,bottom:p,left:f,right:m,type:d===0&&p===0&&f===0&&m===0?"VALID":"EXPLICIT"},u=Js((t-s+d+p)/r+1,o),h=Js((n-i+f+m)/a+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:h}}function Y9(e,t,n,r,a,s,i,o,l,c,u){let h,d,p,f;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let m=Q9([t,n,r,1],o,1,a,e,u);d=m[0],p=m[1],f=m[2]}else if(e==="same"){d=Math.ceil(t/a),p=Math.ceil(n/s),f=Math.ceil(r/i);let m=(d-1)*a+o-t,A=(p-1)*s+l-n,y=(f-1)*i+c-r,g=Math.floor(m/2),w=m-g,x=Math.floor(A/2),_=A-x,b=Math.floor(y/2),T=y-b;h={top:x,bottom:_,left:b,right:T,front:g,back:w,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/a),p=Math.ceil((n-l+1)/s),f=Math.ceil((r-c+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:d,outHeight:p,outWidth:f}}function Js(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Sa(e){let[t,n,r]=Od(e);return t===1&&n===1&&r===1}function zr(e,t){return Sa(e)||Sa(t)}function p5(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function eI(e,t){let n={x:F(e,"x","reshape","string_or_numeric")},r={shape:t};return P.runKernel(bo,n,r)}var q=L({reshape_:eI});function tI(e,t,n,r,a){let s=F(e,"x","avgPool","float32"),i=1;M(zr(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=q(s,[1,s.shape[0],s.shape[1],s.shape[2]])),M(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),a!=null&&M(Ht(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=P.runKernel(Za,c,u);return h=ye(h,s.dtype),l?q(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var bu=L({avgPool_:tI});function nI(e,t,n,r,a,s="NDHWC"){let i=F(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=q(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),M(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&M(Ht(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=P.runKernel(tu,c,u);return h=ye(h,o.dtype),l?q(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Cf=L({avgPool3d_:nI});function rI(e,t=0){M(e.length>=1,()=>"Pass at least one tensor to concat");let n=qu(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor with dtype ${s.dtype}. `)}),n.length===1)return Nr(n[0]);let r=n,a={axis:t};return P.runKernel(Hi,r,a)}var dt=L({concat_:rI});function aI(e){let t={x:F(e,"x","sigmoid")};return P.runKernel(Cs,t)}var Jn=L({sigmoid_:aI});function sI(e,t,n){let r=F(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let a={x:r},s={begin:t,size:n};return P.runKernel(No,a,s)}var Me=L({slice_:sI});function iI(e){let t={x:F(e,"x","tanh")};return P.runKernel(Os,t)}var Lo=L({tanh_:iI});function oI(e,t,n,r,a,s){let i=F(e,"forgetBias","basicLSTMCell"),o=F(t,"lstmKernel","basicLSTMCell"),l=F(n,"lstmBias","basicLSTMCell"),c=F(r,"data","basicLSTMCell"),u=F(a,"c","basicLSTMCell"),h=F(s,"h","basicLSTMCell"),d=dt([c,h],1),p=Ke(d,o),f=ie(p,l),m=f.shape[0],A=f.shape[1]/4,y=[m,A],g=Me(f,[0,0],y),w=Me(f,[0,A],y),x=Me(f,[0,A*2],y),_=Me(f,[0,A*3],y),b=ie(B(Jn(g),Lo(w)),B(u,Jn(ie(i,x)))),T=B(Lo(b),Jn(_));return[b,T]}var r4=L({basicLSTMCell_:oI});function lI(e,t,n){let r=F(e,"x","batchToSpaceND"),a=t.reduce((o,l)=>o*l);M(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),M(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),M(r.shape[0]%a==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${a}`);let s={x:r},i={blockShape:t,crops:n};return P.runKernel(nu,s,i)}var vu=L({batchToSpaceND_:lI});function uI(e){let t;return e.rank===0||e.rank===1?t=q(e,[1,1,1,e.size]):e.rank===2?t=q(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=q(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function cI(e,t,n,r,a,s){s==null&&(s=.001);let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),c;a!=null&&(c=F(a,"scale","batchNorm"));let u;r!=null&&(u=F(r,"offset","batchNorm")),M(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),M(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),M(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:uI(i),scale:c,offset:u,mean:o,variance:l},d={varianceEpsilon:s},p=P.runKernel(ls,h,d);return q(p,i.shape)}var Bs=L({batchNorm_:cI});function hI(e,t,n,r,a,s){let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),c;a!=null&&(c=F(a,"scale","batchNorm"));let u;return r!=null&&(u=F(r,"offset","batchNorm")),M(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),M(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),M(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),Bs(i,o,l,u,c,s)}var Ag=L({batchNorm2d_:hI});function dI(e,t,n,r,a,s){let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),c;a!=null&&(c=F(a,"scale","batchNorm"));let u;return r!=null&&(u=F(r,"offset","batchNorm")),M(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),M(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),M(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),Bs(i,o,l,u,c,s)}var yg=L({batchNorm3d_:dI});function pI(e,t,n,r,a,s){let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),c;a!=null&&(c=F(a,"scale","batchNorm"));let u;return r!=null&&(u=F(r,"offset","batchNorm")),M(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),M(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),M(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),Bs(i,o,l,u,c,s)}var gg=L({batchNorm4d_:pI});function fI(e,t,n){let r=F(e,"x","bincount"),a=F(t,"weights","bincount");M(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(a.size===r.size||a.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${a.shape}.`);let s={x:r,weights:a},i={size:n};return P.runKernel(mh,s,i)}var xg=L({bincount_:fI});function mI(e,t){let n=F(e,"broadcastTo","x"),r=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.lengthn.rank){let l=n.shape.slice();for(;l.length=0;l--)if(a[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(s.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return Nr(n);let i={x:n},o={reps:s};return P.runKernel(fa,i,o)}var ku=L({broadcastTo_:mI});function AI(e){let t={x:F(e,"x","ceil")};return P.runKernel(Ui,t)}var Rf=L({ceil_:AI});function yI(e,t,n){let r=F(e,"x","clipByValue");M(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let a={x:r},s={clipValueMin:t,clipValueMax:n};return P.runKernel(pa,a,s)}var pn=L({clipByValue_:yI});function gI(e){return dt(e,0)}var wg=L({concat1d_:gI});function xI(e,t){return dt(e,t)}var Zl=L({concat2d_:xI});function wI(e,t){return dt(e,t)}var _g=L({concat3d_:wI});function _I(e,t){return dt(e,t)}var bg=L({concat4d_:_I});function bI(e,t,n,r,a="NHWC",s=[1,1],i){let o=F(e,"x","conv2d"),l=F(t,"filter","conv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=q(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&M(Ht(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h=a==="NHWC"?c.shape[3]:c.shape[1];M(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),M(zr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:c,filter:l},p={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},f=P.runKernel(Qa,d,p);return u?q(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Kr=L({conv2d_:bI});function vI(e,t,n,r,a="NWC",s=1,i){let o=F(e,"x","conv1d"),l=F(t,"filter","conv1d"),c=o,u=!1;o.rank===2&&(u=!0,c=q(o,[1,o.shape[0],o.shape[1]])),M(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),M(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&M(Ht(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),M(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),M(zr(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),M(a==="NWC",()=>`Error in conv1d: got dataFormat of ${a} but only NWC is currently supported.`);let h=q(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=q(c,[c.shape[0],1,c.shape[1],c.shape[2]]),p=Kr(d,h,[1,n],r,"NHWC",[1,s],i);return u?q(p,[p.shape[2],p.shape[3]]):q(p,[p.shape[0],p.shape[2],p.shape[3]])}var Kh=L({conv1d_:vI});function kI(e,t,n,r,a,s="NHWC",i){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,c=!1;t.rank===3&&(c=!0,l=q(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),M(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),M(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),M(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];M(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),M(h===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${n.shape[3]}.`),i!=null&&M(Ht(a),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let d={dy:l,filter:n},p={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,inputShape:o},f=P.runKernel(es,d,p);return c?q(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Wm=L({conv2DBackpropInput_:kI});function II(e,t,n,r,a,s){let i=F(e,"x","conv2dTranspose"),o=F(t,"filter","conv2dTranspose");return Wm(n,i,o,r,a,"NHWC",s)}var Zh=L({conv2dTranspose_:II});function NI(e,t,n,r,a="NDHWC",s=[1,1,1]){let i=F(e,"x","conv3d"),o=F(t,"filter","conv3d"),l=i,c=!1;i.rank===4&&(c=!0,l=q(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),M(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),M(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),M(zr(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),M(a==="NDHWC",()=>`Error in conv3d: got dataFormat of ${a} but only NDHWC is currently supported.`);let u={x:l,filter:o},h={strides:n,pad:r,dataFormat:a,dilations:s},d=P.runKernel(au,u,h);return c?q(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Ff=L({conv3d_:NI});function SI(e,t,n,r,a){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=q(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],c=i.shape[4];M(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),M(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),M(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),M(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),M(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:i,filter:n},h={pad:a,strides:r,inputShape:s},d=P.runKernel(xh,u,h);return o?q(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var A5=L({conv3DBackpropInput_:SI});function TI(e,t,n,r,a){let s=F(e,"x","conv3dTranspose"),i=F(t,"filter","conv3dTranspose");return A5(n,s,i,r,a)}var a4=L({conv3dTranspose_:TI});function EI(e){let t={x:F(e,"x","cos")};return P.runKernel(ts,t)}var Iu=L({cos_:EI});function CI(e){let t={x:F(e,"x","cosh")};return P.runKernel(ji,t)}var Yh=L({cosh_:CI});function RI(e,t=0,n=!1,r=!1){let a={x:F(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:r};return P.runKernel(ns,a,s)}var Jh=L({cumsum_:RI});function FI(e,t,n,r=!1){let a=F(e,"x","denseBincount"),s=F(t,"weights","denseBincount");M(a.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${a.dtype}`),M(a.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${a.rank}.`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(s.size===a.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${a.shape}, weights shape: ${s.shape}.`);let i={x:a,weights:s},o={size:n,binaryOutput:r};return P.runKernel(wh,i,o)}var vg=L({denseBincount_:FI});function MI(e,t,n="NHWC"){let r=F(e,"x","depthToSpace"),a=n==="NHWC"?r.shape[1]:r.shape[2],s=n==="NHWC"?r.shape[2]:r.shape[3],i=n==="NHWC"?r.shape[3]:r.shape[1];M(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${a} and ${t} for depthToSpace with input shape ${r.shape}`),M(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${s} and ${t} for depthToSpace with input shape ${r.shape}`),M(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${r.shape}`);let o={x:r},l={blockSize:t,dataFormat:n};return P.runKernel(qi,o,l)}var Mf=L({depthToSpace_:MI});function $I(e,t,n,r,a="NHWC",s=[1,1],i){let o=F(e,"x","depthwiseConv2d"),l=F(t,"filter","depthwiseConv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=q(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),M(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&M(Ht(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h={x:c,filter:l},d={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},p=P.runKernel(rs,h,d);return u?q(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Wo=L({depthwiseConv2d_:$I});function DI(e){let t={x:F(e,"x","diag")};return P.runKernel(vh,t)}var s4=L({diag_:DI});function OI(e,t,n,r,a=[1,1],s="NHWC"){let i=F(e,"x","dilation2d"),o=F(t,"filter","dilation2d");M(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),M(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),M(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,c=!1;i.rank===3&&(l=q(i,[1,i.shape[0],i.shape[1],i.shape[2]]),c=!0);let u={x:l,filter:o},h={strides:n,pad:r,dilations:a},d=P.runKernel(su,u,h);return c?q(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var $f=L({dilation2d_:OI});function zI(e,t){let n=e.length,r=[];for(let a=0;a1&&i===1&&r.unshift(s)}return r}function zt(e,t){let n=[];for(let r=0;r1)&&n.unshift(s)}return n}function gt(e,t){let n=[],r=Math.max(e.length,t.length);for(let a=0;a"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&en(s.shape,l.shape,"Error in where: ");let c={condition:s,t:o,e:l};return P.runKernel(ko,c)}var fn=L({where_:LI});function WI(e){let t={x:F(e,"x","zerosLike")};return P.runKernel(Do,t)}var qe=L({zerosLike_:WI});function BI(e,t){let n=F(e,"a","div"),r=F(t,"b","div");[n,r]=It(n,r);let a=Ne(n,r),s=qe(a),i=ya(r,s);return fn(i,s,a)}var Df=L({divNoNan_:BI});function VI(e,t){let n=F(e,"t1","dot"),r=F(t,"t2","dot");M((n.rank===1||n.rank===2)&&(r.rank===1||r.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let a=n.rank===1?n.size:n.shape[1],s=r.rank===1?r.size:r.shape[0];if(M(a===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${a} and ${s}.`),n.rank===1&&r.rank===1){let i=q(n,[1,-1]),o=q(r,[-1,1]),l=Ke(i,o);return q(l,[])}else if(n.rank===1&&r.rank===2){let i=q(n,[1,-1]),o=q(r,[r.shape[0],r.shape[1]]),l=Ke(i,o);return q(l,[l.size])}else if(n.rank===2&&r.rank===1){let i=q(r,[-1,1]),o=Ke(n,i);return q(o,[o.size])}else{let i=q(r,[r.shape[0],r.shape[1]]);return Ke(n,i)}}var kg=L({dot_:VI});function UI(e){let t={x:F(e,"x","elu")};return P.runKernel(Xi,t)}var Bo=L({elu_:UI});function HI(e){let t=F(e,"x","erf");M(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ye(t,"float32"));let n={x:t};return P.runKernel(Ki,n)}var Of=L({erf_:HI});function jI(e){let t={x:F(e,"x","exp")};return P.runKernel(ss,t)}var Wn=L({exp_:jI});function GI(e,t=0){let n=F(e,"x","expandDims","string_or_numeric");M(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},a={dim:t};return P.runKernel(Yi,r,a)}var vn=L({expandDims_:GI});function qI(e){let t={x:F(e,"x","expm1")};return P.runKernel(Ji,t)}var zf=L({expm1_:qI});function XI(e,t){let n=F(e,"x","tile","string_or_numeric");M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},a={reps:t};return P.runKernel(fa,r,a)}var ga=L({tile_:XI});function KI(e,t,n,r="float32"){t==null&&(t=e);let a=Ve([e,t],r),s=e<=t?e:t;for(let o=0;o`Error in localResponseNormalization: x must be rank 3 or 4 but got rank ${s.rank}.`),M(Ht(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=q(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},c={depthRadius:t,bias:n,alpha:r,beta:a},u=P.runKernel(uu,l,c);return o?q(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Lf=L({localResponseNormalization_:oN});function lN(e){let t={x:F(e,"x","log")};return P.runKernel(hs,t)}var kn=L({log_:lN});function uN(e){let t={x:F(e,"x","log1p")};return P.runKernel(uo,t)}var td=L({log1p_:uN});function i4(e){return M(va(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=F(t,"x","tf.grad","string_or_numeric"),a=n!=null?F(n,"dy","tf.grad"):null;return P.tidy(()=>{let{value:s,grads:i}=P.gradients(()=>e(r),[r],a);return a!=null&&en(s.shape,a.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),zd(i),i[0]})}}function o4(e){return M(va(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{M(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=qu(t,"args","tf.grads","string_or_numeric"),a=n!=null?F(n,"dy","tf.grads"):null;return P.tidy(()=>{let{value:s,grads:i}=P.gradients(()=>e(...r),r,a);return a!=null&&en(s.shape,a.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),zd(i),i})}}function l4(e){return M(va(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{M(t instanceof tt,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),M(n==null||n instanceof tt,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:a}=P.gradients(()=>e(t),[t],n);return zd(r),{grad:r[0],value:a}}}function u4(e){return M(va(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{M(Array.isArray(t)&&t.every(a=>a instanceof tt),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),M(n==null||n instanceof tt,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=P.gradients(()=>e(...t),t,n);return n!=null&&en(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),zd(r.grads),r}}function Eg(e,t){M(va(e),()=>"The f passed in variableGrads(f) must be a function"),M(t==null||Array.isArray(t)&&t.every(c=>c instanceof gu),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in P.registeredVariables)t.push(P.registeredVariables[c])}let r=n?t.filter(c=>!c.trainable):null,a=t.length;t=t.filter(c=>c.trainable),M(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${a} variables is trainable.`);let s=!0,{value:i,grads:o}=P.gradients(e,t,null,s);M(o.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),M(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((c,u)=>{o[u]!=null&&(l[c.name]=o[u])}),r!=null&&r.forEach(c=>l[c.name]=null),{value:i,grads:l}}function Sr(e){return P.customGrad(e)}function zd(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.`)}function cN(e){let t={x:F(e,"x","neg")};return P.runKernel(po,t)}var vt=L({neg_:cN});function hN(e){let t={x:F(e,"x","softplus")};return P.runKernel(Eo,t)}var Uo=L({softplus_:hN});function dN(e){let t=F(e,"x","logSigmoid");return Sr(n=>({value:vt(Uo(vt(n))),gradFunc:r=>B(r,Jn(vt(n)))}))(t)}var Cg=L({logSigmoid_:dN});function pN(e,t=null,n=!1){let r={x:F(e,"x","max")},a={reductionIndices:t,keepDims:n};return P.runKernel(ds,r,a)}var Bn=L({max_:pN});function fN(e,t){let n=F(e,"a","sub"),r=F(t,"b","sub");[n,r]=It(n,r);let a={a:n,b:r};return P.runKernel(Ds,a)}var _e=L({sub_:fN});function mN(e,t=null,n=!1){let r=F(e,"x","sum");r.dtype==="bool"&&(r=ye(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return P.runKernel(Fs,a,s)}var Ee=L({sum_:mN});function AN(e,t=-1){let n=F(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Sr((r,a)=>{let s=!0,i=Bn(r,t,!0),o=_e(r,i),l=_e(ye(o,"float32"),kn(Ee(Wn(o),t,s)));return a([l]),{value:l,gradFunc:(c,u)=>{let[h]=u,d=!0,p=Wn(h);return _e(c,B(Ee(c,t,d),p))}}})(n)}var nd=L({logSoftmax_:AN});function Bm(e,t){for(let n=0;ne[s]);return[n,a]}function Qs(e,t){let n=t.map(r=>1);return y5(e,n,t)}function yN(e,t,n){M(Bm(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function x5(e,t){if(Bm(e,t))return null;let n=[];for(let r=0;rn.push(r)),n}function Vm(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function gN(e,t){let n=[];for(let r=t-e;r`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),M(zr(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&M(Ht(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=P.runKernel(fs,c,u);return l?q(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Eu=L({maxPool_:kN});function IN(e,t=[1,1,1],n,r,a,s="NDHWC"){let i=F(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=q(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),M(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&M(Ht(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=P.runKernel(cu,c,u);return l?q(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Bf=L({maxPool3d_:IN});function NN(e,t,n,r,a=!1){let s={x:F(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:a},o=P.runKernel($h,s,i);return{result:o[0],indexes:o[1]}}var Fg=L({maxPoolWithArgmax_:NN});function SN(e,t){let n=F(e,"a","maximum"),r=F(t,"b","maximum");[n,r]=It(n,r),n.dtype==="bool"&&(n=ye(n,"int32"),r=ye(r,"int32")),gt(n.shape,r.shape);let a={a:n,b:r};return P.runKernel(ps,a)}var Tr=L({maximum_:SN});function TN(e,t=null,n=!1){let r={x:F(e,"x","mean")},a={axis:t,keepDims:n};return P.runKernel(ms,r,a)}var kt=L({mean_:TN});function EN(e,t=null,n=!1){let r={x:F(e,"x","min")},a={axis:t,keepDims:n};return P.runKernel(As,r,a)}var Ho=L({min_:EN});function CN(e,t){let n=F(e,"a","minimum"),r=F(t,"b","minimum");[n,r]=It(n,r),n.dtype==="bool"&&(n=ye(n,"int32"),r=ye(r,"int32")),gt(n.shape,r.shape);let a={a:n,b:r};return P.runKernel(ys,a)}var jo=L({minimum_:CN});function RN(e,t,n){M(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=F(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");M(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let a=n==="reflect"?1:0;for(let o=0;o"Invalid number of paddings. Must be length of 2 each."),M(t[o][0]>=0&&t[o][0]<=r.shape[o]-a&&t[o][1]>=0&&t[o][1]<=r.shape[o]-a,()=>`Padding in dimension ${o} cannot be greater than or equal to ${r.shape[o]-a} or less than 0 for input of shape ${r.shape}`);let s={paddings:t,mode:n},i={x:r};return P.runKernel(hu,i,s)}var Vf=L({mirrorPad_:RN});function FN(e,t){let n=F(e,"a","mod"),r=F(t,"b","mod");[n,r]=It(n,r);let a={a:n,b:r};return P.runKernel(ho,a)}var Uf=L({mod_:FN});function MN(e){let t=F(e,"x","square"),n={};return P.runKernel("Square",{x:t},n)}var ht=L({square_:MN});function $N(e,t=null,n=!1){e=F(e,"x","moments");let r=ar(t,e.shape),a=kt(e,r,n),s=a.shape;n||(s=Qs(a.shape,r));let i=ht(_e(ye(e,"float32"),q(a,s))),o=kt(i,r,n);return{mean:a,variance:o}}var ad=L({moments_:$N});function DN(e,t,n,r){let a=F(t,"data","multiRNNCell"),s=qu(n,"c","multiRNNCell"),i=qu(r,"h","multiRNNCell"),o=a,l=[];for(let h=0;h2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?q(a,[1,-1]):a},l={numSamples:t,seed:n,normalized:r},c=P.runKernel(Dh,o,l);return i===1?q(c,[c.size]):c}var Mg=L({multinomial_:ON});function zN(e,t){let n=F(e,"a","notEqual"),r=F(t,"b","notEqual");[n,r]=It(n,r),gt(n.shape,r.shape);let a={a:n,b:r};return P.runKernel(fo,a)}var Hs=L({notEqual_:zN});function Rt(e,t="float32"){if(t==="complex64"){let r=Rt(e,"float32"),a=Rt(e,"float32");return Aa(r,a)}let n=Ed(Ot(e),t);return P.makeTensor(n,e,t)}function Er(e,t="float32"){if(t==="complex64"){let r=Er(e,"float32"),a=Rt(e,"float32");return Aa(r,a)}let n=lm(Ot(e),t);return P.makeTensor(n,e,t)}function PN(e){let t={x:F(e,"x","onesLike")};return P.runKernel(go,t)}var In=L({onesLike_:PN});function LN(e,t){let n=F(e,"v1","outerProduct"),r=F(t,"v2","outerProduct");M(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let a=q(n,[-1,1]),s=q(r,[1,-1]);return Ke(a,s)}var h4=L({outerProduct_:LN});function WN(e,t,n=0){let r=F(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let a={paddings:t,constantValue:n},s={x:r};return P.runKernel(ws,s,a)}var Zr=L({pad_:WN});function BN(e,t,n=0){return M(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Zr(e,[t],n)}var d4=L({pad1d_:BN});function VN(e,t,n=0){return M(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Zr(e,t,n)}var p4=L({pad2d_:VN});function UN(e,t,n=0){return M(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Zr(e,t,n)}var f4=L({pad3d_:UN});function HN(e,t,n=0){return M(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Zr(e,t,n)}var m4=L({pad4d_:HN});function jN(e,t,n){let r=F(e,"x","spaceToBatchND");M(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),M(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),M(r.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let a={x:r},s={blockShape:t,paddings:n};return P.runKernel(fu,a,s)}var Cu=L({spaceToBatchND_:jN});function XN(e,t,n,r,a,s){a==null&&(a=[1,1]),s==null&&(s=1),r===0&&(r="valid");let i=F(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=q(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(zr(s,a),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${a}'`);let c=f5(o.shape,t,s,a,r),u=[c.dilationHeight,c.dilationWidth],h;r==="same"?h=qN([c.filterHeight,c.filterWidth],u):h=[[0,0],[0,0]];let d=u[0]===1&&u[1]===1,[p,f]=GN([c.inHeight,c.inWidth],u,h),m=d?r:"valid",A=d?o:Cu(o,u,p),y=(n==="avg"?()=>bu(A,t,s,m):()=>Eu(A,t,s,m))(),g=d?y:vu(y,u,f);return l?q(g,[g.shape[1],g.shape[2],g.shape[3]]):g}function GN(e,t,n){let r=n.map(u=>u[0]),a=n.map(u=>u[1]),s=e.concat(r,a),i=t.map((u,h)=>(u-s[h]%u)%u),o=a.map((u,h)=>u+i[h]),l=t.map((u,h)=>[r[h],o[h]]),c=t.map((u,h)=>[0,i[h]]);return[l,c]}function qN(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),r=n.map(s=>Math.floor(s/2)),a=n.map((s,i)=>s-r[i]);return n.map((s,i)=>[r[i],a[i]])}var $g=L({pool_:XN});function KN(e,t){let n=F(e,"base","pow"),r=F(t,"exp","pow");[n,r]=It(n,r);let a={a:n,b:r};return P.runKernel(_s,a)}var Yr=L({pow_:KN});function ZN(e,t){let n=F(e,"x","prelu"),r=F(t,"alpha","prelu"),a={x:n,alpha:r};return P.runKernel(bs,a)}var Ru=L({prelu_:ZN});function YN(e,t=null,n=!1){let r=F(e,"x","prod");r.dtype==="bool"&&(r=ye(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return P.runKernel(wo,a,s)}var sd=L({prod_:YN});function JN(e,t,n){let r=Ot(e),a=null;if(n==null||n==="float32")a=new Float32Array(r);else if(n==="int32")a=new Int32Array(r);else if(n==="bool")a=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let s=0;s=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*r*i,t=this.mean+this.stdDev*a*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},QN=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let a=r||Math.random();this.randu=Um.alea(a.toString()),this.randn=new Hm(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,a,s;for(;;){do r=this.randn.nextValue(),s=1+this.c*r;while(s<=0);if(s*=s*s,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),a=this.randu(),athis.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Um.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function tS(e,t,n=1,r="float32",a){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let s=new QN(t,n,r,a),i=Ve(e,r);for(let o=0;o`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Nn(t,0)}var g4=L({reverse1d_:uS});function cS(e,t){let n=F(e,"x","reverse");return M(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Nn(n,t)}var x4=L({reverse2d_:cS});function hS(e,t){let n=F(e,"x","reverse");return M(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Nn(n,t)}var w4=L({reverse3d_:hS});function dS(e,t){let n=F(e,"x","reverse");return M(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Nn(n,t)}var _4=L({reverse4d_:dS});function pS(e){let t={x:F(e,"x","round")};return P.runKernel(Ss,t)}var jf=L({round_:pS});function fS(e){let t={x:F(e,"x","rsqrt")};return P.runKernel(Ts,t)}var ld=L({rsqrt_:fS});function Se(e,t){if((tn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&tn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return ka(e,[],[],t)}function mS(e){let t={x:F(e,"x","selu")};return P.runKernel(Io,t)}var ud=L({selu_:mS});function AS(e,t,n,r,a,s=[1,1],i="NHWC"){let o=F(e,"x","separableConv2d"),l=F(t,"depthwiseFilter","separableConv2d"),c=F(n,"pointwiseFilter","separableConv2d"),u=o,h=!1;if(o.rank===3&&(h=!0,u=q(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");M(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),M(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),M(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),M(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let d=l.shape[2],p=l.shape[3];M(c.shape[2]===d*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*p}, but got ${c.shape[2]}.`);let f=Wo(u,l,r,a,i,s),m=Kr(f,c,1,"valid",i);return h?q(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Gf=L({separableConv2d_:AS});async function yS(e,t){let n=F(e,"x","setdiff1d"),r=F(t,"y","setdiff1d");M(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),M(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),M(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let a=await n.data(),s=await r.data(),i=new Set(s),o=0;for(let u=0;u`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),Me(r,[t],[n])}var dd=L({slice1d_:_S});function bS(e,t,n){let r=F(e,"x","slice2d");return M(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),Me(r,t,n)}var Xf=L({slice2d_:bS});function vS(e,t,n){let r=F(e,"x","slice3d");return M(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),Me(r,t,n)}var pd=L({slice3d_:vS});function kS(e,t,n){let r=F(e,"x","slice4d");return M(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),Me(r,t,n)}var Mu=L({slice4d_:kS});function IS(e,t=-1){let n=F(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},a={dim:t};return P.runKernel(Ms,r,a)}var $u=L({softmax_:IS});function NS(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return P.runKernel(Sh,t)}var Du=L({fft_:NS});function SS(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return P.runKernel(Th,t)}var qo=L({ifft_:SS});function TS(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let a=q(e,[n,t]);r=qo(a)}else{let a=[n,2*(t-1)],s=q(Fu(e),[n,t]),i=q(Qh(e),[n,t]),o=Nn(Me(s,[0,1],[n,t-2]),1),l=B(Nn(Me(i,[0,1],[n,t-2]),1),Se(-1)),c=dt([s,o],1),u=dt([i,l],1),h=q(Aa(c,u),[a[0],a[1]]);r=qo(h)}if(r=Fu(r),e.rank===3&&e.shape[0]!==0){let a=r,s=e.shape[0];r=q(r,[s,r.shape[0]/s,r.shape[1]]),a.dispose()}return r}var fd=L({irfft_:TS});function ES(e,t,n=0){let r={x:F(e,"x","split")},a={numOrSizeSplits:t,axis:n};return P.runKernel(Co,r,a)}var rn=L({split_:ES});function CS(e,t){M(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,a;if(t!=null&&t0),m=e.shape.map(A=>A);m[e.shape.length-1]=t,a=Me(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,a=dt([e,Rt(f)],e.shape.length-1),n=t}else a=e;let s=qe(a),i=q(Aa(a,s),[r,n]),o=Du(i),l=Math.floor(n/2)+1,c=Fu(o),u=Qh(o),h=rn(c,[l,n-l],c.shape.length-1),d=rn(u,[l,n-l],u.shape.length-1),p=a.shape.slice();return p[a.shape.length-1]=l,q(Aa(h[0],d[0]),p)}var Ou=L({rfft_:CS});function RS(e){let t={x:F(e,"x","sqrt")};return P.runKernel(Rs,t)}var Kt=L({sqrt_:RS});function FS(e,t){let n=F(e,"a","squaredDifference"),r=F(t,"b","squaredDifference");[n,r]=It(n,r),gt(n.shape,r.shape);let a={a:n,b:r},s={};return P.runKernel($s,a,s)}var md=L({squaredDifference_:FS});function MS(e,t){let n=F(e,"x","squeeze");return q(n,A0(n.shape,t).newShape)}var wa=L({squeeze_:MS});function $S(e,t=0){let n=qu(e,"tensors","stack","string_or_numeric");M(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&M(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,a={axis:t};return P.runKernel(xo,r,a)}var Sn=L({stack_:$S});function DS(e,t=0){let n={x:F(e,"x","step")},r={alpha:t};return P.runKernel(ma,n,r)}var Xo=L({step_:DS});function OS(e,t,n,r,a=0,s=0,i=0,o=0,l=0){let c={x:F(e,"x","stridedSlice")},u={begin:t,end:n,strides:r,beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return P.runKernel(Ro,c,u)}var Kf=L({stridedSlice_:OS});function zS(e){let t={x:F(e,"x","tan")};return P.runKernel(Fo,t)}var Zf=L({tan_:zS});function Qt(e,t){Gs(e);let n=Or(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return ka(e,null,n,t)}function dr(e,t,n){if(Gs(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=Or(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return ka(e,t,r,n)}function b4(e,t,n){if(Gs(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=Or(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return ka(e,t,r,n)}function v4(e,t,n){if(Gs(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=Or(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return ka(e,t,r,n)}function k4(e,t,n){if(Gs(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=Or(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,ka(e,t,r,n)}function PS(e,t=1,n=!0){let r=F(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let a=r.shape[r.shape.length-1];if(t>a)throw new Error(`'k' passed to topk() must be <= the last dimension (${a}) but got ${t}`);let s={x:r},i={k:t,sorted:n},[o,l]=P.runKernel(Mo,s,i);return{values:o,indices:l}}var Yf=L({topk_:PS});function LS(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Hm(t,n,r,!0,a),i=Ve(e,r);for(let o=0;o0,()=>"The input tensor must be at least 1D");let r={x:n},a={axis:t},[s,i]=P.runKernel(Wh,r,a);return{values:s,indices:i}}var yd=L({unique_:WS});function BS(e,t,n){let r=F(e,"x","unsortedSegmentSum"),a=F(t,"segmentIds","unsortedSegmentSum","int32");M(Ht(n),()=>"numSegments must be of dtype int");let s={x:r,segmentIds:a},i={numSegments:n};return P.runKernel(Au,s,i)}var Jf=L({unsortedSegmentSum_:BS});function VS(e,t=0){let n=F(e,"x","unstack","string_or_numeric");M(t>=-n.shape.length&&t`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},a={axis:t};return P.runKernel($o,r,a)}var rr=L({unstack_:VS});function zg(e,t=!0,n,r){return P.makeVariable(e,t,n,r)}function w5(e,t){let n=[];for(let s=0;s0,()=>"mask cannot be scalar"),en(o.slice(s,s+i),a.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=s;m"Shape mismatch in v and x");let l=Se(1),c=_e(l,o),u=B(_e(i,s),c);if(a){M(r!=null,()=>"When using zeroDebias: true, step is required.");let h=F(r,"step","movingAverage");u=Ne(u,_e(l,Yr(o,h)))}return ie(s,u)}var N4=L({movingAverage_:GS});function qS(e,t,n){let r=F(e,"indices","scatterND","int32"),a=F(t,"updates","scatterND");$m(a,r,n);let s={indices:r,updates:a},i={shape:n};return P.runKernel(vo,s,i)}var Pg=L({scatterND_:qS});function XS(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let a=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===a))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${a}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function KS(e,t,n,r=0){let a=F(e,"sparseIndices","sparseToDense","int32"),s=F(t,"sparseValues","sparseToDense"),i=F(r,"defaultValue","sparseToDense",s.dtype);XS(a,s,n,i);let o={sparseIndices:a,sparseValues:s,defaultValue:i},l={outputShape:n};return P.runKernel(Lh,o,l)}var em=L({sparseToDense_:KS});function ZS(e,t){let n=F(t,"indices","gatherND","int32"),r={params:F(e,"x","gatherND"),indices:n};return P.runKernel(to,r)}var Lg=L({gatherND_:ZS});function YS(e,t){if(t==null)return e.shape.slice();if(ea(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r`x has to be a floating point tensor since it's going to be scaled, but got a ${a.dtype} tensor instead.`),M(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof tt?a.clone():a;let s=YS(a,n),i=1-t,o=Ne(Vo(ie(Go(s,0,1,"float32",r),i)),i);return B(a,o)}var Wg=L({dropout_:JS});function Bg(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function tm(e,t,n){let r=1-e%2,a=new Float32Array(e);for(let s=0;s1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),M(r.rank-1===a.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${a.rank}`),en(r.shape.slice(0,r.shape.length-1),a.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=r.shape[r.shape.length-1];M(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await r.data(),o=await a.data(),[l,c]=[i.length/s,s],u=y0("bool",l);for(let h=0;hA.value-m.value),u[h]=0;for(let m=0;meT,depthwiseConv2d:()=>tT,matMul:()=>nT});function rT(e,t,n,r,a,s="NHWC",i){let o=e;e.rank===3&&(o=q(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=q(t,[1,t.shape[0],t.shape[1],t.shape[2]])),M(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),M(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),M(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=s==="NHWC"?o.shape[3]:o.shape[1],u=s==="NHWC"?l.shape[3]:l.shape[1];M(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),M(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),i!=null&&M(Ht(a),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let h={x:o,dy:l},d={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,filterShape:n};return P.runKernel(yh,h,d)}var jm=L({conv2DBackpropFilter_:rT});function Pd(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return B(e,Xo(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Ld(e,t){let n=t,r=zt(e.shape,t.shape);return r.length>0&&(n=Ee(n,r)),q(n,e.shape)}function Wd(e,t,n,r){if(t==="linear")return e;if(t==="relu")return Cr(e);if(t==="elu")return Bo(e);if(t==="relu6")return od(e);if(t==="prelu")return Ru(e,n);if(t==="leakyrelu")return Su(e,r);throw new Error(`Unknown fused activation ${t}.`)}var Bd=(e,t)=>!(e>0)||t==="linear";function aT({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",Bd(P.state.gradientDepth,l)===!1){let _=Kr(e,t,n,r,a,s,i);return o!=null&&(_=ie(_,o)),Wd(_,l,c,u)}let h=F(e,"x","conv2d"),d=F(t,"filter","conv2d"),p=h,f=!1;h.rank===3&&(f=!0,p=q(h,[1,h.shape[0],h.shape[1],h.shape[2]])),M(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),M(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&M(Ht(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),M(p.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${d.shape[2]}.`),M(zr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),M(a==="NHWC",()=>`Error in conv2d: got dataFormat of ${a} but only NHWC is currently supported.`);let m=Ku(p.shape,d.shape,n,s,r,i),A;o!=null&&(A=F(o,"bias","fused conv2d"),[A]=It(A,h),gt(m.outShape,A.shape));let y;c!=null&&(y=F(c,"prelu weights","fused conv2d"));let g=(_,b)=>{let[T,S,N,C]=b,$=Pd(_,N,l);M(Sa(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let D=Wm(S.shape,$,T,n,r),O=jm(S,$,T.shape,n,r),V=[D,O];if(C!=null){let W=Ld(C,$);V.push(W)}return V},w={x:p,filter:d,bias:A,preluActivationWeights:y},x={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?Sr((_,b,T)=>{let S=P.runKernel(Ls,w,x);return T([b,_,S]),f&&(S=q(S,[S.shape[1],S.shape[2],S.shape[3]])),{value:S,gradFunc:g}})(p,d):Sr((_,b,T,S)=>{let N=P.runKernel(Ls,w,x);return S([b,_,N,T]),f&&(N=q(N,[N.shape[1],N.shape[2],N.shape[3]])),{value:N,gradFunc:g}})(p,d,A)}var eT=L({fusedConv2d_:aT});function sT(e,t,n,r,a,s=[1,1],i){let o=e;e.rank===3&&(o=q(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=q(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:o,dy:l},u={strides:r,pad:a,dimRoundingMode:i,dilations:s,filterShape:n};return P.runKernel(_h,c,u)}var b5=L({depthwiseConv2dNativeBackpropFilter_:sT});function iT(e,t,n,r,a,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=q(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:o,filter:n},u={strides:r,pad:a,dimRoundingMode:i,dilations:s,inputShape:e},h=P.runKernel(bh,c,u);return l?q(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var v5=L({depthwiseConv2dNativeBackpropInput_:iT});function oT({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(Bd(P.state.gradientDepth,l)===!1){let _=Wo(e,t,n,r,a,s,i);return o!=null&&(_=ie(_,o)),Wd(_,l,c,u)}let h=F(e,"x","depthwiseConv2d"),d=F(t,"filter","depthwiseConv2d"),p=h,f=!1;h.rank===3&&(f=!0,p=q(h,[1,h.shape[0],h.shape[1],h.shape[2]])),M(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),M(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),M(p.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),M(zr(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&M(Ht(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${r}.`);let m=Ku(p.shape,d.shape,n,s,r,i,!0),A;o!=null&&(A=F(o,"bias","fused conv2d"),[A]=It(A,h),gt(m.outShape,A.shape));let y;c!=null&&(y=F(c,"prelu weights","fused depthwiseConv2d"));let g=(_,b)=>{M(Sa(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[T,S,N,C]=b,$=Pd(_,N,l),D=v5(S.shape,$,T,n,r,s,i),O=b5(S,$,T.shape,n,r,s,i);if(C!=null){let V=Ld(A,$);return[D,O,V]}return[D,O]},w={x:p,filter:d,bias:A,preluActivationWeights:y},x={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?Sr((_,b,T)=>{let S=P.runKernel(Ws,w,x);return T([b,_,S]),f&&(S=q(S,[S.shape[1],S.shape[2],S.shape[3]])),{value:S,gradFunc:g}})(p,d):Sr((_,b,T,S)=>{let N=P.runKernel(Ws,w,x);return S([b,_,N,T]),f&&(N=q(N,[N.shape[1],N.shape[2],N.shape[3]])),{value:N,gradFunc:g}})(p,d,A)}var tT=L({fusedDepthwiseConv2d_:oT});function lT({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:a,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Bd(P.state.gradientDepth,s)===!1){let C=Ke(e,t,n,r);return a!=null&&(C=ie(C,a)),Wd(C,s,i,o)}let l=F(e,"a","fused matMul"),c=F(t,"b","fused matMul");[l,c]=It(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],h=r?c.shape[c.rank-1]:c.shape[c.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=r?c.shape[c.rank-2]:c.shape[c.rank-1],f=l.shape.slice(0,-2),m=c.shape.slice(0,-2),A=Ot(f),y=Ot(m);M(l.rank>=2&&c.rank>=2&&l.rank===c.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${c.rank}.`),M(ea(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${c.shape} must match.`),M(u===h,()=>`Error in fused matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${r} must match.`);let g=l.shape.slice(0,-2).concat([d,p]),w=n?q(l,[A,u,d]):q(l,[A,d,u]),x=r?q(c,[y,p,h]):q(c,[y,h,p]),_;a!=null&&(_=F(a,"bias","fused matMul"),[_]=It(_,l),gt(g,_.shape));let b;i!=null&&(b=F(i,"prelu weights","fused matMul"));let T=(C,$)=>{let[D,O,V,W]=$,K=Pd(q(C,V.shape),V,s),X,ee;if(!n&&!r?(X=Ke(K,O,!1,!0),ee=Ke(D,K,!0,!1)):!n&&r?(X=Ke(K,O,!1,!1),ee=Ke(K,D,!0,!1)):n&&!r?(X=Ke(O,K,!1,!0),ee=Ke(D,K,!1,!1)):(X=Ke(O,K,!0,!0),ee=Ke(K,D,!0,!0)),a!=null){let Z=Ld(W,K);return[X,ee,Z]}else return[X,ee]},S={a:w,b:x,bias:_,preluActivationWeights:b},N={transposeA:n,transposeB:r,activation:s,leakyreluAlpha:o};return a==null?Sr((C,$,D)=>{let O=P.runKernel(Ps,S,N);return D([C,$,O]),{value:q(O,g),gradFunc:T}})(w,x):Sr((C,$,D,O)=>{let V=P.runKernel(Ps,S,N);return O([C,$,V,D]),{value:q(V,g),gradFunc:T}})(w,x,_)}var nT=L({fusedMatMul_:lT});function uT(e){return tm(e,.54,.46)}var cT=L({hammingWindow_:uT});function hT(e){return tm(e,.5,.5)}var k5=L({hannWindow_:hT});function dT(e,t,n,r=!1,a=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Me(e,s,t)),s+=n;if(r)for(;s`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),M(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${o.shape}.`),M(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${o.shape}.`),M(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),M(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),M(a==="bilinear"||a==="nearest",()=>`method must be bilinear or nearest, but was ${a}`);let u={image:i,boxes:o,boxInd:l},h={method:a,extrapolationValue:s,cropSize:r};return P.runKernel(Gi,u,h)}var AT=L({cropAndResize_:mT});function yT(e){let t=F(e,"image","flipLeftRight","float32");M(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return P.runKernel(Qi,n,{})}var gT=L({flipLeftRight_:yT});function xT(e,t,n=0,r=.5){let a=F(e,"image","rotateWithOffset","float32");M(a.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${a.rank}.`);let s={image:a},i={radians:t,fillValue:n,center:r};return P.runKernel(Oo,s,i)}var wT=L({rotateWithOffset_:xT});function il(e,t,n,r,a,s){r==null&&(r=.5),a==null&&(a=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),M(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),M(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),M(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),M(t.rank===1,()=>"scores must be a 1D tensor"),M(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),M(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s}}function _T(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=F(e,"boxes","nonMaxSuppression"),i=F(t,"scores","nonMaxSuppression"),o=il(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:r,scoreThreshold:a};return P.runKernel(mo,{boxes:s,scores:i},l)}var bT=L({nonMaxSuppression_:_T});function kT(e,t,n){let r=vT(e,t,n),a=r<0?-(r+1):r;e.splice(a,0,t)}function vT(e,t,n){return NT(e,t,n||IT)}function IT(e,t){return e>t?1:e>>1);let o=n(t,e[s]);o>0?r=s+1:(a=s,i=!o)}return i?r:-r-1}function N5(e,t,n,r,a){return Gm(e,t,n,r,a,0)}function S5(e,t,n,r,a,s){return Gm(e,t,n,r,a,0,!1,s,!0)}function T5(e,t,n,r,a,s){return Gm(e,t,n,r,a,s,!0)}function Gm(e,t,n,r,a,s,i=!1,o=!1,l=!1){let c=[];for(let A=0;Aa&&c.push({score:t[A],boxIndex:A,suppressBeginIndex:0});c.sort(E5);let u=s>0?-.5/s:0,h=[],d=[];for(;h.length0;){let A=c.pop(),{score:y,boxIndex:g,suppressBeginIndex:w}=A;if(y=w;--_){let b=ST(e,g,h[_]);if(b>=r){x=!0;break}if(A.score=A.score*TT(r,u,b),A.score<=a)break}A.suppressBeginIndex=h.length,x||(A.score===y?(h.push(g),d.push(A.score)):A.score>a&&kT(c,A,E5))}let p=h.length,f=n-p;o&&f>0&&(h.push(...new Array(f).fill(0)),d.push(...new Array(f).fill(0)));let m={selectedIndices:h};return i&&(m.selectedScores=d),l&&(m.validOutputs=p),m}function ST(e,t,n){let r=e.subarray(t*4,t*4+4),a=e.subarray(n*4,n*4+4),s=Math.min(r[0],r[2]),i=Math.min(r[1],r[3]),o=Math.max(r[0],r[2]),l=Math.max(r[1],r[3]),c=Math.min(a[0],a[2]),u=Math.min(a[1],a[3]),h=Math.max(a[0],a[2]),d=Math.max(a[1],a[3]),p=(o-s)*(l-i),f=(h-c)*(d-u);if(p<=0||f<=0)return 0;let m=Math.max(s,c),A=Math.max(i,u),y=Math.min(o,h),g=Math.min(l,d),w=Math.max(y-m,0)*Math.max(g-A,0);return w/(p+f-w)}function TT(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function E5(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function ET(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=F(e,"boxes","nonMaxSuppressionAsync"),i=F(t,"scores","nonMaxSuppressionAsync"),o=il(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),c=l[0],u=l[1],{selectedIndices:h}=N5(c,u,n,r,a);return s!==e&&s.dispose(),i!==t&&i.dispose(),Qt(h,"int32")}var CT=ET;function RT(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=F(e,"boxes","nonMaxSuppression"),o=F(t,"scores","nonMaxSuppression"),l=il(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let c={boxes:i,scores:o},u={maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s},h=P.runKernel(yo,c,u);return{selectedIndices:h[0],selectedScores:h[1]}}var FT=L({nonMaxSuppressionWithScore_:RT});async function MT(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=F(e,"boxes","nonMaxSuppressionAsync"),o=F(t,"scores","nonMaxSuppressionAsync"),l=il(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let c=await Promise.all([i.data(),o.data()]),u=c[0],h=c[1],{selectedIndices:d,selectedScores:p}=T5(u,h,n,r,a,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Qt(d,"int32"),selectedScores:Qt(p)}}var $T=MT;function DT(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=F(e,"boxes","nonMaxSuppression"),o=F(t,"scores","nonMaxSuppression"),l=il(i,o,n,r,a,null),c=l.maxOutputSize,u=l.iouThreshold,h=l.scoreThreshold,d={boxes:i,scores:o},p={maxOutputSize:c,iouThreshold:u,scoreThreshold:h,padToMaxOutputSize:s},f=P.runKernel(Ao,d,p);return{selectedIndices:f[0],validOutputs:f[1]}}var OT=L({nonMaxSuppressionPadded_:DT});async function zT(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=F(e,"boxes","nonMaxSuppressionAsync"),o=F(t,"scores","nonMaxSuppressionAsync"),l=il(i,o,n,r,a,null),c=l.maxOutputSize,u=l.iouThreshold,h=l.scoreThreshold,[d,p]=await Promise.all([i.data(),o.data()]),{selectedIndices:f,validOutputs:m}=S5(d,p,c,u,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Qt(f,"int32"),validOutputs:Se(m,"int32")}}var PT=zT;function LT(e,t,n=!1,r=!1){let a=F(e,"images","resizeBilinear");M(a.rank===3||a.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${a.rank}.`),M(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),M(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=q(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},c=P.runKernel(ks,o,l);return i?q(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var C5=L({resizeBilinear_:LT});function WT(e,t,n=!1,r=!1){let a=F(e,"images","resizeNearestNeighbor");M(a.rank===3||a.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${a.rank}.`),M(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),M(a.dtype==="float32"||a.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),M(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=q(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},c=P.runKernel(pu,o,l);return i?q(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var R5=L({resizeNearestNeighbor_:WT});function BT(e,t,n){M(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),M(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=F(e,"a","bandPart");M(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let a=r.shape,[s,i]=r.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=q(id(0,s,1,"int32"),[-1,1]),l=id(0,i,1,"int32"),c=_e(o,l),u=nr(Us(c,Se(+t,"int32")),xa(c,Se(-n,"int32"))),h=Rt([s,i],r.dtype);return q(Sn(rr(q(r,[-1,s,i])).map(d=>fn(u,d,h))),a)}var VT=L({bandPart_:BT});function UT(e){let t;if(Array.isArray(e)){t=!1,M(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let a=e[0].shape[0];for(let s=1;s`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${a})`)}else t=!0,e=rn(e,e.shape[0],0).map(a=>wa(a,[0]));M(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let a=0;a{let s=r[a];if(a>0)for(let i=0;i=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return F5(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),r=rr(q(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),a=[],s=[];r.forEach(l=>{let[c,u]=F5(l,t);a.push(c),s.push(u)});let i=q(Sn(a,0),e.shape),o=q(Sn(s,0),e.shape);return[i,o]}}function F5(e,t=!1){return P.tidy(()=>{M(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],a=Pf(n),s=Nr(e),i=dr([[1]],[1,1]),o=Nr(i),l=n>=r?r:n;for(let c=0;c{let p=Me(s,[c,c],[n-c,1]),f=gd(p),m=Me(s,[c,c],[1,1]),A=fn(tr(m,0),dr([[-1]]),dr([[1]])),y=_e(m,B(A,f)),g=Ne(p,y);g.shape[0]===1?o=Nr(i):o=dt([i,Me(g,[1,0],[g.shape[0]-1,g.shape[1]])],0);let w=vt(Ne(Ke(A,y),f)),x=Me(s,[c,0],[n-c,r]),_=B(w,o),b=it(o);if(c===0)s=_e(x,Ke(_,Ke(b,x)));else{let N=_e(x,Ke(_,Ke(b,x)));s=dt([Me(s,[0,0],[c,r]),N],0)}let T=it(_),S=Me(a,[0,c],[n,a.shape[1]-c]);if(c===0)a=_e(S,Ke(Ke(S,o),T));else{let N=_e(S,Ke(Ke(S,o),T));a=dt([Me(a,[0,0],[n,c]),N],1)}return[o,s,a]}),Re([u,h,d])}return!t&&n>r&&(a=Me(a,[0,0],[n,r]),s=Me(s,[0,0],[r,r])),[a,s]})}var GT=L({qr_:jT}),sn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(sn||(sn={}));function qT(e,t,n=sn.SUM_BY_NONZERO_WEIGHTS){let r=F(e,"losses","computeWeightedLoss"),a=null;t!=null&&(a=F(t,"weights","computeWeightedLoss"));let s=a==null?r:B(r,a);if(n===sn.NONE)return s;if(n===sn.SUM)return Ee(s);if(n===sn.MEAN){if(a==null)return kt(s);{let i=r.size/a.size,o=Ne(Ee(s),Ee(a));return i>1?Ne(o,Se(i)):o}}if(n===sn.SUM_BY_NONZERO_WEIGHTS){if(a==null)return Ne(Ee(s),Se(r.size));{let i=B(a,Er(r.shape)),o=ye(Ee(Hs(i,Se(0))),"float32");return Ne(Ee(s),o)}}throw Error(`Unknown reduction: ${n}`)}var na=L({computeWeightedLoss_:qT});function XT(e,t,n,r=sn.SUM_BY_NONZERO_WEIGHTS){let a=F(e,"labels","absoluteDifference"),s=F(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=F(n,"weights","absoluteDifference")),en(a.shape,s.shape,"Error in absoluteDifference: ");let o=Dt(_e(a,s));return na(o,i,r)}var KT=L({absoluteDifference_:XT});function ZT(e,t,n,r,a=sn.SUM_BY_NONZERO_WEIGHTS){let s=F(e,"labels","cosineDistance"),i=F(t,"predictions","cosineDistance"),o=null;r!=null&&(o=F(r,"weights","cosineDistance")),en(s.shape,i.shape,"Error in cosineDistance: ");let l=Se(1),c=_e(l,Ee(B(s,i),n,!0));return na(c,o,a)}var YT=L({cosineDistance_:ZT});function JT(e,t,n,r=sn.SUM_BY_NONZERO_WEIGHTS){let a=F(e,"labels","hingeLoss"),s=F(t,"predictions","hingeLoss"),i=null;n!=null&&(i=F(n,"weights","hingeLoss")),en(a.shape,s.shape,"Error in hingeLoss: ");let o=Se(1);a=_e(B(Se(2),a),o);let l=Cr(_e(o,B(a,s)));return na(l,i,r)}var QT=L({hingeLoss_:JT});function eE(e,t,n,r=1,a=sn.SUM_BY_NONZERO_WEIGHTS){let s=F(e,"labels","huberLoss"),i=F(t,"predictions","huberLoss"),o=null;n!=null&&(o=F(n,"weights","huberLoss")),en(s.shape,i.shape,"Error in huberLoss: ");let l=Se(r),c=Dt(_e(i,s)),u=jo(c,l),h=_e(c,u),d=ie(B(Se(.5),ht(u)),B(l,h));return na(d,o,a)}var tE=L({huberLoss_:eE});function nE(e,t,n,r=1e-7,a=sn.SUM_BY_NONZERO_WEIGHTS){let s=F(e,"labels","logLoss"),i=F(t,"predictions","logLoss"),o=null;n!=null&&(o=F(n,"weights","logLoss")),en(s.shape,i.shape,"Error in logLoss: ");let l=Se(1),c=Se(r),u=vt(B(s,kn(ie(i,c)))),h=B(_e(l,s),kn(ie(_e(l,i),c))),d=_e(u,h);return na(d,o,a)}var rE=L({logLoss_:nE});function aE(e,t,n,r=sn.SUM_BY_NONZERO_WEIGHTS){let a=F(e,"labels","meanSquaredError"),s=F(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=F(n,"weights","meanSquaredError")),en(a.shape,s.shape,"Error in meanSquaredError: ");let o=md(a,s);return na(o,i,r)}var sE=L({meanSquaredError_:aE});function iE(e,t){let n=F(e,"labels","sigmoidCrossEntropyWithLogits"),r=F(t,"logits","sigmoidCrossEntropyWithLogits");en(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let a=Cr(r),s=B(r,n),i=td(Wn(vt(Dt(r))));return ie(_e(a,s),i)}function oE(e,t,n,r=0,a=sn.SUM_BY_NONZERO_WEIGHTS){let s=F(e,"multiClassLabels","sigmoidCrossEntropy"),i=F(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=F(n,"weights","sigmoidCrossEntropy")),en(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),r>0){let c=Se(r),u=Se(1),h=Se(.5);s=ie(B(s,_e(u,c)),B(h,c))}let l=iE(s,i);return na(l,o,a)}var lE=L({sigmoidCrossEntropy_:oE});function uE(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Sr((r,a,s)=>{let i=Wf(a,[n],!0),o=_e(ye(a,"float32"),i);s([r,o]);let l=vt(B(o,r));return{value:Ee(l,[n]),gradFunc:(c,u)=>{let[h,d]=u,p=Qs(c.shape,[n]);return[B(q(c,p),_e(ye(h,"float32"),Wn(d))),B(q(c,p),_e(Wn(d),ye(h,"float32")))]}}})(e,t)}function cE(e,t,n,r=0,a=sn.SUM_BY_NONZERO_WEIGHTS){let s=F(e,"onehotLabels","softmaxCrossEntropy"),i=F(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=F(n,"weights","softmaxCrossEntropy")),en(s.shape,i.shape,"Error in softmaxCrossEntropy: "),r>0){let c=Se(r),u=Se(1),h=Se(s.shape[1]);s=ie(B(s,_e(u,c)),Ne(c,h))}let l=uE(s,i);return na(l,o,a)}var hE=L({softmaxCrossEntropy_:cE}),T4={fft:Du,ifft:qo,rfft:Ou,irfft:fd},E4={hammingWindow:cT,hannWindow:k5,frame:I5,stft:fT},Et={flipLeftRight:gT,resizeNearestNeighbor:R5,resizeBilinear:C5,rotateWithOffset:wT,cropAndResize:AT,nonMaxSuppression:bT,nonMaxSuppressionAsync:CT,nonMaxSuppressionWithScore:FT,nonMaxSuppressionWithScoreAsync:$T,nonMaxSuppressionPadded:OT,nonMaxSuppressionPaddedAsync:PT},Vg={bandPart:VT,gramSchmidt:HT,qr:GT},C4={absoluteDifference:KT,computeWeightedLoss:na,cosineDistance:YT,hingeLoss:QT,huberLoss:tE,logLoss:rE,meanSquaredError:sE,sigmoidCrossEntropy:lE,softmaxCrossEntropy:hE},Jr=class extends c5{minimize(e,t=!1,n){let{value:r,grads:a}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:a[i.name]}));this.applyGradients(s)}else this.applyGradients(a);return Re(a),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Eg(e,t)}dispose(){this.iterations_!=null&&Re(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Se(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Jr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var xd=class extends Jr{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=P.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=P.registeredVariables[t],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:H(()=>qe(r).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:H(()=>qe(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;H(()=>{let l=ie(B(i,this.rho),B(ht(s),1-this.rho)),c=B(Ne(Kt(ie(o,this.epsilon)),Kt(ie(i,this.epsilon))),s),u=ie(B(o,this.rho),B(ht(c),1-this.rho));i.assign(l),o.assign(u);let h=ie(B(c,-this.learningRate),r);r.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Re(this.accumulatedGrads.map(e=>e.variable)),Re(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};xd.className="Adadelta";Na(xd);var wd=class extends Jr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=P.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:H(()=>Nu(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let s=this.accumulatedGrads[n].variable;H(()=>{let i=ie(s,ht(a));s.assign(i);let o=ie(B(Ne(a,Kt(ie(i,P.backend.epsilon()))),-this.learningRate),r);r.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Re(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};wd.className="Adagrad";Na(wd);var _d=class extends Jr{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],H(()=>{this.accBeta1=Se(t).variable(),this.accBeta2=Se(n).variable()}),r==null&&(this.epsilon=P.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);H(()=>{let n=_e(1,this.accBeta1),r=_e(1,this.accBeta2);t.forEach((a,s)=>{let i=P.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:H(()=>qe(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${a}/v`,variable:H(()=>qe(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedSecondMoment[s].variable,h=ie(B(c,this.beta1),B(l,1-this.beta1)),d=ie(B(u,this.beta2),B(ht(l),1-this.beta2)),p=Ne(h,n),f=Ne(d,r);c.assign(h),u.assign(d);let m=ie(B(Ne(p,ie(Kt(f),this.epsilon)),-this.learningRate),i);i.assign(m)}),this.accBeta1.assign(B(this.accBeta1,this.beta1)),this.accBeta2.assign(B(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Re(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Re(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),H(()=>{this.accBeta1.assign(Yr(this.beta1,this.iterations_+1)),this.accBeta2.assign(Yr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};_d.className="Adam";Na(_d);var bd=class extends Jr{constructor(e,t,n,r=null,a=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=a,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],H(()=>{this.iteration=Se(0).variable(),this.accBeta1=Se(t).variable()}),r==null&&(this.epsilon=P.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);H(()=>{let n=_e(1,this.accBeta1),r=Ne(-this.learningRate,ie(B(this.iteration,this.decay),1));t.forEach((a,s)=>{let i=P.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:qe(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${a}/v`,variable:qe(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedWeightedInfNorm[s].variable,h=ie(B(c,this.beta1),B(l,1-this.beta1)),d=B(u,this.beta2),p=Dt(l),f=Tr(d,p);c.assign(h),u.assign(f);let m=ie(B(Ne(r,n),Ne(h,ie(f,this.epsilon))),i);i.assign(m)}),this.iteration.assign(ie(this.iteration,1)),this.accBeta1.assign(B(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Re(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Re(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};bd.className="Adamax";Na(bd);var zu=class extends Jr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let a=P.registeredVariables[t];H(()=>{let s=ie(B(this.c,r),a);a.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Vt(Se(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};zu.className="SGD";Na(zu);var vd=class extends zu{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Se(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=P.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:H(()=>qe(r).variable(i))}}let a=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&H(()=>{let i,o=ie(B(this.m,a),s);this.useNesterov?i=ie(B(this.c,ie(s,B(o,this.m))),r):i=ie(B(this.c,o),r),a.assign(o),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Re(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};vd.className="Momentum";Na(vd);var kd=class extends Jr{constructor(e,t=.9,n=0,r=null,a=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=a,r==null&&(this.epsilon=P.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=P.registeredVariables[t],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:H(()=>qe(r).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:H(()=>qe(r).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:H(()=>qe(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;H(()=>{let l=ie(B(i,this.decay),B(ht(s),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[n].variable,u=ie(B(c,this.decay),B(s,1-this.decay)),h=Ne(B(s,this.learningRate),Kt(_e(l,ie(ht(u),this.epsilon)))),d=ie(B(o,this.momentum),h);i.assign(l),c.assign(u),o.assign(d);let p=_e(r,d);r.assign(p)}else{let c=ie(B(i,this.decay),B(ht(s),1-this.decay)),u=ie(B(o,this.momentum),Ne(B(s,this.learningRate),Kt(ie(c,this.epsilon))));i.assign(c),o.assign(u);let h=_e(r,u);r.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Re(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Re(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Re(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};kd.className="RMSProp";Na(kd);var ei=class{static sgd(e){return new zu(e)}static momentum(e,t,n=!1){return new vd(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,a=!1){return new kd(e,t,n,r,a)}static adam(e=.001,t=.9,n=.999,r=null){return new _d(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new xd(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,a=0){return new bd(e,t,n,r,a)}static adagrad(e,t=.1){return new wd(e,t)}},js={sgd:ei.sgd,momentum:ei.momentum,adadelta:ei.adadelta,adagrad:ei.adagrad,rmsprop:ei.rmsprop,adamax:ei.adamax,adam:ei.adam},dE=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Id(){return new Promise(e=>dE(()=>e()))}var R={};Pe(R,{ERF_A1:()=>vE,ERF_A2:()=>kE,ERF_A3:()=>IE,ERF_A4:()=>NE,ERF_A5:()=>SE,ERF_P:()=>bE,PARALLELIZE_THRESHOLD:()=>qm,SELU_SCALE:()=>$5,SELU_SCALEALPHA:()=>M5,applyActivation:()=>Wd,assertAndGetBroadcastShape:()=>gt,assertAxesAreInnerMostDims:()=>yN,assertParamsConsistent:()=>pE,assignToTypedArray:()=>DE,axesAreInnerMostDims:()=>Bm,calculateShapes:()=>J0,combineLocations:()=>y5,complexWithEvenIndex:()=>FE,complexWithOddIndex:()=>ME,computeConv2DInfo:()=>Ku,computeConv3DInfo:()=>m5,computeDefaultPad:()=>Lm,computeDilation2DInfo:()=>X9,computeOptimalWindowSize:()=>mE,computeOutAndReduceShapes:()=>g5,computeOutShape:()=>fE,computePool2DInfo:()=>f5,computePool3DInfo:()=>K9,convertConv2DDataFormat:()=>p5,eitherStridesOrDilationsAreOne:()=>zr,expandShapeToKeepDim:()=>Qs,exponent:()=>zE,exponents:()=>OE,fromStringArrayToUint8:()=>WE,fromUint8ToStringArray:()=>LE,getAxesPermutation:()=>x5,getBroadcastDims:()=>zI,getComplexWithIndex:()=>$E,getFusedBiasGradient:()=>Ld,getFusedDyActivation:()=>Pd,getImageCenter:()=>AE,getInnerMostAxes:()=>gN,getPermuted:()=>gE,getReductionAxes:()=>zt,getReshaped:()=>yE,getReshapedPermuted:()=>xE,getSliceBeginCoords:()=>wE,getSliceSize:()=>_E,getUndoAxesPermutation:()=>Vm,log:()=>EE,mergeRealAndImagArrays:()=>CE,prepareAndValidate:()=>Y0,prepareSplitSize:()=>PE,segment_util:()=>D5,shouldFuse:()=>Bd,slice_util:()=>an,splitRealAndImagArrays:()=>RE,tupleValuesAreOne:()=>Sa,upcastType:()=>er,validateInput:()=>$m,validateUpdateShape:()=>Mm,warn:()=>TE});function pE(e,t){let n=e[0].length;e.forEach((a,s)=>{M(a.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),M(t>=0&&t`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((a,s)=>{for(let i=0;i`Error in concat${n}D: Shape of tensors[${s}] (${a}) does not match the shape of the rest (${r}) along the non-concatenated axis ${s}.`)})}function fE(e,t){let n=e[0].slice();for(let r=1;r=t*2+1||i%2==1?s.push(i):a.push(i);r.push(...a),r.push(0),r.push(...s)}return r}function xE(e,t,n,r=!0){let a=[];r?a.push(e[0]/n):a.push(e[0]*n);for(let s=1;s"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let a=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);M(a<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}M(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var D5={};Pe(D5,{collectGatherOpShapeInfo:()=>UE,computeOutShape:()=>VE,segOpComputeOptimalWindowSize:()=>BE});function BE(e,t){let n=!1,r;for(e<=qm?(r=e,n=!0):r=Td(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=Td(e,r+1);return r}function VE(e,t,n){let r=[],a=e.length;for(let s=0;sa))throw new Error(`Expect batchDims in the range of [-${a}, ${a}], but got ${r}`);if(r<0&&(r+=a),r>s)throw new Error(`batchDims (${r}) must be less than rank(x) ( ${s}).`);if(nRd(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function WE(e){return e.map(t=>Vu(t))}var Rr={};Pe(Rr,{nonMaxSuppressionV3Impl:()=>N5,nonMaxSuppressionV4Impl:()=>S5,nonMaxSuppressionV5Impl:()=>T5,whereImpl:()=>w5});function ke(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var HE=Rr.whereImpl,Ug=class extends Ql{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new ch(this,Ln())}write(e,t,n){this.firstUse&&(this.firstUse=!1,Q().get("IS_NODE")&&R.warn(` ============================ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details. ============================`));let r={};return this.data.set(r,{values:e,dtype:n,refCount:1}),r}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let a=n.map(s=>k.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r){this.data.set(e,{values:t,dtype:r,refCount:1})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),a=this.readSync(n.imag.dataId);return R.mergeRealAndImagArrays(r,a)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>k.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ve(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return Ln().makeTensorFromDataId(r,t,n,this)}disposeData(e){if(this.data.has(e)){let{complexTensorInfos:t}=this.data.get(e);t!=null&&(this.disposeData(t.real.dataId),this.disposeData(t.imag.dataId)),this.data.delete(e)}}disposeIntermediateTensorInfo(e){let t=e.dataId;if(this.data.has(t)){let n=this.data.get(t);n.refCount--,n.refCount<1&&this.disposeData(t)}}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ke([e],"where");let t=this.readSync(e.dataId);return HE(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}},nm={};Pe(nm,{addImpl:()=>z5,bincountImpl:()=>Xm,bincountReduceImpl:()=>P5,ceilImpl:()=>L5,concatImpl:()=>Km,expImpl:()=>W5,expm1Impl:()=>B5,floorImpl:()=>V5,gatherV2Impl:()=>U5,greaterImpl:()=>H5,lessImpl:()=>j5,linSpaceImpl:()=>G5,logImpl:()=>q5,maxImpl:()=>X5,maximumImpl:()=>K5,minimumImpl:()=>Z5,multiplyImpl:()=>Zm,negImpl:()=>Y5,notEqualImpl:()=>J5,prodImpl:()=>Q5,rangeImpl:()=>Jm,rsqrtImpl:()=>ex,simpleAbsImpl:()=>O5,sliceImpl:()=>Vd,squaredDifferenceImpl:()=>tx,stridedSliceImpl:()=>nx,subImpl:()=>rx,tileImpl:()=>ax,topKImpl:()=>sx,transposeImpl:()=>Ym,uniqueImpl:()=>ix});function O5(e){let t=new Float32Array(e.length);for(let n=0;n{let{x:t}=e.inputs,n=e.backend;ke(t,"abs");let r=new Float32Array(k.sizeFromShape(t.shape)),a=n.data.get(t.dataId).values;return r=O5(a),n.makeOutput(r,t.shape,"float32")},GE={kernelName:Di,backendName:"cpu",kernelFunc:jE};function Ft(e){return(t,n,r,a,s)=>{let i=R.assertAndGetBroadcastShape(t,n),o=i.length,l=k.computeStrides(i),c=k.sizeFromShape(i),u=k.getTypedArrayFromDType(s,c),h=t.length,d=n.length,p=k.computeStrides(t),f=k.computeStrides(n),m=R.getBroadcastDims(t,i),A=R.getBroadcastDims(n,i);if(m.length+A.length===0)for(let y=0;yw[T]=0);let x=k.locToIndex(w,h,p),_=g.slice(-d);A.forEach(T=>_[T]=0);let b=k.locToIndex(_,d,f);u[y]=e(r[x],a[b])}return[u,i]}}function Tn(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,o=n.makeTensorInfo(r.