/** * Human demo for browsers * @default Human Library * @summary * @author * @copyright * @license MIT */ import { Human, TensorLike, FaceResult } from '../../dist/human.esm.js'; // equivalent of @vladmandic/Human import * as indexDb from './indexdb'; // methods to deal with indexdb let db: Array = []; // face descriptor database stored in indexdb let face: FaceResult; // face result from human.detect let current: indexDb.FaceRecord; // currently matched db record const humanConfig = { // user configuration for human, used to fine-tune behavior modelBasePath: '../../models', filter: { equalization: true }, // lets run with histogram equilizer face: { enabled: true, detector: { rotation: true, return: true }, // return tensor is used to get detected face image description: { enabled: true }, iris: { enabled: true }, // needed to determine gaze direction emotion: { enabled: false }, // not needed antispoof: { enabled: true }, // enable optional antispoof module liveness: { enabled: true }, // enable optional liveness module }, body: { enabled: false }, hand: { enabled: false }, object: { enabled: false }, gesture: { enabled: true }, // parses face and iris gestures }; const options = { minConfidence: 0.6, // overal face confidence for box, face, gender, real, live minSize: 224, // min input to face descriptor model before degradation maxTime: 10000, // max time before giving up blinkMin: 10, // minimum duration of a valid blink blinkMax: 800, // maximum duration of a valid blink threshold: 0.5, // minimum similarity }; const ok = { // must meet all rules faceCount: false, faceConfidence: false, facingCenter: false, blinkDetected: false, faceSize: false, antispoofCheck: false, livenessCheck: false, elapsedMs: 0, // total time while waiting for valid face }; const allOk = () => ok.faceCount && ok.faceSize && ok.blinkDetected && ok.facingCenter && ok.faceConfidence && ok.antispoofCheck && ok.livenessCheck; const blink = { // internal timers for blink start/end/duration start: 0, end: 0, time: 0, }; // let db: Array<{ name: string, source: string, embedding: number[] }> = []; // holds loaded face descriptor database const human = new Human(humanConfig); // create instance of human with overrides from user configuration human.env['perfadd'] = false; // is performance data showing instant or total values human.draw.options.font = 'small-caps 18px "Lato"'; // set font used to draw labels when using draw methods human.draw.options.lineHeight = 20; const dom = { // grab instances of dom objects so we dont have to look them up later video: document.getElementById('video') as HTMLVideoElement, canvas: document.getElementById('canvas') as HTMLCanvasElement, log: document.getElementById('log') as HTMLPreElement, fps: document.getElementById('fps') as HTMLPreElement, status: document.getElementById('status') as HTMLPreElement, match: document.getElementById('match') as HTMLDivElement, name: document.getElementById('name') as HTMLInputElement, save: document.getElementById('save') as HTMLSpanElement, delete: document.getElementById('delete') as HTMLSpanElement, retry: document.getElementById('retry') as HTMLDivElement, source: document.getElementById('source') as HTMLCanvasElement, }; const timestamp = { detect: 0, draw: 0 }; // holds information used to calculate performance and possible memory leaks const fps = { detect: 0, draw: 0 }; // holds calculated fps information for both detect and screen refresh let startTime = 0; const log = (...msg) => { // helper method to output messages dom.log.innerText += msg.join(' ') + '\n'; // eslint-disable-next-line no-console console.log(...msg); }; const printFPS = (msg) => dom.fps.innerText = msg; // print status element const printStatus = (msg) => dom.status.innerText = 'status: ' + JSON.stringify(msg).replace(/"|{|}/g, '').replace(/,/g, ' | '); // print status element async function webCam() { // initialize webcam printFPS('starting webcam...'); // @ts-ignore resizeMode is not yet defined in tslib const cameraOptions: MediaStreamConstraints = { audio: false, video: { facingMode: 'user', resizeMode: 'none', width: { ideal: document.body.clientWidth } } }; const stream: MediaStream = await navigator.mediaDevices.getUserMedia(cameraOptions); const ready = new Promise((resolve) => { dom.video.onloadeddata = () => resolve(true); }); dom.video.srcObject = stream; dom.video.play(); await ready; dom.canvas.width = dom.video.videoWidth; dom.canvas.height = dom.video.videoHeight; if (human.env.initial) log('video:', dom.video.videoWidth, dom.video.videoHeight, '|', stream.getVideoTracks()[0].label); dom.canvas.onclick = () => { // pause when clicked on screen and resume on next click if (dom.video.paused) dom.video.play(); else dom.video.pause(); }; } async function detectionLoop() { // main detection loop if (!dom.video.paused) { if (face && face.tensor) human.tf.dispose(face.tensor); // dispose previous tensor await human.detect(dom.video); // actual detection; were not capturing output in a local variable as it can also be reached via human.result const now = human.now(); fps.detect = 1000 / (now - timestamp.detect); timestamp.detect = now; requestAnimationFrame(detectionLoop); // start new frame immediately } } async function validationLoop(): Promise { // main screen refresh loop const interpolated = await human.next(human.result); // smoothen