/* Human library homepage: author: ' */ var __create=Object.create,__defProp=Object.defineProperty,__getProtoOf=Object.getPrototypeOf,__hasOwnProp=Object.prototype.hasOwnProperty,__getOwnPropNames=Object.getOwnPropertyNames,__getOwnPropDesc=Object.getOwnPropertyDescriptor,__markAsModule=target=>__defProp(target,"__esModule",{value:!0}),__commonJS=(callback,module)=>()=>(module||(module={exports:{}},callback(module.exports,module)),module.exports),__export=(target,all2)=>{__markAsModule(target);for(var name in all2)__defProp(target,name,{get:all2[name],enumerable:!0})},__exportStar=(target,module,desc)=>{if(__markAsModule(target),module&&typeof module=="object"||typeof module=="function")for(let key of __getOwnPropNames(module))!__hasOwnProp.call(target,key)&&key!=="default"&&__defProp(target,key,{get:()=>module[key],enumerable:!(desc=__getOwnPropDesc(module,key))||desc.enumerable});return target},__toModule=module=>module&&module.__esModule?module:__exportStar(__defProp(module!=null?__create(__getProtoOf(module)):{},"default",{value:module,enumerable:!0}),module),require_blazeface=__commonJS(exports=>{var NUM_LANDMARKS=6;function generateAnchors(inputSize){let spec={strides:[inputSize/16,inputSize/8],anchors:[2,6]},anchors=[];for(let i=0;i{box.startEndTensor.dispose(),box.startPoint.dispose(),box.endPoint.dispose()},createBox=startEndTensor=>({startEndTensor,startPoint:slice(startEndTensor,[0,0],[-1,2]),endPoint:slice(startEndTensor,[0,2],[-1,2])}),scaleBox=(box,factors)=>{let starts=mul(box.startPoint,factors),ends=mul(box.endPoint,factors),newCoordinates=concat2d([starts,ends],1);return createBox(newCoordinates)};function decodeBounds(boxOutputs,anchors,inputSize){let boxStarts=slice(boxOutputs,[0,1],[-1,2]),centers=add2(boxStarts,anchors),boxSizes=slice(boxOutputs,[0,3],[-1,2]),boxSizesNormalized=div(boxSizes,inputSize),centersNormalized=div(centers,inputSize),halfBoxSize=div(boxSizesNormalized,2),starts=sub(centersNormalized,halfBoxSize),ends=add2(centersNormalized,halfBoxSize),startNormalized=mul(starts,inputSize),endNormalized=mul(ends,inputSize),concatAxis=1;return concat2d([startNormalized,endNormalized],concatAxis)}function scaleBoxFromPrediction(face3,scaleFactor){return tidy(()=>{let box=face3.box?face3.box:face3;return scaleBox(box,scaleFactor).startEndTensor.squeeze()})}var BlazeFaceModel=class{constructor(model2,config){this.blazeFaceModel=model2,this.width=config.face.detector.inputSize,this.height=config.face.detector.inputSize,this.anchorsData=generateAnchors(config.face.detector.inputSize),this.anchors=tensor2d(this.anchorsData),this.inputSize=tensor1d([this.width,this.height]),this.config=config,this.scaleFaces=.8}async getBoundingBoxes(inputImage){if(!inputImage||inputImage.isDisposedInternal||inputImage.shape.length!==4||inputImage.shape[1]<1||inputImage.shape[2]<1)return null;let[detectedOutputs,boxes,scores]=tidy(()=>{let resizedImage=inputImage.resizeBilinear([this.width,this.height]),normalizedImage=sub(resizedImage.div(127.5),1),batchedPrediction=this.blazeFaceModel.predict(normalizedImage),prediction;if(Array.isArray(batchedPrediction)){let sorted=batchedPrediction.sort((a,b)=>a.size-b.size),concat384=concat([sorted[0],sorted[2]],2),concat512=concat([sorted[1],sorted[3]],2),concat2=concat([concat512,concat384],1);prediction=concat2.squeeze(0)}else prediction=batchedPrediction.squeeze();let decodedBounds=decodeBounds(prediction,this.anchors,this.inputSize),logits=slice(prediction,[0,0],[-1,1]),scoresOut=sigmoid(logits).squeeze();return[prediction,decodedBounds,scoresOut]}),boxIndicesTensor=await image.nonMaxSuppressionAsync(boxes,scores,this.config.face.detector.maxFaces,this.config.face.detector.iouThreshold,this.config.face.detector.scoreThreshold),boxIndices=boxIndicesTensor.arraySync();boxIndicesTensor.dispose();let boundingBoxesMap=boxIndices.map(boxIndex=>slice(boxes,[boxIndex,0],[1,-1])),boundingBoxes=boundingBoxesMap.map(boundingBox=>{let vals=boundingBox.arraySync();return boundingBox.dispose(),vals}),scoresVal=scores.dataSync(),annotatedBoxes=[];for(let i=0;ithis.config.face.detector.minConfidence){let box=createBox(boundingBoxes[i]),anchor=this.anchorsData[boxIndex],landmarks=tidy(()=>slice(detectedOutputs,[boxIndex,NUM_LANDMARKS-1],[1,-1]).squeeze().reshape([NUM_LANDMARKS,-1]));annotatedBoxes.push({box,landmarks,anchor,confidence})}}return detectedOutputs.dispose(),boxes.dispose(),scores.dispose(),detectedOutputs.dispose(),{boxes:annotatedBoxes,scaleFactor:[inputImage.shape[2]/this.width,inputImage.shape[1]/this.height]}}async estimateFaces(input2){let{boxes,scaleFactor}=await this.getBoundingBoxes(input2),faces=[];for(let face3 of boxes){let landmarkData=face3.landmarks.arraySync(),scaledBox=scaleBoxFromPrediction(face3,scaleFactor),boxData=scaleBox.arraySync(),probabilityData=face3.probability.arraySync(),anchor=face3.anchor,[scaleFactorX,scaleFactorY]=scaleFactor,scaledLandmarks=landmarkData.map(landmark=>[(landmark[0]+anchor[0])*scaleFactorX,(landmark[1]+anchor[1])*scaleFactorY]),normalizedFace={topLeft:boxData.slice(0,2),bottomRight:boxData.slice(2),landmarks:scaledLandmarks,probability:probabilityData};disposeBox(face3.box),face3.landmarks.dispose(),face3.probability.dispose(),scaledBox.dispose(),faces.push(normalizedFace)}return faces}};async function load2(config){let blazeface=await loadGraphModel(config.face.detector.modelPath,{fromTFHub:config.face.detector.modelPath.includes("tfhub.dev")}),model2=new BlazeFaceModel(blazeface,config);return log(`load model: ${config.face.detector.modelPath.match(/\/(.*)\./)[1]}`),model2}exports.load=load2;exports.BlazeFaceModel=BlazeFaceModel;exports.disposeBox=disposeBox}),require_box=__commonJS(exports=>{function scaleBoxCoordinates2(box,factor){let startPoint=[box.startPoint[0]*factor[0],box.startPoint[1]*factor[1]],endPoint=[box.endPoint[0]*factor[0],box.endPoint[1]*factor[1]];return{startPoint,endPoint}}exports.scaleBoxCoordinates=scaleBoxCoordinates2;function getBoxSize2(box){return[Math.abs(box.endPoint[0]-box.startPoint[0]),Math.abs(box.endPoint[1]-box.startPoint[1])]}exports.getBoxSize=getBoxSize2;function getBoxCenter2(box){return[box.startPoint[0]+(box.endPoint[0]-box.startPoint[0])/2,box.startPoint[1]+(box.endPoint[1]-box.startPoint[1])/2]}exports.getBoxCenter=getBoxCenter2;function cutBoxFromImageAndResize2(box,image3,cropSize){let h=image3.shape[1],w=image3.shape[2],boxes=[[box.startPoint[1]/h,box.startPoint[0]/w,box.endPoint[1]/h,box.endPoint[0]/w]];return image.cropAndResize(image3,boxes,[0],cropSize)}exports.cutBoxFromImageAndResize=cutBoxFromImageAndResize2;function enlargeBox2(box,factor=1.5){let center=getBoxCenter2(box),size=getBoxSize2(box),newHalfSize=[factor*size[0]/2,factor*size[1]/2],startPoint=[center[0]-newHalfSize[0],center[1]-newHalfSize[1]],endPoint=[center[0]+newHalfSize[0],center[1]+newHalfSize[1]];return{startPoint,endPoint,landmarks:box.landmarks}}exports.enlargeBox=enlargeBox2;function squarifyBox2(box){let centers=getBoxCenter2(box),size=getBoxSize2(box),maxEdge=Math.max(...size),halfSize=maxEdge/2,startPoint=[centers[0]-halfSize,centers[1]-halfSize],endPoint=[centers[0]+halfSize,centers[1]+halfSize];return{startPoint,endPoint,landmarks:box.landmarks}}exports.squarifyBox=squarifyBox2}),require_util=__commonJS(exports=>{exports.IDENTITY_MATRIX=[[1,0,0],[0,1,0],[0,0,1]];function normalizeRadians2(angle){return angle-2*Math.PI*Math.floor((angle+Math.PI)/(2*Math.PI))}exports.normalizeRadians=normalizeRadians2;function computeRotation2(point1,point2){let radians=Math.PI/2-Math.atan2(-(point2[1]-point1[1]),point2[0]-point1[0]);return normalizeRadians2(radians)}exports.computeRotation=computeRotation2;function radToDegrees(rad){return rad*180/Math.PI}exports.radToDegrees=radToDegrees;function buildTranslationMatrix2(x,y){return[[1,0,x],[0,1,y],[0,0,1]]}function dot3(v1,v2){let product=0;for(let i=0;i{var MESH_ANNOTATIONS={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},MESH_TO_IRIS_INDICES_MAP=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]},{key:"EyebrowUpper",indices:[63,64,65,66,67,68,69,70]},{key:"EyebrowLower",indices:[48,49,50,51,52,53]}],UV468=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],TRI468=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255],TRI68=[0,1,36,0,36,17,1,2,41,1,41,36,2,3,31,2,31,41,3,4,48,3,48,31,4,5,48,5,6,48,6,7,59,6,59,48,7,8,58,7,58,59,8,9,56,8,56,57,8,57,58,9,10,55,9,55,56,10,11,54,10,54,55,11,12,54,12,13,54,13,14,35,13,35,54,14,15,46,14,46,35,15,16,45,15,45,46,16,26,45,17,36,18,18,37,19,18,36,37,19,38,20,19,37,38,20,39,21,20,38,39,21,39,27,22,42,23,22,27,42,23,43,24,23,42,43,24,44,25,24,43,44,25,45,26,25,44,45,27,39,28,27,28,42,28,39,29,28,29,42,29,31,30,29,30,35,29,40,31,29,35,47,29,39,40,29,47,42,30,31,32,30,32,33,30,33,34,30,34,35,31,50,32,31,40,41,31,48,49,31,49,50,32,51,33,32,50,51,33,51,34,34,52,35,34,51,52,35,46,47,35,52,53,35,53,54,36,41,37,37,40,38,37,41,40,38,40,39,42,47,43,43,47,44,44,46,45,44,47,46,48,60,49,48,59,60,49,61,50,49,60,61,50,62,51,50,61,62,51,62,52,52,63,53,52,62,63,53,64,54,53,63,64,54,64,55,55,65,56,55,64,65,56,66,57,56,65,66,57,66,58,58,67,59,58,66,67,59,67,60,60,67,61,61,66,62,61,67,66,62,66,63,63,65,64,63,66,65,21,27,22],TRI33=[0,8,7,7,8,1,2,10,9,9,10,3,17,0,18,18,0,7,18,7,19,19,7,1,19,1,11,19,11,20,21,3,22,21,9,3,20,9,21,20,2,9,20,11,2,23,17,18,25,21,22,24,19,20,24,18,19,24,20,21,24,23,18,24,21,25,11,12,4,11,4,13,1,12,11,11,13,2,12,14,4,4,14,13,14,5,15,14,15,6,12,5,14,14,6,13,8,12,1,2,13,10,8,26,12,10,13,27,26,5,12,13,6,27,0,26,8,10,27,3,5,32,16,16,32,6,5,30,32,6,32,31,26,30,5,27,6,31,0,28,26,3,27,29,17,28,0,3,29,22,23,28,17,22,29,25,28,30,26,27,31,29],TRI7=[0,4,1,2,4,3,4,5,6],VTX68=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],VTX33=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],VTX7=[33,133,362,263,1,78,308];exports.MESH_ANNOTATIONS=MESH_ANNOTATIONS;exports.MESH_TO_IRIS_INDICES_MAP=MESH_TO_IRIS_INDICES_MAP;exports.TRI468=TRI468;exports.TRI68=TRI68;exports.TRI33=TRI33;exports.TRI7=TRI7;exports.UV468=UV468;exports.UV68=VTX68.map(x=>UV468[x]);exports.UV33=VTX33.map(x=>UV468[x]);exports.UV7=VTX7.map(x=>UV468[x])}),require_facepipeline=__commonJS(exports=>{var bounding=__toModule(require_box()),util=__toModule(require_util()),coords2=__toModule(require_coords()),LANDMARKS_COUNT=468,MESH_MOUTH_INDEX=13,MESH_KEYPOINTS_LINE_OF_SYMMETRY_INDICES=[MESH_MOUTH_INDEX,coords2.MESH_ANNOTATIONS.midwayBetweenEyes[0]],BLAZEFACE_MOUTH_INDEX=3,BLAZEFACE_NOSE_INDEX=2,BLAZEFACE_KEYPOINTS_LINE_OF_SYMMETRY_INDICES=[BLAZEFACE_MOUTH_INDEX,BLAZEFACE_NOSE_INDEX],LEFT_EYE_OUTLINE=coords2.MESH_ANNOTATIONS.leftEyeLower0,LEFT_EYE_BOUNDS=[LEFT_EYE_OUTLINE[0],LEFT_EYE_OUTLINE[LEFT_EYE_OUTLINE.length-1]],RIGHT_EYE_OUTLINE=coords2.MESH_ANNOTATIONS.rightEyeLower0,RIGHT_EYE_BOUNDS=[RIGHT_EYE_OUTLINE[0],RIGHT_EYE_OUTLINE[RIGHT_EYE_OUTLINE.length-1]],IRIS_UPPER_CENTER_INDEX=3,IRIS_LOWER_CENTER_INDEX=4,IRIS_IRIS_INDEX=71,IRIS_NUM_COORDINATES=76;function replaceRawCoordinates(rawCoords,newCoords,prefix,keys){for(let i=0;i[scaleFactor[0]*(coord[0]-this.meshWidth/2),scaleFactor[1]*(coord[1]-this.meshHeight/2),coord[2]]),coordsRotationMatrix=angle!==0?util.buildRotationMatrix(angle,[0,0]):util.IDENTITY_MATRIX,coordsRotated=angle!==0?coordsScaled.map(coord=>[...util.rotatePoint(coord,coordsRotationMatrix),coord[2]]):coordsScaled,inverseRotationMatrix=angle!==0?util.invertTransformMatrix(rotationMatrix):util.IDENTITY_MATRIX,boxCenter=[...bounding.getBoxCenter({startPoint:box.startPoint,endPoint:box.endPoint}),1];return coordsRotated.map(coord=>[coord[0]+util.dot(boxCenter,inverseRotationMatrix[0]),coord[1]+util.dot(boxCenter,inverseRotationMatrix[1]),coord[2]])}getLeftToRightEyeDepthDifference(rawCoords){let leftEyeZ=rawCoords[LEFT_EYE_BOUNDS[0]][2],rightEyeZ=rawCoords[RIGHT_EYE_BOUNDS[0]][2];return leftEyeZ-rightEyeZ}getEyeBox(rawCoords,face3,eyeInnerCornerIndex,eyeOuterCornerIndex,flip=!1){let box=bounding.squarifyBox(bounding.enlargeBox(this.calculateLandmarksBoundingBox([rawCoords[eyeInnerCornerIndex],rawCoords[eyeOuterCornerIndex]]),this.irisEnlarge)),boxSize=bounding.getBoxSize(box),crop=image.cropAndResize(face3,[[box.startPoint[1]/this.meshHeight,box.startPoint[0]/this.meshWidth,box.endPoint[1]/this.meshHeight,box.endPoint[0]/this.meshWidth]],[0],[this.irisSize,this.irisSize]);return flip&&(crop=image.flipLeftRight(crop)),{box,boxSize,crop}}getEyeCoords(eyeData,eyeBox,eyeBoxSize,flip=!1){let eyeRawCoords=[];for(let i=0;i{let z=averageZ;return i===2?z=upperCenterZ:i===4&&(z=lowerCenterZ),[coord[0],coord[1],z]})}async predict(input2,config){let useFreshBox=!1,detector;if((this.skipped===0||this.skipped>config.face.detector.skipFrames||!config.face.mesh.enabled||!config.videoOptimized)&&(detector=await this.boundingBoxDetector.getBoundingBoxes(input2),this.skipped=0),config.videoOptimized&&this.skipped++,detector&&detector.boxes&&detector.boxes.length>0&&(!config.face.mesh.enabled||detector.boxes.length!==this.detectedFaces&&this.detectedFaces!==config.face.detector.maxFaces)){this.storedBoxes=[],this.detectedFaces=0;for(let possible of detector.boxes)this.storedBoxes.push({startPoint:possible.box.startPoint.dataSync(),endPoint:possible.box.endPoint.dataSync(),landmarks:possible.landmarks,confidence:possible.confidence});this.storedBoxes.length>0&&(useFreshBox=!0)}if(useFreshBox){if(!detector||!detector.boxes||detector.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i{prediction.box.startPoint.dispose(),prediction.box.endPoint.dispose(),prediction.landmarks.dispose()});let results=tidy(()=>this.storedBoxes.map((box,i)=>{let face3,angle=0,rotationMatrix;if(config.face.detector.rotation){let[indexOfMouth,indexOfForehead]=box.landmarks.length>=LANDMARKS_COUNT?MESH_KEYPOINTS_LINE_OF_SYMMETRY_INDICES:BLAZEFACE_KEYPOINTS_LINE_OF_SYMMETRY_INDICES;angle=util.computeRotation(box.landmarks[indexOfMouth],box.landmarks[indexOfForehead]);let faceCenter=bounding.getBoxCenter({startPoint:box.startPoint,endPoint:box.endPoint}),faceCenterNormalized=[faceCenter[0]/input2.shape[2],faceCenter[1]/input2.shape[1]],rotatedImage=image.rotateWithOffset(input2,angle,0,faceCenterNormalized);rotationMatrix=util.buildRotationMatrix(-angle,faceCenter),face3=bounding.cutBoxFromImageAndResize({startPoint:box.startPoint,endPoint:box.endPoint},rotatedImage,[this.meshHeight,this.meshWidth]).div(255)}else{rotationMatrix=util.IDENTITY_MATRIX;let cloned=input2.clone();face3=bounding.cutBoxFromImageAndResize({startPoint:box.startPoint,endPoint:box.endPoint},cloned,[this.meshHeight,this.meshWidth]).div(255)}if(!config.face.mesh.enabled){let prediction2={coords:null,box,faceConfidence:null,confidence:box.confidence,image:face3};return prediction2}let[,confidence,contourCoords]=this.meshDetector.predict(face3),confidenceVal=confidence.dataSync()[0];if(confidenceVala!