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",s),imag:n.makeTensorInfo(a.shape,"float32",i)},o}var qE={kernelName:Ah,backendName:"cpu",kernelFunc:Tn};function Ud(e,t,n="float32"){if(n==="complex64"){let a=Ud(e,t,"float32"),s=Ud(e,t,"float32");return Tn({inputs:{real:a,imag:s},backend:e})}let r=k.makeZerosTypedArray(k.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function Pr(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var XE={kernelName:ro,backendName:"cpu",kernelFunc:Pr};function ti(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.real,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var KE={kernelName:Oh,backendName:"cpu",kernelFunc:ti};function Ta(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Pr({inputs:{x:a},backend:n});let i=Ud(n,a.shape,a.dtype),o=Ta({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Tn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=ti({inputs:{input:a},backend:n}),o=Ta({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(a.dtype,s)){let i=Pr({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(a.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(a.shape,"int32",o)}if(s==="bool"){let i=n.data.get(a.dataId).values,o=k.toTypedArray([0],a.dtype),[l,c]=Ft((u,h)=>u!==h?1:0)(a.shape,[],i,o,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var ZE={kernelName:Ja,backendName:"cpu",kernelFunc:Ta};function jt(e,t,n,r){return n==null?({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;ke([i,o],e);let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,c,u,h);return l.makeTensorInfo(p,h,d)}:({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let c=Ta({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),h=u.complexTensorInfos.real,d=u.complexTensorInfos.imag,p=l.data.get(h.dataId).values,f=l.data.get(d.dataId).values,m=Ta({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(m.dataId),y=A.complexTensorInfos.real,g=A.complexTensorInfos.imag,w=l.data.get(y.dataId).values,x=l.data.get(g.dataId).values,[_,b,T]=n(i.shape,o.shape,p,f,w,x),S=l.makeTensorInfo(T,"float32",_),N=l.makeTensorInfo(T,"float32",b),C=Tn({inputs:{real:S,imag:N},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(S),l.disposeIntermediateTensorInfo(N),C}else{let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,c,u,h);return l.makeTensorInfo(p,h,d)}}}function Qm(e){return(t,n,r,a,s,i)=>{let o=R.assertAndGetBroadcastShape(t,n),l=k.sizeFromShape(o),c=o.length,u=k.computeStrides(o),h=k.getTypedArrayFromDType("float32",l),d=k.getTypedArrayFromDType("float32",l),p=R.getBroadcastDims(t,o),f=R.getBroadcastDims(n,o),m=R.mergeRealAndImagArrays(r,a),A=R.mergeRealAndImagArrays(s,i),y=t.length,g=k.computeStrides(t),w=n.length,x=k.computeStrides(n);if(p.length+f.length===0)for(let _=0;_T[D]=0);let S=k.locToIndex(T,y,g),N=b.slice(-w);f.forEach(D=>N[D]=0);let C=k.locToIndex(N,w,x),$=e(m[S*2],m[S*2+1],A[C*2],A[C*2+1]);h[_]=$.real,d[_]=$.imag}return[h,d,o]}}var z5=Ft((e,t)=>e+t),YE=Qm((e,t,n,r)=>({real:e+n,imag:t+r})),Zu=jt(da,z5,YE),JE={kernelName:da,backendName:"cpu",kernelFunc:Zu};function Xm(e,t,n,r,a){let s=k.sizeFromShape(r),i=k.makeZerosTypedArray(a,n);for(let o=0;o=a||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function P5(e,t,n,r=!1){let a=e.shape[0],s=e.shape[1],i=Ve([a,n],t.dtype);for(let o=0;o=n||(r?i.set(1,o,c):t.size>0?i.set(i.get(o,c)+t.get(o,l),o,c):i.set(i.get(o,c)+1,o,c))}return i}function ol(e){return(t,n,r)=>{let a=k.getTypedArrayFromDType(n,t.length);for(let s=0;s{let{x:i}=r;if(ke(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=k.sizeFromShape(i.shape),u=n||i.dtype,h=k.getArrayFromDType(u,c);for(let d=0;d{let{x:i}=r;if(ke(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=n||i.dtype,u=t(l,c,a);return o.makeTensorInfo(i.shape,c,u)}}var L5=ol(e=>Math.ceil(e)),QE=ll(Ui,L5),eC={kernelName:Ui,backendName:"cpu",kernelFunc:QE};function Km(e,t,n,r){let a=k.getArrayFromDType(n,k.sizeFromShape(t));if(r&&n!=="string"){let s=0;e.forEach(i=>{let o=k.sizeFromShape(i.shape);a.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?R.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let c=0;cMath.exp(e)),ox=ll(ss,W5),tC={kernelName:ss,backendName:"cpu",kernelFunc:ox},B5=ol(e=>Math.expm1(e)),nC=ll(Ji,B5),rC={kernelName:Ji,backendName:"cpu",kernelFunc:nC},V5=ol(e=>Math.floor(e)),aC=ll(is,V5),sC={kernelName:is,backendName:"cpu",kernelFunc:aC};function U5(e,t,n){let r=Ve(n,e.dtype);for(let a=0;ae>t?1:0),iC=jt(no,H5,null,"bool"),oC={kernelName:no,backendName:"cpu",kernelFunc:iC},j5=Ft((e,t)=>eMath.log(e)),cC=ll(hs,q5),hC={kernelName:hs,backendName:"cpu",kernelFunc:cC};function X5(e,t,n,r){let a=k.getTypedArrayFromDType(r,k.sizeFromShape(n));for(let s=0;so&&(o=c)}a[s]=o}return a}var K5=Ft((e,t)=>Math.max(e,t)),dC=jt(ps,K5),pC={kernelName:ps,backendName:"cpu",kernelFunc:dC},Z5=Ft((e,t)=>Math.min(e,t)),fC=jt(ys,Z5),mC={kernelName:ys,backendName:"cpu",kernelFunc:fC},Zm=Ft((e,t)=>e*t),AC=Qm((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),eA=jt(gs,Zm,AC),yC={kernelName:gs,backendName:"cpu",kernelFunc:eA};function Y5(e,t,n){let r=k.createScalarValue(-1,n);return Zm([],t,r,e,n)}function gC(e){let{inputs:t,backend:n}=e,{x:r}=t;ke(r,"neg");let a=n.data.get(r.dataId).values,[s,i]=Y5(a,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,s)}var xC={kernelName:po,backendName:"cpu",kernelFunc:gC},J5=Ft((e,t)=>e!==t?1:0),wC=jt(fo,J5,null,"bool"),_C={kernelName:fo,backendName:"cpu",kernelFunc:wC};function Ym(e,t,n,r,a){let s=t.length,i=k.sizeFromShape(t),o=k.computeStrides(t),l=k.computeStrides(a),c=k.getTypedArrayFromDType(n,k.sizeFromShape(a));for(let u=0;un.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(y,A,f)}var kC={kernelName:wo,backendName:"cpu",kernelFunc:vC};function Jm(e,t,n,r){let a=e===t,s=e1;if(a||s||i)return k.makeZerosTypedArray(0,r);let o=Math.abs(Math.ceil((t-e)/n)),l=k.makeZerosTypedArray(o,r);t1/Math.sqrt(e)),IC=ll(Ts,ex),NC={kernelName:Ts,backendName:"cpu",kernelFunc:IC};function Vd(e,t,n,r,a){let s=an.isSliceContinous(r,t,n),i=k.sizeFromShape(n),o=k.computeStrides(r);if(s){let h=an.computeFlatOffset(t,o);return a==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=a==="string"?R.fromUint8ToStringArray(e):e,c=Ve(r,a,l),u=Ve(n,a);for(let h=0;hf+t[m]);u.set(c.get(...p),...d)}return a==="string"?R.fromStringArrayToUint8(u.values):u.values}function ni(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r;ke(a,"slice");let[o,l]=an.parseSliceParams(a,s,i);an.assertParamsValid(a,o,l);let c=n.data.get(a.dataId).values,u=Vd(c,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,u)}var SC={kernelName:No,backendName:"cpu",kernelFunc:ni},tx=Ft((e,t)=>{let n=e-t;return n*n}),TC=jt($s,tx),EC={kernelName:$s,backendName:"cpu",kernelFunc:TC};function nx(e,t,n,r){let a=Ve(e,t.dtype);for(let s=0;se-t),CC=Qm((e,t,n,r)=>({real:e-n,imag:t-r})),tA=jt(Ds,rx,CC),RC={kernelName:Ds,backendName:"cpu",kernelFunc:tA};function ax(e,t){let n=new Array(e.rank);for(let a=0;aw.value-g.value);let m=h*r,A=l.subarray(m,m+r),y=c.subarray(m,m+r);for(let g=0;g{for(let A=0;Anew Ug,1);var lx=ct(Xi,e=>e>=0?e:Math.exp(e)-1),FC={kernelName:Xi,backendName:"cpu",kernelFunc:lx};function ux(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r;ke([a],"leakyRelu");let i=k.sizeFromShape(a.shape),o=n.data.get(a.dataId).values,l=k.getTypedArrayFromDType("float32",i);for(let c=0;ce<0?t*e:e);function cx(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t;ke([r,a],"prelu");let s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,[o,l]=$C(r.shape,a.shape,s,i,r.dtype);return n.makeTensorInfo(l,r.dtype,o)}var DC={kernelName:bs,backendName:"cpu",kernelFunc:cx},hx=ct(vs,e=>Math.max(0,e)),OC={kernelName:vs,backendName:"cpu",kernelFunc:hx},dx=ct(Is,e=>Math.min(Math.max(0,e),6)),zC={kernelName:Is,backendName:"cpu",kernelFunc:dx};function nA(e,t,n,r,a){if(n==="linear")return Pr({inputs:{x:t},backend:e});if(n==="relu")return hx({inputs:{x:t},backend:e});if(n==="elu")return lx({inputs:{x:t},backend:e});if(n==="relu6")return dx({inputs:{x:t},backend:e});if(n==="prelu")return cx({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return ux({inputs:{x:t},backend:e,attrs:{alpha:a}});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function xt(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=k.sizeFromShape(a.shape),o=k.inferFromImplicitShape(s,i),l=k.sizeFromShape(o);k.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${a.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(a.dataId);let c=n.data.get(a.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,h=c.complexTensorInfos.imag;u.shape=o,h.shape=o}return{dataId:a.dataId,shape:o,dtype:a.dtype}}var PC={kernelName:bo,backendName:"cpu",kernelFunc:xt};function px(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;ke([a,s],"matMul");let l=a.shape.length,c=s.shape.length,u=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[c-1]:s.shape[c-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[c-2]:s.shape[c-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),A=k.sizeFromShape(f),y=k.sizeFromShape(m),g=A===y||A===1||y===1;k.assert(l>=2&&c>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let w=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);k.assert(u===h,()=>`Error in matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[A,u,d]:[A,d,u],_=o?[y,p,h]:[y,h,p],b=xt({inputs:{x:a},backend:n,attrs:{shape:x}}),T=xt({inputs:{x:s},backend:n,attrs:{shape:_}}),S=i?b.shape[1]:b.shape[2],N=i?b.shape[2]:b.shape[1],C=o?T.shape[1]:T.shape[2],$=Math.max(A,y),D=n.data.get(b.dataId).values,O=n.data.get(T.dataId).values,V=k.computeStrides(b.shape),W=k.computeStrides(T.shape),[K,X,ee]=i?[V[0],1,V[1]]:[V[0],V[1],1],[Z,ae,J]=o?[1,W[1],W[0]]:[W[1],1,W[0]],oe=N*C,ne=Ve([$,N,C],b.dtype),he=ne.values,le=n.blockSize;for(let me=0;me<$;me++)for(let Ae=0;AeMath.acos(e)),UC={kernelName:Oi,backendName:"cpu",kernelFunc:VC},HC=ct(zi,e=>Math.acosh(e)),jC={kernelName:zi,backendName:"cpu",kernelFunc:HC};function GC(e){let{inputs:t,backend:n}=e,r=t;ke(t,"addN");let a=r.map(o=>n.data.get(o.dataId).values),s=Ve(r[0].shape,r[0].dtype),i=s.values;for(let o=0;og&&(g=_,w=x)}p[A]=w}return c.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",p)}var QC={kernelName:Ka,backendName:"cpu",kernelFunc:JC};function eR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;ke(a,"argMin");let i=k.parseAxisParam(s,a.shape),o=R.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=sr({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=R.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],R.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[u,h]=R.computeOutAndReduceShapes(l.shape,i),d=k.sizeFromShape(u),p=k.makeZerosTypedArray(d,"int32"),f=k.sizeFromShape(h),m=n.data.get(l.dataId).values;for(let A=0;An.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",p)}var tR={kernelName:eu,backendName:"cpu",kernelFunc:eR},nR=ct(Pi,e=>Math.asin(e)),rR={kernelName:Pi,backendName:"cpu",kernelFunc:nR},aR=ct(Li,e=>Math.asinh(e)),sR={kernelName:Li,backendName:"cpu",kernelFunc:aR},iR=ct(Wi,e=>Math.atan(e)),oR={kernelName:Wi,backendName:"cpu",kernelFunc:iR},lR=Ft((e,t)=>Math.atan2(e,t)),uR=jt(Vi,lR),cR={kernelName:Vi,backendName:"cpu",kernelFunc:uR},hR=ct(Bi,e=>Math.atanh(e)),dR={kernelName:Bi,backendName:"cpu",kernelFunc:hR};function rA(e,t,n,r,a,s){let i=a.strideHeight,o=a.strideWidth,l=a.dilationHeight,c=a.dilationWidth,u=a.effectiveFilterHeight,h=a.effectiveFilterWidth,d=a.padInfo.top,p=a.padInfo.left,f=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=Ve(a.outShape,n),A=m.values,y=a.outShape[1]*a.outShape[2]*a.outShape[3],g=a.outShape[2]*a.outShape[3],w=a.outShape[3];for(let x=0;xX?X=le:s==="avg"&&(ee+=le,Z++)}if(isNaN(X))break}let ae=D+O*w+T;A[ae]=s==="avg"?ee/Z:X}}}return m}function fx(e,t,n,r,a=!1,s=!1){let i=Ve(r.outShape,"int32"),o=r.strideHeight,l=r.strideWidth,c=r.dilationHeight,u=r.dilationWidth,h=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,f=r.padInfo.left,m=Ve(t,n,e);for(let A=0;AC&&(C=K,a?$=s?((A*r.inHeight+D)*r.inWidth+V)*r.inChannels+y:(D*r.inWidth+V)*r.inChannels+y:$=O*d+W)}}i.set($,A,g,b,y)}}return i}function mx(e,t,n,r,a,s){let i=a.strideDepth,o=a.strideHeight,l=a.strideWidth,c=a.dilationDepth,u=a.dilationHeight,h=a.dilationWidth,d=a.effectiveFilterDepth,p=a.effectiveFilterHeight,f=a.effectiveFilterWidth,m=a.padInfo.front,A=a.padInfo.top,y=a.padInfo.left,g=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,w=Ve(a.outShape,n),x=w.values,_=a.outShape[1]*a.outShape[2]*a.outShape[3]*a.outShape[4],b=a.outShape[2]*a.outShape[3]*a.outShape[4],T=a.outShape[3]*a.outShape[4],S=a.outShape[4];for(let N=0;Nwe?we=lt:s==="avg"&&(Te+=lt,Ce++),isNaN(we))break}if(isNaN(we))break}if(isNaN(we))break}let De=Ae+D;x[De]=s==="avg"?Te/Ce:we}}}}return w}function pR(e,t){let n=Ve(t.outShape,"int32"),r=t.strideDepth,a=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,h=t.effectiveFilterWidth,d=t.padInfo.front,p=t.padInfo.top,f=t.padInfo.left;for(let m=0;m=O&&(O=J,V=K*u*h+ee*u+ae)}}}n.set(V,m,y,_,N,A)}}}return n}function fR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;ke(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;k.assert(R.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=R.computePool2DInfo(a.shape,s,i,c,o,l),h;if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))h=Pr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=k.computeStrides(a.shape),f=rA(d,a.shape,a.dtype,p,u,"avg");h=n.makeTensorInfo(u.outShape,a.dtype,f.values)}return h}var mR={kernelName:Za,backendName:"cpu",kernelFunc:fR};function AR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r;ke(a,"avgPool3d");let u=R.computePool3DInfo(a.shape,s,i,1,o,l,c),h=n.data.get(a.dataId).values,d=mx(h,a.shape,a.dtype,k.computeStrides(a.shape),u,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var yR={kernelName:tu,backendName:"cpu",kernelFunc:AR};function gR(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=r;ke([a,s],"avgPool3DGrad");let u=R.computePool3DInfo(s.shape,i,o,1,l,c),h=u.strideDepth,d=u.strideHeight,p=u.strideWidth,f=u.filterDepth,m=u.filterHeight,A=u.filterWidth,y=u.dilationDepth,g=u.dilationHeight,w=u.dilationWidth,x=u.effectiveFilterDepth,_=u.effectiveFilterHeight,b=u.effectiveFilterWidth,T=x-1-u.padInfo.front,S=b-1-u.padInfo.left,N=_-1-u.padInfo.top,C=Ve(s.shape,"float32"),$=1/(f*m*A),D=n.bufferSync(a);for(let O=0;O=u.outDepth||Math.floor(ne)!==ne))for(let he=0;he<_;he+=g){let le=(Z+he)/d;if(!(le<0||le>=u.outHeight||Math.floor(le)!==le))for(let me=0;me=u.outWidth||Math.floor(Ae)!==Ae||(J+=D.get(O,ne,le,Ae,V))}}}C.set(J*$,O,W,K,X,V)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var xR={kernelName:fh,backendName:"cpu",kernelFunc:gR};function wR(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;ke([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=r,u=R.computePool2DInfo(i.shape,o,l,1,c),h=u.strideHeight,d=u.strideWidth,p=u.filterHeight,f=u.filterWidth,m=u.dilationHeight,A=u.dilationWidth,y=u.effectiveFilterHeight,g=u.effectiveFilterWidth,w=g-1-u.padInfo.left,x=y-1-u.padInfo.top,_=Ve(i.shape,"float32"),b=1/(p*f),T=n.data.get(a.dataId).values,S=Ve(a.shape,"float32",T);for(let N=0;N=u.outHeight||Math.floor(X)!==X))for(let ee=0;ee=u.outWidth||Math.floor(Z)!==Z||(W+=S.get(N,X,Z,C))}}_.set(W*b,N,$,D,C)}return n.makeTensorInfo(_.shape,_.dtype,_.values)}var _R={kernelName:ph,backendName:"cpu",kernelFunc:wR};function bR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,scale:s,offset:i,mean:o,variance:l}=t;k.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ke([a,o,l,s,i],"batchNorm");let{varianceEpsilon:c}=r;c==null&&(c=.001);let u=n.data.get(a.dataId).values,h=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,p=s?n.data.get(s.dataId).values:new Float32Array([1]),f=i?n.data.get(i.dataId).values:new Float32Array([0]),m=new Float32Array(u.length),A=f.length,y=p.length,g=d.length,w=h.length,x=0,_=0,b=0,T=0;for(let S=0;S=A&&(x=0),_>=w&&(_=0),b>=y&&(b=0),T>=g&&(T=0);return n.makeTensorInfo(a.shape,a.dtype,m)}var vR={kernelName:ls,backendName:"cpu",kernelFunc:bR};function kR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;ke([a],"batchToSpaceND");let o=s.reduce((y,g)=>y*g),l=R.getReshaped(a.shape,s,o),c=R.getPermuted(l.length,s.length),u=R.getReshapedPermuted(a.shape,s,o),h=R.getSliceBeginCoords(i,s.length),d=R.getSliceSize(u,i,s.length),p=xt({inputs:{x:a},backend:n,attrs:{shape:l}}),f=sr({inputs:{x:p},backend:n,attrs:{perm:c}}),m=xt({inputs:{x:f},backend:n,attrs:{shape:u}}),A=ni({inputs:{x:m},backend:n,attrs:{begin:h,size:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var IR={kernelName:nu,backendName:"cpu",kernelFunc:kR};function NR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.data.get(a.dataId).values,l=n.data.get(s.dataId).values,c=Xm(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var SR={kernelName:mh,backendName:"cpu",kernelFunc:NR},TR=ct(pa,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(k.sizeFromShape(t.shape)),a=n.data.get(t.dataId),s=a.complexTensorInfos.real,i=a.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let c=0;cm.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(m=>k.sizeFromShape(m.shape)>0);if(o.length===1)return Pr({inputs:{x:o[0]},backend:n});let l=o.map(m=>m.shape);if(R.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let m=o.map(x=>ti({inputs:{input:x},backend:n})),A=o.map(x=>ul({inputs:{input:x},backend:n})),y=cl({inputs:m,backend:n,attrs:{axis:s}}),g=cl({inputs:A,backend:n,attrs:{axis:s}}),w=Tn({inputs:{real:y,imag:g},backend:n});return m.forEach(x=>n.disposeIntermediateTensorInfo(x)),A.forEach(x=>n.disposeIntermediateTensorInfo(x)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),w}let c=o.map(m=>{let A=k.sizeFromShape(m.shape.slice(s));return xt({inputs:{x:m},backend:n,attrs:{shape:[-1,A]}})}),u=c.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));i=R.computeOutShape(c.map(m=>m.shape),1);let h=c[0].shape[0]===1,d=Km(u,i,t[0].dtype,h),p=R.computeOutShape(o.map(m=>m.shape),s),f=n.makeTensorInfo(p,t[0].dtype,d);return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var MR={kernelName:Hi,backendName:"cpu",kernelFunc:cl};function Ax(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=r;ke([a,s],"conv2d");let h=R.convertConv2DDataFormat(l),d=R.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!1,h),p=d.filterHeight,f=d.filterWidth,m=d.dilationHeight,A=d.dilationWidth,y=d.padInfo.left,g=d.padInfo.top,w=d.dataFormat==="channelsLast",x=new $t(d.outShape,a.dtype),_=k.computeStrides(a.shape),b=k.computeStrides(s.shape),T=_[0],S=w?_[1]:_[2],N=w?_[2]:1,C=w?1:_[1],$=x.strides[0],D=w?x.strides[1]:x.strides[2],O=w?x.strides[2]:1,V=w?1:x.strides[1],W=n.data.get(a.dataId).values,K=n.data.get(s.dataId).values,X=x.values;for(let ee=0;ee=d.inHeight)continue;let me=he*b[0],Ae=Z+le*S;for(let we=0;we=d.inWidth)continue;let Be=me+De*b[1],Qe=Ae+Ge*N,st=Be;for(let Ue=0;Ue=c.inDepth)continue;let ee=K*N[0],Z=$+X*S[1];for(let ae=0;ae=c.inHeight)continue;let le=ee+ne*N[1],me=Z+he*S[2];for(let Ae=0;Ae=c.inWidth)continue;let Ge=le+Ce*N[2],Be=me+De*c.inChannels,Qe=Ge;for(let st=0;stMath.cos(e)),GR={kernelName:ts,backendName:"cpu",kernelFunc:jR},qR=ct(ji,e=>Math.cosh(e)),XR={kernelName:ji,backendName:"cpu",kernelFunc:qR};function KR(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=r,[u,h,d,p]=a.shape,f=s.shape[0],[m,A]=o,y=Ve([f,m,A,p],"float32"),g=n.data.get(s.dataId).values,w=n.data.get(i.dataId).values,x=n.data.get(a.dataId).values,_=k.computeStrides(a.shape),b=k.computeStrides(y.shape);for(let T=0;T=u)continue;let V=m>1?($-N)*(h-1)/(m-1):0,W=A>1?(D-C)*(d-1)/(A-1):0;for(let K=0;K1?N*(h-1)+K*V:.5*(N+$)*(h-1);if(X<0||X>h-1){for(let ee=0;ee1?C*(d-1)+J*W:.5*(C+D)*(d-1);if(oe<0||oe>d-1){for(let me=0;me1?C*(d-1)+ee*W:.5*(C+D)*(d-1);if(Z<0||Z>d-1){for(let oe=0;oey+f-g-1:(y,g)=>y+g;for(let y=0;y`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=a.shape[1],c=a.shape[2],u=a.shape[3],h=l*s,d=c*s,p=u/(s*s),f=n.data.get(a.dataId).values,m=new Float32Array(o*h*d*p),A=0;for(let y=0;y`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let p=R.computeConv2DInfo(a.shape,s.shape,i,d,o,c,!0),{filterHeight:f,filterWidth:m,dilationHeight:A,dilationWidth:y,padInfo:g}=p,w=g.left,x=g.top,_=p.outChannels/p.inChannels,b=new $t(p.outShape,a.dtype),T=n.data.get(a.dataId).values,S=n.data.get(s.dataId).values,N=b.values;for(let C=0;C=p.inHeight)continue;let ee=K*h[0],Z=$+X*u[1];for(let ae=0;ae=p.inWidth)continue;let le=ee+ne*h[1],me=Z+he*p.inChannels,Ae=J,we=le;for(let Te=0;Te{let{x:r,filter:a}=e,{strides:s,pad:i,dilations:o}=n,l=t,c=l.data.get(r.dataId).values,u=r.shape.length,h=l.data.get(a.dataId).values,d=a.shape.length,{batchSize:p,inHeight:f,inWidth:m,inChannels:A,outHeight:y,outWidth:g,padInfo:w,strideHeight:x,strideWidth:_,filterHeight:b,filterWidth:T,dilationHeight:S,dilationWidth:N,outShape:C}=R.computeDilation2DInfo(r.shape,a.shape,s,i,"NHWC",o),$=k.sizeFromShape(C),D=C.length,O=k.getArrayFromDType(r.dtype,$);for(let V=0;V=0&&ne=0&&leae&&(ae=we)}}}let J=k.locToIndex([V,W,X,Z],D,k.computeStrides(C));O[J]=ae}}}return{dataId:l.write(k.toTypedArray(O,r.dtype),C,r.dtype),shape:C,dtype:r.dtype}}},hF={kernelName:Ih,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=k.toNestedArray(r.shape,c.data.get(r.dataId).values),h=k.toNestedArray(a.shape,c.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:f,inChannels:m,outHeight:A,outWidth:y,padInfo:g,strideHeight:w,strideWidth:x,filterHeight:_,filterWidth:b,dilationHeight:T,dilationWidth:S,outShape:N}=R.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);k.assert(s.rank===N.length,()=>`Error in ${Ih}, dy must have the same rank as output ${N.length}, but got ${s.rank}`);let C=k.toNestedArray(N,c.data.get(s.dataId).values),$=k.makeZerosNestedTypedArray(a.shape,a.dtype);for(let D=0;D=0&&oe=0&&heee&&(ee=le,Z=J,ae=ne)}}}$[Z][ae][X]+=C[D][O][W][X]}}}return{dataId:c.write(k.toTypedArray($,r.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},dF={kernelName:kh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=k.toNestedArray(r.shape,c.data.get(r.dataId).values),h=k.toNestedArray(a.shape,c.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:f,inChannels:m,outHeight:A,outWidth:y,padInfo:g,strideHeight:w,strideWidth:x,filterHeight:_,filterWidth:b,dilationHeight:T,dilationWidth:S,outShape:N}=R.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);k.assert(s.rank===N.length,()=>`Error in ${kh}, dy must have the same rank as output ${N.length}, but got ${s.rank}`);let C=k.toNestedArray(N,c.data.get(s.dataId).values),$=k.makeZerosNestedTypedArray(r.shape,r.dtype);for(let D=0;D=0&&oe=0&&heee&&(ee=le,Z=oe,ae=he)}}}$[D][Z][ae][X]+=C[D][O][W][X]}}}return{dataId:c.write(k.toTypedArray($,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function pF(e){let{inputs:t,backend:n}=e,{dy:r,y:a}=t;ke([r,a],"eluGrad");let s=new Float32Array(k.sizeFromShape(a.shape)),i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values;for(let l=0;l=1?s[l]=o[l]:s[l]=o[l]*(c+1)}return n.makeTensorInfo(a.shape,"float32",s)}var fF={kernelName:Nh,backendName:"cpu",kernelFunc:pF},mF=Ft((e,t)=>e===t?1:0),gx=jt(Zi,mF,null,"bool"),AF={kernelName:Zi,backendName:"cpu",kernelFunc:gx},yF=R.ERF_P,gF=R.ERF_A1,xF=R.ERF_A2,wF=R.ERF_A3,_F=R.ERF_A4,bF=R.ERF_A5,vF=ct(Ki,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+yF*n);return t*(1-((((bF*r+_F)*r+wF)*r+xF)*r+gF)*r*Math.exp(-n*n))}),kF={kernelName:Ki,backendName:"cpu",kernelFunc:vF};function Hd(e){let{inputs:t,backend:n,attrs:r}=e,{input:a}=t,{dim:s}=r,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),xt({inputs:{x:a},backend:n,attrs:{shape:o}})}var IF={kernelName:Yi,backendName:"cpu",kernelFunc:Hd},NF=Ft((e,t)=>e/t),aA=jt(as,NF),sA={kernelName:as,backendName:"cpu",kernelFunc:aA};function xx(e,t,n){let r=e.shape,a=r[0],s=r[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,c=[a,s],u=k.sizeFromShape(c),h=k.getTypedArrayFromDType("float32",u),d=k.getTypedArrayFromDType("float32",u);for(let A=0;A{let{image:r}=e,a=n,s=k.getTypedArrayFromDType(r.dtype,k.sizeFromShape(r.shape)),[i,o,l,c]=r.shape,u=a.data.get(r.dataId).values;for(let h=0;h=0&&wMath.floor(e/t)),OF=jt(os,DF,null,"int32"),zF={kernelName:os,backendName:"cpu",kernelFunc:OF};function PF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=Ax({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d}});if(i){let A=m;m=Zu({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=m;m=nA(n,m,p,o,f),n.disposeIntermediateTensorInfo(A)}return m}var LF={kernelName:Ls,backendName:"cpu",kernelFunc:PF};function WF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=yx({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d}});if(i){let A=m;m=Zu({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=m;m=nA(n,m,p,o,f),n.disposeIntermediateTensorInfo(A)}return m}var BF={kernelName:Ws,backendName:"cpu",kernelFunc:WF};function VF(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=k.sizeFromShape(r.shape),i=a.shape,o=i[i.length-1],[l,c,u,h]=R.prepareAndValidate(r,a);if(c===0)return n.makeTensorInfo(l,r.dtype,[]);let d=Ve([c,u],r.dtype),p=n.data.get(a.dataId).values,f=n.data.get(r.dataId).values;for(let m=0;m=s/u)throw new Error(`Invalid indices: ${A} does not index into ${r.shape}`);for(let g=0;ge>=t?1:0),qF=jt(us,GF,null,"bool"),XF={kernelName:us,backendName:"cpu",kernelFunc:qF};function KF(e){let{inputs:t,backend:n}=e,{input:r}=t,a=k.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=xt({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=xx(o,!0,n),c=xt({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var ZF={kernelName:Th,backendName:"cpu",kernelFunc:KF},YF=ct(ao,e=>Number.isFinite(e)?1:0,"bool"),JF={kernelName:ao,backendName:"cpu",kernelFunc:YF},QF=ct(so,e=>Math.abs(e)===Infinity?1:0,"bool"),eM={kernelName:so,backendName:"cpu",kernelFunc:QF},tM=ct(io,e=>Number.isNaN(e)?1:0,"bool"),nM={kernelName:io,backendName:"cpu",kernelFunc:tM},rM=Ft((e,t)=>e<=t?1:0),aM=jt(lo,rM,null,"bool"),sM={kernelName:lo,backendName:"cpu",kernelFunc:aM};function iM(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=G5(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var oM={kernelName:Ch,backendName:"cpu",kernelFunc:iM},lM=ct(uo,e=>Math.log1p(e)),uM={kernelName:uo,backendName:"cpu",kernelFunc:lM},cM=Ft((e,t)=>e&&t),hM=jt(co,cM,null,"bool"),dM={kernelName:co,backendName:"cpu",kernelFunc:hM},pM=ct(ou,e=>e?0:1,"bool"),fM={kernelName:ou,backendName:"cpu",kernelFunc:pM},mM=Ft((e,t)=>e||t),AM=jt(lu,mM,null,"bool"),yM={kernelName:lu,backendName:"cpu",kernelFunc:AM};function gM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r;ke(a,"LRN");let c=a.shape[3],u=c-1,h=n.data.get(a.dataId).values,d=k.sizeFromShape(a.shape),p=new Float32Array(d);function f(m){let A=m%c,y=m-A+Math.max(0,A-s),g=m-A+Math.min(A+s,u),w=0;for(;y<=g;y++){let x=h[y];w+=x*x}return w}for(let m=0;m`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=R.computePool2DInfo(a.shape,s,i,c,o,l),h;if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))h=Pr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=k.computeStrides(a.shape),f=rA(d,a.shape,a.dtype,p,u,"max");h=n.makeTensorInfo(u.outShape,a.dtype,f.values)}return h}var kM={kernelName:fs,backendName:"cpu",kernelFunc:vM};function IM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r;ke(a,"maxPool3d");let u=R.computePool3DInfo(a.shape,s,i,1,o,l,c),h=n.data.get(a.dataId).values,d=mx(h,a.shape,a.dtype,k.computeStrides(a.shape),u,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var NM={kernelName:cu,backendName:"cpu",kernelFunc:IM};function SM(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=r;ke([a,s],"maxPool3DGrad");let u=R.computePool3DInfo(s.shape,i,o,1,l,c),h=n.bufferSync(s),d=pR(h,u),p=u.strideDepth,f=u.strideHeight,m=u.strideWidth,A=u.dilationDepth,y=u.dilationHeight,g=u.dilationWidth,w=u.effectiveFilterDepth,x=u.effectiveFilterHeight,_=u.effectiveFilterWidth,b=w-1-u.padInfo.front,T=_-1-u.padInfo.left,S=x-1-u.padInfo.top,N=Ve(s.shape,"float32"),C=n.bufferSync(a);for(let $=0;$=u.outDepth||Math.floor(J)!==J))for(let oe=0;oe=u.outHeight||Math.floor(ne)!==ne))for(let he=0;he<_;he+=g){let le=(ee+he)/m;if(le<0||le>=u.outWidth||Math.floor(le)!==le)continue;let me=w*x*_-1-d.get($,J,ne,le,D),Ae=ae*x*_+oe*_+he,we=me===Ae?1:0;we!==0&&(Z+=C.get($,J,ne,le,D)*we)}}}N.set(Z,$,O,V,W,D)}return n.makeTensorInfo(N.shape,N.dtype,N.values)}var TM={kernelName:Mh,backendName:"cpu",kernelFunc:SM};function EM(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;ke([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:h}=r,d=R.computePool2DInfo(o.shape,l,c,1,u,h),p=n.data.get(o.dataId).values,f=Ve(d.outShape,o.dtype,fx(p,o.shape,o.dtype,d).values),m=d.strideHeight,A=d.strideWidth,y=d.dilationHeight,g=d.dilationWidth,w=d.effectiveFilterHeight,x=d.effectiveFilterWidth,_=x-1-d.padInfo.left,b=w-1-d.padInfo.top,T=Ve(o.shape,"float32"),S=n.data.get(a.dataId).values,N=Ve(a.shape,"float32",S);for(let C=0;C=d.outHeight||Math.floor(ee)!==ee))for(let Z=0;Z=d.outWidth||Math.floor(ae)!==ae)continue;let J=w*x-1-f.get(C,ee,ae,$),oe=X*x+Z,ne=J===oe?1:0;ne!==0&&(K+=N.get(C,ee,ae,$)*ne)}}T.set(K,C,D,O,$)}return n.makeTensorInfo(T.shape,T.dtype,T.values)}var CM={kernelName:Fh,backendName:"cpu",kernelFunc:EM};function RM(e,t,n,r,a){let s=k.computeStrides(t),i=rA(e,t,n,s,a,"max"),o=fx(e,t,n,a,!0,r);return[i.values,o.values]}var FM={kernelName:$h,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;ke(r,"MaxPoolWithArgmax");let c=l.data.get(r.dataId).values,u=R.computePool2DInfo(r.shape,a,s,[1,1],i),[h,d]=RM(c,r.shape,r.dtype,o,u),p=l.write(h,u.outShape,r.dtype),f=l.write(d,u.outShape,r.dtype);return[{dataId:p,shape:u.outShape,dtype:r.dtype},{dataId:f,shape:u.outShape,dtype:"int32"}]}};function jd(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ke(a,"sum");let o;a.dtype==="bool"?o=Ta({inputs:{x:a},backend:n,attrs:{dtype:"int32"}}):o=Pr({inputs:{x:a},backend:n});let l=o.shape.length,c=k.parseAxisParam(s,o.shape),u=R.getAxesPermutation(c,l),h=c,d=o;u!=null&&(d=sr({inputs:{x:o},backend:n,attrs:{perm:u}}),h=R.getInnerMostAxes(h.length,l)),R.assertAxesAreInnerMostDims("sum",h,d.shape.length);let[p,f]=R.computeOutAndReduceShapes(d.shape,h),m=R.upcastType(d.dtype,"int32"),A=Ud(n,p,m),y=k.sizeFromShape(f),g=n.data.get(A.dataId).values,w=n.data.get(d.dataId).values;for(let x=0;xn.disposeIntermediateTensorInfo(m)),f}var DM={kernelName:ms,backendName:"cpu",kernelFunc:$M};function OM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ke(a,"min");let o=k.parseAxisParam(s,a.shape),l=o,c=R.getAxesPermutation(l,a.shape.length),u=a;c!=null&&(u=sr({inputs:{x:a},backend:n,attrs:{perm:c}}),l=R.getInnerMostAxes(l.length,a.shape.length)),R.assertAxesAreInnerMostDims("min",l,u.shape.length);let[h,d]=R.computeOutAndReduceShapes(u.shape,l),p=k.sizeFromShape(d),f=k.makeZerosTypedArray(k.sizeFromShape(h),u.dtype),m=n.data.get(u.dataId).values;for(let y=0;yg[0]+a.shape[w]+g[1]),l=s.map(g=>g[0]),c=s.map((g,w)=>g[0]+a.shape[w]),u=i==="reflect"?0:1,h=n.data.get(a.dataId).values,d=a.shape.length,p=k.computeStrides(a.shape),f=k.sizeFromShape(o),m=o.length,A=k.computeStrides(o),y=k.getTypedArrayFromDType(a.dtype,f);for(let g=0;g=c[_]&&(w[_]=(c[_]-1)*2-w[_]+u);w=w.map((_,b)=>_-l[b]);let x=k.locToIndex(w,d,p);y[g]=h[x]}return{dataId:n.write(y,o,a.dtype),shape:o,dtype:a.dtype}}var LM={kernelName:hu,backendName:"cpu",kernelFunc:PM},WM=Ft((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),BM=jt(ho,WM),VM={kernelName:ho,backendName:"cpu",kernelFunc:BM},UM=Zo(c8());function _x(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=a.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=k.parseAxisParam([o],a.shape),c=wx({inputs:{x:a},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=R.expandShapeToKeepDim(c.shape,l),h=xt({inputs:{x:c},backend:n,attrs:{shape:u}}),d=tA({inputs:{a,b:h},backend:n}),p=ox({inputs:{x:d},backend:n}),f=jd({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),m=xt({inputs:{x:f},backend:n,attrs:{shape:u}}),A=aA({inputs:{a:p,b:m},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var HM={kernelName:Ms,backendName:"cpu",kernelFunc:_x};function jM(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r;ke(a,"multinomial");let l=o?a:_x({inputs:{logits:a},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],h=n.data.get(l.dataId).values,d=[c,s],p=k.makeZerosTypedArray(k.sizeFromShape(d),"int32");for(let f=0;f=0&&u[h]{k.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=Hd({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=cl({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var i$={kernelName:xo,backendName:"cpu",kernelFunc:vx};function o$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r;ke(a,"pad");let o=s.map((y,g)=>y[0]+a.shape[g]+y[1]),l=s.map(y=>y[0]),c=n.data.get(a.dataId).values,u=k.sizeFromShape(a.shape),h=a.shape.length,d=k.computeStrides(a.shape),p=k.sizeFromShape(o),f=o.length,m=k.computeStrides(o),A=k.getTypedArrayFromDType(a.dtype,p);i!==0&&A.fill(i);for(let y=0;yx+l[_]),w=k.locToIndex(g,f,m);A[w]=c[y]}return{dataId:n.write(A,o,a.dtype),shape:o,dtype:a.dtype}}var kx={kernelName:ws,backendName:"cpu",kernelFunc:o$},l$=Ft((e,t)=>Math.pow(e,t)),u$=jt(_s,l$),c$={kernelName:_s,backendName:"cpu",kernelFunc:u$};function h$(e){let{backend:t,attrs:n}=e,{start:r,stop:a,dtype:s,step:i}=n,o=Jm(r,a,i,s);return t.makeTensorInfo([o.length],s,o)}var d$={kernelName:du,backendName:"cpu",kernelFunc:h$},p$=ct(_o,e=>1/e),f$={kernelName:_o,backendName:"cpu",kernelFunc:p$};function m$(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;ke(a,"resizeBilinear");let l=k.computeStrides(a.shape),[c,u]=o,[h,d,p,f]=a.shape,m=n.data.get(a.dataId).values,A=new Float32Array(k.sizeFromShape([h,c,u,f])),y=[s&&c>1?d-1:d,s&&u>1?p-1:p],g=[s&&c>1?c-1:c,s&&u>1?u-1:u],w=0,x=y[0]/g[0],_=y[1]/g[1];for(let b=0;b1?c-1:c,i&&p>1?u-1:u],A=[i&&d>1?d-1:d,i&&p>1?p-1:p],y=m[0]/A[0],g=m[1]/A[1],w=n.data.get(s.dataId).values,x=0;for(let _=0;_1?d-1:d,s&&u>1?p-1:p],g=[s&&c>1?c-1:c,s&&u>1?u-1:u],w=y[0]/g[0],x=y[1]/g[1],_=0;for(let b=0;b1?u-1:u,i&&f>1?h-1:h],g=[i&&p>1?p-1:p,i&&f>1?f-1:f],w=y[0]/g[0],x=y[1]/g[1],_=1/w,b=1/x,T=Math.ceil(_)*2+2,S=Math.ceil(b)*2+2;for(let N=0;N=p)continue;let ne=C+oe*l[1],he=oe*w,le=Math.min(u-1,i?Math.round(he):Math.floor(he));if($===le)for(let me=0;me=f)continue;let we=ne+Ae*l[2],Te=Ae*x,Ce=Math.min(h-1,i?Math.round(Te):Math.floor(Te));W===Ce&&(ae+=A[we+Z])}}m[K+Z]=ae}}}}return n.makeTensorInfo(a.shape,a.dtype,m)}var b$={kernelName:zh,backendName:"cpu",kernelFunc:_$};function v$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r;ke(a,"reverse");let i=a.shape.length,o=k.parseAxisParam(s,a.shape);if(i===0)return Pr({inputs:{x:a},backend:n});let l=new $t(a.shape,a.dtype),c=n.bufferSync(a);for(let u=0;ud[p]=a.shape[p]-1-d[p]),l.set(c.get(...d),...h)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var k$={kernelName:Ns,backendName:"cpu",kernelFunc:v$},I$={kernelName:Oo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=k.getTypedArrayFromDType(r.dtype,k.sizeFromShape(r.shape)),[c,u,h,d]=r.shape,[p,f]=R.getImageCenter(i,u,h),m=255,A=Math.sin(a),y=Math.cos(a),g=o.data.get(r.dataId).values;for(let w=0;w=0&&O=0&&V{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),S$={kernelName:Ss,backendName:"cpu",kernelFunc:N$};function Ix(e,t,n,r,a,s,i,o,l,c){let u=[r/a,a],h=e.values,d=t.values;if(r===0)return Ve(n,t.dtype);let p=Ve(u,t.dtype);p.values.fill(l);for(let f=0;f=r/a)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let y=0;y1||a.shape.length===1?1:k.sizeFromShape(a.shape.slice(1));for(let f=0;fe>=0?M$*e:F$*(Math.exp(e)-1)),D$={kernelName:Io,backendName:"cpu",kernelFunc:$$},O$=ct(Cs,e=>1/(1+Math.exp(-e))),z$={kernelName:Cs,backendName:"cpu",kernelFunc:O$},P$=ct(To,e=>e<0?-1:e>0?1:0),L$={kernelName:To,backendName:"cpu",kernelFunc:P$},W$=ct(Es,e=>Math.sin(e)),B$={kernelName:Es,backendName:"cpu",kernelFunc:W$},V$=ct(So,e=>Math.sinh(e)),U$={kernelName:So,backendName:"cpu",kernelFunc:V$},H$=11920928955078125e-23,Nx=Math.log(H$)+2,j$=ct(Eo,e=>{let t=e>-Nx,n=e{let d=[...u];d[o]=h;let p=ni({inputs:{x:a},backend:n,attrs:{begin:c,size:d}});return c[o]+=h,p})}var J$={kernelName:Co,backendName:"cpu",kernelFunc:Y$},Q$=ct(Rs,e=>Math.sqrt(e)),eD={kernelName:Rs,backendName:"cpu",kernelFunc:Q$},tD={kernelName:mu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;ke(n,"square");let a=r.data.get(n.dataId).values,s=new Float32Array(a.length);for(let i=0;i{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),rD={kernelName:ma,backendName:"cpu",kernelFunc:nD};function aD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r;ke(a,"stridedSlice");let{nonStrided:p,$begin:f,$strides:m,size:A,newShape:y,outShape:g}=an.sliceInfo(a.shape,s,i,o,l,c,u,h,d),w=xt({inputs:{x:a},backend:n,attrs:{shape:y}}),x;if(p){let b=ni({inputs:{x:w},backend:n,attrs:{begin:f,size:A}});x=xt({inputs:{x:b},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(b)}else if(g.some(b=>b===0))x=n.makeTensorInfo(g,a.dtype,[]);else{let b=n.bufferSync(w),T=nx(g,b,m,f);x=n.makeTensorInfo(T.shape,T.dtype,T.values)}let _=xt({inputs:{x},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(w),n.disposeIntermediateTensorInfo(x),_}var sD={kernelName:Ro,backendName:"cpu",kernelFunc:aD},iD=ct(Fo,e=>Math.tan(e)),oD={kernelName:Fo,backendName:"cpu",kernelFunc:iD},lD=ct(Os,e=>Math.tanh(e)),uD={kernelName:Os,backendName:"cpu",kernelFunc:lD};function cD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;ke(a,"tile");let i=ax(n.bufferSync(a),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var hD={kernelName:fa,backendName:"cpu",kernelFunc:cD};function dD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r;ke(a,"topk");let o=n.data.get(a.dataId).values,[l,c]=sx(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var pD={kernelName:Mo,backendName:"cpu",kernelFunc:dD};function fD(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;ke(s,"unique");let i=r.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:c}=ix(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([c.length],"int32",c)]}var mD={kernelName:Wh,backendName:"cpu",kernelFunc:fD};function AD(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape.length,o=a.shape[s],l=new Array(i-1),c=0;for(let p=0;pn.disposeIntermediateTensorInfo(f)),p}var xD={kernelName:Au,backendName:"cpu",kernelFunc:gD},wD=[BC,GE,UC,jC,JE,qC,KC,YC,QC,tR,rR,sR,oR,cR,dR,mR,yR,xR,_R,LC,vR,IR,SR,ZE,eC,ER,qE,RR,MR,OR,PR,$R,VR,HR,WR,GR,XR,ZR,JR,eF,nF,rF,sF,oF,uF,cF,dF,hF,sA,FC,fF,AF,kF,tC,IF,rC,RF,MF,$F,sC,zF,LF,BF,UF,jF,oC,XF,XE,ZF,FR,JF,eM,nM,MC,uC,sM,oM,hC,uM,dM,fM,yM,xM,_M,pC,kM,NM,TM,CM,FM,bM,DM,zM,mC,LM,VM,GM,yC,xC,KM,JM,t$,_C,r$,s$,i$,kx,c$,DC,kC,d$,KE,f$,OC,zC,PC,A$,g$,w$,b$,k$,I$,S$,NC,E$,R$,D$,z$,L$,B$,U$,SC,HM,G$,X$,Z$,J$,eD,tD,EC,rD,sD,RC,MM,oD,uD,hD,pD,bC,mD,yD,xD,a$];for(let e of wD)zo(e);var jg={};Pe(jg,{assertNotComplex:()=>hl,bindCanvasToFramebuffer:()=>vD,bindColorTextureToFramebuffer:()=>Xd,bindTextureToProgramUniformSampler:()=>Bx,bindTextureUnit:()=>Px,bindVertexBufferToProgramAttribute:()=>lA,callAndCheck:()=>be,canBeRepresented:()=>Sx,createFragmentShader:()=>Cx,createFramebuffer:()=>zx,createProgram:()=>Rx,createStaticIndexBuffer:()=>$x,createStaticVertexBuffer:()=>Mx,createTexture:()=>Dx,createVertexShader:()=>Ex,getBatchDim:()=>ri,getExtensionOrThrow:()=>Yu,getFramebufferErrorMessage:()=>Vx,getMaxTexturesInShader:()=>jx,getNumChannels:()=>_D,getProgramUniformLocation:()=>Wx,getProgramUniformLocationOrThrow:()=>Lx,getRowsCols:()=>ai,getShapeAs3D:()=>Kd,getTextureShapeFromLogicalShape:()=>Ux,getWebGLDisjointQueryTimerVersion:()=>Gx,getWebGLErrorMessage:()=>Tx,getWebGLMaxTextureSize:()=>Hx,hasExtension:()=>Un,isCapableOfRenderingToFloatTexture:()=>qx,isDownloadFloatTextureEnabled:()=>Xx,isReshapeFree:()=>Qu,isWebGLFenceEnabled:()=>Kx,isWebGLVersionEnabled:()=>cA,linkProgram:()=>Fx,resetMaxTextureSize:()=>kD,resetMaxTexturesInShader:()=>ID,unbindColorTextureFromFramebuffer:()=>uA,unbindTextureUnit:()=>bD,validateFramebuffer:()=>Ju,validateProgram:()=>qd,validateTextureSize:()=>Ox});var si={},hA={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function rm(e,t){si[e]=t}function Lr(e){if(!(e in si)){let n=ND(e);if(n!==null)si[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=si[e];return t.isContextLost()?(delete si[e],Lr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),si[e])}function SD(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function ND(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=SD(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete si[e]},!1),e===1?t.getContext("webgl",hA)||t.getContext("experimental-webgl",hA):t.getContext("webgl2",hA)}var ec;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(ec||(ec={}));var Hn;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Hn||(Hn={}));var Zt;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Zt||(Zt={}));function tc(e,t){return[t,e]}function TD(e,t){return e*t}function nc(e){let t=k.sizeFromShape(e),n=Math.ceil(t/4);return k.sizeToSquarishShape(n)}function dl(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function ED(e,t){let[n,r]=dl(e,t);return n*r*4}function dA(e,t){let n=e,r,a,s,i,o,l,c,u,h,d;return Q().getNumber("WEBGL_VERSION")===2?(r=n.R32F,a=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,c=4,u=1,h=n.HALF_FLOAT,d=n.FLOAT):(r=e.RGBA,a=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,c=4,u=4,h=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:r,internalFormatHalfFloat:a,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:h,textureTypeFloat:d}}function be(e,t){let n=t();return Q().getBool("DEBUG")&&CD(e),n}function CD(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+Tx(e,t))}var RD=596e-10,FD=65504;function Sx(e){return!!(Q().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||RDe.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function Ex(e,t){let n=ra(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(be(e,()=>e.shaderSource(n,t)),be(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function Cx(e,t){let n=ra(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(be(e,()=>e.shaderSource(n,t)),be(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw MD(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var $D=/ERROR: [0-9]+:([0-9]+):/g;function MD(e,t){let n=$D.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],a=e.split(` `),s=a.length.toString().length+2,i=a.map((h,d)=>k.rightPad((d+1).toString(),s)+h),o=0;for(let h=0;he.createProgram(),"Unable to create WebGLProgram.")}function Fx(e,t){if(be(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function qd(e,t){if(be(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function Mx(e,t){let n=ra(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),be(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function $x(e,t){let n=ra(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return be(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),be(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function _D(){return Q().getNumber("WEBGL_VERSION")===2?1:4}function Dx(e){return ra(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function Ox(e,t){let n=Q().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,a=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+a+".")}}function zx(e){return ra(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function lA(e,t,n,r,a,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),be(e,()=>e.vertexAttribPointer(o,a,e.FLOAT,!1,s,i)),be(e,()=>e.enableVertexAttribArray(o)),!0)}function Px(e,t,n){Zx(e,n),be(e,()=>e.activeTexture(e.TEXTURE0+n)),be(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function bD(e,t){Zx(e,t),be(e,()=>e.activeTexture(e.TEXTURE0+t)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Lx(e,t,n){return ra(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function Wx(e,t,n){return e.getUniformLocation(t,n)}function Bx(e,t,n,r){be(e,()=>Px(e,t,r)),be(e,()=>e.uniform1i(n,r))}function vD(e){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),be(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),be(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function Xd(e,t,n){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),be(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function uA(e,t){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),be(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Ju(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+Vx(e,t))}function Vx(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function ra(e,t,n){let r=be(e,()=>t());if(r==null)throw new Error(n);return r}function Zx(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(rn){let a=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${a}.`)}}function ri(e,t=2){return k.sizeFromShape(e.slice(0,e.length-t))}function ai(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Kd(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[ri(e),...ai(e)]),t}function Ux(e,t=!1){let n=Q().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((a,s)=>s>=e.length-2?k.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=k.squeezeShape(e).newShape);let r=k.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let a=ri(e),s=2,i=2;return e.length&&([s,i]=ai(e)),r=a*(s/2)*(i/2),k.sizeToSquarishShape(r).map(o=>o*2)}return k.sizeToSquarishShape(r)}function Zd(e){return e%2==0}function Qu(e,t){if(e=e.slice(-2),t=t.slice(-2),k.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||Zd(n)&&Zd(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Zd(e[0])&&Zd(t[0])}var Yd,Jd;function Hx(e){if(Yd==null){let t=Lr(e);Yd=t.getParameter(t.MAX_TEXTURE_SIZE)}return Yd}function kD(){Yd=null}function ID(){Jd=null}function jx(e){if(Jd==null){let t=Lr(e);Jd=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Jd)}function Gx(e){if(e===0)return 0;let t,n=Lr(e);return Un(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Un(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Un(e,t){return e.getExtension(t)!=null}function cA(e){try{if(Lr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function qx(e){if(e===0)return!1;let t=Lr(e);if(e===1){if(!Un(t,"OES_texture_float"))return!1}else if(!Un(t,"EXT_color_buffer_float"))return!1;return pA(t)}function Xx(e){if(e===0)return!1;let t=Lr(e);if(e===1){if(!Un(t,"OES_texture_float")||!Un(t,"WEBGL_color_buffer_float"))return!1}else{if(Un(t,"EXT_color_buffer_float"))return pA(t);let n="EXT_color_buffer_half_float";if(Un(t,n)){let r=t.getExtension(n);return DD(t,r)}return!1}return pA(t)}function pA(e){let t=dA(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,a,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function DD(e,t){let n=dA(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let a=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,a,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(i),o}function Kx(e){return e!==2?!1:Lr(e).fenceSync!=null}function hl(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var $e=Q();$e.registerFlag("HAS_WEBGL",()=>$e.getNumber("WEBGL_VERSION")>0);$e.registerFlag("WEBGL_VERSION",()=>cA(2)?2:cA(1)?1:0);$e.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);$e.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>$e.get("WEBGL_VERSION")===2);$e.registerFlag("WEBGL_CPU_FORWARD",()=>!0);$e.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);$e.registerFlag("WEBGL_PACK",()=>$e.getBool("HAS_WEBGL"));$e.registerFlag("WEBGL_PACK_NORMALIZATION",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_CLIP",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);$e.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_REDUCE",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_LAZILY_UNPACK",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_CONV_IM2COL",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>Hx($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>jx($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=$e.getNumber("WEBGL_VERSION");return e===0?0:Gx(e)});$e.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>$e.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Hh.isMobile());$e.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>qx($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>$e.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:$e.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));$e.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>Xx($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_FENCE_API_ENABLED",()=>Kx($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>$e.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);$e.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});function on(){let e,t,n,r,a,s,i,o,l,c;return Q().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",a="texture",s="outputColor",i="out vec4 outputColor;",o=` bool isnan_custom(float val) { return (val > 0.0 || val < 0.0) ? false : val != 0.0; } bvec4 isnan_custom(vec4 val) { return bvec4(isnan_custom(val.x), isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w)); } #define isnan(value) isnan_custom(value) `,l="",c=` #define round(value) newRound(value) int newRound(float value) { return int(floor(value + 0.5)); } ivec4 newRound(vec4 value) { return ivec4(floor(value + vec4(0.5))); } `):(e="",t="attribute",n="varying",r="varying",a="texture2D",s="gl_FragColor",i="",o=` #define isnan(value) isnan_custom(value) bool isnan_custom(float val) { return (val > 0. || val < 1. || val == 0.) ? false : true; } bvec4 isnan_custom(vec4 val) { return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w)); } `,l=` uniform float INFINITY; bool isinf(float val) { return abs(val) == INFINITY; } bvec4 isinf(vec4 val) { return equal(abs(val), vec4(INFINITY)); } `,c=` int round(float value) { return int(floor(value + 0.5)); } ivec4 round(vec4 value) { return ivec4(floor(value + vec4(0.5))); } `),{version:e,attribute:t,varyingVs:n,varyingFs:r,texture2D:a,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:c}}function ii(e,t,n="index"){let r=k.computeStrides(t);return r.map((a,s)=>{let i=`int ${e[s]} = ${n} / ${a}`,o=s===r.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${a}`:`index -= ${e[s]} * ${a}`;return`${i}; ${o};`}).join("")}function fA(e){let t=k.computeStrides(e).map(n=>n.toString());return` int getFlatIndex(ivec3 coords) { return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z; } `}var Yx=` const float FLOAT_MAX = 1.70141184e38; const float FLOAT_MIN = 1.17549435e-38; lowp vec4 encode_float(highp float v) { if (isnan(v)) { return vec4(255, 255, 255, 255); } highp float av = abs(v); if(av < FLOAT_MIN) { return vec4(0.0, 0.0, 0.0, 0.0); } else if(v > FLOAT_MAX) { return vec4(0.0, 0.0, 128.0, 127.0) / 255.0; } else if(v < -FLOAT_MAX) { return vec4(0.0, 0.0, 128.0, 255.0) / 255.0; } highp vec4 c = vec4(0,0,0,0); highp float e = floor(log2(av)); highp float m = exp2(fract(log2(av))) - 1.0; c[2] = floor(128.0 * m); m -= c[2] / 128.0; c[1] = floor(32768.0 * m); m -= c[1] / 32768.0; c[0] = floor(8388608.0 * m); highp float ebias = e + 127.0; c[3] = floor(ebias / 2.0); ebias -= c[3] * 2.0; c[2] += floor(ebias) * 128.0; c[3] += 128.0 * step(0.0, -v); return c / 255.0; } `,OD=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=ec.DENSE;let t=nc(e),n=on();this.outputShape=e,this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { ${ii(["r","c","d"],e)} return ivec3(r, c, d); } void main() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y); vec4 result = vec4(0.); for (int i=0; i<4; i++) { int flatIndex = index + i; ivec3 rc = outCoordsFromFlatIndex(flatIndex); result[i] = getA(rc.x, rc.y, rc.z); } ${n.output} = result; } `}},zD=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=ec.DENSE;let t=nc(e),n=on();this.outputShape=e,this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { ${ii(["r","c","d"],e)} return ivec3(r, c, d); } void main() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y); vec4 result = vec4(0.); for (int i=0; i<4; i++) { int flatIndex = index + i; ivec3 rc = outCoordsFromFlatIndex(flatIndex); result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z)); } ${n.output} = result; } `}},PD=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Hn.DOWNLOAD;let t=on();this.outputShape=e,this.userCode=` ${Yx} void main() { float x = getAAtOutCoords(); ${t.output} = encode_float(x); } `}},LD=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Hn.DOWNLOAD;let t=on();this.outputShape=e,this.userCode=` ${Yx} void main() { ivec3 coords = getOutputCoords(); float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z)); ${t.output} = encode_float(x); } `}},WD=class{constructor(e,t,n=!1){this.variableNames=["A"];let r=on(),[a,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=` ${fA(e)} void main() { ivec3 coords = getOutputCoords(); int flatIndex = getFlatIndex(coords); int offset = imod(flatIndex, 4); flatIndex = idiv(flatIndex, 4, 1.); int r = flatIndex / ${s}; int c = imod(flatIndex, ${s}); vec2 uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${a}.0); vec4 values = ${r.texture2D}(A, uv); float result; if(offset == 0) { result = values[0]; } else if(offset == 1) { result = values[1]; } else if(offset == 2) { result = values[2]; } else { result = values[3]; } ${r.output} = vec4(${i}, 0., 0., 0.); } `}},BD=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let r=on(),[a,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let c=0;c<=1;c++){let u=l*2+c;i+=` localCoords = coords; if(localCoords[2] + ${c} < ${e[2]}) { localCoords[2] += ${c}; if(localCoords[1] + ${l} < ${e[1]}) { localCoords[1] += ${l}; flatIndex = getFlatIndex(localCoords); offset = imod(flatIndex, 4); flatIndex = idiv(flatIndex, 4, 1.); r = flatIndex / ${s}; c = imod(flatIndex, ${s}); uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${a}.0); values = ${r.texture2D}(A, uv); if(offset == 0) { result[${u}] = values[0]; } else if(offset == 1) { result[${u}] = values[1]; } else if(offset == 2) { result[${u}] = values[2]; } else { result[${u}] = values[3]; } } } `}this.userCode=` ${fA(e)} void main() { ivec3 coords = getOutputCoords(); vec4 result = vec4(0.); int flatIndex, r, c, offset; ivec3 localCoords; vec2 uv; vec4 values; ${i} ${r.output} = ${o}; } `}},Gg={};Pe(Gg,{bindVertexProgramAttributeStreams:()=>iw,createBufferFromOutputTexture:()=>uw,createFloat16MatrixTexture:()=>nw,createFloat16PackedMatrixTexture:()=>sw,createFloat32MatrixTexture:()=>tw,createIndexBuffer:()=>ew,createPackedMatrixTexture:()=>aw,createUnsignedBytesMatrixTexture:()=>rw,createVertexBuffer:()=>Qx,createVertexShader:()=>Jx,downloadByteEncodedFloatMatrixFromOutputTexture:()=>hw,downloadFloat32MatrixFromBuffer:()=>cw,downloadMatrixFromPackedOutputTexture:()=>pw,downloadPackedMatrixFromBuffer:()=>dw,getInternalFormatForFloat16MatrixTexture:()=>AA,getInternalFormatForFloat16PackedMatrixTexture:()=>xA,getInternalFormatForFloat32MatrixTexture:()=>mA,getInternalFormatForPackedMatrixTexture:()=>gA,getInternalFormatForUnsignedBytesMatrixTexture:()=>yA,uploadDenseMatrixToTexture:()=>ow,uploadPixelDataToTexture:()=>lw});function Jx(e){let t=on(),n=`${t.version} precision highp float; ${t.attribute} vec3 clipSpacePos; ${t.attribute} vec2 uv; ${t.varyingVs} vec2 resultUV; void main() { gl_Position = vec4(clipSpacePos, 1); resultUV = uv; }`;return Ex(e,n)}function Qx(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return Mx(e,t)}function ew(e){let t=new Uint16Array([0,1,2,2,1,3]);return $x(e,t)}function rc(e,t,n,r,a,s){Ox(t,n);let i=Dx(e),o=e.TEXTURE_2D;return be(e,()=>e.bindTexture(o,i)),be(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),be(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),be(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),be(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),be(e,()=>e.texImage2D(o,0,r,t,n,0,a,s,null)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function mA(e){return e.internalFormatFloat}function tw(e,t,n,r){let[a,s]=tc(t,n);return rc(e,a,s,mA(r),r.textureFormatFloat,e.FLOAT)}function AA(e){return e.internalFormatHalfFloat}function nw(e,t,n,r){let[a,s]=tc(t,n);return rc(e,a,s,AA(r),r.textureFormatFloat,r.textureTypeHalfFloat)}function yA(e){return e.downloadTextureFormat}function rw(e,t,n,r){let[a,s]=tc(t,n);return rc(e,a,s,yA(r),e.RGBA,e.UNSIGNED_BYTE)}function gA(e){return e.internalFormatPackedFloat}function aw(e,t,n,r){let[a,s]=dl(t,n);return rc(e,a,s,gA(r),e.RGBA,e.FLOAT)}function xA(e){return e.internalFormatPackedHalfFloat}function sw(e,t,n,r){let[a,s]=dl(t,n);return rc(e,a,s,xA(r),e.RGBA,r.textureTypeHalfFloat)}function iw(e,t,n){let r=0,a=3*4,s=3*4+2*4;return be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),lA(e,t,"clipSpacePos",n,3,s,r)&&lA(e,t,"uv",n,2,s,a)}function ow(e,t,n,r,a,s){be(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;a instanceof Uint8Array?(i=new Uint8Array(n*r*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*r*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(a),be(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,r,0,e.RGBA,o,i)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function lw(e,t,n){be(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?be(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):be(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function uw(e,t,n,r){let a=e.createBuffer();be(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,a));let s=4*4*t*n;return be(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),be(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),be(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),a}function cw(e,t,n){let r=e,a=new Float32Array(n);return r.bindBuffer(r.PIXEL_PACK_BUFFER,t),r.getBufferSubData(r.PIXEL_PACK_BUFFER,0,a),r.bindBuffer(r.PIXEL_PACK_BUFFER,null),a}function hw(e,t,n,r){let[a,s]=tc(t,n),i=4,o=new Uint8Array(TD(t*n,i));return be(e,()=>e.readPixels(0,0,a,s,r.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function dw(e,t,n,r,a,s,i,o){let l=e,c=new Float32Array(ED(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function pw(e,t,n){let r=new Float32Array(t*n*4);return be(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,r)),r}var am=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=Q().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,rm(t,e)):this.gl=Lr(t);let n="WEBGL_color_buffer_float",r="EXT_color_buffer_half_float";if(Q().getNumber("WEBGL_VERSION")===1){let a="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=Yu(this.gl,a),Un(this.gl,s))this.textureHalfFloatExtension=Yu(this.gl,s);else if(Q().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Un(this.gl,r))this.colorBufferHalfFloatExtension=Yu(this.gl,r);else if(Q().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Un(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Un(this.gl,r))this.colorBufferHalfFloatExtension=this.gl.getExtension(r);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=Qx(this.gl),this.indexBuffer=ew(this.gl),this.framebuffer=zx(this.gl),this.textureConfig=dA(this.gl,this.textureHalfFloatExtension)}get debug(){return Q().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;be(e,()=>e.finish()),be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),be(e,()=>e.deleteFramebuffer(this.framebuffer)),be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),be(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),be(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),tw(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),nw(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),rw(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),lw(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,r){this.throwIfDisposed(),ow(this.gl,e,t,n,r,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),sw(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),aw(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(uA(this.gl,this.framebuffer),this.outputTexture=null),be(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>hw(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,r,a,s){return dw(this.gl,e,t,n,r,a,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return cw(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let r=uw(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),r}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(Q().getBool("WEBGL_FENCE_API_ENABLED")){let r=e,a=r.fenceSync(r.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=r.clientWaitSync(a,0,0);return s===r.ALREADY_SIGNALED||s===r.CONDITION_SATISFIED},t=a}else Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>pw(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=Cx(t,e),r=Jx(t),a=Rx(t);return be(t,()=>t.attachShader(a,r)),be(t,()=>t.attachShader(a,n)),Fx(t,a),this.debug&&qd(t,a),this.vertexAttrsAreBound||(this.setProgram(a),this.vertexAttrsAreBound=iw(t,this.program,this.vertexBuffer)),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&be(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&qd(this.gl,this.program),be(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?Lx(this.gl,e,t):Wx(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),be(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),Bx(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[r,a]=dl(t,n);this.setOutputMatrixTextureDriver(e,r,a)}setOutputMatrixWriteRegion(e,t,n,r){this.setOutputMatrixWriteRegionDriver(n,e,r,t)}setOutputPackedMatrixWriteRegion(e,t,n,r){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&qd(this.gl,this.program),Ju(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),be(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),be(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Yu(this.gl,Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.createQuery();return n.beginQuery(r.TIME_ELAPSED_EXT,a),a}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await k.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),a&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),r=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),r&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=VD(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&k.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Xd(this.gl,e,this.framebuffer),this.debug&&Ju(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Xd(this.gl,this.outputTexture,this.framebuffer),this.debug&&Ju(this.gl)):uA(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let r=this.gl;Xd(r,e,this.framebuffer),this.debug&&Ju(r),this.outputTexture=e,be(r,()=>r.viewport(0,0,t,n)),be(r,()=>r.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,r){this.throwIfDisposed(),be(this.gl,()=>this.gl.scissor(e,t,n,r))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function VD(e){let t=0;for(;t{let f=k.sizeFromShape(p.shapeInfo.logicalShape);p.shapeInfo.isUniform?a.push(`uniform float ${p.name}${f>1?`[${f}]`:""};`):(a.push(`uniform sampler2D ${p.name};`),a.push(`uniform int offset${p.name};`))});let s=a.join(` `),i=e.map(p=>UD(p,t,r)).join(` `),o=t.texShape,l=on(),c=GD(l),u,h,d=KD(l);return t.isPacked?