import { log } from '../log'; import * as tf from '../../dist/tfjs.esm.js'; import * as profile from '../profile'; let model; let last = { age: 0 }; let skipped = Number.MAX_SAFE_INTEGER; export async function load(config) { if (!model) { model = await tf.loadGraphModel(config.face.age.modelPath); if (config.debug) log(`load model: ${config.face.age.modelPath.match(/\/(.*)\./)[1]}`); } return model; } export async function predict(image, config) { if (!model) return null; if ((skipped < config.face.age.skipFrames) && config.videoOptimized && last.age && (last.age > 0)) { skipped++; return last; } if (config.videoOptimized) skipped = 0; else skipped = Number.MAX_SAFE_INTEGER; return new Promise(async (resolve) => { /* const zoom = [0, 0]; // 0..1 meaning 0%..100% const box = [[ (image.shape[1] * zoom[0]) / image.shape[1], (image.shape[2] * zoom[1]) / image.shape[2], (image.shape[1] - (image.shape[1] * zoom[0])) / image.shape[1], (image.shape[2] - (image.shape[2] * zoom[1])) / image.shape[2], ]]; const resize = tf.image.cropAndResize(image, box, [0], [config.face.age.inputSize, config.face.age.inputSize]); */ const resize = tf.image.resizeBilinear(image, [config.face.age.inputSize, config.face.age.inputSize], false); const enhance = tf.mul(resize, [255.0]); tf.dispose(resize); let ageT; const obj = { age: 0 }; if (!config.profile) { if (config.face.age.enabled) ageT = await model.predict(enhance); } else { const profileAge = config.face.age.enabled ? await tf.profile(() => model.predict(enhance)) : {}; ageT = profileAge.result.clone(); profileAge.result.dispose(); profile.run('age', profileAge); } enhance.dispose(); if (ageT) { const data = ageT.dataSync(); obj.age = Math.trunc(10 * data[0]) / 10; } ageT.dispose(); last = obj; resolve(obj); }); }