==null),this.detectedFaces=results.length,results}calculateLandmarksBoundingBox(landmarks){let xs=landmarks.map(d=>d[0]),ys=landmarks.map(d=>d[1]),startPoint=[Math.min(...xs),Math.min(...ys)],endPoint=[Math.max(...xs),Math.max(...ys)];return{startPoint,endPoint,landmarks}}};exports.Pipeline=Pipeline}),require_facemesh=__commonJS(exports=>{var blazeface=__toModule(require_blazeface()),facepipeline=__toModule(require_facepipeline()),coords2=__toModule(require_coords()),MediaPipeFaceMesh=class{constructor(blazeFace,blazeMeshModel,irisModel,config){this.facePipeline=new facepipeline.Pipeline(blazeFace,blazeMeshModel,irisModel,config),this.config=config}async estimateFaces(input2,config){let predictions=await this.facePipeline.predict(input2,config),results=[];for(let prediction of predictions||[]){if(prediction.isDisposedInternal)continue;let mesh=prediction.coords?prediction.coords.arraySync():null,annotations={};if(mesh&&mesh.length>0)for(let key=0;keymesh[index]));let box=prediction.box?[Math.max(0,prediction.box.startPoint[0]),Math.max(0,prediction.box.startPoint[1]),Math.min(input2.shape[2],prediction.box.endPoint[0])-prediction.box.startPoint[0],Math.min(input2.shape[1],prediction.box.endPoint[1])-prediction.box.startPoint[1]]:0;results.push({confidence:prediction.confidence||0,box,mesh,annotations,image:prediction.image?clone(prediction.image):null}),prediction.coords&&prediction.coords.dispose(),prediction.image&&prediction.image.dispose()}return results}},faceModels=[null,null,null];async function load2(config){faceModels=await Promise.all([!faceModels[0]&&config.face.enabled?blazeface.load(config):null,!faceModels[1]&&config.face.mesh.enabled?loadGraphModel(config.face.mesh.modelPath,{fromTFHub:config.face.mesh.modelPath.includes("tfhub.dev")}):null,!faceModels[2]&&config.face.iris.enabled?loadGraphModel(config.face.iris.modelPath,{fromTFHub:config.face.iris.modelPath.includes("tfhub.dev")}):null]);let faceMesh=new MediaPipeFaceMesh(faceModels[0],faceModels[1],faceModels[2],config);return config.face.mesh.enabled&&log(`load model: ${config.face.mesh.modelPath.match(/\/(.*)\./)[1]}`),config.face.iris.enabled&&log(`load model: ${config.face.iris.modelPath.match(/\/(.*)\./)[1]}`),faceMesh}exports.load=load2;exports.MediaPipeFaceMesh=MediaPipeFaceMesh;exports.triangulation=coords2.TRI468}),require_profile=__commonJS(exports=>{var profileData={};function profile3(name,data2){if(!data2||!data2.kernels)return;let maxResults=5,time2=data2.kernels.filter(a=>a.kernelTimeMs>0).reduce((a,b)=>a+=b.kernelTimeMs,0),slowest=data2.kernels.map((a,i)=>(a.id=i,a)).filter(a=>a.kernelTimeMs>0).sort((a,b)=>b.kernelTimeMs-a.kernelTimeMs),largest=data2.kernels.map((a,i)=>(a.id=i,a)).filter(a=>a.totalBytesSnapshot>0).sort((a,b)=>b.totalBytesSnapshot-a.totalBytesSnapshot);slowest.length>maxResults&&(slowest.length=maxResults),largest.length>maxResults&&(largest.length=maxResults);let res={newBytes:data2.newBytes,newTensors:data2.newTensors,peakBytes:data2.peakBytes,numKernelOps:data2.kernels.length,timeKernelOps:time2,slowestKernelOps:slowest,largestKernelOps:largest};profileData[name]=res,log("Human profiler",name,res)}exports.run=profile3}),require_age=__commonJS(exports=>{var profile3=__toModule(require_profile()),models={},last={age:0},skipped=Number.MAX_SAFE_INTEGER;async function load2(config){return models.age||(models.age=await loadGraphModel(config.face.age.modelPath),log(`load model: ${config.face.age.modelPath.match(/\/(.*)\./)[1]}`)),models.age}async function predict2(image3,config){return models.age?skipped0?(skipped++,last):(config.videoOptimized?skipped=0:skipped=Number.MAX_SAFE_INTEGER,new Promise(async resolve=>{let resize=image.resizeBilinear(image3,[config.face.age.inputSize,config.face.age.inputSize],!1),enhance=mul(resize,[255]);dispose(resize);let ageT,obj={};if(!config.profile)config.face.age.enabled&&(ageT=await models.age.predict(enhance));else{let profileAge=config.face.age.enabled?await profile(()=>models.age.predict(enhance)):{};ageT=profileAge.result.clone(),profileAge.result.dispose(),profile3.run("age",profileAge)}if(enhance.dispose(),ageT){let data2=ageT.dataSync();obj.age=Math.trunc(10*data2[0])/10}ageT.dispose(),last=obj,resolve(obj)})):null}exports.predict=predict2;exports.load=load2}),require_gender=__commonJS(exports=>{var profile3=__toModule(require_profile()),models={},last={gender:""},skipped=Number.MAX_SAFE_INTEGER,alternative=!1,rgb=[.2989,.587,.114];async function load2(config){return models.gender||(models.gender=await loadGraphModel(config.face.gender.modelPath),alternative=models.gender.inputs[0].shape[3]===1,log(`load model: ${config.face.gender.modelPath.match(/\/(.*)\./)[1]}`)),models.gender}async function predict2(image3,config){return models.gender?skipped{let resize=image.resizeBilinear(image3,[config.face.gender.inputSize,config.face.gender.inputSize],!1),enhance;alternative?enhance=tidy(()=>{let[red,green,blue]=split(resize,3,3),redNorm=mul(red,rgb[0]),greenNorm=mul(green,rgb[1]),blueNorm=mul(blue,rgb[2]),grayscale=addN([redNorm,greenNorm,blueNorm]);return grayscale.sub(.5).mul(2)}):enhance=mul(resize,[255]),dispose(resize);let genderT,obj={};if(!config.profile)config.face.gender.enabled&&(genderT=await models.gender.predict(enhance));else{let profileGender=config.face.gender.enabled?await profile(()=>models.gender.predict(enhance)):{};genderT=profileGender.result.clone(),profileGender.result.dispose(),profile3.run("gender",profileGender)}if(enhance.dispose(),genderT){let data2=genderT.dataSync();if(alternative){let confidence=Math.trunc(100*Math.abs(data2[0]-data2[1]))/100;confidence>config.face.gender.minConfidence&&(obj.gender=data2[0]>data2[1]?"female":"male",obj.confidence=confidence)}else{let confidence=Math.trunc(200*Math.abs(data2[0]-.5))/100;confidence>config.face.gender.minConfidence&&(obj.gender=data2[0]<=.5?"female":"male",obj.confidence=Math.min(.99,confidence))}}genderT.dispose(),last=obj,resolve(obj)})):null}exports.predict=predict2;exports.load=load2}),require_emotion=__commonJS(exports=>{var profile3=__toModule(require_profile()),annotations=["angry","disgust","fear","happy","sad","surpise","neutral"],models={},last=[],skipped=Number.MAX_SAFE_INTEGER,rgb=[.2989,.587,.114],scale2=1;async function load2(config){return models.emotion||(models.emotion=await loadGraphModel(config.face.emotion.modelPath),log(`load model: ${config.face.emotion.modelPath.match(/\/(.*)\./)[1]}`)),models.emotion}async function predict2(image3,config){return models.emotion?skipped0?(skipped++,last):(config.videoOptimized?skipped=0:skipped=Number.MAX_SAFE_INTEGER,new Promise(async resolve=>{let resize=image.resizeBilinear(image3,[config.face.emotion.inputSize,config.face.emotion.inputSize],!1),[red,green,blue]=split(resize,3,3);resize.dispose();let redNorm=mul(red,rgb[0]),greenNorm=mul(green,rgb[1]),blueNorm=mul(blue,rgb[2]);red.dispose(),green.dispose(),blue.dispose();let grayscale=addN([redNorm,greenNorm,blueNorm]);redNorm.dispose(),greenNorm.dispose(),blueNorm.dispose();let normalize=tidy(()=>grayscale.sub(.5).mul(2));grayscale.dispose();let obj=[];if(config.face.emotion.enabled){let data2;if(config.profile){let profileData=await profile(()=>models.emotion.predict(normalize));data2=profileData.result.dataSync(),profileData.result.dispose(),profile3.run("emotion",profileData)}else{let emotionT=await models.emotion.predict(normalize);data2=emotionT.dataSync(),dispose(emotionT)}for(let i=0;iconfig.face.emotion.minConfidence&&obj.push({score:Math.min(.99,Math.trunc(100*scale2*data2[i])/100),emotion:annotations[i]});obj.sort((a,b)=>b.score-a.score)}normalize.dispose(),last=obj,resolve(obj)})):null}exports.predict=predict2;exports.load=load2}),require_embedding=__commonJS(exports=>{var profile3=__toModule(require_profile()),models={};async function load2(config){return models.embedding||(models.embedding=await loadGraphModel(config.face.embedding.modelPath),log(`load model: ${config.face.embedding.modelPath.match(/\/(.*)\./)[1]}`)),models.embedding}function simmilarity2(embedding1,embedding22){if((embedding1==null?void 0:embedding1.length)!==(embedding22==null?void 0:embedding22.length))return 0;let order=2,distance=10*embedding1.map((val,i)=>val-embedding22[i]).reduce((dist,diff)=>dist+diff**order,0)**(1/order);return Math.trunc(1e3*(1-distance))/1e3}async function predict2(image3,config){return models.embedding?new Promise(async resolve=>{let resize=image.resizeBilinear(image3,[config.face.embedding.inputSize,config.face.embedding.inputSize],!1),data2=[];if(config.face.embedding.enabled)if(config.profile){let profileData=await profile(()=>models.embedding.predict({img_inputs:resize}));data2=[...profileData.result.dataSync()],profileData.result.dispose(),profile3.run("emotion",profileData)}else{let embeddingT=await models.embedding.predict({img_inputs:resize});data2=[...embeddingT.dataSync()],dispose(embeddingT)}resize.dispose(),resolve(data2)}):null}exports.predict=predict2;exports.simmilarity=simmilarity2;exports.load=load2}),require_modelBase=__commonJS(exports=>{var BaseModel=class{constructor(model2,outputStride){this.model=model2,this.outputStride=outputStride}predict(input2){return tidy(()=>{let asFloat=this.preprocessInput(input2.toFloat()),asBatch=asFloat.expandDims(0),results=this.model.predict(asBatch),results3d=results.map(y=>y.squeeze([0])),namedResults=this.nameOutputResults(results3d);return{heatmapScores:namedResults.heatmap.sigmoid(),offsets:namedResults.offsets,displacementFwd:namedResults.displacementFwd,displacementBwd:namedResults.displacementBwd}})}dispose(){this.model.dispose()}};exports.BaseModel=BaseModel}),require_modelMobileNet=__commonJS(exports=>{var modelBase=__toModule(require_modelBase()),MobileNet=class extends modelBase.BaseModel{preprocessInput(input2){return tidy(()=>div(input2,127.5).sub(1))}nameOutputResults(results){let[offsets,heatmap,displacementFwd,displacementBwd]=results;return{offsets,heatmap,displacementFwd,displacementBwd}}};exports.MobileNet=MobileNet}),require_heapSort=__commonJS(exports=>{function half(k){return Math.floor(k/2)}var MaxHeap=class{constructor(maxSize,getElementValue){this.priorityQueue=new Array(maxSize),this.numberOfElements=-1,this.getElementValue=getElementValue}enqueue(x){this.priorityQueue[++this.numberOfElements]=x,this.swim(this.numberOfElements)}dequeue(){let max2=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,max2}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(k){for(;k>0&&this.less(half(k),k);)this.exchange(k,half(k)),k=half(k)}sink(k){for(;2*k<=this.numberOfElements;){let j=2*k;if(j{var heapSort=__toModule(require_heapSort());function scoreIsMaximumInLocalWindow(keypointId,score,heatmapY,heatmapX,localMaximumRadius,scores){let[height,width]=scores.shape,localMaximum=!0,yStart=Math.max(heatmapY-localMaximumRadius,0),yEnd=Math.min(heatmapY+localMaximumRadius+1,height);for(let yCurrent=yStart;yCurrentscore){localMaximum=!1;break}if(!localMaximum)break}return localMaximum}function buildPartWithScoreQueue(scoreThreshold,localMaximumRadius,scores){let[height,width,numKeypoints]=scores.shape,queue=new heapSort.MaxHeap(height*width*numKeypoints,({score})=>score);for(let heatmapY=0;heatmapY{exports.partNames=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"];exports.NUM_KEYPOINTS=exports.partNames.length;exports.partIds=exports.partNames.reduce((result,jointName,i)=>(result[jointName]=i,result),{});var connectedPartNames=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]];exports.poseChain=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];exports.connectedPartIndices=connectedPartNames.map(([jointNameA,jointNameB])=>[exports.partIds[jointNameA],exports.partIds[jointNameB]]);exports.partChannels=["left_face","right_face","right_upper_leg_front","right_lower_leg_back","right_upper_leg_back","left_lower_leg_front","left_upper_leg_front","left_upper_leg_back","left_lower_leg_back","right_feet","right_lower_leg_front","left_feet","torso_front","torso_back","right_upper_arm_front","right_upper_arm_back","right_lower_arm_back","left_lower_arm_front","left_upper_arm_front","left_upper_arm_back","left_lower_arm_back","right_hand","right_lower_arm_front","left_hand"]}),require_vectors=__commonJS(exports=>{var kpt=__toModule(require_keypoints());function getOffsetPoint(y,x,keypoint,offsets){return{y:offsets.get(y,x,keypoint),x:offsets.get(y,x,keypoint+kpt.NUM_KEYPOINTS)}}exports.getOffsetPoint=getOffsetPoint;function getImageCoords(part,outputStride,offsets){let{heatmapY,heatmapX,id:keypoint}=part,{y,x}=getOffsetPoint(heatmapY,heatmapX,keypoint,offsets);return{x:part.heatmapX*outputStride+x,y:part.heatmapY*outputStride+y}}exports.getImageCoords=getImageCoords;function fillArray(element,size){let result=new Array(size);for(let i=0;imax2?max2:a}exports.clamp=clamp2;function squaredDistance(y1,x1,y2,x2){let dy=y2-y1,dx=x2-x1;return dy*dy+dx*dx}exports.squaredDistance=squaredDistance;function addVectors(a,b){return{x:a.x+b.x,y:a.y+b.y}}exports.addVectors=addVectors;function clampVector(a,min2,max2){return{y:clamp2(a.y,min2,max2),x:clamp2(a.x,min2,max2)}}exports.clampVector=clampVector}),require_decodePose=__commonJS(exports=>{var keypoints=__toModule(require_keypoints()),vectors=__toModule(require_vectors()),parentChildrenTuples=keypoints.poseChain.map(([parentJoinName,childJoinName])=>[keypoints.partIds[parentJoinName],keypoints.partIds[childJoinName]]),parentToChildEdges=parentChildrenTuples.map(([,childJointId])=>childJointId),childToParentEdges=parentChildrenTuples.map(([parentJointId])=>parentJointId);function getDisplacement(edgeId,point,displacements){let numEdges=displacements.shape[2]/2;return{y:displacements.get(point.y,point.x,edgeId),x:displacements.get(point.y,point.x,numEdges+edgeId)}}function getStridedIndexNearPoint(point,outputStride,height,width){return{y:vectors.clamp(Math.round(point.y/outputStride),0,height-1),x:vectors.clamp(Math.round(point.x/outputStride),0,width-1)}}function