(u=HD(t.logicalShape,o),h=XD(l)):(u=jD(t.logicalShape,o),h=qD(l)),r&&(d+=ZD),[d,c,h,s,u,i,n].join(` `)}function pl(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return JD(e);case 1:return QD(e);case 2:return eO(e);case 3:return tO(e);case 4:return nO(e);case 5:return rO(e);case 6:return aO(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function mw(e){switch(e.shapeInfo.logicalShape.length){case 0:return sO(e);case 1:return iO(e);case 2:return oO(e);case 3:return lO(e);default:return uO(e)}}function UD(e,t,n=!1){let r="";n?r+=mw(e):r+=pl(e);let a=e.shapeInfo.logicalShape,s=t.logicalShape;return a.length<=s.length&&(n?r+=cO(e,t):r+=hO(e,t)),r}function HD(e,t){switch(e.length){case 0:return Aw();case 1:return dO(e,t);case 2:return mO(e,t);case 3:return pO(e,t);default:return fO(e,t)}}function jD(e,t){switch(e.length){case 0:return Aw();case 1:return AO(e,t);case 2:return _O(e,t);case 3:return yO(e,t);case 4:return gO(e,t);case 5:return xO(e,t);case 6:return wO(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function GD(e){return` float sampleTexture(sampler2D textureSampler, vec2 uv) { return ${e.texture2D}(textureSampler, uv).r; } `}function qD(e){return` void setOutput(float val) { ${e.output} = vec4(val, 0, 0, 0); } `}function XD(e){return` void setOutput(vec4 val) { ${e.output} = val; } `}function KD(e){return`${e.version} precision highp float; precision highp int; precision highp sampler2D; ${e.varyingFs} vec2 resultUV; ${e.defineOutput} const vec2 halfCR = vec2(0.5, 0.5); struct ivec5 { int x; int y; int z; int w; int u; }; struct ivec6 { int x; int y; int z; int w; int u; int v; }; uniform float NAN; ${e.defineSpecialNaN} ${e.defineSpecialInf} ${e.defineRound} int imod(int x, int y) { return x - y * (x / y); } int idiv(int a, int b, float sign) { int res = a / b; int mod = imod(a, b); if (sign < 0. && mod != 0) { res -= 1; } return res; } //Based on the work of Dave Hoskins //https://www.shadertoy.com/view/4djSRW #define HASHSCALE1 443.8975 float random(float seed){ vec2 p = resultUV * seed; vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1); p3 += dot(p3, p3.yzx + 19.19); return fract((p3.x + p3.y) * p3.z); } ${bO} ${vO} ${kO} `}var bO=` vec2 uvFromFlat(int texNumR, int texNumC, int index) { int texR = index / texNumC; int texC = index - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } vec2 packedUVfrom1D(int texNumR, int texNumC, int index) { int texelIndex = index / 2; int texR = texelIndex / texNumC; int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } `,vO=` vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR, int texNumC, int row, int col) { int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2); int texR = texelIndex / texNumC; int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } `,kO=` vec2 packedUVfrom3D(int texNumR, int texNumC, int texelsInBatch, int texelsInLogicalRow, int b, int row, int col) { int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2); int texR = index / texNumC; int texC = index - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } `,ZD=` float getChannel(vec4 frag, vec2 innerDims) { vec2 modCoord = mod(innerDims, 2.); return modCoord.x == 0. ? (modCoord.y == 0. ? frag.r : frag.g) : (modCoord.y == 0. ? frag.b : frag.a); } float getChannel(vec4 frag, int dim) { float modCoord = mod(float(dim), 2.); return modCoord == 0. ? frag.r : frag.g; } `;function Aw(){return` int getOutputCoords() { return 0; } `}function dO(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?` int getOutputCoords() { return 2 * int(resultUV.x * ${n[1]}.0); } `:n[1]===1?` int getOutputCoords() { return 2 * int(resultUV.y * ${n[0]}.0); } `:` int getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]})); return 2 * (resTexRC.x * ${n[1]} + resTexRC.y); } `}function AO(e,t){return t[0]===1?` int getOutputCoords() { return int(resultUV.x * ${t[1]}.0); } `:t[1]===1?` int getOutputCoords() { return int(resultUV.y * ${t[0]}.0); } `:` int getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); return resTexRC.x * ${t[1]} + resTexRC.y; } `}function pO(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]})); int index = resTexRC.x * ${n[1]} + resTexRC.y; int b = index / ${a}; index -= b * ${a}; int r = 2 * (index / ${r}); int c = imod(index, ${r}) * 2; return ivec3(b, r, c); } `}function yO(e,t){let n=ii(["r","c","d"],e);return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); int index = resTexRC.x * ${t[1]} + resTexRC.y; ${n} return ivec3(r, c, d); } `}function fO(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),s=a,i="",o="b, r, c";for(let l=2;l=1?u="coords = 0;":u=o.map(A=>`coords.${h[A+c]} = 0;`).join(` `);let d="";i<2&&s>0?d="coords":d=e.shapeInfo.logicalShape.map((A,y)=>`coords.${h[y+c]}`).join(", ");let p="return outputValue;",f=k.sizeFromShape(e.shapeInfo.logicalShape)===1,m=k.sizeFromShape(t.logicalShape)===1;if(s===1&&!f&&!m)p=` return vec4(outputValue.xy, outputValue.xy); `;else if(f&&!m)i===1?p=` return vec4(outputValue.x, outputValue.x, 0., 0.); `:p=` return vec4(outputValue.x); `;else if(o.length){let A=s-2,y=s-1;o.indexOf(A)>-1&&o.indexOf(y)>-1?p="return vec4(outputValue.x);":o.indexOf(A)>-1?p="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(p="return vec4(outputValue.xx, outputValue.zz);")}return` vec4 ${a}() { ${l} coords = getOutputCoords(); ${u} vec4 outputValue = get${r}(${d}); ${p} } `}function hO(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&k.arraysEqual(i,s))return` float ${a}() { return sampleTexture(${n}, resultUV); } `;let c=pt(l),u=fw(e.shapeInfo.logicalShape,t.logicalShape),h=l-o,d,p=["x","y","z","w","u","v"];o===0?d="":l<2&&u.length>=1?d="coords = 0;":d=u.map(m=>`coords.${p[m+h]} = 0;`).join(` `);let f="";return l<2&&o>0?f="coords":f=e.shapeInfo.logicalShape.map((m,A)=>`coords.${p[A+h]}`).join(", "),` float ${a}() { ${c} coords = getOutputCoords(); ${d} return get${r}(${f}); } `}function pt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function ml(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function Al(e,t){return t.map(n=>e[n]).join(", ")}function IO(e,t,n,r){let a=t.userCode,s=n.map((p,f)=>{let m={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(m.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[f],shapeInfo:m}}),i=s.map(p=>p.shapeInfo),o={logicalShape:r.shape,texShape:r.texData.texShape,isUniform:!1,isPacked:r.texData.isPacked,flatOffset:null},l=YD(s,o,a,t.packedInputs),c=e.createProgram(l),u=null,h=e.getUniformLocation(c,"NAN",!1);Q().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(c,"INFINITY",!1));let d={};for(let p=0;p{let a=n.logicalShape,s=t[r],i=s.shape;if(!k.arraysEqual(a,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${a} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!k.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function NO(e,t,n,r,a){yw(t.inShapeInfos,n),yw([t.outShapeInfo],[r]);let s=r.texData.texture,i=r.texData.texShape;r.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),Q().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let c=t.program.variableNames[l],u=t.uniformLocations[c],h=t.uniformLocations[`offset${c}`];if(u!=null){if(o.isUniform){if(k.sizeFromShape(o.shape)<2)e.gl.uniform1f(u,o.uniformValues[0]);else{let d=o.uniformValues;d instanceof Float32Array||(d=new Float32Array(d)),e.gl.uniform1fv(u,d)}return}o.texData.slice!=null&&h!=null&&e.gl.uniform1i(h,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,u,l)}}),a!=null&&a(e,t.webGLProgram),e.executeProgram()}function SO(e,t,n){let r="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;r+=`${i.shape}_${l}_${o}`});let a=e.userCode,s=e.constructor.name;return s+="_"+r+"_"+a,s}var{addImpl:TO,bincountImpl:gw,bincountReduceImpl:EO,ceilImpl:CO,concatImpl:RO,expImpl:FO,expm1Impl:MO,floorImpl:$O,gatherV2Impl:DO,greaterImpl:OO,lessImpl:zO,linSpaceImpl:PO,logImpl:LO,maxImpl:WO,maximumImpl:BO,minimumImpl:VO,multiplyImpl:UO,negImpl:HO,prodImpl:jO,rangeImpl:GO,rsqrtImpl:qO,simpleAbsImpl:xw,sliceImpl:XO,stridedSliceImpl:KO,subImpl:ZO,tileImpl:YO,topKImpl:JO,transposeImpl:wA,uniqueImpl:QO}=nm;function ww(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function ln(e,t){return t===1?[e]:ww(e,t)}function ez(e,t){if(e===1)return"rc";let n="";for(let r=0;r ${t[0]}`;let r="";for(let a=e-2;a= ${t[a]}`,a= ${t}; bool rEdge = rp1 >= ${n}; `}function rz(e,t){let n=e.length,r=sz(n,t);return n===1?`getA(rc), rc + 1 >= ${e[0]} ? 0. : getA(rc + 1), 0, 0`:`getA(${r[0]}), cEdge ? 0. : getA(${r[1]}), rEdge ? 0. : getA(${r[2]}), rEdge || cEdge ? 0. : getA(${r[3]})`}var _w=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let r=0;r<4;r++){let a="thisRC = rc;";r%2==1&&(a+="thisRC.z += 1;"),r>1&&(a+="thisRC.y += 1;"),n+=` ${a} ${r>0?"if(thisRC.y < rows && thisRC.z < cols){":""} int flatIndex = getFlatIndex(thisRC); ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex); vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z)); result[${r}] = getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims); ${r>0?"}":""} `}this.userCode=` ${iz(t)} ${fA(e)} void main() { ivec3 rc = getOutputCoords(); vec4 result = vec4(0.); ivec3 thisRC; int rows = ${e[1]}; int cols = ${e[2]}; ${n} setOutput(result); } `}};function iz(e){return` ivec3 inputCoordsFromReshapedOutCoords(int index) { ${ii(["r","c","d"],e)} return ivec3(r, c, d); } `}var oz=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let r=vw(t,n),a=kw(e,r,n);a in this.freeTextures||(this.freeTextures[a]=[]),a in this.usedTextures||(this.usedTextures[a]=[]);let s=bw(e,r,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[a].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[a].shift();return this.usedTextures[a].push(o),o}let i;return r===Zt.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):r===Zt.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):r===Zt.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):r===Zt.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):r===Zt.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[a].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,r){if(this.freeTextures==null)return;let a=vw(n,r),s=kw(t,a,r);s in this.freeTextures||(this.freeTextures[s]=[]);let i=bw(t,a,this.gpgpu.gl,this.gpgpu.textureConfig,r),o=Q().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function lz(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function bw(e,t,n,r,a){let s=uz(t,r),i;if(a){let[l,c]=dl(e[0],e[1]);i=l*c}else{let[l,c]=tc(e[0],e[1]);i=l*c}let o=lz(n,s);return i*o}function uz(e,t){switch(e){case Zt.PACKED_2X2_FLOAT32:return gA(t);case Zt.PACKED_2X2_FLOAT16:return xA(t);case Zt.UNPACKED_FLOAT32:return mA(t);case Zt.UNPACKED_FLOAT16:return AA(t);case Zt.PACKED_4X1_UNSIGNED_BYTE:return yA(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function cz(e){return Q().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?Zt.PACKED_2X2_FLOAT32:Zt.UNPACKED_FLOAT32:e?Zt.PACKED_2X2_FLOAT16:Zt.UNPACKED_FLOAT16}function vw(e,t){if(e===Hn.UPLOAD)return Zt.PACKED_2X2_FLOAT32;if(e===Hn.RENDER||e==null)return cz(t);if(e===Hn.DOWNLOAD||e===Hn.PIXELS)return Zt.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function kw(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Ea=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=` float unaryOperation(float x) { ${t} } void main() { float x = getAAtOutCoords(); float y = unaryOperation(x); setOutput(y); } `}},Ar="if (isnan(x)) return x;",hz="return x;",Iw="return abs(x);",dz="return (x >= 0.0) ? x : (exp(x) - 1.0);",pz=Ar+` return (x < 0.0) ? 0.0 : x; `,fz=Ar+` return (x < 0.0) ? 0.0 : min(6.0, x); `,Qd="return x;",mz="return x;",Az=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0); result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0); result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; `,yz=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,gz=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,yl=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=` vec4 unaryOperation(vec4 x) { ${t} } void main() { vec4 x = getAAtOutCoords(); vec4 y = unaryOperation(x); setOutput(y); } `}},xz=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=ln("rc",t),r=pt(t),a=ez(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=` void main() { ${r} rc = getOutputCoords(); vec4 packedInput = getA(${a}); setOutput(getChannel(packedInput, ${i})); } `}},wz=Rr.whereImpl,_z=1e-7,bz=1e-4,_A={};function vz(e){return e in _A||(_A[e]={}),_A[e]}var kz=128,Iz=600;function Nz(){return Q().global.screen==null?1024:Q().global.screen.height*Q().global.screen.width*window.devicePixelRatio*Iz/1024/1024}var sm=class extends Ql{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!Q().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Lr(Q().getNumber("WEBGL_VERSION"));this.binaryCache=vz(Q().getNumber("WEBGL_VERSION")),this.gpgpu=new am(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new oz(this.gpgpu),this.numMBBeforeWarning=Nz(),this.texData=new ch(this,Ln())}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,n){if((Q().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||Q().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let r={};return this.texData.set(r,{shape:t,dtype:n,values:e,usage:Hn.UPLOAD,refCount:1,complexParentRefCount:0}),r}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}decComplexRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.complexParentRefCount>0&&t.refCount--}}move(e,t,n,r){if(Q().getBool("DEBUG")&&this.checkNumericalProblems(t),r==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:r,values:t,usage:Hn.UPLOAD,refCount:1,complexParentRefCount:0})}disposeIntermediateTensorInfo(e){let t=e.dataId;if(this.texData.has(t)){let n=this.texData.get(t);n.refCount--,n.refCount<1&&this.disposeData(t)}}readSync(e){let t=this.texData.get(e),{values:n,dtype:r,complexTensorInfos:a,slice:s,shape:i,isPacked:o}=t;if(s!=null){let h;o?h=new yl(i,Qd):h=new Ea(i,Qd);let d=this.runWebGLProgram(h,[{dataId:e,shape:i,dtype:r}],r),p=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),p}if(n!=null)return this.convertAndCacheOnCPU(e);if(r==="string")return n;let l=this.activeTimers!=null,c;l&&(c=k.now());let u;if(r==="complex64"){let h=this.readSync(a.real.dataId),d=this.readSync(a.imag.dataId);u=R.mergeRealAndImagArrays(h,d)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=k.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let p=this.pendingRead.get(e);return new Promise(f=>p.push(f))}let t=this.texData.get(e),{values:n,shape:r,slice:a,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(a!=null){let p;o?p=new yl(r,Qd):p=new Ea(r,Qd);let f=this.runWebGLProgram(p,[{dataId:e,shape:r,dtype:s}],s),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(!Q().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&Q().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(s!=="complex64"&&Q().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let p=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(p.texture,...nc(r))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(s==="complex64"){let p=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),f=p[0],m=p[1];u=R.mergeRealAndImagArrays(f,m)}else if(l==null)u=this.getValuesFromTexture(e);else{let p=k.sizeFromShape(r);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,p)}c!=null&&this.disposeIntermediateTensorInfo(c);let h=this.convertAndCacheOnCPU(e,u),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(p=>p(h)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e),this.pendingDeletes--),h}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>k.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ve(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;to.query)).filter(o=>o!=null),s=k.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,r&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(a);i.kernelMs=k.sum(o),i.getExtraProfileInfo=()=>o.map((l,c)=>({name:s[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:k.now(),endMs:null}}endTimer(e){return Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=k.now(),e)}async getQueryTime(e){if(Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e){if(this.pendingDisposal.has(e))return;if(this.pendingRead.has(e)){this.pendingDisposal.add(e),this.pendingDeletes++;return}if(!this.texData.has(e))return;if(this.texData.get(e).complexParentRefCount>0){this.texData.get(e).refCount--;return}this.releaseGPUData(e);let{complexTensorInfos:t}=this.texData.get(e);t!=null&&(this.texData.get(t.real.dataId).complexParentRefCount--,this.disposeIntermediateTensorInfo(t.real),this.texData.get(t.imag.dataId).complexParentRefCount--,this.disposeIntermediateTensorInfo(t.imag)),this.texData.delete(e)}releaseGPUData(e){let{texture:t,dtype:n,texShape:r,usage:a,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(r,n),this.textureManager.releaseTexture(t,r,a,s)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return Q().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=Ln().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=kz){let n=this.getCPUBackend();return!Q().getBool("IS_TEST")&&!this.warnedAboutCPUBackend&&n==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),n!=null&&e.every(r=>this.texData.get(r.dataId).texture==null&&k.sizeFromShape(r.shape)0&&k.isString(n[0])){let a=n.map(s=>k.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return this.texData.get(r).usage=null,{dataId:r,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:r}=this.makeTensorInfo(e,t,n);return Ln().makeTensorFromDataId(r,e,t,this)}unpackTensor(e){let t=new xz(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new az(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[ri(e.shape),...ai(e.shape)],r={dtype:e.dtype,shape:n,dataId:e.dataId},a=[ri(t),...ai(t)],s=new _w(a,n),i=!0,o=this.runWebGLProgram(s,[r],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:r,dtype:a}=t,s=Kd(r),i;n?i=new zD(s):i=new OD(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:a,dataId:e}],a,null,o);return{dtype:a,shape:r,dataId:l.dataId}}runWebGLProgram(e,t,n,r,a=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===ec.DENSE){let f=nc(e.outputShape);i.texShape=f.map(m=>m*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),k.sizeFromShape(s.shape)===0)return i.values=k.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let m=this.texData.get(f.dataId);if(m.texture==null){if(!e.packedInputs&&k.sizeFromShape(f.shape)<=Q().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:m.values};e.packedInputs&&(m.isPacked=!0,m.shape=f.shape)}else if(!!m.isPacked!=!!e.packedInputs)f=m.isPacked?this.unpackTensor(f):this.packTensor(f),o.push(f),m=this.texData.get(f.dataId);else if(m.isPacked&&!Qu(m.shape,f.shape)){let A=f,y=f.shape;f.shape=m.shape,f=this.packedReshape(f,y),o.push(f),m=this.texData.get(f.dataId),A.shape=y}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:m,isUniform:!1}});this.uploadToGPU(s.dataId);let c={shape:s.shape,texData:i,isUniform:!1},u=SO(e,l,c),h=this.getAndSaveBinary(u,()=>IO(this.gpgpu,e,l,c)),d=this.activeTimers!=null,p;if(d&&(p=this.startTimer()),NO(this.gpgpu,h,l,c,r),o.forEach(f=>this.disposeIntermediateTensorInfo(f)),d&&(p=this.endTimer(p),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(p)})),!Q().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&a===!1){let f=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),f}return s}compileAndRun(e,t,n,r,a=!1){n=n||t[0].dtype;let s=this.runWebGLProgram(e,t,n,r,a);return Ln().makeTensorFromDataId(s.dataId,s.shape,s.dtype)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(Q().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=H(()=>{if(!Q().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=Q().getBool("DEBUG");Q().set("DEBUG",!1);let t=this.abs(Se(1e-8)).dataSync()[0];if(Q().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?_z:bz}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:r,values:a,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,c;l&&(c=k.now());let u=t.texShape;if(u==null&&(u=Ux(n,o),t.texShape=u),a!=null){let h=Kd(n),d,p=u[1],f=u[0],m=a instanceof Uint8Array;o?([p,f]=dl(u[0],u[1]),d=new BD(h,[f,p],m)):d=new WD(h,[f,p],m);let A=this.makeTensorInfo([f,p],r);m?this.texData.get(A.dataId).usage=Hn.PIXELS:this.texData.get(A.dataId).usage=Hn.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),p,f,a);let y=!0,g=this.runWebGLProgram(d,[A],r,null,y),w=this.texData.get(g.dataId);t.texture=w.texture,t.texShape=w.texShape,t.isPacked=w.isPacked,t.usage=w.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(g.dataId),t.values=null,l&&(this.uploadWaitMs+=k.now()-c)}else{let h=this.acquireTexture(u,i,r,o);t.texture=h}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:r}=n;return this.releaseGPUData(e),t!=null&&(n.values=Sz(t,r)),n.values}acquireTexture(e,t,n,r){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let a=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${a} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,r)}computeBytes(e,t){return e[0]*e[1]*k.bytesPerElement(t)}};function Sz(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let r=0;rnew sm,2);var R4={forceHalfFloat:Xg},Nw=` if (isnan(a)) return a; if (isnan(b)) return b; `,gl=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=R.assertAndGetBroadcastShape(t,n),this.userCode=` float binaryOperation(float a, float b) { ${e} } void main() { float a = getAAtOutCoords(); float b = getBAtOutCoords(); setOutput(binaryOperation(a, b)); } `}},ep=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; `,ac=class{constructor(e,t,n,r=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=R.assertAndGetBroadcastShape(t,n);let a=this.outputShape.length,s="";if(r)if(a===0||k.sizeFromShape(this.outputShape)===1)s=` result.y = 0.; result.z = 0.; result.w = 0.; `;else if(s=` ${pt(a)} coords = getOutputCoords(); `,a===1)s+=` result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y; result.z = 0.; result.w = 0.; `;else{let i=ln("coords",a);s+=` bool nextRowOutOfBounds = (${i[a-2]} + 1) >= ${this.outputShape[a-2]}; bool nextColOutOfBounds = (${i[a-1]} + 1) >= ${this.outputShape[a-1]}; result.y = nextColOutOfBounds ? 0. : result.y; result.z = nextRowOutOfBounds ? 0. : result.z; result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w; `}this.userCode=` vec4 binaryOperation(vec4 a, vec4 b) { ${e} } void main() { vec4 a = getAAtOutCoords(); vec4 b = getBAtOutCoords(); vec4 result = binaryOperation(a, b); ${s} setOutput(result); } `}};function En(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var Tz={kernelName:ro,backendName:"webgl",kernelFunc:En};function Ca(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.makeTensorInfo(r.shape,"complex64"),i=n.texData.get(s.dataId),o=En({inputs:{x:r},backend:n}),l=n.texData.get(o.dataId);l.complexParentRefCount++;let c=En({inputs:{x:a},backend:n}),u=n.texData.get(c.dataId);return u.complexParentRefCount++,i.complexTensorInfos={real:o,imag:c},s}var Ez={kernelName:Ah,backendName:"webgl",kernelFunc:Ca},Sw="return (a < 0.) ? b * a : a;",Tw=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); `;function Cz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r,i=n.makeTensorInfo([],"float32",k.createScalarValue(s,"float32")),o=Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new ac(Tw,a.shape,i.shape):new gl(Sw,a.shape,i.shape),l=n.runWebGLProgram(o,[a,i],a.dtype);return n.disposeIntermediateTensorInfo(i),l}var Rz={kernelName:cs,backendName:"webgl",kernelFunc:Cz},Ew="return (a < 0.) ? b * a : a;",Cw=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); `;function Fz(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new ac(Cw,r.shape,a.shape):new gl(Ew,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)}var Mz={kernelName:bs,backendName:"webgl",kernelFunc:Fz},Rw="if (isnan(x)) return x;",$z=` if (isnan(a)) return a; if (isnan(b)) return b; `,Dz=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; `;function Je({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:r}){return({inputs:a,backend:s})=>{let{x:i}=a,o=s,l=r||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let h=o.texData.get(i.dataId),d=n(h.values,l);return o.makeTensorInfo(i.shape,l,d)}let c=Q().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new yl(i.shape,t):u=new Ea(i.shape,e),o.runWebGLProgram(u,[i],l)}}function Yt({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:r=!1,cpuKernelImpl:a,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:c}=i,u=o;if(r&&l.dtype==="complex64"){let f=u.texData.get(l.dataId),m=u.texData.get(c.dataId),[A,y]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(w=>{let[x,_]=w,b={dataId:x.dataId,dtype:x.dtype,shape:l.shape},T={dataId:_.dataId,dtype:_.dtype,shape:c.shape},S=new gl(e,l.shape,c.shape);return u.runWebGLProgram(S,[b,T],er(x.dtype,_.dtype))}),g=Ca({inputs:{real:A,imag:y},backend:u});return u.disposeIntermediateTensorInfo(A),u.disposeIntermediateTensorInfo(y),g}let h=s||er(l.dtype,c.dtype);if(u.shouldExecuteOnCPU([l,c])&&a!=null){let f=u.texData.get(l.dataId),m=u.texData.get(c.dataId),[A,y]=a(l.shape,c.shape,f.values,m.values,h),g=u.makeTensorInfo(y,h),w=u.texData.get(g.dataId);return w.values=A,g}let d=Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,p;return d?p=new ac(t,l.shape,c.shape,n):p=new gl(e,l.shape,c.shape),u.runWebGLProgram(p,[l,c],h)}}function tp(e,t=!1){if(e==="linear")return t?mz:hz;if(e==="relu")return t?yz:pz;if(e==="elu")return t?Az:dz;if(e==="relu6")return t?gz:fz;if(e==="prelu")return t?Cw:Ew;if(e==="leakyrelu")return t?Tw:Sw;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var Fw=class{constructor(e,t,n,r=!1,a=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let c=r?e[1]:e[2],u=Math.ceil(c/2),h=r?"i * 2, rc.y":"rc.y, i * 2",d=a?"rc.z, i * 2":"i * 2, rc.z",p=r?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=a?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",A="";i&&(o?m=`vec4 activation(vec4 a) { vec4 b = getPreluActivationWeightsAtOutCoords(); ${i} }`:l?m=`vec4 activation(vec4 a) { vec4 b = getLeakyreluAlphaAtOutCoords(); ${i} }`:m=`vec4 activation(vec4 x) { ${i} }`,A="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let g="rc.x",w="rc.x";e[0]`The new shape (${l}) has ${c} elements and the old shape (${a.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let u=i.texData.get(a.dataId);return u.isPacked&&!Qu(a.shape,l)&&!(u.texture!==null&&Qu(u.shape,l))?zz(a,l,i):(i.incRef(a.dataId),{dataId:a.dataId,shape:l,dtype:a.dtype})}var Pz={kernelName:bo,backendName:"webgl",kernelFunc:ge},zw=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${k.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";a%n>0&&(c=` if (inIdx < 0 || inIdx >= ${a}) { return 0.0; } `),this.userCode=` const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float getValue(int batch, int inIdx) { ${c} return getX(batch, inIdx); } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = outIdx * ${n}; float sumValue = 0.0; for (int i = 0; i < ${i}; i += 4) { int inIdx = inOffset + i; vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), getValue(batch, inIdx + 3) ); ${l} } int inIdx = inOffset + ${i}; if (${o===1}) { vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0); ${l} } else if (${o===2}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), 0.0, 0.0); ${l} } else if (${o===3}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), 0.0); ${l} } setOutput(sumValue); } `}},Lz=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,h=` if (${t==="sum"}) { sumValue += dot(values, ones); } else if (${t==="prod"}) { vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]); prodValue *= tmp[0] * tmp[1]; } else { minMaxValue = ${o}(values, minMaxValue); } `,d="vec4";t==="all"?(i="1.0",h=` bool reducedAllValue = all(values); float floatedReducedAllValue = float(reducedAllValue); allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0); `,d="bvec4"):t==="any"&&(i="0.0",h=` bool reducedAnyValue = any(values); float floatedReducedAnyValue = float(reducedAnyValue); anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0); `,d="bvec4");let p="";a%n>0&&(p=` if (inIdx < 0 || inIdx >= ${a}) { return initializationValue; } `),this.userCode=` const float initializationValue = ${i}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float getValue(int batch, int inIdx) { ${p} return getX(batch, inIdx); } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = outIdx * ${n}; vec4 minMaxValue = vec4(${i}); float prodValue = 1.0; float sumValue = 0.0; float allValue = 1.0; float anyValue = 0.0; for (int i = 0; i < ${c}; i += 4) { int inIdx = inOffset + i; ${d} values = ${d}( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), getValue(batch, inIdx + 3) ); ${h} } int inIdx = inOffset + ${c}; if (${u===1}) { ${d} values = ${d}( getValue(batch, inIdx), initializationValue, initializationValue, initializationValue ); ${h} } else if (${u===2}) { ${d} values = ${d}( getValue(batch, inIdx), getValue(batch, inIdx + 1), initializationValue, initializationValue ); ${h} } else if (${u===3}) { ${d} values = ${d}( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), initializationValue ); ${h} } setOutput(${l}); } `}};function Wz(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],r=R.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:r,outSize:Math.ceil(n/r)})}return t}function li(e,t,n,r){let a=Wz(e.shape),s=e;for(let i=0;i6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],r=new Array(t);for(let a=0;a6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let r=pt(this.rank),a=ww("rc",this.rank),s=new Array(this.rank);for(let c=0;c=2&&u>=2&&w,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${A}).`);let x=(y>g?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([p,f]);k.assert(h===d,()=>`Error in matMul: inner shapes (${h}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${r} must match.`);let _=n?[y,h,p]:[y,p,h],b=r?[g,f,d]:[g,d,f],T=ge({inputs:{x:e},backend:a,attrs:{shape:_}}),S=ge({inputs:{x:t},backend:a,attrs:{shape:b}}),N=[T,S],C=Math.max(y,g),$=n?T.shape[1]:T.shape[2],D=s!=null,O=i!=null,V=l==="leakyrelu",W=l!=null?tp(l,!0):null,K=D||O||V||W!=null,X;if((p===1||f===1)&&$>Pw&&K===!1){let Z=T,ae=S;n&&(Z=mn({inputs:{x:T},backend:a,attrs:{perm:[0,2,1]}}),N.push(Z)),r&&(ae=mn({inputs:{x:S},backend:a,attrs:{perm:[0,2,1]}}),N.push(ae));let J=f!==1,oe=f===1,ne=Z;J&&(ne=ge({inputs:{x:Z},backend:a,attrs:{shape:[C,$,1]}}),N.push(ne));let he=f===1?2:1,le=ae;oe&&(le=ge({inputs:{x:ae},backend:a,attrs:{shape:[C,1,$]}}),N.push(le));let me=Ow({inputs:{a:ne,b:le},backend:a});X=bA({inputs:{x:me},backend:a,attrs:{axis:he,keepDims:!0}}),N.push(me)}else{let Z=er(e.dtype,t.dtype),ae=new Fw(_,b,[C,p,f],n,r,D,W,O,V),J=[T,S];if(s!=null&&J.push(s),O&&J.push(i),V){let oe=a.makeTensorInfo([],"float32",k.createScalarValue(o,"float32"));J.push(oe),N.push(oe)}X=a.runWebGLProgram(ae,J,Z)}let ee=ge({inputs:{x:X},backend:a,attrs:{shape:x}});N.push(X);for(let Z of N)a.disposeIntermediateTensorInfo(Z);return ee}function qz(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r;return rp({a,b:s,transposeA:l,transposeB:c,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:u})}var Xz={kernelName:Ps,backendName:"webgl",kernelFunc:qz},Lw="return abs(x);";function Kz(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])&&r.dtype!=="complex64"){let s=n.texData.get(r.dataId),i=xw(s.values);return n.makeTensorInfo(r.shape,r.dtype,i)}let a;return Q().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new yl(r.shape,Lw):a=new Ea(r.shape,Lw),n.runWebGLProgram(a,[r],r.dtype)}var Zz={kernelName:Di,backendName:"webgl",kernelFunc:Kz},Yz=Ar+` if (abs(x) > 1.) { return NAN; } return acos(x); `,Jz=Je({opSnippet:Yz}),Qz={kernelName:Oi,backendName:"webgl",kernelFunc:Jz},eP=Ar+` if (x < 1.0) return NAN; return log(x + sqrt(x * x - 1.0));`,tP=Je({opSnippet:eP}),nP={kernelName:zi,backendName:"webgl",kernelFunc:tP},Ww="return a + b;",rP=Yt({opSnippet:Ww,packedOpSnippet:Ww,supportsComplex:!0,cpuKernelImpl:TO}),aP={kernelName:da,backendName:"webgl",kernelFunc:rP},sP=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`float v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=` void main() { ${n.join(` `)} float result = ${r}; setOutput(result); } `}},iP=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`vec4 v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=` void main() { ${n.join(` `)} vec4 result = ${r}; setOutput(result); } `}};function ap(e){let{inputs:t,backend:n}=e,r=t;if(r.length===1)return En({inputs:{x:r[0]},backend:n});if(r.length>Q().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(r.length/2),l=ap({inputs:r.slice(0,o),backend:n}),c=ap({inputs:r.slice(o),backend:n});return ap({inputs:[l,c],backend:n})}let a=r.map(o=>o.dtype).reduce((o,l)=>er(o,l)),s=r.map(o=>o.shape),i=Q().getBool("WEBGL_PACK")?new iP(r[0].shape,s):new sP(r[0].shape,s);return n.runWebGLProgram(i,r,a)}var oP={kernelName:Xa,backendName:"webgl",kernelFunc:ap};function lP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=k.parseAxisParam(s,a.shape),c=l,u=R.getAxesPermutation(c,o),h=a;u!=null&&(h=mn({inputs:{x:a},backend:n,attrs:{perm:u}}),c=R.getInnerMostAxes(c.length,o)),R.assertAxesAreInnerMostDims("all",c,o);let[d,p]=R.computeOutAndReduceShapes(h.shape,c),f=k.sizeFromShape(p),m=ge({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=li(m,m.dtype,"all",n),y;if(i){let g=R.expandShapeToKeepDim(d,l);y=ge({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=ge({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var uP={kernelName:hh,backendName:"webgl",kernelFunc:lP};function cP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=k.parseAxisParam(s,a.shape),c=l,u=R.getAxesPermutation(c,o),h=a;u!=null&&(h=mn({inputs:{x:a},backend:n,attrs:{perm:u}}),c=R.getInnerMostAxes(c.length,o)),R.assertAxesAreInnerMostDims("any",c,o);let[d,p]=R.computeOutAndReduceShapes(h.shape,c),f=k.sizeFromShape(p),m=ge({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=li(m,m.dtype,"any",n),y;if(i){let g=R.expandShapeToKeepDim(d,l);y=ge({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=ge({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var hP={kernelName:dh,backendName:"webgl",kernelFunc:cP},dP=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:r,batchSize:a,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[a,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=` void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = outIdx * ${r}; int bestIndex = inOffset; float bestValue = getA(batch, bestIndex); for (int i = 0; i < ${r}; i++) { int inIdx = ${o}; float candidate = getA(batch, inIdx); if (candidate ${i} bestValue) { bestValue = candidate; bestIndex = inIdx; } } setOutput(float(bestIndex)); } `}},pP=class{constructor(e,t,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,k.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let a=e[e.length-1],s=Math.ceil(a/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),r||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=pt(o),c=ln("coords",o),u,h;if(s===1){h=o+1;let T=pt(h);u=` ${T} sourceLocR = ${T}(${c.join()}, 0); ++${c[o-1]}; ${T} sourceLocG = ${T}(${c.join()}, 0); ++${c[o-2]}; ${T} sourceLocA = ${T}(${c.join()}, 0); --${c[o-1]}; ${T} sourceLocB = ${T}(${c.join()}, 0); --${c[o-2]};`}else h=o,u=` ${l} sourceLocR = coords; ++${c[o-1]}; ${l} sourceLocG = coords; ++${c[o-2]}; ${l} sourceLocA = coords; --${c[o-1]}; ${l} sourceLocB = coords; --${c[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,h),p="."+d[h-1],f=d.map(T=>"int "+T),m=ln("sourceLocR",h-1).concat("inIdx.r"),A=ln("sourceLocG",h-1).concat("inIdx.g"),y=ln("sourceLocB",h-1).concat("inIdx.b"),g=ln("sourceLocA",h-1).concat("inIdx.a"),w=n==="max"?"greaterThan":"lessThan",x=r?"":` inIdx = round(vec4(getBestIndicesAChannel(${m.join()}), getBestIndicesAChannel(${A.join()}), getBestIndicesAChannel(${y.join()}), getBestIndicesAChannel(${g.join()})));`,_=`vec4( getAChannel(${m.join()}), hasNextCol ? getAChannel(${A.join()}) : 0., hasNextRow ? getAChannel(${y.join()}) : 0., hasNextRow && hasNextCol ? getAChannel(${g.join()}) : 0.)`,b=r?"":` float getBestIndicesAChannel(${f.join()}) { return getChannel(getBestIndicesA(${d.join()}), vec2(${d.slice(-2).join()})); }`;this.userCode=` float getAChannel(${f.join()}) { return getChannel(getA(${d.join()}), vec2(${d.slice(-2).join()})); } ${b} void main() { ${l} coords = getOutputCoords(); bool hasNextCol = ${c[o-1]} < ${i[o-1]-1}; bool hasNextRow = ${c[o-2]} < ${i[o-2]-1}; ${u} ivec4 srcIdx = ivec4(sourceLocR${p}, sourceLocG${p}, sourceLocB${p}, sourceLocA${p}) * ${t}; ivec4 inIdx = srcIdx; vec4 bestIndex = vec4(inIdx); vec4 bestValue = ${_}; for (int i = 0; i < ${t}; i++) { inIdx = srcIdx; ${x} vec4 candidate = ${_}; bvec4 nan = isnan(candidate); bvec4 replace = bvec4( vec4(${w}(candidate, bestValue)) * (vec4(1.0) - vec4(nan))); bestValue = vec4(replace.x ? candidate.x : bestValue.x, replace.y ? candidate.y : bestValue.y, replace.z ? candidate.z : bestValue.z, replace.w ? candidate.w : bestValue.w); bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace)); srcIdx++; } setOutput(bestIndex); } `}};function Bw(e,t,n,r=null){let a=t.shape[0],s=t.shape[1];r!=null&&(a=r.shape[0],s=r.shape[1]);let i=R.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:a,outSize:Math.ceil(s/i)},l=new dP(o,n,r==null),c=[t];r!=null&&c.push(r);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let h=Bw(e,t,n,u);return e.disposeIntermediateTensorInfo(u),h}function Vw(e,t,n,r=null){let a=r!=null?r.shape:t.shape,s=a[a.length-1],i=R.computeOptimalWindowSize(s),o=new pP(a,i,n,r==null),l=r==null?[t]:[t,r],c=e.runWebGLProgram(o,l,"int32");if(c.shape.length===t.shape.length){let u=Vw(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function Uw(e,t,n,r){let a=[n];if(R.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),a,t.shape.length),!Q().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=R.computeOutAndReduceShapes(t.shape,a),l=k.sizeFromShape(o),c=ge({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(c);let u=Bw(e,c,r);s.push(u);let h=ge({inputs:{x:u},backend:e,attrs:{shape:i}});return s.forEach(d=>e.disposeIntermediateTensorInfo(d)),h}return Vw(e,t,r)}function fP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=k.parseAxisParam(s,a.shape),o=R.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=mn({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=R.getInnerMostAxes(i.length,l.shape.length)),R.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let u=Uw(n,l,i[0],"max");return c.forEach(h=>n.disposeIntermediateTensorInfo(h)),u}var mP={kernelName:Ka,backendName:"webgl",kernelFunc:fP};function AP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=k.parseAxisParam(s,a.shape),o=R.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=mn({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=R.getInnerMostAxes(i.length,l.shape.length)),R.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let u=Uw(n,l,i[0],"min");return c.forEach(h=>n.disposeIntermediateTensorInfo(h)),u}var yP={kernelName:eu,backendName:"webgl",kernelFunc:AP},gP=Ar+` if (abs(x) > 1.) { return NAN; } return asin(x); `,xP=Je({opSnippet:gP}),wP={kernelName:Pi,backendName:"webgl",kernelFunc:xP},_P=Ar+"return log(x + sqrt(x * x + 1.0));",bP=Je({opSnippet:_P}),vP={kernelName:Li,backendName:"webgl",kernelFunc:bP},kP=Ar+` return atan(x); `,IP=Je({opSnippet:kP}),NP={kernelName:Wi,backendName:"webgl",kernelFunc:IP},SP=$z+` return atan(a, b); `,TP=` vec4 result = atan(a, b); vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0)); `+Dz+` return result; `,EP=Yt({opSnippet:SP,packedOpSnippet:TP}),CP={kernelName:Vi,backendName:"webgl",kernelFunc:EP},RP=Ar+` if ((x < -1.0) || (x > 1.0)) return NAN; return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,FP=Je({opSnippet:RP}),MP={kernelName:Bi,backendName:"webgl",kernelFunc:FP},sc=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,h=e.effectiveFilterWidth,d=e.padInfo.top,p=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,A=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(f||(y="-1.0 / 1e-20"),n){let T=">=";this.userCode=` const ivec2 strides = ivec2(${i}, ${o}); const ivec2 pads = ivec2(${d}, ${p}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d = coords[3]; ivec2 xRCCorner = coords.yz * strides - pads; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // max/min x(?, ?, d) to get y(yR, yC, d). // ? = to be determined float minMaxValue = 0.0; float minMaxValueFound = 0.0; int minMaxPosition = 0; float avgValue = 0.0; for (int wR = 0; wR < ${u}; wR += ${l}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${h}; wC += ${c}) { int xC = xCCorner + wC; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float value = getX(batch, xR, xC, d); // If a min / max value has already been found, use it. If not, // use the current value. float currMinMaxValue = mix( value, minMaxValue, minMaxValueFound); if (value ${T} currMinMaxValue) { minMaxValue = value; minMaxValueFound = 1.0; minMaxPosition = ${r?a?m:A:`wR * ${h} + wC`}; } } } setOutput(float(minMaxPosition)); } `;return}let g="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let x=Math.floor(s/4)*4,_=s%4,b=` if (${f}) { avgValue += dot(values, ones); } else { minMaxValue = ${g}(values, minMaxValue); } `;this.userCode=` const ivec2 strides = ivec2(${i}, ${o}); const ivec2 pads = ivec2(${d}, ${p}); const float initializationValue = ${y}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float count = 0.0; float getValue(int batch, int xR, int xC, int d) { if (xC < 0 || xC >= ${e.inWidth}) { return initializationValue; } count += 1.0; return getX(batch, xR, xC, d); } void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d = coords[3]; ivec2 xRCCorner = coords.yz * strides - pads; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // max/min x(?, ?, d) to get y(yR, yC, d). // ? = to be determined vec4 minMaxValue = vec4(${y}); float avgValue = 0.0; count = 0.0; for (int wR = 0; wR < ${u}; wR += ${l}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${x}; wC += 4) { int xC = xCCorner + wC * ${c}; vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${c}, d), getValue(batch, xR, xC + 2 * ${c}, d), getValue(batch, xR, xC + 3 * ${c}, d) ); ${b} } int xC = xCCorner + ${x}; if (${_===1}) { vec4 values = vec4( getValue(batch, xR, xC, d), initializationValue, initializationValue, initializationValue ); ${b} } else if (${_===2}) { vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${c}, d), initializationValue, initializationValue ); ${b} } else if (${_===3}) { vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${c}, d), getValue(batch, xR, xC + 2 * ${c}, d), initializationValue ); ${b} } } setOutput(${w}); } `}},vA=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,h=e.dilationWidth,d=e.effectiveFilterDepth,p=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,A=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let g=t==="avg",w="0.0";if(g||(w="-1.0 / 1e-20"),n){let N=">=";this.userCode=` const ivec3 strides = ivec3(${i}, ${o}, ${l}); const ivec3 pads = ivec3(${m}, ${A}, ${y}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads; int xDCorner = xCorner.x; int xRCorner = xCorner.y; int xCCorner = xCorner.z; // max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch). // ? = to be determined float minMaxValue = 0.0; float minMaxValueFound = 0.0; int minMaxPosition = 0; for (int wD = 0; wD < ${d}; wD += ${c}) { int xD = xDCorner + wD; if (xD < 0 || xD >= ${e.inDepth}) { continue; } for (int wR = 0; wR < ${p}; wR += ${u}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${f}; wC += ${h}) { int xC = xCCorner + wC; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float value = getX(batch, xD, xR, xC, ch); // If a min / max value has already been found, use it. If not, // use the current value. float currMinMaxValue = mix( value, minMaxValue, minMaxValueFound); if (value ${N} currMinMaxValue) { minMaxValue = value; minMaxValueFound = 1.0; minMaxPosition = ${r?a?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${p} * ${f} + wR * ${f} + wC`}; } } } } setOutput(float(minMaxPosition)); } `;return}let x="max",_=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(_="avgValue / count");let b=Math.floor(s/4)*4,T=s%4,S=` if (${g}) { avgValue += dot(values, ones); } else { minMaxValue = ${x}(values, minMaxValue); } `;this.userCode=` const ivec3 strides = ivec3(${i}, ${o}, ${l}); const ivec3 pads = ivec3(${m}, ${A}, ${y}); const float initializationValue = ${w}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float count = 0.0; float getValue(int batch, int xD, int xR, int xC, int ch) { if (xC < 0 || xC >= ${e.inWidth}) { return initializationValue; } count += 1.0; return getX(batch, xD, xR, xC, ch); } void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads; int xDCorner = xCorner.x; int xRCorner = xCorner.y; int xCCorner = xCorner.z; // max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch). // ? = to be determined vec4 minMaxValue = vec4(${w}); float avgValue = 0.0; count = 0.0; for (int wD = 0; wD < ${d}; wD += ${c}) { int xD = xDCorner + wD; if (xD < 0 || xD >= ${e.inDepth}) { continue; } for (int wR = 0; wR < ${p}; wR += ${u}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${b}; wC += 4) { int xC = xCCorner + wC * ${h}; vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${h}, ch), getValue(batch, xD, xR, xC + 2 * ${h}, ch), getValue(batch, xD, xR, xC + 3 * ${h}, ch) ); ${S} } int xC = xCCorner + ${b}; if (${T===1}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), initializationValue, initializationValue, initializationValue ); ${S} } else if (${T===2}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${h}, ch), initializationValue, initializationValue ); ${S} } else if (${T===3}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${h}, ch), getValue(batch, xD, xR, xC + 2 * ${h}, ch), initializationValue ); ${S} } } setOutput(${_}); } } `}};function $P(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;hl(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;k.assert(R.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=R.computePool2DInfo(a.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))return En({inputs:{x:a},backend:n});let h=new sc(u,"avg",!1);return n.runWebGLProgram(h,[a],"float32")}var DP={kernelName:Za,backendName:"webgl",kernelFunc:$P};function OP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r,u=[1,1,1],h=R.computePool3DInfo(a.shape,s,i,u,o,l,c),d=new vA(h,"avg",!1);return n.runWebGLProgram(d,[a],"float32")}var zP={kernelName:tu,backendName:"webgl",kernelFunc:OP},PP=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=o-1-e.padInfo.top,u=l-1-e.padInfo.left,h=1/(t*n);this.userCode=` const ivec2 pads = ivec2(${c}, ${u}); const float avgMultiplier = float(${h}); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 dyRCCorner = coords.yz - pads; int dyRCorner = dyRCCorner.x; int dyCCorner = dyRCCorner.y; // Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${o}; wR += ${s}) { float dyR = float(dyRCorner + wR) / ${r}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${l}; wC+= ${i}) { float dyC = float(dyCCorner + wC) / ${a}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(b, idyR, idyC, d); dotProd += dyValue * avgMultiplier; } } setOutput(dotProd); } `}},LP=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,h=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=u-1-e.padInfo.front,f=h-1-e.padInfo.top,m=d-1-e.padInfo.left,A=1/(t*n*r);this.userCode=` const ivec3 pads = ivec3(${p}, ${f}, ${m}); const float avgMultiplier = float(${A}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads; int dyDCorner = dyCorner.x; int dyRCorner = dyCorner.y; int dyCCorner = dyCorner.z; // Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get // dx(xD, xR, xC, ch). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wD = 0; wD < ${u}; wD += ${o}) { float dyD = float(dyDCorner + wD) / ${a}.0; if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) { continue; } int idyD = int(dyD); for (int wR = 0; wR < ${h}; wR += ${l}) { float dyR = float(dyRCorner + wR) / ${s}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${d}; wC += ${c}) { float dyC = float(dyCCorner + wC) / ${i}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(batch, idyD, idyR, idyC, ch); dotProd += dyValue * avgMultiplier; } } } setOutput(dotProd); } `}};function WP(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=r,h=[1,1,1],d=R.computePool3DInfo(i.shape,o,l,h,c,u),p=new LP(d);return n.runWebGLProgram(p,[a],i.dtype)}var BP={kernelName:fh,backendName:"webgl",kernelFunc:WP};function VP(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;hl([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=r,u=R.computePool2DInfo(i.shape,o,l,1,c),h=new PP(u);return n.runWebGLProgram(h,[a],i.dtype)}var UP={kernelName:ph,backendName:"webgl",kernelFunc:VP};function HP(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;return rp({a,b:s,transposeA:i,transposeB:o,backend:n})}var jP={kernelName:Ya,backendName:"webgl",kernelFunc:HP},GP=class{constructor(e,t,n,r,a,s){this.outputShape=[],this.variableNames=["x","mean","variance"],R.assertAndGetBroadcastShape(e,t),R.assertAndGetBroadcastShape(e,n);let i="0.0";r!=null&&(R.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";a!=null&&(R.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` void main() { float x = getXAtOutCoords(); float mean = getMeanAtOutCoords(); float variance = getVarianceAtOutCoords(); float offset = ${i}; float scale = ${o}; float inv = scale * inversesqrt(variance + float(${s})); setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1))); } `}},qP=class{constructor(e,t,n,r,a,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],R.assertAndGetBroadcastShape(e,t),R.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";r!=null&&(R.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";a!=null&&(R.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` void main() { vec4 offset = ${i}; vec4 scale = ${o}; vec4 x = getXAtOutCoords(); vec4 mean = getMeanAtOutCoords(); vec4 variance = getVarianceAtOutCoords(); vec4 inv = scale * inversesqrt(variance + vec4(${s})); setOutput((x - mean) * inv + offset); } `}},XP=({inputs:e,backend:t,attrs:n})=>{let{x:r,mean:a,variance:s,offset:i,scale:o}=e;k.assert(a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(o==null||a.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[r,a,s],u=null;i!=null&&(u=i.shape,c.push(i));let h=null;o!=null&&(h=o.shape,c.push(o));let d=Q().getBool("WEBGL_PACK_NORMALIZATION")?new qP(r.shape,a.shape,s.shape,u,h,l):new GP(r.shape,a.shape,s.shape,u,h,l);return t.runWebGLProgram(d,c,c[0].dtype)},KP={kernelName:ls,backendName:"webgl",kernelFunc:XP},YP=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=pt(this.rank),n=`uniform int start[${this.rank}];`,r=ZP(this.rank),a,s=e.map((i,o)=>`sourceLoc.${kA[o]} = start[${o}] + coords.${kA[o]};`);a=` ${t} sourceLoc; ${t} coords = getOutputCoords(); ${s.join(` `)} `,this.userCode=` ${n} void main() { ${a} setOutput(getSource(${r})); } `}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},kA=["x","y","z","w","u","v"];function ZP(e){if(e===1)return"sourceLoc";if(e<=6)return kA.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var JP=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=pt(this.rank),n=ln("coords",this.rank),r=ln("sourceLoc",this.rank),a=this.rank===1?"sourceLoc":`vec2(${r.slice(-2).join()})`,s=`getChannel(getSource(${r.join()}), ${a})`,i=` result.x = ${s}; if (++${n[this.rank-1]} < ${e[this.rank-1]}) { ++${r[this.rank-1]}; result.y = ${s}; --${r[this.rank-1]}; } `,o=this.rank===1?"":` --${n[this.rank-1]}; if (++${n[this.rank-2]} < ${e[this.rank-2]}) { ++${r[this.rank-2]}; result.z = ${s}; if (++${n[this.rank-1]} < ${e[this.rank-1]}) { ++${r[this.rank-1]}; result.w = ${s}; } } `,l=this.rank<=4?`sourceLoc = coords + ${t}(${e.map((c,u)=>`start[${u}]`).join()});`:e.map((c,u)=>`${r[u]} = ${n[u]} + start[${u}];`).join(` `);this.userCode=` uniform int start[${this.rank}]; void main() { ${t} coords = getOutputCoords(); ${t} sourceLoc; ${l} vec4 result = vec4(0.); ${i} ${o} setOutput(result); } `}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function QP(e,t,n,r){let a=r.texData.get(e.dataId),s=r.makeTensorInfo(n,e.dtype),i=r.texData.get(s.dataId);Object.assign(i,a),i.complexParentRefCount=0,i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=an.computeFlatOffset(t,k.computeStrides(e.shape));a.slice&&(o+=a.slice.flatOffset),i.slice={flatOffset:o,origDataId:a.slice&&a.slice.origDataId||e.dataId};let l=r.dataRefCount.get(i.slice.origDataId)||1;return r.dataRefCount.set(i.slice.origDataId,l+1),s}function ic(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r,[o,l]=an.parseSliceParams(a,s,i);if(an.assertParamsValid(a,o,l),k.sizeFromShape(l)===0)return n.makeTensorInfo(l,a.dtype,[]);if(n.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=n.texData.get(a.dataId),d=XO(h.values,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,d)}let{isPacked:c}=n.texData.get(a.dataId),u=an.isSliceContinous(a.shape,o,l);if(c||!u){let h=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new JP(l):new YP(l),d=h.getCustomSetupFunc(o);return n.runWebGLProgram(h,[a],a.dtype,d)}return n.uploadToGPU(a.dataId),QP(a,o,l,n)}var eL={kernelName:No,backendName:"webgl",kernelFunc:ic},tL=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;k.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((g,w)=>g*w),l=R.getReshaped(a.shape,s,o),c=R.getPermuted(l.length,s.length),u=R.getReshapedPermuted(a.shape,s,o),h=R.getSliceBeginCoords(i,s.length),d=R.getSliceSize(u,i,s.length),p=[],f=ge({inputs:{x:a},backend:n,attrs:{shape:l}}),m=mn({inputs:{x:f},backend:n,attrs:{perm:c}}),A=ge({inputs:{x:m},backend:n,attrs:{shape:u}}),y=ic({inputs:{x:A},backend:n,attrs:{begin:h,size:d}});return p.push(f),p.push(m),p.push(A),p.forEach(g=>n.disposeIntermediateTensorInfo(g)),y},nL={kernelName:nu,backendName:"webgl",kernelFunc:tL};function rL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.readSync(a.dataId),l=n.readSync(s.dataId),c=gw(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var aL={kernelName:mh,backendName:"webgl",kernelFunc:rL},sL="return float(a != b);",Hw=Yt({opSnippet:sL,dtype:"bool"}),iL={kernelName:fo,backendName:"webgl",kernelFunc:Hw};function oc(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return En({inputs:{x:a.complexTensorInfos.real},backend:n})}var oL={kernelName:Oh,backendName:"webgl",kernelFunc:oc},lL="return float(int(x));";function uL(e,t){let n=new Ea(e.shape,lL),r=t.runWebGLProgram(n,[e],"int32");return{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function IA(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return En({inputs:{x:a},backend:n});let i=Rt(a.shape),o=IA({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Ca({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=oc({inputs:{input:a},backend:n}),o=IA({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(a.dtype,s)){let i=En({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return uL(a,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",k.getTypedArrayFromDType("bool",1)),o=Hw({inputs:{a,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var cL={kernelName:Ja,backendName:"webgl",kernelFunc:IA},jw="return ceil(x);",hL=Je({opSnippet:jw,packedOpSnippet:jw,cpuKernelImpl:CO}),dL={kernelName:Ui,backendName:"webgl",kernelFunc:hL},pL=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=` uniform float minVal; uniform float maxVal; void main() { float value = getAAtOutCoords(); if (isnan(value)) { setOutput(value); return; } setOutput(clamp(value, minVal, maxVal)); } `}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},fL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=` uniform float minVal; uniform float maxVal; void main() { vec4 value = getAAtOutCoords(); if (any(isnan(value))) { setOutput(value); return; } setOutput(clamp(value, vec4(minVal), vec4(maxVal))); } `}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function mL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o;Q().getBool("WEBGL_PACK_CLIP")?o=new fL(a.shape):o=new pL(a.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[a],a.dtype,l)}var AL={kernelName:pa,backendName:"webgl",kernelFunc:mL},yL=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=` void main() { float re = abs(getRealAtOutCoords()); float im = abs(getImagAtOutCoords()); float mx = max(re, im); // sadly the length function in glsl is not underflow-safe // (at least not on Intel GPUs). So the safe solution is // to ensure underflow-safety in all cases. setOutput( mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx)) ); } `}};function Gw(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function gL(e){let{inputs:t,backend:n}=e,{x:r}=t,a=n.texData.get(r.dataId),s=new yL(r.shape),i=[Gw(r,a.complexTensorInfos.real),Gw(r,a.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var xL={kernelName:ru,backendName:"webgl",kernelFunc:gL},wL=class{constructor(e){this.outputShape=[],this.outputShape=R.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s`T${m}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let f=1;f= ${o[f-1]}) { return getChannel( getT${f}(${sp(i,l,m)}), vec2(${sp(c,l,m)})); }`}let d=o.length,p=o[o.length-1];h+=` return getChannel( getT${d}(${sp(i,l,p)}), vec2(${sp(c,l,p)}));`,this.userCode=` float getValue(${i.map(f=>"int "+f)}) { ${h} } void main() { ${a} coords = getOutputCoords(); vec4 result = vec4(getValue(${s}), 0., 0., 0.); ${s[r-1]} = ${s[r-1]} + 1; if (${s[r-1]} < ${n[r-1]}) { result.g = getValue(${s}); } ${s[r-2]} = ${s[r-2]} + 1; if (${s[r-2]} < ${n[r-2]}) { result.a = getValue(${s}); } ${s[r-1]} = ${s[r-1]} - 1; if (${s[r-2]} < ${n[r-2]} && ${s[r-1]} < ${n[r-1]}) { result.b = getValue(${s}); } setOutput(result); } `}};function sp(e,t,n){let r=e.indexOf(t);return e.map((a,s)=>s===r?`${a} - ${n}`:a).join()}function ip(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return En({inputs:{x:a.complexTensorInfos.imag},backend:n})}var bL={kernelName:Eh,backendName:"webgl",kernelFunc:ip};function xl(e,t,n){let r=e[0].dtype;if(r==="complex64"){let c=e.map(f=>oc({inputs:{input:f},backend:n})),u=e.map(f=>ip({inputs:{input:f},backend:n})),h=xl(c,t,n),d=xl(u,t,n),p=Ca({inputs:{real:h,imag:d},backend:n});return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),u.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),p}if(r==="string"){let{tensors2D:c,outShape:u}=qw(e,t,n),h=c.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),d=c[0].shape[0]===1,p=RO(h,u,r,d),f=R.computeOutShape(e.map(A=>A.shape),t),m=n.makeTensorInfo(f,r,p);return c.forEach(A=>n.disposeIntermediateTensorInfo(A)),m}if(e.length>Q().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(e.length/2),u=xl(e.slice(0,c),t,n),h=xl(e.slice(c),t,n),d=xl([u,h],t,n);return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),d}if(Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let c=new _L(e.map(u=>u.shape),t);return n.runWebGLProgram(c,e,r)}let{tensors2D:a,outShape:s}=qw(e,t,n),i=new wL(a.map(c=>c.shape)),o=n.runWebGLProgram(i,a,r);a.forEach(c=>n.disposeIntermediateTensorInfo(c));let l=ge({inputs:{x:o},attrs:{shape:s},backend:n});return n.disposeIntermediateTensorInfo(o),l}function qw(e,t,n){let r=R.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ge({inputs:{x:a},attrs:{shape:[-1,k.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:r}}function Xw(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=k.parseAxisParam(a,t[0].shape)[0],i=R.computeOutShape(t.map(c=>c.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(c=>k.sizeFromShape(c.shape)>0);if(o.length===1)return En({inputs:{x:o[0]},backend:n});let l=o.map(c=>c.shape);return R.assertParamsConsistent(l,s),xl(o,s,n)}var vL={kernelName:Hi,backendName:"webgl",kernelFunc:Xw},Kw=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",A=m?1:2,y=m?2:3,g=m?3:1,w="",x="";n&&(r?w=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${n} }`:a?w=`float activation(float a) { float b = getLeakyreluAlphaAtOutCoords(); ${n} }`:w=` float activation(float x) { ${n} } `,x="result = activation(result);");let _=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=` ${w} const ivec2 strides = ivec2(${o}, ${l}); const ivec2 pads = ivec2(${s}, ${i}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d2 = coords[${g}]; ivec2 xRCCorner = ivec2(coords[${A}], coords[${y}]) * strides - pads; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${h}; wR++) { int xR = xRCorner + wR * ${c}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${d}; wC++) { int xC = xCCorner + wC * ${u}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } for (int d1 = 0; d1 < ${p}; d1 += 4) { vec4 wValues = vec4( getW(wR, wC, d1, d2), getW(wR, wC, d1 + 1, d2), getW(wR, wC, d1 + 2, d2), getW(wR, wC, d1 + 3, d2) ); if (${m}) { vec4 xValues = vec4( getX(batch, xR, xC, d1), getX(batch, xR, xC, d1 + 1), getX(batch, xR, xC, d1 + 2), getX(batch, xR, xC, d1 + 3) ); dotProd += dot(xValues, wValues); } else { vec4 xValues = vec4( getX(batch, d1, xR, xC), getX(batch, d1 + 1, xR, xC), getX(batch, d1 + 2, xR, xC), getX(batch, d1 + 3, xR, xC) ); dotProd += dot(xValues, wValues); } } if (${f===1}) { if (${m}) { dotProd += getX(batch, xR, xC, ${p}) * getW(wR, wC, ${p}, d2); } else { dotProd += getX(batch, ${p}, xR, xC) * getW(wR, wC, ${p}, d2); } } else if (${f===2}) { vec2 wValues = vec2( getW(wR, wC, ${p}, d2), getW(wR, wC, ${p} + 1, d2) ); if (${m}) { vec2 xValues = vec2( getX(batch, xR, xC, ${p}), getX(batch, xR, xC, ${p} + 1) ); dotProd += dot(xValues, wValues); } else { vec2 xValues = vec2( getX(batch, ${p}, xR, xC), getX(batch, ${p} + 1, xR, xC) ); dotProd += dot(xValues, wValues); } } else if (${f===3}) { vec3 wValues = vec3( getW(wR, wC, ${p}, d2), getW(wR, wC, ${p} + 1, d2), getW(wR, wC, ${p} + 2, d2) ); if (${m}) { vec3 xValues = vec3( getX(batch, xR, xC, ${p}), getX(batch, xR, xC, ${p} + 1), getX(batch, xR, xC, ${p} + 2) ); dotProd += dot(xValues, wValues); } else { vec3 xValues = vec3( getX(batch, ${p}, xR, xC), getX(batch, ${p} + 1, xR, xC), getX(batch, ${p} + 2, xR, xC) ); dotProd += dot(xValues, wValues); } } } } float result = dotProd; ${_} ${x} setOutput(result); } `}},kL=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,r=e.padInfo.left,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=` const ivec3 strides = ivec3(${a}, ${s}, ${i}); const ivec3 pads = ivec3(${t}, ${n}, ${r}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int d2 = coords.u; ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads; int xFCorner = xFRCCorner.x; int xRCorner = xFRCCorner.y; int xCCorner = xFRCCorner.z; // Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get // y(yF, yR, yC, d2). ? = to be determined. : = across all // values in that axis. float dotProd = 0.0; for (int wF = 0; wF < ${u}; wF++) { int xF = xFCorner + wF * ${o}; if (xF < 0 || xF >= ${e.inDepth}) { continue; } for (int wR = 0; wR < ${h}; wR++) { int xR = xRCorner + wR * ${l}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${d}; wC++) { int xC = xCCorner + wC * ${c}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } for (int d1 = 0; d1 < ${p}; d1 += 4) { vec4 xValues = vec4( getX(batch, xF, xR, xC, d1), getX(batch, xF, xR, xC, d1 + 1), getX(batch, xF, xR, xC, d1 + 2), getX(batch, xF, xR, xC, d1 + 3) ); vec4 wValues = vec4( getW(wF, wR, wC, d1, d2), getW(wF, wR, wC, d1 + 1, d2), getW(wF, wR, wC, d1 + 2, d2), getW(wF, wR, wC, d1 + 3, d2) ); dotProd += dot(xValues, wValues); } if (${f===1}) { dotProd += getX(batch, xF, xR, xC, ${p}) * getW(wF, wR, wC, ${p}, d2); } else if (${f===2}) { vec2 xValues = vec2( getX(batch, xF, xR, xC, ${p}), getX(batch, xF, xR, xC, ${p} + 1) ); vec2 wValues = vec2( getW(wF, wR, wC, ${p}, d2), getW(wF, wR, wC, ${p} + 1, d2) ); dotProd += dot(xValues, wValues); } else if (${f===3}) { vec3 xValues = vec3( getX(batch, xF, xR, xC, ${p}), getX(batch, xF, xR, xC, ${p} + 1), getX(batch, xF, xR, xC, ${p} + 2) ); vec3 wValues = vec3( getW(wF, wR, wC, ${p}, d2), getW(wF, wR, wC, ${p} + 1, d2), getW(wF, wR, wC, ${p} + 2, d2) ); dotProd += dot(xValues, wValues); } } } } setOutput(dotProd); } `}},IL=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:r,inChannels:a,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:c,dilationHeight:u,dataFormat:h}=n,{left:d,top:p}=o,f=a*r,m=on(),A=h==="channelsLast",y=A?0:1,g=A?1:2,w="";for(let x=0;x<=1;x++)for(let _=0;_<=1;_++)w+=` blockIndex = rc.y + ${_}; pos = rc.x + ${x}; if(blockIndex < ${e[1]} && pos < ${e[0]}) { offsetY = int(blockIndex / (${l})) * ${i} - ${p}; d0 = offsetY + ${u} * (pos / ${f}); if(d0 < ${t[y]} && d0 >= 0) { offsetX = int(mod(float(blockIndex), ${l}.) * ${s}. - ${d}.); d1 = offsetX + ${c} * (int(mod(float(pos), ${f}.) / ${a}.)); if(d1 < ${t[g]} && d1 >= 0) { ch = int(mod(float(pos), ${a}.)); if (${A}) { innerDims = vec2(d1, ch); result[${x*2+_}] = getChannel( getA(d0, int(innerDims.x), int(innerDims.y)), innerDims); } else { innerDims = vec2(d0, d1); result[${x*2+_}] = getChannel( getA(ch, int(innerDims.x), int(innerDims.y)), innerDims); } } } } `;this.userCode=` void main() { ivec2 rc = getOutputCoords(); vec4 result = vec4(0); int blockIndex, pos, offsetY, d0, offsetX, d1, ch; vec2 innerDims; ${w} ${m.output} = result; } `}};function Zw({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,c=r.texData.get(e.dataId),u=n.inChannels,h=l[0]*l[1]*l[2],d=n.outChannels,p=n.dataFormat==="channelsLast",f=!1,m=!1,A,y=[],g=(h===1||d===1)&&u>Pw,w=l[2]%2!=0&&!!c.isPacked;if(g||!Q().getBool("WEBGL_LAZILY_UNPACK")||!Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!w){let x=p?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],_=ge({inputs:{x:e},backend:r,attrs:{shape:[1,x,n.inChannels]}}),b=ge({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}}),T=rp({a:_,b,transposeA:f,transposeB:m,backend:r,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});A=ge({inputs:{x:T},backend:r,attrs:{shape:n.outShape}}),y.push(_),y.push(b),y.push(T)}else{let x=p?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),_={dataId:e.dataId,shape:[1,x,n.inChannels],dtype:e.dtype},b=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,k.assert(Qu(c.shape,_.shape),()=>`packed reshape ${c.shape} to ${_.shape} isn't free`);let T=ge({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(T);let S=rp({a:_,b:T,backend:r,transposeA:f,transposeB:m,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),N=r.texData.get(S.dataId);k.assert(N.