/* eslint-disable indent */ /* eslint-disable no-multi-spaces */ /** * Configuration interface definition for **Human** library * * Contains all configurable parameters * @typedef Config */ export interface Config { /** Backend used for TFJS operations */ backend: null | '' | 'cpu' | 'wasm' | 'webgl' | 'humangl' | 'tensorflow' | 'webgpu', /** Path to *.wasm files if backend is set to `wasm` */ wasmPath: string, /** Print debug statements to console */ debug: boolean, /** Perform model loading and inference concurrently or sequentially */ async: boolean, /** What to use for `human.warmup()` * - warmup pre-initializes all models for faster inference but can take significant time on startup * - only used for `webgl` and `humangl` backends */ warmup: 'none' | 'face' | 'full' | 'body', /** Base model path (typically starting with file://, http:// or https://) for all models * - individual modelPath values are relative to this path */ modelBasePath: string, /** Cache sensitivity * - values 0..1 where 0.01 means reset cache if input changed more than 1% * - set to 0 to disable caching */ cacheSensitivity: number; /** Cache sensitivity * - values 0..1 where 0.01 means reset cache if input changed more than 1% * - set to 0 to disable caching */ skipFrame: boolean; /** Run input through image filters before inference * - image filters run with near-zero latency as they are executed on the GPU */ filter: { enabled: boolean, /** Resize input width * - if both width and height are set to 0, there is no resizing * - if just one is set, second one is scaled automatically * - if both are set, values are used as-is */ width: number, /** Resize input height * - if both width and height are set to 0, there is no resizing * - if just one is set, second one is scaled automatically * - if both are set, values are used as-is */ height: number, /** Return processed canvas imagedata in result */ return: boolean, /** Flip input as mirror image */ flip: boolean, /** Range: -1 (darken) to 1 (lighten) */ brightness: number, /** Range: -1 (reduce contrast) to 1 (increase contrast) */ contrast: number, /** Range: 0 (no sharpening) to 1 (maximum sharpening) */ sharpness: number, /** Range: 0 (no blur) to N (blur radius in pixels) */ blur: number /** Range: -1 (reduce saturation) to 1 (increase saturation) */ saturation: number, /** Range: 0 (no change) to 360 (hue rotation in degrees) */ hue: number, /** Image negative */ negative: boolean, /** Image sepia colors */ sepia: boolean, /** Image vintage colors */ vintage: boolean, /** Image kodachrome colors */ kodachrome: boolean, /** Image technicolor colors */ technicolor: boolean, /** Image polaroid camera effect */ polaroid: boolean, /** Range: 0 (no pixelate) to N (number of pixels to pixelate) */ pixelate: number, }, // type definition end /** Controlls gesture detection */ gesture: { enabled: boolean, }, /** Controlls and configures all face-specific options: * - face detection, face mesh detection, age, gender, emotion detection and face description * Parameters: * - enabled: true/false * - modelPath: path for each of face models * - minConfidence: threshold for discarding a prediction * - iouThreshold: ammount of overlap between two detected objects before one object is removed * - maxDetected: maximum number of faces detected in the input, should be set to the minimum number for performance * - rotation: use calculated rotated face image or just box with rotation as-is, false means higher performance, but incorrect mesh mapping on higher face angles * - return: return extracted face as tensor for futher user processing, in which case user is reponsible for manually disposing the tensor */ face: { enabled: boolean, detector: { modelPath: string, rotation: boolean, maxDetected: number, skipFrames: number, minConfidence: number, iouThreshold: number, return: boolean, }, mesh: { enabled: boolean, modelPath: string, }, iris: { enabled: boolean, modelPath: string, }, description: { enabled: boolean, modelPath: string, skipFrames: number, minConfidence: number, }, emotion: { enabled: boolean, minConfidence: number, skipFrames: number, modelPath: string, }, }, /** Controlls and configures all body detection specific options * - enabled: true/false * - modelPath: body pose model, can be absolute path or relative to modelBasePath * - minConfidence: threshold for discarding a prediction * - maxDetected: maximum number of people detected in the input, should be set to the minimum number for performance */ body: { enabled: boolean, modelPath: string, maxDetected: number, minConfidence: number, skipFrames: number, }, /** Controlls and configures all hand detection