traverseToTargetKeypoint(edgeId,sourceKeypoint,targetKeypointId,scoresBuffer,offsets,outputStride,displacements,offsetRefineStep=2){let[height,width]=scoresBuffer.shape,sourceKeypointIndices=getStridedIndexNearPoint(sourceKeypoint.position,outputStride,height,width),displacement=getDisplacement(edgeId,sourceKeypointIndices,displacements),displacedPoint=vectors.addVectors(sourceKeypoint.position,displacement),targetKeypoint=displacedPoint;for(let i=0;i=0;--edge){let sourceKeypointId=parentToChildEdges[edge],targetKeypointId=childToParentEdges[edge];instanceKeypoints[sourceKeypointId]&&!instanceKeypoints[targetKeypointId]&&(instanceKeypoints[targetKeypointId]=traverseToTargetKeypoint(edge,instanceKeypoints[sourceKeypointId],targetKeypointId,scores,offsets,outputStride,displacementsBwd))}for(let edge=0;edge{var buildParts=__toModule(require_buildParts()),decodePose=__toModule(require_decodePose()),vectors=__toModule(require_vectors());function withinNmsRadiusOfCorrespondingPoint(poses,squaredNmsRadius,{x,y},keypointId){return poses.some(({keypoints})=>{let correspondingKeypoint=keypoints[keypointId].position;return vectors.squaredDistance(y,x,correspondingKeypoint.y,correspondingKeypoint.x)<=squaredNmsRadius})}function getInstanceScore(existingPoses,squaredNmsRadius,instanceKeypoints){let notOverlappedKeypointScores=instanceKeypoints.reduce((result,{position,score},keypointId)=>(withinNmsRadiusOfCorrespondingPoint(existingPoses,squaredNmsRadius,position,keypointId)||(result+=score),result),0);return notOverlappedKeypointScores/instanceKeypoints.length}var kLocalMaximumRadius=1;function decodeMultiplePoses(scoresBuffer,offsetsBuffer,displacementsFwdBuffer,displacementsBwdBuffer,outputStride,maxPoseDetections,scoreThreshold,nmsRadius){let poses=[],queue=buildParts.buildPartWithScoreQueue(scoreThreshold,kLocalMaximumRadius,scoresBuffer),squaredNmsRadius=nmsRadius*nmsRadius;for(;poses.lengthscoreThreshold&&poses.push({keypoints,score})}return poses}exports.decodeMultiplePoses=decodeMultiplePoses}),require_util2=__commonJS(exports=>{var kpt=__toModule(require_keypoints());function eitherPointDoesntMeetConfidence(a,b,minConfidence){return a(eitherPointDoesntMeetConfidence(keypoints[leftJoint].score,keypoints[rightJoint].score,minConfidence)||result.push([keypoints[leftJoint],keypoints[rightJoint]]),result),[])}exports.getAdjacentKeyPoints=getAdjacentKeyPoints;var{NEGATIVE_INFINITY,POSITIVE_INFINITY}=Number;function getBoundingBox(keypoints){return keypoints.reduce(({maxX,maxY,minX,minY},{position:{x,y}})=>({maxX:Math.max(maxX,x),maxY:Math.max(maxY,y),minX:Math.min(minX,x),minY:Math.min(minY,y)}),{maxX:NEGATIVE_INFINITY,maxY:NEGATIVE_INFINITY,minX:POSITIVE_INFINITY,minY:POSITIVE_INFINITY})}exports.getBoundingBox=getBoundingBox;function getBoundingBoxPoints(keypoints){let{minX,minY,maxX,maxY}=getBoundingBox(keypoints);return[{x:minX,y:minY},{x:maxX,y:minY},{x:maxX,y:maxY},{x:minX,y:maxY}]}exports.getBoundingBoxPoints=getBoundingBoxPoints;async function toTensorBuffers3D(tensors){return Promise.all(tensors.map(tensor=>tensor.buffer()))}exports.toTensorBuffers3D=toTensorBuffers3D;function scalePose(pose,scaleY,scaleX){return{score:pose.score,keypoints:pose.keypoints.map(({score,part,position})=>({score,part,position:{x:position.x*scaleX,y:position.y*scaleY}}))}}exports.scalePose=scalePose;function resizeTo(image3,[targetH,targetW]){let input2=image3.squeeze(0),resized=input2.resizeBilinear([targetH,targetW]);return input2.dispose(),resized}exports.resizeTo=resizeTo;function scaleAndFlipPoses(poses,[height,width],[inputResolutionHeight,inputResolutionWidth]){let scaledPoses=poses.map(pose=>scalePose(pose,height/inputResolutionHeight,width/inputResolutionWidth));return scaledPoses}exports.scaleAndFlipPoses=scaleAndFlipPoses}),require_modelPoseNet=__commonJS(exports=>{var modelMobileNet=__toModule(require_modelMobileNet()),decodeMultiple=__toModule(require_decodeMultiple()),util=__toModule(require_util2()),PoseNet=class{constructor(net){this.baseModel=net,this.outputStride=16}async estimatePoses(input2,config){return new Promise(async resolve=>{let height=input2.shape[1],width=input2.shape[2],resized=util.resizeTo(input2,[config.body.inputSize,config.body.inputSize]),res=this.baseModel.predict(resized),allTensorBuffers=await util.toTensorBuffers3D([res.heatmapScores,res.offsets,res.displacementFwd,res.displacementBwd]),scoresBuffer=allTensorBuffers[0],offsetsBuffer=allTensorBuffers[1],displacementsFwdBuffer=allTensorBuffers[2],displacementsBwdBuffer=allTensorBuffers[3],poses=await decodeMultiple.decodeMultiplePoses(scoresBuffer,offsetsBuffer,displacementsFwdBuffer,displacementsBwdBuffer,this.outputStride,config.body.maxDetections,config.body.scoreThreshold,config.body.nmsRadius),resultPoses=util.scaleAndFlipPoses(poses,[height,width],[config.body.inputSize,config.body.inputSize]);res.heatmapScores.dispose(),res.offsets.dispose(),res.displacementFwd.dispose(),res.displacementBwd.dispose(),resized.dispose(),resolve(resultPoses)})}dispose(){this.baseModel.dispose()}};exports.PoseNet=PoseNet;async function load2(config){let graphModel=await loadGraphModel(config.body.modelPath),mobilenet=new modelMobileNet.MobileNet(graphModel,this.outputStride);return log(`load model: ${config.body.modelPath.match(/\/(.*)\./)[1]}`),new PoseNet(mobilenet)}exports.load=load2}),require_posenet=__commonJS(exports=>{var modelMobileNet=__toModule(require_modelMobileNet()),modelPoseNet=__toModule(require_modelPoseNet()),decodeMultiple=__toModule(require_decodeMultiple()),keypoints=__toModule(require_keypoints()),util=__toModule(require_util2());exports.load=modelPoseNet.load;exports.PoseNet=modelPoseNet.PoseNet;exports.MobileNet=modelMobileNet.MobileNet;exports.decodeMultiplePoses=decodeMultiple.decodeMultiplePoses;exports.partChannels=keypoints.partChannels;exports.partIds=keypoints.partIds;exports.partNames=keypoints.partNames;exports.poseChain=keypoints.poseChain;exports.getAdjacentKeyPoints=util.getAdjacentKeyPoints;exports.getBoundingBox=util.getBoundingBox;exports.getBoundingBoxPoints=util.getBoundingBoxPoints;exports.scaleAndFlipPoses=util.scaleAndFlipPoses;exports.scalePose=util.scalePose}),require_handdetector=__commonJS(exports=>{var HandDetector=class{constructor(model2,inputSize,anchorsAnnotated){this.model=model2,this.anchors=anchorsAnnotated.map(anchor=>[anchor.x_center,anchor.y_center]),this.anchorsTensor=tensor2d(this.anchors),this.inputSizeTensor=tensor1d([inputSize,inputSize]),this.doubleInputSizeTensor=tensor1d([inputSize*2,inputSize*2])}normalizeBoxes(boxes){return tidy(()=>{let boxOffsets=slice(boxes,[0,0],[-1,2]),boxSizes=slice(boxes,[0,2],[-1,2]),boxCenterPoints=add2(div(boxOffsets,this.inputSizeTensor),this.anchorsTensor),halfBoxSizes=div(boxSizes,this.doubleInputSizeTensor),startPoints=mul(sub(boxCenterPoints,halfBoxSizes),this.inputSizeTensor),endPoints=mul(add2(boxCenterPoints,halfBoxSizes),this.inputSizeTensor);return concat2d([startPoints,endPoints],1)})}normalizeLandmarks(rawPalmLandmarks,index){return tidy(()=>{let landmarks=add2(div(rawPalmLandmarks.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[index]);return mul(landmarks,this.inputSizeTensor)})}async getBoxes(input2,config){let batched=this.model.predict(input2),predictions=batched.squeeze();batched.dispose();let scoresT=tidy(()=>sigmoid(slice(predictions,[0,0],[-1,1])).squeeze()),scores=scoresT.dataSync(),rawBoxes=slice(predictions,[0,1],[-1,4]),boxes=this.normalizeBoxes(rawBoxes);rawBoxes.dispose();let filteredT=await image.nonMaxSuppressionAsync(boxes,scores,config.hand.maxHands,config.hand.iouThreshold,config.hand.scoreThreshold),filtered=filteredT.arraySync();scoresT.dispose(),filteredT.dispose();let hands=[];for(let index of filtered)if(scores[index]>=config.hand.minConfidence){let matchingBox=slice(boxes,[index,0],[1,-1]),rawPalmLandmarks=slice(predictions,[index,5],[1,14]),palmLandmarks=tidy(()=>this.normalizeLandmarks(rawPalmLandmarks,index).reshape([-1,2]));rawPalmLandmarks.dispose(),hands.push({box:matchingBox,palmLandmarks,confidence:scores[index]})}return predictions.dispose(),boxes.dispose(),hands}async estimateHandBounds(input2,config){let inputHeight=input2.shape[1],inputWidth=input2.shape[2],image3=tidy(()=>input2.resizeBilinear([config.hand.inputSize,config.hand.inputSize]).div(127.5).sub(1)),predictions=await this.getBoxes(image3,config);image3.dispose();let hands=[];if(!predictions||predictions.length===0)return hands;for(let prediction of predictions){let boxes=prediction.box.dataSync(),startPoint=boxes.slice(0,2),endPoint=boxes.slice(2,4),palmLandmarks=prediction.palmLandmarks.arraySync();prediction.box.dispose(),prediction.palmLandmarks.dispose(),hands.push(scaleBoxCoordinates({startPoint,endPoint,palmLandmarks,confidence:prediction.confidence},[inputWidth/config.hand.inputSize,inputHeight/config.hand.inputSize]))}return hands}};exports.HandDetector=HandDetector}),require_handpipeline=__commonJS(exports=>{var PALM_BOX_ENLARGE_FACTOR=5,HAND_BOX_ENLARGE_FACTOR=1.65,PALM_LANDMARK_IDS=[0,5,9,13,17,1,2],PALM_LANDMARKS_INDEX_OF_PALM_BASE=0,PALM_LANDMARKS_INDEX_OF_MIDDLE_FINGER_BASE=2,HandPipeline=class{constructor(handDetector,landmarkDetector,inputSize){this.handDetector=handDetector,this.landmarkDetector=landmarkDetector,this.inputSize=inputSize,this.storedBoxes=[],this.skipped=0,this.detectedHands=0}getBoxForPalmLandmarks(palmLandmarks,rotationMatrix){let rotatedPalmLandmarks=palmLandmarks.map(coord=>rotatePoint([...coord,1],rotationMatrix)),boxAroundPalm=this.calculateLandmarksBoundingBox(rotatedPalmLandmarks);return enlargeBox(squarifyBox(boxAroundPalm),PALM_BOX_ENLARGE_FACTOR)}getBoxForHandLandmarks(landmarks){let boundingBox=this.calculateLandmarksBoundingBox(landmarks),boxAroundHand=enlargeBox(squarifyBox(boundingBox),HAND_BOX_ENLARGE_FACTOR);boxAroundHand.palmLandmarks=[];for(let i=0;i[scaleFactor[0]*(coord[0]-this.inputSize/2),scaleFactor[1]*(coord[1]-this.inputSize/2),coord[2]]),coordsRotationMatrix=buildRotationMatrix(angle,[0,0]),coordsRotated=coordsScaled.map(coord=>{let rotated=rotatePoint(coord,coordsRotationMatrix);return[...rotated,coord[2]]}),inverseRotationMatrix=invertTransformMatrix(rotationMatrix),boxCenter=[...getBoxCenter(box2),1],originalBoxCenter=[dot2(boxCenter,inverseRotationMatrix[0]),dot2(boxCenter,inverseRotationMatrix[1])];return coordsRotated.map(coord=>[coord[0]+originalBoxCenter[0],coord[1]+originalBoxCenter[1],coord[2]])}async estimateHands(image3,config){let useFreshBox=!1,boxes;(this.skipped===0||this.skipped>config.hand.skipFrames||!config.hand.landmarks||!config.videoOptimized)&&(boxes=await this.handDetector.estimateHandBounds(image3,config),this.skipped=0),config.videoOptimized&&this.skipped++,boxes&&boxes.length>0&&(boxes.length!==this.detectedHands&&this.detectedHands!==config.hand.maxHands||!config.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...boxes],this.storedBoxes.length>0&&(useFreshBox=!0));let hands=[];for(let i=0;i=config.hand.minConfidence){let keypointsReshaped=reshape(keypoints,[-1,3]),rawCoords=keypointsReshaped.arraySync();keypoints.dispose(),keypointsReshaped.dispose();let coords2=this.transformRawCoords(rawCoords,newBox,angle,rotationMatrix),nextBoundingBox=this.getBoxForHandLandmarks(coords2);this.storedBoxes[i]=nextBoundingBox;let result={landmarks:coords2,confidence,box:{topLeft:nextBoundingBox.startPoint,bottomRight:nextBoundingBox.endPoint}};hands.push(result)}else this.storedBoxes[i]=null;keypoints.dispose()}else{let enlarged=enlargeBox(squarifyBox(currentBox),HAND_BOX_ENLARGE_FACTOR),result={confidence:currentBox.confidence,box:{topLeft:enlarged.startPoint,bottomRight:enlarged.endPoint}};hands.push(result)}}return this.storedBoxes=this.storedBoxes.filter(a=>a!==null),this.detectedHands=hands.length,hands}calculateLandmarksBoundingBox(landmarks){let xs=landmarks.map(d=>d[0]),ys=landmarks.map(d=>d[1]),startPoint=[Math.min(...xs),Math.min(...ys)],endPoint=[Math.max(...xs),Math.max(...ys)];return{startPoint,endPoint}}};exports.HandPipeline=HandPipeline}),require_anchors=__commonJS(exports=>{exports.anchors=[{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375}]}),require_handpose=__commonJS(exports=>{var handdetector=__toModule(require_handdetector()),handpipeline=__toModule(require_handpipeline()),anchors=__toModule(require_anchors());var MESH_ANNOTATIONS={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},HandPose=class{constructor(handPipeline){this.handPipeline=handPipeline}static getAnnotations(){return MESH_ANNOTATIONS}async estimateHands(input2,config){let predictions=await this.handPipeline.estimateHands(input2,config);if(!predictions)return[];let hands=[];for(let prediction of predictions){let annotations={};if(prediction.landmarks)for(let key of Object.keys(MESH_ANNOTATIONS))annotations[key]=MESH_ANNOTATIONS[key].map(index=>prediction.landmarks[index]);let box=prediction.box?[Math.max(0,prediction.box.topLeft[0]),Math.max(0,prediction.box.topLeft[1]),Math.min(input2.shape[2],prediction.box.bottomRight[0])-prediction.box.topLeft[0],Math.min(input2.shape[1],prediction.box.bottomRight[1])-prediction.box.topLeft[1]]:0;hands.push({confidence:prediction.confidence,box,landmarks:prediction.landmarks,annotations})}return hands}};exports.HandPose=HandPose;async function load2(config){let[handDetectorModel,handPoseModel]=await Promise.all([config.hand.enabled?loadGraphModel(config.hand.detector.modelPath,{fromTFHub:config.hand.detector.modelPath.includes("tfhub.dev")}):null,config.hand.landmarks?loadGraphModel(config.hand.skeleton.modelPath,{fromTFHub:config.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),handDetector=new handdetector.HandDetector(handDetectorModel,config.hand.inputSize,anchors.anchors),handPipeline=new handpipeline.HandPipeline(handDetector,handPoseModel,config.hand.inputSize),handPose=new HandPose(handPipeline);return config.hand.enabled&&log(`load model: ${config.hand.detector.modelPath.match(/\/(.*)\./)[1]}`),config.hand.landmarks&&log(`load model: ${config.hand.skeleton.modelPath.match(/\/(.