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=b,N.shape=n.outShape,A=En({inputs:{x:S},backend:r}),A.shape=n.outShape,y.push(S)}for(let x of y)r.disposeIntermediateTensorInfo(x);return A}function Yw({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:h,outHeight:d,dataFormat:p}=n,f=p==="channelsLast",m=l*c*u,A=d*h,y=[m,A],g=!0,w=!1,x=[],_=ge({inputs:{x:e},backend:r,attrs:{shape:e.shape.slice(1)}}),b=ge({inputs:{x:t},backend:r,attrs:{shape:[1,m,k.sizeFromShape(t.shape)/m]}});x.push(_),x.push(b);let T=new IL(y,_.shape,n),S=r.runWebGLProgram(T,[_],"float32"),N=ge({inputs:{x:S},backend:r,attrs:{shape:[1,y[0],y[1]]}});x.push(S),x.push(N);let C=a!=null,$=s!=null,D=o==="leakyrelu",O=o?tp(o,!0):null,V=new Fw(N.shape,b.shape,[1,A,n.outChannels],g,w,C,O,$,D),W=[N,b];if(a&&W.push(a),$&&W.push(s),D){let Z=r.makeTensorInfo([],"float32",k.createScalarValue(i,"float32"));W.push(Z),x.push(Z)}let K=r.runWebGLProgram(V,W,"float32"),X=f?[1,d,h,n.outChannels]:[1,n.outChannels,d,h],ee=ge({inputs:{x:K},backend:r,attrs:{shape:X}});x.push(K);for(let Z of x)r.disposeIntermediateTensorInfo(Z);return ee}function NL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=r,h=R.convertConv2DDataFormat(l),d=R.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!1,h),p;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))p=Zw({x:a,filter:s,convInfo:d,backend:n});else if(Q().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)p=Yw({x:a,filter:s,convInfo:d,backend:n});else{let m=new Kw(d);p=n.runWebGLProgram(m,[a,s],"float32")}let f=ge({inputs:{x:p},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(p),f}var SL={kernelName:Qa,backendName:"webgl",kernelFunc:NL},TL=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; int wC = coords.y; int d1 = coords.z; int d2 = coords.w; // Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int b = 0; b < ${e.batchSize}; b++) { for (int yR = 0; yR < ${e.outHeight}; yR++) { int xR = wR + yR * ${t} - ${r}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int yC = 0; yC < ${e.outWidth}; yC++) { int xC = wC + yC * ${n} - ${a}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } if (${s}) { float dyValue = getDy(b, yR, yC, d2); float xValue = getX(b, xR, xC, d1); dotProd += (xValue * dyValue); } else { float dyValue = getDy(b, d2, yR, yC); float xValue = getX(b, d1, xR, xC); dotProd += (xValue * dyValue); } } } } setOutput(dotProd); } `}},EL=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,c=s?2:3,u=s?3:1;this.userCode=` const ivec2 pads = ivec2(${i}, ${o}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d1 = coords[${u}]; ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads; int dyRCorner = dyCorner.x; int dyCCorner = dyCorner.y; // Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${t}; wR++) { float dyR = float(dyRCorner + wR) / ${r}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); int wRPerm = ${t} - 1 - wR; for (int wC = 0; wC < ${n}; wC++) { float dyC = float(dyCCorner + wC) / ${a}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); int wCPerm = ${n} - 1 - wC; for (int d2 = 0; d2 < ${e.outChannels}; d2++) { if (${s}) { float xValue = getDy(batch, idyR, idyC, d2); float wValue = getW(wRPerm, wCPerm, d1, d2); dotProd += xValue * wValue; } else { float xValue = getDy(batch, d2, idyR, idyC); float wValue = getW(wRPerm, wCPerm, d1, d2); dotProd += xValue * wValue; } } } } setOutput(dotProd); } `}},CL=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=` void main() { ivec5 coords = getOutputCoords(); int wF = coords.x; int wR = coords.y; int wC = coords.z; int d1 = coords.w; int d2 = coords.u; float dotProd = 0.0; for (int b = 0; b < ${e.batchSize}; b++) { for (int yF = 0; yF < ${e.outDepth}; yF++) { int xF = wF + yF * ${t} - ${a}; if (xF < 0 || xF >= ${e.inDepth}) { continue; } for (int yR = 0; yR < ${e.outHeight}; yR++) { int xR = wR + yR * ${n} - ${s}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int yC = 0; yC < ${e.outWidth}; yC++) { int xC = wC + yC * ${r} - ${i}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float dyValue = getDy(b, yF, yR, yC, d2); float xValue = getX(b, xF, xR, xC, d1); dotProd += (xValue * dyValue); } } } } setOutput(dotProd); } `}},RL=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=r-1-e.padInfo.left;this.userCode=` const ivec3 pads = ivec3(${o}, ${l}, ${c}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int d1 = coords.u; ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads; int dyFCorner = dyCorner.x; int dyRCorner = dyCorner.y; int dyCCorner = dyCorner.z; float dotProd = 0.0; for (int wF = 0; wF < ${t}; wF++) { float dyF = float(dyFCorner + wF) / ${a}.0; if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) { continue; } int idyF = int(dyF); int wFPerm = ${t} - 1 - wF; for (int wR = 0; wR < ${n}; wR++) { float dyR = float(dyRCorner + wR) / ${s}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); int wRPerm = ${n} - 1 - wR; for (int wC = 0; wC < ${r}; wC++) { float dyC = float(dyCCorner + wC) / ${i}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); int wCPerm = ${r} - 1 - wC; for (int d2 = 0; d2 < ${e.outChannels}; d2++) { float xValue = getDy(batch, idyF, idyR, idyC, d2); float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2); dotProd += xValue * wValue; } } } } setOutput(dotProd); } `}};function FL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,filterShape:u}=r,h=R.convertConv2DDataFormat(l),d=R.computeConv2DInfo(a.shape,u,i,1,o,c,!1,h),p=new TL(d);return n.runWebGLProgram(p,[a,s],"float32")}var ML={kernelName:yh,backendName:"webgl",kernelFunc:FL};function $L(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:c,dimRoundingMode:u}=r,h=R.convertConv2DDataFormat(c),d=R.computeConv2DInfo(i,s.shape,o,1,l,u,!1,h),p=new EL(d);return n.runWebGLProgram(p,[a,s],"float32")}var DL={kernelName:es,backendName:"webgl",kernelFunc:$L};function OL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,c=R.computeConv3DInfo(a.shape,s.shape,i,l,o),u=new kL(c);return n.runWebGLProgram(u,[a,s],"float32")}var zL={kernelName:au,backendName:"webgl",kernelFunc:OL};function PL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r,c=R.computeConv3DInfo(a.shape,l,i,1,o),u=new CL(c);return n.runWebGLProgram(u,[a,s],"float32")}var LL={kernelName:gh,backendName:"webgl",kernelFunc:PL};function WL(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r,c=R.computeConv3DInfo(l,s.shape,o,1,i),u=new RL(c);return n.runWebGLProgram(u,[a,s],"float32")}var BL={kernelName:xh,backendName:"webgl",kernelFunc:WL},VL=Rw+` return cos(x); `,UL=Je({opSnippet:VL}),HL={kernelName:ts,backendName:"webgl",kernelFunc:UL},jL=` float e2x = exp(-x); return (e2x + 1.0 / e2x) / 2.0; `,GL=Je({opSnippet:jL}),qL={kernelName:ji,backendName:"webgl",kernelFunc:GL},XL=class{constructor(e,t,n,r,a){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[c]=t,[u,h]=n;this.outputShape=[c,u,h,l];let d=r==="bilinear"?1:0,[p,f]=[`${i-1}.0`,`${o-1}.0`],[m,A,y]=u>1?[`${(i-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${p} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${p}`],[g,w,x]=h>1?[`${(o-1)/(h-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=` const float height_ratio = float(${m}); const float width_ratio = float(${g}); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int y = coords[1]; int x = coords[2]; int d = coords[3]; // get box vals float y1 = getBoxes(b,0); float x1 = getBoxes(b,1); float y2 = getBoxes(b,2); float x2 = getBoxes(b,3); // get image in batch index int bInd = round(getBoxInd(b)); if(bInd < 0 || bInd >= ${s}) { return; } float height_scale = ${A}; float width_scale = ${w}; float in_y = ${y}; if( in_y < 0.0 || in_y > ${p} ) { setOutput(float(${a})); return; } float in_x = ${x}; if( in_x < 0.0 || in_x > ${f} ) { setOutput(float(${a})); return; } vec2 sourceFracIndexCR = vec2(in_x,in_y); if(${d} == 1) { // Compute the four integer indices. ivec2 sourceFloorCR = ivec2(sourceFracIndexCR); ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR)); float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d); float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d); float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d); float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d); vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR); float top = topLeft + (topRight - topLeft) * fracCR.x; float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x; float newValue = top + (bottom - top) * fracCR.y; setOutput(newValue); } else { // Compute the coordinators of nearest neighbor point. ivec2 sourceNearestCR = ivec2(floor( sourceFracIndexCR + vec2(0.5,0.5))); float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d); setOutput(newValue); } } `}},KL=e=>{let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=r,u=new XL(a.shape,s.shape,o,l,c);return n.runWebGLProgram(u,[a,s,i],"float32")},ZL={kernelName:Gi,backendName:"webgl",kernelFunc:KL},e_=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let r=e.length,a=t?"0.0":`getX(${Jw(r,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=` uniform float index; void main() { ${pt(r)} coords = getOutputCoords(); int end = ${Qw(r,"coords")}; float val = ${a}; int pow2 = int(pow(2.0, index)); if (${i}) { int idx = ${o}; ${Qw(r,"coords")} = idx; val += getX(${Jw(r,"coords")}); } setOutput(val); } `}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function Jw(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Qw(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function YL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length,c=R.getAxesPermutation([s],l),u=a;c!=null&&(u=mn({inputs:{x:a},backend:n,attrs:{perm:c}}));let h=R.getInnerMostAxes(1,l)[0];if(h!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${a.shape.length-1} but got axis=${s}`);let d=a.shape[h],p=En({inputs:{x:u},backend:n});for(let f=0;f<=Math.ceil(Math.log2(d))-1;f++){let m=new e_(u.shape,!1,o),A=m.getCustomSetupFunc(f),y=p;p=n.runWebGLProgram(m,[p],p.dtype,A),n.disposeIntermediateTensorInfo(y)}if(i){let f=new e_(u.shape,i,o),m=p;p=n.runWebGLProgram(f,[p],p.dtype),n.disposeIntermediateTensorInfo(m)}if(c!=null){let f=R.getUndoAxesPermutation(c),m=mn({inputs:{x:p},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(u),m}return p}var JL={kernelName:ns,backendName:"webgl",kernelFunc:YL};function QL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.readSync(a.dataId),c=n.readSync(s.dataId),u=gw(l,c,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(a.shape.length===2){let l=n.bufferSync(a),c=n.bufferSync(s),u=EO(l,c,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var eW={kernelName:wh,backendName:"webgl",kernelFunc:QL},tW=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int h = ${this.getHeightCoordString()}; int w = ${this.getWidthCoordString()}; int d = ${this.getDepthCoordString()}; int in_h = h / ${t}; int offset_h = imod(h, ${t}); int in_w = w / ${t}; int offset_w = imod(w, ${t}); int offset_d = (offset_h * ${t} + offset_w) * ${this.getOutputDepthSize()}; int in_d = d + offset_d; float result = ${this.getInputSamplingString()}; setOutput(result); } `}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function nW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],c=i==="NHWC"?a.shape[2]:a.shape[3],u=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=c*s,p=u/(s*s),f=i==="NHWC"?[o,h,d,p]:[o,p,h,d],m=new tW(f,s,i);return n.runWebGLProgram(m,[a],a.dtype)}var rW={kernelName:qi,backendName:"webgl",kernelFunc:nW},t_=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,f=e.filterWidth,m=e.outChannels/e.inChannels,A="",y="";n&&(r?A=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${n} }`:a?A=`float activation(float a) { float b = getLeakyreluAlphaAtOutCoords(); ${n} }`:A=` float activation(float x) { ${n} } `,y="result = activation(result);");let g=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=` ${A} const ivec2 strides = ivec2(${c}, ${u}); const ivec2 pads = ivec2(${o}, ${l}); void main() { ivec4 coords = getOutputCoords(); int batch = coords.x; ivec2 xRCCorner = coords.yz * strides - pads; int d2 = coords.w; int d1 = d2 / ${m}; int q = d2 - d1 * ${m}; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; // TO DO(dsmilkov): Flatten the two for loops and vec4 the operations. for (int wR = 0; wR < ${p}; wR++) { int xR = xRCorner + wR * ${h}; if (xR < 0 || xR >= ${s}) { continue; } for (int wC = 0; wC < ${f}; wC++) { int xC = xCCorner + wC * ${d}; if (xC < 0 || xC >= ${i}) { continue; } float xVal = getX(batch, xR, xC, d1); float wVal = getW(wR, wC, d1, q); dotProd += xVal * wVal; } } float result = dotProd; ${g} ${y} setOutput(result); } `}},n_=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,f=e.filterWidth,m=f,A="int xR; int xC; int xCOffset;";for(let x=0;x= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) { xTexelR${x}C${b} = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if(xCOffset + 1 >= ${i}) { xTexelR${x}C${b}.zw = vec2(0.); } } else { xTexelR${x}C${b} = vec4(0.); } xCOffset = xC + 1 - 2; if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) { vec4 previous = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if(xCOffset + 1 >= ${i}) { previous.zw = vec2(0.); } xR${x}C${b} = vec4(previous.zw, xTexelR${x}C${b}.xy); } else { xR${x}C${b} = vec4(0, 0, xTexelR${x}C${b}.xy); } `:A+=` if(xR >= 0 && xR < ${s} && xC >= 0 && xC < ${i}) { xTexelR${x}C${b} = getX(batch, xR, xC, d1); } else { xTexelR${x}C${b} = vec4(0.); } xR${x}C${b} = xTexelR${x}C${b}; `,b+1= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) { xTexelR${x}C${b+2} = getX(batch, xR, xCOffset, d1); } `,d>1&&(A+=` xCOffset -= 2; if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) { xTexelR${x}C${b} = getX(batch, xR, xCOffset, d1); } else { xTexelR${x}C${b} = vec4(0.); } `),A+=` xR${x}C${b+1} = vec4( xTexelR${x}C${b}.zw, xTexelR${x}C${b+2}.xy); `):A+=` xCOffset = xC + ${T}; if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) { xTexelR${x}C${b+2} = getX(batch, xR, xCOffset, d1); } xR${x}C${b+1} = xTexelR${x}C${b+2}; `}}else b= 0 && xR < ${s}) { `,l%2==1?(A+=` xCOffset = xC + 1 - ${u}; if(xCOffset >= 0 && xCOffset < ${i}) { xTexelR${x}C${b} = getX(batch, xR, xCOffset, d1); } else { xTexelR${x}C${b} = vec4(0.); } if(xC + 1 >= 0 && xC + 1 < ${i}) { xTexelR${x}C${b+2} = getX(batch, xR, xC + 1, d1); } else { xTexelR${x}C${b+2} = vec4(0.); } xR${x}C${b} = vec4( xTexelR${x}C${b}.zw, xTexelR${x}C${b+2}.zw); `,b+1= 0 && xCOffset < ${i}) { final = getX(batch, xR, xCOffset, d1); } xR${x}C${b+1} = vec4(xTexelR${x}C${b+2}.xy, final.xy); `)):(A+=` if(xC >= 0 && xC < ${i}) { xTexelR${x}C${b} = getX(batch, xR, xC, d1); } else { xTexelR${x}C${b} = vec4(0.); } xCOffset = xC + ${u}; if(xCOffset >= 0 && xCOffset < ${i}) { xTexelR${x}C${b+2} = getX(batch, xR, xCOffset, d1); } else { xTexelR${x}C${b+2} = vec4(0.); } xR${x}C${b} = vec4( xTexelR${x}C${b}.xy, xTexelR${x}C${b+2}.xy); `,b+1`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let h=R.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!0),d;return Q().getBool("WEBGL_PACK_DEPTHWISECONV")&&h.strideWidth<=2&&h.outChannels/h.inChannels==1?d=new n_(h):d=new t_(h),n.runWebGLProgram(d,[a,s],"float32")}var sW={kernelName:rs,backendName:"webgl",kernelFunc:aW},iW=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; int wC = coords.y; int d1 = coords.z; int dm = coords.w; int d2 = d1 * ${s} + dm; float dotProd = 0.0; // TO DO: Vec4 over the batch size for (int b = 0; b < ${e.batchSize}; b++) { for (int yR = 0; yR < ${e.outHeight}; yR++) { int xR = wR + yR * ${t} - ${r}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int yC = 0; yC < ${e.outWidth}; yC++) { int xC = wC + yC * ${n} - ${a}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float dyValue = getDy(b, yR, yC, d2); float xValue = getX(b, xR, xC, d1); dotProd += (xValue * dyValue); } } } setOutput(dotProd); } `}},oW=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=` const ivec2 pads = ivec2(${s}, ${i}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d1 = coords[3]; ivec2 dyCorner = coords.yz - pads; int dyRCorner = dyCorner.x; int dyCCorner = dyCorner.y; float dotProd = 0.0; for (int wR = 0; wR < ${t}; wR++) { float dyR = float(dyRCorner + wR) / ${r}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); int wRPerm = ${t} - 1 - wR; for (int wC = 0; wC < ${n}; wC++) { float dyC = float(dyCCorner + wC) / ${a}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); int wCPerm = ${n} - 1 - wC; // TO DO: Vec4 over the channelMul for (int dm = 0; dm < ${o}; dm++) { int d2 = d1 * ${o} + dm; float xValue = getDy(batch, idyR, idyC, d2); float wValue = getW(wRPerm, wCPerm, d1, dm); dotProd += xValue * wValue; } } } setOutput(dotProd); } `}};function lW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,filterShape:u}=r,h=R.computeConv2DInfo(a.shape,u,i,o,l,c,!0),d=new iW(h);return n.runWebGLProgram(d,[a,s],"float32")}var uW={kernelName:_h,backendName:"webgl",kernelFunc:lW};function cW(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,inputShape:u}=r,h=R.computeConv2DInfo(u,s.shape,i,o,l,c,!0),d=new oW(h);return n.runWebGLProgram(d,[a,s],"float32")}var hW={kernelName:bh,backendName:"webgl",kernelFunc:cW},dW=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=` void main() { ivec2 coords = getOutputCoords(); float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0; setOutput(val); } `}};function pW(e){let{inputs:t,backend:n}=e,{x:r}=t,a=[...r.shape,...r.shape],s=k.sizeFromShape(r.shape),i=ge({inputs:{x:r},backend:n,attrs:{shape:[s]}}),o=new dW(s),l=n.runWebGLProgram(o,[i],i.dtype),c=ge({inputs:{x:l},backend:n,attrs:{shape:a}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var fW={kernelName:vh,backendName:"webgl",kernelFunc:pW},mW=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:r,strideHeight:a,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:c}=e,{top:u,left:h}=r;this.userCode=` const ivec2 strides = ivec2(${a}, ${s}); const ivec2 pads = ivec2(${u}, ${h}); const float neg_infinity = -3.4e38; void main() { ivec4 coords = getOutputCoords(); int batch = coords.x; int d1 = coords.w; ivec2 outTopLeftCorner = coords.yz * strides - pads; int hBeg = outTopLeftCorner.x; int wBeg = outTopLeftCorner.y; float curVal = neg_infinity; for (int h = 0; h < ${i}; h++) { int hIn = hBeg + h * ${l}; if (hIn >= 0 && hIn < ${t}) { for (int w = 0; w < ${o}; w++) { int wIn = wBeg + w * ${c}; if (wIn >= 0 && wIn < ${n}) { float xVal = getX(batch, hIn, wIn, d1); float wVal = getW(h, w, d1); float val = xVal + wVal; if (val > curVal) { curVal = val; } } } } } float result = curVal; setOutput(result); } `}};function AW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,c=R.computeDilation2DInfo(a.shape,s.shape,i,o,"NHWC",l),u,h=new mW(c);u=n.runWebGLProgram(h,[a,s],"float32");let d=ge({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),d}var yW={kernelName:su,backendName:"webgl",kernelFunc:AW},gW="return (x >= 0.0) ? x : (exp(x) - 1.0);",xW=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0); result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0); result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; `,wW=Je({opSnippet:gW,packedOpSnippet:xW}),_W={kernelName:Xi,backendName:"webgl",kernelFunc:wW},bW="return (b >= 1.0) ? a : a * (b + 1.0);",vW=` vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.))); return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0)))); `,kW=e=>{let{inputs:t,backend:n}=e,{dy:r,y:a}=t,s=Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new ac(vW,r.shape,a.shape):new gl(bW,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)},IW={kernelName:Nh,backendName:"webgl",kernelFunc:kW},NW=` return vec4(equal(a, b)); `,SW="return float(a == b);",TW=Yt({opSnippet:SW,packedOpSnippet:NW,dtype:"bool"}),EW={kernelName:Zi,backendName:"webgl",kernelFunc:TW},CW=` // Error function is calculated approximately with elementary function. // See "Handbook of Mathematical Functions with Formulas, // Graphs, and Mathematical Tables", Abramowitz and Stegun. float p = ${R.ERF_P}; float a1 = ${R.ERF_A1}; float a2 = ${R.ERF_A2}; float a3 = ${R.ERF_A3}; float a4 = ${R.ERF_A4}; float a5 = ${R.ERF_A5}; float sign = sign(x); x = abs(x); float t = 1.0 / (1.0 + p * x); return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x)); `,RW=Je({opSnippet:CW}),FW={kernelName:Ki,backendName:"webgl",kernelFunc:RW},r_="return exp(x);",a_=Je({opSnippet:r_,packedOpSnippet:r_,cpuKernelImpl:FO}),MW={kernelName:ss,backendName:"webgl",kernelFunc:a_};function NA(e){let{inputs:t,attrs:n,backend:r}=e,{dim:a}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(k.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),ge({inputs:{x:s},backend:r,attrs:{shape:o}})}var $W={kernelName:Yi,backendName:"webgl",kernelFunc:NA},s_="return exp(x) - 1.0;",DW=Je({opSnippet:s_,packedOpSnippet:s_,cpuKernelImpl:MO}),OW={kernelName:Ji,backendName:"webgl",kernelFunc:DW},i_=class{constructor(e,t,n){this.variableNames=["real","imag"];let r=t[1];this.outputShape=t;let a=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${r}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=` const float exponentMultiplier = ${a}; float unaryOpComplex(float real, float expR, float imag, float expI) { ${i} } float mulMatDFT(int batch, int index) { float indexRatio = float(index) / float(${r}); float exponentMultiplierTimesIndexRatio = exponentMultiplier * indexRatio; float result = 0.0; for (int i = 0; i < ${r}; i++) { // x = (-2|2 * PI / N) * index * i; float x = exponentMultiplierTimesIndexRatio * float(i); float expR = cos(x); float expI = sin(x); float real = getReal(batch, i); float imag = getImag(batch, i); result += unaryOpComplex(real, expR, imag, expI) / ${s}; } return result; } void main() { ivec2 coords = getOutputCoords(); setOutput(mulMatDFT(coords[0], coords[1])); } `}};function o_(e,t,n){let r=n.texData.get(e.dataId),a=k.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=a/s,o=ge({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,c=new i_("real",l,t),u=new i_("imag",l,t),h=[{dataId:r.complexTensorInfos.real.dataId,dtype:r.complexTensorInfos.real.dtype,shape:l},{dataId:r.complexTensorInfos.imag.dataId,dtype:r.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(c,h,"float32"),p=n.runWebGLProgram(u,h,"float32"),f=Ca({inputs:{real:d,imag:p},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p);let m=ge({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(f),m}function zW(e){let{inputs:t,backend:n}=e,{input:r}=t;return o_(r,!1,n)}var PW={kernelName:Sh,backendName:"webgl",kernelFunc:zW},LW=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=` uniform float value; void main() { // Input can be obtained from uniform value. setOutput(value); } `}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function SA(e){let{backend:t,attrs:n}=e,{shape:r,value:a}=n,{dtype:s}=n;if(s=s||k.inferDtype(a),s==="string"){let i=k.getArrayFromDType(s,k.sizeFromShape(r));return i.fill(a),t.makeTensorInfo(r,s,i)}else{let i=new LW(r,a),o=i.getCustomSetupFunc(a);return t.runWebGLProgram(i,[],s,o)}}var WW={kernelName:iu,backendName:"webgl",kernelFunc:SA},BW=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int x = coords[2]; int coordX = ${t} - x; float outputValue; if(coordX >= 0 && coordX < ${t}) { outputValue = getImage(coords[0], coords[1], coordX, coords[3]); } else { outputValue = getImage(coords[0], coords[1], coords[2], coords[3]); } setOutput(outputValue); } `}},VW={kernelName:Qi,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,r=t,a=new BW(n.shape);return r.runWebGLProgram(a,[n],n.dtype)}},l_="return floor(x);",UW=Je({opSnippet:l_,packedOpSnippet:l_,cpuKernelImpl:$O}),HW={kernelName:is,backendName:"webgl",kernelFunc:UW},jW=` float s = sign(a) * sign(b); int ia = round(a); int ib = round(b); if (ib != 0) { // Windows (D3D) wants guaranteed non-zero int division at compile-time. return float(idiv(ia, ib, s)); } else { return NAN; } `,GW=` ivec4 ia = round(a); ivec4 ib = round(b); bvec4 cond = notEqual(ib, ivec4(0)); ivec4 result = ivec4(0); vec4 s = sign(a) * sign(b); // Windows (D3D) wants guaranteed non-zero int division at compile-time. if (cond[0]) { result[0] = idiv(ia[0], ib[0], s[0]); } if (cond[1]) { result[1] = idiv(ia[1], ib[1], s[1]); } if (cond[2]) { result[2] = idiv(ia[2], ib[2], s[2]); } if (cond[3]) { result[3] = idiv(ia[3], ib[3], s[3]); } return vec4(result); `,qW=Yt({opSnippet:jW,packedOpSnippet:GW,dtype:"int32"}),XW={kernelName:os,backendName:"webgl",kernelFunc:qW},KW=class{constructor(e){this.variableNames=["A"];let t=on(),[n,r]=e;this.outputShape=e,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; int texC = coords[1]; int depth = coords[2]; vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${r}.0, ${n}.0); vec4 values = ${t.texture2D}(A, uv); float value; if (depth == 0) { value = values.r; } else if (depth == 1) { value = values.g; } else if (depth == 2) { value = values.b; } else if (depth == 3) { value = values.a; } setOutput(floor(value * 255.0 + 0.5)); } `}},ZW=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=on(),[n,r]=e;this.outputShape=e,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; int texC = coords[1]; int depth = coords[2]; vec4 result = vec4(0.); for(int row=0; row<=1; row++) { for(int col=0; col<=1; col++) { texC = coords[1] + row; depth = coords[2] + col; vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${r}.0, ${n}.0); vec4 values = ${t.texture2D}(A, uv); float value; if (depth == 0) { value = values.r; } else if (depth == 1) { value = values.g; } else if (depth == 2) { value = values.b; } else if (depth == 3) { value = values.a; } result[row * 2 + col] = floor(value * 255.0 + 0.5); } } ${t.output} = result; } `}},JW={kernelName:Bh,backendName:"webgl",kernelFunc:YW},wl;function YW(e){let{inputs:t,backend:n,attrs:r}=e,{pixels:a}=t,{numChannels:s}=r,i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,l=typeof ImageBitmap!="undefined"&&a instanceof ImageBitmap,[c,u]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],h=[u,c],d=[u,c,s];(o||i||l)&&(wl==null&&(wl=document.createElement("canvas").getContext("2d")),wl.canvas.width=c,wl.canvas.height=u,wl.drawImage(a,0,0,c,u),a=wl.canvas);let p=n.makeTensorInfo(h,"int32");n.texData.get(p.dataId).usage=Hn.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(p.dataId),a);let f=Q().getBool("WEBGL_PACK")?new ZW(d):new KW(d),m=n.runWebGLProgram(f,[p],"int32");return n.disposeData(p.dataId),m}function QW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=R.convertConv2DDataFormat(u),A=R.computeConv2DInfo(a.shape,s.shape,l,h,c,d,!1,m),y,g=[];if(A.filterHeight===1&&A.filterWidth===1&&A.dilationHeight===1&&A.dilationWidth===1&&A.strideHeight===1&&A.strideWidth===1&&(A.padInfo.type==="SAME"||A.padInfo.type==="VALID"))y=Zw({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:f});else if(Q().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)y=Yw({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:f});else{let x=i!=null,_=o!=null,b=p==="leakyrelu",T=p?tp(p,!1):null,S=new Kw(A,x,T,_,b),N=[a,s];if(i&&N.push(i),o&&N.push(o),b){let C=n.makeTensorInfo([],"float32",k.createScalarValue(f,"float32"));N.push(C),g.push(C)}y=n.runWebGLProgram(S,N,"float32")}let w=ge({inputs:{x:y},backend:n,attrs:{shape:A.outShape}});return g.push(y),g.forEach(x=>n.disposeIntermediateTensorInfo(x)),w}var eB={kernelName:Ls,backendName:"webgl",kernelFunc:QW};function tB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:h,activation:d,leakyreluAlpha:p}=r,f=[],m=u;m==null&&(m=[1,1]),k.assert(R.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let A=R.computeConv2DInfo(a.shape,s.shape,l,m,c,h,!0),y=Q().getBool("WEBGL_PACK_DEPTHWISECONV")&&A.strideWidth<=2&&A.outChannels/A.inChannels==1,g=d?tp(d,y):null,w=[a,s],x=i!=null,_=o!=null,b=d==="leakyrelu";if(x&&w.push(i),_&&w.push(o),b){let N=n.makeTensorInfo([],"float32",k.createScalarValue(p,"float32"));w.push(N),f.push(N)}let T;y?T=new n_(A,x,g,_,b):T=new t_(A,x,g,_,b);let S=n.runWebGLProgram(T,w,"float32");return f.forEach(N=>n.disposeIntermediateTensorInfo(N)),S}var nB={kernelName:Ws,backendName:"webgl",kernelFunc:tB},rB=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let r=pt(t.length),a=pt(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=` ${r} strides = ${r}(${this.strides}); void main() { ${a} coords = getOutputCoords(); int flattenIndex = 0; for (int j = 0; j < ${this.sliceDim}; j++) { int index = round(getIndices(coords[0], j)); flattenIndex += index * ${s}; } setOutput(getX(flattenIndex, coords[1])); } `}};function aB(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=a.shape,i=s[s.length-1],[o,l,c,u]=R.prepareAndValidate(r,a),h=ge({inputs:{x:a},backend:n,attrs:{shape:[l,i]}}),d=ge({inputs:{x:r},backend:n,attrs:{shape:[k.sizeFromShape(r.shape)/c,c]}}),p=new rB(i,u,[l,c]),f=n.runWebGLProgram(p,[d,h],d.dtype),m=ge({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(f),m}var sB={kernelName:to,backendName:"webgl",kernelFunc:aB},oB=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=pt(this.rank),r=iB(e,2);this.userCode=` void main() { ${n} resRC = getOutputCoords(); setOutput(getA(${r})); } `}};function iB(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let a=0;an.disposeIntermediateTensorInfo(_)),n.makeTensorInfo(c.outputShape,x.dtype,x.values)}let m=new oB(d.shape,f),A=n.runWebGLProgram(m,[d,p],d.dtype);h.push(A);let y=ge({inputs:{x:A},backend:n,attrs:{shape:c.outputShape}});return h.forEach(g=>n.disposeIntermediateTensorInfo(g)),y}var uB={kernelName:eo,backendName:"webgl",kernelFunc:lB},cB="return float(a > b);",hB=` return vec4(greaterThan(a, b)); `,dB=Yt({opSnippet:cB,packedOpSnippet:hB,cpuKernelImpl:OO,dtype:"bool"}),pB={kernelName:no,backendName:"webgl",kernelFunc:dB},fB="return float(a >= b);",mB=` return vec4(greaterThanEqual(a, b)); `,AB=Yt({opSnippet:fB,packedOpSnippet:mB,dtype:"bool"}),yB={kernelName:us,backendName:"webgl",kernelFunc:AB};function gB(e){let{inputs:t,backend:n}=e,{input:r}=t;return o_(r,!0,n)}var xB={kernelName:Th,backendName:"webgl",kernelFunc:gB},wB="return float(!isnan(x) && !isinf(x));",_B=Je({opSnippet:wB,dtype:"bool"}),bB={kernelName:ao,backendName:"webgl",kernelFunc:_B},vB="return float(isinf(x));",kB=Je({opSnippet:vB,dtype:"bool"}),IB={kernelName:so,backendName:"webgl",kernelFunc:kB},NB="return float(isnan(x));",SB=Je({opSnippet:NB,dtype:"bool"}),TB={kernelName:io,backendName:"webgl",kernelFunc:SB},EB="return float(a < b);",CB=` return vec4(lessThan(a, b)); `,RB=Yt({opSnippet:EB,packedOpSnippet:CB,cpuKernelImpl:zO,dtype:"bool"}),FB={kernelName:oo,backendName:"webgl",kernelFunc:RB},MB="return float(a <= b);",$B=` return vec4(lessThanEqual(a, b)); `,DB=Yt({opSnippet:MB,packedOpSnippet:$B,dtype:"bool"}),OB={kernelName:lo,backendName:"webgl",kernelFunc:DB};function zB(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=PO(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var PB={kernelName:Ch,backendName:"webgl",kernelFunc:zB},LB=`if (x < 0.0) return NAN; return log(x);`,WB=` vec4 result = log(x); vec4 isNaN = vec4(lessThan(x, vec4(0.0))); result.r = isNaN.r == 1.0 ? NAN : result.r; result.g = isNaN.g == 1.0 ? NAN : result.g; result.b = isNaN.b == 1.0 ? NAN : result.b; result.a = isNaN.a == 1.0 ? NAN : result.a; return result; `,BB=Je({opSnippet:LB,packedOpSnippet:WB,cpuKernelImpl:LO}),VB={kernelName:hs,backendName:"webgl",kernelFunc:BB},UB="return log(1.0 + x);",HB=Je({opSnippet:UB}),jB={kernelName:uo,backendName:"webgl",kernelFunc:HB},GB="return float(a >= 1.0 && b >= 1.0);",qB=` return vec4( vec4(greaterThanEqual(a, vec4(1.0))) * vec4(greaterThanEqual(b, vec4(1.0)))); `,XB=Yt({opSnippet:GB,packedOpSnippet:qB,dtype:"bool"}),KB={kernelName:co,backendName:"webgl",kernelFunc:XB},ZB="return float(!(x >= 1.0));",YB=Je({opSnippet:ZB}),JB={kernelName:ou,backendName:"webgl",kernelFunc:YB},QB="return float(a >= 1.0 || b >= 1.0);",eV=` return min( vec4(greaterThanEqual(a, vec4(1.0))) + vec4(greaterThanEqual(b, vec4(1.0))), vec4(1.0)); `,tV=Yt({opSnippet:QB,packedOpSnippet:eV,dtype:"bool"}),nV={kernelName:lu,backendName:"webgl",kernelFunc:tV},rV=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int r = coords[1]; int c = coords[2]; int d = coords[3]; float x = getX(b, r, c, d); float sum = 0.0; for (int j = -${s}; j <= ${s}; j++) { int idx = d + j; if (idx >= 0 && idx <= ${i}) { float z = getX(b, r, c, idx); sum += z * z; } } float val = x * ${o}; setOutput(val); } `}},aV=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords.x; int r = coords.y; int c = coords.z; int d = coords.w; bool hasNextCol = d < ${this.outputShape[3]}; bool hasNextRow = c < ${this.outputShape[2]}; vec4 sum = vec4(0.); vec4 xFragAtOutputCoords = getX(b, r, c, d); vec4 xAtOutputCoords = vec4( getChannel(xFragAtOutputCoords, vec2(c, d)), hasNextCol ? getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0, hasNextRow ? getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0, (hasNextRow && hasNextCol) ? getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0 ); int firstChannel = d - ${s}; vec2 cache = vec2(0.); if(firstChannel >= 0){ vec4 firstChannelFrag = getX(b, r, c, firstChannel); cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel)); if(hasNextRow){ cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel)); } } ivec2 depth = ivec2(d, d + 1); for (int j = - ${s}; j <= ${s}; j++) { ivec2 idx = depth + j; bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0)); bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i})); bool depthInRange = aboveLowerBound.x && belowUpperBound.x; bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y; if(depthInRange || depthPlusOneInRange){ vec4 z = vec4(0.); vec4 xFragAtCurrentDepth; z.xz = cache.xy; if(depthPlusOneInRange && hasNextCol){ xFragAtCurrentDepth = idx.y != d ? getX(b, r, c, idx.y) : xFragAtOutputCoords; z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y)); if(hasNextRow){ z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y)); } } cache.xy = z.yw; sum += z * z; } } vec4 result = xAtOutputCoords * ${o}; setOutput(result); } `}},sV=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r,c=Q().getBool("WEBGL_PACK_NORMALIZATION")?new aV(a.shape,s,i,o,l):new rV(a.shape,s,i,o,l);return n.runWebGLProgram(c,[a],a.dtype)},iV={kernelName:uu,backendName:"webgl",kernelFunc:sV},oV=class{constructor(e,t,n,r,a){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=r,this.beta=a,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int r = coords[1]; int c = coords[2]; float result = 0.0; for (int d = 0; d < ${this.depth}; ++d) { int depthBegin = int(max(0.0, float(d - ${t}))); int depthEnd = int(min(float(${this.depth}), float(d + ${t} + 1))); const int MIN_DEPTH_BEGIN = 0; const int MAX_DEPTH_END = ${this.depth}; float norm = 0.0; for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) { if (k < depthBegin){ continue; } else if (k >= depthBegin && k < depthEnd) { norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k); } else { break; } } norm = float(${r}) * norm + float(${n}); for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){ if (k < depthBegin){ continue; } else if (k >= depthBegin && k < depthEnd){ float dyi = -2.0 * float(${r}) * float(${a}) * getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d) / norm; if (k == d) { dyi += pow(norm, -1.0 * ${a}); } if (k == coords[3]) { dyi *= getDy(b, r, c, d); result += dyi; } } else { break; } } } setOutput(result); } `}},lV=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:c,beta:u}=r,h=new oV(a.shape,o,l,c,u);return n.runWebGLProgram(h,[a,s,i],a.dtype)},uV={kernelName:Rh,backendName:"webgl",kernelFunc:lV};function cV(e,t,n,r){let a=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/a,i=ge({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=li(i,e.dtype,"max",r),l=ge({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}function u_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=a.shape.length,l=k.parseAxisParam(s,a.shape),c=l,u=R.getAxesPermutation(c,o),h=u!=null,d=n.shouldExecuteOnCPU([a]),p=a;if(h){if(d){let g=n.texData.get(p.dataId).values,w=new Array(o);for(let b=0;b`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=R.computePool2DInfo(a.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))return En({inputs:{x:a},backend:n});let h=new sc(u,"max",!1);return n.runWebGLProgram(h,[a],a.dtype)}var yV={kernelName:fs,backendName:"webgl",kernelFunc:AV};function gV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:c}=r,u=[1,1,1],h=R.computePool3DInfo(a.shape,s,i,u,o,c,l),d=new vA(h,"max",!1);return n.runWebGLProgram(d,[a],a.dtype)}var xV={kernelName:cu,backendName:"webgl",kernelFunc:gV},wV=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,r=e.dilationHeight,a=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=a-1-e.padInfo.top,o=s-1-e.padInfo.left,l=a*s-1;this.userCode=` const ivec2 pads = ivec2(${i}, ${o}); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 dyRCCorner = coords.yz - pads; int dyRCorner = dyRCCorner.x; int dyCCorner = dyRCCorner.y; // Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${a}; wR += ${r}) { float dyR = float(dyRCorner + wR) / ${t}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${s}; wC++) { float dyC = float(dyCCorner + wC) / ${n}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(b, idyR, idyC, d); int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d)); // Get the current value, check it against the value from the // position matrix. int curPosValue = wR * ${s} + wC; float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0); dotProd += dyValue * mask; } } setOutput(dotProd); } `}},_V=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=o-1-e.padInfo.front,h=l-1-e.padInfo.top,d=c-1-e.padInfo.left,p=o*l*c-1;this.userCode=` const ivec3 pads = ivec3(${u}, ${h}, ${d}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads; int dyDCorner = dyCorner.x; int dyRCorner = dyCorner.y; int dyCCorner = dyCorner.z; // Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get // dx(xD, xR, xC, ch). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wD = 0; wD < ${o}; wD += ${a}) { float dyD = float(dyDCorner + wD) / ${t}.0; if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) { continue; } int idyD = int(dyD); for (int wR = 0; wR < ${l}; wR += ${s}) { float dyR = float(dyRCorner + wR) / ${n}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${c}; wC += ${i}) { float dyC = float(dyCCorner + wC) / ${r}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(batch, idyD, idyR, idyC, ch); int maxPosValue = ${p} - int(getMaxPos(batch, idyD, idyR, idyC, ch)); // Get the current value, check it against the value from the // position matrix. int curPosValue = wD * ${l} * ${c} + wR * ${c} + wC; float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0); dotProd += dyValue * mask; } } } setOutput(dotProd); } `}};function bV(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=r,h=[1,1,1],d=R.computePool3DInfo(i.shape,o,l,h,c,u),p=new vA(d,"max",!0),f=n.runWebGLProgram(p,[i],i.dtype),m=new _V(d),A=n.runWebGLProgram(m,[a,f],i.dtype);return n.disposeIntermediateTensorInfo(f),A}var vV={kernelName:Mh,backendName:"webgl",kernelFunc:bV};function kV(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;hl([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:h}=r,d=R.computePool2DInfo(o.shape,l,c,1,u,h),p=!0,f=new sc(d,"max",p),m=n.runWebGLProgram(f,[o],o.dtype),A=new wV(d),y=n.runWebGLProgram(A,[a,m],o.dtype);return n.disposeIntermediateTensorInfo(m),y}var IV={kernelName:Fh,backendName:"webgl",kernelFunc:kV};function NV(e,t,n,r){let a=new sc(n,"max",!1),s=r.runWebGLProgram(a,[e],"float32");a=new sc(n,"max",!0,!0,t);let i=r.runWebGLProgram(a,[e],"float32");return[s,i]}var SV={kernelName:$h,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;k.assert(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let c=[1,1];k.assert(R.eitherStridesOrDilationsAreOne(s,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${c}'`);let u=R.computePool2DInfo(r.shape,a,s,c,i),[h,d]=NV(r,o,u,l);return[h,d]}};function TV(e,t,n,r){let a=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/a,i=ge({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=li(i,"float32","mean",r),l=ge({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}var EV={kernelName:ms,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{keepDims:a,axis:s}=t,i=n,o=r.shape.length,l=k.parseAxisParam(s,r.shape),c=l,u=R.getAxesPermutation(c,o),h=u!=null,d=i.shouldExecuteOnCPU([r]),p=[],f=r;if(h){if(d){let w=i.texData.get(f.dataId).values,x=new Array(o);for(let T=0;Tc[0]+e[u]+c[1]);let r=e.length,a=pt(r),s=t.map(c=>c[0]).join(","),i=t.map((c,u)=>c[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r),l=n==="reflect"?0:1;if(r===1){this.userCode=` int start = ${s}; int end = ${i}; void main() { int outC = getOutputCoords(); if (outC < start) { outC = start * 2 - outC - ${l}; } else if(outC >= end) { outC = (end - 1) * 2 - outC + ${l}; } setOutput(getX(outC - start)); } `;return}this.userCode=` ${a} start = ${a}(${s}); ${a} end = ${a}(${i}); void main() { ${a} outC = getOutputCoords(); for (int i = 0; i < ${r}; i++) { if (outC[i] < start[i]) { outC[i] = start[i] * 2 - outC[i] - ${l}; } else if(outC[i] >= end[i]) { outC[i] = (end[i] - 1) * 2 - outC[i] + ${l}; } } ${a} coords = outC - start; setOutput(getX(${o})); } `}},zV=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((p,f)=>p[0]+e[f]+p[1]);let r=e.length,a=pt(r),s=t.map(p=>p[0]).join(","),i=t.map((p,f)=>p[0]+e[f]).join(","),o=ln("rc",r),l=ln("source",r),c=`${o[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${l.slice(-2).join()})`,h=n==="reflect"?0:1,d="";if(r===1){let p=` ${a} source = rc; if (source < start) { source = start * 2 - source - ${h}; } else if (source >= end) { source = (end - 1) * 2 - source + ${h}; } source -= start; `;d=` ${a} rc = outputLoc; ${p} result[0] = getChannel(getX(${l.join()}), ${u}); ${o[r-1]} += 1; if(${c}) { ${p} result[1] = getChannel(getX(${l.join()}), ${u}); } `}else{let p=` ${a} source = rc; ${a} lt = ${a}(lessThan(source, start)); ${a} gte = ${a}(greaterThanEqual(source, end)); ${a} orig = 1 - (lt + gte); source = orig * source + lt * (start * 2 - source - ${h}) + gte * ((end - 1) * 2 - source + ${h}); source -= start; `;d=` ${a} rc = outputLoc; ${p} result[0] = getChannel(getX(${l.join()}), ${u}); ${o[r-1]} += 1; if(${c}) { ${p} result[1] = getChannel(getX(${l.join()}), ${u}); } rc = outputLoc; ${o[r-2]} += 1; if(${o[r-2]} < ${this.outputShape[r-2]}) { ${p} result[2] = getChannel(getX(${l.join()}), ${u}); ${o[r-1]} += 1; if(${c}) { ${p} result[3] = getChannel(getX(${l.join()}), ${u}); } } `}this.userCode=` const ${a} start = ${a}(${s}); const ${a} end = ${a}(${i}); void main() { ${a} outputLoc = getOutputCoords(); vec4 result = vec4(0.); ${d} setOutput(result); } `}},PV=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{paddings:a,mode:s}=n,i=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new zV(r.shape,a,s):new OV(r.shape,a,s);return t.runWebGLProgram(i,[r],r.dtype)},LV={kernelName:hu,backendName:"webgl",kernelFunc:PV},WV=`if (b == 0.0) return NAN; return mod(a, b);`,BV=` vec4 result = mod(a, b); vec4 isNaN = vec4(equal(b, vec4(0.0))); `+ep+` return result; `,VV=Yt({opSnippet:WV,packedOpSnippet:BV}),UV={kernelName:ho,backendName:"webgl",kernelFunc:VV},HV=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=` uniform float seed; void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; float r = random(seed); float cdf = 0.0; for (int i = 0; i < ${t-1}; i++) { cdf += getProbs(batch, i); if (r < cdf) { setOutput(float(i)); return; } } // If no other event happened, last event happened. setOutput(float(${t-1})); } `}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},jV=` if (a == b) { return 1.0; }; return a / b;`,GV=` // vec4 one = vec4(equal(a, b)); // return one + (vec4(1.0) - one) * a / b; vec4 result = a / b; if(a.x == b.x) { result.x = 1.; } if(a.y == b.y) { result.y = 1.; } if(a.z == b.z) { result.z = 1.; } if(a.w == b.w) { result.w = 1.; } return result; `,c_=Yt({opSnippet:jV,packedOpSnippet:GV,checkOutOfBounds:!0}),qV={kernelName:as,backendName:"webgl",kernelFunc:c_},h_="return a - b;",d_=Yt({opSnippet:h_,packedOpSnippet:h_,supportsComplex:!0,cpuKernelImpl:ZO}),XV={kernelName:Ds,backendName:"webgl",kernelFunc:d_};function p_(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=k.parseAxisParam([s],a.shape),o=u_({inputs:{x:a},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=R.expandShapeToKeepDim(o.shape,i),c=ge({inputs:{x:o},backend:n,attrs:{shape:l}}),u=d_({inputs:{a,b:c},backend:n}),h=a_({inputs:{x:u},backend:n}),d=bA({inputs:{x:h},backend:n,attrs:{axis:i,keepDims:!1}}),p=ge({inputs:{x:d},backend:n,attrs:{shape:l}}),f=c_({inputs:{a:h,b:p},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),f}var KV={kernelName:Ms,backendName:"webgl",kernelFunc:p_};function ZV(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r,l=o?a:p_({inputs:{logits:a},backend:n,attrs:{dim:a.shape.length-1}}),c=l.shape[0],u=l.shape[1],h=new HV(c,u,s),d=h.getCustomSetupFunc(i),p=n.runWebGLProgram(h,[l],"int32",d);return o||n.disposeIntermediateTensorInfo(l),p}var YV={kernelName:Dh,backendName:"webgl",kernelFunc:ZV},f_="return -x;";function JV(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])){let s=n.texData.get(r.dataId),[i,o]=HO(s.values,r.shape,r.dtype);return n.makeTensorInfo(o,r.dtype,i)}let a;return Q().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new yl(r.shape,f_):a=new Ea(r.shape,f_),n.runWebGLProgram(a,[r],r.dtype)}var QV={kernelName:po,backendName:"webgl",kernelFunc:JV},eU=Rr.nonMaxSuppressionV3Impl;function tU(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r,c=n.readSync(a.dataId),u=n.readSync(s.dataId),{selectedIndices:h}=eU(c,u,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var nU={kernelName:mo,backendName:"webgl",kernelFunc:tU},rU=Rr.nonMaxSuppressionV4Impl;function aU(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:c}=r,u=n.readSync(a.dataId),h=n.readSync(s.dataId),{selectedIndices:d,validOutputs:p}=rU(u,h,i,o,l,c);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var sU={kernelName:Ao,backendName:"webgl",kernelFunc:aU},iU=Rr.nonMaxSuppressionV5Impl;function oU(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:c}=r,u=n.readSync(a.dataId),h=n.readSync(s.dataId),d=i,p=o,f=l,m=c,{selectedIndices:A,selectedScores:y}=iU(u,h,d,p,f,m);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var lU={kernelName:yo,backendName:"webgl",kernelFunc:oU},uU=class{constructor(e,t,n,r){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=` void main() { ivec2 coords = getOutputCoords(); int index = round(getIndices(coords.x)); setOutput(mix(float(${r}), float(${n}), float(index == coords.y))); } `}},cU=e=>{let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=k.sizeFromShape(a.shape),c=new uU(l,s,i,o),u=ge({inputs:{x:a},backend:n,attrs:{shape:[l]}}),h=n.runWebGLProgram(c,[u],a.dtype);n.disposeIntermediateTensorInfo(u);let d=[...a.shape,s],p=ge({inputs:{x:h},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(h),p},hU={kernelName:xs,backendName:"webgl",kernelFunc:cU};function op(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="complex64"){let a=oc({inputs:{input:r},backend:n}),s=op({inputs:{x:a},backend:n}),i=ip({inputs:{input:r},backend:n}),o=op({inputs:{x:i},backend:n}),l=Ca({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return SA({attrs:{shape:r.shape,dtype:r.dtype,value:r.dtype==="string"?"":0},backend:n})}var dU={kernelName:Do,backendName:"webgl",kernelFunc:op};function m_(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(r.dtype==="complex64"){let a=oc({inputs:{input:r},backend:n}),s=m_({inputs:{x:a},backend:n}),i=ip({inputs:{input:r},backend:n}),o=op({inputs:{x:i},backend:n}),l=Ca({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return SA({attrs:{shape:r.shape,dtype:r.dtype,value:1},backend:n})}var pU={kernelName:go,backendName:"webgl",kernelFunc:m_};function fU(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return NA({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{k.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=NA({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=Xw({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var mU={kernelName:xo,backendName:"webgl",kernelFunc:fU},AU=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let r=e.length,a=pt(r),s=t.map(l=>l[0]).join(","),i=t.map((l,c)=>l[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r);if(r===1){this.userCode=` int start = ${s}; int end = ${i}; void main() { int outC = getOutputCoords(); if (outC < start || outC >= end) { setOutput(float(${n})); } else { setOutput(getX(outC - start)); } } `;return}this.userCode=` ${a} start = ${a}(${s}); ${a} end = ${a}(${i}); void main() { ${a} outC = getOutputCoords(); if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) { setOutput(float(${n})); } else { ${a} coords = outC - start; setOutput(getX(${o})); } } `}},yU=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let r=e.length,a=pt(r),s=t.map(f=>f[0]).join(","),i=t.map((f,m)=>f[0]+e[m]).join(","),o=ln("rc",r),l=ln("source",r),c=`${o[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${l.slice(-2).join()})`,h=[`${a} rc = outputLoc;`,`${o[r-1]} += 1; if(${c}) { `,r===1?"":`} rc = outputLoc; ${o[r-2]} += 1; if(${o[r-2]} < ${this.outputShape[r-2]}) {`,r===1?"":` ${o[r-1]} += 1; if(${c}) {`],d=r===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",p="";for(let f=0,m=r===1?2:4;f{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r,o=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new yU(a.shape,s,i):new AU(a.shape,s,i);return n.runWebGLProgram(o,[a],a.dtype)},gU={kernelName:ws,backendName:"webgl",kernelFunc:A_},xU=` if(a < 0.0 && floor(b) < b){ return NAN; } if (b == 0.0) { return 1.0; } return (round(mod(b, 2.0)) != 1) ? pow(abs(a), b) : sign(a) * pow(abs(a), b); `,wU=` // isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise. vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1))); vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1); vec4 result = multiplier * pow(abs(a), b); // Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS bvec4 isExpZero = equal(b, vec4(0.0)); result.r = isExpZero.r ? 1.0 : result.r; result.g = isExpZero.g ? 1.0 : result.g; result.b = isExpZero.b ? 1.0 : result.b; result.a = isExpZero.a ? 1.0 : result.a; vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b)); `+ep+` return result; `,_U=Yt({opSnippet:xU,packedOpSnippet:wU}),bU={kernelName:_s,backendName:"webgl",kernelFunc:_U};function vU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=[],c=k.parseAxisParam(s,a.shape),u=c,h=R.getAxesPermutation(u,o),d=a;h!=null&&(d=mn({inputs:{x:a},backend:n,attrs:{perm:h}}),u=R.getInnerMostAxes(u.length,o),l.push(d)),R.assertAxesAreInnerMostDims("prod",u,o);let p;if(n.shouldExecuteOnCPU([d])){let f=n.texData.get(d.dataId).values,{outVals:m,outShape:A,outDtype:y}=jO(d.shape,d.dtype,f,u);p=n.makeTensorInfo(A,y,m)}else{let[f,m]=R.computeOutAndReduceShapes(d.shape,u),A=k.sizeFromShape(m),y=ge({inputs:{x:d},backend:n,attrs:{shape:[-1,A]}}),g=Uh(a.dtype),w=li(y,g,"prod",n);p=ge({inputs:{x:w},backend:n,attrs:{shape:f}}),l.push(y),l.push(w)}if(i){l.push(p);let f=R.expandShapeToKeepDim(p.shape,c);p=ge({inputs:{x:p},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),p}var kU={kernelName:wo,backendName:"webgl",kernelFunc:vU},y_=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=GO(r,a,s,i);return t.makeTensorInfo([o.length],i,o)},IU={kernelName:du,backendName:"webgl",kernelFunc:y_},NU="return 1.0 / x;",SU=Je({opSnippet:NU}),TU={kernelName:_o,backendName:"webgl",kernelFunc:SU},EU=Ar+` return (x < 0.0) ? 0.0 : x; `,CU=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,RU=Je({opSnippet:EU,packedOpSnippet:CU}),FU={kernelName:vs,backendName:"webgl",kernelFunc:RU},MU=Ar+` return (x < 0.0) ? 0.0 : min(6.0, x); `,$U=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,DU=Je({opSnippet:MU,packedOpSnippet:$U}),OU={kernelName:Is,backendName:"webgl",kernelFunc:DU},zU=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${c[0]/u[0]}, ${c[1]/u[1]}); const vec2 inputShapeRC = vec2(${i}.0, ${o}.0); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 yRC = coords.yz; // Fractional source index. vec2 sourceFracIndexRC = ${h}; // Compute the four integer indices. ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0))); ivec2 sourceCeilRC = ivec2( min(inputShapeRC - 1.0, ceil(sourceFracIndexRC))); float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d); float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d); float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d); float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d); vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC); float top = topLeft + (topRight - topLeft) * fracRC.y; float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y; float newValue = top + (bottom - top) * fracRC.x; setOutput(newValue); } `}},PU=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec3 effectiveInputOverOutputRatioRC = vec3( ${c[0]/u[0]}, ${c[1]/u[1]}, ${c[1]/u[1]}); const vec3 inputShapeRC = vec3(${i}.0, ${o}.0, ${o}.0); float getAValue(int b, int r, int c, int d) { return getChannel(getA(b, r, c, d), vec2(c, d)); } void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; // Calculate values for next column in yRC.z. ivec3 yRC = coords.yzz + ivec3(0, 0, 1); // Fractional source index. vec3 sourceFracIndexRC = ${h}; // Compute the four integer indices. ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0))); ivec3 sourceCeilRC = ivec3( min(inputShapeRC - 1.0, ceil(sourceFracIndexRC))); // Should we calculate next column and row elements in 2x2 packed cell. bool hasNextCol = d < ${l-1}; bool hasNextRow = coords.z < ${n-1}; // In parallel, construct four corners for all four components in // packed 2x2 cell. vec4 topLeft = vec4( getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d), hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0); vec4 bottomLeft = vec4( getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d), hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0); vec4 topRight = vec4( getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d), hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0); vec4 bottomRight = vec4( getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d), hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0); vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC); vec4 top = mix(topLeft, topRight, fracRC.yyzz); vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz); vec4 newValue = mix(top, bottom, fracRC.x); setOutput(newValue); } `}};function LU(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,u=Q().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new PU(a.shape,l,c,s,i):new zU(a.shape,l,c,s,i);return n.runWebGLProgram(u,[a],"float32")}var WU={kernelName:ks,backendName:"webgl",kernelFunc:LU},BU=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],h=1/c,d=1/u,p=Math.ceil(h)*2+2,f=Math.ceil(d)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; int r = coords[1]; int c = coords[2]; float accumulator = 0.0; const float heightScale = float(${c}); const float widthScale = float(${u}); const float invHeightScale = float(${h}); const float invWidthScale = float(${d}); const int winHeight = int(${p}); const int winWidth = int(${f}); // Compute bounds for where in dy we will look float startRLerp = floor(float(r) * invHeightScale); int startDyR = int(startRLerp - float(winHeight / 2)); float startCLerp = floor(float(c) * invWidthScale); int startDyC = int(startCLerp - float(winWidth / 2)); // Loop over dy for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) { int dyR = dyROffset + startDyR; // Guard against the window exceeding the bounds of dy if (dyR < 0 || dyR >= ${s}) { continue; } for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) { int dyC = dyCOffset + startDyC; // Guard against the window exceeding the bounds of dy if (dyC < 0 || dyC >= ${i}) { continue; } float dxR = float(dyR) * heightScale; int topDxRIndex = int(floor(dxR)); int bottomDxRIndex = int(min(ceil(dxR), ${r-1}.0)); float dxRLerp = dxR - float(topDxRIndex); float inverseDxRLerp = 1.0 - dxRLerp; float dxC = float(dyC) * widthScale; int leftDxCIndex = int(floor(dxC)); int rightDxCIndex = int(min(ceil(dxC), ${a-1}.0)); float dxCLerp = dxC - float(leftDxCIndex); float inverseDxCLerp = 1.0 - dxCLerp; if (r == topDxRIndex && c == leftDxCIndex) { // topLeft accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp; } if (r == topDxRIndex && c == rightDxCIndex) { // topRight accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp; } if (r == bottomDxRIndex && c == leftDxCIndex) { // bottomLeft accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp; } if (r == bottomDxRIndex && c == rightDxCIndex) { // bottomRight accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp; } } } // End loop over dy setOutput(accumulator); } `}};function VU(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new BU(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var UU={kernelName:Ph,backendName:"webgl",kernelFunc:VU},HU=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h=r?"0.5":"0.0",d;a?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${c[0]/u[0]}, ${c[1]/u[1]}); const vec2 inputShapeRC = vec2(${i}.0, ${o}.0); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 yRC = coords.yz; // Fractional source index. vec2 sourceFracIndexRC = ${d}; // Compute the coordinators of nearest neighbor point. ivec2 sourceNearestRC = ivec2( min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${h}))); float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d); setOutput(newValue); } `}};function jU(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,u=new HU(a.shape,l,c,s,i);return n.runWebGLProgram(u,[a],a.dtype)}var GU={kernelName:pu,backendName:"webgl",kernelFunc:jU},qU=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],h=1/c,d=1/u,p=Math.ceil(h)*2+2,f=Math.ceil(d)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; int r = coords[1]; int c = coords[2]; float accumulator = 0.0; const float heightScale = float(${c}); const float widthScale = float(${u}); const float invHeightScale = float(${h}); const float invWidthScale = float(${d}); const int winHeight = int(${p}); const int winWidth = int(${f}); // Compute bounds for where in dy we will look float startRLerp = floor(float(r) * invHeightScale); int startDyR = int(floor(startRLerp - float(winHeight / 2))); float startCLerp = floor(float(c) * invWidthScale); int startDyC = int(floor(startCLerp - float(winWidth / 2))); // Loop over dy for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) { int dyR = dyROffset + startDyR; // Guard against the window exceeding the bounds of dy if (dyR < 0 || dyR >= ${s}) { continue; } for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) { int dyC = dyCOffset + startDyC; // Guard against the window exceeding the bounds of dy if (dyC < 0 || dyC >= ${i}) { continue; } float sourceFracRow = float(${o[0]}) * (float(dyR) / float(${l[0]})); float sourceFracCol = float(${o[1]}) * (float(dyC) / float(${l[1]})); int sourceNearestRow = int(min( float(int(${r}) - 1), ${n} ? float(round(sourceFracRow)) : float(floor(sourceFracRow)))); int sourceNearestCol = int(min( float(int(${a}) - 1), ${n} ? float(round(sourceFracCol)) : float(floor(sourceFracCol)))); if (r == sourceNearestRow && c == sourceNearestCol) { accumulator += getDy(b, dyR, dyC, d); } } } // End loop over dy setOutput(accumulator); } `}};function XU(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new qU(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var KU={kernelName:zh,backendName:"webgl",kernelFunc:XU},ZU=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=` void main() { int coord = getOutputCoords(); setOutput(getX(${e[0]} - coord - 1)); } `;return}let r=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,a=e.map((i,o)=>r(o)).join(","),s=pt(n);this.userCode=` void main() { ${s} coords = getOutputCoords(); setOutput(getX(${a})); } `}},YU=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let r=ln("rc",n),a=`${r[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${r[n-2]} + 1 < ${this.outputShape[n-2]}`,i=pt(n);n===1?this.userCode=` void main(){ int rc = getOutputCoords(); vec4 result = vec4(0.); result.r = getChannel(getX(${e[0]} - rc - 1), ${e[0]} - rc - 1); if(${a}){ result.g = getChannel(getX(${e[0]} - (rc + 1) - 1), ${e[0]} - (rc + 1) - 1); } setOutput(result); } `:this.userCode=` void main() { ${i} rc = getOutputCoords(); vec4 result = vec4(0.); result.r = ${o(r.slice())}; if(${a}){ result.g = ${l(r.slice())}; } if(${s}) { result.b = ${c(r.slice())}; if(${a}) { result.a = ${u(r.slice())}; } } setOutput(result); } `;function o(p){return h(p)}function l(p){return p[n-1]="("+p[n-1]+" + 1)",h(p)}function c(p){return p[n-2]="("+p[n-2]+" + 1)",h(p)}function u(p){return p[n-1]="("+p[n-1]+" + 1)",p[n-2]="("+p[n-2]+" + 1)",h(p)}function h(p){let f=e.map((y,g)=>d(g,p)),m=f.join(","),A=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${A}))`}function d(p,f){return t.indexOf(p)!==-1&&e[p]!==1?`${e[p]} - ${f[p]} - 1`:`${f[p]}`}}};function JU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=a.shape.length,o=k.parseAxisParam(s,a.shape);if(i===0)return En({inputs:{x:a},backend:n});let l=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new YU(a.shape,o):new ZU(a.shape,o);return n.runWebGLProgram(l,[a],a.dtype)}var QU={kernelName:Ns,backendName:"webgl",kernelFunc:JU},eH=class{constructor(e,t,n,r){this.variableNames=["Image"],this.outputShape=[];let a=e[1],s=e[2],i=Math.sin(t).toFixed(3),o=Math.cos(t).toFixed(3);this.outputShape=e;let[l,c]=R.getImageCenter(r,a,s),u=l.toFixed(3),h=c.toFixed(3),d="";typeof n=="number"?d=`float outputValue = ${n.toFixed(2)};`:d=` vec3 fill = vec3(${n.join(",")}); float outputValue = fill[coords[3]];`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int x = coords[2]; int y = coords[1]; float coordXFloat = (float(x) - ${u}) * ${o} - (float(y) - ${h}) * ${i}; float coordYFloat = (float(x) - ${u}) * ${i} + (float(y) - ${h}) * ${o}; int coordX = int(round(coordXFloat + ${u})); int coordY = int(round(coordYFloat + ${h})); ${d} if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${a}) { outputValue = getImage(coords[0], coordY, coordX, coords[3]); } setOutput(outputValue); } `}},tH={kernelName:Oo,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=new eH(r.shape,a,s,i);return o.runWebGLProgram(l,[r],r.dtype)}},nH=` // OpenGL ES does not support round function. // The algorithm is based on banker's rounding. float base = floor(x); if ((x - base) < 0.5) { return floor(x); } else if ((x - base) > 0.5) { return ceil(x); } else { if (mod(base, 2.0) == 0.0) { return base; } else { return base + 1.0; } } `,rH=Je({opSnippet:nH}),aH={kernelName:Ss,backendName:"webgl",kernelFunc:rH},sH="return inversesqrt(x);",iH=Je({opSnippet:sH,cpuKernelImpl:qO}),oH={kernelName:Ts,backendName:"webgl",kernelFunc:iH},g_=class{constructor(e,t,n,r,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=pt(a.length),l=pt(s.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,h="";r===1?h="i":r===2&&(h="i, coords[1]");let d=`getUpdates(${h})`,p=t>1?"strides[j]":"strides";this.userCode=` ${o} strides = ${o}(${a}); void main() { ${l} coords = getOutputCoords(); float sum = 0.0; bool found = false; for (int i = 0; i < ${e}; i++) { int flattenedIndex = 0; for (int j = 0; j < ${t}; j++) { int index = round(${u}); flattenedIndex += index * ${p}; } if (flattenedIndex == coords[0]) { sum += ${d}; found = true; } } setOutput(mix(getDefaultValue(), sum, float(found))); } `}};function lH(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a,updates:s}=t,{shape:i}=r,{sliceRank:o,numUpdates:l,sliceSize:c,strides:u,outputSize:h}=R.calculateShapes(s,a,i),d=[h/c,c];if(h===0)return n.makeTensorInfo(i,a.dtype);let p=ge({inputs:{x:a},backend:n,attrs:{shape:[l,o]}}),f=ge({inputs:{x:s},backend:n,attrs:{shape:[l,c]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),A=new g_(l,o,p.shape.length,f.shape.length,u,d),y=n.runWebGLProgram(A,[f,p,m],f.dtype),g=ge({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(m),g}var uH={kernelName:vo,backendName:"webgl",kernelFunc:lH},cH=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let r,a;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)a="resRC",r="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let c=0;c= 1.0) { setOutput(getA(${a})); } else { setOutput(getB(${a})); } } `}};function hH(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=new cH(r.shape.length,a.shape,a.shape.length);return n.runWebGLProgram(i,[r,a,s],er(a.dtype,s.dtype))}var dH={kernelName:ko,backendName:"webgl",kernelFunc:hH},pH=` // Stable and Attracting Fixed Point (0, 1) for Normalized Weights. // see: https://arxiv.org/abs/1706.02515 float scaleAlpha = ${R.SELU_SCALEALPHA}; float scale = ${R.SELU_SCALE}; return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0); `,fH=Je({opSnippet:pH}),mH={kernelName:Io,backendName:"webgl",kernelFunc:fH},AH="return 1.0 / (1.0 + exp(-1.0 * x));",yH=Je({opSnippet:AH}),gH={kernelName:Cs,backendName:"webgl",kernelFunc:yH},xH=` if (isnan(x)) { return 0.0; } return sign(x); `,wH=Je({opSnippet:xH}),_H={kernelName:To,backendName:"webgl",kernelFunc:wH},bH=Rw+` return sin(x); `,vH=Je({opSnippet:bH}),kH={kernelName:Es,backendName:"webgl",kernelFunc:vH},IH=` float e2x = exp(x); return (e2x - 1.0 / e2x) / 2.0; `,NH=Je({opSnippet:IH}),SH={kernelName:So,backendName:"webgl",kernelFunc:NH},TH=` float epsilon = 1.1920928955078125e-7; float threshold = log(epsilon) + 2.0; bool too_large = x > -threshold; bool too_small = x < threshold; float result; float exp_x = exp(x); if (too_large){ result = x; } else if (too_small){ result = exp_x; } else{ result = log(exp_x + 1.0); } return result; `,EH=Je({opSnippet:TH}),CH={kernelName:Eo,backendName:"webgl",kernelFunc:EH},RH=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;k.