specific options * - enabled: true/false * - landmarks: detect hand landmarks or just hand boundary box * - modelPath: paths for hand detector and hand skeleton models, can be absolute path or relative to modelBasePath * - minConfidence: threshold for discarding a prediction * - iouThreshold: ammount of overlap between two detected objects before one object is removed * - maxDetected: maximum number of hands detected in the input, should be set to the minimum number for performance * - rotation: use best-guess rotated hand image or just box with rotation as-is, false means higher performance, but incorrect finger mapping if hand is inverted */ hand: { enabled: boolean, rotation: boolean, skipFrames: number, minConfidence: number, iouThreshold: number, maxDetected: number, landmarks: boolean, detector: { modelPath: string, }, skeleton: { modelPath: string, }, }, /** Controlls and configures all object detection specific options * - enabled: true/false * - modelPath: object detection model, can be absolute path or relative to modelBasePath * - minConfidence: minimum score that detection must have to return as valid object * - iouThreshold: ammount of overlap between two detected objects before one object is removed * - maxDetected: maximum number of detections to return */ object: { enabled: boolean, modelPath: string, minConfidence: number, iouThreshold: number, maxDetected: number, skipFrames: number, }, /** Controlls and configures all body segmentation module * removes background from input containing person * if segmentation is enabled it will run as preprocessing task before any other model * alternatively leave it disabled and use it on-demand using human.segmentation method which can * remove background or replace it with user-provided background * * - enabled: true/false * - modelPath: object detection model, can be absolute path or relative to modelBasePath */ segmentation: { enabled: boolean, modelPath: string, }, } const config: Config = { backend: 'webgl', // select tfjs backend to use, leave empty to use default backend // can be 'webgl', 'wasm', 'cpu', or 'humangl' which is a custom version of webgl modelBasePath: '../models/', // base path for all models wasmPath: '', // path for wasm binaries, only used for backend: wasm // default set to download from jsdeliv during Human class instantiation debug: true, // print additional status messages to console async: true, // execute enabled models in parallel warmup: 'full', // what to use for human.warmup(), can be 'none', 'face', 'full' // warmup pre-initializes all models for faster inference but can take // significant time on startup // only used for `webgl` and `humangl` backends cacheSensitivity: 0.75, // cache sensitivity // values 0..1 where 0.01 means reset cache if input changed more than 1% // set to 0 to disable caching skipFrame: false, // internal & dynamic filter: { // run input through image filters before inference // image filters run with near-zero latency as they are executed on the GPU enabled: true, // enable image pre-processing filters width: 0, // resize input width height: 0, // resize input height // if both width and height are set to 0, there is no resizing // if just one is set, second one is scaled automatically // if both are set, values are used as-is flip: false, // flip input as mirror image return: true, // return processed canvas imagedata in result brightness: 0, // range: -1 (darken) to 1 (lighten) contrast: 0, // range: -1 (reduce contrast) to 1 (increase contrast) sharpness: 0, // range: 0 (no sharpening) to 1 (maximum sharpening) blur: 0, // range: 0 (no blur) to N (blur radius in pixels) saturation: 0, // range: -1 (reduce saturation) to 1 (increase saturation) hue: 0, // range: 0 (no change) to 360 (hue rotation in degrees) negative: false, // image negative sepia: false, // image sepia colors vintage: false, // image vintage colors kodachrome: false, // image kodachrome colors technicolor: false, // image technicolor colors polaroid: false, // image polaroid camera effect pixelate: 0, // range: 0 (no pixelate) to N (number of pixels to pixelate) }, gesture: { enabled: true, // enable gesture recognition based on model results }, face: { enabled: true, // controls if specified modul is enabled // face.enabled is required for all face models: // detector, mesh, iris, age, gender, emotion // (note: module is not loaded until it is required) detector: { modelPath: 'blazeface.json', // detector model, can be absolute path or relative to modelBasePath rotation: true, // use best-guess rotated face image or just box with rotation as-is // false means higher performance, but