*)\./)[1]}`),handPose}exports.load=load2}),require_gesture=__commonJS(exports=>{exports.body=res=>{if(!res)return[];let gestures=[];for(let i=0;ia.part==="leftWrist"),rightWrist=res[i].keypoints.find(a=>a.part==="rightWrist"),nose=res[i].keypoints.find(a=>a.part==="nose");nose&&leftWrist&&rightWrist&&leftWrist.position.ya.part==="leftShoulder"),rightShoulder=res[i].keypoints.find(a=>a.part==="rightShoulder");leftShoulder&&rightShoulder&&gestures.push({body:i,gesture:`leaning ${leftShoulder.position.y>rightShoulder.position.y?"left":"right"}`})}return gestures};exports.face=res=>{if(!res)return[];let gestures=[];for(let i=0;i0){let eyeFacing=res[i].mesh[35][2]-res[i].mesh[263][2];Math.abs(eyeFacing)<10?gestures.push({face:i,gesture:"facing camera"}):gestures.push({face:i,gesture:`facing ${eyeFacing<0?"right":"left"}`});let openLeft=Math.abs(res[i].mesh[374][1]-res[i].mesh[386][1])/Math.abs(res[i].mesh[443][1]-res[i].mesh[450][1]);openLeft<.2&&gestures.push({face:i,gesture:"blink left eye"});let openRight=Math.abs(res[i].mesh[145][1]-res[i].mesh[159][1])/Math.abs(res[i].mesh[223][1]-res[i].mesh[230][1]);openRight<.2&&gestures.push({face:i,gesture:"blink right eye"});let mouthOpen=Math.min(100,500*Math.abs(res[i].mesh[13][1]-res[i].mesh[14][1])/Math.abs(res[i].mesh[10][1]-res[i].mesh[152][1]));mouthOpen>10&&gestures.push({face:i,gesture:`mouth ${Math.trunc(mouthOpen)}% open`});let chinDepth=res[i].mesh[152][2];Math.abs(chinDepth)>10&&gestures.push({face:i,gesture:`head ${chinDepth<0?"up":"down"}`})}return gestures};exports.hand=res=>{if(!res)return[];let gestures=[];for(let i=0;i0){let closest=fingers.reduce((best,a)=>best.position[2]best.position[1]{var WebGLProgram=function(gl,vertexSource,fragmentSource){let _collect=function(source,prefix,collection){let r=new RegExp("\\b"+prefix+" \\w+ (\\w+)","ig");source.replace(r,(match,name)=>(collection[name]=0,match))},_compile=function(source,type){let shader=gl.createShader(type);if(gl.shaderSource(shader,source),gl.compileShader(shader),!gl.getShaderParameter(shader,gl.COMPILE_STATUS))throw new Error("Filter: GL compile failed",gl.getShaderInfoLog(shader));return shader};this.uniform={},this.attribute={};let _vsh=_compile(vertexSource,gl.VERTEX_SHADER),_fsh=_compile(fragmentSource,gl.FRAGMENT_SHADER);if(this.id=gl.createProgram(),gl.attachShader(this.id,_vsh),gl.attachShader(this.id,_fsh),gl.linkProgram(this.id),!gl.getProgramParameter(this.id,gl.LINK_STATUS))throw new Error("Filter: GL link failed",gl.getProgramInfoLog(this.id));gl.useProgram(this.id),_collect(vertexSource,"attribute",this.attribute);for(let a in this.attribute)this.attribute[a]=gl.getAttribLocation(this.id,a);_collect(vertexSource,"uniform",this.uniform),_collect(fragmentSource,"uniform",this.uniform);for(let u in this.uniform)this.uniform[u]=gl.getUniformLocation(this.id,u)},WebGLImageFilter=function(params){params||(params={});let _drawCount=0,_sourceTexture=null,_lastInChain=!1,_currentFramebufferIndex=-1,_tempFramebuffers=[null,null],_filterChain=[],_width=-1,_height=-1,_vertexBuffer=null,_currentProgram=null,_canvas=params.canvas||document.createElement("canvas"),_shaderProgramCache={},gl=_canvas.getContext("webgl");if(!gl)throw new Error("Filter: getContext() failed");this.addFilter=function(name){let args=Array.prototype.slice.call(arguments,1),filter=_filter[name];_filterChain.push({func:filter,args})},this.reset=function(){_filterChain=[]},this.apply=function(image3){if(_resize(image3.width,image3.height),_drawCount=0,_sourceTexture||(_sourceTexture=gl.createTexture()),gl.bindTexture(gl.TEXTURE_2D,_sourceTexture),gl.texParameteri(gl.TEXTURE_2D,gl.TEXTURE_WRAP_S,gl.CLAMP_TO_EDGE),gl.texParameteri(gl.TEXTURE_2D,gl.TEXTURE_WRAP_T,gl.CLAMP_TO_EDGE),gl.texParameteri(gl.TEXTURE_2D,gl.TEXTURE_MIN_FILTER,gl.NEAREST),gl.texParameteri(gl.TEXTURE_2D,gl.TEXTURE_MAG_FILTER,gl.NEAREST),gl.texImage2D(gl.TEXTURE_2D,0,gl.RGBA,gl.RGBA,gl.UNSIGNED_BYTE,image3),_filterChain.length===0)return _draw(),_canvas;for(let i=0;i<_filterChain.length;i++){_lastInChain=i===_filterChain.length-1;let f=_filterChain[i];f.func.apply(this,f.args||[])}return _canvas};let _resize=function(width,height){if(width===_width&&height===_height)return;if(_canvas.width=width,_width=width,_canvas.height=height,_height=height,!_vertexBuffer){let vertices=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);_vertexBuffer=gl.createBuffer(),gl.bindBuffer(gl.ARRAY_BUFFER,_vertexBuffer),gl.bufferData(gl.ARRAY_BUFFER,vertices,gl.STATIC_DRAW),gl.pixelStorei(gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}gl.viewport(0,0,_width,_height),_tempFramebuffers=[null,null]},_getTempFramebuffer=function(index){return _tempFramebuffers[index]=_tempFramebuffers[index]||_createFramebufferTexture(_width,_height),_tempFramebuffers[index]},_createFramebufferTexture=function(width,height){let fbo=gl.createFramebuffer();gl.bindFramebuffer(gl.FRAMEBUFFER,fbo);let renderbuffer=gl.createRenderbuffer();gl.bindRenderbuffer(gl.RENDERBUFFER,renderbuffer);let texture=gl.createTexture();return gl.bindTexture(gl.TEXTURE_2D,texture),gl.texImage2D(gl.TEXTURE_2D,0,gl.RGBA,width,height,0,gl.RGBA,gl.UNSIGNED_BYTE,null),gl.texParameteri(gl.TEXTURE_2D,gl.TEXTURE_MAG_FILTER,gl.LINEAR),gl.texParameteri(gl.TEXTURE_2D,gl.TEXTURE_MIN_FILTER,gl.LINEAR),gl.texParameteri(gl.TEXTURE_2D,gl.TEXTURE_WRAP_S,gl.CLAMP_TO_EDGE),gl.texParameteri(gl.TEXTURE_2D,gl.TEXTURE_WRAP_T,gl.CLAMP_TO_EDGE),gl.framebufferTexture2D(gl.FRAMEBUFFER,gl.COLOR_ATTACHMENT0,gl.TEXTURE_2D,texture,0),gl.bindTexture(gl.TEXTURE_2D,null),gl.bindFramebuffer(gl.FRAMEBUFFER,null),{fbo,texture}},_draw=function(flags){let source=null,target=null,flipY=!1;_drawCount===0?source=_sourceTexture:source=_getTempFramebuffer(_currentFramebufferIndex).texture,_drawCount++,_lastInChain&&!(flags&DRAW.INTERMEDIATE)?(target=null,flipY=_drawCount%2===0):(_currentFramebufferIndex=(_currentFramebufferIndex+1)%2,target=_getTempFramebuffer(_currentFramebufferIndex).fbo),gl.bindTexture(gl.TEXTURE_2D,source),gl.bindFramebuffer(gl.FRAMEBUFFER,target),gl.uniform1f(_currentProgram.uniform.flipY,flipY?-1:1),gl.drawArrays(gl.TRIANGLES,0,6)},_compileShader=function(fragmentSource){if(_shaderProgramCache[fragmentSource])return _currentProgram=_shaderProgramCache[fragmentSource],gl.useProgram(_currentProgram.id),_currentProgram;_currentProgram=new WebGLProgram(gl,SHADER.VERTEX_IDENTITY,fragmentSource);let floatSize=Float32Array.BYTES_PER_ELEMENT,vertSize=4*floatSize;return gl.enableVertexAttribArray(_currentProgram.attribute.pos),gl.vertexAttribPointer(_currentProgram.attribute.pos,2,gl.FLOAT,!1,vertSize,0*floatSize),gl.enableVertexAttribArray(_currentProgram.attribute.uv),gl.vertexAttribPointer(_currentProgram.attribute.uv,2,gl.FLOAT,!1,vertSize,2*floatSize),_shaderProgramCache[fragmentSource]=_currentProgram,_currentProgram},DRAW={INTERMEDIATE:1},SHADER={};SHADER.VERTEX_IDENTITY=["precision highp float;","attribute vec2 pos;","attribute vec2 uv;","varying vec2 vUv;","uniform float flipY;","void main(void) {","vUv = uv;","gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);","}"].join(` `),SHADER.FRAGMENT_IDENTITY=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","void main(void) {","gl_FragColor = texture2D(texture, vUv);","}"].join(` `);let _filter={};_filter.colorMatrix=function(matrix){let m=new Float32Array(matrix);m[4]/=255,m[9]/=255,m[14]/=255,m[19]/=255;let shader=m[18]===1&&m[3]===0&&m[8]===0&&m[13]===0&&m[15]===0&&m[16]===0&&m[17]===0&&m[19]===0?_filter.colorMatrix.SHADER.WITHOUT_ALPHA:_filter.colorMatrix.SHADER.WITH_ALPHA,program=_compileShader(shader);gl.uniform1fv(program.uniform.m,m),_draw()},_filter.colorMatrix.SHADER={},_filter.colorMatrix.SHADER.WITH_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];","gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];","}"].join(` `),_filter.colorMatrix.SHADER.WITHOUT_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];","gl_FragColor.a = c.a;","}"].join(` `),_filter.brightness=function(brightness){let b=(brightness||0)+1;_filter.colorMatrix([b,0,0,0,0,0,b,0,0,0,0,0,b,0,0,0,0,0,1,0])},_filter.saturation=function(amount){let x=(amount||0)*2/3+1,y=(x-1)*-.5;_filter.colorMatrix([x,y,y,0,0,y,x,y,0,0,y,y,x,0,0,0,0,0,1,0])},_filter.desaturate=function(){_filter.saturation(-1)},_filter.contrast=function(amount){let v=(amount||0)+1,o=-128*(v-1);_filter.colorMatrix([v,0,0,0,o,0,v,0,0,o,0,0,v,0,o,0,0,0,1,0])},_filter.negative=function(){_filter.contrast(-2)},_filter.hue=function(rotation){rotation=(rotation||0)/180*Math.PI;let cos2=Math.cos(rotation),sin2=Math.sin(rotation),lumR=.213,lumG=.715,lumB=.072;_filter.colorMatrix([lumR+cos2*(1-lumR)+sin2*-lumR,lumG+cos2*-lumG+sin2*-lumG,lumB+cos2*-lumB+sin2*(1-lumB),0,0,lumR+cos2*-lumR+sin2*.143,lumG+cos2*(1-lumG)+sin2*.14,lumB+cos2*-lumB+sin2*-.283,0,0,lumR+cos2*-lumR+sin2*-(1-lumR),lumG+cos2*-lumG+sin2*lumG,lumB+cos2*(1-lumB)+sin2*lumB,0,0,0,0,0,1,0])},_filter.desaturateLuminance=function(){_filter.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},_filter.sepia=function(){_filter.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},_filter.brownie=function(){_filter.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},_filter.vintagePinhole=function(){_filter.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},_filter.kodachrome=function(){_filter.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},_filter.technicolor=function(){_filter.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},_filter.polaroid=function(){_filter.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},_filter.shiftToBGR=function(){_filter.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},_filter.convolution=function(matrix){let m=new Float32Array(matrix),pixelSizeX=1/_width,pixelSizeY=1/_height,program=_compileShader(_filter.convolution.SHADER);gl.uniform1fv(program.uniform.m,m),gl.uniform2f(program.uniform.px,pixelSizeX,pixelSizeY),_draw()},_filter.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(` `),_filter.detectEdges=function(){_filter.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},_filter.sobelX=function(){_filter.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},_filter.sobelY=function(){_filter.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},_filter.sharpen=function(amount){let a=amount||1;_filter.convolution.call(this,[0,-1*a,0,-1*a,1+4*a,-1*a,0,-1*a,0])},_filter.emboss=function(size){let s=size||1;_filter.convolution.call(this,[-2*s,-1*s,0,-1*s,1,1*s,0,1*s,2*s])},_filter.blur=function(size){let blurSizeX=size/7/_width,blurSizeY=size/7/_height,program=_compileShader(_filter.blur.SHADER);gl.uniform2f(program.uniform.px,0,blurSizeY),_draw(DRAW.INTERMEDIATE),gl.uniform2f(program.uniform.px,blurSizeX,0),_draw()},_filter.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(` `),_filter.pixelate=function(size){let blurSizeX=size/_width,blurSizeY=size/_height,program=_compileShader(_filter.pixelate.SHADER);gl.uniform2f(program.uniform.size,blurSizeX,blurSizeY),_draw()},_filter.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(` `)};exports.Canvas=WebGLImageFilter}),require_image=__commonJS(exports=>{var fxImage=__toModule(require_imagefx()),inCanvas=null,outCanvas=null;function process3(input2,config){let tensor;if(input2 instanceof Tensor)tensor=clone(input2);else{let originalWidth=input2.naturalWidth||input2.videoWidth||input2.width||input2.shape&&input2.shape[1]>0,originalHeight=input2.naturalHeight||input2.videoHeight||input2.height||input2.shape&&input2.shape[2]>0,targetWidth=originalWidth,targetHeight=originalHeight;if(config.filter.width>0?targetWidth=config.filter.width:config.filter.height>0&&(targetWidth=originalWidth*(config.filter.height/originalHeight)),config.filter.height>0?targetHeight=config.filter.height:config.filter.width>0&&(targetHeight=originalHeight*(config.filter.width/originalWidth)),!targetWidth||!targetHeight)return log("Human: invalid input",input2),null;(!inCanvas||inCanvas.width!==targetWidth||inCanvas.height!==targetHeight)&&(inCanvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(targetWidth,targetHeight):document.createElement("canvas"),inCanvas.width!==targetWidth&&(inCanvas.width=targetWidth),inCanvas.height!==targetHeight&&(inCanvas.height=targetHeight));let ctx=inCanvas.getContext("2d");if(input2 instanceof ImageData?ctx.putImageData(input2,0,0):ctx.drawImage(input2,0,0,originalWidth,originalHeight,0,0,inCanvas.width,inCanvas.height),config.filter.enabled){(!this.fx||!outCanvas||inCanvas.width!==outCanvas.width||inCanvas.height!==outCanvas.height)&&(outCanvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(inCanvas.width,inCanvas.height):document.createElement("canvas"),outCanvas.width!==inCanvas.width&&(outCanvas.width=inCanvas.width),outCanvas.height!==inCanvas.height&&(outCanvas.height=inCanvas.height),this.fx=ENV.flags.IS_BROWSER?new fxImage.Canvas({canvas:outCanvas}):null),this.fx.reset(),this.fx.addFilter("brightness",config.filter.brightness),config.filter.contrast!==0&&this.fx.addFilter("contrast",config.filter.contrast),config.filter.sharpness!==0&&this.fx.addFilter("sharpen",config.filter.sharpness),config.filter.blur!==0&&this.fx.addFilter("blur",config.filter.blur),config.filter.saturation!==0&&this.fx.addFilter("saturation",config.filter.saturation),config.filter.hue!==0&&this.fx.addFilter("hue",config.filter.hue),config.filter.negative&&this.fx.addFilter("negative"),config.filter.sepia&&this.fx.addFilter("sepia"),config.filter.vintage&&this.fx.addFilter("brownie"),config.filter.sepia&&this.fx.addFilter("sepia"),config.filter.kodachrome&&this.fx.addFilter("kodachrome"),config.filter.technicolor&&this.fx.addFilter("technicolor"),config.filter.polaroid&&this.fx.addFilter("polaroid"),config.filter.pixelate!