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,g)=>y*g),l=[[0,0]];l.push(...i);for(let y=1+s.length;yn.disposeIntermediateTensorInfo(y)),A},FH={kernelName:fu,backendName:"webgl",kernelFunc:RH};function MH(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:c,strides:u,outputSize:h}=R.calculateShapes(s,a,o),d=!1,p=new g_(c,l,a.shape.length,s.shape.length,u,[h,1],d),f=n.runWebGLProgram(p,[s,a,i],s.dtype),m=ge({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(f),m}var $H={kernelName:Lh,backendName:"webgl",kernelFunc:MH};function DH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=k.parseAxisParam(i,a.shape)[0],l=R.prepareSplitSize(a,s,o),c=a.shape.length,u=new Array(c).fill(0),h=a.shape.slice();return l.map(d=>{let p=[...h];p[o]=d;let f=ic({inputs:{x:a},backend:n,attrs:{begin:u,size:p}});return u[o]+=d,f})}var OH={kernelName:Co,backendName:"webgl",kernelFunc:DH},zH="return sqrt(x);",PH=Je({opSnippet:zH}),LH={kernelName:Rs,backendName:"webgl",kernelFunc:PH},WH="return x * x;",BH=Je({opSnippet:WH}),VH={kernelName:mu,backendName:"webgl",kernelFunc:BH},x_="return (a - b) * (a - b);",UH=Yt({opSnippet:x_,packedOpSnippet:x_}),HH={kernelName:$s,backendName:"webgl",kernelFunc:UH};function jH({inputs:e,attrs:t,backend:n}){let{x:r}=e,a=Ar+` return x > 0.0 ? 1.0 : float(${t.alpha}); `,s=new Ea(r.shape,a);return n.runWebGLProgram(s,[r],r.dtype)}var GH={kernelName:ma,backendName:"webgl",kernelFunc:jH},qH=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let r=n.length,a=pt(n.length),s=pt(n.length),i="";if(r===1)i="coords * strides + begin";else{let o=0;i=n.map((l,c)=>(o++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${o-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=` ${a} begin = ${a}(${e}); ${a} strides = ${a}(${t}); void main() { ${s} coords = getOutputCoords(); setOutput(getX(${i})); } `}};function XH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r,{nonStrided:p,$begin:f,$strides:m,size:A,newShape:y,outShape:g}=an.sliceInfo(a.shape,s,i,o,l,c,u,h,d),w=ge({inputs:{x:a},backend:n,attrs:{shape:y}}),x;if(p){let b=ic({inputs:{x:w},backend:n,attrs:{begin:f,size:A}});x=ge({inputs:{x:b},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(b)}else if(g.some(b=>b===0))x=n.makeTensorInfo(g,a.dtype,[]);else if(n.shouldExecuteOnCPU([w])){let b=n.texData.get(w.dataId).values,T=Ve(w.shape,w.dtype,b),S=KO(g,T,m,f);x=n.makeTensorInfo(g,w.dtype,S.values)}else{let b=new qH(f,m,g);x=n.runWebGLProgram(b,[w],w.dtype)}let _=ge({inputs:{x},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(w),n.disposeIntermediateTensorInfo(x),_}var KH={kernelName:Ro,backendName:"webgl",kernelFunc:XH},ZH="return tan(x);",YH=Je({opSnippet:ZH}),JH={kernelName:Fo,backendName:"webgl",kernelFunc:YH},QH=` float e2x = exp(-2.0 * abs(x)); return sign(x) * (1.0 - e2x) / (1.0 + e2x); `,ej=Je({opSnippet:QH}),tj={kernelName:Os,backendName:"webgl",kernelFunc:ej},rj=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],r=[];for(let a=0;ak.decodeString(u)),l=Ve(a.shape,a.dtype,o),c=YO(l,s);return n.makeTensorInfo(c.shape,c.dtype,c.values)}let i=new rj(a.shape,s);return n.runWebGLProgram(i,[a],a.dtype)}var aj={kernelName:fa,backendName:"webgl",kernelFunc:w_};function sj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r,o=n.readSync(a.dataId),[l,c]=JO(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var ij={kernelName:Mo,backendName:"webgl",kernelFunc:sj};function oj(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;hl(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=r.readSync(s.dataId),{outputValues:o,outputShape:l,indices:c}=QO(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([c.length],"int32",c)]}var lj={kernelName:Wh,backendName:"webgl",kernelFunc:oj};function uj(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],c=new Array(o-1),u=0;for(let m=0;mn.disposeIntermediateTensorInfo(m)),f}var cj={kernelName:$o,backendName:"webgl",kernelFunc:uj},hj=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,r=e.batchSize,a=e.inSize,s=e.numSegments,i=s*Math.ceil(a/n);this.outputShape=[r,i];let o="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,h=` sumValue += dot(values, segFilter); `,d="";a%n>0&&(d=` if (inIdx < 0 || inIdx >= ${a}) { return initializationValue; } `);let p="";a%n>0&&(p=` if (inIdx < 0 || inIdx >= ${a}) { return -1.0; } `),this.userCode=` const float initializationValue = ${o}; float getValue(int batch, int inIdx) { ${d} return getX(batch, inIdx); } float getSegmentIdAtIndex(int inIdx) { ${p} return getSegmentIds(inIdx); } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = int(floor(float(outIdx) / float( ${s})) * float(${n})); int currentSeg = int(mod(float(outIdx), float(${s}))); float sumValue = 0.0; for (int i = 0; i < ${c}; i += 4) { int inIdx = inOffset + i; vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), getValue(batch, inIdx + 3) ); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0 ); ${h} } int inIdx = inOffset + ${c}; if (${u===1}) { vec4 values = vec4( getValue(batch, inIdx), initializationValue, initializationValue, initializationValue ); int inIdxSeg = int(getSegmentIdAtIndex(inIdx)); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, 0, 0, 0 ); ${h} } else if (${u===2}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), initializationValue, initializationValue ); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0, 0, 0 ); ${h} } else if (${u===3}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), initializationValue ); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0, 0 ); ${h} } setOutput(${l}); } `}};function dj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r,o=a.shape.length,l=[],c=0,u=R.getAxesPermutation([c],o),h=a;u!=null&&(h=mn({inputs:{x:a},backend:n,attrs:{perm:u}}),l.push(h),c=R.getInnerMostAxes(1,o)[0]);let d=R.segment_util.computeOutShape(h.shape,c,i),p=k.sizeFromShape([h.shape[c]]),f=ge({inputs:{x:h},backend:n,attrs:{shape:[-1,p]}});l.push(f);let m=Uh(a.dtype),A=(x,_,b,T,S)=>{let N=x.shape[0],C=x.shape[1],$=R.segment_util.segOpComputeOptimalWindowSize(C,S),D={windowSize:$,inSize:C,batchSize:N,numSegments:S},O=new hj(D,_),V=n.compileAndRun(O,[x,b],T);if(l.push(V),V.shape[1]===S)return V;let W=y_({backend:n,attrs:{start:0,stop:S,step:1,dtype:"float32"}}),K=w_({inputs:{x:W},backend:n,attrs:{reps:[C/$]}});return l.push(W),l.push(K),A(V,_,K,T,S)},y=A(f,"unsortedSegmentSum",s,m,i),g=ge({inputs:{x:y},backend:n,attrs:{shape:d}}),w=g;if(u!=null){l.push(g);let x=R.getUndoAxesPermutation(u);w=mn({inputs:{x:w},backend:n,attrs:{perm:x}})}return l.forEach(x=>n.disposeIntermediateTensorInfo(x)),w}var pj={kernelName:Au,backendName:"webgl",kernelFunc:dj},fj=[iV,uV,Xz,Zz,Qz,nP,aP,oP,uP,hP,mP,yP,wP,vP,CP,NP,MP,zP,DP,BP,UP,jP,KP,nL,aL,cL,dL,AL,xL,Ez,vL,ML,DL,SL,LL,BL,zL,HL,qL,ZL,JL,eW,rW,uW,hW,sW,fW,yW,_W,IW,EW,FW,MW,$W,OW,PW,WW,VW,HW,XW,JW,eB,nB,sB,uB,pB,yB,Tz,xB,bL,bB,IB,TB,Rz,FB,OB,PB,jB,VB,KB,JB,nV,hV,xV,yV,vV,IV,SV,mV,EV,RV,DV,LV,UV,YV,Oz,QV,nU,sU,lU,iL,hU,pU,mU,gU,bU,Mz,kU,IU,oL,qV,TU,OU,FU,Pz,WU,UU,GU,KU,QU,tH,aH,oH,uH,dH,mH,gH,_H,kH,SH,eL,KV,CH,FH,$H,OH,LH,VH,HH,GH,KH,XV,jz,JH,tj,aj,ij,Gz,lj,cj,pj,dU];for(let e of fj)zo(e);var Cn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Cn||(Cn={}));var lc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu"})(lc||(lc={}));var __;function mj(e){__=e.wasm.cwrap(Ps,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Aj(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r,d=n.dataIdMap.get(a.dataId).id,p=n.dataIdMap.get(s.dataId).id,f=0;if(i!=null){let S=n.dataIdMap.get(i.dataId);if(S.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${S.shape.length}.`);f=S.id}let m=o==null?0:n.dataIdMap.get(o.dataId).id,A=lc[u];if(A==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?a.shape[2]:a.shape[1],g=c?s.shape[1]:s.shape[2],w=a.shape[0],x=n.makeOutput([w,y,g],a.dtype),_=n.dataIdMap.get(x.dataId).id,b=new Uint8Array(new Int32Array(a.shape).buffer),T=new Uint8Array(new Int32Array(s.shape).buffer);return __(d,b,a.shape.length,p,T,s.shape.length,l,c,A,f,m,h||0,_),x}var yj={kernelName:Ps,backendName:"wasm",setupFunc:mj,kernelFunc:Aj};function Rn(e){let t;function n(a){t=a.wasm.cwrap(e,null,["number","number"])}function r(a){let{backend:s,inputs:{x:i}}=a,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),c=s.dataIdMap.get(l.dataId).id;return k.sizeFromShape(l.shape)===0||t(o,c),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:r}}var gj=Rn(Di);function un(e,t,n){let r;function a(i){r=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:c,b:u}=l,h=o.dataIdMap.get(c.dataId).id,d=o.dataIdMap.get(u.dataId).id,p=n!=null?n:c.dtype,f=R.assertAndGetBroadcastShape(c.shape,u.shape),m=o.makeOutput(f,p);if(k.sizeFromShape(f)===0)return m;let A=new Uint8Array(new Int32Array(c.shape).buffer),y=new Uint8Array(new Int32Array(u.shape).buffer),g=o.dataIdMap.get(m.dataId).id,w=()=>r(h,A,c.shape.length,d,y,u.shape.length,Cn[c.dtype],g);if(t&&c.dtype==="float32")return w(),m;let x=R.getBroadcastDims(c.shape,f),_=R.getBroadcastDims(u.shape,f),b=x.every((S,N)=>S===N),T=_.every((S,N)=>S===N);if(b&&T)return w(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:s}}var xj=!0,wj=un(da,xj),b_;function _j(e){b_=e.wasm.cwrap(Xa,null,["array","number","number","number"])}function bj(e){let{inputs:t,backend:n}=e,r=n.makeOutput(t[0].shape,t[0].dtype);if(k.sizeFromShape(r.shape)===0)return r;let a=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(a).buffer),i=n.dataIdMap.get(r.dataId).id;return b_(s,a.length,Cn[r.dtype],i),r}var vj={kernelName:Xa,backendName:"wasm",setupFunc:_j,kernelFunc:bj};function lp(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype),a=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(r).set(a),r}var kj={kernelName:ro,backendName:"wasm",kernelFunc:lp},v_;function Ij(e){v_=e.wasm.cwrap(zs,null,["number","array","number","number","number","array","number"])}function up(e){let{inputs:t,backend:n,attrs:r}=e,[a,s]=Sj(t.x.shape,r.perm),i=!0;for(let f=0;f=a&&(s===-1||r[s]>r[i])&&(s=i);r[s]=a}return[n,r]}var Tj={kernelName:zs,backendName:"wasm",kernelFunc:up,setupFunc:Ij};function _l(e,t,n){let r=e.shape,a=e.shape.length,s=k.parseAxisParam(t,r),i=s,o=R.getAxesPermutation(i,a),l=null,c=!1;if(o!=null){let u=new Array(a);for(let d=0;d`new shape: ${i}, old shape: ${r.shape}. New shape and old shape must have the same number of elements.`),{dataId:r.dataId,shape:i,dtype:r.dtype}}var Dj={kernelName:bo,backendName:"wasm",kernelFunc:yr},N_;function Oj(e){N_=e.wasm.cwrap(Ya,null,["number","array","number","number","array","number","number","number","number"])}function zj(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=a.shape.length,c=s.shape.length,u=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[c-1]:s.shape[c-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[c-2]:s.shape[c-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),A=k.sizeFromShape(f),y=k.sizeFromShape(m),g=A===y||A===1||y===1;k.assert(l>=2&&c>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let w=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);k.assert(u===h,()=>`Error in matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[A,u,d]:[A,d,u],_=o?[y,p,h]:[y,h,p],b=yr({inputs:{x:a},backend:n,attrs:{shape:x}}),T=yr({inputs:{x:s},backend:n,attrs:{shape:_}}),S=n.dataIdMap.get(b.dataId).id,N=n.dataIdMap.get(T.dataId).id,C=i?b.shape[2]:b.shape[1],$=o?T.shape[1]:T.shape[2],D=Math.max(A,y),O=n.makeOutput([D,C,$],b.dtype),V=n.dataIdMap.get(O.dataId).id,W=new Uint8Array(new Int32Array(b.shape).buffer),K=new Uint8Array(new Int32Array(T.shape).buffer);return N_(S,W,b.shape.length,N,K,T.shape.length,i,o,V),O.shape=w,O}var Pj={kernelName:Ya,backendName:"wasm",setupFunc:Oj,kernelFunc:zj};function cp(e){let{inputs:{x:t},attrs:{dtype:n},backend:r}=e,a=r.makeOutput(t.shape,n),s=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(a).set(s),a}var Lj={kernelName:Ja,backendName:"wasm",kernelFunc:cp},S_;function Wj(e){S_=e.wasm.cwrap(pa,null,["number","number","number","number"])}function Bj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o=n.dataIdMap.get(a.dataId).id,l=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(l.dataId).id;return S_(o,s,i,c),l}var Vj={kernelName:pa,backendName:"wasm",setupFunc:Wj,kernelFunc:Bj};function T_(e){let{inputs:t,backend:n}=e,r=k.parseAxisParam(e.attrs.axis,t[0].shape)[0],a=R.computeOutShape(t.map(p=>p.shape),r),s=t.filter(p=>k.sizeFromShape(p.shape)>0);if(s.length===1)return lp({inputs:{x:s[0]},backend:n});let i=n.makeOutput(a,t[0].dtype);if(k.sizeFromShape(a)===0)return i;let o=s.map(p=>p.shape);if(R.assertParamsConsistent(o,r),s[0].dtype==="string"){let p=s.map(w=>{let x=k.sizeFromShape(w.shape.slice(r));return yr({inputs:{x:w},backend:n,attrs:{shape:[-1,x]}})}),f=p.map(w=>({vals:n.readSync(w.dataId),shape:w.shape}));a=R.computeOutShape(p.map(w=>w.shape),1);let m=p[0].shape[0]===1,A=Km(f,a,t[0].dtype,m),y=R.computeOutShape(s.map(w=>w.shape),r);i.shape=y;let g=n.dataIdMap.get(i.dataId);return g.stringBytes=R.fromStringArrayToUint8(A),i}let l=k.sizeFromShape(s[0].shape.slice(0,r)),c=0,u=s.map(p=>{let f=k.sizeFromShape(p.shape.slice(r));return c+=f,f}),h=s.map(p=>n.typedArrayFromHeap(p)),d=n.typedArrayFromHeap(i);for(let p=0;p`cumsum does not support ${a.dtype} tensors in the WASM backend`);let c=R.getAxesPermutation([s],l),u=a;c!==null&&(u=up({inputs:{x:a},attrs:{perm:c},backend:n}));let h=R.getInnerMostAxes(1,l)[0];R.assertAxesAreInnerMostDims("cumsum",[h],l);let d=n.makeOutput(u.shape,u.dtype),p=u.shape[h],f=n.dataIdMap.get(u.dataId).id,m=n.dataIdMap.get(d.dataId).id;F_(f,i?1:0,o?1:0,p,m,Cn[a.dtype]);let A=d;if(c!==null){let y=R.getUndoAxesPermutation(c);A=up({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(u.dataId),n.disposeData(d.dataId)}return A}var nG={kernelName:ns,backendName:"wasm",setupFunc:eG,kernelFunc:tG},M_;function rG(e){M_=e.wasm.cwrap(qi,null,["number","number","number","array","number","array","array","number","number"])}function aG(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{blockSize:s,dataFormat:i}=r;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],c=i==="NHWC"?a.shape[2]:a.shape[3],u=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=c*s,p=u/(s*s),f=i==="NHWC"?[o,h,d,p]:[o,p,h,d],m=t.makeOutput(f,"float32"),A=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(k.computeStrides(a.shape)).buffer),g=new Uint8Array(new Int32Array(f).buffer),w=new Uint8Array(new Int32Array(k.computeStrides(f)).buffer),x=t.dataIdMap.get(m.dataId).id;return M_(A,s,i==="NHWC"?1:0,y,a.shape.length-1,g,w,f.length,x),m}var sG={kernelName:qi,backendName:"wasm",setupFunc:rG,kernelFunc:aG},$_;function iG(e){$_=e.wasm.cwrap(rs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function oG(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:h}=n,d=c==null?[1,1]:c,p=R.computeConv2DInfo(a.shape,s.shape,l,d,u,h,!0),f=p.filterHeight,m=p.filterWidth,A=p.padInfo.top,y=p.padInfo.right,g=p.padInfo.bottom,w=p.padInfo.left,x=p.dilationHeight,_=p.dilationWidth,b=p.strideHeight,T=p.strideWidth,S=p.inChannels,N=p.outChannels,C=p.padInfo.type==="SAME"?1:0;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let $=r.makeOutput(p.outShape,"float32"),D=r.dataIdMap.get($.dataId).id;return $_(i,a.shape[0],a.shape[1],a.shape[2],o,f,m,A,y,g,w,C,x,_,b,T,S,N,D),$}var lG={kernelName:rs,backendName:"wasm",setupFunc:iG,kernelFunc:oG},uG=!1,cG=un(Zi,uG,"bool"),hG=Rn(ss);function EA(e){let{inputs:t,attrs:n,backend:r}=e,{input:a}=t,{dim:s}=n,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),yr({inputs:{x:a},backend:r,attrs:{shape:o}})}var dG={kernelName:Yi,backendName:"wasm",kernelFunc:EA};function pG(e){let{attrs:{shape:t,value:n,dtype:r},backend:a}=e,s=a.makeOutput(t,r);return a.typedArrayFromHeap(s).fill(n),s}var fG={kernelName:iu,backendName:"wasm",kernelFunc:pG},D_;function mG(e){D_=e.wasm.cwrap(Qi,null,["number","number","number","number","number","number"])}function AG(e){let{inputs:t,backend:n}=e,{image:r}=t,a=n.makeOutput(r.shape,r.dtype),s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,[o,l,c,u]=r.shape;return D_(s,o,l,c,u,i),a}var yG={kernelName:Qi,backendName:"wasm",kernelFunc:AG,setupFunc:mG},gG=Rn(is),xG=!1,wG=un(os,xG),O_;function _G(e){O_=e.wasm.cwrap(ls,null,["number","number","number","number","number","number","number"])}function bG(e){let{backend:t,inputs:n,attrs:r}=e,{varianceEpsilon:a}=r,{x:s,mean:i,variance:o,offset:l,scale:c}=n,u=t.dataIdMap.get(s.dataId).id,h=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=l!=null?t.dataIdMap.get(l.dataId).id:0,f=c!=null?t.dataIdMap.get(c.dataId).id:0,m=t.makeOutput(s.shape,s.dtype);if(k.sizeFromShape(s.shape)===0)return m;let A=t.dataIdMap.get(m.dataId).id;return O_(u,h,d,p,f,a,A),m}var vG={kernelName:ls,backendName:"wasm",setupFunc:_G,kernelFunc:bG},z_;function kG(e){z_=e.wasm.cwrap(Ls,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function IG(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=n,m=R.computeConv2DInfo(a.shape,s.shape,l,u,c,d),A=lc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,w=m.outChannels,x=0;if(i!=null){let ne=r.dataIdMap.get(i.dataId);if(ne.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ne.shape.length}.`);if(ne.shape[0]!==w)throw new Error(`FusedConv2D bias shape (${ne.shape}) does not match the number of output channels (${w})`);x=ne.id}let _=m.filterHeight,b=m.filterWidth,T=m.padInfo.top,S=m.padInfo.right,N=m.padInfo.bottom,C=m.padInfo.left,$=m.dilationHeight,D=m.dilationWidth,O=m.strideHeight,V=m.strideWidth,W=m.inChannels,K=m.padInfo.type==="SAME"?1:0,X=m.batchSize,ee=m.inHeight,Z=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(m.outShape,"float32"),J=r.dataIdMap.get(ae.dataId).id,oe=o==null?0:r.dataIdMap.get(o.dataId).id;return z_(y,X,ee,Z,g,_,b,x,T,S,N,C,K,$,D,O,V,W,w,A,oe,f||0,J),ae}var NG={kernelName:Ls,backendName:"wasm",setupFunc:kG,kernelFunc:IG},P_;function SG(e){P_=e.wasm.cwrap(Ws,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function TG(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=n,m=R.computeConv2DInfo(a.shape,s.shape,l,u,c,d,!0),A=lc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,w=m.outChannels,x=0;if(i!=null){let ne=r.dataIdMap.get(i.dataId);if(ne.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ne.shape.length}.`);if(ne.shape[0]!==w)throw new Error(`FusedDepthwiseConv2D bias shape (${ne.shape}) does not match the number of output channels (${w})`);x=ne.id}let _=m.filterHeight,b=m.filterWidth,T=m.padInfo.top,S=m.padInfo.right,N=m.padInfo.bottom,C=m.padInfo.left,$=m.dilationHeight,D=m.dilationWidth,O=m.strideHeight,V=m.strideWidth,W=m.inChannels,K=m.padInfo.type==="SAME"?1:0,X=m.batchSize,ee=m.inHeight,Z=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(m.outShape,"float32"),J=r.dataIdMap.get(ae.dataId).id,oe=o==null?0:r.dataIdMap.get(o.dataId).id;return P_(y,X,ee,Z,g,_,b,x,T,S,N,C,K,$,D,O,V,W,w,A,oe,f||0,J),ae}var EG={kernelName:Ws,backendName:"wasm",setupFunc:SG,kernelFunc:TG},L_;function CG(e){L_=e.wasm.cwrap(to,null,["number","number","number","number","number","number","array","number"])}function RG(e){let{backend:t,inputs:n}=e,{params:r,indices:a}=n,[s,i,o,l]=gf.prepareAndValidate(r,a),c=t.makeOutput(s,r.dtype);if(i===0)return c;let u=a.shape,h=u[u.length-1],d=t.dataIdMap.get(r.dataId).id,p=t.dataIdMap.get(a.dataId).id,f=new Uint8Array(new Int32Array(l).buffer),m=t.dataIdMap.get(c.dataId).id;return L_(d,Cn[r.dtype],p,i,h,o,f,m),c}var FG={kernelName:to,backendName:"wasm",setupFunc:CG,kernelFunc:RG},W_;function MG(e){W_=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function $G(e){let{backend:t,inputs:n,attrs:r}=e,{x:a,indices:s}=n,{axis:i,batchDims:o}=r,l=k.parseAxisParam(i,a.shape)[0],c=R.segment_util.collectGatherOpShapeInfo(a,s,l,o),u=yr({inputs:{x:a},attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]},backend:t}),h=k.sizeFromShape(s.shape),d=yr({inputs:{x:s},attrs:{shape:[c.batchSize,h/c.batchSize]},backend:t}),p=[c.batchSize,c.outerSize,h/c.batchSize,c.sliceSize],f=t.makeOutput(p,a.dtype);if(k.sizeFromShape(a.shape)===0)return f;let m=u.shape.length-1,A=t.dataIdMap.get(u.dataId).id,y=t.dataIdMap.get(d.dataId).id,g=t.dataIdMap.get(f.dataId).id,w=new Uint8Array(new Int32Array(k.computeStrides(u.shape)).buffer),x=new Uint8Array(new Int32Array(k.computeStrides(p)).buffer);return W_(A,Cn[a.dtype],w,m,y,c.batchSize,x,g),f.shape=c.outputShape,f}var DG={kernelName:eo,backendName:"wasm",setupFunc:MG,kernelFunc:$G},OG=!1,zG=un(no,OG,"bool"),PG=!1,LG=un(us,PG,"bool"),B_;function WG(e){B_=e.wasm.cwrap(cs,null,["number","number","number"])}function BG(e){let{inputs:{x:t},attrs:{alpha:n},backend:r}=e,a=r.dataIdMap.get(t.dataId).id,s=r.makeOutput(t.shape,t.dtype);if(k.sizeFromShape(t.shape)!==0){let i=r.dataIdMap.get(s.dataId).id;B_(a,n,i)}return s}var VG={kernelName:cs,backendName:"wasm",setupFunc:WG,kernelFunc:BG},UG=!1,HG=un(oo,UG,"bool"),jG=!1,GG=un(lo,jG,"bool"),qG=Rn(hs),XG=!1,KG=un(co,XG,"bool"),V_;function ZG(e){V_=e.wasm.cwrap(ds,null,["number, number, number"])}function YG(e){let{backend:t,inputs:n,attrs:r}=e,{reductionIndices:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:u,originalAxes:h,inputWasTransposed:d}=_l(i,a,t);if(d){let g=t.dataIdMap.get(c.dataId).id;l=c,o=g}let p=l.shape.length;R.assertAxesAreInnerMostDims("max",u,p);let[f,m]=R.computeOutAndReduceShapes(l.shape,u),A=k.sizeFromShape(m),y=t.makeOutput(f,i.dtype);if(k.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;V_(o,A,g)}if(d&&t.disposeData(c.dataId),s){let g=R.expandShapeToKeepDim(y.shape,h);y.shape=g}return y}var JG={kernelName:ds,backendName:"wasm",setupFunc:ZG,kernelFunc:YG},QG=!1,eq=un(ps,QG),U_;function tq(e){U_=e.wasm.cwrap(fs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function nq(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=R.computePool2DInfo(a.shape,i,o,1,l,c),h=u.filterHeight,d=u.filterWidth,p=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,A=u.padInfo.left,y=u.dilationHeight,g=u.dilationWidth,w=u.strideHeight,x=u.strideWidth,_=u.inChannels,b=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let T=r.makeOutput(u.outShape,"float32"),S=r.dataIdMap.get(T.dataId).id;return U_(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,f,m,A,y,g,w,x,_,b,S),T}var rq={kernelName:fs,backendName:"wasm",setupFunc:tq,kernelFunc:nq},H_;function aq(e){H_=e.wasm.cwrap(ms,null,["number, number, number"])}function sq(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=_l(i,a,t),f=h;if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,f=R.getInnerMostAxes(f.length,c.shape.length))}R.assertAxesAreInnerMostDims("mean",f,c.shape.length);let[m,A]=R.computeOutAndReduceShapes(c.shape,f),y=k.sizeFromShape(A),g=c;c.dtype!=="float32"&&(g=cp({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(g.dataId).id);let w=t.makeOutput(m,"float32");if(k.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(w.dataId).id;H_(l,y,x)}if(p&&t.disposeData(u.dataId),s){let x=R.expandShapeToKeepDim(w.shape,d);w.shape=x}return c.dtype!=="float32"&&t.disposeData(g.dataId),w}var iq={kernelName:ms,backendName:"wasm",setupFunc:aq,kernelFunc:sq},j_;function oq(e){j_=e.wasm.cwrap(As,null,["number, number, number"])}function lq(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=_l(i,a,t);if(p){let w=t.dataIdMap.get(u.dataId).id;w!==o&&(c=u,l=w)}let f=c.shape.length;R.assertAxesAreInnerMostDims("min",h,f);let[m,A]=R.computeOutAndReduceShapes(c.shape,h),y=k.sizeFromShape(A),g=t.makeOutput(m,c.dtype);if(k.sizeFromShape(c.shape)!==0){let w=t.dataIdMap.get(g.dataId).id;j_(l,y,w)}if(p&&t.disposeData(u.dataId),s){let w=R.expandShapeToKeepDim(g.shape,d);g.shape=w}return g}var uq={kernelName:As,backendName:"wasm",setupFunc:oq,kernelFunc:lq},cq=!1,hq=un(ys,cq),dq=!0,pq=un(gs,dq),fq=Rn(po);function CA(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),r=n[0],a=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:r,selectedSize:a,pSelectedScores:s,pValidOutputs:i}}var G_;function mq(e){G_=e.wasm.cwrap(mo,"number",["number","number","number","number","number"])}function Aq(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i}=r,{boxes:o,scores:l}=n,c=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(l.dataId).id,h=G_(c,u,s,a,i),{pSelectedIndices:d,selectedSize:p,pSelectedScores:f,pValidOutputs:m}=CA(t,h);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([p],"int32",d)}var yq={kernelName:mo,backendName:"wasm",setupFunc:mq,kernelFunc:Aq},q_;function gq(e){q_=e.wasm.cwrap(Ao,"number",["number","number","number","number","number","bool"])}function xq(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=r,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(c.dataId).id,d=q_(u,h,s,a,i,o),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:A}=CA(t,d);t.wasm._free(m);let y=t.makeOutput([f],"int32",p),g=t.makeOutput([],"int32",A);return[y,g]}var wq={kernelName:Ao,backendName:"wasm",setupFunc:gq,kernelFunc:xq},X_;function _q(e){X_=e.wasm.cwrap(yo,"number",["number","number","number","number","number","number"])}function bq(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=r,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(c.dataId).id,d=X_(u,h,s,a,i,o),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:A}=CA(t,d);t.wasm._free(A);let y=t.makeOutput([f],"int32",p),g=t.makeOutput([f],"float32",m);return[y,g]}var vq={kernelName:yo,backendName:"wasm",setupFunc:_q,kernelFunc:bq},kq=!1,Iq=un(fo,kq,"bool"),K_;function Nq(e){K_=e.wasm.cwrap(xs,null,["number","number","number","number","number"])}function Sq(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=n.makeOutput([...a.shape,s],"int32"),c=n.dataIdMap.get(l.dataId).id,u=n.dataIdMap.get(a.dataId).id;return K_(u,s,i,o,c),l}var Tq={kernelName:xs,backendName:"wasm",setupFunc:Nq,kernelFunc:Sq};function Eq(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(1),r}var Cq={kernelName:go,backendName:"wasm",kernelFunc:Eq};function Rq(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return EA({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(l=>{k.assertShapesMatch(s,l.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===l.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=t.map(l=>EA({inputs:{input:l},backend:n,attrs:{dim:a}}));return T_({inputs:o,backend:n,attrs:{axis:a}})}var Fq={kernelName:xo,backendName:"wasm",kernelFunc:Rq},Z_;function Mq(e){Z_=e.wasm.cwrap(ws,null,["number","array","number","number","array","array","number","number"])}function $q(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,constantValue:a}}=e,s=r.map((f,m)=>f[0]+t.shape[m]+f[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=r.map(f=>f[0]),h=r.map(f=>f[1]),d=new Uint8Array(new Int32Array(u).buffer),p=new Uint8Array(new Int32Array(h).buffer);return Z_(i,c,t.shape.length,Cn[t.dtype],d,p,a,l),o}var Dq={kernelName:ws,backendName:"wasm",kernelFunc:$q,setupFunc:Mq},Oq=!1,zq=un(_s,Oq),Y_;function Pq(e){Y_=e.wasm.cwrap(bs,null,["number","number","number"])}function Lq(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return Y_(s,i,l),o}var Wq={kernelName:bs,backendName:"wasm",setupFunc:Pq,kernelFunc:Lq},J_;function Bq(e){J_=e.wasm.cwrap(wo,null,["number","number","number","number"])}function Vq(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=_l(i,a,t),f=h;if(p){let w=t.dataIdMap.get(u.dataId).id;w!==o&&(c=u,l=w,f=R.getInnerMostAxes(f.length,c.shape.length))}R.assertAxesAreInnerMostDims("prod",f,c.shape.length);let[m,A]=R.computeOutAndReduceShapes(c.shape,f),y=k.sizeFromShape(A),g=t.makeOutput(m,c.dtype);if(k.sizeFromShape(c.shape)!==0){let w=t.dataIdMap.get(g.dataId).id;J_(l,y,Cn[g.dtype],w)}if(p&&t.disposeData(u.dataId),s){let w=R.expandShapeToKeepDim(g.shape,d);g.shape=w}return g}var Uq={kernelName:wo,backendName:"wasm",setupFunc:Bq,kernelFunc:Vq},Hq=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=Jm(r,a,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},jq={kernelName:du,backendName:"wasm",kernelFunc:Hq},Gq=!0,qq=un(as,Gq),Xq=Rn(vs),Kq=Rn(Is),Q_;function Zq(e){Q_=e.wasm.cwrap(ks,null,["number","number","number","number","number","number","number","number","number","number"])}function Yq(e){let{backend:t,inputs:n,attrs:r}=e,{images:a}=n,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,[u,h,d,p]=a.shape,f=[u,l,c,p],m=t.dataIdMap.get(a.dataId),A;m.dtype!=="float32"&&(A=cp({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(A.dataId));let y=m.id,g=t.makeOutput(f,"float32");if(k.sizeFromShape(a.shape)===0)return g;let w=t.dataIdMap.get(g.dataId).id;return Q_(y,u,h,d,p,l,c,s?1:0,i?1:0,w),A!=null&&t.disposeData(A.dataId),g}var Jq={kernelName:ks,backendName:"wasm",setupFunc:Zq,kernelFunc:Yq},eb;function Qq(e){eb=e.wasm.cwrap(Ns,null,["number","array","number","array","number","number"])}function eX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=k.parseAxisParam(s,a.shape);if(a.shape.length===0)return lp({inputs:{x:a},backend:n});let o=n.makeOutput(a.shape,a.dtype),l=n.dataIdMap.get(a.dataId).id,c=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(i).buffer),h=new Uint8Array(new Int32Array(a.shape).buffer);return eb(l,u,i.length,h,a.shape.length,c),yr({inputs:{x:o},attrs:{shape:a.shape},backend:n})}var tX={kernelName:Ns,backendName:"wasm",kernelFunc:eX,setupFunc:Qq},tb;function nX(e){tb=e.wasm.cwrap(Oo,null,["number","number","number","number","number","number","number","number","array","number","number"])}function rX(e){let{inputs:t,backend:n,attrs:r}=e,{image:a}=t,{radians:s,fillValue:i,center:o}=r,l=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(a.dataId).id,u=n.dataIdMap.get(l.dataId).id,[h,d,p,f]=a.shape,[m,A]=R.getImageCenter(o,d,p),y=i===0,g=255,w=typeof i=="number"?[i,i,i,y?0:g]:[...i,g],x=new Uint8Array(new Int32Array(w).buffer);return tb(c,h,d,p,f,s,m,A,x,w.length,u),l}var aX={kernelName:Oo,backendName:"wasm",kernelFunc:rX,setupFunc:nX},sX=Rn(Ss),iX=Rn(Ts),nb;function oX(e){nb=e.wasm.cwrap(vo,null,["number","number","number","number","number","number","array","number","number"])}function lX(e){let{backend:t,inputs:n,attrs:r}=e,{indices:a,updates:s}=n,{shape:i}=r,o=t.makeOutput(i,s.dtype);if(k.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:h,outputSize:d}=xf.calculateShapes(s,a,i),p=t.dataIdMap.get(a.dataId).id,f=t.dataIdMap.get(s.dataId).id,m=new Uint8Array(new Int32Array(h).buffer),A=t.dataIdMap.get(o.dataId).id;return nb(p,f,Cn[s.dtype],l,c,u,m,d,A),o}var uX={kernelName:vo,backendName:"wasm",setupFunc:oX,kernelFunc:lX},rb;function cX(e){rb=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function hX(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(a.dataId).id,l=n.dataIdMap.get(s.dataId).id,c=n.makeOutput(a.shape,a.dtype),u=n.dataIdMap.get(c.dataId).id,h=r.shape.length,d=a.shape.length,p=h===0||h>1||d===1?1:k.sizeFromShape(a.shape.slice(1));return rb(i,o,l,p,u),c}var dX={kernelName:ko,backendName:"wasm",kernelFunc:hX,setupFunc:cX},ab;function pX(e){ab=e.wasm.cwrap(Cs,null,["number","number"])}function fX(e){let{backend:t,inputs:{x:n}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(a.dataId).id;return k.sizeFromShape(a.shape)===0||ab(r,s),a}var mX={kernelName:"Sigmoid",backendName:"wasm",setupFunc:pX,kernelFunc:fX},AX=Rn(Es);function hp(e){let{inputs:{x:t},attrs:{begin:n,size:r},backend:a}=e,[s,i]=an.parseSliceParams(t,n,r),o=an.isSliceContinous(t.shape,s,i),l=a.readSync(t.dataId),c=a.makeOutput(i,t.dtype),u=k.computeStrides(t.shape),h=a.dataIdMap.get(c.dataId);if(o){let f=an.computeFlatOffset(s,u);return t.dtype==="string"?h.stringBytes=l.slice(f,f+k.sizeFromShape(i)):a.typedArrayFromHeap(c).set(l.subarray(f,f+k.sizeFromShape(i))),c}if(t.dtype==="string"){let f=Vd(l,s,i,t.shape,t.dtype);return h.stringBytes=f,c}let d=a.typedArrayFromHeap(c),p=t.shape.length;if(p===2)yX(l,u[0],d,s,i);else if(p===3)gX(l,u[0],u[1],d,s,i);else if(p===4)xX(l,u[0],u[1],u[2],d,s,i);else{let f=Vd(l,s,i,t.shape,t.dtype);d.set(f)}return c}function yX(e,t,n,r,a){let s=0,i=r[0],o=r[1],l=i+a[0];for(let c=i;c{let d=[...u];d[o]=h;let p=hp({inputs:{x:a},attrs:{begin:c,size:d},backend:r});return c[o]+=h,p})}var IX={kernelName:Co,backendName:"wasm",kernelFunc:kX},NX=Rn(Rs),SX=Rn(mu),TX=!0,EX=un($s,TX),ib;function CX(e){ib=e.wasm.cwrap(ma,null,["number","number","number"])}function RX(e){let{backend:t,inputs:n,attrs:r}=e,{alpha:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return ib(i,a,l),o}var FX={kernelName:ma,backendName:"wasm",setupFunc:CX,kernelFunc:RX},ob;function MX(e){ob=e.wasm.cwrap(Ro,null,["number","array","number","array","array","array","array","array","number","number"])}function $X(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{begin:s,end:i,strides:o}=r;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r,p=R.slice_util.maskToAxes(u);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&h!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=a.shape.length-s.length,m=R.slice_util.maskToAxes(h),A=a.shape.slice();m.forEach(N=>{s[N]=0,i[N]=1,A.splice(N,0,1)});let y=yr({inputs:{x:a},attrs:{shape:A},backend:t}),{begin:g,end:w,strides:x}=R.slice_util.getNormalizedAxes(y.shape,p,f,s,i,o,l,c,u);s=g,i=w,o=x;let _=R.slice_util.maskToAxes(d);_.forEach(N=>{i[N]=s[N]+1,o[N]=1});let b=R.slice_util.computeOutShape(s,i,o),T=b.filter((N,C)=>_.indexOf(C)===-1);if(o.every(N=>N===1)){let N=hp({inputs:{x:a},attrs:{begin:s,size:b},backend:t});return yr({inputs:{x:N},attrs:{shape:T},backend:t})}let S=t.makeOutput(T,"float32");if(!T.some(N=>N===0)){let N=t.dataIdMap.get(y.dataId).id,C=new Uint8Array(new Int32Array(k.computeStrides(y.shape)).buffer),$=new Uint8Array(new Int32Array(s).buffer),D=new Uint8Array(new Int32Array(i).buffer),O=new Uint8Array(new Int32Array(o).buffer),V=new Uint8Array(new Int32Array(T).buffer),W=new Uint8Array(new Int32Array(k.computeStrides(T)).buffer),K=t.dataIdMap.get(S.dataId).id;ob(N,C,y.shape.length,$,D,O,V,W,T.length,K)}return yr({inputs:{x:S},attrs:{shape:T},backend:t})}var DX={kernelName:Ro,backendName:"wasm",setupFunc:MX,kernelFunc:$X},OX=!0,zX=un(Ds,OX),lb;function PX(e){lb=e.wasm.cwrap(Fs,null,["number, number, number"])}function LX(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=_l(i,a,t),f=h;if(p){let w=t.dataIdMap.get(u.dataId).id;w!==o&&(c=u,l=w,f=R.getInnerMostAxes(f.length,c.shape.length))}R.assertAxesAreInnerMostDims("sum",f,c.shape.length);let[m,A]=R.computeOutAndReduceShapes(c.shape,f),y=k.sizeFromShape(A),g=t.makeOutput(m,c.dtype);if(k.sizeFromShape(c.shape)!==0){let w=t.dataIdMap.get(g.dataId).id;lb(l,y,w)}if(p&&t.disposeData(u.dataId),s){let w=R.expandShapeToKeepDim(g.shape,d);g.shape=w}return g}var WX={kernelName:Fs,backendName:"wasm",setupFunc:PX,kernelFunc:LX},BX=Rn(Os),ub;function VX(e){ub=e.wasm.cwrap(fa,null,["number","array","number","array","number","number"])}function UX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,s=n.dataIdMap.get(a.dataId).id,{reps:i}=r,o=new Array(a.shape.length);for(let d=0;d{let{x:r}=e,{k:a,sorted:s}=n,i=t.dataIdMap.get(r.dataId).id,o=new Uint8Array(new Int32Array(r.shape).buffer),l=r.shape.slice();l[l.length-1]=a;let c=t.makeOutput(l,r.dtype),u=t.dataIdMap.get(c.dataId).id,h=t.makeOutput(l,"int32"),d=t.dataIdMap.get(h.dataId).id;return cb(i,o,r.shape.length,Cn[r.dtype],a,s,u,d),[c,h]},qX={kernelName:Mo,backendName:"wasm",setupFunc:jX,kernelFunc:GX};function XX(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape[s],o=a.shape.length,l=new Array(o-1),c=0;for(let p=0;p({dataId:p,dtype:f,shape:l}))}var KX={kernelName:$o,backendName:"wasm",kernelFunc:XX};function ZX(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(0),r}var YX={kernelName:Do,backendName:"wasm",kernelFunc:ZX},JX=[gj,wj,vj,Rj,$j,Pj,Lj,Vj,Uj,Gj,Kj,Zj,Qj,nG,sG,lG,cG,hG,dG,fG,yG,gG,wG,yj,vG,NG,EG,FG,DG,zG,LG,kj,VG,HG,GG,qG,KG,JG,eq,rq,iq,uq,hq,pq,fq,yq,wq,vq,Iq,Tq,Cq,Fq,Dq,zq,Wq,Uq,jq,qq,Xq,Kq,Dj,Jq,tX,aX,iX,sX,uX,dX,mX,AX,wX,vX,IX,NX,SX,EX,FX,DX,zX,WX,BX,HX,qX,Tj,KX,YX];for(let e of JX)zo(e);var RA=Q();RA.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));RA.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(RA.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var hb=Zo(p8()),QX='var threadInfoStruct=0;var selfThreadId=0;var parentThreadId=0;var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:selfThreadId})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["DYNAMIC_BASE"]=e.data.DYNAMIC_BASE;Module["DYNAMICTOP_PTR"]=e.data.DYNAMICTOP_PTR;Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}Module=WasmBackendModuleThreadedSimd(Module);postMessage({"cmd":"loaded"})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;threadInfoStruct=e.data.threadInfoStruct;Module["__register_pthread_ptr"](threadInfoStruct,0,0);selfThreadId=e.data.selfThreadId;parentThreadId=e.data.parentThreadId;var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["dynCall_ii"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){Atomics.store(Module["HEAPU32"],threadInfoStruct+4>>2,ex instanceof Module["ExitStatus"]?ex.status:-2);Atomics.store(Module["HEAPU32"],threadInfoStruct+0>>2,1);Module["_emscripten_futex_wake"](threadInfoStruct+0,2147483647);if(!(ex instanceof Module["ExitStatus"]))throw ex}}}else if(e.data.cmd==="cancel"){if(threadInfoStruct){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(threadInfoStruct){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',eK=Zo(f8()),Kg=class extends Ql{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new ch(this,Ln())}write(e,t,n){let r={};return this.move(r,e,t,n),r}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}move(e,t,n,r){let a=this.dataIdNextNumber++;if(r==="string"){let l=t;this.dataIdMap.set(e,{id:a,stringBytes:l,shape:n,dtype:r,memoryOffset:null});return}let s=k.sizeFromShape(n),i=s*k.bytesPerElement(r),o=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:o,shape:n,dtype:r}),this.wasm.tfjs.registerTensor(a,s,o),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),o)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:r,stringBytes:a}=this.dataIdMap.get(e);if(n==="string")return a;let s=this.wasm.HEAPU8.slice(t,t+k.sizeFromShape(r)*k.bytesPerElement(n));return tK(s.buffer,n)}disposeData(e){let t=this.dataIdMap.get(e);this.wasm._free(t.memoryOffset),this.wasm.tfjs.disposeData(t.id),this.dataIdMap.delete(e)}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let r;if(n==null)r=this.write(null,e,t);else{r={};let a=this.dataIdNextNumber++;this.dataIdMap.set(r,{id:a,memoryOffset:n,shape:e,dtype:t});let s=k.sizeFromShape(e);this.wasm.tfjs.registerTensor(a,s,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let r=this.wasm.HEAPU8.buffer,{memoryOffset:a}=this.dataIdMap.get(n),s=k.sizeFromShape(e);switch(t){case"float32":return new Float32Array(r,a,s);case"int32":return new Int32Array(r,a,s);case"bool":return new Uint8Array(r,a,s);default:throw new Error(`Unknown dtype ${t}`)}}};function nK(e){return(t,n)=>(k.fetch(e,{credentials:"same-origin"}).then(r=>{r.ok||t.env.a(`failed to load wasm binary file at '${e}'`),r.arrayBuffer().then(a=>{WebAssembly.instantiate(a,t).then(s=>{n(s.instance)})})}),{})}function db(e,t,n){if(dp!=null)return dp;let r="tfjs-backend-wasm.wasm";return e&&t?r="tfjs-backend-wasm-threaded-simd.wasm":e&&(r="tfjs-backend-wasm-simd.wasm"),uc!=null&&uc[r]!=null?uc[r]:n+r}async function rK(){let[e,t]=await Promise.all([Q().getAsync("WASM_HAS_SIMD_SUPPORT"),Q().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,r)=>{let a={};a.locateFile=(l,c)=>{if(l.endsWith(".worker.js")){let u=QX,h=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(h)}return l.endsWith(".wasm")?db(e,t,cc!=null?cc:c):c+l},FA&&(a.instantiateWasm=nK(db(e,t,cc!=null?cc:"")));let s;t&&e&&dp==null?(s=hb.default(a),s.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+hb.default.toString()],{type:"text/javascript"})):s=eK.default(a);let i=null;s.tfjs={init:s.cwrap("init",null,[]),registerTensor:s.cwrap("register_tensor",null,["number","number","number"]),disposeData:s.cwrap("dispose_data",i,["number"]),dispose:s.cwrap("dispose",i,[])};let o=!1;s.onRuntimeInitialized=()=>{o=!0,hc=!1,n({wasm:s})},s.onAbort=()=>{o||hc||(hc=!0,r({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))}})}function tK(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var aK=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],dp=null,cc=null,uc={},hc=!1,FA=!1;function F4(e,t=!1){if(wf("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),hc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");dp=e,FA=t}function Zg(e,t=!1){if(hc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")cc=e;else{uc=e;let n=aK.filter(r=>uc[r]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}FA=t}var Yg="3.0.0",sK=2;xu("wasm",async()=>{let{wasm:e}=await rK();return new Kg(e)},sK);Y().prototype.abs=function(){return this.throwIfDisposed(),Dt(this)};Y().prototype.acos=function(){return this.throwIfDisposed(),bf(this)};Y().prototype.acosh=function(){return this.throwIfDisposed(),vf(this)};Y().prototype.add=function(e){return this.throwIfDisposed(),ie(this,e)};Y().prototype.all=function(e,t){return this.throwIfDisposed(),Xh(this,e,t)};Y().prototype.any=function(e,t){return this.throwIfDisposed(),wu(this,e,t)};Y().prototype.argMax=function(e){return this.throwIfDisposed(),_u(this,e)};Y().prototype.argMin=function(e){return this.throwIfDisposed(),kf(this,e)};Y().prototype.asScalar=function(){return this.throwIfDisposed(),M(this.size===1,()=>"The array must have only 1 element."),q(this,[])};Y().prototype.asType=function(e){return this.throwIfDisposed(),ye(this,e)};Y().prototype.as1D=function(){return this.throwIfDisposed(),q(this,[this.size])};Y().prototype.as2D=function(e,t){return this.throwIfDisposed(),q(this,[e,t])};Y().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),q(this,[e,t,n])};Y().prototype.as4D=function(e,t,n,r){return this.throwIfDisposed(),q(this,[e,t,n,r])};Y().prototype.as5D=function(e,t,n,r,a){return this.throwIfDisposed(),q(this,[e,t,n,r,a])};Y().prototype.asin=function(){return this.throwIfDisposed(),If(this)};Y().prototype.asinh=function(){return this.throwIfDisposed(),Nf(this)};Y().prototype.atan=function(){return this.throwIfDisposed(),Sf(this)};Y().prototype.atan2=function(e){return this.throwIfDisposed(),Tf(this,e)};Y().prototype.atanh=function(){return this.throwIfDisposed(),Ef(this)};Y().prototype.avgPool=function(e,t,n,r){return this.throwIfDisposed(),bu(this,e,t,n,r)};Y().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),vu(this,e,t)};Y().prototype.batchNorm=function(e,t,n,r,a){return this.throwIfDisposed(),Bs(this,e,t,n,r,a)};Y().prototype.broadcastTo=function(e){return this.throwIfDisposed(),ku(this,e)};Y().prototype.cast=function(e){return this.throwIfDisposed(),ye(this,e)};Y().prototype.ceil=function(){return this.throwIfDisposed(),Rf(this)};Y().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),pn(this,e,t)};Y().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof tt&&(e=[e]),dt([this,...e],t)};Y().prototype.conv1d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Kh(this,e,t,n,r,a,s)};Y().prototype.conv2dTranspose=function(e,t,n,r,a){return this.throwIfDisposed(),Zh(this,e,t,n,r,a)};Y().prototype.conv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Kr(this,e,t,n,r,a,s)};Y().prototype.cos=function(){return this.throwIfDisposed(),Iu(this)};Y().prototype.cosh=function(){return this.throwIfDisposed(),Yh(this)};Y().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Jh(this,e,t,n)};Y().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),Mf(this,e,t)};Y().prototype.depthwiseConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Wo(this,e,t,n,r,a,s)};Y().prototype.dilation2d=function(e,t,n,r,a){return this.throwIfDisposed(),$f(this,e,t,n,r,a)};Y().prototype.divNoNan=function(e){return this.throwIfDisposed(),Df(this,e)};Y().prototype.div=function(e){return this.throwIfDisposed(),Ne(this,e)};Y().prototype.dot=function(e){return this.throwIfDisposed(),kg(this,e)};Y().prototype.elu=function(){return this.throwIfDisposed(),Bo(this)};Y().prototype.equal=function(e){return this.throwIfDisposed(),ya(this,e)};Y().prototype.erf=function(){return this.throwIfDisposed(),Of(this)};Y().prototype.exp=function(){return this.throwIfDisposed(),Wn(this)};Y().prototype.expandDims=function(e){return this.throwIfDisposed(),vn(this,e)};Y().prototype.expm1=function(){return this.throwIfDisposed(),zf(this)};Y().prototype.fft=function(){return this.throwIfDisposed(),Du(this)};Y().prototype.flatten=function(){return this.throwIfDisposed(),q(this,[this.size])};Y().prototype.floor=function(){return this.throwIfDisposed(),Vo(this)};Y().prototype.floorDiv=function(e){return this.throwIfDisposed(),qh(this,e)};Y().prototype.gather=function(e,t){return this.throwIfDisposed(),Vs(this,e,t)};Y().prototype.greaterEqual=function(e){return this.throwIfDisposed(),xa(this,e)};Y().prototype.greater=function(e){return this.throwIfDisposed(),tr(this,e)};Y().prototype.ifft=function(){return this.throwIfDisposed(),qo(this)};Y().prototype.irfft=function(){return this.throwIfDisposed(),fd(this)};Y().prototype.isFinite=function(){return this.throwIfDisposed(),Ig(this)};Y().prototype.isInf=function(){return this.throwIfDisposed(),Ng(this)};Y().prototype.isNaN=function(){return this.throwIfDisposed(),Sg(this)};Y().prototype.leakyRelu=function(e){return this.throwIfDisposed(),Su(this,e)};Y().prototype.lessEqual=function(e){return this.throwIfDisposed(),Us(this,e)};Y().prototype.less=function(e){return this.throwIfDisposed(),ed(this,e)};Y().prototype.localResponseNormalization=function(e,t,n,r){return this.throwIfDisposed(),Lf(this,e,t,n,r)};Y().prototype.logSigmoid=function(){return this.throwIfDisposed(),Cg(this)};Y().prototype.logSoftmax=function(e){return this.throwIfDisposed(),nd(this,e)};Y().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),Wf(this,e,t)};Y().prototype.log=function(){return this.throwIfDisposed(),kn(this)};Y().prototype.log1p=function(){return this.throwIfDisposed(),td(this)};Y().prototype.logicalAnd=function(e){return this.throwIfDisposed(),nr(this,e)};Y().prototype.logicalNot=function(){return this.throwIfDisposed(),Tu(this)};Y().prototype.logicalOr=function(e){return this.throwIfDisposed(),rd(this,e)};Y().prototype.logicalXor=function(e){return this.throwIfDisposed(),Rg(this,e)};Y().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Ke(this,e,t,n)};Y().prototype.maxPool=function(e,t,n,r){return this.throwIfDisposed(),Eu(this,e,t,n,r)};Y().prototype.max=function(e,t){return this.throwIfDisposed(),Bn(this,e,t)};Y().prototype.maximum=function(e){return this.throwIfDisposed(),Tr(this,e)};Y().prototype.mean=function(e,t){return this.throwIfDisposed(),kt(this,e,t)};Y().prototype.min=function(e,t){return this.throwIfDisposed(),Ho(this,e,t)};Y().prototype.minimum=function(e){return this.throwIfDisposed(),jo(this,e)};Y().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),Vf(this,e,t)};Y().prototype.mod=function(e){return this.throwIfDisposed(),Uf(this,e)};Y().prototype.mul=function(e){return this.throwIfDisposed(),B(this,e)};Y().prototype.neg=function(){return this.throwIfDisposed(),vt(this)};Y().prototype.norm=function(e,t,n){return this.throwIfDisposed(),gd(this,e,t,n)};Y().prototype.notEqual=function(e){return this.throwIfDisposed(),Hs(this,e)};Y().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),Po(this,e,t,n)};Y().prototype.onesLike=function(){return this.throwIfDisposed(),In(this)};Y().prototype.pad=function(e,t){return this.throwIfDisposed(),Zr(this,e,t)};Y().prototype.pool=function(e,t,n,r,a){return this.throwIfDisposed(),$g(this,e,t,n,r,a)};Y().prototype.pow=function(e){return this.throwIfDisposed(),Yr(this,e)};Y().prototype.prelu=function(e){return this.throwIfDisposed(),Ru(this,e)};Y().prototype.prod=function(e,t){return this.throwIfDisposed(),sd(this,e,t)};Y().prototype.reciprocal=function(){return this.throwIfDisposed(),Hf(this)};Y().prototype.relu=function(){return this.throwIfDisposed(),Cr(this)};Y().prototype.relu6=function(){return this.throwIfDisposed(),od(this)};Y().prototype.reshapeAs=function(e){return this.throwIfDisposed(),q(this,e.shape)};Y().prototype.reshape=function(e){return this.throwIfDisposed(),q(this,e)};Y().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),C5(this,e,t,n)};Y().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),R5(this,e,t,n)};Y().prototype.reverse=function(e){return this.throwIfDisposed(),Nn(this,e)};Y().prototype.rfft=function(){return this.throwIfDisposed(),Ou(this)};Y().prototype.round=function(){return this.throwIfDisposed(),jf(this)};Y().prototype.rsqrt=function(){return this.throwIfDisposed(),ld(this)};Y().prototype.selu=function(){return this.throwIfDisposed(),ud(this)};Y().prototype.separableConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Gf(this,e,t,n,r,a,s)};Y().prototype.sigmoid=function(){return this.throwIfDisposed(),Jn(this)};Y().prototype.sign=function(){return this.throwIfDisposed(),qf(this)};Y().prototype.sin=function(){return this.throwIfDisposed(),cd(this)};Y().prototype.sinh=function(){return this.throwIfDisposed(),hd(this)};Y().prototype.slice=function(e,t){return this.throwIfDisposed(),Me(this,e,t)};Y().prototype.softmax=function(e){return this.throwIfDisposed(),$u(this,e)};Y().prototype.softplus=function(){return this.throwIfDisposed(),Uo(this)};Y().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Cu(this,e,t)};Y().prototype.split=function(e,t){return this.throwIfDisposed(),rn(this,e,t)};Y().prototype.sqrt=function(){return this.throwIfDisposed(),Kt(this)};Y().prototype.square=function(){return this.throwIfDisposed(),ht(this)};Y().prototype.squaredDifference=function(e){return this.throwIfDisposed(),md(this,e)};Y().prototype.squeeze=function(e){return this.throwIfDisposed(),wa(this,e)};Y().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof tt?[this,e]:[this,...e];return Sn(n,t)};Y().prototype.step=function(e){return this.throwIfDisposed(),Xo(this,e)};Y().prototype.stridedSlice=function(e,t,n,r,a,s,i,o){return this.throwIfDisposed(),Kf(this,e,t,n,r,a,s,i,o)};Y().prototype.sub=function(e){return this.throwIfDisposed(),_e(this,e)};Y().prototype.sum=function(e,t){return this.throwIfDisposed(),Ee(this,e,t)};Y().prototype.tan=function(){return this.throwIfDisposed(),Zf(this)};Y().prototype.tanh=function(){return this.throwIfDisposed(),Lo(this)};Y().prototype.tile=function(e){return this.throwIfDisposed(),ga(this,e)};Y().prototype.toBool=function(){return this.throwIfDisposed(),ye(this,"bool")};Y().prototype.toFloat=function(){return this.throwIfDisposed(),ye(this,"float32")};Y().prototype.toInt=function(){return this.throwIfDisposed(),ye(this,"int32")};Y().prototype.topk=function(e,t){return this.throwIfDisposed(),Yf(this,e,t)};Y().prototype.transpose=function(e){return this.throwIfDisposed(),it(this,e)};Y().prototype.unique=function(e){return this.throwIfDisposed(),yd(this,e)};Y().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),Jf(this,e,t)};Y().prototype.unstack=function(e){return this.throwIfDisposed(),rr(this,e)};Y().prototype.where=function(e,t){return this.throwIfDisposed(),fn(e,this,t)};Y().prototype.zerosLike=function(){return this.throwIfDisposed(),qe(this)};var pb={kernelName:Di,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,Xo(ye(n,"float32"),-1))}}},iK={kernelName:Oi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=ht(ye(n,"float32")),a=Kt(_e(Se(1),r));return vt(Ne(e,a))}}}},oK={kernelName:zi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Kt(_e(ht(ye(n,"float32")),1));return Ne(e,r)}}}},lK={kernelName:da,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=gt(n.shape,r.shape);return{a:()=>{let s=e,i=zt(n.shape,a);return i.length>0&&(s=Ee(s,i)),q(s,n.shape)},b:()=>{let s=e,i=zt(r.shape,a);return i.length>0&&(s=Ee(s,i)),q(s,r.shape)}}}},uK={kernelName:Xa,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((r,a)=>{n[a]=()=>e.clone()}),n}},cK={kernelName:Ka,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>qe(n)}}},hK={kernelName:eu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>qe(n)}}},dK={kernelName:Pi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ne(e,Kt(_e(Se(1),ht(ye(n,"float32")))))}}},pK={kernelName:Li,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Kt(ie(Se(1),ht(ye(n,"float32"))));return Ne(e,r)}}}},fK={kernelName:Vi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=gt(n.shape,r.shape);return{a:()=>{let s=ie(ht(n),ht(r)),i=B(e,Ne(r,s)),o=zt(n.shape,a);return o.length>0&&(i=Ee(i,o)),q(i,n.shape)},b:()=>{let s=ie(ht(n),ht(r)),i=vt(B(e,Ne(n,s))),o=zt(r.shape,a);return o.length>0&&(i=Ee(i,o)),q(i,r.shape)}}}},mK={kernelName:Wi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ne(e,ie(ht(ye(n,"float32")),1))}}},AK={kernelName:Bi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ne(e,_e(Se(1),ht(ye(n,"float32"))))}}};function yK(e,t,n,r,a,s){let i=F(e,"dy","avgPool3dGrad"),o=F(t,"input","avgPool3dGrad"),l=i,c=o,u=!1;o.rank===4&&(u=!0,l=q(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),c=q(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),M(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),s!=null&&M(Ht(a),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${a}.`);let h={dy:l,input:c},d={filterSize:n,strides:r,pad:a,dimRoundingMode:s},p=P.runKernel(fh,h,d);return u?q(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var gK=L({avgPool3dGrad_:yK}),xK={kernelName:tu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>gK(e,r,a,s,i,o)}}};function wK(e,t,n,r,a){let s=F(e,"dy","avgPoolGrad"),i=F(t,"input","avgPoolGrad");M(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,c=!1;i.rank===3&&(c=!0,o=q(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=q(s,[1,s.shape[0],s.shape[1],s.shape[2]])),M(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),M(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let u={dy:l,input:o},h={filterSize:n,strides:r,pad:a},d=P.runKernel(ph,u,h);return c?q(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var _K=L({avgPoolGrad_:wK}),bK={kernelName:Za,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i}=n;return{x:()=>_K(e,r,a,s,i)}}},vK={kernelName:Ya,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[r,a]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>Ke(e,a,!1,!0),b:()=>Ke(r,e,!0,!1)}:!s&&i?{a:()=>Ke(e,a,!1,!1),b:()=>Ke(e,r,!0,!1)}:s&&!i?{a:()=>Ke(a,e,!1,!0),b:()=>Ke(r,e,!1,!1)}:{a:()=>Ke(a,e,!0,!0),b:()=>Ke(e,r,!0,!0)}}},kK={kernelName:nu,gradFunc:(e,t,n)=>{let{blockShape:r,crops:a}=n;return{x:()=>Cu(e,r,a)}}},IK={kernelName:ag,gradFunc:(e,t,n)=>{let r=n,a=r.inputShape,s=r.shape,i=Array.from(s);for(let l=a.length-1;l>=0;l--)if(a[l]===s[l])i[l]=1;else if(a[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l1&&o.push(l);return{x:()=>Ee(e,o,!0)}}},NK={kernelName:Ja,gradFunc:e=>({x:()=>e.clone()})},SK={kernelName:Ui,gradFunc:e=>({x:()=>qe(e)})},TK={kernelName:pa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{clipValueMin:a,clipValueMax:s}=n;return{x:()=>fn(nr(xa(r,a),Us(r,s)),e,qe(e))}}},EK={kernelName:ru,inputsToSave:["x"],gradFunc:pb.gradFunc},CK={kernelName:Hi,saveAllInputs:!0,gradFunc:(e,t,n)=>{let r=t.map(o=>o.shape),{axis:a}=n,s=ar(a,t[0].shape)[0],i=r.map(o=>o[s]);return rn(e,i,s).map(o=>()=>o)}},RK={kernelName:Qa,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return M(Sa(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>Wm(r.shape,e,a,i,o,l),filter:()=>jm(r,e,a.shape,i,o,l)}}},FK={kernelName:es,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>Kr(e,a,s,i,o,1,l),filter:()=>jm(e,r,a.shape,s,i,o,l)}}};function MK(e,t,n,r,a){let s=e;e.rank===4&&(s=q(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=q(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),M(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),M(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),M(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),M(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),M(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:r,pad:a,filterShape:n};return P.runKernel(gh,o,l)}var $K=L({conv3DBackpropFilter_:MK}),DK={kernelName:au,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s}=n;M(Sa(r),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`);let[i,o]=t;return{x:()=>A5(i.shape,e,o,a,s),filter:()=>$K(i,e,o.shape,a,s)}}},OK={kernelName:ts,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(vt(cd(ye(n,"float32"))),e)}}},zK={kernelName:ji,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(hd(ye(n,"float32")),e)}}},PK={kernelName:ns,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a,exclusive:s,reverse:i}=n;return{x:()=>{let o=x5([a],r.rank),l=Jh(e,a,s,!i);return o!=null&&(l=it(l,o)),l}}}},LK={kernelName:rs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s,dimRoundingMode:i}=n,o=r==null?[1,1]:r;M(Sa(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,c]=t;return M(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),M(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),M(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),M(zr(a,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${o}'.`),i!=null&&M(Ht(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>v5(l.shape,e,c,a,s,r,i),filter:()=>b5(l,e,c.shape,a,s,r,i)}}},WK={kernelName:su,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,s={x:r,filter:a,dy:e},i={x:r,filter:a,dy:e};return{x:()=>P.runKernel(kh,s,n),filter:()=>P.runKernel(Ih,i,n)}}},BK={kernelName:Xi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,r={dy:e,y:n};return{x:()=>P.runKernel(Nh,r)}}},VK={kernelName:Ki,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=B(Wn(vt(ht(n))),2/Math.sqrt(Math.PI));return{x:()=>B(e,r)}}},UK={kernelName:ss,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,n)}}},HK={kernelName:Yi,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>q(e,n.shape)}}},jK={kernelName:Ji,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,Wn(n))}}},GK={kernelName:is,gradFunc:e=>({x:()=>qe(e)})},qK={kernelName:os,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=gt(n.shape,r.shape);return{a:()=>{let s=Ne(e,ye(r,"float32")),i=zt(n.shape,a);return i.length>0?q(Ee(s,i),n.shape):s},b:()=>{let s=B(e,ye(n,"float32")),i=zt(r.shape,a);i.length>0&&(s=q(Ee(s,i),r.shape));let o=ht(r);return vt(Ne(s,ye(o,"float32")))}}}},XK={kernelName:ls,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:r}=n,[a,s,i,o]=t,l=o==null?Se(1):o,c=zt(s.shape,a.shape),u=[];if(s.rank===1){for(let m=0;ms.rank===1?q(B(B(e,ga(q(p,[1,1,1,s.shape[0]]),u)),l),a.shape):q(B(B(e,p),l),a.shape),mean:()=>{let m=B(B(p,Se(-1)),d);return s.rank===1&&(m=Ee(m,c)),q(m,s.shape)},variance:()=>{let m=B(B(f,h),d);return s.rank===1&&(m=Ee(m,c)),q(m,s.shape)},scale:()=>{let m=B(h,p),A=B(e,m);return s.rank===1&&(A=Ee(A,c)),q(A,s.shape)},offset:()=>{let m=e;return s.rank===1&&(m=Ee(m,c)),q(m,s.shape)}}}},KK={kernelName:eo,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[r,a]=t,{axis:s}=n,i=ar(s,r.shape)[0];return{x:()=>{let o=r.shape,l=a.size,c=o.slice(0,i),u=c.length,h=o.slice(s,o.length).slice(1),d=h.length,p=fb(0,u),f=fb(u+1,u+1+d),m=mb([c,[l],h]),A=q(e,m),y=q(a,[l]),g=mb([[u],p,f]),w=it(A,g),x=Jf(w,y,r.shape[i]),_=Vm(g);return x=it(x,_),x},indices:()=>a}}};function fb(e,t){let n=[];for(let r=e;r{let[n,r]=t;return{a:()=>qe(n),b:()=>qe(r)}}},YK={kernelName:ro,gradFunc:e=>({x:()=>ye(e,"float32")})},JK={kernelName:ao,gradFunc:e=>({x:()=>qe(e)})},QK={kernelName:so,gradFunc:e=>({x:()=>qe(e)})},eZ={kernelName:io,gradFunc:e=>({x:()=>qe(e)})},tZ={kernelName:cs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{alpha:a}=n,s=tr(r,0);return{x:()=>fn(s,e,B(e,a))}}},nZ={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ne(e,ie(n,1))}}},rZ={kernelName:hs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ne(e,ye(n,"float32"))}}},aZ={kernelName:sg,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n;return{logits:()=>{let s=!0,i=Wn(r);return _e(e,B(Ee(e,a,s),i))}}}};function sZ(e,t,n,r=5,a=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:r,bias:a,alpha:s,beta:i};return P.runKernel(Rh,o,l)}var iZ=L({localResponseNormalizationBackprop_:sZ}),oZ={kernelName:uu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>iZ(r,a,e,s,i,o,l)}}};function Ab(e,t,n,r){return t.rankB(e,ye(ya(n,t),e.dtype))}}var yb={kernelName:ds,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{reductionIndices:a}=r,s=t[0],i=t[1],o=ar(a,s.shape),l=Ab(e,i,s,o);return{x:()=>l.x()}}},lZ={kernelName:ps,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>B(e,ye(xa(n,r),"float32")),b:()=>B(e,ye(ed(n,r),"float32"))}}};function uZ(e,t,n,r,a,s,i){let o=F(e,"dy","maxPool3dGrad"),l=F(t,"input","maxPool3dGrad"),c=F(n,"output","maxPool3dGrad"),u=o,h=l,d=c,p=!1;l.rank===4&&(p=!0,u=q(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),h=q(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=q(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),M(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),M(h.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${h.rank}.`),M(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),i!