incorrect mesh mapping if face angle is above 20 degrees // this parameter is not valid in nodejs maxDetected: 15, // maximum number of faces detected in the input // should be set to the minimum number for performance skipFrames: 15, // how many max frames to go without re-running the face bounding box detector // only used when cacheSensitivity is not zero // e.g., if model is running st 25 FPS, we can re-use existing bounding // box for updated face analysis as the head probably hasn't moved much // in short time (10 * 1/25 = 0.25 sec) minConfidence: 0.2, // threshold for discarding a prediction iouThreshold: 0.1, // ammount of overlap between two detected objects before one object is removed return: false, // return extracted face as tensor // in which case user is reponsible for disposing the tensor }, mesh: { enabled: true, modelPath: 'facemesh.json', // facemesh model, can be absolute path or relative to modelBasePath }, iris: { enabled: true, modelPath: 'iris.json', // face iris model // can be either absolute path or relative to modelBasePath }, description: { enabled: true, // to improve accuracy of face description extraction it is // recommended to enable detector.rotation and mesh.enabled modelPath: 'faceres.json', // face description model // can be either absolute path or relative to modelBasePath skipFrames: 11, // how many max frames to go without re-running the detector // only used when cacheSensitivity is not zero minConfidence: 0.1, // threshold for discarding a prediction }, emotion: { enabled: true, minConfidence: 0.1, // threshold for discarding a prediction skipFrames: 17, // how max many frames to go without re-running the detector // only used when cacheSensitivity is not zero modelPath: 'emotion.json', // face emotion model, can be absolute path or relative to modelBasePath }, }, body: { enabled: true, modelPath: 'movenet-lightning.json', // body model, can be absolute path or relative to modelBasePath // can be 'posenet', 'blazepose', 'efficientpose', 'movenet-lightning', 'movenet-thunder' maxDetected: 1, // maximum number of people detected in the input // should be set to the minimum number for performance // only valid for posenet as other models detects single pose minConfidence: 0.2, // threshold for discarding a prediction skipFrames: 1, // how many max frames to go without re-running the detector // only used when cacheSensitivity is not zero }, hand: { enabled: true, rotation: true, // use best-guess rotated hand image or just box with rotation as-is // false means higher performance, but incorrect finger mapping if hand is inverted skipFrames: 18, // how many max frames to go without re-running the hand bounding box detector // only used when cacheSensitivity is not zero // e.g., if model is running st 25 FPS, we can re-use existing bounding // box for updated hand skeleton analysis as the hand probably // hasn't moved much in short time (10 * 1/25 = 0.25 sec) minConfidence: 0.8, // threshold for discarding a prediction iouThreshold: 0.2, // ammount of overlap between two detected objects before one object is removed maxDetected: 1, // maximum number of hands detected in the input // should be set to the minimum number for performance landmarks: true, // detect hand landmarks or just hand boundary box detector: { modelPath: 'handdetect.json', // hand detector model, can be absolute path or relative to modelBasePath }, skeleton: { modelPath: 'handskeleton.json', // hand skeleton model, can be absolute path or relative to modelBasePath }, }, object: { enabled: false, modelPath: 'mb3-centernet.json', // experimental: object detection model, can be absolute path or relative to modelBasePath // can be 'mb3-centernet' or 'nanodet' minConfidence: 0.2, // threshold for discarding a prediction iouThreshold: 0.4, // ammount of overlap between two detected objects before one object is removed maxDetected: 10, // maximum number of objects detected in the input skipFrames: 19, // how many max frames to go without re-running the detector // only used when cacheSensitivity is not zero }, segmentation: { enabled: false, // controlls and configures all body segmentation module // removes background from input containing person // if segmentation is enabled it will run as preprocessing task before any other model // alternatively leave it disabled and use it on-demand using human.segmentation method which can // remove background or replace it with user-provided background modelPath: 'selfie.json', // experimental: object detection model, can be absolute path or relative to modelBasePath // can be 'selfie' or 'meet' }, }; export { config as defaults };