==0&&this.fx.addFilter("pixelate",config.filter.pixelate),this.fx.apply(inCanvas);let gl=!1;if(gl){let glBuffer=new Uint8Array(outCanvas.width*outCanvas.height*4),pixBuffer=new Uint8Array(outCanvas.width*outCanvas.height*3);gl.readPixels(0,0,outCanvas.width,outCanvas.height,gl.RGBA,gl.UNSIGNED_BYTE,glBuffer);let i=0;for(let y=outCanvas.height-1;y>=0;y--)for(let x=0;xAbs,Acos:()=>Acos,Acosh:()=>Acosh,AdadeltaOptimizer:()=>AdadeltaOptimizer,AdagradOptimizer:()=>AdagradOptimizer,AdamOptimizer:()=>AdamOptimizer,AdamaxOptimizer:()=>AdamaxOptimizer,Add:()=>Add,AddN:()=>AddN,All:()=>All,Any:()=>Any,ArgMax:()=>ArgMax,ArgMin:()=>ArgMin,Asin:()=>Asin,Asinh:()=>Asinh,Atan:()=>Atan,Atan2:()=>Atan2,Atanh:()=>Atanh,AvgPool:()=>AvgPool,AvgPool3D:()=>AvgPool3D,AvgPool3DBackprop:()=>AvgPool3DBackprop,AvgPoolBackprop:()=>AvgPoolBackprop,BackendWasm:()=>BackendWasm,BatchMatMul:()=>BatchMatMul,BatchToSpaceND:()=>BatchToSpaceND,BroadcastTo:()=>BroadcastTo,Callback:()=>Callback,CallbackList:()=>CallbackList,Cast:()=>Cast,Ceil:()=>Ceil,ClipByValue:()=>ClipByValue,Complex:()=>Complex,Concat:()=>Concat,Conv2D:()=>Conv2D,Conv2DBackpropFilter:()=>Conv2DBackpropFilter,Conv2DBackpropInput:()=>Conv2DBackpropInput,Conv3D:()=>Conv3D,Conv3DBackpropFilterV2:()=>Conv3DBackpropFilterV2,Conv3DBackpropInputV2:()=>Conv3DBackpropInputV2,Cos:()=>Cos,Cosh:()=>Cosh,CropAndResize:()=>CropAndResize,Cumsum:()=>Cumsum,CustomCallback:()=>CustomCallback,DataStorage:()=>DataStorage,DepthToSpace:()=>DepthToSpace,DepthwiseConv2dNative:()=>DepthwiseConv2dNative,DepthwiseConv2dNativeBackpropFilter:()=>DepthwiseConv2dNativeBackpropFilter,DepthwiseConv2dNativeBackpropInput:()=>DepthwiseConv2dNativeBackpropInput,Diag:()=>Diag,Dilation2D:()=>Dilation2D,Dilation2DBackpropFilter:()=>Dilation2DBackpropFilter,Dilation2DBackpropInput:()=>Dilation2DBackpropInput,Div:()=>Div,ENV:()=>ENV,EarlyStopping:()=>EarlyStopping,Elu:()=>Elu,EluGrad:()=>EluGrad,Environment:()=>Environment,Equal:()=>Equal,Erf:()=>Erf,Exp:()=>Exp,Expm1:()=>Expm1,FFT:()=>FFT,Fill:()=>Fill,FlipLeftRight:()=>FlipLeftRight,Floor:()=>Floor,FloorDiv:()=>FloorDiv,FromPixels:()=>FromPixels,FusedBatchNorm:()=>FusedBatchNorm,FusedConv2D:()=>FusedConv2D,FusedDepthwiseConv2D:()=>FusedDepthwiseConv2D,GatherNd:()=>GatherNd,GatherV2:()=>GatherV2,GraphModel:()=>GraphModel,Greater:()=>Greater,GreaterEqual:()=>GreaterEqual,History:()=>History,IFFT:()=>IFFT,Identity:()=>Identity,Imag:()=>Imag,InputSpec:()=>InputSpec,IsFinite:()=>IsFinite,IsInf:()=>IsInf,IsNan:()=>IsNan,KernelBackend:()=>KernelBackend,LRN:()=>LRN,LRNBackprop:()=>LRNBackprop,LayerVariable:()=>LayerVariable,LayersModel:()=>LayersModel,Less:()=>Less,LessEqual:()=>LessEqual,LinSpace:()=>LinSpace,Log:()=>Log,Log1p:()=>Log1p,LogSoftmax:()=>LogSoftmax,LogicalAnd:()=>LogicalAnd,LogicalNot:()=>LogicalNot,LogicalOr:()=>LogicalOr,Max:()=>Max,MaxPool:()=>MaxPool,MaxPool3D:()=>MaxPool3D,MaxPool3DBackprop:()=>MaxPool3DBackprop,MaxPoolBackprop:()=>MaxPoolBackprop,MaxPoolWithArgmax:()=>MaxPoolWithArgmax,Maximum:()=>Maximum,Mean:()=>Mean,Min:()=>Min,Minimum:()=>Minimum,MirrorPad:()=>MirrorPad,Mod:()=>Mod,MomentumOptimizer:()=>MomentumOptimizer,Multiply:()=>Multiply,Negate:()=>Negate,NonMaxSuppressionV3:()=>NonMaxSuppressionV3,NonMaxSuppressionV4:()=>NonMaxSuppressionV4,NonMaxSuppressionV5:()=>NonMaxSuppressionV5,NotEqual:()=>NotEqual,OP_SCOPE_SUFFIX:()=>OP_SCOPE_SUFFIX,OneHot:()=>OneHot,OnesLike:()=>OnesLike,Optimizer:()=>Optimizer,PadV2:()=>PadV2,Pool:()=>Pool,Pow:()=>Pow,Prelu:()=>Prelu,Prod:()=>Prod,RMSPropOptimizer:()=>RMSPropOptimizer,RNN:()=>RNN,Range:()=>Range,Rank:()=>Rank,Real:()=>Real,Reciprocal:()=>Reciprocal,Reduction:()=>Reduction,Relu:()=>Relu,Relu6:()=>Relu6,Reshape:()=>Reshape,ResizeBilinear:()=>ResizeBilinear,ResizeBilinearGrad:()=>ResizeBilinearGrad,ResizeNearestNeighbor:()=>ResizeNearestNeighbor,ResizeNearestNeighborGrad:()=>ResizeNearestNeighborGrad,Reverse:()=>Reverse,RotateWithOffset:()=>RotateWithOffset,Round:()=>Round,Rsqrt:()=>Rsqrt,SGDOptimizer:()=>SGDOptimizer,ScatterNd:()=>ScatterNd,SelectV2:()=>SelectV2,Selu:()=>Selu,Sequential:()=>Sequential,Sigmoid:()=>Sigmoid,Sign:()=>Sign,Sin:()=>Sin,Sinh:()=>Sinh,Slice:()=>Slice,Softmax:()=>Softmax,Softplus:()=>Softplus,SpaceToBatchND:()=>SpaceToBatchND,SparseToDense:()=>SparseToDense,SplitV:()=>SplitV,Sqrt:()=>Sqrt,Square:()=>Square,SquaredDifference:()=>SquaredDifference,Step:()=>Step,StridedSlice:()=>StridedSlice,Sub:()=>Sub,Sum:()=>Sum,SymbolicTensor:()=>SymbolicTensor,Tan:()=>Tan,Tanh:()=>Tanh,Tensor:()=>Tensor,TensorBuffer:()=>TensorBuffer,Tile:()=>Tile,TopK:()=>TopK,Transpose:()=>Transpose,Unique:()=>Unique,Unpack:()=>Unpack,UnsortedSegmentSum:()=>UnsortedSegmentSum,Variable:()=>Variable,ZerosLike:()=>ZerosLike,_FusedMatMul:()=>_FusedMatMul,abs:()=>abs,acos:()=>acos,acosh:()=>acosh,add:()=>add2,addN:()=>addN,addStrict:()=>addStrict,all:()=>all,any:()=>any,argMax:()=>argMax,argMin:()=>argMin,asin:()=>asin,asinh:()=>asinh,atan:()=>atan,atan2:()=>atan2,atanh:()=>atanh,avgPool:()=>avgPool,avgPool3d:()=>avgPool3d,backend:()=>backend2,backend_util:()=>backend_util_exports,basicLSTMCell:()=>basicLSTMCell,batchNorm:()=>batchNorm,batchNorm2d:()=>batchNorm2d,batchNorm3d:()=>batchNorm3d,batchNorm4d:()=>batchNorm4d,batchToSpaceND:()=>batchToSpaceND,booleanMaskAsync:()=>booleanMaskAsync,broadcastTo:()=>broadcastTo,browser:()=>browser_exports,buffer:()=>buffer,callbacks:()=>callbacks,cast:()=>cast,ceil:()=>ceil,clipByValue:()=>clipByValue,clone:()=>clone,complex:()=>complex,concat:()=>concat,concat1d:()=>concat1d,concat2d:()=>concat2d,concat3d:()=>concat3d,concat4d:()=>concat4d,constraints:()=>exports_constraints_exports,conv1d:()=>conv1d,conv2d:()=>conv2d,conv2dTranspose:()=>conv2dTranspose,conv3d:()=>conv3d,conv3dTranspose:()=>conv3dTranspose,copyRegisteredKernels:()=>copyRegisteredKernels,cos:()=>cos,cosh:()=>cosh,cosineWindow:()=>cosineWindow,cumsum:()=>cumsum,customGrad:()=>customGrad,data:()=>dist_exports,deprecationWarn:()=>deprecationWarn,depthToSpace:()=>depthToSpace,depthwiseConv2d:()=>depthwiseConv2d,deregisterOp:()=>deregisterOp,device_util:()=>device_util_exports,diag:()=>diag,dilation2d:()=>dilation2d,disableDeprecationWarnings:()=>disableDeprecationWarnings,dispose:()=>dispose,disposeVariables:()=>disposeVariables,div:()=>div,divNoNan:()=>divNoNan,divStrict:()=>divStrict,dot:()=>dot,dropout:()=>dropout,elu:()=>elu,enableDebugMode:()=>enableDebugMode,enableProdMode:()=>enableProdMode,enclosingPowerOfTwo:()=>enclosingPowerOfTwo,engine:()=>engine15,env:()=>env,equal:()=>equal,equalStrict:()=>equalStrict,erf:()=>erf,exp:()=>exp,expandDims:()=>expandDims,expm1:()=>expm1,eye:()=>eye,fft:()=>fft,fill:()=>fill,findBackend:()=>findBackend,findBackendFactory:()=>findBackendFactory,floor:()=>floor,floorDiv:()=>floorDiv,fused:()=>fused_ops_exports,gather:()=>gather,gatherND:()=>gatherND,gather_util:()=>gather_nd_util_exports,getBackend:()=>getBackend,getGradient:()=>getGradient,getKernel:()=>getKernel,getKernelsForBackend:()=>getKernelsForBackend,grad:()=>grad,grads:()=>grads,greater:()=>greater,greaterEqual:()=>greaterEqual,greaterEqualStrict:()=>greaterEqualStrict,greaterStrict:()=>greaterStrict,ifft:()=>ifft,imag:()=>imag,image:()=>image,inTopKAsync:()=>inTopKAsync,initializers:()=>exports_initializers_exports,input:()=>input,io:()=>io_exports,irfft:()=>irfft,isFinite:()=>isFinite2,isInf:()=>isInf,isNaN:()=>isNaN2,keep:()=>keep,kernel_impls:()=>kernel_impls_exports,layers:()=>exports_layers_exports,leakyRelu:()=>leakyRelu,less:()=>less,lessEqual:()=>lessEqual,lessEqualStrict:()=>lessEqualStrict,lessStrict:()=>lessStrict,linalg:()=>linalg,linspace:()=>linspace,loadGraphModel:()=>loadGraphModel,loadLayersModel:()=>loadLayersModel,localResponseNormalization:()=>localResponseNormalization,log:()=>log2,log1p:()=>log1p,logSigmoid:()=>logSigmoid,logSoftmax:()=>logSoftmax,logSumExp:()=>logSumExp,logicalAnd:()=>logicalAnd,logicalNot:()=>logicalNot,logicalOr:()=>logicalOr,logicalXor:()=>logicalXor,losses:()=>losses,matMul:()=>matMul,math:()=>math_exports,max:()=>max,maxPool:()=>maxPool,maxPool3d:()=>maxPool3d,maxPoolWithArgmax:()=>maxPoolWithArgmax,maximum:()=>maximum,maximumStrict:()=>maximumStrict,mean:()=>mean,memory:()=>memory,metrics:()=>exports_metrics_exports,min:()=>min,minimum:()=>minimum,minimumStrict:()=>minimumStrict,mirrorPad:()=>mirrorPad,mod:()=>mod,modStrict:()=>modStrict,model:()=>model,models:()=>exports_models_exports,moments:()=>moments,movingAverage:()=>movingAverage,mul:()=>mul,mulStrict:()=>mulStrict,multiRNNCell:()=>multiRNNCell,multinomial:()=>multinomial,neg:()=>neg,nextFrame:()=>nextFrame,norm:()=>norm,notEqual:()=>notEqual,notEqualStrict:()=>notEqualStrict,oneHot:()=>oneHot,ones:()=>ones2,onesLike:()=>onesLike,op:()=>op,outerProduct:()=>outerProduct,pad:()=>pad,pad1d:()=>pad1d,pad2d:()=>pad2d,pad3d:()=>pad3d,pad4d:()=>pad4d,pool:()=>pool,pow:()=>pow,powStrict:()=>powStrict,prelu:()=>prelu,print:()=>print2,prod:()=>prod,profile:()=>profile,rand:()=>rand,randomGamma:()=>randomGamma,randomNormal:()=>randomNormal,randomUniform:()=>randomUniform,range:()=>range,ready:()=>ready,real:()=>real,reciprocal:()=>reciprocal,registerBackend:()=>registerBackend,registerCallbackConstructor:()=>registerCallbackConstructor,registerGradient:()=>registerGradient,registerKernel:()=>registerKernel,registerOp:()=>registerOp,regularizers:()=>exports_regularizers_exports,relu:()=>relu,relu6:()=>relu6,removeBackend:()=>removeBackend,reshape:()=>reshape,reverse:()=>reverse,reverse1d:()=>reverse1d,reverse2d:()=>reverse2d,reverse3d:()=>reverse3d,reverse4d:()=>reverse4d,rfft:()=>rfft,round:()=>round,rsqrt:()=>rsqrt,scalar:()=>scalar,scatterND:()=>scatterND,scatter_util:()=>scatter_nd_util_exports,selu:()=>selu,separableConv2d:()=>separableConv2d,sequential:()=>sequential,serialization:()=>serialization_exports,setBackend:()=>setBackend,setPlatform:()=>setPlatform,setWasmPath:()=>setWasmPath,setWasmPaths:()=>setWasmPaths,setdiff1dAsync:()=>setdiff1dAsync,sigmoid:()=>sigmoid,sign:()=>sign,signal:()=>signal,sin:()=>sin,sinh:()=>sinh,slice:()=>slice,slice1d:()=>slice1d,slice2d:()=>slice2d,slice3d:()=>slice3d,slice4d:()=>slice4d,slice_util:()=>slice_util_exports,softmax:()=>softmax,softplus:()=>softplus,spaceToBatchND:()=>spaceToBatchND,sparseToDense:()=>sparseToDense,spectral:()=>spectral,split:()=>split,sqrt:()=>sqrt,square:()=>square,squaredDifference:()=>squaredDifference,squaredDifferenceStrict:()=>squaredDifferenceStrict,squeeze:()=>squeeze,stack:()=>stack,step:()=>step,stridedSlice:()=>stridedSlice,sub:()=>sub,subStrict:()=>subStrict,sum:()=>sum2,sumOutType:()=>sumOutType,tan:()=>tan,tanh:()=>tanh2,tensor:()=>tensor4,tensor1d:()=>tensor1d,tensor2d:()=>tensor2d,tensor3d:()=>tensor3d,tensor4d:()=>tensor4d,tensor5d:()=>tensor5d,tensor6d:()=>tensor6d,tensor_util:()=>tensor_util_exports,test_util:()=>test_util_exports,tidy:()=>tidy,tile:()=>tile,time:()=>time,topk:()=>topk,train:()=>train,transpose:()=>transpose,truncatedNormal:()=>truncatedNormal,unique:()=>unique,unregisterGradient:()=>unregisterGradient,unregisterKernel:()=>unregisterKernel,unsortedSegmentSum:()=>unsortedSegmentSum,unstack:()=>unstack,upcastType:()=>upcastType,util:()=>util_exports,valueAndGrad:()=>valueAndGrad,valueAndGrads:()=>valueAndGrads,variable:()=>variable,variableGrads:()=>variableGrads,version:()=>version16,version_converter:()=>version6,version_core:()=>version,version_layers:()=>version2,version_wasm:()=>version17,where:()=>where,whereAsync:()=>whereAsync,zeros:()=>zeros,zerosLike:()=>zerosLike});var __create2=Object.create,__defProp2=Object.defineProperty,__getProtoOf2=Object.getPrototypeOf,__hasOwnProp2=Object.prototype.hasOwnProperty,__getOwnPropNames2=Object.getOwnPropertyNames,__getOwnPropDesc2=Object.getOwnPropertyDescriptor,__markAsModule2=target=>__defProp2(target,"__esModule",{value:!0}),__commonJS2=(callback,module)=>()=>(module||(module={exports:{}},callback(module.exports,module)),module.exports),__export2=(target,all5)=>{__markAsModule2(target);for(var name in all5)__defProp2(target,name,{get:all5[name],enumerable:!0})},__exportStar2=(target,module,desc)=>{if(__markAsModule2(target),module&&typeof module=="object"||typeof module=="function")for(let key of __getOwnPropNames2(module))!__hasOwnProp2.call(target,key)&&key!=="default"&&__defProp2(target,key,{get:()=>module[key],enumerable:!(desc=__getOwnPropDesc2(module,key))||desc.enumerable});return target},__toModule2=module=>module&&module.__esModule?module:__exportStar2(__defProp2(module!=null?__create2(__getProtoOf2(module)):{},"default",{value:module,enumerable:!0}),module),require_browser=__commonJS2(()=>{}),require_alea=__commonJS2((exports3,module)=>{(function(global2,module2,define2){function Alea(seed){var me=this,mash=Mash();me.next=function(){var t=2091639*me.s0+me.c*23283064365386963e-26;return me.s0=me.s1,me.s1=me.s2,me.s2=t-(me.c=t|0)},me.c=1,me.s0=mash(" "),me.s1=mash(" "),me.s2=mash(" "),me.s0-=mash(seed),me.s0<0&&(me.s0+=1),me.s1-=mash(seed),me.s1<0&&(me.s1+=1),me.s2-=mash(seed),me.s2<0&&(me.s2+=1),mash=null}function copy(f,t){return t.c=f.c,t.s0=f.s0,t.s1=f.s1,t.s2=f.s2,t}function impl(seed,opts){var xg=new Alea(seed),state6=opts&&opts.state,prng=xg.next;return prng.int32=function(){return xg.next()*4294967296|0},prng.double=function(){return prng()+(prng()*2097152|0)*11102230246251565e-32},prng.quick=prng,state6&&(typeof state6=="object"&©(state6,xg),prng.state=function(){return copy(xg,{})}),prng}function Mash(){var n=4022871197,mash=function(data2){data2=data2.toString();for(var i=0;i>>0,h-=n,h*=n,n=h>>>0,h-=n,n+=h*4294967296}return(n>>>0)*23283064365386963e-26};return mash}module2&&module2.exports?module2.exports=impl:define2&&define2.amd?define2(function(){return impl}):this.alea=impl})(exports3,typeof module=="object"&&module,typeof define=="function"&&define)}),require_xor128=__commonJS2((exports3,module)=>{(function(global2,module2,define2){function XorGen(seed){var me=this,strseed="";me.x=0,me.y=0,me.z=0,me.w=0,me.next=function(){var t=me.x^me.x<<11;return me.x=me.y,me.y=me.z,me.z=me.w,me.w^=me.w>>>19^t^t>>>8},seed===(seed|0)?me.x=seed:strseed+=seed;for(var k=0;k>>0)/4294967296};return prng.double=function(){do var top=xg.next()>>>11,bot=(xg.next()>>>0)/4294967296,result=(top+bot)/(1<<21);while(result===0);return result},prng.int32=xg.next,prng.quick=prng,state6&&(typeof state6=="object"&©(state6,xg),prng.state=function(){return copy(xg,{})}),prng}module2&&module2.exports?module2.exports=impl:define2&&define2.amd?define2(function(){return impl}):this.xor128=impl})(exports3,typeof module=="object"&&module,typeof define=="function"&&define)}),require_xorwow=__commonJS2((exports3,module)=>{(function(global2,module2,define2){function XorGen(seed){var me=this,strseed="";me.next=function(){var t=me.x^me.x>>>2;return me.x=me.y,me.y=me.z,me.z=me.w,me.w=me.v,(me.d=me.d+362437|0)+(me.v=me.v^me.v<<4^(t^t<<1))|0},me.x=0,me.y=0,me.z=0,me.w=0,me.v=0,seed===(seed|0)?me.x=seed:strseed+=seed;for(var k=0;k>>4),me.next()}function copy(f,t){return t.x=f.x,t.y=f.y,t.z=f.z,t.w=f.w,t.v=f.v,t.d=f.d,t}function impl(seed,opts){var xg=new XorGen(seed),state6=opts&&opts.state,prng=function(){return(xg.next()>>>0)/4294967296};return prng.double=function(){do var top=xg.next()>>>11,bot=(xg.next()>>>0)/4294967296,result=(top+bot)/(1<<21);while(result===0);return result},prng.int32=xg.next,prng.quick=prng,state6&&(typeof state6=="object"&©(state6,xg),prng.state=function(){return copy(xg,{})}),prng}module2&&module2.exports?module2.exports=impl:define2&&define2.amd?define2(function(){return impl}):this.xorwow=impl})(exports3,typeof module=="object"&&module,typeof define=="function"&&define)}),require_xorshift7=__commonJS2((exports3,module)=>{(function(global2,module2,define2){function XorGen(seed){var me=this;me.next=function(){var X=me.x,i=me.i,t,v,w;return t=X[i],t^=t>>>7,v=t^t<<24,t=X[i+1&7],v^=t^t>>>10,t=X[i+3&7],v^=t^t>>>3,t=X[i+4&7],v^=t^t<<7,t=X[i+7&7],t=t^t<<13,v^=t^t<<9,X[i]=v,me.i=i+1&7,v};function init2(me2,seed2){var j,w,X=[];if(seed2===(seed2|0))w=X[0]=seed2;else for(seed2=""+seed2,j=0;j0;--j)me2.next()}init2(me,seed)}function copy(f,t){return t.x=f.x.slice(),t.i=f.i,t}function impl(seed,opts){seed==null&&(seed=+new Date);var xg=new XorGen(seed),state6=opts&&opts.state,prng=function(){return(xg.next()>>>0)/4294967296};return prng.double=function(){do var top=xg.next()>>>11,bot=(xg.next()>>>0)/4294967296,result=(top+bot)/(1<<21);while(result===0);return result},prng.int32=xg.next,prng.quick=prng,state6&&(state6.x&©(state6,xg),prng.state=function(){return copy(xg,{})}),prng}module2&&module2.exports?module2.exports=impl:define2&&define2.amd?define2(function(){return impl}):this.xorshift7=impl})(exports3,typeof module=="object"&&module,typeof define=="function"&&define)}),require_xor4096=__commonJS2((exports3,module)=>{(function(global2,module2,define2){function XorGen(seed){var me=this;me.next=function(){var w=me.w,X=me.X,i=me.i,t,v;return me.w=w=w+1640531527|0,v=X[i+34&127],t=X[i=i+1&127],v^=v<<13,t^=t<<17,v^=v>>>15,t^=t>>>12,v=X[i]=v^t,me.i=i,v+(w^w>>>16)|0};function init2(me2,seed2){var t,v,i,j,w,X=[],limit=128;for(seed2===(seed2|0)?