=null&&M(Ht(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let f={dy:u,input:h,output:d},m={filterSize:r,strides:a,pad:s,dimRoundingMode:i},A=P.runKernel(Mh,f,m);return p?q(A,[A.shape[1],A.shape[2],A.shape[3],A.shape[4]]):A}var cZ=L({maxPool3dGrad_:uZ}),hZ={kernelName:cu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>cZ(e,r,a,s,i,o,l)}}};function dZ(e,t,n,r,a,s,i){let o=F(e,"dy","maxPoolGrad"),l=F(t,"input","maxPoolGrad"),c=F(n,"output","maxPoolGrad");M(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),M(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),M(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&M(Ht(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let u={dy:o,input:l,output:c},h={filterSize:r,strides:a,pad:s,dimRoundingMode:i};return P.runKernel(Fh,u,h)}var pZ=L({maxPoolGrad_:dZ}),fZ={kernelName:fs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>pZ(e,r,a,s,i,o)}}},mZ={kernelName:ms,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n,s=ar(a,r.shape),i=g5(r.shape,s)[1],o=Ot(i);return{x:()=>{let l=r.shape.slice();s.forEach(u=>{l[u]=1});let c=q(e,l);return Ne(B(c,Er(r.shape,"float32")),o)}}}},AZ={kernelName:As,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{axis:a}=r,[s,i]=t,o=ar(a,s.shape),l=Ab(e,i,s,o);return{x:()=>l.x()}}},yZ={kernelName:ys,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>B(e,ye(Us(n,r),"float32")),b:()=>B(e,ye(tr(n,r),"float32"))}}},gZ={kernelName:hu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Me(e,s,r.shape)}}},xZ={kernelName:ho,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=gt(n.shape,r.shape);return{a:()=>{let s=zt(n.shape,a);return s.length>0?q(Ee(e,s),n.shape):e},b:()=>{let s=B(e,vt(Vo(Ne(n,r)))),i=zt(r.shape,a);return i.length>0?q(Ee(s,i),r.shape):s}}}},wZ={kernelName:gs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=gt(n.shape,r.shape);return{a:()=>{let s=B(e,ye(r,"float32")),i=zt(n.shape,a);return i.length>0?q(Ee(s,i),n.shape):s},b:()=>{let s=B(e,ye(n,"float32")),i=zt(r.shape,a);return i.length>0?q(Ee(s,i),r.shape):s}}}},_Z={kernelName:po,gradFunc:e=>({x:()=>vt(e)})},bZ={kernelName:xs,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Rt(n.shape,"float32")}}},vZ={kernelName:go,gradFunc:e=>({x:()=>qe(e)})},kZ={kernelName:xo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:r}=n;return rr(e,r).map(a=>()=>a)}},gb={kernelName:ws,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Me(e,s,r.shape)}}},IZ={kernelName:_s,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,r,a]=t,s=n,i=r,o=gt(s.shape,i.shape);return{a:()=>{let l=ye(i,"float32"),c=B(e,B(l,Yr(s,_e(l,Se(1))))),u=zt(s.shape,o);return u.length>0&&(c=Ee(c,u)),q(c,s.shape)},b:()=>{let l=tr(s,0),c=fn(l,kn(s),qe(s)),u=B(e,B(a,c)),h=zt(i.shape,o);return h.length>0&&(u=Ee(u,h)),q(u,i.shape)}}}},NZ={kernelName:bs,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,r]=t,a=tr(n,0);return{x:()=>fn(a,e,B(e,r)),alpha:()=>{let s=fn(a,qe(e),B(e,n)),i=zt(r.shape,e.shape);return i.length>0&&(s=Ee(s,i)),q(s,r.shape)}}}},SZ={kernelName:as,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=gt(n.shape,r.shape);return{a:()=>{let s=Ne(e,ye(r,"float32")),i=zt(n.shape,a);return i.length>0?q(Ee(s,i),n.shape):s},b:()=>{let s=B(e,ye(n,"float32")),i=zt(r.shape,a);i.length>0&&(s=q(Ee(s,i),r.shape));let o=ht(r);return vt(Ne(s,ye(o,"float32")))}}}},TZ={kernelName:_o,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ne(e,vt(ht(n)))}}},EZ={kernelName:Is,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=B(Us(n,6),Xo(n));return{x:()=>B(e,ye(r,"float32"))}}},CZ={kernelName:vs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,ye(Xo(n),"float32"))}}},RZ={kernelName:bo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>q(e,n.shape)}}},FZ={kernelName:ks,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>P.runKernel(Ph,a,n)}}},MZ={kernelName:pu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>P.runKernel(zh,a,n)}}},$Z={kernelName:Ns,gradFunc:(e,t,n)=>{let{dims:r}=n,a=ar(r,e.shape);return{x:()=>Nn(e,a)}}},DZ={kernelName:Ss,gradFunc:e=>({x:()=>qe(e)})},OZ={kernelName:Ts,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>vt(Ne(e,B(Yr(n,1.5),2)))}}},zZ={kernelName:ko,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ye(qe(n),"float32"),t:()=>B(e,ye(n,e.dtype)),e:()=>B(e,ye(Tu(n),e.dtype))}}},PZ={kernelName:Io,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=tr(n,Se(0)),a=Se(M5),s=Se($5),i=B(e,s),o=B(B(e,a),Wn(ye(n,"float32")));return fn(r,i,o)}}}},LZ={kernelName:Cs,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(n,_e(Se(1),n)))}}},WZ={kernelName:To,gradFunc:e=>({x:()=>qe(e)})},BZ={kernelName:Es,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(Iu(ye(n,"float32")),e)}}},VZ={kernelName:So,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(Yh(ye(n,"float32")),e)}}},UZ={kernelName:No,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{begin:a,size:s}=n,i=r.shape,[o,l]=o5(r,a,s),c=[];for(let u=0;uZr(e,c)}}},HZ={kernelName:Ms,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{dim:a}=n,s=!0,i=B(e,r);return{logits:()=>_e(i,B(Ee(i,[a],s),r))}}},jZ={kernelName:Eo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,Jn(n))}}},xb={kernelName:fu,gradFunc:(e,t,n)=>{let{blockShape:r,paddings:a}=n;return{x:()=>vu(e,r,a)}}},wb={kernelName:Co,gradFunc:(e,t,n)=>{let{axis:r}=n;return{x:()=>dt(e,r)}}},GZ={kernelName:Rs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ne(e,B(Kt(ye(n,"float32")),2))}}},qZ={kernelName:mu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(ye(n,"float32"),2))}}},XZ={kernelName:$s,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=Se(2);return{a:()=>B(e,B(a,_e(n,r))),b:()=>B(e,B(a,_e(r,n)))}}},KZ={kernelName:ma,gradFunc:e=>({x:()=>qe(e)})},ZZ={kernelName:Ds,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=gt(n.shape,r.shape);return{a:()=>{let s=e,i=zt(n.shape,a);return i.length>0&&(s=Ee(s,i)),q(s,n.shape)},b:()=>{let s=e,i=zt(r.shape,a);return i.length>0&&(s=Ee(s,i)),q(vt(s),r.shape)}}}},YZ={kernelName:Fs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,a=r.shape.slice(),{axis:s}=n;ar(s,r.shape).forEach(l=>{a[l]=1});let i=q(e,a),o=B(i,Er(r.shape,"float32"));return{x:()=>o}}},JZ={kernelName:Fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ne(e,ht(Iu(n)))}}},QZ={kernelName:Os,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(_e(Se(1),ht(n)),e)}}},eY={kernelName:fa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{reps:a}=n;return{x:()=>{let s=qe(r);if(r.rank===1)for(let i=0;i{let r=n,{perm:a}=r,s=Vm(a);return{x:()=>it(e,s)}}},nY={kernelName:$o,gradFunc:(e,t,n)=>{let r=n,{axis:a}=r;return{value:()=>Sn(e,a)}}},aY={kernelName:Au,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>rY(e,n)}}};function rY(e,t){let n=Tr(t,qe(t)),r=Vs(e,n),a=xa(t,Se(0,"int32")),s=r.rank-a.rank;for(let o=0;o({x:()=>qe(e)})},iY=[pb,iK,oK,lK,uK,cK,hK,dK,pK,fK,mK,AK,xK,bK,vK,kK,IK,NK,SK,TK,EK,CK,FK,RK,DK,OK,zK,PK,LK,WK,SZ,BK,VK,UK,HK,jK,qK,GK,XK,KK,ZK,YK,JK,QK,eZ,tZ,nZ,rZ,aZ,oZ,yb,yb,lZ,hZ,fZ,mZ,AZ,yZ,gZ,xZ,wZ,_Z,bZ,vZ,kZ,gb,gb,IZ,NZ,TZ,EZ,CZ,RZ,FZ,MZ,$Z,DZ,OZ,zZ,PZ,LZ,WZ,BZ,VZ,UZ,HZ,jZ,xb,xb,wb,wb,GZ,XZ,qZ,KZ,ZZ,YZ,JZ,QZ,eY,tY,nY,aY,sY];for(let e of iY)ig(e);var Jg={};Pe(Jg,{maxNorm:()=>oY,minMaxNorm:()=>cY,nonNeg:()=>uY,unitNorm:()=>lY});var MA;function Pt(){return MA==null&&(MA=_f().epsilon()),MA}function gr(){return"channelsLast"}var aa=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,aa.prototype)}},xr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,xr.prototype)}},U=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,U.prototype)}},Oe=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Oe.prototype)}},_b=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,_b.prototype)}},hY=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,hY.prototype)}};function ui(e,t){if(Array.isArray(e)){let n=[];for(let r=0;rn.toUpperCase())}var ir={};function $A(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function DA(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>DA(t));else{let t=Object.keys(e);for(let n of t){let r=e[n];r!=null&&typeof r=="object"&&(!Array.isArray(r)&&r.type==="ndarray"&&typeof r.value=="number"?e[n]=r.value:DA(r))}}}function dc(e,t={},n={},r="object",a=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in ir)i=ir[s];else if(i=t[s],i==null)throw new U(`Unknown ${r}: ${e}. This may be due to one of the following reasons: 1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. 2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new U(`${r}: Improper config format: ${JSON.stringify(s)}. 'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in ir?[o,l]=ir.className:i in t&&([o,l]=t[i]),o==null)throw new U(`Unknown ${r}: ${i}. This may be due to one of the following reasons: 1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. 2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let p of Object.keys(ir))c[p]=ir[p];for(let p of Object.keys(n))c[p]=n[p];let u=s.config;u.customObjects=c;let h=Object.assign({},ir);for(let p of Object.keys(n))ir[p]=n[p];DA(s.config);let d=l(o,s.config,n,a);return ir=Object.assign({},h),d}else{let c=Object.assign({},ir);for(let h of Object.keys(n))ir[h]=n[h];let u=new o(s.config);return ir=Object.assign({},c),u}}}function dY(e,t){return et?1:0}function pp(e,t){return-1*dY(e,t)}function Ra(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function pY(e){if(e==null)throw new U(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function hi(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new U(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function OA(e,t,n=0,r=Infinity){return Wr(n>=0),Wr(r>=n),Array.isArray(e)&&e.length>=n&&e.length<=r&&e.every(a=>typeof a===t)}function Gt(e,t){Array.isArray(e)?(k.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,r)=>Gt(n,`element ${r+1} of ${t}`))):k.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${vb(e)}.`)}function vb(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>vb(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function fY(e,t){let n=k.now(),r;return(...a)=>{let s=k.now();return s-nKt(Ee(B(e,e),t,!0)))}var pc=class extends re.Serializable{getConfig(){return{}}},PA=class extends pc{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>{let t=zA(e,this.axis),n=pn(t,0,this.maxValue);return B(e,Ne(n,ie(Pt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};PA.className="MaxNorm";re.registerClass(PA);var LA=class extends pc{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>Ne(e,ie(Pt(),zA(e,this.axis))))}getConfig(){return{axis:this.axis}}};LA.className="UnitNorm";re.registerClass(LA);var WA=class extends pc{apply(e){return Cr(e)}};WA.className="NonNeg";re.registerClass(WA);var BA=class extends pc{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>{let t=zA(e,this.axis),n=ie(B(this.rate,pn(t,this.minValue,this.maxValue)),B(1-this.rate,t));return B(e,Ne(n,ie(Pt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};BA.className="MinMaxNorm";re.registerClass(BA);var Ib={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Lt(e){return $A(e)}function Nb(e,t={}){return dc(e,re.SerializationMap.getMap().classNameMap,t,"constraint")}function Wt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in Ib?Ib[e]:e,config:{}};return Nb(t)}else return e instanceof pc?e:Nb(e)}function oY(e){return new PA(e)}function lY(e){return new LA(e)}function uY(){return new WA}function cY(e){return new BA(e)}var Qg={};Pe(Qg,{constant:()=>yY,glorotNormal:()=>kY,glorotUniform:()=>vY,heNormal:()=>IY,heUniform:()=>NY,identity:()=>_Y,leCunNormal:()=>SY,leCunUniform:()=>TY,ones:()=>AY,orthogonal:()=>EY,randomNormal:()=>xY,randomUniform:()=>gY,truncatedNormal:()=>wY,varianceScaling:()=>bY,zeros:()=>mY});var CY=["channelsFirst","channelsLast"],RY=["nearest","bilinear"],FY=["valid","same","causal"],MY=["max","avg"],$Y=["sum","mul","concat","ave"],bl=new Map;function Ct(e){hi(CY,"DataFormat",e)}function DY(e){hi(RY,"InterpolationFormat",e)}function jn(e){hi(FY,"PaddingMode",e)}function Sb(e){hi(MY,"PoolMode",e)}var fc=[],Tb="/";function di(e,t){fc.push(e);try{let n=t();return fc.pop(),n}catch(n){throw fc.pop(),n}}function OY(){return fc.length===0?"":fc.join(Tb)+Tb}function Cb(e){if(!Eb(e))throw new Error("Not a valid tensor name: '"+e+"'");return OY()+e}function Rb(e){if(!Eb(e))throw new Error("Not a valid tensor name: '"+e+"'");bl.has(e)||bl.set(e,0);let t=bl.get(e);if(bl.set(e,bl.get(e)+1),t>0){let n=`${e}_${t}`;return bl.set(n,1),n}else return e}var zY=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function Eb(e){return!!e.match(zY)}function PY(e){return e===parseInt(e.toString(),10)}function Fa(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let r=1;for(let a=t;a{if(e.shape.length!==2)throw new U(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Ac(e,1);return VA(n,[1,t,1])})}function WY(e){let t=[Fa(e.shape)];return e.reshape(t)}function BY(e){if(e.rank<=1)throw new U(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Fa(e.shape,1)];return e.reshape(t)}function pi(e,t,n){return H(()=>{switch(e.rank){case 1:return dd(e,t,n);case 2:return Xf(e,[t,0],[n,e.shape[1]]);case 3:return pd(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return Mu(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Me(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Me(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new U(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function UA(e,t,n){return H(()=>{switch(e.rank){case 1:return dd(e,t,n);case 2:return Xf(e,[0,t],[e.shape[0],n]);case 3:return pd(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return Mu(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new U(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function fp(e,t,n,r){return H(()=>{switch(e.rank){case 1:return dd(e,t,n);case 2:switch(r){case 1:return pi(e,t,n);case 2:return UA(e,t,n);default:throw new U(`The axis is not within the rank of the tensor ${r}`)}case 3:switch(r){case 1:return pi(e,t,n);case 2:return pd(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return UA(e,t,n);default:throw new U(`The axis is not within the rank of the tensor ${r}`)}case 4:switch(r){case 1:return pi(e,t,n);case 2:return Mu(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return Mu(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return UA(e,t,n);default:throw new U(`The axis is not within the rank of the tensor ${r}`)}default:throw new U(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function HA(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),dt(e,t)}function Mb(e,t){switch(e.rank){case 1:return wg([e,t]);case 2:return Zl([e,t],0);case 3:return _g([e,t],0);case 4:return bg([e,t],0);default:throw new U(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function VA(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new U(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return ga(e,t)}function mp(e,t=0,n=1,r,a){return Dg(e,t,n,r,a)}function Br(e,t,n,r){if(e.rank<2||t.rank<2)throw new Oe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let a=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(a!==s)throw new Oe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let a=!1,s=!1;return _a.matMul({a:e,b:t,transposeA:a,transposeB:s,bias:r?jA(e.rank,r,gr()):null,activation:n})}else{let a=e.shape.slice(),s=a.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),c=[...i,o],u=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=t.transpose(u).reshape([l,-1]);let h=[...a,...c],d=!1,p=!1;return _a.matMul({a:e,b:t,transposeA:d,transposeB:p,bias:r?jA(e.rank,r,gr()):null,activation:n}).reshape(h)}}function $b(e,t,n){return H(()=>(Array.isArray(t)?t=Qt(t,"int32"):t=t.toInt(),Vs(e,t,n)))}function yc(e){return B(e,e)}function jA(e,t,n){let r=t.shape;if(t.rank!==1&&t.rank!==e)throw new U(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1,1]):t.reshape([1,r[3],r[0],r[1],r[2]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===4){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1]):t.reshape([1,r[2],r[0],r[1]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===3){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1]):t.reshape([1,r[1],r[0]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,r[0]]):t.reshape([1].concat(r))}else if(e<3)return t;throw new U(`Unsupported input rank by biasAdd: ${t.rank}`)}function Vr(e,t,n){return H(()=>(n==null&&(n=gr()),Ct(n),e.add(jA(e.rank,t,n))))}function VY(e,t=1){if(t!==1)throw new Oe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Bo(e)}function UY(e){return H(()=>Ne(e,Dt(e).add(1)))}function Db(e,t,n,r){return H(()=>Wg(e,t,n,r))}function HY(e){return H(()=>{let t=ie(.5,B(.2,e));return pn(t,0,1)})}function gc(e,t,n=!1){return n?e():t()}var jY=["fanIn","fanOut","fanAvg"],GY=["normal","uniform","truncatedNormal"];function qY(e){hi(jY,"FanMode",e)}function XY(e){hi(GY,"Distribution",e)}var or=class extends re.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},GA=class extends or{apply(e,t){return Rt(e,t)}};GA.className="Zeros";re.registerClass(GA);var Ap=class extends or{apply(e,t){return Er(e,t)}};Ap.className="Ones";re.registerClass(Ap);var qA=class extends or{constructor(e){super();if(typeof e!="object")throw new U(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new U(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return H(()=>B(Se(this.value),Er(e,t)))}getConfig(){return{value:this.value}}};qA.className="Constant";re.registerClass(qA);var XA=class extends or{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Go(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};XA.className="RandomUniform";re.registerClass(XA);var KA=class extends or{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`randomNormal does not support dType ${t}.`);return mp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};KA.className="RandomNormal";re.registerClass(KA);var ZA=class extends or{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`truncatedNormal does not support dType ${t}.`);return Ad(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};ZA.className="TruncatedNormal";re.registerClass(ZA);var YA=class extends or{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return H(()=>{if(e.length!==2||e[0]!==e[1])throw new U("Identity matrix initializer can only be used for 2D square matrices.");return B(this.gain,Pf(e[0]))})}getConfig(){return{gain:this.gain}}};YA.className="Identity";re.registerClass(YA);function KY(e,t="channelsLast"){let n,r;if(Ct(t),e.length===2)n=e[0],r=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let a=Fa(e,2);n=e[1]*a,r=e[0]*a}else if(t==="channelsLast"){let a=Fa(e,0,e.length-2);n=e[e.length-2]*a,r=e[e.length-1]*a}}else{let a=Fa(e);n=Math.sqrt(a),r=Math.sqrt(a)}return[n,r]}var yn=class extends or{constructor(e){super();if(e.scale<0)throw new U(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,qY(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,XY(this.distribution),this.seed=e.seed}apply(e,t){let n=KY(e),r=n[0],a=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,r):this.mode==="fanOut"?s/=Math.max(1,a):s/=Math.max(1,(r+a)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`${this.getClassName()} does not support dType ${t}.`);return Ad(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return Go(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};yn.className="VarianceScaling";re.registerClass(yn);var yp=class extends yn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return yn.className}};yp.className="GlorotUniform";re.registerClass(yp);var gp=class extends yn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return yn.className}};gp.className="GlorotNormal";re.registerClass(gp);var xp=class extends yn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return yn.className}};xp.className="HeNormal";re.registerClass(xp);var wp=class extends yn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return yn.className}};wp.className="HeUniform";re.registerClass(wp);var _p=class extends yn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return yn.className}};_p.className="LeCunNormal";re.registerClass(_p);var bp=class extends yn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return yn.className}};bp.className="LeCunNormal";re.registerClass(bp);var JA=class extends or{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Oe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return H(()=>{if(e.length<2)throw new Oe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,r=mp(n,0,1,"float32"),a=Vg.gramSchmidt(r);return e[0]>e[1]&&(a=a.transpose()),B(this.gain,a)})}getConfig(){return{gain:this.gain,seed:this.seed}}};JA.className="Orthogonal";re.registerClass(JA);var Ob={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function zb(e,t={}){return dc(e,re.SerializationMap.getMap().classNameMap,t,"initializer")}function Nt(e){return $A(e)}function wt(e){if(typeof e=="string"){let t=e in Ob?Ob[e]:e;if(t==="GlorotNormal")return new gp;if(t==="GlorotUniform")return new yp;if(t==="HeNormal")return new xp;if(t==="HeUniform")return new wp;if(t==="LeCunNormal")return new _p;if(t==="LeCunUniform")return new bp;{let n={};return n.className=t,n.config={},zb(n)}}else return e instanceof or?e:zb(e)}function mY(){return new GA}function AY(){return new Ap}function yY(e){return new qA(e)}function gY(e){return new XA(e)}function xY(e){return new KA(e)}function wY(e){return new ZA(e)}function _Y(e){return new YA(e)}function bY(e){return new yn(e)}function vY(e){return new yp(e)}function kY(e){return new gp(e)}function IY(e){return new xp(e)}function NY(e){return new wp(e)}function SY(e){return new _p(e)}function TY(e){return new bp(e)}function EY(e){return new JA(e)}var e0={};Pe(e0,{Layer:()=>Ze,RNN:()=>Fr,RNNCell:()=>xc,activation:()=>hJ,add:()=>wJ,alphaDropout:()=>rQ,average:()=>_J,averagePooling1d:()=>QA,averagePooling2d:()=>ey,averagePooling3d:()=>ty,avgPool1d:()=>CJ,avgPool2d:()=>FJ,avgPool3d:()=>$J,avgPooling1d:()=>RJ,avgPooling2d:()=>MJ,avgPooling3d:()=>DJ,batchNormalization:()=>SJ,bidirectional:()=>KJ,concatenate:()=>bJ,conv1d:()=>rJ,conv2d:()=>aJ,conv2dTranspose:()=>sJ,conv3d:()=>iJ,convLstm2d:()=>jJ,convLstm2dCell:()=>GJ,cropping2D:()=>lJ,dense:()=>dJ,depthwiseConv2d:()=>cJ,dot:()=>NJ,dropout:()=>pJ,elu:()=>YY,embedding:()=>xJ,flatten:()=>mJ,gaussianDropout:()=>nQ,gaussianNoise:()=>tQ,globalAveragePooling1d:()=>OJ,globalAveragePooling2d:()=>zJ,globalMaxPool1d:()=>YJ,globalMaxPool2d:()=>JJ,globalMaxPooling1d:()=>Pb,globalMaxPooling2d:()=>Lb,gru:()=>LJ,gruCell:()=>WJ,input:()=>s0,inputLayer:()=>ZY,layerNormalization:()=>TJ,leakyReLU:()=>QY,lstm:()=>BJ,lstmCell:()=>VJ,masking:()=>aQ,maxPool1d:()=>QJ,maxPool2d:()=>eQ,maxPooling1d:()=>Wb,maxPooling2d:()=>Bb,maxPooling3d:()=>PJ,maximum:()=>vJ,minimum:()=>kJ,multiply:()=>IJ,permute:()=>gJ,prelu:()=>eJ,reLU:()=>JY,repeatVector:()=>AJ,reshape:()=>yJ,rnn:()=>qJ,separableConv2d:()=>oJ,simpleRNN:()=>UJ,simpleRNNCell:()=>HJ,softmax:()=>tJ,spatialDropout1d:()=>fJ,stackedRNNCells:()=>XJ,thresholdedReLU:()=>nJ,timeDistributed:()=>ZJ,upSampling2d:()=>uJ,zeroPadding2d:()=>EJ});var sQ=0;function Vb(){return sQ++}var vp={};function kp(e=""){return e in vp||(vp[e]=0),vp[e]+=1,e+vp[e].toString()}function ny(e){return Array.isArray(e)&&Array.isArray(e[0])}function Ip(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Le(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new U(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function ft(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new U(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Np(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((r,a)=>r*a);return t}var Ub="Variable",t0=class{constructor(e,t="float32",n=Ub,r=!0,a=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=Vb(),n=n==null?Ub:n,this.originalName=Cb(n),this.name=Rb(this.originalName),this.trainable_=r,this.constraint=a,this.val=zg(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),iQ(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function iQ(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function ry(e){return e.map(t=>t.read())}function ay(e){e.forEach(t=>{t[0].write(t[1])})}var Ut=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},mr=class{constructor(e,t,n,r,a,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=r,this.callArgs=a,this.outputTensorIndex=i,this.id=Vb(),s!=null&&(this.originalName=Cb(s),this.name=Rb(this.originalName)),this.rank=t.length}},oQ=0,Sp=class{constructor(e,t){this.callArgs=t,this.id=oQ++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},lQ=0,Ze=class extends re.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=lQ++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=sa(n)+"_"+kp(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let a=null;e.batchSize!=null&&(a=e.batchSize),n=[a].concat(e.inputShape)}this.batchInputShape=n;let r=e.dtype;r==null&&(r=e.inputDType),r==null&&(r="float32"),this.dtype=r}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new xr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new U(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return An(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return An(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new aa(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new aa(`Layer ${this.name} is not connected, no input to return.`);return An(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new aa(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new aa(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return An(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=yt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=yt(this.inputSpec);if(e.length!==t.length)throw new U(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;na.maxNDim)throw new U(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${a.maxNDim}, found ndim=${s}`);if(a.minNDim!=null&&s=0?i[l]:i[i.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new U(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${i}.`)}}if(a.shape!=null)for(let i=0;i{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of yt(e))s.push(i.shape);this.build(An(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&a&&(this._refCount=1)}if(this.assertInputCompatibility(e),a){let s=this.call(e,t),i=yt(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=An(o),this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=uQ(e),i=this.computeOutputShape(s),o,l=cQ(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((c,u)=>new mr(l,c,this,yt(e),t,this.name,u)):o=new mr(l,i,this,yt(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,r)=>{n!=null&&e[r]!=null&&e[r]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new aa(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new aa(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new xr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Np(this.weights)}build(e){this.built=!0}getWeights(e=!1){return ry(e?this.trainableWeights:this.weights)}setWeights(e){H(()=>{let t=this.weights;if(t.length!==e.length)throw new U(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],r=ry(t);for(let a=0;aa.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=yt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,r,a,s,i=null){let o=yt(e);t=yt(t),n=yt(n),r=yt(r),a=Ip(a),s=Ip(s);let l=[],c=[],u=[];for(let h of o)l.push(h.sourceLayer),c.push(h.nodeIndex),u.push(h.tensorIndex);new Sp({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:r,inputShapes:a,outputShapes:s},i);for(let h=0;he.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function uQ(e){e=yt(e);let t=[];for(let n of e)t.push(n.shape);return An(t)}function cQ(e){return"float32"}function Hb(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let r=t.inboundNodes[n];if(r.inboundLayers.length===0)return r.inputTensors;{let a=[];for(let s=0;s0){let a=await Promise.all(t);for(let s=0;sie(this.totals[r],B(a,n)));this.totals[r]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:H(()=>{let r=B(Ne(1,this.seen),this.totals[n]);t[n]=r,this.totals[n].dispose(),Vt(t[n])}))}},r0=class extends Il{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let a in this.history){let s=this.history[a];for(let i=0;inew a0(n,t))}var lr=class{constructor(){}static registerCallbackConstructor(e,t){k.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),lr.checkForDuplicate(t),lr.constructors[e]==null&&(lr.constructors[e]=[]),lr.constructors[e].push(t)}static checkForDuplicate(e){for(let t in lr.constructors)lr.constructors[+t].forEach(n=>{if(n===e)throw new U("Duplicate callback constructor.")})}static clear(){lr.constructors={}}static createCallbacks(e){let t=[];for(let n in lr.constructors){let r=+n;e>=r&&t.push(...lr.constructors[r])}return t.map(n=>new n)}};lr.constructors={};function Kb(e,t,n,r,a,s,i,o,l){let c=new r0,u=[new dQ,...lr.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let h=new n0(u);return h.setParams({epochs:n,initialEpoch:r,samples:a,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:h,history:c}}function _r(e,t={},n=!1){return dc(e,re.SerializationMap.getMap().classNameMap,t,"layer",n)}function Tp(e,t){return H(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Ee(yc(e),t,!0),r=Nu(n.shape,Pt()),a=Kt(Tr(n,r));return Ne(e,a)})}function fi(e,t){return H(()=>kt(yc(_e(t,e)),-1))}function Ep(e,t){return H(()=>kt(Dt(_e(t,e)),-1))}function Nl(e,t){return H(()=>{let n=_e(e,t),r=pn(Dt(e),Pt(),Number.MAX_VALUE),a=Dt(Ne(n,r));return B(100,kt(a,-1))})}function pQ(e,t){return H(()=>{let n=pn(t,Pt(),Number.MAX_VALUE),r=kn(ie(1,n)),a=pn(e,Pt(),Number.MAX_VALUE),s=kn(ie(1,a));return kt(yc(_e(r,s)),-1)})}function fQ(e,t){return H(()=>{let n=Tr(0,_e(1,B(e,t)));return kt(yc(n),-1)})}function mQ(e,t){return H(()=>{let n=Tr(0,_e(1,B(e,t)));return kt(n,-1)})}function AQ(e,t){return H(()=>{let n=Ee(B(e,t),-1),r=Bn(B(_e(1,e),t),-1);return Tr(0,ie(1,_e(r,n)))})}function yQ(e,t){return H(()=>{let n=Math.log(2),r=_e(t,e),a=_e(ie(r,Uo(B(-2,r))),n);return kt(a,-1)})}function wc(e,t,n=!1){return H(()=>{if(n)t=$u(t);else{let r=Ee(t,t.shape.length-1,!0);t=Ne(t,r)}return t=pn(t,Pt(),1-Pt()),vt(Ee(B(e.toFloat(),kn(t)),t.shape.length-1))})}function Cp(e,t,n=!1){return H(()=>{let r=Vo(WY(e)).toInt();t=pn(t,Pt(),1-Pt());let a=t.shape,s=Po(r,a[a.length-1]).reshape(a);return wc(s,t,n)})}function gQ(e,t){if(!k.arraysEqual(e.shape,t.shape))throw new U(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return H(()=>{let n=t.relu(),r=t.abs().neg();return n.sub(t.mul(e)).add(r.exp().log1p())})}function Rp(e,t){return H(()=>{let n;return n=pn(t,Pt(),1-Pt()),n=kn(Ne(n,_e(1,n))),kt(gQ(e,n),-1)})}function xQ(e,t){return H(()=>{let n=pn(e,Pt(),1),r=pn(t,Pt(),1);return Ee(B(e,kn(Ne(n,r))),-1)})}function wQ(e,t){return H(()=>{let n=kn(ie(Pt(),t));return kt(_e(t,B(e,n)),-1)})}function sy(e,t){return H(()=>{let n=Tp(e,-1),r=Tp(t,-1),a=B(n,r);return vt(Ee(a,-1))})}var Fp={meanSquaredError:fi,meanAbsoluteError:Ep,meanAbsolutePercentageError:Nl,meanSquaredLogarithmicError:pQ,squaredHinge:fQ,hinge:mQ,categoricalHinge:AQ,logcosh:yQ,categoricalCrossentropy:wc,sparseCategoricalCrossentropy:Cp,binaryCrossentropy:Rp,kullbackLeiblerDivergence:xQ,poisson:wQ,cosineProximity:sy};function iy(e){if(typeof e=="string"){if(e in Fp)return Fp[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new U(t)}else return e}function oy(e,t){return H(()=>{let n=B(.5,In(t)),r=mc(tr(t,n),e.dtype);return kt(ya(e,r),-1)})}function ly(e,t){return H(()=>mc(ya(_u(e,-1),_u(t,-1)),"float32"))}function Zb(e,t){return H(()=>nr(e.equal(1),t.equal(1)).sum().cast("float32"))}function _Q(e,t){return H(()=>nr(e.equal(1),t.equal(0)).sum().cast("float32"))}function bQ(e,t){return H(()=>nr(e.equal(0),t.equal(1)).sum().cast("float32"))}function Yb(e,t){return H(()=>{let n=Zb(e,t),r=bQ(e,t),a=n.add(r);return fn(tr(a,0),n.div(a),0).cast("float32")})}function vQ(e,t){return H(()=>{let n=Zb(e,t),r=_Q(e,t),a=n.add(r);return fn(tr(a,0),n.div(a),0).cast("float32")})}function Jb(e,t){return Rp(e,t)}function Qb(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),ya(e,t).asType("float32")}var kQ=fi,IQ=fi,NQ=Ep,SQ=Ep,TQ=Nl,EQ=Nl,uy=wc,CQ=sy,e3=Cp,Mp={binaryAccuracy:oy,categoricalAccuracy:ly,precision:Yb,categoricalCrossentropy:uy,sparseCategoricalCrossentropy:e3,mse:kQ,MSE:IQ,mae:NQ,MAE:SQ,mape:TQ,MAPE:EQ,cosine:CQ};function RQ(e){if(typeof e=="string"&&e in Mp)return Mp[e];if(typeof e!="string"&&e!=null)return e;throw new U(`Unknown metric ${e}`)}function $p(e){if(Wr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Fp))if(Fp[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Mp))if(Mp[n]===e){t=n;break}return t!==void 0?t:e.name}}function FQ(e){let t={Adagrad:()=>js.adagrad(.01),Adadelta:()=>js.adadelta(1,.95,Pt()),Adam:()=>js.adam(.001,.9,.999,Pt()),Adamax:()=>js.adamax(.002,.9,.999,Pt(),0),RMSProp:()=>js.rmsprop(.001,.9,0,Pt()),SGD:()=>js.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new U(`Unknown Optimizer ${e}`)}var t3=1*1024*1024;function n3(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!cy(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let r=JSON.stringify(e);r.length>t3&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${r.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${t3}.`)}}function cy(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!cy(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!cy(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function zQ(e,t,n,r=console.log){let a=$Q(e),s=["Layer (type)","Output shape","Param #"];a?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let i;if(!a){s.push("Receives inputs"),i=[];for(let u in e.nodesByDepth)i.push(...e.nodesByDepth[u])}r("_".repeat(t)),Dp(s,n,r),r("=".repeat(t));let o=e.layers;for(let u=0;u1||a.length===1&&a[0].inboundLayers.length>1){t=!1;break}r.push(...a)}if(t)for(let a of e.layers){let s=!1;for(let i of a.inboundNodes)if(r.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function Dp(e,t,n=console.log){let r="";for(let a=0;a0&&(r=r.slice(0,r.length-1)+" "),r+=e[a],r=r.slice(0,t[a]),r+=" ".repeat(t[a]-r.length);n(r)}function DQ(e,t,n){let r;try{r=JSON.stringify(e.outputShape)}catch(o){r="multiple"}let a=e.name,s=e.getClassName(),i=[`${a} (${s})`,r,e.countParams().toString()];Dp(i,t,n)}function OQ(e,t,n,r){let a;try{a=JSON.stringify(e.outputShape)}catch(u){a="multiple"}let s=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let h=0;hf.name),l=[],c=t.names();for(let f of o)c.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);r!=null&&(r.maxNumTensors=-Infinity,r.minNumTensors=Infinity);let u=o.join(",")+"|"+t.names().join(","),h,d;if(dy[u]==null){let f=LQ(i,t);h=f.sorted,d=f.recipientCounts,dy[u]=h,a3[u]=d}h=dy[u],d={},a||Object.assign(d,a3[u]);let p=new mi(t);for(let f=0;fr.maxNumTensors&&(r.maxNumTensors=N),N0,()=>"Expected at least one fetch, got none");let n=[],r={};if(e.length===1){let a=s3(e[0],t);n=a.sorted,r=a.recipientMap}else{let a=new Set;for(let s of e){let{sorted:i,recipientMap:o}=s3(s,t);for(let l of i)a.has(l.name)||(n.push(l),a.add(l.name));for(let l in o)r[l]==null&&(r[l]=new Set),o[l].forEach(c=>r[l].add(c))}}return{sorted:n,recipientCounts:BQ(r)}}function BQ(e){let t={};for(let n in e)t[n]=e[n].size;return t}function s3(e,t){let n=new Set,r=[],a={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),r.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let c of o.inputs)a[c.name]==null&&(a[c.name]=new Set),a[c.name].add(o.name),!n.has(c.name)&&s.push(c)}}return{sorted:r,recipientMap:a}}function WQ(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let r=0;ry.name)}`);Ra(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let g=y.sourceLayer,w=y.nodeIndex,x=y.tensorIndex;this.outputLayers.push(g),this.outputLayersNodeIndices.push(w),this.outputLayersTensorIndices.push(x)}for(let y of this.inputs){let g=y.sourceLayer,w=y.nodeIndex,x=y.tensorIndex;Wr(w===0,"input layer has >1 nodes"),Wr(x===0,"input layer has >1 tensors"),this.inputLayers.push(g),this.inputLayersNodeIndices.push(w),this.inputLayersTensorIndices.push(x)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;yy.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},r={},a={},s={},i=[],o=(y,g,w,x,_,b)=>{(x==null||_==null||b==null)&&(x=y.sourceLayer,_=y.nodeIndex,b=y.tensorIndex);let T=x.inboundNodes[_];if(w.indexOf(T)!==-1)throw new xr(`The tensor ${y.name} at layer "${x.name}" is part of a cycle.`);if(g.indexOf(T)!==-1)return;this.containerNodes.add(Ur.nodeKey(x,_)),x.id in s||(s[x.id]=Object.keys(s).length),w.indexOf(T)===-1&&w.push(T);let S=T.inboundLayers.length;for(let N=0;N=0;)w.splice(w.indexOf(T),1);i.push(T)},l=[],c=[];for(let y of this.outputs)o(y,l,c);let u=i.slice().reverse();for(let y of u){n[y.id]=y,y.id in t||(t[y.id]=0);let g=t[y.id],w=r[y.outboundLayer.id]==null?0:r[y.outboundLayer.id];g=Math.max(g,w),r[y.outboundLayer.id]=g,a[y.outboundLayer.id]=y.outboundLayer,t[y.id]=g;for(let x=0;xparseInt(y,10)).sort(pp);this.layers=[];for(let y of p){let g=d[y];g.sort((w,x)=>{let _=s[w.id],b=s[x.id];return _b?1:0});for(let w of g)w instanceof Ur&&this.internalContainerRefs.push(w),this.layers.push(w)}this.layersByDepth=d,p=Object.keys(h).map(y=>parseInt(y,10)).sort(pp);let f=this.inputs.slice(),m=[];for(let y of p)for(let g of h[y]){let w=g.outboundLayer;if(w!=null){for(let x of g.inputTensors)if(f.indexOf(x)===-1)throw new xr(`Graph disconnected: cannot obtain value for tensor ${x} at layer "${w.name}". The following previous layers were accessed without issue: ${m}`);for(let x of g.outputTensors)f.push(x);m.push(w.name)}}this.nodesByDepth=h;let A=this.layers.map(y=>y.name);for(let y of A){let g=A.filter(w=>w===y).length;if(g!==1)throw new xr(`The name "${y}" is used ${g} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(A))}this.outboundNodes=[],this.inboundNodes=[],new Sp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new U("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},r=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new U(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,r++}let a=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)a.push([n[i],e[s]]);else if(t)throw new U(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new U(`${s.length} of ${r} weights are not set: ${s}`)}ay(a)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${im}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=hy(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return H(()=>{e=yt(e);let n=new mi;for(let r=0;r{e=yt(e);let n;return t==null?n=ui(null,e.length):n=yt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Ip(e);if(t.length!==this.inputLayers.length)throw new U(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;iparseInt(i,10)).sort(pp);if(r.length>1)for(let i of r){let o=this.nodesByDepth[i];for(let l of o){let c=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(c.id)!==-1)continue;let u=[];for(let f=0;fparseInt(o,10)).sort(pp);for(let o of r){let l=this.nodesByDepth[o];for(let c of l){let u=c.outboundLayer,h=c.inputTensors,d=c.outputTensors,p=new Array;for(let f of h)f.id in n&&p.push(n[f.id]);if(p.length===h.length){let f={},m,A,y,g;if(c.callArgs!=null&&(f=c.callArgs),p.length===1){let[w,x]=p[0];f.mask==null&&(f.mask=x),y=yt(u.call(w,f)),g=yt(u.computeMask(w,x)),m=[w],A=[x]}else m=p.map(w=>w[0]),A=p.map(w=>w[1]),f.mask==null&&(f.mask=A),y=yt(u.call(m,f)),g=yt(u.computeMask(m,A));if(u.activityRegularizer)throw new Oe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let w=0;w{let e=[];for(let t of this.layers)for(let n=0;n0){let f=[];for(let m=0;m0&&m.apply(An(y),g)}function l(m){let A=m.name,y=_r(m,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(r),a[A]=y,m.inboundNodes.forEach(g=>{if(!(g instanceof Array))throw new U(`Corrupted configuration, expected array for nodeData: ${g}`);i(y,g)})}let c=t.name,u=t.layers;for(let m of u)l(m);for(;!pY(s);)for(let m of u){let A=a[m.name];if(A.name in s){let y=s[A.name];delete s[A.name];for(let g of y)o(A,g)}}let h=[],d=[],p=t.inputLayers;for(let m of p){let A=m[0],y=m[1],g=m[2];Wr(A in a);let w=a[A].inboundNodes[y].outputTensors;h.push(w[g])}let f=t.outputLayers;for(let m of f){let A=m[0],y=m[1],g=m[2];Wr(A in a);let w=a[A].inboundNodes[y].outputTensors;d.push(w[g])}return new e({inputs:h,outputs:d,name:c})}get stateful(){if(this._stateful)throw new U("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){H(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function VQ(e,t,n){let r=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>null);if(r===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==r)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${r} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let a=[];return t.forEach(s=>{s in e?a.push(e[s]):a.push(null)}),a}else throw new Error(`The model has multiple (${r}) outputs, so ${n} must be either an array with ${r} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function i3(e,t){return VQ(e,t,"classWeight")}async function o3(e,t,n,r){if(t!=null||r!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let a=H(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await a.data());Re(a);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),Qt(i,"float32")}else return null}function UQ(e,t){return B(e,t)}var HQ=32;function u3(e,t){let n,r,a=t;n=a.xs,r=a.ys,k.assert(n!=null&&r!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=l3("input",e.inputNames,n),i=l3("output",e.outputNames,r),o=s[0].shape[0];k.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),k.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function l3(e,t,n){if(n instanceof tt)return[n];if(Array.isArray(n))return k.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let r=[];for(let a of t){if(n[a]==null)throw new U(`The feature data generated by the dataset lacks the required ${e} key '${a}'.`);r.push(n[a])}return r}}function jQ(e){if(e.length===3)throw new Oe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function qQ(e,t,n){let r=n.batchesPerEpoch!=null;if(k.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),k.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),k.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),k.assert(!r||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),k.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let a=n.validationData!=null,s,i;if(a)if(c3(n.validationData))k.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let A=jQ(n.validationData);s=A.xs,i=A.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;a?c=l.slice().concat(l.map(A=>"val_"+A)):c=l.slice();let u=Xb(n.callbacks,n.yieldEvery),h=n.verbose==null?1:n.verbose,{callbackList:d,history:p}=Kb(u,h,n.epochs,null,null,GQ(t,n),null,a,c);d.setModel(e),e.history=p,await d.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f=n.batchesPerEpoch:w.done){if(a){let x;c3(n.validationData)?x=yt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):x=yt(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?HQ:n.validationBatchSize,verbose:0}));for(let _=0;_0)throw new Oe("Verbose mode is not implemented yet.");k.assert(!r||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=XQ(t)?t:await t.iterator(),o=0,l=0;for(;r?l{if(c.value){let{xs:u,ys:h}=u3(e,c.value),d=u.concat(h),p=H(()=>a(d));if(Re(d),l===0)for(let m=0;mie(s[m],B(f,A))),l>0&&Re(y)}Re(p),o+=f,++l}return s}),c.done){r&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function vc(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(r=>pi(r,t,n-t)):pi(e,t,n-t)}function fy(e,t){return H(()=>e==null?null:Array.isArray(e)?e.map(n=>fy(n,t)):$b(e,t.dtype==="int32"?t:t.toInt()))}function my(e,t){let n=[],r=0,a=null;for(;r=e&&(a=e),n.push([r,a]),r=a;return n}async function ZQ(e,t,n,r,a,s,i,o,l,c,u,h,d,p,f){a==null&&(a=32),s==null&&(s=1),u==null&&(u=!0),d==null&&(d=0);let m=!1;if(l!=null&&c!=null&&(m=!0),f!=null&&(m=!0,p==null))throw new U("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let A=e.checkNumSamples(n,a,p,"steps_per_epoch"),y;A!=null&&(y=wr(0,A)),i==null&&(i=1);let{callbackList:g,history:w}=Kb(o,i,s,d,A,p,a,m,h);g.setModel(e),e.history=w,await g.onTrainBegin(),e.stopTraining_=!1;for(let x=d;x{let C=T[S][0],$=T[S][1],D=pi(b,C,$-C);N.batch=S,N.size=$-C;let O=fy(n,D),V=t(O);for(let W=0;W0){if(f=!0,r.validationData.length===2)i=r.validationData[0],o=r.validationData[1];else throw r.validationData.length===3?new Oe("validationData including sample weights is not supported yet."):new U(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${r.validationData} is invalid.`);let b=!0,T=await e.standardizeUserData(i,o,null,null,b,h);l=T[0],c=T[1],m=l.concat(c)}else if(r.validationSplit!=null&&r.validationSplit>0&&r.validationSplit<1){f=!0;let b=Math.floor(a[0].shape[0]*(1-r.validationSplit)),T=a[0].shape[0];l=vc(a,b,T),a=vc(a,0,b),c=vc(s,b,T),s=vc(s,0,b),m=l.concat(c)}else r.validationSteps!=null&&(f=!0);let A=a.concat(s).concat(u);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),g=e.getDedupedMetricsNames(),w,x;f?(e.makeTestFunction(),w=e.testFunction,x=g.slice().concat(g.map(b=>"val_"+b))):(w=null,m=[],x=g.slice());let _=Xb(r.callbacks,r.yieldEvery);return await ZQ(e,y,A,g,h,r.epochs,r.verbose,_,w,m,r.shuffle,x,r.initialEpoch,null,null)}finally{e.isTraining=!1,Ai(a,t),Ai(s,n),Ai(l,i),Ai(c,o),u!=null&&Re(u)}}function h3(e){let t=[];e instanceof tt&&(e=[e]);for(let n=0;nn.push(a.id));else if(t!=null)for(let a in t){let s=t[a];n.push(s.id)}let r=[];if(e instanceof tt)n.indexOf(e.id)===-1&&r.push(e);else if(Array.isArray(e))e.forEach(a=>{n.indexOf(a.id)===-1&&r.push(a)});else if(e!=null)for(let a in e){let s=e[a];n.indexOf(s.id)===-1&&r.push(s)}r.forEach(a=>{a.isDisposed||a.dispose()})}function JQ(e){return e instanceof tt}function Ay(e){return Array.isArray(e)}function d3(e){return!JQ(e)&&!Ay(e)}function p3(e,t,n,r=!0,a=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(Ay(e)&&e.length>0)i=!0;else if(d3(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new U(`Error when checking model ${a} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(d3(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new U(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(Ay(e)){if(e=e,e.length!==t.length)throw new U(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new U(`The model ${a} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=h3(s),n!=null)for(let i=0;i=0&&c!==u)throw new U(`Error when checking ${a}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function QQ(e,t,n){let r=Ra(e.map(s=>s.shape[0]));r.sort();let a=Ra(t.map(s=>s.shape[0]));if(a.sort(),r.length>1)throw new U(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(a.length>1)throw new U(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(r.length>0&&a.length>0&&!k.arraysEqual(r,a))throw new U(`Input Tensors should have the same number of samples as target Tensors. Found ${r[0]} input sample(s) and ${a[0]} target sample(s).`)}function eee(e,t,n){let r=[fi,Rp,wc];for(let a=0;a1)throw new U(`The model expects ${t.length} ${a} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(r=>n);{let r=[];for(let a of t){let s=n.hasOwnProperty(a)?n[a]:[];Array.isArray(s)||(s=[s]),r.push(s)}return r}}var nee="layers-model",Qr=class extends Ur{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new U("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");zQ(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=FQ(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Jr))throw new U("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new U(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(iy(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new U(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>iy(s))}else{let s=iy(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s{for(let s=0;s1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let r=tee(e.metrics,this.outputNames),a=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};di("metric",()=>{for(let s=0;s{let l="",c,u,h;for(let d of o){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let f=this.internalOutputShapes[s];f[f.length-1]===1||this.lossFunctions[s]===Rp?["accuracy","acc"].indexOf(d)!==-1?u=oy:["crossentropy","ce"].indexOf(d)!==-1&&(u=Jb):this.lossFunctions[s]===Cp?["accuracy","acc"].indexOf(d)!==-1?u=Qb:["crossentropy","ce"].indexOf(d)!==-1&&(u=e3):["accuracy","acc"].indexOf(d)!==-1?u=ly:["crossentropy","ce"].indexOf(d)!==-1&&(u=uy);let m;["accuracy","acc"].indexOf(d)!==-1?m="acc":["crossentropy","ce"].indexOf(d)!==-1&&(m="ce"),h=u,c=l+m}else h=RQ(d),c=l+$p(d);let p;di(c,()=>{p=h}),a(s,c,p)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let r=n.batchSize==null?32:n.batchSize;py(r);let a=!0,s=this.standardizeUserDataXY(e,t,a,r);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,r,n.verbose,n.steps);return An(l)}finally{Ai(s[0],e),Ai(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),KQ(this,e,t)}checkNumSamples(e,t,n,r="steps"){let a;if(n!=null){if(a=null,t!=null)throw new U(`If ${r} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?a=e[0].shape[0]:a=e.shape[0];else throw new U(`Either the input data should have a defined shape, or ${r} shoud be specified.`);return a}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new U("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),r=n?t:[t],a=this.retrieveSymbolicTensors(r),s=new mi;if(e instanceof tt&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new U(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;oi.name);for(let i=0;i0){let r=[];throw t.forEach((a,s)=>{a==null&&r.push(e[s])}),new U(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(r)}`)}return t}predictLoop(e,t=32,n=!1){return H(()=>{let r=this.checkNumSamples(e);if(n)throw new Oe("Verbose predictLoop() is not implemented yet.");let a=my(r,t),s=this.outputs.map(i=>[]);for(let i=0;i{let o=a[i][0],l=a[i][1],c=vc(e,o,l),u=[];if(Array.isArray(c))for(let d=0;ds[l].push(o));return An(s.map(i=>dt(i,0)))})}predict(e,t={}){let n=h3(e);f3(n,this.inputNames,this.feedInputShapes,!1);try{let r=t.batchSize==null?32:t.batchSize;return py(r),this.predictLoop(n,r)}finally{Ai(n,e)}}predictOnBatch(e){f3(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,r){if(this.optimizer_==null)throw new xr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let a=[];for(let s=0;s0&&e[0].shape[0]%r!=0)throw new U(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${r}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,r,a=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,a,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(r!=null){let c=i3(r,this.outputNames);l=[];for(let u=0;u{let s=this.checkNumSamples(t,n,a,"steps"),i=[];if(r>0)throw new Oe("Verbose mode is not implemented yet.");if(a!=null)throw new Oe("steps mode in testLoop() is not implemented yet");{let o=my(s,n),l=Qt(wr(0,s));for(let c=0;c1&&(a+=`_${bb(e.slice(0,n),r)}`),t.push(a)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let c=[];for(let p=0;p1&&p{d=ie(d,p)}),d},o=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>H(()=>{let t=[],n,r=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;lsa(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let r of t)if(typeof n[r]=="string")e[r]=sa(n[r]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[sa($p(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>sa($p(e)));{let e={};for(let t in this.metrics)e[t]=sa($p(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=_c(e.optimizer_config),n=_r(t),r;if(typeof e.loss=="string")r=ci(e.loss);else if(Array.isArray(e.loss))r=e.loss.map(s=>ci(s));else if(e.loss!=null){r={};for(let s in e.loss)r[s]=ci(e.loss[s])}let a;if(Array.isArray(e.metrics))a=e.metrics.map(s=>ci(s));else if(e.metrics!=null){a={};for(let s in e.metrics)a[s]=ci(e.metrics[s])}this.compile({loss:r,metrics:a,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=dn.getSaveHandlers(e);if(i.length===0)throw new U(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new U(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new U("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await dn.encodeWeights(this.getNamedWeights(t)),r=!1,a=null,s={modelTopology:this.toJSON(a,r),format:nee,generatedBy:`TensorFlow.js tfjs-layers v${im}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await dn.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=dn.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;n3(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){n3(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Qr.className="Model";re.registerClass(Qr);var m3=class extends Qr{};m3.className="Functional";re.registerClass(m3);async function ree(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let r=_c(n),a=_r(r,t);if(e.weightsManifest!=null){let s=await dn.loadWeights(e.weightsManifest,e.pathPrefix,a.weights.map(o=>o.originalName)),i={};for(let o of a.weights)i[o.originalName]=s[o.originalName];a.loadWeights(i),Re(s)}return a}async function see(e,t){if(t==null&&(t={}),typeof e=="string"){let n=dn.getLoadHandlers(e,t);if(n.length===0)n.push(dn.browserHTTPRequest(e,t));else if(n.length>1)throw new U(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return aee(e,void 0,t)}async function aee(e,t,n){if(n==null&&(n={}),e.load==null)throw new U("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let r=await e.load(),a=r.modelTopology;a.model_config!=null&&(a=a.model_config);let s=n.strict==null?!0:n.strict,i=r.weightData!=null&&r.weightSpecs!=null&&s,o=_r(_c(a),t,i),l=r.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),r.userDefinedMetadata!=null&&o.setUserDefinedMetadata(r.userDefinedMetadata),r.weightData!=null){if(r.weightSpecs==null)throw new U("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=iee(r.weightData,r.weightSpecs);o.loadWeights(c,s),o.optimizer!=null&&u.length>0&&await o.optimizer.setWeights(u),Re(c),Re(u.map(h=>h.tensor))}return o}function iee(e,t){let n=dn.decodeWeights(e,t),r={},a=[];return t.forEach(s=>{s.group==="optimizer"?a.push({name:s.name,tensor:n[s.name]}):r[s.name]=n[s.name]}),{modelWeights:r,optimizerWeights:a}}var Ko=class extends Qr{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:kp("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new U(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Ko||e instanceof Qr,n;if(t){if(n=e,n.outputs.length!==1)throw new U("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new U("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new U("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let r=jb({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(r)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new U(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new U("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=Hb(this.outputs[0])}this.inboundNodes=[],new Sp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:ui(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(r=>r.shape),outputShapes:this.outputs[0].shape})}else{let r=e.apply(this.outputs[0]);if(Array.isArray(r))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[r],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(ft(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Qr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new xr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new xr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new xr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new xr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},r=!1){let a,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new U("Legacy serialization format not supported yet.");a=t}else k.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),a=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Ko))throw new Oe(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of a){let l=_r(o,void 0,r);r&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new U("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new U("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Ko.className="Sequential";re.registerClass(Ko);function M4(e){return new Qr(e)}function $4(e){return new Ko(e)}function D4(e,t){return t==null&&(t={}),see(e,t)}function s0(e){return jb(e)}function O4(e,t){lr.registerCallbackConstructor(e,t)}var Fn=class extends re.Serializable{getConfig(){return{}}},A3=class extends Fn{apply(e,t=1){return VY(e,t)}};A3.className="elu";re.registerClass(A3);var y3=class extends Fn{apply(e){return ud(e)}};y3.className="selu";re.registerClass(y3);var g3=class extends Fn{apply(e){return Cr(e)}};g3.className="relu";re.registerClass(g3);var x3=class extends Fn{apply(e){return H(()=>jo(6,Cr(e)))}};x3.className="relu6";re.registerClass(x3);var w3=class extends Fn{apply(e){return e}};w3.className="linear";re.registerClass(w3);var _3=class extends Fn{apply(e){return Jn(e)}};_3.className="sigmoid";re.registerClass(_3);var b3=class extends Fn{apply(e){return HY(e)}};b3.className="hardSigmoid";re.registerClass(b3);var v3=class extends Fn{apply(e){return Uo(e)}};v3.className="softplus";re.registerClass(v3);var k3=class extends Fn{apply(e){return UY(e)}};k3.className="softsign";re.registerClass(k3);var I3=class extends Fn{apply(e){return Lo(e)}};I3.className="tanh";re.registerClass(I3);var yy=class extends Fn{apply(e,t=-1){return $u(e,t)}};yy.className="softmax";re.registerClass(yy);var N3=class extends Fn{apply(e,t=-1){return nd(e,t)}};N3.className="logSoftmax";re.registerClass(N3);var S3=class extends Fn{apply(e,t=1){return H(()=>Jn(e.mul(t)).mul(e))}};S3.className="swish";re.registerClass(S3);function Da(e){return e.getClassName()}function gy(e,t={}){return dc(e,re.SerializationMap.getMap().classNameMap,t,"activation")}function Oa(e){if(e==null){let t={};return t.className="linear",t.config={},gy(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},gy(t)}else return e instanceof Fn?e:gy(e)}function xy(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var T3=class extends re.Serializable{},kc=class extends T3{constructor(e){super();xy(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return H(()=>{let t=Rt([1]);return this.hasL1&&(t=ie(t,Ee(B(this.l1,Dt(e))))),this.hasL2&&(t=ie(t,Ee(B(this.l2,yc(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};kc.className="L1L2";re.registerClass(kc);function oee(e){return xy(e),new kc({l1:e!=null?e.l1:null,l2:0})}function lee(e){return xy(e),new kc({l2:e!=null?e.l2:null,l1:0})}var E3={l1l2:"L1L2"};function mt(e){return $A(e)}function C3(e,t={}){return dc(e,re.SerializationMap.getMap().classNameMap,t,"regularizer")}function _t(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in E3?E3[e]:e,config:{}};return C3(t)}else return e instanceof T3?e:C3(e)}var wy=class extends Ze{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Le(e);let n=Cr(e);return this.maxValue!=null&&(n=pn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};wy.className="ReLU";re.registerClass(wy);var _y=class extends Ze{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Le(e);return Su(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};_y.className="LeakyReLU";re.registerClass(_y);var by=class extends Ze{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=wt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=_t(e.alphaRegularizer),this.alphaConstraint=Wt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new U(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=ft(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let r of this.sharedAxes)t[r-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let r=1;r(Ct(t),t==="channelsFirst"?it(e,[0,2,3,1]):e))}function R3(e,t){return H(()=>(Ct(t),t==="channelsFirst"?it(e,[0,2,3,4,1]):e))}function uee(e,t,n,r=1,a="valid",s,i=1){return H(()=>{if(s==null&&(s=gr()),Ct(s),e.shape.length!==3)throw new U(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new U(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new U(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=it(e,[0,2,1])),a==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=Kh(e,t,r,a==="same"?"same":"valid","NWC",i);return n!=null&&(o=Vr(o,n)),o})}function F3(e,t,n,r=[1,1],a="valid",s,i,o=null){return H(()=>{if(s==null&&(s=gr()),Ct(s),e.rank!==3&&e.rank!==4)throw new U(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new U(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=Ny(e,s);if(a==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=_a.conv2d({x:l,filter:t,strides:r,pad:a==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=it(l,[0,3,1,2])),l})}function cee(e,t,n,r=[1,1,1],a="valid",s,i){return H(()=>{if(s==null&&(s=gr()),Ct(s),e.rank!==4&&e.rank!==5)throw new U(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new U(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=R3(e,s);if(a==="causal")throw new Oe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=Ff(o,t,r,a==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Vr(o,n)),s==="channelsFirst"&&(o=it(o,[0,4,1,2,3])),o})}var Sy=class extends Ze{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Sy.verifyArgs(t),this.rank=e,Gt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Oe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Sl(t.kernelSize,e,"kernelSize"),this.strides=Sl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,jn(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ct(this.dataFormat),this.activation=Oa(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=wt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Wt(t.biasConstraint),this.biasRegularizer=_t(t.biasRegularizer),this.activityRegularizer=_t(t.activityRegularizer),this.dilationRate=Sl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new U(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new U(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new U(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Wr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!OA(e.kernelSize,"number",1,3))throw new U(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Da(this.activation),useBias:this.useBias,biasInitializer:Nt(this.biasInitializer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),biasConstraint:Lt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Ic=class extends Sy{constructor(e,t){super(e,t);this.kernel=null,Ic.verifyArgs(t),this.filters=t.filters,Gt(this.filters,"filters"),this.kernelInitializer=wt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Wt(t.kernelConstraint),this.kernelRegularizer=_t(t.kernelRegularizer)}build(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new U(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],r=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",r,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return H(()=>{e=Le(e);let n,r=this.bias==null?null:this.bias.read(),a=kb(this.activation.getClassName());if(a!=null&&this.rank===2)n=F3(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate,a);else{if(this.rank===1)n=uee(e,this.kernel.read(),r,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=F3(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=cee(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Oe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=ft(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let a=0;a 0 but got ${JSON.stringify(e.filters)}`)}},Nc=class extends Ic{constructor(e){super(2,e);Nc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!OA(e.kernelSize,"number",1,2))throw new U(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Nc.className="Conv2D";re.registerClass(Nc);var zp=class extends Ic{constructor(e){super(3,e);zp.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new U(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};zp.className="Conv3D";re.registerClass(zp);var Ty=class extends Nc{constructor(e){super(e);if(this.inputSpec=[new Ut({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new U(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ft(e),e.length!==4)throw new U("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new U("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ut({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return H(()=>{let n=Le(e);if(n.shape.length!==4)throw new U(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=r[s],l=r[i],c=this.kernelSize[0],u=this.kernelSize[1],h=this.strides[0],d=this.strides[1],p=Op(o,h,c,this.padding),f=Op(l,d,u,this.padding),m=[a,p,f,this.filters];this.dataFormat!=="channelsLast"&&(n=it(n,[0,2,3,1]));let A=Zh(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(A=it(A,[0,3,1,2])),this.bias!=null&&(A=Vr(A,this.bias.read(),this.dataFormat)),this.activation!=null&&(A=this.activation.apply(A)),A})}computeOutputShape(e){e=ft(e);let t=e.slice(),n,r,a;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3):(n=3,r=1,a=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[r]=Op(t[r],o,s,this.padding),t[a]=Op(t[a],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Ty.className="Conv2DTranspose";re.registerClass(Ty);var M3=class extends Ic{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new U("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new U("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new U(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=wt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=_t(t.depthwiseRegularizer),this.depthwiseConstraint=Wt(t.depthwiseConstraint),this.pointwiseInitializer=wt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=_t(t.pointwiseRegularizer),this.pointwiseConstraint=Wt(t.pointwiseConstraint)}build(e){if(e=ft(e),e.length{e=Le(e);let n;if(this.rank===1)throw new Oe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=it(e,[0,2,3,1])),n=Gf(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Vr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=it(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Nt(this.depthwiseInitializer),e.pointwiseInitializer=Nt(this.pointwiseInitializer),e.depthwiseRegularizer=mt(this.depthwiseRegularizer),e.pointwiseRegularizer=mt(this.pointwiseRegularizer),e.depthwiseConstraint=Lt(this.depthwiseConstraint),e.pointwiseConstraint=Lt(this.pointwiseConstraint),e}};M3.className="SeparableConv";var Ey=class extends M3{constructor(e){super(2,e)}};Ey.className="SeparableConv2D";re.registerClass(Ey);var Pp=class extends Ic{constructor(e){super(1,e);Pp.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!OA(e.kernelSize,"number",1,1))throw new U(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Pp.className="Conv1D";re.registerClass(Pp);var Cy=class extends Ze{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return H(()=>{if(e=Le(e),this.dataFormat==="channelsLast"){let n=fp(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return fp(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=fp(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return fp(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Cy.className="Cropping2D";re.registerClass(Cy);var Ry=class extends Ze{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,DY(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return H(()=>{let n=Le(e),r=n.shape;if(this.dataFormat==="channelsFirst"){n=it(n,[0,2,3,1]);let a=this.size[0]*r[2],s=this.size[1]*r[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s]);return it(i,[0,3,1,2])}else{let a=this.size[0]*r[1],s=this.size[1]*r[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Ry.className="UpSampling2D";re.registerClass(Ry);function hee(e,t,n=[1,1],r="valid",a,s){return H(()=>{a==null&&(a=gr()),Ct(a);let i=Ny(e,a);if(e.rank!