/** * Gender model implementation * * Based on: [**SSR-Net**](https://github.com/shamangary/SSR-Net) */ import * as tf from 'dist/tfjs.esm.js'; import { log, now } from '../util/util'; import { loadModel } from '../tfjs/load'; import { constants } from '../tfjs/constants'; import type { Gender } from '../result'; import type { Config } from '../config'; import type { GraphModel, Tensor, Tensor4D } from '../tfjs/types'; import { env } from '../util/env'; let model: GraphModel | null; const last: { gender: Gender, genderScore: number }[] = []; let lastCount = 0; let lastTime = 0; let skipped = Number.MAX_SAFE_INTEGER; // tuning values const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale export async function load(config: Config) { if (env.initial) model = null; if (!model) model = await loadModel(config.face['ssrnet']?.modelPathGender); else if (config.debug) log('cached model:', model['modelUrl']); return model; } export async function predict(image: Tensor4D, config: Config, idx, count): Promise<{ gender: Gender, genderScore: number }> { if (!model) return { gender: 'unknown', genderScore: 0 }; const skipFrame = skipped < (config.face['ssrnet']?.skipFrames || 0); const skipTime = (config.face['ssrnet']?.skipTime || 0) > (now() - lastTime); if (config.skipAllowed && skipFrame && skipTime && (lastCount === count) && last[idx]?.gender && (last[idx]?.genderScore > 0)) { skipped++; return last[idx]; } skipped = 0; return new Promise(async (resolve) => { if (!model?.inputs[0].shape) return; const t: Record = {}; if (config.face['ssrnet']?.['crop'] > 0) { // optional crop const crop = config.face['ssrnet']?.['crop']; const box = [[crop, crop, 1 - crop, 1 - crop]]; t.resize = tf.image.cropAndResize(image, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]); } else { t.resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false); } t.enhance = tf.tidy(() => { let normalize: Tensor; if (model?.inputs?.[0].shape?.[3] === 1) { const [red, green, blue] = tf.split(t.resize, 3, 3); const redNorm = tf.mul(red, rgb[0]); const greenNorm = tf.mul(green, rgb[1]); const blueNorm = tf.mul(blue, rgb[2]); const grayscale = tf.addN([redNorm, greenNorm, blueNorm]); normalize = tf.mul(tf.sub(grayscale, constants.tf05), 2); // range grayscale:-1..1 } else { normalize = tf.mul(tf.sub(t.resize, constants.tf05), 2); // range rgb:-1..1 } return normalize; }); const obj: { gender: Gender, genderScore: number } = { gender: 'unknown', genderScore: 0 }; if (config.face['ssrnet']?.enabled) t.gender = model.execute(t.enhance) as Tensor; const data = await t.gender.data(); obj.gender = data[0] > data[1] ? 'female' : 'male'; // returns two values 0..1, bigger one is prediction obj.genderScore = data[0] > data[1] ? (Math.trunc(100 * data[0]) / 100) : (Math.trunc(100 * data[1]) / 100); Object.keys(t).forEach((tensor) => tf.dispose(t[tensor])); last[idx] = obj; lastCount = count; lastTime = now(); resolve(obj); }); }