(v=seed2,seed2=null):(seed2=seed2+"\0",v=0,limit=Math.max(limit,seed2.length)),i=0,j=-32;j>>15,v^=v<<4,v^=v>>>13,j>=0&&(w=w+1640531527|0,t=X[j&127]^=v+w,i=t==0?i+1:0);for(i>=128&&(X[(seed2&&seed2.length||0)&127]=-1),i=127,j=4*128;j>0;--j)v=X[i+34&127],t=X[i=i+1&127],v^=v<<13,t^=t<<17,v^=v>>>15,t^=t>>>12,X[i]=v^t;me2.w=w,me2.X=X,me2.i=i}init2(me,seed)}function copy(f,t){return t.i=f.i,t.w=f.w,t.X=f.X.slice(),t}function impl(seed,opts){seed==null&&(seed=+new Date);var xg=new XorGen(seed),state6=opts&&opts.state,prng=function(){return(xg.next()>>>0)/4294967296};return prng.double=function(){do var top=xg.next()>>>11,bot=(xg.next()>>>0)/4294967296,result=(top+bot)/(1<<21);while(result===0);return result},prng.int32=xg.next,prng.quick=prng,state6&&(state6.X&©(state6,xg),prng.state=function(){return copy(xg,{})}),prng}module2&&module2.exports?module2.exports=impl:define2&&define2.amd?define2(function(){return impl}):this.xor4096=impl})(exports3,typeof module=="object"&&module,typeof define=="function"&&define)}),require_tychei=__commonJS2((exports3,module)=>{(function(global2,module2,define2){function XorGen(seed){var me=this,strseed="";me.next=function(){var b=me.b,c=me.c,d=me.d,a=me.a;return b=b<<25^b>>>7^c,c=c-d|0,d=d<<24^d>>>8^a,a=a-b|0,me.b=b=b<<20^b>>>12^c,me.c=c=c-d|0,me.d=d<<16^c>>>16^a,me.a=a-b|0},me.a=0,me.b=0,me.c=2654435769|0,me.d=1367130551,seed===Math.floor(seed)?(me.a=seed/4294967296|0,me.b=seed|0):strseed+=seed;for(var k=0;k>>0)/4294967296};return prng.double=function(){do var top=xg.next()>>>11,bot=(xg.next()>>>0)/4294967296,result=(top+bot)/(1<<21);while(result===0);return result},prng.int32=xg.next,prng.quick=prng,state6&&(typeof state6=="object"&©(state6,xg),prng.state=function(){return copy(xg,{})}),prng}module2&&module2.exports?module2.exports=impl:define2&&define2.amd?define2(function(){return impl}):this.tychei=impl})(exports3,typeof module=="object"&&module,typeof define=="function"&&define)}),require_crypto=__commonJS2(()=>{}),require_seedrandom=__commonJS2((exports3,module)=>{(function(pool6,math){var global2=this,width=256,chunks=6,digits=52,rngname="random",startdenom=math.pow(width,chunks),significance=math.pow(2,digits),overflow=significance*2,mask=width-1,nodecrypto;function seedrandom5(seed,options,callback){var key=[];options=options==!0?{entropy:!0}:options||{};var shortseed=mixkey(flatten5(options.entropy?[seed,tostring(pool6)]:seed==null?autoseed():seed,3),key),arc4=new ARC4(key),prng=function(){for(var n=arc4.g(chunks),d=startdenom,x=0;n=overflow;)n/=2,d/=2,x>>>=1;return(n+x)/d};return prng.int32=function(){return arc4.g(4)|0},prng.quick=function(){return arc4.g(4)/4294967296},prng.double=prng,mixkey(tostring(arc4.S),pool6),(options.pass||callback||function(prng2,seed2,is_math_call,state6){return state6&&(state6.S&©(state6,arc4),prng2.state=function(){return copy(arc4,{})}),is_math_call?(math[rngname]=prng2,seed2):prng2})(prng,shortseed,"global"in options?options.global:this==math,options.state)}math["seed"+rngname]=seedrandom5;function ARC4(key){var t,keylen=key.length,me=this,i=0,j=me.i=me.j=0,s=me.S=[];for(keylen||(key=[keylen++]);i{var alea5=require_alea(),xor128=require_xor128(),xorwow=require_xorwow(),xorshift7=require_xorshift7(),xor4096=require_xor4096(),tychei=require_tychei(),sr=require_seedrandom();sr.alea=alea5,sr.xor128=xor128,sr.xorwow=xorwow,sr.xorshift7=xorshift7,sr.xor4096=xor4096,sr.tychei=tychei,module.exports=sr}),require_alea2=__commonJS2((exports3,module)=>{(function(global2,module2,define2){function Alea(seed){var me=this,mash=Mash();me.next=function(){var t=2091639*me.s0+me.c*23283064365386963e-26;return me.s0=me.s1,me.s1=me.s2,me.s2=t-(me.c=t|0)},me.c=1,me.s0=mash(" "),me.s1=mash(" "),me.s2=mash(" "),me.s0-=mash(seed),me.s0<0&&(me.s0+=1),me.s1-=mash(seed),me.s1<0&&(me.s1+=1),me.s2-=mash(seed),me.s2<0&&(me.s2+=1),mash=null}function copy(f,t){return t.c=f.c,t.s0=f.s0,t.s1=f.s1,t.s2=f.s2,t}function impl(seed,opts){var xg=new Alea(seed),state6=opts&&opts.state,prng=xg.next;return prng.int32=function(){return xg.next()*4294967296|0},prng.double=function(){return prng()+(prng()*2097152|0)*11102230246251565e-32},prng.quick=prng,state6&&(typeof state6=="object"&©(state6,xg),prng.state=function(){return copy(xg,{})}),prng}function Mash(){var n=4022871197,mash=function(data2){data2=String(data2);for(var i=0;i>>0,h-=n,h*=n,n=h>>>0,h-=n,n+=h*4294967296}return(n>>>0)*23283064365386963e-26};return mash}module2&&module2.exports?module2.exports=impl:define2&&define2.amd?define2(function(){return impl}):this.alea=impl})(exports3,typeof module=="object"&&module,typeof define=="function"&&define)}),require_xor1282=__commonJS2((exports3,module)=>{(function(global2,module2,define2){function XorGen(seed){var me=this,strseed="";me.x=0,me.y=0,me.z=0,me.w=0,me.next=function(){var t=me.x^me.x<<11;return me.x=me.y,me.y=me.z,me.z=me.w,me.w^=me.w>>>19^t^t>>>8},seed===(seed|0)?me.x=seed:strseed+=seed;for(var k=0;k>>0)/4294967296};return prng.double=function(){do var top=xg.next()>>>11,bot=(xg.next()>>>0)/4294967296,result=(top+bot)/(1<<21);while(result===0);return result},prng.int32=xg.next,prng.quick=prng,state6&&(typeof state6=="object"&©(state6,xg),prng.state=function(){return copy(xg,{})}),prng}module2&&module2.exports?module2.exports=impl:define2&&define2.amd?define2(function(){return impl}):this.xor128=impl})(exports3,typeof module=="object"&&module,typeof define=="function"&&define)}),require_xorwow2=__commonJS2((exports3,module)=>{(function(global2,module2,define2){function XorGen(seed){var me=this,strseed="";me.next=function(){var t=me.x^me.x>>>2;return me.x=me.y,me.y=me.z,me.z=me.w,me.w=me.v,(me.d=me.d+362437|0)+(me.v=me.v^me.v<<4^(t^t<<1))|0},me.x=0,me.y=0,me.z=0,me.w=0,me.v=0,seed===(seed|0)?me.x=seed:strseed+=seed;for(var k=0;k>>4),me.next()}function copy(f,t){return t.x=f.x,t.y=f.y,t.z=f.z,t.w=f.w,t.v=f.v,t.d=f.d,t}function impl(seed,opts){var xg=new XorGen(seed),state6=opts&&opts.state,prng=function(){return(xg.next()>>>0)/4294967296};return prng.double=function(){do var top=xg.next()>>>11,bot=(xg.next()>>>0)/4294967296,result=(top+bot)/(1<<21);while(result===0);return result},prng.int32=xg.next,prng.quick=prng,state6&&(typeof state6=="object"&©(state6,xg),prng.state=function(){return copy(xg,{})}),prng}module2&&module2.exports?module2.exports=impl:define2&&define2.amd?define2(function(){return impl}):this.xorwow=impl})(exports3,typeof module=="object"&&module,typeof define=="function"&&define)}),require_xorshift72=__commonJS2((exports3,module)=>{(function(global2,module2,define2){function XorGen(seed){var me=this;me.next=function(){var X=me.x,i=me.i,t,v,w;return t=X[i],t^=t>>>7,v=t^t<<24,t=X[i+1&7],v^=t^t>>>10,t=X[i+3&7],v^=t^t>>>3,t=X[i+4&7],v^=t^t<<7,t=X[i+7&7],t=t^t<<13,v^=t^t<<9,X[i]=v,me.i=i+1&7,v};function init2(me2,seed2){var j,w,X=[];if(seed2===(seed2|0))w=X[0]=seed2;else for(seed2=""+seed2,j=0;j0;--j)me2.next()}init2(me,seed)}function copy(f,t){return t.x=f.x.slice(),t.i=f.i,t}function impl(seed,opts){seed==null&&(seed=+new Date);var xg=new XorGen(seed),state6=opts&&opts.state,prng=function(){return(xg.next()>>>0)/4294967296};return prng.double=function(){do var top=xg.next()>>>11,bot=(xg.next()>>>0)/4294967296,result=(top+bot)/(1<<21);while(result===0);return result},prng.int32=xg.next,prng.quick=prng,state6&&(state6.x&©(state6,xg),prng.state=function(){return copy(xg,{})}),prng}module2&&module2.exports?module2.exports=impl:define2&&define2.amd?define2(function(){return impl}):this.xorshift7=impl})(exports3,typeof module=="object"&&module,typeof define=="function"&&define)}),require_xor40962=__commonJS2((exports3,module)=>{(function(global2,module2,define2){function XorGen(seed){var me=this;me.next=function(){var w=me.w,X=me.X,i=me.i,t,v;return me.w=w=w+1640531527|0,v=X[i+34&127],t=X[i=i+1&127],v^=v<<13,t^=t<<17,v^=v>>>15,t^=t>>>12,v=X[i]=v^t,me.i=i,v+(w^w>>>16)|0};function init2(me2,seed2){var t,v,i,j,w,X=[],limit=128;for(seed2===(seed2|0)?(v=seed2,seed2=null):(seed2=seed2+"\0",v=0,limit=Math.max(limit,seed2.length)),i=0,j=-32;j>>15,v^=v<<4,v^=v>>>13,j>=0&&(w=w+1640531527|0,t=X[j&127]^=v+w,i=t==0?i+1:0);for(i>=128&&(X[(seed2&&seed2.length||0)&127]=-1),i=127,j=4*128;j>0;--j)v=X[i+34&127],t=X[i=i+1&127],v^=v<<13,t^=t<<17,v^=v>>>15,t^=t>>>12,X[i]=v^t;me2.w=w,me2.X=X,me2.i=i}init2(me,seed)}function copy(f,t){return t.i=f.i,t.w=f.w,t.X=f.X.slice(),t}function impl(seed,opts){seed==null&&(seed=+new Date);var xg=new XorGen(seed),state6=opts&&opts.state,prng=function(){return(xg.next()>>>0)/4294967296};return prng.double=function(){do var top=xg.next()>>>11,bot=(xg.next()>>>0)/4294967296,result=(top+bot)/(1<<21);while(result===0);return result},prng.int32=xg.next,prng.quick=prng,state6&&(state6.X&©(state6,xg),prng.state=function(){return copy(xg,{})}),prng}module2&&module2.exports?module2.exports=impl:define2&&define2.amd?define2(function(){return impl}):this.xor4096=impl})(exports3,typeof module=="object"&&module,typeof define=="function"&&define)}),require_tychei2=__commonJS2((exports3,module)=>{(function(global2,module2,define2){function XorGen(seed){var me=this,strseed="";me.next=function(){var b=me.b,c=me.c,d=me.d,a=me.a;return b=b<<25^b>>>7^c,c=c-d|0,d=d<<24^d>>>8^a,a=a-b|0,me.b=b=b<<20^b>>>12^c,me.c=c=c-d|0,me.d=d<<16^c>>>16^a,me.a=a-b|0},me.a=0,me.b=0,me.c=2654435769|0,me.d=1367130551,seed===Math.floor(seed)?(me.a=seed/4294967296|0,me.b=seed|0):strseed+=seed;for(var k=0;k>>0)/4294967296};return prng.double=function(){do var top=xg.next()>>>11,bot=(xg.next()>>>0)/4294967296,result=(top+bot)/(1<<21);while(result===0);return result},prng.int32=xg.next,prng.quick=prng,state6&&(typeof state6=="object"&©(state6,xg),prng.state=function(){return copy(xg,{})}),prng}module2&&module2.exports?module2.exports=impl:define2&&define2.amd?define2(function(){return impl}):this.tychei=impl})(exports3,typeof module=="object"&&module,typeof define=="function"&&define)}),require_seedrandom3=__commonJS2((exports3,module)=>{(function(global2,pool6,math){var width=256,chunks=6,digits=52,rngname="random",startdenom=math.pow(width,chunks),significance=math.pow(2,digits),overflow=significance*2,mask=width-1,nodecrypto;function seedrandom5(seed,options,callback){var key=[];options=options==!0?{entropy:!0}:options||{};var shortseed=mixkey(flatten5(options.entropy?[seed,tostring(pool6)]:seed==null?autoseed():seed,3),key),arc4=new ARC4(key),prng=function(){for(var n=arc4.g(chunks),d=startdenom,x=0;n=overflow;)n/=2,d/=2,x>>>=1;return(n+x)/d};return prng.int32=function(){return arc4.g(4)|0},prng.quick=function(){return arc4.g(4)/4294967296},prng.double=prng,mixkey(tostring(arc4.S),pool6),(options.pass||callback||function(prng2,seed2,is_math_call,state6){return state6&&(state6.S&©(state6,arc4),prng2.state=function(){return copy(arc4,{})}),is_math_call?