==4)throw new U(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new U(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=Wo(i,t,n,r==="same"?"same":"valid","NHWC",s),a==="channelsFirst"&&(i=it(i,[0,3,1,2])),i})}var Fy=class extends Sy{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=wt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Wt(e.depthwiseConstraint),this.depthwiseRegularizer=_t(e.depthwiseRegularizer)}build(e){if(e=ft(e),e.length<4)throw new U(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new U(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],r=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",r,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{e=Le(e);let n=hee(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Vr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,a=br(t,this.kernelSize[0],this.padding,this.strides[0]),s=br(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],r,a,s]:[e[0],a,s,r]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Nt(this.depthwiseInitializer),e.depthwiseRegularizer=mt(this.depthwiseRegularizer),e.depthwiseConstraint=Lt(this.depthwiseRegularizer),e}};Fy.className="DepthwiseConv2D";re.registerClass(Fy);function $3(e,t,n,r){if(Array.isArray(e)){if(t!=null||n!=null)throw new U("When inputs is an array, neither initialState or constants should be provided");r!=null&&(n=e.slice(e.length-r,e.length),e=e.slice(0,e.length-r)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function a(s){return s==null||Array.isArray(s)?s:[s]}return t=a(t),n=a(n),{inputs:e,initialState:t,constants:n}}function D3(e,t,n,r=!1,a,s,i=!1,o=!1){return H(()=>{let l=t.shape.length;if(l<3)throw new U(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(wr(2,l));if(t=it(t,c),s!=null)throw new Oe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),a!=null&&(a=a.asType("bool").asType("float32"),a.rank===l-1&&(a=vn(a,-1)),a=it(a,c)),r&&(t=Nn(t,0),a!=null&&(a=Nn(a,0)));let u=[],h,d=n,p=t.shape[0],f=rr(t),m;a!=null&&(m=rr(a));for(let y=0;ye(g,d));if(a==null)h=w[0],d=w[1];else{let x=H(()=>{let _=m[y],b=In(_).sub(_),T=w[0].mul(_).add(d[0].mul(b)),S=d.map((N,C)=>w[1][C].mul(_).add(N.mul(b)));return{output:T,newStates:S}});h=x.output,d=x.newStates}o&&u.push(h)}let A;return o&&(A=Sn(u,1)),[h,A,d]})}var Fr=class extends Ze{constructor(e){super(e);let t;if(e.cell==null)throw new U("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Lp({cells:e.cell}):t=e.cell,t.stateSize==null)throw new U("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Ut({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return wr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){ny(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],r;if(this.returnSequences?r=[e[0],e[1],n]:r=[e[0],n],this.returnState){let a=[];for(let s of t)a.push([e[0],s]);return[r].concat(a)}else return r}computeMask(e,t){return H(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let r=this.states.map(a=>null);return[n].concat(r)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;ni.shape[i.shape.length-1]),s))throw new U(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Ut({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){H(()=>{if(!this.stateful)throw new aa("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new U("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Rt([n,r])):this.states_=[Rt([n,this.cell.stateSize])];else if(e==null)Re(this.states_),this.keptStates!=null&&(Re(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Rt([n,r])):this.states_[0]=Rt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new U(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Re(this.states_);for(let r=0;rVt(r.clone()))})}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=$3(e,n,r,this.numConstants);e=a.inputs,n=a.initialState,r=a.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Ut({shape:o.shape}));i=i.concat(this.stateSpec)}if(r!=null&&(t.constants=r,s=s.concat(r),this.numConstants=r.length),s[0]instanceof mr){let o=[e].concat(s),l=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=l;let u=super.apply(o,t);return this.inputSpec=c,u}else return super.apply(e,t)}call(e,t){return H(()=>{let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;e=Le(e),a==null&&(this.stateful?a=this.states_:a=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(a.length!==s)throw new U(`RNN Layer has ${s} state(s) but was passed ${a.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:r},o=D3((d,p)=>{let f=this.cell.call([d].concat(p),i);return[f[0],f.slice(1)]},e,a,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],c=o[1],u=o[2];this.stateful&&this.resetStates(u,r);let h=this.returnSequences?c:l;return this.returnState?[h].concat(u):h})}getInitialState(e){return H(()=>{let t=Rt(e.shape);return t=Ee(t,[1,2]),t=Ac(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?VA(t,[1,n]):t):this.cell.stateSize>1?[VA(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Fr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let r=t.cell,a=_r(r,n);return new e(Object.assign(t,{cell:a}))}};Fr.className="RNN";re.registerClass(Fr);var xc=class extends Ze{},Wp=class extends xc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Gt(this.units,"units"),this.activation=Oa(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=wt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=_t(e.kernelRegularizer),this.recurrentRegularizer=_t(e.recurrentRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.kernelConstraint=Wt(e.kernelConstraint),this.recurrentConstraint=Wt(e.recurrentConstraint),this.biasConstraint=Wt(e.biasConstraint),this.dropout=vl([1,Ma([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=vl([1,Ma([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ft(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{if(e=e,e.length!==2)throw new U(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let r=t.training==null?!1:t.training;0In(e),rate:this.dropout,training:r})),0In(n),rate:this.recurrentDropout,training:r}));let a,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?a=Br(B(e,s),this.kernel.read()):a=Br(e,this.kernel.read()),this.bias!=null&&(a=Vr(a,this.bias.read())),i!=null&&(n=B(n,i));let o=ie(a,Br(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Da(this.activation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),recurrentInitializer:Nt(this.recurrentInitializer),biasInitializer:Nt(this.biasInitializer),kernelRegularizer:mt(this.kernelRegularizer),recurrentRegularizer:mt(this.recurrentRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Lt(this.kernelConstraint),recurrentConstraint:Lt(this.recurrentConstraint),biasConstraint:Lt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};Wp.className="SimpleRNNCell";re.registerClass(Wp);var My=class extends Fr{constructor(e){e.cell=new Wp(e),super(e)}call(e,t){return H(()=>{this.cell.dropoutMask!=null&&(Re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return new e(t)}};My.className="SimpleRNN";re.registerClass(My);var Bp=class extends xc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new U("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Gt(this.units,"units"),this.activation=Oa(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Oa(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=wt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=_t(e.kernelRegularizer),this.recurrentRegularizer=_t(e.recurrentRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.kernelConstraint=Wt(e.kernelConstraint),this.recurrentConstraint=Wt(e.recurrentConstraint),this.biasConstraint=Wt(e.biasConstraint),this.dropout=vl([1,Ma([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=vl([1,Ma([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ft(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{if(e=e,e.length!==2)throw new U(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,r=e[1];e=e[0],0In(e),rate:this.dropout,training:n,count:3})),0In(r),rate:this.recurrentDropout,training:n,count:3}));let a=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0{this.cell.dropoutMask!=null&&(Re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};$y.className="GRU";re.registerClass($y);var Sc=class extends xc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Gt(this.units,"units"),this.activation=Oa(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Oa(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=wt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=_t(e.kernelRegularizer),this.recurrentRegularizer=_t(e.recurrentRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.kernelConstraint=Wt(e.kernelConstraint),this.recurrentConstraint=Wt(e.recurrentConstraint),this.biasConstraint=Wt(e.biasConstraint),this.dropout=vl([1,Ma([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=vl([1,Ma([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=ft(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let r;if(this.useBias){if(this.unitForgetBias){let a=this.biasInitializer,s=this.units;r=new(t=class extends or{apply(i,o){let l=a.apply([s]),c=new Ap().apply([s]),u=a.apply([s*2]);return Mb(Mb(l,c),u)}},t.className="CustomInit",t)}else r=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,r,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return H(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new U(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=e[1],a=e[2];e=e[0],0In(e),rate:this.dropout,training:n,count:4})),0In(r),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,c,u;0{this.cell.dropoutMask!=null&&(Re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Dy.className="LSTM";re.registerClass(Dy);var Lp=class extends xc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return H(()=>{e=e;let n=e.slice(1),r=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?r.push(n.splice(0,i.stateSize.length)):r.push(n.splice(0,1));r.reverse();let a=[],s;for(let i=0;i{di(`RNNCell_${r}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let r=[];for(let a of t.cells)r.push(_r(a,n));return new e({cells:r})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return ry(e)}setWeights(e){let t=[];for(let n of this.cells){let r=n.weights.length,a=e.splice(r);for(let s=0;sDb(t(),n),i=()=>gc(s,t,r);return!a||a<=1?Vt(i().clone()):Array(a).fill(void 0).map(i).map(o=>Vt(o.clone()))}var dee=function(e,t){var n={};for(var r in e)Object.prototype.hasOwnProperty.call(e,r)&&t.indexOf(r)<0&&(n[r]=e[r]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var a=0,r=Object.getOwnPropertySymbols(e);a{if(this.cell.dropoutMask!=null&&(Re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new U("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return H(()=>{let{stateSize:t}=this.cell,n=e.shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)],s=Rt(a);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){H(()=>{if(!this.stateful)throw new aa("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)];if(n[0]==null)throw new U("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Rt(a)):this.states_=[Rt(a)];else if(e==null)Re(this.states_),this.keptStates!=null&&(Re(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Rt(a)):this.states_[0]=Rt(a);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new U(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Re(this.states_);for(let s=0;sVt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:r,padding:a,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],c=e[o?4:3],u=br(l,r[0],a,s[0],i[0]),h=br(c,r[1],a,s[1],i[1]);return[...e.slice(0,2),...o?[n,u,h]:[u,h,n]]}};O3.className="ConvRNN2D";var Vp=class extends Sc{constructor(e){let{filters:t,kernelSize:n,strides:r,padding:a,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Gt(this.filters,"filters"),this.kernelSize=Sl(n,2,"kernelSize"),this.kernelSize.forEach(o=>Gt(o,"kernelSize")),this.strides=Sl(r||1,2,"strides"),this.strides.forEach(o=>Gt(o,"strides")),this.padding=a||"valid",jn(this.padding),this.dataFormat=s||"channelsLast",Ct(this.dataFormat),this.dilationRate=Sl(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Gt(o,"dilationRate"))}build(e){var t;e=ft(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new U(`The channel dimension of the input should be defined. Found ${e[n]}`);let r=e[n],a=4,s=this.kernelSize.concat([r,this.filters*a]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*a]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;o=new(t=class extends or{apply(u,h){let d=l.apply([c]),p=Er([c]),f=l.apply([c*2]);return HA([d,p,f])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*a],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return H(()=>{if(e.length!==3)throw new U(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,r=e[0],a=e[1],s=e[2],i=4;0In(r),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(Z,ae,J)=>!ae||!ae[J]?Z:B(ae[J],Z),c=l(r,o,0),u=l(r,o,1),h=l(r,o,2),d=l(r,o,3);0In(a),rate:this.recurrentDropout,training:n,count:i}));let p=this.recurrentDropoutMask,f=l(a,p,0),m=l(a,p,1),A=l(a,p,2),y=l(a,p,3),g=3,[w,x,_,b]=rn(this.kernel.read(),i,g),[T,S,N,C]=this.useBias?rn(this.bias.read(),i):[null,null,null,null];c=this.inputConv(c,w,T,this.padding),u=this.inputConv(u,x,S,this.padding),h=this.inputConv(h,_,N,this.padding),d=this.inputConv(d,b,C,this.padding);let[$,D,O,V]=rn(this.recurrentKernel.read(),i,g);f=this.recurrentConv(f,$),m=this.recurrentConv(m,D),A=this.recurrentConv(A,O),y=this.recurrentConv(y,V);let W=this.recurrentActivation.apply(ie(c,f)),K=this.recurrentActivation.apply(ie(u,m)),X=ie(B(K,s),B(W,this.activation.apply(ie(h,A)))),ee=B(this.recurrentActivation.apply(ie(d,y)),this.activation.apply(X));return[ee,ee,X]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=dee(e,["units"]),r={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,r)}inputConv(e,t,n,r){let a=Kr(e,t,this.strides,r||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Vr(a,n,this.dataFormat):a}recurrentConv(e,t){return Kr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Vp.className="ConvLSTM2DCell";re.registerClass(Vp);var Oy=class extends O3{constructor(e){let t=new Vp(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};Oy.className="ConvLSTM2D";re.registerClass(Oy);var Up=class extends Ze{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let r=0;r{this.invokeCallHook(e,t);let n=Le(e);if(0Db(n,this.rate,a,this.seed),()=>n,r)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Up.className="Dropout";re.registerClass(Up);var zy=class extends Up{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};zy.className="SpatialDropout1D";re.registerClass(zy);var Py=class extends Ze{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Gt(this.units,"units"),this.activation=Oa(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Wt(e.kernelConstraint),this.biasConstraint=Wt(e.biasConstraint),this.kernelRegularizer=_t(e.kernelRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.activityRegularizer=_t(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=ft(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=ft(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Le(e),r=kb(this.activation.getClassName()),a;return r!=null?a=Br(n,this.kernel.read(),r,this.bias?this.bias.read():null):(a=Br(n,this.kernel.read()),this.bias!=null&&(a=Vr(a,this.bias.read())),this.activation!=null&&(a=this.activation.apply(a))),a})}getConfig(){let e={units:this.units,activation:Da(this.activation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),biasInitializer:Nt(this.biasInitializer),kernelRegularizer:mt(this.kernelRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Lt(this.kernelConstraint),biasConstraint:Lt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Py.className="Dense";re.registerClass(Py);var Ly=class extends Ze{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=ft(e);for(let t of e.slice(1))if(t==null)throw new U(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Fa(e,1)]}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Le(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let r=[0];for(let a=2;a{this.invokeCallHook(e,t);let n=Le(e);return this.activation.apply(n)})}getConfig(){let e={activation:Da(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Wy.className="Activation";re.registerClass(Wy);var By=class extends Ze{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return H(()=>(e=Le(e),LY(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};By.className="RepeatVector";re.registerClass(By);var Vy=class extends Ze{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t{this.invokeCallHook(e,t);let n=Le(e),r=n.shape,a=r.slice(0,1).concat(this.fixUnknownDimension(r.slice(1),this.targetShape));return n.reshape(a)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Vy.className="Reshape";re.registerClass(Vy);var Uy=class extends Ze{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=wr(1,e.dims.length+1);if(!k.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Ut({ndim:this.dims.length+1})]}computeOutputShape(e){e=ft(e);let t=e.slice();return this.dims.forEach((n,r)=>{t[r+1]=e[n]}),t}call(e,t){return it(Le(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Uy.className="Permute";re.registerClass(Uy);var Hy=class extends Ze{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Le(e),r=-1;return wu(Hs(n,this.maskValue),r)}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Le(e),r=-1,a=!0,s=wu(Hs(n,this.maskValue),r,a);return n.mul(s.asType(n.dtype))})}};Hy.className="Masking";re.registerClass(Hy);var jy=class extends Ze{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(yt(e.inputLength))}this.inputDim=e.inputDim,Gt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Gt(this.outputDim,"outputDim"),this.embeddingsInitializer=wt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=_t(e.embeddingsRegularizer),this.activityRegularizer=_t(e.activityRegularizer),this.embeddingsConstraint=Wt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return H(()=>this.maskZero?(e=Le(e),Hs(e,qe(e))):null)}computeOutputShape(e){if(e=ft(e),this.inputLength==null)return[...e,this.outputDim];let t=yt(this.inputLength);if(t.length!==e.length-1)throw new U(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let r=0;r{this.invokeCallHook(e,t);let n=Le(e);return n.dtype!=="int32"&&(n=mc(n,"int32")),$b(this.embeddings.read(),n.as1D()).reshape(ft(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Nt(this.embeddingsInitializer),embeddingsRegularizer:mt(this.embeddingsRegularizer),activityRegularizer:mt(this.activityRegularizer),embeddingsConstraint:Lt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};jy.className="Embedding";re.registerClass(jy);var yi=class extends Ze{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Oe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length1)throw new U(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let a=1;aa.length);e.indexOf(null)===-1&&Ra(r).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return H(()=>{if(e=e,this.reshapeRequired){let n=[],r=e.map(a=>a.rank);if(r.indexOf(null)===-1){let a=Ma(r);for(let s of e){let i=s.rank;for(let o=0;o1){let c=wr(1,l).concat([0]);n.push(it(o,c)),a=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(a){if(i==null){let o=s.shape,l=o.length,c=o[l-1],u=[c].concat(o.slice(0,o.length-1));s=it(s.reshape([-1,c]),[1,0]).reshape(u)}else if(i>1){let o=[i-1].concat(wr(0,i-1));s=it(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let r=1;r{if(t==null)return null;if(!Array.isArray(t))throw new U("`mask` should be an Array");if(!Array.isArray(e))throw new U("`inputs` should be an Array");if(t.length!==e.length)throw new U(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(r=>r==null))return null;t=t.map(r=>r==null?r:vn(r,0));let n=t[0];for(let r=1;r{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0];for(let n=1;n{let t=e[0];for(let n=1;n1)throw new U("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return H(()=>HA(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new U("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),r=this.axis<0?n.length+this.axis:this.axis;for(let a of t.slice(1)){if(n[r]==null||a[r]==null){n[r]=null;break}n[r]+=a[r]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new U("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new U("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new U(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return H(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let r=[];for(let s=0;s3||t.shape.length>3)throw new Oe("batchDot is not implemented for tensors of 4D or higher rank yet");if(k.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),k.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Oe("batchDot is not implemented for complex64-type Tensors yet.");let r=e.shape.length,a=t.shape.length;n==null&&(n=[r-1,a-2]);let s=n;return H(()=>{let i;if(r>a){i=r-a;let l=[];for(let c=0;cr){i=a-r;let l=[];for(let c=0;c0){let l;r>a?l=r+a-3:l=r-1;let c=[];for(let u=l;u"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);if(t[r[0]]!==n[r[1]])throw new U(`Dimension incompatibility: ${t[r[0]]} !== ${n[r[1]]}`)}mergeFunction(e){if(e.length!==2)throw new U(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],r;return Array.isArray(this.axes)?r=this.axes.map((a,s)=>Tc(a,e[s].shape.length)):r=[Tc(this.axes,t.shape.length),Tc(this.axes,n.shape.length)],this.normalize&&(t=Tp(t,r[0]),n=Tp(n,r[1])),pee(t,n,r)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Tc(this.axes,e.length),Tc(this.axes,t.length)],n}computeOutputShape(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);t.splice(r[0],1),n.splice(r[1],1),n.splice(0,1);let a=t.concat(n);return a.length===1&&a.push(1),a}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Jy.className="Dot";re.registerClass(Jy);var Qy=class extends Ze{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Le(e);return gc(()=>mp(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};Qy.className="GaussianNoise";re.registerClass(Qy);var e2=class extends Ze{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Le(e);return this.rate>0&&this.rate<1?gc(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return n.mul(mp(n.shape,1,r))},()=>n,t.training||!1):n})}};e2.className="GaussianDropout";re.registerClass(e2);var t2=class extends Ze{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Le(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return H(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return gc(()=>{let r=Le(e),a=1.6732632423543772,s=1.0507009873554805,i=-a*s,o=xa(Go(n),this.rate);o=mc(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-l*i*this.rate;return r.mul(o).add(o.add(-1).mul(i)).mul(l).add(c)},()=>Le(e),t.training||!1)}return e})}};t2.className="AlphaDropout";re.registerClass(t2);function Ec(e,t,n,r,a,s=.001){let i;if(e.rank===2)i=Ag(e,t,n,r,a,s);else if(e.rank===3)i=yg(e,t,n,r,a,s);else if(e.rank===4)i=gg(e,t,n,r,a,s);else throw new Oe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function fee(e,t,n,r,a=.001){return H(()=>{let s=ad(e,r),i=s.mean,o=s.variance;return[Ec(e,i,o,n,t,a),i,o]})}function mee(e,t,n,r,a=.001){return H(()=>{let s=ad(e,r),i=s.mean,o=s.variance,l=[];for(let p of wr(0,e.rank))r.indexOf(p)!==-1?l.push(1):l.push(e.shape[p]);let c=i.reshape(l),u=o.reshape(l),h=t==null?null:t.reshape(l),d=n==null?null:n.reshape(l);return[Ec(e,c,u,d,h,a),i,o]})}function Aee(e,t,n,r,a=.001){return k.arraysEqual(r.slice().sort(),wr(0,e.rank-1))?fee(e,t,n,r,a):mee(e,t,n,r,a)}var n2=class extends Ze{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=wt(e.betaInitializer||"zeros"),this.gammaInitializer=wt(e.gammaInitializer||"ones"),this.movingMeanInitializer=wt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=wt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Wt(e.betaConstraint),this.gammaConstraint=Wt(e.gammaConstraint),this.betaRegularizer=_t(e.betaRegularizer),this.gammaRegularizer=_t(e.gammaRegularizer)}build(e){e=ft(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new U(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Ut({ndim:e.length,axes:{[t]:n}})];let r=[n];this.scale&&(this.gamma=this.addWeight("gamma",r,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",r,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",r,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",r,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return H(()=>{let n=t.training==null?!1:t.training,r=Le(e),a=r.shape,s=a.length,i=wr(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=ui(1,s);l[o]=a[o];let c=i.slice();c.sort();let u=!k.arraysEqual(c,wr(0,s).slice(0,s-1)),h=()=>{if(u){let A=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),g=this.center?this.beta.read().reshape(l):null,w=this.scale?this.gamma.read().reshape(l):null;return Ec(r,A,y,g,w,this.epsilon)}else return Ec(r,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return h();let[d,p,f]=Aee(r,this.gamma.read(),this.beta.read(),i,this.epsilon),m=(A,y,g)=>{H(()=>{let w=1-g,x=A.read(),_=x.sub(y).mul(w);A.write(x.sub(_))})};return(()=>{m(this.movingMean,p,this.momentum),m(this.movingVariance,f,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Nt(this.betaInitializer),gammaInitializer:Nt(this.gammaInitializer),movingMeanInitializer:Nt(this.movingMeanInitializer),movingVarianceInitializer:Nt(this.movingVarianceInitializer),betaRegularizer:mt(this.betaRegularizer),gammaRegularizer:mt(this.gammaRegularizer),betaConstraint:Lt(this.betaConstraint),gammaConstraint:Lt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};n2.className="BatchNormalization";re.registerClass(n2);var r2=class extends Ze{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=wt(e.betaInitializer||"zeros"),this.gammaInitializer=wt(e.gammaInitializer||"ones"),this.betaRegularizer=_t(e.betaRegularizer),this.gammaRegularizer=_t(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=ft(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let a=0;a=t)throw new Error(`Invalid axis: ${a}`);if(this.axis.length!==Ra(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(a=>e[a]),r=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,r):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,r):this.beta=null,this.built=!0}call(e,t){let n=Le(e),r=n.shape,a=r.length;return H(()=>{let s=!0,{mean:i,variance:o}=ad(n,this.axis,s),l=ui(1,a);for(let f of this.axis)l[f]=r[f];let c=f=>f!=null&&f.shape.length!==a&&this.axis!==[a-1]?f.reshape(l):f,u=c(this.gamma.read()),h=c(this.beta.read()),d=[],p=[];for(let f=0;f{if(e.rank!==4)throw new U(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new U("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=gr()),n!=="channelsLast"&&n!=="channelsFirst")throw new U(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let r;return n==="channelsFirst"?r=[[0,0],[0,0],t[0],t[1]]:r=[[0,0],t[0],t[1],[0,0]],Zr(e,r)})}var a2=class extends Ze{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?gr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new U(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new U(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new U(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Ut({ndim:4})]}computeOutputShape(e){e=ft(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return H(()=>yee(Le(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};a2.className="ZeroPadding2D";re.registerClass(a2);function Hp(e,t,n,r,a,s){return H(()=>{Ct(a),Sb(s),jn(r),n==null&&(n=[1,1]),r==null&&(r="valid"),a==null&&(a=gr()),s==null&&(s="max"),e=Ny(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=Eu(e,t,n,o):i=bu(e,t,n,o),a==="channelsFirst"&&(i=it(i,[0,3,1,2])),i})}function z3(e,t,n,r,a,s){return H(()=>{Ct(a),Sb(s),jn(r),n==null&&(n=[1,1,1]),r==null&&(r="valid"),a==null&&(a=gr()),s==null&&(s="max"),e=R3(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=Bf(e,t,n,o):i=Cf(e,t,n,o),a==="channelsFirst"&&(i=it(i,[0,4,1,2,3])),i})}var P3=class extends Ze{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new U(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Gt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new U(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Gt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,jn(this.padding),this.inputSpec=[new Ut({ndim:3})]}computeOutputShape(e){e=ft(e);let t=br(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return H(()=>{this.invokeCallHook(e,t),e=Ac(Le(e),2);let n=this.poolingFunction(Le(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return wa(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},s2=class extends P3{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),jn(r),Hp(e,t,n,r,a,"max")}};s2.className="MaxPooling1D";re.registerClass(s2);var i2=class extends P3{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),jn(r),Hp(e,t,n,r,a,"avg")}};i2.className="AveragePooling1D";re.registerClass(i2);var L3=class extends Ze{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new U(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Gt(this.poolSize,"poolSize"),Gt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),jn(this.padding),this.inputSpec=[new Ut({ndim:4})]}computeOutputShape(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=br(t,this.poolSize[0],this.padding,this.strides[0]),n=br(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return H(()=>(this.invokeCallHook(e,t),this.poolingFunction(Le(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},o2=class extends L3{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),jn(r),Hp(e,t,n,r,a,"max")}};o2.className="MaxPooling2D";re.registerClass(o2);var l2=class extends L3{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),jn(r),Hp(e,t,n,r,a,"avg")}};l2.className="AveragePooling2D";re.registerClass(l2);var W3=class extends Ze{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new U(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Gt(this.poolSize,"poolSize"),Gt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),jn(this.padding),this.inputSpec=[new Ut({ndim:5})]}computeOutputShape(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=br(t,this.poolSize[0],this.padding,this.strides[0]),n=br(n,this.poolSize[1],this.padding,this.strides[1]),r=br(r,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,r]:[e[0],t,n,r,e[4]]}call(e,t){return H(()=>(this.invokeCallHook(e,t),this.poolingFunction(Le(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},u2=class extends W3{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),jn(r),z3(e,t,n,r,a,"max")}};u2.className="MaxPooling3D";re.registerClass(u2);var c2=class extends W3{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),jn(r),z3(e,t,n,r,a,"avg")}};c2.className="AveragePooling3D";re.registerClass(c2);var B3=class extends Ze{constructor(e){super(e);this.inputSpec=[new Ut({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Oe}},h2=class extends B3{constructor(e){super(e||{})}call(e,t){return H(()=>{let n=Le(e);return kt(n,1)})}};h2.className="GlobalAveragePooling1D";re.registerClass(h2);var d2=class extends B3{constructor(e){super(e||{})}call(e,t){return H(()=>{let n=Le(e);return Bn(n,1)})}};d2.className="GlobalMaxPooling1D";re.registerClass(d2);var V3=class extends Ze{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),this.inputSpec=[new Ut({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Oe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},p2=class extends V3{call(e,t){return H(()=>{let n=Le(e);return this.dataFormat==="channelsLast"?kt(n,[1,2]):kt(n,[2,3])})}};p2.className="GlobalAveragePooling2D";re.registerClass(p2);var f2=class extends V3{call(e,t){return H(()=>{let n=Le(e);return this.dataFormat==="channelsLast"?Bn(n,[1,2]):Bn(n,[2,3])})}};f2.className="GlobalMaxPooling2D";re.registerClass(f2);var U3=class extends Ze{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let r=t.layer,a=_r(r,n);delete t.layer;let s={layer:a};return Object.assign(s,t),new e(s)}},m2=class extends U3{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=ft(e),e.length<3)throw new U(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=ft(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),r=e[1];return[n[0],r].concat(n.slice(1))}call(e,t){return H(()=>(e=Le(e),D3((n,r)=>[Le(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};m2.className="TimeDistributed";re.registerClass(m2);function gee(e){hi($Y,"BidirectionalMergeMode",e)}var xee="concat",A2=class extends U3{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=_r(n),t.goBackwards=t.goBackwards!==!0;let r={};if(r.className=e.layer.getClassName(),r.config=t,this.backwardLayer=_r(r),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?xee:e.mergeMode,gee(this.mergeMode),e.weights)throw new Oe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,r,a;return this.returnState&&(a=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,r=[n]):this.mergeMode==null?r=[n,n.slice()]:r=[n],this.returnState?this.mergeMode==null?r.concat(a).concat(a.slice()):[n].concat(a).concat(a.slice()):An(r)}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=$3(e,n,r,this.numConstants);if(e=a.inputs,n=a.initialState,r=a.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&r==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new U("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let c=n.map(u=>new Ut({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),i.push(...c)}if(r!=null)throw new Oe("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof mr;for(let l of s)if(l instanceof mr!==o)throw new U("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),c=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=c;let h=super.apply(l,t);return this.inputSpec=u,h}else return super.apply(e,t)}call(e,t){return H(()=>{let n=t.initialState,r,a;if(n==null)r=this.forwardLayer.call(e,t),a=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);r=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),a=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(r)&&(s=r.slice(1).concat(a.slice(1))),r=r[0],a=a[0]),this.returnSequences&&(a=Nn(a,1));let i;return this.mergeMode==="concat"?i=HA([r,a]):this.mergeMode==="sum"?i=ie(r,a):this.mergeMode==="ave"?i=B(.5,ie(r,a)):this.mergeMode==="mul"?i=B(r,a):this.mergeMode==null&&(i=[r,a]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){di(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),di(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=_r(t.layer);if(delete t.layer,t.numConstants!=null)throw new Oe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let r=t;return r.layer=n,new e(r)}};A2.className="Bidirectional";re.registerClass(A2);function ZY(e){return new kl(e)}function YY(e){return new vy(e)}function JY(e){return new wy(e)}function QY(e){return new _y(e)}function eJ(e){return new by(e)}function tJ(e){return new Iy(e)}function nJ(e){return new ky(e)}function rJ(e){return new Pp(e)}function aJ(e){return new Nc(e)}function sJ(e){return new Ty(e)}function iJ(e){return new zp(e)}function oJ(e){return new Ey(e)}function lJ(e){return new Cy(e)}function uJ(e){return new Ry(e)}function cJ(e){return new Fy(e)}function hJ(e){return new Wy(e)}function dJ(e){return new Py(e)}function pJ(e){return new Up(e)}function fJ(e){return new zy(e)}function mJ(e){return new Ly(e)}function AJ(e){return new By(e)}function yJ(e){return new Vy(e)}function gJ(e){return new Uy(e)}function xJ(e){return new jy(e)}function wJ(e){return new Gy(e)}function _J(e){return new Xy(e)}function bJ(e){return new Yy(e)}function vJ(e){return new Ky(e)}function kJ(e){return new Zy(e)}function IJ(e){return new qy(e)}function NJ(e){return new Jy(e)}function SJ(e){return new n2(e)}function TJ(e){return new r2(e)}function EJ(e){return new a2(e)}function QA(e){return new i2(e)}function CJ(e){return QA(e)}function RJ(e){return QA(e)}function ey(e){return new l2(e)}function FJ(e){return ey(e)}function MJ(e){return ey(e)}function ty(e){return new c2(e)}function $J(e){return ty(e)}function DJ(e){return ty(e)}function OJ(e){return new h2(e)}function zJ(e){return new p2(e)}function Pb(e){return new d2(e)}function Lb(e){return new f2(e)}function Wb(e){return new s2(e)}function Bb(e){return new o2(e)}function PJ(e){return new u2(e)}function LJ(e){return new $y(e)}function WJ(e){return new Bp(e)}function BJ(e){return new Dy(e)}function VJ(e){return new Sc(e)}function UJ(e){return new My(e)}function HJ(e){return new Wp(e)}function jJ(e){return new Oy(e)}function GJ(e){return new Vp(e)}function qJ(e){return new Fr(e)}function XJ(e){return new Lp(e)}function KJ(e){return new A2(e)}function ZJ(e){return new m2(e)}var YJ=Pb,JJ=Lb,QJ=Wb,eQ=Bb;function tQ(e){return new Qy(e)}function nQ(e){return new e2(e)}function rQ(e){return new t2(e)}function aQ(e){return new Hy(e)}var i0={};Pe(i0,{MAPE:()=>Cee,MSE:()=>Mee,binaryAccuracy:()=>wee,binaryCrossentropy:()=>_ee,categoricalAccuracy:()=>vee,categoricalCrossentropy:()=>kee,cosineProximity:()=>See,mape:()=>Ree,meanAbsoluteError:()=>Tee,meanAbsolutePercentageError:()=>Eee,meanSquaredError:()=>Fee,mse:()=>$ee,precision:()=>Iee,recall:()=>Nee,sparseCategoricalAccuracy:()=>bee});function wee(e,t){return oy(e,t)}function _ee(e,t){return Jb(e,t)}function bee(e,t){return Qb(e,t)}function vee(e,t){return ly(e,t)}function kee(e,t){return uy(e,t)}function Iee(e,t){return Yb(e,t)}function Nee(e,t){return vQ(e,t)}function See(e,t){return sy(e,t)}function Tee(e,t){return Ep(e,t)}function Eee(e,t){return Nl(e,t)}function Cee(e,t){return Nl(e,t)}function Ree(e,t){return Nl(e,t)}function Fee(e,t){return fi(e,t)}function Mee(e,t){return fi(e,t)}function $ee(e,t){return fi(e,t)}var o0={};Pe(o0,{modelFromJSON:()=>ree});var l0={};Pe(l0,{l1:()=>Oee,l1l2:()=>Dee,l2:()=>zee});function Dee(e){return new kc(e)}function Oee(e){return oee(e)}function zee(e){return lee(e)}var u0=class extends Il{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof Qr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function jp(e,t){return et}var c0=class extends u0{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Oe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=jp:this.mode==="max"?this.monitorFunc=H3:this.monitor.indexOf("acc")!==-1?this.monitorFunc=H3:this.monitorFunc=jp,this.monitorFunc===jp&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===jp?Infinity:-Infinity}async onEpochEnd(e,t){await $a(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function Pee(e){return new c0(e)}var z4={earlyStopping:Pee},vr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(vr||(vr={}));var j3;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(j3||(j3={}));var y2={};function P4(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};y2[e]=n}function G3(e){return y2[e]}function L4(e){delete y2[e]}function I(e,t,n,r,a){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return gn(t.inputNames[s.inputIndexStart],n,r,a);if(s.type==="tensors")return t.inputNames.slice(o,l).map(h=>gn(h,n,r,a));let c=gn(t.inputNames.slice(o)[0],n,r,a),u=c.dataSync();return s.type==="number"?u[0]:k.toNestedArray(c.shape,u)}let i=t.attrParams[e];return i&&i.value}function gn(e,t,n,r){let[a,s]=Mn(e);if(r!=null){let o=r.getHashTableHandleByName(a);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[Gp(a,o)]);return i!==void 0?t[Gp(a,i)][s]:void 0}function Lee(e,t,n){return t[Gp(e,n.currentContextId)]}function ia(e,t){let[n,r]=Mn(e);return[Gp(n,t&&t.currentContextId),r]}function Gp(e,t){return t?`${e}-${t}`:e}function Mn(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function qp(e,t,n){let r=I("pad",e,t,n);if(r==="explicit"){r=I("explicitPaddings",e,t,n);let a=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)a[s][0]=r[s*2],a[s][1]=r[s*2+1];return a}return r}function oa(e){return e.kept?e:Nr(e)}var q3={};Pe(q3,{json:()=>Wee});var Wee=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],X3={};Pe(X3,{json:()=>Bee});var Bee=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],K3={};Pe(K3,{json:()=>Vee});var Vee=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],Z3={};Pe(Z3,{json:()=>Uee});var Uee=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],Y3={};Pe(Y3,{json:()=>Hee});var Hee=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],J3={};Pe(J3,{json:()=>jee});var jee=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Q3={};Pe(Q3,{json:()=>Gee});var Gee=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],e7={};Pe(e7,{json:()=>qee});var qee=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],t7={};Pe(t7,{json:()=>Xee});var Xee=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]}],n7={};Pe(n7,{json:()=>Kee});var Kee=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],r7={};Pe(r7,{json:()=>Zee});var Zee=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],a7={};Pe(a7,{json:()=>Yee});var Yee=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],s7={};Pe(s7,{json:()=>Jee});var Jee=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],i7={};Pe(i7,{json:()=>Qee});var Qee=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],o7={};Pe(o7,{json:()=>ete});var ete=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],l7={};Pe(l7,{json:()=>tte});var tte=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],u7={};Pe(u7,{json:()=>nte});var nte=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],h7=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[q3,X3,K3,Z3,Y3,J3,Q3,r7,n7,e7,a7,s7,i7,o7,l7,u7,t7],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,r)=>(n[r.tfOpName]=r,n),{})}transformGraph(e,t={}){let n=e.node,r=[],a=[],s=[],i=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?r.push(f[m.name]):m.op==="Const"?a.push(f[m.name]):(m.input==null||m.input.length===0)&&s.push(f[m.name]),f),{}),o=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let h=Object.keys(i);h.forEach(f=>{let m=i[f];m.inputNames.forEach(A=>{let[y]=ia(A);m.inputs.push(i[y]),i[y].children.push(m)})}),Object.keys(u).length===0?h.forEach(f=>{let m=i[f];m.children.length===0&&l.push(m)}):Object.keys(u).forEach(f=>{let[m]=ia(f),A=i[m];A!=null&&(A.signatureKey=u[f],l.push(A))}),Object.keys(c).length>0?Object.keys(c).forEach(f=>{let[m]=ia(f),A=i[m];A&&(A.signatureKey=c[f],o.push(A))}):o=r;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let p={nodes:i,inputs:o,outputs:l,weights:a,placeholders:r,signature:t,functions:d};return s.length>0&&(p.initNodes=s),p}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=G3(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(r=>r.startsWith("^")?r.substr(1):r),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((r,a)=>(r[a.name]={type:a.type,inputIndexStart:a.start,inputIndexEnd:a.end},r),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((r,a)=>{let s=a.type,i;switch(a.type){case"string":i=g2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=g2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"string[]":i=N2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=N2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number":i=w2(e.attr,a.tfName,a.defaultValue||0),i===void 0&&!!a.tfDeprecatedName&&(i=w2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number[]":i=I2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=I2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool":i=x2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=x2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool[]":i=T2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=T2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape":i=k2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=k2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape[]":i=S2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=S2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype":i=b2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=b2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype[]":i=v2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=v2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"func":i=c7(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=c7(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${a.type} for op: ${e.op}`)}return r[a.name]={value:i,type:s},r},{})),n}mapFunction(e){let t=e.nodeDef,n=[],r=[],a={};t!=null&&(a=t.reduce((c,u)=>(c[u.name]=this.mapNode(u),u.op==="Const"&&r.push(c[u.name]),c),{}));let s=[],i=[];e.signature.inputArg.forEach(c=>{let[u]=ia(c.name),h={name:u,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:_2(c.type),type:"dtype"}},children:[]};h.signatureKey=c.name,s.push(h),a[u]=h}),Object.keys(a).forEach(c=>{let u=a[c];u.inputNames.forEach(h=>{let[d]=ia(h);u.inputs.push(a[d]),a[d].children.push(u)})});let o=e.ret;e.signature.outputArg.forEach(c=>{let[u,h]=ia(o[c.name]),d=a[u];d!=null&&(d.defaultOutput=h,i.push(d))});let l=this.mapArgsToSignature(e);return{nodes:a,inputs:s,outputs:i,weights:r,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function rte(e){let t=Q().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function d7(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):rte(e);return t?n:n.toLowerCase()}function g2(e,t,n,r=!1){let a=e[t];return a!=null?d7(a.s,r):n}function x2(e,t,n){let r=e[t];return r?r.b:n}function w2(e,t,n){let r=e[t]||{},a=r.i!=null?r.i:r.f!=null?r.f:n;return typeof a=="number"?a:parseInt(a,10)}function _2(e){switch(typeof e=="string"&&(e=vr[e]),e){case vr.DT_FLOAT:return"float32";case vr.DT_INT32:case vr.DT_INT64:case vr.DT_INT8:case vr.DT_UINT8:return"int32";case vr.DT_BOOL:return"bool";case vr.DT_DOUBLE:return"float32";case vr.DT_STRING:return"string";default:return null}}function c7(e,t,n){let r=e[t];return r&&r.func?r.func.name:n}function b2(e,t,n){let r=e[t];return r&&r.type?_2(r.type):n}function v2(e,t,n){let r=e[t];return r&&r.list&&r.list.type?r.list.type.map(a=>_2(a)):n}function p7(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function k2(e,t,n){let r=e[t];return r&&r.shape?p7(r.shape):n}function I2(e,t,n){let r=e[t];return r?((r.list.f&&r.list.f.length?r.list.f:r.list.i)||[]).map(a=>typeof a=="number"?a:parseInt(a,10)):n}function N2(e,t,n,r=!1){let a=e[t];return a&&a.list&&a.list.s?a.list.s.map(s=>d7(s,r)):n}function S2(e,t,n){let r=e[t];return r&&r.list&&r.list.shape?r.list.shape.map(a=>p7(a)):n}function T2(e,t,n){let r=e[t];return r&&r.list&&r.list.b?r.list.b:n}var ate=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(r=>this.getInput(r)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((r,a)=>(r[a]=this.getAttr(a),r),{}))}getInput(e){return gn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return gn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return w2(this.node.rawAttrs,e,t);if(n.s!=null)return g2(this.node.rawAttrs,e,t);if(n.b!=null)return x2(this.node.rawAttrs,e,t);if(n.shape!=null)return k2(this.node.rawAttrs,e,t);if(n.type!=null)return b2(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return I2(this.node.rawAttrs,e,t);if(n.list.s!=null)return N2(this.node.rawAttrs,e,t);if(n.list.shape!=null)return S2(this.node.rawAttrs,e,t);if(n.list.b!=null)return T2(this.node.rawAttrs,e,t);if(n.list.type!=null)return v2(this.node.rawAttrs,e,t)}return t}},ste=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[ie(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[lh(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[Uf(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[B(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[Ne(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[Df(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[qh(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[_e(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[jo(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[Tr(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[Yr(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[md(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},ite=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Dt(I("x",e,t,n))];case"Acos":return[bf(I("x",e,t,n))];case"Acosh":return[vf(I("x",e,t,n))];case"Asin":return[If(I("x",e,t,n))];case"Asinh":return[Nf(I("x",e,t,n))];case"Atan":return[Sf(I("x",e,t,n))];case"Atan2":return[Tf(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[Ef(I("x",e,t,n))];case"Ceil":return[Rf(I("x",e,t,n))];case"Complex":return[Aa(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[Iu(I("x",e,t,n))];case"Cosh":return[Yh(I("x",e,t,n))];case"Elu":return[Bo(I("x",e,t,n))];case"Erf":return[Of(I("x",e,t,n))];case"Exp":return[Wn(I("x",e,t,n))];case"Expm1":return[zf(I("x",e,t,n))];case"Floor":return[Vo(I("x",e,t,n))];case"Log":return[kn(I("x",e,t,n))];case"Log1p":return[td(I("x",e,t,n))];case"Imag":return[Qh(I("x",e,t,n))];case"Neg":return[vt(I("x",e,t,n))];case"Reciprocal":return[Hf(I("x",e,t,n))];case"Real":return[Fu(I("x",e,t,n))];case"Relu":return[Cr(I("x",e,t,n))];case"Round":return[jf(I("x",e,t,n))];case"Selu":return[ud(I("x",e,t,n))];case"Sigmoid":return[Jn(I("x",e,t,n))];case"Sin":return[cd(I("x",e,t,n))];case"Sign":return[qf(I("x",e,t,n))];case"Sinh":return[hd(I("x",e,t,n))];case"Softplus":return[Uo(I("x",e,t,n))];case"Sqrt":return[Kt(I("x",e,t,n))];case"Square":return[ht(I("x",e,t,n))];case"Tanh":return[Lo(I("x",e,t,n))];case"Tan":return[Zf(I("x",e,t,n))];case"ClipByValue":return[pn(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[od(I("x",e,t,n))];case"Rsqrt":return[ld(gn(e.inputNames[0],t,n))];case"Prod":return[sd(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[Su(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[Ru(I("x",e,t,n),I("alpha",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function ur(e,t,n=""){k.assert(ote(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function ote(e,t){if(e.length!==t.length)return!1;for(let n=0;n{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),ur(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Vt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,r)=>this.write(n,t[r]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let r=0;r=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,rr(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,r=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is ${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let a=n===0?0:t.size/n,s=[];H(()=>{t=q(t,[1,n,a]);for(let o=0;o{if(n!==a.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${a.dtype}`);ur(t,a.shape,"TensorList shape mismatch: "),Vt(a)}),this.idTensor=Se(0),this.maxNumElements=r,Vt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Cc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);return ur(e,this.elementShape,"TensorList shape mismatch: "),H(()=>{let r=this.tensors.map(a=>q(a,e));return Sn(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=this.tensors.pop();return ur(n.shape,e,"TensorList shape mismatch: "),q(n,e)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(ur(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Vt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);return ur(this.tensors[e].shape,t,"TensorList shape mismatch: "),this.tensors[e]}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);ur(this.elementShape,t.shape,"TensorList shape mismatch: "),Vt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);return ur(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size()),e.length===0?fr([],[0].concat(this.elementShape)):H(()=>{let r=e.map(a=>q(this.tensors[a],n));return Sn(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);return ur(this.elementShape,t,"TensorList shape mismatch: "),this.size()===0?fr([],[0].concat(this.elementShape)):H(()=>{let n=this.tensors.map(r=>q(r,t));return dt(n,0)})}};function ute(e,t,n){let r=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let a=e.shape.slice(1);ur(a,t,"TensorList shape mismatch: ");let s=rr(e);return new Cc(s,t,r)}function cte(e,t,n){return new Cc([],e,t,n)}function hte(e,t,n,r){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let a=Math.max(...t);if(r!=null&&r!==-1&&a>=r)throw new Error(`Max index must be < array size (${a} vs. ${r})`);let s=new Cc([],n,e.dtype,r),i=rr(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function dte(e,t,n){let r=0,a=t.map(l=>(r+=l,r));if(r!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is ${r}, and tensor's shape is: ${e.shape}`);let s=r===0?0:e.size/r,i=H(()=>{let l=[];e=q(e,[1,r,s]);for(let c=0;c{switch(e.op){case"If":case"StatelessIf":{let r=I("thenBranch",e,t,n),a=I("elseBranch",e,t,n),s=I("cond",e,t,n),i=I("args",e,t,n);return(await s.data())[0]?n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let r=I("body",e,t,n),a=I("cond",e,t,n),s=I("args",e,t,n),i=await n.functionMap[a].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(u=>u.id),l=await i[0].data();i.forEach(u=>{!u.kept&&o.indexOf(u.id)===-1&&u.dispose()});let c=s;for(;l[0];){let u=c;c=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let h=c.map(p=>p.id);u.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()});let d=await n.functionMap[a].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()})}return c}case"LoopCond":{let r=I("pred",e,t,n);return[oa(r)]}case"Switch":{let r=I("pred",e,t,n),a=I("data",e,t,n);return a.kept||(a=oa(a)),(await r.data())[0]?[void 0,a]:[a,void 0]}case"Merge":{let r=e.inputNames.find(a=>gn(a,t,n)!==void 0);if(r){let a=gn(r,t,n);return[oa(a)]}return}case"Enter":{let r=I("frameName",e,t,n),a=I("tensor",e,t,n);return n.enterFrame(r),[oa(a)]}case"Exit":{let r=I("tensor",e,t,n);return n.exitFrame(),[oa(r)]}case"NextIteration":{let r=I("tensor",e,t,n);return n.nextIteration(),[oa(r)]}case"TensorArrayV3":{let r=I("size",e,t,n),a=I("dtype",e,t,n),s=I("elementShape",e,t,n),i=I("dynamicSize",e,t,n),o=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),c=I("name",e,t,n),u=new lte(c,a,r,s,l,i,o);return n.addTensorArray(u),[u.idTensor,Se(1)]}case"TensorArrayWriteV3":{let r=I("tensorArrayId",e,t,n),a=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(r.id);return i.write(a,s),[i.idTensor]}case"TensorArrayReadV3":{let r=I("tensorArrayId",e,t,n),a=I("index",e,t,n);return[n.getTensorArray(r.id).read(a)]}case"TensorArrayGatherV3":{let r=I("tensorArrayId",e,t,n),a=I("indices",e,t,n),s=I("dtype",e,t,n);return[n.getTensorArray(r.id).gather(a,s)]}case"TensorArrayScatterV3":{let r=I("tensorArrayId",e,t,n),a=I("indices",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(r.id);return i.scatter(a,s),[i.idTensor]}case"TensorArrayConcatV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id),s=I("dtype",e,t,n);return[a.concat(s)]}case"TensorArraySplitV3":{let r=I("tensorArrayId",e,t,n),a=I("tensor",e,t,n),s=I("lengths",e,t,n),i=n.getTensorArray(r.id);return i.split(s,a),[i.idTensor]}case"TensorArraySizeV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return[Se(a.size(),"int32")]}case"TensorArrayCloseV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return a.clearAndClose(),[a.idTensor]}case"TensorListSetItem":{let r=I("tensorListId",e,t,n),a=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorList(r.id);return i.setItem(a,s),[i.idTensor]}case"TensorListGetItem":{let r=I("tensorListId",e,t,n),a=I("index",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(r.id).getItem(a,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let r=I("indices",e,t,n),a=I("tensor",e,t,n),s=I("elementShape",e,t,n),i=I("numElements",e,t,n),o=hte(a,r,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=I(s,e,t,n),o=cte(r,a,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let r=I("tensorListId",e,t,n),a=I("indices",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(r.id).gather(a,i,s)]}case"TensorListStack":{let r=I("tensorListId",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=I("numElements",e,t,n);return[n.getTensorList(r.id).stack(a,s,i)]}case"TensorListFromTensor":{let r=I("tensor",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=ute(r,a,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let r=I("tensorListId",e,t,n),a=n.getTensorList(r.id),s=I("dtype",e,t,n),i=I("elementShape",e,t,n);return[a.concat(s,i)]}case"TensorListPushBack":{let r=I("tensorListId",e,t,n),a=I("tensor",e,t,n),s=n.getTensorList(r.id);return s.pushBack(a),[s.idTensor]}case"TensorListPopBack":{let r=I("tensorListId",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n);return[n.getTensorList(r.id).popBack(a,s)]}case"TensorListSplit":{let r=I("tensor",e,t,n),a=I("elementShape",e,t,n),s=I("lengths",e,t,n),i=dte(r,s,a);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function f7(e,t,n){let[r,a]=I("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=r==="fusedbatchnorm",l=I("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");let c=I("strides",e,t,n),u=qp(e,t,n),h=I("dataFormat",e,t,n).toUpperCase(),d=I("dilations",e,t,n),[p,f]=I("args",e,t,n),m=I("leakyreluAlpha",e,t,n);return{stride:c,pad:u,dataFormat:h,dilations:d,biasArg:p,preluArg:f,activationFunc:a,leakyreluAlpha:m}}var fte=(e,t,n)=>{switch(e.op){case"Conv1D":{let r=I("stride",e,t,n),a=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[Kh(I("x",e,t,n),I("filter",e,t,n),r,a,s,i)]}case"Conv2D":{let r=I("strides",e,t,n),a=qp(e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[Kr(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=f7(e,t,n);return[_a.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=f7(e,t,n);return[_a.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=I("outputShape",e,t,n),a=I("strides",e,t,n),s=qp(e,t,n);return[Zh(I("x",e,t,n),I("filter",e,t,n),r,[a[1],a[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=I("strides",e,t,n),a=qp(e,t,n),s=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[Wo(I("input",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,i,[s[1],s[2]])]}case"Conv3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[Ff(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2],r[3]],a,s,[i[1],i[2],i[3]])]}case"AvgPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[bu(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Eu(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPoolWithArgmax":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:o,indexes:l}=Fg(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a,i);return[o,l]}case"AvgPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Cf(I("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"MaxPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Bf(I("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"Dilation2D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("dilations",e,t,n),i=r[1],o=r[2],l=s[1],c=s[2];return[$f(I("x",e,t,n),I("filter",e,t,n),[i,o],a,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},mte=(e,t,n)=>{switch(e.op){case"Fill":{let r=I("shape",e,t,n),a=I("dtype",e,t,n),s=I("value",e,t,n);return[Nu(r,s,a)]}case"LinSpace":{let r=I("start",e,t,n),a=I("stop",e,t,n),s=I("num",e,t,n);return[Tg(r,a,s)]}case"Multinomial":{let r=I("logits",e,t,n),a=I("numSamples",e,t,n),s=I("seed",e,t,n);return[Mg(r,a,s)]}case"OneHot":{let r=I("indices",e,t,n),a=I("depth",e,t,n),s=I("onValue",e,t,n),i=I("offValue",e,t,n);return[Po(r,a,s,i)]}case"Ones":return[Er(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[In(I("x",e,t,n))];case"RandomUniform":return[Go(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let r=I("start",e,t,n),a=I("stop",e,t,n),s=I("step",e,t,n);return[id(r,a,s,I("dtype",e,t,n))]}case"TruncatedNormal":{let r=I("shape",e,t,n),a=I("mean",e,t,n),s=I("stdDev",e,t,n),i=I("seed",e,t,n);return[Ad(r,a,s,I("dtype",e,t,n),i)]}case"Zeros":return[Rt(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[qe(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function E2(e,t,n){let r=I("boxes",e,t,n),a=I("scores",e,t,n),s=I("maxOutputSize",e,t,n),i=I("iouThreshold",e,t,n),o=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var Ate=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=E2(e,t,n),c=await Et.nonMaxSuppressionWithScoreAsync(r,a,s,i,o,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=E2(e,t,n),l=I("padToMaxOutputSize",e,t,n),c=await Et.nonMaxSuppressionPaddedAsync(r,a,s,i,o,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=E2(e,t,n);return[await Et.nonMaxSuppressionAsync(r,a,s,i,o)]}case"Where":{let r=ye(I("condition",e,t,n),"bool"),a=[await Qf(r)];return r.dispose(),a}case"ListDiff":return Og(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},yte=(e,t,n)=>{switch(e.op){case"TopKV2":{let r=I("x",e,t,n),a=I("k",e,t,n),s=I("sorted",e,t,n),i=Yf(r,a,s);return[i.values,i.indices]}case"Unique":{let r=I("x",e,t,n),a=yd(r);return[a.values,a.indices]}case"UniqueV2":{let r=I("x",e,t,n),a=I("axis",e,t,n),s=yd(r,a);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},gte=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=I("default",e,t,n);return[gn(e.name,t,n)||r];case"Placeholder":return[gn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=I("x",e,t,n);return[oa(c)]}case"IdentityN":return I("x",e,t,n).map(c=>oa(c));case"Snapshot":let a=I("x",e,t,n);return[oa(a)];case"Shape":return[Qt(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(c=>Qt(c.shape));case"Size":return[Se(I("x",e,t,n).size,"int32")];case"Rank":return[Se(I("x",e,t,n).rank,"int32")];case"NoOp":return[Se(1)];case"Print":let s=I("x",e,t,n),i=I("data",e,t,n),o=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let c=0;ce.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(r=>r.dispose()),this.tensorMap.clear(),H(()=>{let r=rr(t),a=n.length,s=r.length;k.assert(a===s,()=>`The number of elements doesn't match, keys has ${a} elements, the values has ${s} elements.`);for(let i=0;i{let r=[];for(let a=0;a{switch(e.op){case"HashTable":case"HashTableV2":{let a=I("keyDType",e,t,n),s=I("valueDType",e,t,n),i=new xte(a,s);return r.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let a=I("tableHandle",e,t,n,r),s=I("keys",e,t,n),i=I("values",e,t,n);return[await r.getHashTableById(a.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let a=I("tableHandle",e,t,n,r),s=I("keys",e,t,n),i=I("defaultValue",e,t,n);return[await r.getHashTableById(a.id).find(s,i)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},_te=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let r=I("images",e,t,n),a=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Et.resizeBilinear(r,[a[0],a[1]],s,i)]}case"ResizeNearestNeighbor":{let r=I("images",e,t,n),a=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Et.resizeNearestNeighbor(r,[a[0],a[1]],s,i)]}case"CropAndResize":{let r=I("image",e,t,n),a=I("boxes",e,t,n),s=I("boxInd",e,t,n),i=I("cropSize",e,t,n),o=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[Et.cropAndResize(r,a,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},bte=(e,t,n)=>{switch(e.op){case"Equal":return[ya(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[Hs(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[tr(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[xa(I("a",e,t,n),I("b",e,t,n))];case"Less":return[ed(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[Us(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[nr(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[Tu(I("a",e,t,n))];case"LogicalOr":return[rd(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[fn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},vte=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ke(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Transpose":return[it(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[r,a]=I("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=I("args",e,t,n);return[_a.