result using last-known results await human.draw.canvas(dom.video, dom.canvas); // draw canvas to screen await human.draw.all(dom.canvas, interpolated); // draw labels, boxes, lines, etc. const now = human.now(); fps.draw = 1000 / (now - timestamp.draw); timestamp.draw = now; printFPS(`fps: ${fps.detect.toFixed(1).padStart(5, ' ')} detect | ${fps.draw.toFixed(1).padStart(5, ' ')} draw`); // write status ok.faceCount = human.result.face.length === 1; // must be exactly detected face if (ok.faceCount) { // skip the rest if no face const gestures: string[] = Object.values(human.result.gesture).map((gesture) => gesture.gesture); // flatten all gestures if (gestures.includes('blink left eye') || gestures.includes('blink right eye')) blink.start = human.now(); // blink starts when eyes get closed if (blink.start > 0 && !gestures.includes('blink left eye') && !gestures.includes('blink right eye')) blink.end = human.now(); // if blink started how long until eyes are back open ok.blinkDetected = ok.blinkDetected || (blink.end - blink.start > options.blinkMin && blink.end - blink.start < options.blinkMax); if (ok.blinkDetected && blink.time === 0) blink.time = Math.trunc(blink.end - blink.start); ok.facingCenter = gestures.includes('facing center') && gestures.includes('looking center'); // must face camera and look at camera ok.faceConfidence = (human.result.face[0].boxScore || 0) > options.minConfidence && (human.result.face[0].faceScore || 0) > options.minConfidence && (human.result.face[0].genderScore || 0) > options.minConfidence; ok.antispoofCheck = (human.result.face[0].real || 0) > options.minConfidence; ok.livenessCheck = (human.result.face[0].live || 0) > options.minConfidence; ok.faceSize = human.result.face[0].box[2] >= options.minSize && human.result.face[0].box[3] >= options.minSize; } printStatus(ok); if (allOk()) { // all criteria met dom.video.pause(); return human.result.face[0]; } if (ok.elapsedMs > options.maxTime) { // give up dom.video.pause(); return human.result.face[0]; } else { // run again ok.elapsedMs = Math.trunc(human.now() - startTime); return new Promise((resolve) => { setTimeout(async () => { const res = await validationLoop(); // run validation loop until conditions are met if (res) resolve(human.result.face[0]); // recursive promise resolve }, 30); // use to slow down refresh from max refresh rate to target of 30 fps }); } } async function saveRecords() { if (dom.name.value.length > 0) { const image = dom.canvas.getContext('2d')?.getImageData(0, 0, dom.canvas.width, dom.canvas.height) as ImageData; const rec = { id: 0, name: dom.name.value, descriptor: face.embedding as number[], image }; await indexDb.save(rec); log('saved face record:', rec.name); db.push(rec); } else { log('invalid name'); } } async function deleteRecord() { if (current.id > 0) { await indexDb.remove(current); } } async function detectFace() { // draw face and dispose face tensor immediatey afterwards if (!face || !face.tensor || !face.embedding) return 0; dom.canvas.width = face.tensor.shape[1] || 0; dom.canvas.height = face.tensor.shape[0] || 0; dom.source.width = dom.canvas.width; dom.source.height = dom.canvas.height; dom.canvas.style.width = ''; human.tf.browser.toPixels(face.tensor as unknown as TensorLike, dom.canvas); const descriptors = db.map((rec) => rec.descriptor); const res = await human.match(face.embedding, descriptors); dom.match.style.display = 'flex'; dom.retry.style.display = 'block'; if (res.index === -1) { log('no matches'); dom.delete.style.display = 'none'; dom.source.style.display = 'none'; } else { current = db[res.index]; log(`best match: ${current.name} | id: ${current.id} | similarity: ${Math.round(1000 * res.similarity) / 10}%`); dom.delete.style.display = ''; dom.name.value = current.name; dom.source.style.display = ''; dom.source.getContext('2d')?.putImageData(current.image, 0, 0); } return res.similarity > options.threshold; } async function main() { // main entry point ok.faceCount = false; ok.faceConfidence = false; ok.facingCenter = false; ok.blinkDetected = false; ok.faceSize = false; ok.antispoofCheck = false; ok.livenessCheck = false; ok.elapsedMs = 0; dom.match.style.display = 'none'; dom.retry.style.display = 'none'; document.body.style.background = 'black'; await webCam(); await detectionLoop(); // start detection loop startTime = human.now(); face = await validationLoop(); // start validation loop dom.fps.style.display = 'none'; if (!allOk()) { log('did not find valid input', face); return 0; } else { // log('found valid face'); const res = await detectFace(); document.body.style.background = res ? 'darkgreen' : 'maroon'; return res; } } async function init() { log('human version:', human.version, '| tfjs version:', human.tf.version_core); log('options:', JSON.stringify(options).replace(/{|}|"|\[|\]/g, '').replace(/,/g, ' ')); printFPS('loading...'); db = await indexDb.load(); // load face database from indexdb log('loaded face records:', db.length); await webCam(); // start webcam await human.load(); // preload all models printFPS('initializing...'); dom.retry.addEventListener('click', main); dom.save.addEventListener('click', saveRecords); dom.delete.addEventListener('click', deleteRecord); await human.warmup(); // warmup function to initialize backend for future faster detection await main(); } window.onload = init;