(math[rngname]=prng2,seed2):prng2})(prng,shortseed,"global"in options?options.global:this==math,options.state)}function ARC4(key){var t,keylen=key.length,me=this,i=0,j=me.i=me.j=0,s=me.S=[];for(keylen||(key=[keylen++]);i{var alea5=require_alea2(),xor128=require_xor1282(),xorwow=require_xorwow2(),xorshift7=require_xorshift72(),xor4096=require_xor40962(),tychei=require_tychei2(),sr=require_seedrandom3();sr.alea=alea5,sr.xor128=xor128,sr.xorwow=xorwow,sr.xorshift7=xorshift7,sr.xor4096=xor4096,sr.tychei=tychei,module.exports=sr}),require_string_decoder=__commonJS2(()=>{}),require_alea3=__commonJS2((exports3,module)=>{(function(global2,module2,define2){function Alea(seed){var me=this,mash=Mash();me.next=function(){var t=2091639*me.s0+me.c*23283064365386963e-26;return me.s0=me.s1,me.s1=me.s2,me.s2=t-(me.c=t|0)},me.c=1,me.s0=mash(" "),me.s1=mash(" "),me.s2=mash(" "),me.s0-=mash(seed),me.s0<0&&(me.s0+=1),me.s1-=mash(seed),me.s1<0&&(me.s1+=1),me.s2-=mash(seed),me.s2<0&&(me.s2+=1),mash=null}function copy(f,t){return t.c=f.c,t.s0=f.s0,t.s1=f.s1,t.s2=f.s2,t}function impl(seed,opts){var xg=new Alea(seed),state6=opts&&opts.state,prng=xg.next;return prng.int32=function(){return xg.next()*4294967296|0},prng.double=function(){return prng()+(prng()*2097152|0)*11102230246251565e-32},prng.quick=prng,state6&&(typeof state6=="object"&©(state6,xg),prng.state=function(){return copy(xg,{})}),prng}function Mash(){var n=4022871197,mash=function(data2){data2=data2.toString();for(var i=0;i>>0,h-=n,h*=n,n=h>>>0,h-=n,n+=h*4294967296}return(n>>>0)*23283064365386963e-26};return mash}module2&&module2.exports?module2.exports=impl:define2&&define2.amd?define2(function(){return impl}):this.alea=impl})(exports3,typeof module=="object"&&module,typeof define=="function"&&define)}),require_xor1283=__commonJS2((exports3,module)=>{(function(global2,module2,define2){function XorGen(seed){var me=this,strseed="";me.x=0,me.y=0,me.z=0,me.w=0,me.next=function(){var t=me.x^me.x<<11;return me.x=me.y,me.y=me.z,me.z=me.w,me.w^=me.w>>>19^t^t>>>8},seed===(seed|0)?me.x=seed:strseed+=seed;for(var k=0;k>>0)/4294967296};return prng.double=function(){do var top=xg.next()>>>11,bot=(xg.next()>>>0)/4294967296,result=(top+bot)/(1<<21);while(result===0);return result},prng.int32=xg.next,prng.quick=prng,state6&&(typeof state6=="object"&©(state6,xg),prng.state=function(){return copy(xg,{})}),prng}module2&&module2.exports?module2.exports=impl:define2&&define2.amd?define2(function(){return impl}):this.xor128=impl})(exports3,typeof module=="object"&&module,typeof define=="function"&&define)}),require_xorwow3=__commonJS2((exports3,module)=>{(function(global2,module2,define2){function XorGen(seed){var me=this,strseed="";me.next=function(){var t=me.x^me.x>>>2;return me.x=me.y,me.y=me.z,me.z=me.w,me.w=me.v,(me.d=me.d+362437|0)+(me.v=me.v^me.v<<4^(t^t<<1))|0},me.x=0,me.y=0,me.z=0,me.w=0,me.v=0,seed===(seed|0)?me.x=seed:strseed+=seed;for(var k=0;k>>4),me.next()}function copy(f,t){return t.x=f.x,t.y=f.y,t.z=f.z,t.w=f.w,t.v=f.v,t.d=f.d,t}function impl(seed,opts){var xg=new XorGen(seed),state6=opts&&opts.state,prng=function(){return(xg.next()>>>0)/4294967296};return prng.double=function(){do var top=xg.next()>>>11,bot=(xg.next()>>>0)/4294967296,result=(top+bot)/(1<<21);while(result===0);return result},prng.int32=xg.next,prng.quick=prng,state6&&(typeof state6=="object"&©(state6,xg),prng.state=function(){return copy(xg,{})}),prng}module2&&module2.exports?module2.exports=impl:define2&&define2.amd?define2(function(){return impl}):this.xorwow=impl})(exports3,typeof module=="object"&&module,typeof define=="function"&&define)}),require_xorshift73=__commonJS2((exports3,module)=>{(function(global2,module2,define2){function XorGen(seed){var me=this;me.next=function(){var X=me.x,i=me.i,t,v,w;return t=X[i],t^=t>>>7,v=t^t<<24,t=X[i+1&7],v^=t^t>>>10,t=X[i+3&7],v^=t^t>>>3,t=X[i+4&7],v^=t^t<<7,t=X[i+7&7],t=t^t<<13,v^=t^t<<9,X[i]=v,me.i=i+1&7,v};function init2(me2,seed2){var j,w,X=[];if(seed2===(seed2|0))w=X[0]=seed2;else for(seed2=""+seed2,j=0;j0;--j)me2.next()}init2(me,seed)}function copy(f,t){return t.x=f.x.slice(),t.i=f.i,t}function impl(seed,opts){seed==null&&(seed=+new Date);var xg=new XorGen(seed),state6=opts&&opts.state,prng=function(){return(xg.next()>>>0)/4294967296};return prng.double=function(){do var top=xg.next()>>>11,bot=(xg.next()>>>0)/4294967296,result=(top+bot)/(1<<21);while(result===0);return result},prng.int32=xg.next,prng.quick=prng,state6&&(state6.x&©(state6,xg),prng.state=function(){return copy(xg,{})}),prng}module2&&module2.exports?module2.exports=impl:define2&&define2.amd?define2(function(){return impl}):this.xorshift7=impl})(exports3,typeof module=="object"&&module,typeof define=="function"&&define)}),require_xor40963=__commonJS2((exports3,module)=>{(function(global2,module2,define2){function XorGen(seed){var me=this;me.next=function(){var w=me.w,X=me.X,i=me.i,t,v;return me.w=w=w+1640531527|0,v=X[i+34&127],t=X[i=i+1&127],v^=v<<13,t^=t<<17,v^=v>>>15,t^=t>>>12,v=X[i]=v^t,me.i=i,v+(w^w>>>16)|0};function init2(me2,seed2){var t,v,i,j,w,X=[],limit=128;for(seed2===(seed2|0)?(v=seed2,seed2=null):(seed2=seed2+"\0",v=0,limit=Math.max(limit,seed2.length)),i=0,j=-32;j>>15,v^=v<<4,v^=v>>>13,j>=0&&(w=w+1640531527|0,t=X[j&127]^=v+w,i=t==0?i+1:0);for(i>=128&&(X[(seed2&&seed2.length||0)&127]=-1),i=127,j=4*128;j>0;--j)v=X[i+34&127],t=X[i=i+1&127],v^=v<<13,t^=t<<17,v^=v>>>15,t^=t>>>12,X[i]=v^t;me2.w=w,me2.X=X,me2.i=i}init2(me,seed)}function copy(f,t){return t.i=f.i,t.w=f.w,t.X=f.X.slice(),t}function impl(seed,opts){seed==null&&(seed=+new Date);var xg=new XorGen(seed),state6=opts&&opts.state,prng=function(){return(xg.next()>>>0)/4294967296};return prng.double=function(){do var top=xg.next()>>>11,bot=(xg.next()>>>0)/4294967296,result=(top+bot)/(1<<21);while(result===0);return result},prng.int32=xg.next,prng.quick=prng,state6&&(state6.X&©(state6,xg),prng.state=function(){return copy(xg,{})}),prng}module2&&module2.exports?module2.exports=impl:define2&&define2.amd?define2(function(){return impl}):this.xor4096=impl})(exports3,typeof module=="object"&&module,typeof define=="function"&&define)}),require_tychei3=__commonJS2((exports3,module)=>{(function(global2,module2,define2){function XorGen(seed){var me=this,strseed="";me.next=function(){var b=me.b,c=me.c,d=me.d,a=me.a;return b=b<<25^b>>>7^c,c=c-d|0,d=d<<24^d>>>8^a,a=a-b|0,me.b=b=b<<20^b>>>12^c,me.c=c=c-d|0,me.d=d<<16^c>>>16^a,me.a=a-b|0},me.a=0,me.b=0,me.c=2654435769|0,me.d=1367130551,seed===Math.floor(seed)?(me.a=seed/4294967296|0,me.b=seed|0):strseed+=seed;for(var k=0;k>>0)/4294967296};return prng.double=function(){do var top=xg.next()>>>11,bot=(xg.next()>>>0)/4294967296,result=(top+bot)/(1<<21);while(result===0);return result},prng.int32=xg.next,prng.quick=prng,state6&&(typeof state6=="object"&©(state6,xg),prng.state=function(){return copy(xg,{})}),prng}module2&&module2.exports?module2.exports=impl:define2&&define2.amd?define2(function(){return impl}):this.tychei=impl})(exports3,typeof module=="object"&&module,typeof define=="function"&&define)}),require_seedrandom5=__commonJS2((exports3,module)=>{(function(pool6,math){var global2=this,width=256,chunks=6,digits=52,rngname="random",startdenom=math.pow(width,chunks),significance=math.pow(2,digits),overflow=significance*2,mask=width-1,nodecrypto;function seedrandom5(seed,options,callback){var key=[];options=options==!0?{entropy:!0}:options||{};var shortseed=mixkey(flatten5(options.entropy?[seed,tostring(pool6)]:seed==null?autoseed():seed,3),key),arc4=new ARC4(key),prng=function(){for(var n=arc4.g(chunks),d=startdenom,x=0;n=overflow;)n/=2,d/=2,x>>>=1;return(n+x)/d};return prng.int32=function(){return arc4.g(4)|0},prng.quick=function(){return arc4.g(4)/4294967296},prng.double=prng,mixkey(tostring(arc4.S),pool6),(options.pass||callback||function(prng2,seed2,is_math_call,state6){return state6&&(state6.S&©(state6,arc4),prng2.state=function(){return copy(arc4,{})}),is_math_call?(math[rngname]=prng2,seed2):prng2})(prng,shortseed,"global"in options?options.global:this==math,options.state)}math["seed"+rngname]=seedrandom5;function ARC4(key){var t,keylen=key.length,me=this,i=0,j=me.i=me.j=0,s=me.S=[];for(keylen||(key=[keylen++]);i{var alea5=require_alea3(),xor128=require_xor1283(),xorwow=require_xorwow3(),xorshift7=require_xorshift73(),xor4096=require_xor40963(),tychei=require_tychei3(),sr=require_seedrandom5();sr.alea=alea5,sr.xor128=xor128,sr.xorwow=xorwow,sr.xorshift7=xorshift7,sr.xor4096=xor4096,sr.tychei=tychei,module.exports=sr}),require_path=__commonJS2(()=>{}),require_worker_threads=__commonJS2(()=>{}),require_perf_hooks=__commonJS2(()=>{}),require_tfjs_backend_wasm_threaded_simd=__commonJS2((exports3,module)=>{var WasmBackendModuleThreadedSimd=function(){var _scriptDir=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(_scriptDir=_scriptDir||__filename),function(WasmBackendModuleThreadedSimd2){WasmBackendModuleThreadedSimd2=WasmBackendModuleThreadedSimd2||{};function GROWABLE_HEAP_I8(){return wasmMemory.buffer!=buffer11&&updateGlobalBufferAndViews(wasmMemory.buffer),HEAP8}function GROWABLE_HEAP_U8(){return wasmMemory.buffer!=buffer11&&updateGlobalBufferAndViews(wasmMemory.buffer),HEAPU8}function GROWABLE_HEAP_I32(){return wasmMemory.buffer!=buffer11&&updateGlobalBufferAndViews(wasmMemory.buffer),HEAP32}function GROWABLE_HEAP_U32(){return wasmMemory.buffer!=buffer11&&updateGlobalBufferAndViews(wasmMemory.buffer),HEAPU32}function GROWABLE_HEAP_F64(){return wasmMemory.buffer!=buffer11&&updateGlobalBufferAndViews(wasmMemory.buffer),HEAPF64}var Module=typeof WasmBackendModuleThreadedSimd2!="undefined"?WasmBackendModuleThreadedSimd2:{},moduleOverrides={},key;for(key in Module)Module.hasOwnProperty(key)&&(moduleOverrides[key]=Module[key]);var arguments_=[],thisProgram="./this.program",quit_=function(status,toThrow){throw toThrow},ENVIRONMENT_IS_WEB=!1,ENVIRONMENT_IS_WORKER=!1,ENVIRONMENT_IS_NODE=!1,ENVIRONMENT_IS_SHELL=!1;ENVIRONMENT_IS_WEB=typeof window=="object",ENVIRONMENT_IS_WORKER=typeof importScripts=="function",ENVIRONMENT_IS_NODE=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",ENVIRONMENT_IS_SHELL=!ENVIRONMENT_IS_WEB&&!ENVIRONMENT_IS_NODE&&!ENVIRONMENT_IS_WORKER;var ENVIRONMENT_IS_PTHREAD=Module.ENVIRONMENT_IS_PTHREAD||!1;ENVIRONMENT_IS_PTHREAD&&(buffer11=Module.buffer,DYNAMIC_BASE=Module.DYNAMIC_BASE,DYNAMICTOP_PTR=Module.DYNAMICTOP_PTR);var scriptDirectory="";function locateFile(path){return Module.locateFile?Module.locateFile(path,scriptDirectory):scriptDirectory+path}var read_,readAsync,readBinary,setWindowTitle,nodeFS,nodePath;if(ENVIRONMENT_IS_NODE){ENVIRONMENT_IS_WORKER?scriptDirectory=require_path().dirname(scriptDirectory)+"/":scriptDirectory=__dirname+"/",read_=function(filename,binary){return nodeFS||(nodeFS=require("fs")),nodePath||(nodePath=require_path()),filename=nodePath.normalize(filename),nodeFS.readFileSync(filename,binary?null:"utf8")},readBinary=function(filename){var ret=read_(filename,!0);return ret.buffer||(ret=new Uint8Array(ret)),assert3(ret.buffer),ret},process.argv.length>1&&(thisProgram=process.argv[1].replace(/\\/g,"/")),arguments_=process.argv.slice(2),process.on("uncaughtException",function(ex){if(!(ex instanceof ExitStatus))throw ex}),process.on("unhandledRejection",abort),quit_=function(status){process.exit(status)},Module.inspect=function(){return"[Emscripten Module object]"};var nodeWorkerThreads;try{nodeWorkerThreads=require_worker_threads()}catch(e){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),e}Worker=nodeWorkerThreads.Worker}else ENVIRONMENT_IS_SHELL?(typeof read!="undefined"&&(read_=function(f){return read(f)}),readBinary=function(f){var data2;return typeof readbuffer=="function"?new Uint8Array(readbuffer(f)):(data2=read(f,"binary"),assert3(typeof data2=="object"),data2)},typeof scriptArgs!="undefined"?arguments_=scriptArgs:typeof arguments!="undefined"&&(arguments_=arguments),typeof quit=="function"&&(quit_=function(status){quit(status)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER)&&(ENVIRONMENT_IS_WORKER?scriptDirectory=self.location.href:document.currentScript&&(scriptDirectory=document.currentScript.src),_scriptDir&&(scriptDirectory=_scriptDir),scriptDirectory.indexOf("blob:")!==0?scriptDirectory=scriptDirectory.substr(0,scriptDirectory.lastIndexOf("/")+1):scriptDirectory="",ENVIRONMENT_IS_NODE?(read_=function(filename,binary){return nodeFS||(nodeFS=require("fs")),nodePath||(nodePath=require_path()),filename=nodePath.normalize(filename),nodeFS.readFileSync(filename,binary?null:"utf8")},readBinary=function(filename){var ret=read_(filename,!0);return ret.buffer||(ret=new Uint8Array(ret)),assert3(ret.buffer),ret}):(read_=function(url){var xhr=new XMLHttpRequest;return xhr.open("GET",url,!1),xhr.send(null),xhr.responseText},ENVIRONMENT_IS_WORKER&&(readBinary=function(url){var xhr=new XMLHttpRequest;return xhr.open("GET",url,!1),xhr.responseType="arraybuffer",xhr.send(null),new Uint8Array(xhr.response)}),readAsync=function(url,onload,onerror){var xhr=new XMLHttpRequest;xhr.open("GET",url,!0),xhr.responseType="arraybuffer",xhr.onload=function(){if(xhr.status==200||xhr.status==0&&xhr.response){onload(xhr.response);return}onerror()},xhr.onerror=onerror,xhr.send(null)}),setWindowTitle=function(title){document.title=title});ENVIRONMENT_IS_NODE&&typeof performance=="undefined"&&(performance=require_perf_hooks().performance);var out=Module.print||console.log.bind(console),err=Module.printErr||console.warn.bind(console);for(key in moduleOverrides)moduleOverrides.hasOwnProperty(key)&&(Module[key]=moduleOverrides[key]);moduleOverrides=null,Module.arguments&&(arguments_=Module.arguments),Module.thisProgram&&(thisProgram=Module.thisProgram),Module.quit&&(quit_=Module.quit);var Atomics_load=Atomics.load,Atomics_store=Atomics.store,Atomics_compareExchange=Atomics.compareExchange,wasmBinary;Module.wasmBinary&&(wasmBinary=Module.wasmBinary);var noExitRuntime;Module.noExitRuntime&&(noExitRuntime=Module.noExitRuntime),typeof WebAssembly!="object"&&err("no native wasm support detected");var wasmMemory,wasmTable=new WebAssembly.Table({initial:165,maximum:165+0,element:"anyfunc"}),wasmModule,threadInfoStruct=0,selfThreadId=0,ABORT=!1,EXITSTATUS=0;function assert3(condition,text){condition||abort("Assertion failed: "+text)}function getCFunc(ident){var func2=Module["_"+ident];return assert3(func2,"Cannot call unknown function "+ident+", make sure it is exported"),func2}function ccall(ident,returnType,argTypes,args,opts){var toC={string:function(str){var ret2=0;if(str!=null&&str!==0){var len=(str.length<<2)+1;ret2=stackAlloc(len),stringToUTF8(str,ret2,len)}return ret2},array:function(arr){var ret2=stackAlloc(arr.length);return writeArrayToMemory(arr,ret2),ret2}};function convertReturnValue(ret2){return returnType==="string"?UTF8ToString(ret2):returnType==="boolean"?Boolean(ret2):ret2}var func2=getCFunc(ident),cArgs=[],stack9=0;if(args)for(var i=0;i=endIdx);){var u0=heap[idx++];if(!u0)return str;if(!(u0&128)){str+=String.fromCharCode(u0);continue}var u1=heap[idx++]&63;if((u0&224)==192){str+=String.fromCharCode((u0&31)<<6|u1);continue}var u2=heap[idx++]&63;if((u0&240)==224?u0=(u0&15)<<12|u1<<6|u2:u0=(u0&7)<<18|u1<<12|u2<<6|heap[idx++]&63,u0<65536)str+=String.fromCharCode(u0);else{var ch=u0-65536;str+=String.fromCharCode(55296|ch>>10,56320|ch&1023)}}return str}function UTF8ToString(ptr,maxBytesToRead){return ptr?UTF8ArrayToString(GROWABLE_HEAP_U8(),ptr,maxBytesToRead):""}function stringToUTF8Array(str,heap,outIdx,maxBytesToWrite){if(!(maxBytesToWrite>0))return 0;for(var startIdx=outIdx,endIdx=outIdx+maxBytesToWrite-1,i=0;i=55296&&u<=57343){var u1=str.charCodeAt(++i);u=65536+((u&1023)<<10)|u1&1023}if(u<=127){if(outIdx>=endIdx)break;heap[outIdx++]=u}else if(u<=2047){if(outIdx+1>=endIdx)break;heap[outIdx++]=192|u>>6,heap[outIdx++]=128|u&63}else if(u<=65535){if(outIdx+2>=endIdx)break;heap[outIdx++]=224|u>>12,heap[outIdx++]=128|u>>6&63,heap[outIdx++]=128|u&63}else{if(outIdx+3>=endIdx)break;heap[outIdx++]=240|u>>18,heap[outIdx++]=128|u>>12&63,heap[outIdx++]=128|u>>6&63,heap[outIdx++]=128|u&63}}return heap[outIdx]=0,outIdx-startIdx}function stringToUTF8(str,outPtr,maxBytesToWrite){return stringToUTF8Array(str,GROWABLE_HEAP_U8(),outPtr,maxBytesToWrite)}function lengthBytesUTF8(str){for(var len=0,i=0;i=55296&&u<=57343&&(u=65536+((u&1023)<<10)|str.charCodeAt(++i)&1023),u<=127?