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:c,activation:a,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},kte=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Bs(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[Bs(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[Lf(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[$u(I("x",e,t,n))];case"LogSoftmax":return[nd(I("x",e,t,n))];case"SparseToDense":return[em(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ite=(e,t,n)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Bn(I("x",e,t,n),i,o)]}case"Mean":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[kt(I("x",e,t,n),i,o)]}case"Min":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Ho(I("x",e,t,n),i,o)]}case"Sum":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Ee(I("x",e,t,n),i,o)]}case"All":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Xh(I("x",e,t,n),i,o)]}case"Any":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[wu(I("x",e,t,n),i,o)]}case"ArgMax":{let i=I("axis",e,t,n);return[_u(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[kf(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[sd(I("x",e,t,n),i,o)]}case"Cumsum":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[Jh(I("x",e,t,n),i,o,l)]}case"Bincount":let r=I("x",e,t,n),a=I("weights",e,t,n),s=I("size",e,t,n);return[xg(r,a,s)];case"DenseBincount":{let i=I("x",e,t,n),o=I("weights",e,t,n),l=I("size",e,t,n),c=I("binaryOutput",e,t,n);return[vg(i,o,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Nte=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=I("n",e,t,n),a=I("axis",e,t,n),s=I("tensors",e,t,n);return s=s.slice(0,r),[dt(s,a)]}case"Gather":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[Vs(r,ye(a,"int32"),0)]}case"GatherV2":{let r=I("axis",e,t,n),a=I("batchDims",e,t,n),s=I("x",e,t,n),i=I("indices",e,t,n);return[Vs(s,ye(i,"int32"),r,a)]}case"Reverse":{let r=I("dims",e,t,n),a=[];for(let i=0;i{let r=I("axis",e,t,n),a=I("tensors",e,t,n),s=a[0].shape,i=wa(a[0]).shape,o=a.map(l=>{let c=k.arraysEqual(l.shape,s);if(!c&&!k.arraysEqual(wa(l).shape,i))throw new Error("the input tensors shape does not match");return c?l:q(l,s)});return[Sn(o,r)]});case"Unpack":{let r=I("axis",e,t,n),a=I("tensor",e,t,n);return rr(a,r)}case"Tile":{let r=I("reps",e,t,n);return[ga(I("x",e,t,n),r)]}case"Split":case"SplitV":{let r=I("axis",e,t,n),a=I("numOrSizeSplits",e,t,n),s=I("x",e,t,n);return rn(s,a,r)}case"ScatterNd":{let r=I("indices",e,t,n),a=I("values",e,t,n),s=I("shape",e,t,n);return[Pg(r,a,s)]}case"GatherNd":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[Lg(r,a)]}case"SparseToDense":{let r=I("sparseIndices",e,t,n),a=I("outputShape",e,t,n),s=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[em(r,s,a,s.dtype===i.dtype?i:ye(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ste=(e,t,n)=>{switch(e.op){case"FFT":return[Du(I("x",e,t,n))];case"IFFT":return[qo(I("x",e,t,n))];case"RFFT":return[Ou(I("x",e,t,n))];case"IRFFT":return[fd(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Tte=(e,t,n)=>{switch(e.op){case"Cast":return[ye(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let r=I("axis",e,t,n);return[vn(I("x",e,t,n),r)]}case"Squeeze":{let r=I("axis",e,t,n);return[wa(I("x",e,t,n),r)]}case"Reshape":return[q(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[Vf(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[Zr(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let r=I("blockShape",e,t,n),a=I("paddings",e,t,n);return[Cu(I("x",e,t,n),r,a)]}case"BatchToSpaceND":{let r=I("blockShape",e,t,n),a=I("crops",e,t,n);return[vu(I("x",e,t,n),r,a)]}case"DepthToSpace":{let r=I("blockSize",e,t,n),a=I("dataFormat",e,t,n).toUpperCase();return[Mf(I("x",e,t,n),r,a)]}case"BroadcastTo":return[ku(I("x",e,t,n),I("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function m7(e,t,n,r){let a=((s,i,o)=>{switch(s.category){case"arithmetic":return H(()=>ste(s,i,o));case"basic_math":return H(()=>ite(s,i,o));case"control":return pte(s,i,o);case"convolution":return H(()=>fte(s,i,o));case"creation":return H(()=>mte(s,i,o));case"dynamic":return Ate(s,i,o);case"evaluation":return H(()=>yte(s,i,o));case"image":return H(()=>_te(s,i,o));case"graph":return H(()=>gte(s,i,o));case"logical":return H(()=>bte(s,i,o));case"matrices":return H(()=>vte(s,i,o));case"normalization":return H(()=>kte(s,i,o));case"reduction":return H(()=>Ite(s,i,o));case"slice_join":return H(()=>Nte(s,i,o));case"spectral":return H(()=>Ste(s,i,o));case"transformation":return H(()=>Tte(s,i,o));case"hash_table":return wte(s,i,o,r);case"custom":let l=G3(s.op);if(l&&l.customExecutor)return l.customExecutor(new ate(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return k.isPromise(a)?a.then(s=>[].concat(s)):[].concat(a)}var A7=class{constructor(e={},t={},n={},r={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;tt.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function g7(e,t,n,r){let a=new Set,s=[],i=null,o=null,l=new Set,c=Object.keys(e).map(d=>Mn(d)[0]),u=[];r!=null&&(u=r.map(d=>Mn(d.name)[0]));let h=[...t];for(;h.length>0;){let d=h.pop();if((y7(d)||Ete(d)||Cte(d))&&i==null&&(i=d,o=i.children.map(p=>p.name).filter(p=>a.has(p))),a.add(d.name),n[d.name]==null&&c.indexOf(d.name)===-1&&u.indexOf(d.name)===-1){if(d.inputs.length===0){s.push(d.name);continue}d.inputs.forEach(p=>{l.has(p.name)||(l.add(p.name),h.push(p))})}}return{inputs:e,outputs:t,usedNodes:a,missingInputs:s,dynamicNode:i,syncInputs:o}}function Rte(e,t,n){let{usedNodes:r,inputs:a}=n,s=[],i=Object.keys(a).map(u=>Mn(u)[0]).map(u=>e.nodes[u]),o=e.initNodes;i.forEach(u=>{r.has(u.name)&&s.push(u)}),e.weights.forEach(u=>{r.has(u.name)&&s.push(u)}),o!=null&&o.forEach(u=>{r.has(u.name)&&s.push(u)});let l=new Set,c=[];for(;s.length>0;){let u=s.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(h=>{!l.has(h.name)&&r.has(h.name)&&h.inputs.every(d=>l.has(d.name))&&s.push(h)})}return c}var Fte=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],Mte=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],$te=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2"];function y7(e){return Fte.indexOf(e.op)>=0}function Ete(e){return Mte.indexOf(e.op)>=0}function Cte(e){return $te.indexOf(e.op)>=0}var C2=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new C2(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(r=>r.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(a=>a.name).sort(),r=t.map(a=>a.name).sort();return n.join(this.SEPERATOR)+"--"+r.join(this.SEPERATOR)}compile(e,t){let n=g7(e,t,this.weightMap,this._initNodes),{missingInputs:r,dynamicNode:a,syncInputs:s}=n;if(a!=null)throw new Error(`This execution contains the node '${a.name}', which has the dynamic op '${a.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(r.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${r}]`)}return Rte(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let r=n.map(u=>this.graph.nodes[Mn(u)[0]]),a=t.map(u=>Mn(u)[0]),s=a.map(u=>this.graph.nodes[u]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(r,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},c={};return H(()=>{let u=new A7(this.weightMap,l,c,this.functionExecutorMap),h=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,A]=Mn(f),y=[];y[A]=e[f],h[m]=y});let d=this.getFrozenTensorIds(h),p={};for(let f=0;fgn(f,h,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(r=>r.id)));return new Set(t)}checkTensorForDisposal(e,t,n,r,a,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=Lee(o.name,n,r);l!=null&&l.forEach(c=>{if(c&&!a.has(c.id)){let u=i[c.id];u===1?(c.dispose(),delete i[c.id]):u!=null&&i[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,r={},a={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new A7(this.weightMap,r,a,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(h=>gn(h,i,s)),l=o.map(h=>h.id),c=Object.keys(e).map(h=>e[h].id),u=new Set([...l,...c,...this.weightIds]);return Object.keys(i).forEach(h=>{i[h].forEach(d=>{d&&!d.isDisposed&&!u.has(d.id)&&d.dispose()})}),this.parent==null&&s.dispose(u),o}async executeFunctionAsync(e,t,n){let r=e.reduce((a,s,i)=>(a[this.inputs[i].name]=s,a),{});return this._executeAsync(r,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,r){let a=Object.keys(e),s=a.map(g=>this.graph.nodes[Mn(g)[0]]),i=n.map(g=>Mn(g)[0]),o=i.map(g=>this.graph.nodes[g]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:h}=g7(e,o,this.weightMap,this._initNodes),d=[...s,...this.graph.weights,...this._initNodes||[]].map(g=>({node:g,contexts:t.currentContext})),p=Object.assign({},this.weightMap);Object.keys(e).forEach(g=>{let[w,x]=Mn(g),_=[];_[x]=e[g],p[w]=_});let f={},m=this.getFrozenTensorIds(p),A={};for(;d.length>0;){let g=this.processStack(s,d,t,p,A,m,i,f,l);await Promise.all(g)}u==null&&!r&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(g=>!y7(g)&&!gn(g.name,p,t)).map(g=>g.name);if(y.length>0){let g="";throw u!=null&&(g=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${h}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${a}]. Consider providing the following inputs: [${c}]. ${g}`)}return p}processStack(e,t,n,r,a,s,i,o,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let h="";if(u.node.op==="Enter"&&I("isConstant",u.node,r,n)&&([h]=ia(u.node.name,n)),r[u.node.name]==null){let d=m7(u.node,r,n,this._resourceManager);h||([h]=ia(u.node.name,n));let p=n.currentContext;k.isPromise(d)?c.push(d.then(f=>(r[h]=f,n.currentContext=p,this.checkTensorForDisposal(h,u.node,r,n,s,i,o),this.processChildNodes(u.node,t,n,r,a,l),f))):(r[h]=d,this.checkTensorForDisposal(h,u.node,r,n,s,i,o),this.processChildNodes(u.node,t,n,r,a,l))}else this.processChildNodes(u.node,t,n,r,a,l)}return c}processChildNodes(e,t,n,r,a,s){e.children.forEach(i=>{let[o]=ia(i.name,n);a[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!gn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!gn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[r]=Mn(t),a=this.graph.nodes[r];if(a.attrParams.shape&&a.attrParams.shape.value){let s=a.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);k.assert(i,()=>`The shape of dict['${a.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}a.attrParams.dtype&&a.attrParams.dtype.value&&k.assert(n.dtype===a.attrParams.dtype.value,()=>`The dtype of dict['${a.name}'] provided in model.execute(dict) must be ${a.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let r=this._signature.inputs[n];t[r.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[r]=Mn(n);return this.graph.nodes[r]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Mn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},Dte=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},Ote="?tfjs-format=file",zte="model.json",h0=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new Dte}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=dn.browserHTTPRequest(e,this.loadOptions);else{let t=dn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(dn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let r=dn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new C2(h7.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(r),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let a=h7.Instance.transformGraph(e.modelInitializer);this.initializer=new C2(a),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=dn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof tt)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,r)=>(t[n]=e[r],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Qn(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${zte}${Ote}`);let n=new h0(e,t);return await n.load(),n}var W4="3.0.0",d0={};Pe(d0,{CSVDataset:()=>w7,Dataset:()=>Tl,FileDataSource:()=>_7,TextLineDataset:()=>x7,URLDataSource:()=>b7,array:()=>Pte,csv:()=>Wte,func:()=>Bte,generator:()=>Vte,microphone:()=>Hte,version_data:()=>jte,webcam:()=>Ute,zip:()=>Lte});var Gte=Zo(f0()),qte=Zo(f0());function Xte(e,t){return Xp(e,t)}function Xp(e,t,n=new Map,r=new Set){if(e==null)return null;if(r.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(a.recurse)if(El(e)){let s=Array.isArray(e)?[]:{};r.add(e);for(let i in e){let o=e[i],l=Xp(o,t,n,r);s[i]=l}return r.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,a.value),a.value}function Kte(e,t=k7){return v7(e,t)}function v7(e,t,n=new Set){let r=e[0];if(n.has(r))throw new Error("Circular references are not supported.");let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(a.recurse)if(El(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let i in r){let o=e.map(c=>c[i]),l=v7(o,t,n);s[i]=l}return n.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return a.value}function k7(e){return e===null?null:El(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function I7(e,t){let n=new Map;Xp(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(k.isPromise(a)){let s=await a;n.set(r,s)}}return Xp(e,t,n)}function El(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof tt))}function Yte(e){return e==null||Zte(e)||Array.isArray(e)||typeof e=="object"&&e instanceof tt||k.isTypedArray(e)}function Zte(e){return e===null||typeof e!="object"&&typeof e!="function"}function Qte(e){return Xte(e,Jte)}function Jte(e){return e instanceof tt?{value:e.clone(),recurse:!1}:El(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var N7=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},R2=class extends N7{constructor(){super(R2.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let r=0;rt===!0)}rowMajorBatch(e,t=!0){return new lne(this,e,t)}columnMajorBatch(e,t=!0,n=k7){return this.rowMajorBatch(e,t).map(r=>Kte(r,n))}concatenate(e,t){return new T7(S7([this,e]),t)}take(e){return e<0||e==null?this:new one(this,e)}skip(e){return e<0||e==null?this:new ine(this,e)}prefetch(e){return new C7(this,e)}shuffle(e,t){return new pne(this,e,t)}serial(){return new sne(this)}},ene=class extends qt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:Qte(e),done:!1}}},tne=class extends qt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},sne=class extends qt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},ine=class extends qt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++ Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},lne=class extends qt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},une=class extends qt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Re(e.value)}}},cne=class extends qt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=pr.getTensorsInContainer(e.value),n=this.transform(e.value),r=pr.getTensorsInContainer(n);for(let a of t)pr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},hne=class extends qt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},E7=class extends qt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=pr.getTensorsInContainer(e.value),n=await this.transform(e.value),r=pr.getTensorsInContainer(n);for(let a of t)pr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},M2=class extends qt{constructor(){super();this.outputQueue=new R2,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},dne=class extends M2{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=pr.getTensorsInContainer(e.value),n=this.transform(e.value),r=pr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let a of t)pr.isTensorInList(a,r)||a.dispose();return!0}},T7=class extends qt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Pa;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Pa||(Pa={}));var rne=class extends qt{constructor(e,t=Pa.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function r(s){return s instanceof qt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let a=await I7(this.iterators,r);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Pa.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Pa.SHORTEST:return{value:null,done:!0};case Pa.LONGEST:default:}return this.count++,{value:a,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},C7=class extends qt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new N7(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},pne=class extends C7{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=qte.alea(n||k.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Tl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;k.assert(e>0,()=>`batchSize needs to be positive, but it is ${e}`);let r;return this.size===Infinity||this.size==null?r=this.size:t?r=Math.ceil(this.size/e):r=Math.floor(this.size/e),$n(async()=>(await n.iterator()).columnMajorBatch(e,t,fne),r)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,$n(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,$n(async()=>(await t.iterator()).filter(r=>H(()=>e(r))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return $n(async()=>(await t.iterator()).map(n=>H(()=>e(n))),this.size)}mapAsync(e){let t=this;return $n(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return $n(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,$n(async()=>{let r=F2(async()=>({value:await t.iterator(),done:!1}));return nne(r.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let r=this,a=Gte.alea(t||k.now().toString());return $n(async()=>{let s=a.int32();return n&&(s+=a.int32()),(await r.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,$n(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Tl.MAX_BUFFER_SIZE=1e4;function $n(e,t=null){return new class extends Tl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function Pte(e){return $n(async()=>S7(e),e.length)}function Lte(e){if(!El(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n{let n=await I7(e,r=>{if(r instanceof Tl)return{value:r.iterator(),recurse:!1};if(El(r))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return ane(n,Pa.SHORTEST)},t)}function fne(e){if(e===null)return null;let t=e[0];return Yte(t)?{value:mne(e),recurse:!1}:{value:null,recurse:!0}}function mne(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof tt?Sn(e):fr(e)}var x7=class extends Tl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(` `).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},Kp='"',Rc=Symbol("out"),R7=Symbol("field"),Zp=Symbol("quote"),$2=Symbol("quoteafterquote"),F7=Symbol("quoteinquote"),w7=class extends Tl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new x7(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(k.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&k.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((r,a)=>(r[a]=r[a]+1||1,r),{}),n=Object.keys(t).filter(r=>t[r]>1);if(k.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let r of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(r)===-1)throw new Error('The key "'+r+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},r={};for(let a=0;a14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(Q().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new M7(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let r=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(r,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let r=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(r,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(r=>{let a=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&r({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(a),r({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((r,a)=>n.set(r,a*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(k.sizeFromShape(t));return n.set(e,n.length-e.length),fr(n,t)}},$7=class extends qt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Qt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,r=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,a=(1-n)/2,s=(1-r)/2,i=a+n,o=r+s;this.cropBox=dr([s,a,o,i],[1,4])}else this.cropBox=dr([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(Q().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new $7(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&k.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Jl.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return H(()=>{let t=vn(ye(e,"float32"),0),n;n=Et.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let r=n.shape;return q(n,r.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},D7=class{},O7=class extends qt{split(e){return new Ane(this,e)}},Ane=class extends O7{constructor(e,t){super();this.upstream=e,this.impl=new yne(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},yne=class extends M2{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},xne=class extends qt{decodeUTF8(){return new gne(this)}},gne=class extends O7{constructor(e){super();this.upstream=e,this.impl=new wne(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},wne=class extends M2{constructor(e){super();if(this.upstream=e,Q().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=b8();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return Q().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},z7=class extends xne{constructor(e,t={}){super();this.file=e,this.options=t,k.assert(e instanceof Uint8Array||(Q().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let r=new FileReader;r.onload=s=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},r.onabort=s=>t(new Error("Aborted")),r.onerror=s=>t(new Error(s.type));let a=this.file.slice(this.offset,n);r.readAsArrayBuffer(a)}this.offset=n}),done:!1}}};async function bne(e,t={}){let n,r;typeof e=="string"?n=e:(n=e.url,r=_ne(e));let a=await k.fetch(n,r);if(a.ok){let s=new Uint8Array(await a.arrayBuffer());return new z7(s,t)}else throw new Error(a.statusText)}var _ne=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function P7(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var _7=class extends D7{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(P7(this.input)&&Q().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new z7(this.input,this.options)}},b7=class extends D7{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return P7(this.url)?new _7(this.url,this.fileOptions).iterator():bne(this.url,this.fileOptions)}};function Wte(e,t={}){return new w7(new b7(e),t)}function Bte(e){let t=F2(e);return $n(async()=>t)}function Vte(e){return $n(async()=>{let t=await e();return F2(()=>t.next())})}async function Ute(e,t){return $7.create(e,t)}async function Hte(e){return M7.create(e)}var jte="3.0.0",B4={tfjs:v8,"tfjs-core":k8,"tfjs-data":I8,"tfjs-layers":N8,"tfjs-converter":S8,"tfjs-backend-cpu":Hg,"tfjs-backend-webgl":qg,"tfjs-backend-wasm":Yg},cn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function vne(){if(!mg(cn.name)){je("backend registration:",cn.name);try{cn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(cn.width,cn.height):document.createElement("canvas")}catch(e){je("error: cannot create canvas:",e);return}try{cn.gl=cn.canvas.getContext("webgl2",cn.webGLattr)}catch(e){je("error: cannot get WebGL2 context:",e);return}try{rm(2,cn.gl)}catch(e){je("error: cannot set WebGL2 context:",e);return}try{let e=new am(cn.gl);xu(cn.name,()=>new sm(e),cn.priority)}catch(e){je("error: cannot register WebGL backend:",e);return}try{yu("webgl").forEach(e=>{let t={...e,backendName:cn.name};zo(t)})}catch(e){je("error: cannot update WebGL backend registration:",e);return}try{bn.set("WEBGL_VERSION",2),bn.set("WEBGL_MAX_TEXTURE_SIZE",cn.gl.getParameter(cn.gl.MAX_TEXTURE_SIZE)),bn.set("WEBGL_FORCE_F16_TEXTURES",!0),bn.set("WEBGL_PACK_DEPTHWISECONV",!0)}catch(e){je("error: cannot set WebGL backend flags:",e);return}je("backend registered:",cn.name)}}var L7=ze(bv()),kne=ze(vv()),Fc=ze(kv()),Mc=ze(Iv()),$c=ze(Nv()),Dc=ze(Sv()),D2=ze($v());function df(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function uh(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function zv(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Et.cropAndResize(t,s,[0],n)}function Dv(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],a=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:r,palmLandmarks:a,confidence:e.confidence}}function pf(e,t=1.5){let n=uh(e),r=df(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function ff(e){let t=uh(e),n=df(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],s=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:s,palmLandmarks:e.palmLandmarks}}function Ine(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function Pv(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Ine(n)}var W7=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function qa(e,t){let n=0;for(let r=0;rtypeof performance!="undefined"?performance.now():parseInt(Number(process.hrtime.bigint())/1e3/1e3);function Cl(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,r)=>(Object.keys(r||{}).forEach(a=>{let s=n[a],i=r[a];Array.isArray(s)&&Array.isArray(i)?n[a]=s.concat(...i):t(s)&&t(i)?n[a]=Cl(s,i):n[a]=i}),n),{})}var U7=class{constructor(e={}){this.tf=ng,this.version=Ene,this.config=Cl(Tne,e),this.fx=null,this.state="idle",this.numTensors=0,this.analyzeMemoryLeaks=!1,this.checkSanity=!1,this.firstRun=!0,this.perf={},this.models={facemesh:null,posenet:null,handpose:null,iris:null,age:null,gender:null,emotion:null},this.facemesh=L7,this.age=Fc,this.gender=Mc,this.emotion=$c,this.body=D2,this.hand=O2}profile(){return this.config.profile?Sne.data:{}}analyze(...e){if(!this.analyzeMemoryLeaks)return;let t=Ln().state.numTensors,n=this.numTensors;this.numTensors=t;let r=t-n;r!==0&&je(...e,r)}sanity(e){if(!this.checkSanity)return null;if(!e)return"input is not defined";if(bn.flags.IS_NODE&&!(e instanceof tt))return"input must be a tensor";try{Gh()}catch(t){return"backend not loaded"}return null}simmilarity(e,t){return this.config.face.embedding.enabled?Dc.simmilarity(e,t):0}async load(e){this.state="load";let t=At();e&&(this.config=Cl(this.config,e)),this.firstRun&&(je(`version: ${this.version} TensorFlow/JS version: ${hg}`),await this.checkBackend(!0),bn.flags.IS_BROWSER&&(je("configuration:",this.config),je("tf flags:",bn.flags)));let n=this.config.face.detector.modelPath.includes("faceboxes")?kne:L7;this.config.async?[this.models.face,this.models.age,this.models.gender,this.models.emotion,this.models.embedding,this.models.posenet,this.models.handpose]=await Promise.all([this.models.face||(this.config.face.enabled?n.load(this.config):null),this.models.age||(this.config.face.enabled&&this.config.face.age.enabled?Fc.load(this.config):null),this.models.gender||(this.config.face.enabled&&this.config.face.gender.enabled?Mc.load(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?$c.load(this.config):null),this.models.embedding||(this.config.face.enabled&&this.config.face.embedding.enabled?Dc.load(this.config):null),this.models.posenet||(this.config.body.enabled?D2.load(this.config):null),this.models.handpose||(this.config.hand.enabled?O2.load(this.config):null)]):(this.config.face.enabled&&!this.models.face&&(this.models.face=await n.load(this.config)),this.config.face.enabled&&this.config.face.age.enabled&&!this.models.age&&(this.models.age=await Fc.load(this.config)),this.config.face.enabled&&this.config.face.gender.enabled&&!this.models.gender&&(this.models.gender=await Mc.load(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await $c.load(this.config)),this.config.face.enabled&&this.config.face.embedding.enabled&&!this.models.embedding&&(this.models.embedding=await Dc.load(this.config)),this.config.body.enabled&&!this.models.posenet&&(this.models.posenet=await D2.load(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await O2.load(this.config))),this.firstRun&&(je("tf engine state:",Ln().state.numBytes,"bytes",Ln().state.numTensors,"tensors"),this.firstRun=!1);let r=Math.trunc(At()-t);r>(this.perf.load||0)&&(this.perf.load=r)}async checkBackend(e){if(this.config.backend&&this.config.backend!==""&&e||Gh()!==this.config.backend){let t=At();this.state="backend",je("setting backend:",this.config.backend),this.config.backend==="wasm"&&(je("settings wasm path:",this.config.wasmPath),Zg(this.config.wasmPath),await Q().getAsync("WASM_HAS_SIMD_SUPPORT")||je("warning: wasm simd support is not enabled")),this.config.backend==="humangl"&&vne();try{await pg(this.config.backend)}catch(n){je("error: cannot set backend:",this.config.backend,n)}if(dg(),Gh()==="webgl"){this.config.deallocate&&(je("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",this.config.deallocate),bn.set("WEBGL_DELETE_TEXTURE_THRESHOLD",this.config.deallocate?0:-1)),bn.set("WEBGL_FORCE_F16_TEXTURES",!0),bn.set("WEBGL_PACK_DEPTHWISECONV",!0);let n=await _f().getGPGPUContext().gl;je(`gl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`)}await fg(),this.perf.backend=Math.trunc(At()-t)}}async detectFace(e){var t,n,r,a,s,i;let o,l,c,u,h,d=[];this.state="run:face",o=At();let p=await((t=this.models.face)==null?void 0:t.estimateFaces(e,this.config));this.perf.face=Math.trunc(At()-o);for(let f of p){if(this.analyze("Get Face"),!f.image||f.image.isDisposedInternal){je("Face object is disposed:",f.image);continue}this.analyze("Start Age:"),this.config.async?l=this.config.face.age.enabled?Fc.predict(f.image,this.config):{}:(this.state="run:age",o=At(),l=this.config.face.age.enabled?await Fc.predict(f.image,this.config):{},this.perf.age=Math.trunc(At()-o)),this.analyze("Start Gender:"),this.config.async?c=this.config.face.gender.enabled?Mc.predict(f.image,this.config):{}:(this.state="run:gender",o=At(),c=this.config.face.gender.enabled?await Mc.predict(f.image,this.config):{},this.perf.gender=Math.trunc(At()-o)),this.analyze("Start Emotion:"),this.config.async?u=this.config.face.emotion.enabled?$c.predict(f.image,this.config):{}:(this.state="run:emotion",o=At(),u=this.config.face.emotion.enabled?await $c.predict(f.image,this.config):{},this.perf.emotion=Math.trunc(At()-o)),this.analyze("End Emotion:"),this.analyze("Start Embedding:"),this.config.async?h=this.config.face.embedding.enabled?Dc.predict(f.image,this.config):{}:(this.state="run:embedding",o=At(),h=this.config.face.embedding.enabled?await Dc.predict(f.image,this.config):{},this.perf.embedding=Math.trunc(At()-o)),this.analyze("End Emotion:"),this.config.async&&([l,c,u,h]=await Promise.all([l,c,u,h])),this.analyze("Finish Face:"),!this.config.face.iris.enabled&&((n=f==null?void 0:f.annotations)==null?void 0:n.leftEyeIris)&&((r=f==null?void 0:f.annotations)==null?void 0:r.rightEyeIris)&&(delete f.annotations.leftEyeIris,delete f.annotations.rightEyeIris);let m=((a=f.annotations)==null?void 0:a.leftEyeIris)&&((s=f.annotations)==null?void 0:s.rightEyeIris)?11.7*Math.max(Math.abs(f.annotations.leftEyeIris[3][0]-f.annotations.leftEyeIris[1][0]),Math.abs(f.annotations.rightEyeIris[4][1]-f.annotations.rightEyeIris[2][1])):0;d.push({confidence:f.confidence,box:f.box,mesh:f.mesh,boxRaw:f.boxRaw,meshRaw:f.meshRaw,annotations:f.annotations,age:l.age,gender:c.gender,genderConfidence:c.confidence,emotion:u,embedding:h,iris:m!==0?Math.trunc(m)/100:0,image:f.image.toInt().squeeze()}),(i=f.image)==null||i.dispose(),this.analyze("End Face")}return this.analyze("End FaceMesh:"),this.config.async&&(this.perf.face&&delete this.perf.face,this.perf.age&&delete this.perf.age,this.perf.gender&&delete this.perf.gender,this.perf.emotion&&delete this.perf.emotion),d}async image(e,t={}){this.state="image",this.config=Cl(this.config,t);let n=V7.process(e,this.config);return n.tensor.dispose(),n.canvas}async detect(e,t={}){return new Promise(async n=>{var r,a,s,i;this.state="config";let o;this.config=Cl(this.config,t),this.state="check";let l=this.sanity(e);l&&(je(l,e),n({error:l}));let c,u,h,d=At();await this.checkBackend(),await this.load(),this.config.scoped&&Ln().startScope(),this.analyze("Start Scope:"),o=At();let p=V7.process(e,this.config);if(!p||!p.tensor){je("could not convert input to tensor"),n({error:"could not convert input to tensor"});return}this.perf.image=Math.trunc(At()-o),this.analyze("Get Image:"),this.config.async?(h=this.config.face.enabled?this.detectFace(p.tensor):[],this.perf.face&&delete this.perf.face):(this.state="run:face",o=At(),h=this.config.face.enabled?await this.detectFace(p.tensor):[],this.perf.face=Math.trunc(At()-o)),this.analyze("Start Body:"),this.config.async?(c=this.config.body.enabled?(r=this.models.posenet)==null?void 0:r.estimatePoses(p.tensor,this.config):[],this.perf.body&&delete this.perf.body):(this.state="run:body",o=At(),c=this.config.body.enabled?await((a=this.models.posenet)==null?void 0:a.estimatePoses(p.tensor,this.config)):[],this.perf.body=Math.trunc(At()-o)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(u=this.config.hand.enabled?(s=this.models.handpose)==null?void 0:s.estimateHands(p.tensor,this.config):[],this.perf.hand&&delete this.perf.hand):(this.state="run:hand",o=At(),u=this.config.hand.enabled?await((i=this.models.handpose)==null?void 0:i.estimateHands(p.tensor,this.config)):[],this.perf.hand=Math.trunc(At()-o)),this.analyze("End Hand:"),this.config.async&&([h,c,u]=await Promise.all([h,c,u])),p.tensor.dispose(),this.config.scoped&&Ln().endScope(),this.analyze("End Scope:");let f=[];this.config.gesture.enabled&&(o=At(),f=[...Yp.face(h),...Yp.body(c),...Yp.hand(u),...Yp.iris(h)],this.config.async?this.perf.gesture&&delete this.perf.gesture:this.perf.gesture=Math.trunc(At()-o)),this.perf.total=Math.trunc(At()-d),this.state="idle",n({face:h,body:c,hand:u,gesture:f,performance:this.perf,canvas:p.canvas})})}async warmupBitmap(){let e=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(s=>s.blob()),t,n;switch(this.config.warmup){case"face":t=await e(z2);break;case"full":t=await e(P2);break;default:t=null}if(t){let r=await createImageBitmap(t);n=await this.detect(r,this.config),r.close()}return n}async warmupCanvas(){return new Promise(e=>{let t,n=0;switch(this.config.warmup){case"face":n=256,t="data:image/jpeg;base64,"+z2;break;case"full":n=1200,t="data:image/jpeg;base64,"+P2;break;default:t=null}let r=new Image(n,n);r.onload=()=>{let a=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(n,n):document.createElement("canvas");a.width=n,a.height=n;let s=a.getContext("2d");s.drawImage(r,0,0);let i=s.getImageData(0,0,n,n);this.detect(i,this.config).then(o=>e(o))},t?r.src=t:e(null)})}async warmupNode(){let e=s=>Buffer.from(s,"base64"),t=this.config.warmup==="face"?e(z2):e(P2),n=(void 0).decodeJpeg(t),r=n.expandDims(0);Re(n);let a=await this.detect(r,this.config);return Re(r),a}async warmup(e){let t=At();e&&(this.config=Cl(this.config,e));let n=this.config.videoOptimized;this.config.videoOptimized=!1;let r;typeof createImageBitmap=="function"?r=await this.warmupBitmap():typeof Image!="undefined"?r=await this.warmupCanvas():r=await this.warmupNode(),this.config.videoOptimized=n;let a=At();return je("Warmup",this.config.warmup,Math.round(a-t),"ms",r),r}};async function Cne(e,t,n){if(!e)return;let r=t.getContext("2d");r.font=n.baseFont,r.fillStyle=n.baseLabel;let a=1;for(let s=0;s1&&o[1].length>0){let l=i[1]>0?`#${i[1]}`:"",c=`${i[0]} ${l}: ${o[1]}`;r.fillStyle="black",r.fillText(c,8,2+a*n.baseLineHeight),r.fillStyle=n.baseLabel,r.fillText(c,6,0+a*n.baseLineHeight),a+=1}}}async function Rne(e,t,n,r){if(!e)return;let a=t.getContext("2d");for(let s of e){a.font=n.baseFont,a.strokeStyle=n.baseColor,a.fillStyle=n.baseColor,a.lineWidth=n.baseLineWidth,a.beginPath(),n.drawBoxes&&a.rect(s.box[0],s.box[1],s.box[2],s.box[3]);let i=[];if(s.genderConfidence&&i.push(`${s.gender||""} ${Math.trunc(100*s.genderConfidence)}% confident`),s.age&&i.push(`age: ${s.age||""}`),s.iris&&i.push(`iris distance: ${s.iris}`),s.emotion&&s.emotion.length>0){let o=s.emotion.map(l=>`${Math.trunc(100*l.score)}% ${l.emotion}`);i.push(o.join(" "))}i.length===0&&i.push("face"),a.fillStyle=n.baseLabel;for(let o=0;os.mesh[u]),c=new Path2D;c.moveTo(l[0][0],l[0][1]);for(let u of l)c.lineTo(u[0],u[1]);c.closePath(),a.strokeStyle=n.useDepth?`rgba(${127.5+2*l[0][2]}, ${127.5-2*l[0][2]}, 255, 0.3)`:n.baseColor,a.stroke(c),n.fillPolygons&&(a.fillStyle=n.useDepth?`rgba(${127.5+2*l[0][2]}, ${127.5-2*l[0][2]}, 255, 0.3)`:n.baseColor,a.fill(c))}if(s.annotations&&s.annotations.leftEyeIris){a.strokeStyle=n.useDepth?"rgba(255, 200, 255, 0.3)":n.baseColor,a.beginPath();let o=Math.abs(s.annotations.leftEyeIris[3][0]-s.annotations.leftEyeIris[1][0])/2,l=Math.abs(s.annotations.leftEyeIris[4][1]-s.annotations.leftEyeIris[2][1])/2;a.ellipse(s.annotations.leftEyeIris[0][0],s.annotations.leftEyeIris[0][1],o,l,0,0,2*Math.PI),a.stroke(),n.fillPolygons&&(a.fillStyle=n.useDepth?"rgba(255, 255, 200, 0.3)":n.baseColor,a.fill())}if(s.annotations&&s.annotations.rightEyeIris){a.strokeStyle=n.useDepth?"rgba(255, 200, 255, 0.3)":n.baseColor,a.beginPath();let o=Math.abs(s.annotations.rightEyeIris[3][0]-s.annotations.rightEyeIris[1][0])/2,l=Math.abs(s.annotations.rightEyeIris[4][1]-s.annotations.rightEyeIris[2][1])/2;a.ellipse(s.annotations.rightEyeIris[0][0],s.annotations.rightEyeIris[0][1],o,l,0,0,2*Math.PI),a.stroke(),n.fillPolygons&&(a.fillStyle=n.useDepth?"rgba(255, 255, 200, 0.3)":n.baseColor,a.fill())}}}}}var La=[];async function Fne(e,t,n){if(!e)return;let r=t.getContext("2d");r.lineJoin="round";for(let a=0;al.part==="leftShoulder"),i&&(s.moveTo(i.position.x,i.position.y),o=e[a].keypoints.find(l=>l.part==="rightShoulder"),o&&s.lineTo(o.position.x,o.position.y),o=e[a].keypoints.find(l=>l.part==="rightHip"),o&&s.lineTo(o.position.x,o.position.y),o=e[a].keypoints.find(l=>l.part==="leftHip"),o&&s.lineTo(o.position.x,o.position.y),o=e[a].keypoints.find(l=>l.part==="leftShoulder"),o&&s.lineTo(o.position.x,o.position.y)),i=e[a].keypoints.find(l=>l.part==="leftHip"),i&&(s.moveTo(i.position.x,i.position.y),o=e[a].keypoints.find(l=>l.part==="leftKnee"),o&&s.lineTo(o.position.x,o.position.y),o=e[a].keypoints.find(l=>l.part==="leftAnkle"),o&&s.lineTo(o.position.x,o.position.y)),i=e[a].keypoints.find(l=>l.part==="rightHip"),i&&(s.moveTo(i.position.x,i.position.y),o=e[a].keypoints.find(l=>l.part==="rightKnee"),o&&s.lineTo(o.position.x,o.position.y),o=e[a].keypoints.find(l=>l.part==="rightAnkle"),o&&s.lineTo(o.position.x,o.position.y)),i=e[a].keypoints.find(l=>l.part==="leftShoulder"),i&&(s.moveTo(i.position.x,i.position.y),o=e[a].keypoints.find(l=>l.part==="leftElbow"),o&&s.lineTo(o.position.x,o.position.y),o=e[a].keypoints.find(l=>l.part==="leftWrist"),o&&s.lineTo(o.position.x,o.position.y)),i=e[a].keypoints.find(l=>l.part==="rightShoulder"),i&&(s.moveTo(i.position.x,i.position.y),o=e[a].keypoints.find(l=>l.part==="rightElbow"),o&&s.lineTo(o.position.x,o.position.y),o=e[a].keypoints.find(l=>l.part==="rightWrist"),o&&s.lineTo(o.position.x,o.position.y)),r.stroke(s)}}}async function Mne(e,t,n){if(!e)return;let r=t.getContext("2d");r.lineJoin="round";for(let a of e){if(r.font=n.baseFont,r.lineWidth=n.baseLineWidth,n.drawBoxes&&(r.lineWidth=n.baseLineWidth,r.beginPath(),r.strokeStyle=n.baseColor,r.fillStyle=n.baseColor,r.rect(a.box[0],a.box[1],a.box[2],a.box[3]),r.fillStyle="black",r.fillText("hand",a.box[0]+3,1+a.box[1]+n.baseLineHeight,a.box[2]),r.fillStyle=n.baseLabel,r.fillText("hand",a.box[0]+2,0+a.box[1]+n.baseLineHeight,a.box[2]),r.stroke()),n.drawPoints&&a.landmarks&&a.landmarks.length>0)for(let s of a.landmarks)r.fillStyle=n.useDepth?`rgba(${127.5+2*s[2]}, ${127.5-2*s[2]}, 255, 0.5)`:n.baseColor,r.beginPath(),r.arc(s[0],s[1],2,0,2*Math.PI),r.fill();if(n.drawPolygons){let s=i=>{if(!!i)for(let o=0;o0?o-1:0][0],i[o>0?o-1:0][1]),r.lineTo(i[o][0],i[o][1]),r.stroke()};s(a.annotations.indexFinger),s(a.annotations.middleFinger),s(a.annotations.ringFinger),s(a.annotations.pinky),s(a.annotations.thumb)}}}var Oc={face:Rne,body:Fne,hand:Mne,gesture:Cne};var zc=0,H7=!1,bt={background:"darkslategray",hover:"lightgray",itemBackground:"black",itemColor:"white",buttonBackground:"lightblue",buttonHover:"lightgreen",checkboxOn:"lightgreen",checkboxOff:"lightcoral",rangeBackground:"lightblue",rangeLabel:"white",chartColor:"lightblue"};function $ne(){if(H7)return;let e=` :root { --rounded: 0.2rem; } .menu { position: absolute; top: 0rem; right: 0; width: max-content; padding: 0 0.2rem 0 0.2rem; line-height: 1.8rem; z-index: 10; box-shadow: 0 0 8px dimgrey; background: ${bt.background}; border-radius: var(--rounded); border-color: black; border-style: solid; border-width: thin; } .menu:hover { box-shadow: 0 0 8px ${bt.hover}; } .menu-container { display: block; max-height: 100vh; } .menu-container-fadeout { max-height: 0; overflow: hidden; transition: max-height, 0.5s ease; } .menu-container-fadein { max-height: 100vh; overflow: hidden; transition: max-height, 0.5s ease; } .menu-item { display: flex; white-space: nowrap; padding: 0.2rem; cursor: default; width: 100%; } .menu-title { cursor: pointer; } .menu-hr { margin: 0.2rem; border: 1px solid rgba(0, 0, 0, 0.5) } .menu-label { padding: 0; font-weight: 800; } .menu-list { margin-right: 0.8rem; } select:focus { outline: none; } .menu-list-item { background: ${bt.itemBackground}; color: ${bt.itemColor}; border: none; padding: 0.2rem; font-family: inherit; font-variant: inherit; border-radius: var(--rounded); font-weight: 800; } .menu-chart-title { padding: 0; font-size: 0.8rem; font-weight: 800; align-items: center} .menu-chart-canvas { background: transparent; margin: 0.2rem 0 0.2rem 0.6rem; } .menu-button { border: 0; background: ${bt.buttonBackground}; width: -webkit-fill-available; padding: 8px; margin: 8px; cursor: pointer; box-shadow: 4px 4px 4px 0 dimgrey; border-radius: var(--rounded); justify-content: center; font-family: inherit; font-variant: inherit; font-size: 1rem; font-weight: 800; } .menu-button:hover { background: ${bt.buttonHover}; box-shadow: 4px 4px 4px 0 black; } .menu-button:focus { outline: none; } .menu-checkbox { width: 2.8rem; height: 1rem; background: ${bt.itemBackground}; margin: 0.5rem 0.5rem 0 0; position: relative; border-radius: var(--rounded); } .menu-checkbox:after { content: 'OFF'; color: ${bt.checkboxOff}; position: absolute; right: 0.2rem; top: -0.4rem; font-weight: 800; font-size: 0.5rem; } .menu-checkbox:before { content: 'ON'; color: ${bt.checkboxOn}; position: absolute; left: 0.3rem; top: -0.4rem; font-weight: 800; font-size: 0.5rem; } .menu-checkbox-label { width: 1.3rem; height: 0.8rem; cursor: pointer; position: absolute; top: 0.1rem; left: 0.1rem; z-index: 1; background: ${bt.checkboxOff}; border-radius: var(--rounded); transition: left 0.6s ease; } input[type=checkbox] { visibility: hidden; } input[type=checkbox]:checked + label { left: 1.4rem; background: ${bt.checkboxOn}; } .menu-range { margin: 0.2rem 0.5rem 0 0; width: 3.5rem; background: transparent; color: ${bt.rangeBackground}; } .menu-range:before { color: ${bt.rangeLabel}; margin: 0 0.4rem 0 0; font-weight: 800; font-size: 0.6rem; position: relative; top: 0.3rem; content: attr(value); } input[type=range] { -webkit-appearance: none; } input[type=range]::-webkit-slider-runnable-track { width: 100%; height: 1rem; cursor: pointer; background: ${bt.itemBackground}; border-radius: var(--rounded); border: 1px; } input[type=range]::-moz-range-track { width: 100%; height: 1rem; cursor: pointer; background: ${bt.itemBackground}; border-radius: var(--rounded); border: 1px; } input[type=range]::-webkit-slider-thumb { border: 1px solid #000000; margin-top: 0.05rem; height: 0.9rem; width: 1rem; border-radius: var(--rounded); background: ${bt.rangeBackground}; cursor: pointer; -webkit-appearance: none; } input[type=range]::-moz-range-thumb { border: 1px solid #000000; margin-top: 0.05rem; height: 0.9rem; width: 1rem; border-radius: var(--rounded); background: ${bt.rangeBackground}; cursor: pointer; -webkit-appearance: none; } .svg-background { fill:darkslategrey; cursor:pointer; opacity: 0.6; } .svg-foreground { fill:white; cursor:pointer; opacity: 0.8; } `,t=document.createElement("style");t.innerHTML=e,document.getElementsByTagName("head")[0].appendChild(t),H7=!0}var j7=class{constructor(t,n,r,a){a&&(bt={...bt,...a}),$ne(),this.createMenu(t,n,r),this.id=0,this.instance=zc,zc++,this._maxFPS=0,this.hidden=0}createMenu(t,n="",r={top:null,left:null,bottom:null,right:null}){this.menu=document.createElement("div"),this.menu.id=`menu-${zc}`,this.menu.className="menu",r&&(r.top&&(this.menu.style.top=r.top),r.bottom&&(this.menu.style.bottom=r.bottom),r.left&&(this.menu.style.left=r.left),r.right&&(this.menu.style.right=r.right)),this.container=document.createElement("div"),this.container.id=`menu-container-${zc}`,this.container.className="menu-container menu-container-fadein";let a=document.createElement("div");a.className="menu-title",a.id=`menu-title-${zc}`;let s=` `;n&&(a.innerHTML=`${n}${s}`),this.menu.appendChild(a),a.addEventListener("click",()=>{this.container.classList.toggle("menu-container-fadeout"),this.container.classList.toggle("menu-container-fadein"),this.menu.style.borderStyle=this.container.classList.contains("menu-container-fadeout")?"none":"solid"}),this.menu.appendChild(this.container),typeof t=="object"?t.appendChild(this.menu):document.getElementById(t).appendChild(this.menu)}get newID(){return this.id++,`menu-${this.instance}-${this.id}`}get ID(){return`menu-${this.instance}-${this.id}`}get width(){return this.menu.offsetWidth}get height(){return this.menu.offsetHeight}hide(){this.container.classList.contains("menu-container-fadein")&&(this.container.classList.toggle("menu-container-fadeout"),this.container.classList.toggle("menu-container-fadein"))}visible(){return this.container.classList.contains("menu-container-fadein")}toggle(t){if(this.container.classList.toggle("menu-container-fadeout"),this.container.classList.toggle("menu-container-fadein"),this.container.classList.contains("menu-container-fadein")&&t){let n=t.x||(t.touches&&t.touches[0]?t.touches[0].pageX:null);n&&(this.menu.style.left=`${n-this.menu.offsetWidth/2}px`),this.menu.offsetLeft<0&&(this.menu.style.left=0),this.menu.offsetLeft+this.menu.offsetWidth>window.innerWidth&&(this.menu.style.left=null,this.menu.style.right=0),this.menu.style.borderStyle="solid"}else this.menu.style.borderStyle="none"}addTitle(t){let n=document.createElement("div");return n.className="menu-title",n.id=this.newID,n.innerHTML=t,this.menu.appendChild(n),n.addEventListener("click",()=>{this.hidden=!this.hidden;let r=document.getElementsByClassName("menu");for(let a of r)a.style.display=this.hidden?"none":"block"}),n}addLabel(t){let n=document.createElement("div");return n.className="menu-item menu-label",n.id=this.newID,n.innerHTML=t,this.container.appendChild(n),n}addBool(t,n,r,a){let s=document.createElement("div");return s.className="menu-item",s.innerHTML=`${t}`,this.container.appendChild(s),s.addEventListener("change",i=>{n[r]=i.target.checked,a&&a(i.target.checked)}),s}async addList(t,n,r,a){let s=document.createElement("div");s.className="menu-item";let i="";for(let o of n)i+=``;return s.innerHTML=`${t}`,s.style.fontFamily=document.body.style.fontFamily,s.style.fontSize=document.body.style.fontSize,s.style.fontVariant=document.body.style.fontVariant,this.container.appendChild(s),s.addEventListener("change",o=>{a&&a(n[o.target.selectedIndex])}),s}addRange(t,n,r,a,s,i,o){let l=document.createElement("div");return l.className="menu-item",l.innerHTML=`${t}`,this.container.appendChild(l),l.addEventListener("change",c=>{n[r]=parseInt(c.target.value)===parseFloat(c.target.value)?parseInt(c.target.value):parseFloat(c.target.value),c.target.setAttribute("value",c.target.value),o&&o(c.target.value)}),l.input=l.children[0],l}addHTML(t){let n=document.createElement("div");return n.className="menu-item",n.id=this.newID,t&&(n.innerHTML=t),this.container.appendChild(n),n}addButton(t,n,r){let a=document.createElement("button");return a.className="menu-item menu-button",a.style.fontFamily=document.body.style.fontFamily,a.style.fontSize=document.body.style.fontSize,a.style.fontVariant=document.body.style.fontVariant,a.type="button",a.id=this.newID,a.innerText=t,this.container.appendChild(a),a.addEventListener("click",()=>{a.innerText===t?a.innerText=n:a.innerText=t,r&&r(a.innerText!==t)}),a}addValue(t,n,r=""){let a=document.createElement("div");return a.className="menu-item",a.id=`menu-val-${t}`,a.innerText=`${t}: ${n}${r}`,this.container.appendChild(a),a}updateValue(t,n,r=""){let a=document.getElementById(`menu-val-${t}`);a?a.innerText=`${t}: ${n}${r}`:this.addValue(t,n)}addChart(t,n,r=150,a=40,s){s&&(bt.chartColor=s);let i=document.createElement("div");return i.className="menu-item menu-chart-title",i.id=this.newID,i.innerHTML=`${t}`,this.container.appendChild(i),i}async updateChart(t,n){if(!n||n.length===0)return;let r=document.getElementById(`menu-canvas-${t}`);if(!r)return;let a=r.getContext("2d");a.fillStyle=bt.background,a.fillRect(0,0,r.width,r.height);let s=r.width/n.length,i=1+Math.max(...n),o=r.height/i;for(let l=0;l 00 FPS `,G7=class{constructor(t,n={}){this.css=Dne,this.svg=One,this.paramLogger=()=>{},this.chartLogger=()=>{},this.chartLen=20,this.chartHz=20,this.names=[],this.cpuAccums=[],this.gpuAccums=[],this.activeAccums=[],this.chart=new Array(this.chartLen),this.now=()=>performance&&performance.now?performance.now():Date.now(),this.updateUI=()=>{[].forEach.call(this.nodes["gl-gpu-svg"],o=>o.style.display=this.trackGPU?"inline":"none")},Object.assign(this,n),this.detected=0,this.finished=[],this.isFramebuffer=0,this.frameId=0;let r,a=0,s,i=o=>{++a<20?r=requestAnimationFrame(i):(this.detected=Math.ceil(1e3*a/(o-s)/70),cancelAnimationFrame(r)),s||(s=o)};if(requestAnimationFrame(i),t){let o=async(u,h)=>Promise.resolve(setTimeout(()=>{t.getError();let d=this.now()-u;h.forEach((p,f)=>{p&&(this.gpuAccums[f]+=d)})},0)),l=(u,h,d)=>{let p=h.now();u.apply(d,arguments),h.trackGPU&&h.finished.push(o(p,h.activeAccums.slice(0)))},c="drawElements";t[c]?t[c]=l(t[c],this,t):console.log("bench: cannot attach to webgl function")}if(!this.withoutUI){this.dom||(this.dom=document.body);let o=document.createElement("div");o.id="gl-bench",this.dom.appendChild(o),this.dom.insertAdjacentHTML("afterbegin",'"),this.dom=o,this.dom.addEventListener("click",()=>{this.trackGPU=!this.trackGPU,this.updateUI()}),this.paramLogger=((l,c,u)=>{let h=["gl-cpu","gl-gpu","gl-mem","gl-fps","gl-gpu-svg","gl-chart"],d={...h};return h.forEach(p=>d[p]=c.getElementsByClassName(p)),this.nodes=d,(p,f,m,A,y,g,w)=>{d["gl-cpu"][p].style.strokeDasharray=(f*.27).toFixed(0)+" 100",d["gl-gpu"][p].style.strokeDasharray=(m*.27).toFixed(0)+" 100",d["gl-mem"][p].innerHTML=u[p]?u[p]:A?"mem: "+A.toFixed(0)+"mb":"",d["gl-fps"][p].innerHTML="FPS: "+y.toFixed(1),l(u[p],f,m,A,y,g,w)}})(this.paramLogger,this.dom,this.names),this.chartLogger=((l,c)=>{let u={"gl-chart":c.getElementsByClassName("gl-chart")};return(h,d,p)=>{let f="",m=d.length;for(let A=0;A=1e3){let a=this.frameId-this.paramFrame,s=a/r*1e3;for(let i=0;i{this.gpuAccums[i]=0,this.finished=[]})}this.paramFrame=this.frameId,this.paramTime=n}}if(!this.detected||!this.chartFrame)this.chartFrame=this.frameId,this.chartTime=n,this.circularId=0;else{let r=n-this.chartTime,a=this.chartHz*r/1e3;for(;--a>0&&this.detected;){let i=(this.frameId-this.chartFrame)/r*1e3;this.chart[this.circularId%this.chartLen]=i;for(let o=0;o0&&((r=e==null?void 0:e.face[0].embedding)==null?void 0:r.length)!==192)return;xi||(xi=e,document.getElementById("compare-canvas").getContext("2d").drawImage(xi.canvas,0,0,200,200));let t=de.simmilarity((a=xi==null?void 0:xi.face[0])==null?void 0:a.embedding,(s=e==null?void 0:e.face[0])==null?void 0:s.embedding);document.getElementById("simmilarity").innerText=`simmilarity: ${Math.trunc(1e3*t)/10}%`}var X7=performance.now();async function e1(e){let t=Qp,n=document.getElementById("canvas");se.drawFPS.push(1e3/(performance.now()-X7)),se.drawFPS.length>se.maxFPSframes&&se.drawFPS.shift(),X7=performance.now(),await xe.process.updateChart("FPS",se.detectFPS),(se.buffered||!t.canvas)&&(t.canvas=await de.image(e,Hr));let r=n.getContext("2d");r.fillStyle=se.baseBackground,r.fillRect(0,0,n.width,n.height),t.canvas?(t.canvas.width!==n.width&&(n.width=t.canvas.width),t.canvas.height!==n.height&&(n.height=t.canvas.height),r.drawImage(t.canvas,0,0,t.canvas.width,t.canvas.height,0,0,t.canvas.width,t.canvas.height)):r.drawImage(e,0,0,e.width,e.height,0,0,n.width,n.height),await Oc.face(t.face,n,se,de.facemesh.triangulation),await Oc.body(t.body,n,se),await Oc.hand(t.hand,n,se),await Oc.gesture(t.gesture,n,se),await Pne(t);let a=de.tf.engine(),s=a.backendInstance?`gpu: ${(a.backendInstance.numBytesInGPU?a.backendInstance.numBytesInGPU:0).toLocaleString()} bytes`:"",i=`system: ${a.state.numBytes.toLocaleString()} bytes ${s} | tensors: ${a.state.numTensors.toLocaleString()}`,o=t.canvas?`processing: ${t.canvas.width} x ${t.canvas.height}`:"",l=Math.trunc(10*se.detectFPS.reduce((h,d)=>h+d,0)/se.detectFPS.length)/10,c=Math.trunc(10*se.drawFPS.reduce((h,d)=>h+d,0)/se.drawFPS.length)/10,u=se.detectFPS.length>5&&l<5?'warning: your performance is low: try switching to higher performance backend, lowering resolution or disabling some models':"";document.getElementById("log").innerHTML=` video: ${se.camera.name} | facing: ${se.camera.facing} | screen: ${window.innerWidth} x ${window.innerHeight} camera: ${se.camera.width} x ${se.camera.height} ${o}
backend: ${de.tf.getBackend()} | ${i}
performance: ${zne(t.performance)}ms FPS process:${l} refresh:${c}
${u}
`,se.framesDraw++,se.lastFrame=performance.now(),se.buffered?se.drawThread=requestAnimationFrame(()=>e1(e,n)):!se.buffered&&se.drawThread&&(Dn("stopping buffered refresh"),cancelAnimationFrame(se.drawThread),se.drawThread=null)}async function t1(){var c;if(se.busy)return null;se.busy=!0;let e=document.getElementById("video"),t=document.getElementById("canvas"),n=document.getElementById("log"),r=e.srcObject?e.srcObject.getVideoTracks()[0].readyState==="live"&&e.readyState>2&&!e.paused:!1,a="";if(Gn("setting up camera"),!navigator.mediaDevices)return a="camera access not supported",n.innerText+=` ${a}`,Dn(a),Gn(a),se.busy=!1,a;let s,i={audio:!1,video:{facingMode:se.facing?"user":"environment",resizeMode:se.crop?"crop-and-scale":"none"}};window.innerWidth>window.innerHeight?i.video.width={ideal:window.innerWidth}:i.video.height={ideal:window.innerHeight-document.getElementById("menubar").offsetHeight};try{s=await navigator.mediaDevices.getUserMedia(i)}catch(u){return u.name==="PermissionDeniedError"||u.name==="NotAllowedError"?a="camera permission denied":u.name==="SourceUnavailableError"?a="camera not available":a=`camera error: ${u.message||u}`,n.innerText+=` ${a}`,Gn(a),Dn("camera error:",u),se.busy=!1,a}if(s)e.srcObject=s;else return se.busy=!1,"camera stream empty";let o=s.getVideoTracks()[0],l=o.getSettings();return se.camera={name:(c=o.label)==null?void 0:c.toLowerCase(),width:l.width,height:l.height,facing:l.facingMode==="user"?"front":"back"},new Promise(u=>{e.onloadeddata=async()=>{e.width=e.videoWidth,e.height=e.videoHeight,t.width=e.width,t.height=e.height,t.style.width=t.width>t.height?"100vw":"",t.style.height=t.width>t.height?"":"100vh",se.menuWidth.input.setAttribute("value",e.width),se.menuHeight.input.setAttribute("value",e.height);let h=Math.trunc(window.devicePixelRatio*(8+4*t.width/window.innerWidth));se.baseFont=se.baseFontProto.replace(/{size}/,`${h}px`),se.baseLineHeight=h+2,r&&e.play(),r&&!se.detectThread&&Lc(e,t),se.busy=!1,Gn(""),u()}})}function K7(){if(!gi){let e=null;gi=new q7(e,{trackGPU:!1,chartHz:20,chartLen:20}),gi.begin()}}function Lne(e,t,n,r){Jp||(Dn("creating worker thread"),Jp=new Worker(se.worker,{type:"module"}),Jp.addEventListener("message",a=>{a.data.result.performance&&a.data.result.performance.total&&se.detectFPS.push(1e3/a.data.result.performance.total),se.detectFPS.length>se.maxFPSframes&&se.detectFPS.shift(),se.bench&&(gi||K7(),gi.nextFrame(r)),document.getElementById("gl-bench")&&(document.getElementById("gl-bench").style.display=se.bench?"block":"none"),Qp=a.data.result,se.framesDetect++,se.drawThread||e1(e),se.detectThread=requestAnimationFrame(s=>Lc(e,n,s))})),Jp.postMessage({image:t.data.buffer,width:n.width,height:n.height,userConfig:Hr},[t.data.buffer])}function Lc(e,t,n){var a;if(!(e.srcObject&&e.srcObject.getVideoTracks()[0].readyState==="live"&&e.readyState>2&&!e.paused)&&e.srcObject){se.drawThread&&cancelAnimationFrame(se.drawThread),se.detectThread&&cancelAnimationFrame(se.detectThread),se.drawThread=null,se.detectThread=null,e.paused?Dn("camera paused"):e.srcObject.getVideoTracks()[0].readyState==="live"&&e.readyState<=2?setTimeout(()=>Lc(e,t),500):Dn(`camera not ready: track state: ${(a=e.srcObject)==null?void 0:a.getVideoTracks()[0].readyState} stream state: ${e.readyState}`),clearTimeout(se.drawThread),se.drawThread=null,Dn("frame statistics: process:",se.framesDetect,"refresh:",se.framesDraw),Dn("memory",de.tf.engine().memory());return}if(Gn(""),se.useWorker){let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t.width,t.height):document.createElement("canvas");s.width=t.width,s.height=t.height;let i=s.getContext("2d");i.drawImage(e,0,0,e.width,e.height,0,0,t.width,t.height);let o=i.getImageData(0,0,t.width,t.height);Lne(e,o,t,Hr,n)}else de.detect(e,Hr).then(s=>{s.performance&&s.performance.total&&se.detectFPS.push(1e3/s.performance.total),se.detectFPS.length>se.maxFPSframes&&se.detectFPS.shift(),se.bench&&(gi||K7(),gi.nextFrame(n)),document.getElementById("gl-bench")&&(document.getElementById("gl-bench").style.display=se.bench?"block":"none"),s.error?(Dn(s.error),document.getElementById("log").innerText+=` Human error: ${s.error}`):(Qp=s,se.drawThread||e1(e),se.framesDetect++,se.detectThread=requestAnimationFrame(i=>Lc(e,t,i)))})}async function Wne(e){return new Promise(t=>{let n=new Image;n.onload=async()=>{Dn("Processing image:",n.src);let r=document.getElementById("canvas");n.width=n.naturalWidth,n.height=n.naturalHeight,r.width=de.config.filter.width&&de.config.filter.width>0?de.config.filter.width:n.naturalWidth,r.height=de.config.filter.height&&de.config.filter.height>0?de.config.filter.height:n.naturalHeight,Qp=await de.detect(n,Hr),await e1(n);let s=document.createElement("canvas");s.className="thumbnail",s.width=window.innerWidth/(se.columns+.1),s.height=r.height/(window.innerWidth/s.width),s.getContext("2d").drawImage(r,0,0,r.width,r.height,0,0,s.width,s.height),document.getElementById("samples-container").appendChild(s),n.src="",t(!0)},n.src=e})}async function Z7(){Hr.videoOptimized=!0,document.getElementById("samples-container").style.display="none",document.getElementById("canvas").style.display="block";let e=document.getElementById("video"),t=document.getElementById("canvas");if(e.srcObject!==null&&!e.paused)document.getElementById("play").style.display="block",document.getElementById("btnStart").className="button button-start",document.getElementById("btnStart").innerHTML="start
video",Gn("paused"),e.pause();else{let n=await t1();if(n)Gn(n);else{document.getElementById("play").style.display="none";for(let r of Object.values(xe))r.hide();Gn(""),document.getElementById("btnStart").className="button button-stop",document.getElementById("btnStart").innerHTML="pause
video",await e.play(),se.detectThread||Lc(e,t)}}}async function Bne(){document.getElementById("play").style.display="none",Hr.videoOptimized=!1;let e=Math.trunc(window.devicePixelRatio*(8+4*se.columns));se.baseFont=se.baseFontProto.replace(/{size}/,`${e}px`),se.baseLineHeight=e+2,document.getElementById("canvas").style.display="none",document.getElementById("samples-container").style.display="block",Dn("Running detection of sample images"),Gn("processing images"),document.getElementById("samples-container").innerHTML="";for(let t of se.samples)await Wne(t);Gn("")}function Vne(){let e=[];window.innerWidth>800?e=[`${document.getElementById("btnDisplay").offsetLeft-50}px`,`${document.getElementById("btnImage").offsetLeft-50}px`,`${document.getElementById("btnProcess").offsetLeft-50}px`,`${document.getElementById("btnModel").offsetLeft-50}px`]:e=["0rem","11rem","21.1rem","33rem"],xe.display=new Pc(document.body,"",{top:`${document.getElementById("menubar").offsetHeight}px`,left:e[0]}),xe.display.addBool("perf monitor",se,"bench",t=>se.bench=t),xe.display.addBool("buffered output",se,"buffered",t=>se.buffered=t),xe.display.addBool("crop & scale",se,"crop",()=>t1()),xe.display.addBool("camera facing",se,"facing",()=>t1()),xe.display.addHTML('
'),xe.display.addBool("use 3D depth",se,"useDepth"),xe.display.addBool("draw boxes",se,"drawBoxes"),xe.display.addBool("draw polygons",se,"drawPolygons"),xe.display.addBool("Fill Polygons",se,"fillPolygons"),xe.display.addBool("draw points",se,"drawPoints"),xe.image=new Pc(document.body,"",{top:`${document.getElementById("menubar").offsetHeight}px`,left:e[1]}),xe.image.addBool("enabled",de.config.filter,"enabled"),se.menuWidth=xe.image.addRange("image width",de.config.filter,"width",0,3840,10,t=>de.config.filter.width=parseInt(t)),se.menuHeight=xe.image.addRange("image height",de.config.filter,"height",0,2160,10,t=>de.config.filter.height=parseInt(t)),xe.image.addHTML('
'),xe.image.addRange("brightness",de.config.filter,"brightness",-1,1,.05,t=>de.config.filter.brightness=parseFloat(t)),xe.image.addRange("contrast",de.config.filter,"contrast",-1,1,.05,t=>de.config.filter.contrast=parseFloat(t)),xe.image.addRange("sharpness",de.config.filter,"sharpness",0,1,.05,t=>de.config.filter.sharpness=parseFloat(t)),xe.image.addRange("blur",de.config.filter,"blur",0,20,1,t=>de.config.filter.blur=parseInt(t)),xe.image.addRange("saturation",de.config.filter,"saturation",-1,1,.05,t=>de.config.filter.saturation=parseFloat(t)),xe.image.addRange("hue",de.config.filter,"hue",0,360,5,t=>de.config.filter.hue=parseInt(t)),xe.image.addRange("pixelate",de.config.filter,"pixelate",0,32,1,t=>de.config.filter.pixelate=parseInt(t)),xe.image.addHTML('
'),xe.image.addBool("negative",de.config.filter,"negative"),xe.image.addBool("sepia",de.config.filter,"sepia"),xe.image.addBool("vintage",de.config.filter,"vintage"),xe.image.addBool("kodachrome",de.config.filter,"kodachrome"),xe.image.addBool("technicolor",de.config.filter,"technicolor"),xe.image.addBool("polaroid",de.config.filter,"polaroid"),xe.process=new Pc(document.body,"",{top:`${document.getElementById("menubar").offsetHeight}px`,left:e[2]}),xe.process.addList("backend",["cpu","webgl","wasm","humangl"],de.config.backend,t=>de.config.backend=t),xe.process.addBool("async operations",de.config,"async",t=>de.config.async=t),xe.process.addBool("enable profiler",de.config,"profile",t=>de.config.profile=t),xe.process.addBool("memory shield",de.config,"deallocate",t=>de.config.deallocate=t),xe.process.addBool("use web worker",se,"useWorker"),xe.process.addHTML('
'),xe.process.addLabel("model parameters"),xe.process.addRange("max objects",de.config.face.detector,"maxFaces",1,50,1,t=>{de.config.face.detector.maxFaces=parseInt(t),de.config.body.maxDetections=parseInt(t),de.config.hand.maxHands=parseInt(t)}),xe.process.addRange("skip frames",de.config.face.detector,"skipFrames",0,50,1,t=>{de.config.face.detector.skipFrames=parseInt(t),de.config.face.emotion.skipFrames=parseInt(t),de.config.face.age.skipFrames=parseInt(t),de.config.hand.skipFrames=parseInt(t)}),xe.process.addRange("min confidence",de.config.face.detector,"minConfidence",0,1,.05,t=>{de.config.face.detector.minConfidence=parseFloat(t),de.config.face.gender.minConfidence=parseFloat(t),de.config.face.emotion.minConfidence=parseFloat(t),de.config.hand.minConfidence=parseFloat(t)}),xe.process.addRange("score threshold",de.config.face.detector,"scoreThreshold",.1,1,.05,t=>{de.config.face.detector.scoreThreshold=parseFloat(t),de.config.hand.scoreThreshold=parseFloat(t),de.config.body.scoreThreshold=parseFloat(t)}),xe.process.addRange("overlap",de.config.face.detector,"iouThreshold",.1,1,.05,t=>{de.config.face.detector.iouThreshold=parseFloat(t),de.config.hand.iouThreshold=parseFloat(t)}),xe.process.addBool("detection rotation",de.config.face.detector,"rotation",t=>{de.config.face.detector.rotation=t,de.config.hand.rotation=t}),xe.process.addHTML('
'),xe.process.addButton("process sample images","process images",()=>Bne()),xe.process.addHTML('
'),xe.process.addChart("FPS","FPS"),xe.models=new Pc(document.body,"",{top:`${document.getElementById("menubar").offsetHeight}px`,left:e[3]}),xe.models.addBool("face detect",de.config.face,"enabled"),xe.models.addBool("face mesh",de.config.face.mesh,"enabled"),xe.models.addBool("face iris",de.config.face.iris,"enabled"),xe.models.addBool("face age",de.config.face.age,"enabled"),xe.models.addBool("face gender",de.config.face.gender,"enabled"),xe.models.addBool("face emotion",de.config.face.emotion,"enabled"),xe.models.addHTML('
'),xe.models.addBool("body pose",de.config.body,"enabled"),xe.models.addBool("hand pose",de.config.hand,"enabled"),xe.models.addHTML('
'),xe.models.addBool("gestures",de.config.gesture,"enabled"),xe.models.addHTML('
'),xe.models.addBool("face compare",de.config.face.embedding,"enabled",t=>{xi=null,de.config.face.embedding.enabled=t}),document.getElementById("btnDisplay").addEventListener("click",t=>xe.display.toggle(t)),document.getElementById("btnImage").addEventListener("click",t=>xe.image.toggle(t)),document.getElementById("btnProcess").addEventListener("click",t=>xe.process.toggle(t)),document.getElementById("btnModel").addEventListener("click",t=>xe.models.toggle(t)),document.getElementById("btnStart").addEventListener("click",()=>Z7()),document.getElementById("play").addEventListener("click",()=>Z7())}async function Une(){Dn("Demo starting ..."),Dn("Browser:",navigator==null?void 0:navigator.userAgent),Vne(),document.getElementById("log").innerText=`Human: version ${de.version}`,se.modelsPreload&&!se.useWorker&&(Gn("loading"),await de.load(Hr)),se.useWorker||(Gn("initializing"),await de.warmup(Hr)),Gn("human: ready"),document.getElementById("loader").style.display="none",document.getElementById("play").style.display="block",Dn("Demo ready...")}window.onload=Une;window.onresize=t1; /** * @license * Copyright 2017 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2018 Google LLC * * Use of this source code is governed by an MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT. * ============================================================================= */ /** * @license * Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * ============================================================================= */ /** * @license * Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2019 Google LLC * * Use of this source code is governed by an MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT. * ============================================================================= */ /** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * ============================================================================= */ /** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2020 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2020 Google LLC * * Use of this source code is governed by an MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT. * ============================================================================= */ /** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the License); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2021 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** @license See the LICENSE file. */ //# sourceMappingURL=demo-browser-index.js.map