++len:u<=2047?len+=2:u<=65535?len+=3:len+=4}return len}function writeArrayToMemory(array2,buffer12){GROWABLE_HEAP_I8().set(array2,buffer12)}var WASM_PAGE_SIZE=65536;function alignUp(x,multiple){return x%multiple>0&&(x+=multiple-x%multiple),x}var buffer11,HEAP8,HEAPU8,HEAP16,HEAPU16,HEAP32,HEAPU32,HEAPF32,HEAPF64;function updateGlobalBufferAndViews(buf){buffer11=buf,Module.HEAP8=HEAP8=new Int8Array(buf),Module.HEAP16=HEAP16=new Int16Array(buf),Module.HEAP32=HEAP32=new Int32Array(buf),Module.HEAPU8=HEAPU8=new Uint8Array(buf),Module.HEAPU16=HEAPU16=new Uint16Array(buf),Module.HEAPU32=HEAPU32=new Uint32Array(buf),Module.HEAPF32=HEAPF32=new Float32Array(buf),Module.HEAPF64=HEAPF64=new Float64Array(buf)}var STACK_BASE=5256384,STACKTOP=STACK_BASE,STACK_MAX=13504,DYNAMIC_BASE=5256384,DYNAMICTOP_PTR=12576,INITIAL_INITIAL_MEMORY=Module.INITIAL_MEMORY||16777216;if(ENVIRONMENT_IS_PTHREAD)wasmMemory=Module.wasmMemory,buffer11=Module.buffer;else if(Module.wasmMemory)wasmMemory=Module.wasmMemory;else if(wasmMemory=new WebAssembly.Memory({initial:INITIAL_INITIAL_MEMORY/WASM_PAGE_SIZE,maximum:2147483648/WASM_PAGE_SIZE,shared:!0}),!(wasmMemory.buffer instanceof SharedArrayBuffer))throw err("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),ENVIRONMENT_IS_NODE&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");wasmMemory&&(buffer11=wasmMemory.buffer),INITIAL_INITIAL_MEMORY=buffer11.byteLength,updateGlobalBufferAndViews(buffer11),ENVIRONMENT_IS_PTHREAD||(GROWABLE_HEAP_I32()[DYNAMICTOP_PTR>>2]=DYNAMIC_BASE);function callRuntimeCallbacks(callbacks3){for(;callbacks3.length>0;){var callback=callbacks3.shift();if(typeof callback=="function"){callback(Module);continue}var func2=callback.func;typeof func2=="number"?callback.arg===void 0?Module.dynCall_v(func2):Module.dynCall_vi(func2,callback.arg):func2(callback.arg===void 0?null:callback.arg)}}var __ATPRERUN__=[],__ATINIT__=[],__ATMAIN__=[],__ATEXIT__=[],__ATPOSTRUN__=[],runtimeInitialized=!1;ENVIRONMENT_IS_PTHREAD&&(runtimeInitialized=!0);function preRun(){if(ENVIRONMENT_IS_PTHREAD)return;if(Module.preRun)for(typeof Module.preRun=="function"&&(Module.preRun=[Module.preRun]);Module.preRun.length;)addOnPreRun(Module.preRun.shift());callRuntimeCallbacks(__ATPRERUN__)}function initRuntime(){runtimeInitialized=!0,callRuntimeCallbacks(__ATINIT__)}function preMain(){if(ENVIRONMENT_IS_PTHREAD)return;callRuntimeCallbacks(__ATMAIN__)}function postRun(){if(ENVIRONMENT_IS_PTHREAD)return;if(Module.postRun)for(typeof Module.postRun=="function"&&(Module.postRun=[Module.postRun]);Module.postRun.length;)addOnPostRun(Module.postRun.shift());callRuntimeCallbacks(__ATPOSTRUN__)}function addOnPreRun(cb){__ATPRERUN__.unshift(cb)}function addOnPostRun(cb){__ATPOSTRUN__.unshift(cb)}var Math_ceil=Math.ceil,Math_floor=Math.floor,runDependencies=0,runDependencyWatcher=null,dependenciesFulfilled=null;function addRunDependency(id){assert3(!ENVIRONMENT_IS_PTHREAD,"addRunDependency cannot be used in a pthread worker"),runDependencies++,Module.monitorRunDependencies&&Module.monitorRunDependencies(runDependencies)}function removeRunDependency(id){if(runDependencies--,Module.monitorRunDependencies&&Module.monitorRunDependencies(runDependencies),runDependencies==0&&(runDependencyWatcher!==null&&(clearInterval(runDependencyWatcher),runDependencyWatcher=null),dependenciesFulfilled)){var callback=dependenciesFulfilled;dependenciesFulfilled=null,callback()}}Module.preloadedImages={},Module.preloadedAudios={};function abort(what){throw Module.onAbort&&Module.onAbort(what),ENVIRONMENT_IS_PTHREAD&&console.error("Pthread aborting at "+new Error().stack),what+="",out(what),err(what),ABORT=!0,EXITSTATUS=1,what="abort("+what+"). Build with -s ASSERTIONS=1 for more info.",new WebAssembly.RuntimeError(what)}function hasPrefix(str,prefix){return String.prototype.startsWith?str.startsWith(prefix):str.indexOf(prefix)===0}var dataURIPrefix="data:application/octet-stream;base64,";function isDataURI(filename){return hasPrefix(filename,dataURIPrefix)}var fileURIPrefix="file://";function isFileURI(filename){return hasPrefix(filename,fileURIPrefix)}var wasmBinaryFile="tfjs-backend-wasm-threaded-simd.wasm";isDataURI(wasmBinaryFile)||(wasmBinaryFile=locateFile(wasmBinaryFile));function getBinary(){try{if(wasmBinary)return new Uint8Array(wasmBinary);if(readBinary)return readBinary(wasmBinaryFile);throw"both async and sync fetching of the wasm failed"}catch(err2){abort(err2)}}function getBinaryPromise(){return!wasmBinary&&(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER)&&typeof fetch=="function"&&!isFileURI(wasmBinaryFile)?fetch(wasmBinaryFile,{credentials:"same-origin"}).then(function(response){if(!response.ok)throw"failed to load wasm binary file at '"+wasmBinaryFile+"'";return response.arrayBuffer()}).catch(function(){return getBinary()}):new Promise(function(resolve,reject){resolve(getBinary())})}function createWasm(){var info={a:asmLibraryArg};function receiveInstance(instance,module2){var exports5=instance.exports;if(Module.asm=exports5,wasmModule=module2,!ENVIRONMENT_IS_PTHREAD){var numWorkersToLoad=PThread.unusedWorkers.length;PThread.unusedWorkers.forEach(function(w){PThread.loadWasmModuleToWorker(w,function(){--numWorkersToLoad||removeRunDependency("wasm-instantiate")})})}}ENVIRONMENT_IS_PTHREAD||addRunDependency("wasm-instantiate");function receiveInstantiatedSource(output){receiveInstance(output.instance,output.module)}function instantiateArrayBuffer(receiver){return getBinaryPromise().then(function(binary){return WebAssembly.instantiate(binary,info)}).then(receiver,function(reason){err("failed to asynchronously prepare wasm: "+reason),abort(reason)})}function instantiateAsync(){if(!wasmBinary&&typeof WebAssembly.instantiateStreaming=="function"&&!isDataURI(wasmBinaryFile)&&!isFileURI(wasmBinaryFile)&&typeof fetch=="function")fetch(wasmBinaryFile,{credentials:"same-origin"}).then(function(response){var result=WebAssembly.instantiateStreaming(response,info);return result.then(receiveInstantiatedSource,function(reason){err("wasm streaming compile failed: "+reason),err("falling back to ArrayBuffer instantiation"),instantiateArrayBuffer(receiveInstantiatedSource)})});else return instantiateArrayBuffer(receiveInstantiatedSource)}if(Module.instantiateWasm)try{var exports4=Module.instantiateWasm(info,receiveInstance);return exports4}catch(e){return err("Module.instantiateWasm callback failed with error: "+e),!1}return instantiateAsync(),{}}var ASM_CONSTS={};function initPthreadsJS(){PThread.initRuntime()}ENVIRONMENT_IS_PTHREAD||__ATINIT__.push({func:function(){___wasm_call_ctors()}});var __pthread_ptr=0,__pthread_is_main_runtime_thread=0,__pthread_is_main_browser_thread=0;function __register_pthread_ptr(pthreadPtr,isMainBrowserThread,isMainRuntimeThread){pthreadPtr=pthreadPtr|0,isMainBrowserThread=isMainBrowserThread|0,isMainRuntimeThread=isMainRuntimeThread|0,__pthread_ptr=pthreadPtr,__pthread_is_main_browser_thread=isMainBrowserThread,__pthread_is_main_runtime_thread=isMainRuntimeThread}Module.__register_pthread_ptr=__register_pthread_ptr;var ERRNO_CODES={EPERM:63,ENOENT:44,ESRCH:71,EINTR:27,EIO:29,ENXIO:60,E2BIG:1,ENOEXEC:45,EBADF:8,ECHILD:12,EAGAIN:6,EWOULDBLOCK:6,ENOMEM:48,EACCES:2,EFAULT:21,ENOTBLK:105,EBUSY:10,EEXIST:20,EXDEV:75,ENODEV:43,ENOTDIR:54,EISDIR:31,EINVAL:28,ENFILE:41,EMFILE:33,ENOTTY:59,ETXTBSY:74,EFBIG:22,ENOSPC:51,ESPIPE:70,EROFS:69,EMLINK:34,EPIPE:64,EDOM:18,ERANGE:68,ENOMSG:49,EIDRM:24,ECHRNG:106,EL2NSYNC:156,EL3HLT:107,EL3RST:108,ELNRNG:109,EUNATCH:110,ENOCSI:111,EL2HLT:112,EDEADLK:16,ENOLCK:46,EBADE:113,EBADR:114,EXFULL:115,ENOANO:104,EBADRQC:103,EBADSLT:102,EDEADLOCK:16,EBFONT:101,ENOSTR:100,ENODATA:116,ETIME:117,ENOSR:118,ENONET:119,ENOPKG:120,EREMOTE:121,ENOLINK:47,EADV:122,ESRMNT:123,ECOMM:124,EPROTO:65,EMULTIHOP:36,EDOTDOT:125,EBADMSG:9,ENOTUNIQ:126,EBADFD:127,EREMCHG:128,ELIBACC:129,ELIBBAD:130,ELIBSCN:131,ELIBMAX:132,ELIBEXEC:133,ENOSYS:52,ENOTEMPTY:55,ENAMETOOLONG:37,ELOOP:32,EOPNOTSUPP:138,EPFNOSUPPORT:139,ECONNRESET:15,ENOBUFS:42,EAFNOSUPPORT:5,EPROTOTYPE:67,ENOTSOCK:57,ENOPROTOOPT:50,ESHUTDOWN:140,ECONNREFUSED:14,EADDRINUSE:3,ECONNABORTED:13,ENETUNREACH:40,ENETDOWN:38,ETIMEDOUT:73,EHOSTDOWN:142,EHOSTUNREACH:23,EINPROGRESS:26,EALREADY:7,EDESTADDRREQ:17,EMSGSIZE:35,EPROTONOSUPPORT:66,ESOCKTNOSUPPORT:137,EADDRNOTAVAIL:4,ENETRESET:39,EISCONN:30,ENOTCONN:53,ETOOMANYREFS:141,EUSERS:136,EDQUOT:19,ESTALE:72,ENOTSUP:138,ENOMEDIUM:148,EILSEQ:25,EOVERFLOW:61,ECANCELED:11,ENOTRECOVERABLE:56,EOWNERDEAD:62,ESTRPIPE:135},__main_thread_futex_wait_address=13488;function _emscripten_futex_wake(addr,count2){if(addr<=0||addr>GROWABLE_HEAP_I8().length||addr&!0||count2<0)return-28;if(count2==0)return 0;count2>=2147483647&&(count2=Infinity);var mainThreadWaitAddress=Atomics.load(GROWABLE_HEAP_I32(),__main_thread_futex_wait_address>>2),mainThreadWoken=0;if(mainThreadWaitAddress==addr){var loadedAddr=Atomics.compareExchange(GROWABLE_HEAP_I32(),__main_thread_futex_wait_address>>2,mainThreadWaitAddress,0);if(loadedAddr==mainThreadWaitAddress&&(--count2,mainThreadWoken=1,count2<=0))return 1}var ret=Atomics.notify(GROWABLE_HEAP_I32(),addr>>2,count2);if(ret>=0)return ret+mainThreadWoken;throw"Atomics.notify returned an unexpected value "+ret}Module._emscripten_futex_wake=_emscripten_futex_wake;function __kill_thread(pthread_ptr){if(ENVIRONMENT_IS_PTHREAD)throw"Internal Error! _kill_thread() can only ever be called from main application thread!";if(!pthread_ptr)throw"Internal Error! Null pthread_ptr in _kill_thread!";GROWABLE_HEAP_I32()[pthread_ptr+12>>2]=0;var pthread=PThread.pthreads[pthread_ptr];pthread.worker.terminate(),PThread.freeThreadData(pthread),PThread.runningWorkers.splice(PThread.runningWorkers.indexOf(pthread.worker),1),pthread.worker.pthread=void 0}function __cancel_thread(pthread_ptr){if(ENVIRONMENT_IS_PTHREAD)throw"Internal Error! _cancel_thread() can only ever be called from main application thread!";if(!pthread_ptr)throw"Internal Error! Null pthread_ptr in _cancel_thread!";var pthread=PThread.pthreads[pthread_ptr];pthread.worker.postMessage({cmd:"cancel"})}function __cleanup_thread(pthread_ptr){if(ENVIRONMENT_IS_PTHREAD)throw"Internal Error! _cleanup_thread() can only ever be called from main application thread!";if(!pthread_ptr)throw"Internal Error! Null pthread_ptr in _cleanup_thread!";GROWABLE_HEAP_I32()[pthread_ptr+12>>2]=0;var pthread=PThread.pthreads[pthread_ptr];if(pthread){var worker=pthread.worker;PThread.returnWorkerToPool(worker)}}var PThread={MAIN_THREAD_ID:1,mainThreadInfo:{schedPolicy:0,schedPrio:0},unusedWorkers:[],runningWorkers:[],initRuntime:function(){__register_pthread_ptr(PThread.mainThreadBlock,!ENVIRONMENT_IS_WORKER,1),_emscripten_register_main_browser_thread_id(PThread.mainThreadBlock)},initMainThreadBlock:function(){for(var pthreadPoolSize=8,i=0;i>2]=PThread.mainThreadBlock;var headPtr=PThread.mainThreadBlock+156;GROWABLE_HEAP_I32()[headPtr>>2]=headPtr;for(var tlsMemory=12976,i=0;i<128;++i)GROWABLE_HEAP_U32()[tlsMemory/4+i]=0;Atomics.store(GROWABLE_HEAP_U32(),PThread.mainThreadBlock+104>>2,tlsMemory),Atomics.store(GROWABLE_HEAP_U32(),PThread.mainThreadBlock+40>>2,PThread.mainThreadBlock),Atomics.store(GROWABLE_HEAP_U32(),PThread.mainThreadBlock+44>>2,42)},initWorker:function(){},pthreads:{},exitHandlers:null,setThreadStatus:function(){},runExitHandlers:function(){if(PThread.exitHandlers!==null){for(;PThread.exitHandlers.length>0;)PThread.exitHandlers.pop()();PThread.exitHandlers=null}ENVIRONMENT_IS_PTHREAD&&threadInfoStruct&&___pthread_tsd_run_dtors()},threadExit:function(exitCode){var tb=_pthread_self();tb&&(Atomics.store(GROWABLE_HEAP_U32(),tb+4>>2,exitCode),Atomics.store(GROWABLE_HEAP_U32(),tb+0>>2,1),Atomics.store(GROWABLE_HEAP_U32(),tb+60>>2,1),Atomics.store(GROWABLE_HEAP_U32(),tb+64>>2,0),PThread.runExitHandlers(),_emscripten_futex_wake(tb+0,2147483647),__register_pthread_ptr(0,0,0),threadInfoStruct=0,ENVIRONMENT_IS_PTHREAD&&postMessage({cmd:"exit"}))},threadCancel:function(){PThread.runExitHandlers(),Atomics.store(GROWABLE_HEAP_U32(),threadInfoStruct+4>>2,-1),Atomics.store(GROWABLE_HEAP_U32(),threadInfoStruct+0>>2,1),_emscripten_futex_wake(threadInfoStruct+0,2147483647),threadInfoStruct=selfThreadId=0,__register_pthread_ptr(0,0,0),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var t in PThread.pthreads){var pthread=PThread.pthreads[t];pthread&&pthread.worker&&PThread.returnWorkerToPool(pthread.worker)}PThread.pthreads={};for(var i=0;i>2];GROWABLE_HEAP_I32()[pthread.threadInfoStruct+104>>2]=0,_free(tlsMemory),_free(pthread.threadInfoStruct)}pthread.threadInfoStruct=0,pthread.allocatedOwnStack&&pthread.stackBase&&_free(pthread.stackBase),pthread.stackBase=0,pthread.worker&&(pthread.worker.pthread=null)},returnWorkerToPool:function(worker){delete PThread.pthreads[worker.pthread.thread],PThread.unusedWorkers.push(worker),PThread.runningWorkers.splice(PThread.runningWorkers.indexOf(worker),1),PThread.freeThreadData(worker.pthread),worker.pthread=void 0},receiveObjectTransfer:function(data2){},loadWasmModuleToWorker:function(worker,onFinishedLoading){worker.onmessage=function(e){var d=e.data,cmd=d.cmd;if(worker.pthread&&(PThread.currentProxiedOperationCallerThread=worker.pthread.threadInfoStruct),d.targetThread&&d.targetThread!=_pthread_self()){var thread=PThread.pthreads[d.targetThread];thread?thread.worker.postMessage(e.data,d.transferList):console.error('Internal error! Worker sent a message "'+cmd+'" to target pthread '+d.targetThread+", but that thread no longer exists!"),PThread.currentProxiedOperationCallerThread=void 0;return}if(cmd==="processQueuedMainThreadWork")_emscripten_main_thread_process_queued_calls();else if(cmd==="spawnThread")__spawn_thread(e.data);else if(cmd==="cleanupThread")__cleanup_thread(d.thread);else if(cmd==="killThread")__kill_thread(d.thread);else if(cmd==="cancelThread")__cancel_thread(d.thread);else if(cmd==="loaded")worker.loaded=!0,onFinishedLoading&&onFinishedLoading(worker),worker.runPthread&&(worker.runPthread(),delete worker.runPthread);else if(cmd==="print")out("Thread "+d.threadId+": "+d.text);else if(cmd==="printErr")err("Thread "+d.threadId+": "+d.text);else if(cmd==="alert")alert("Thread "+d.threadId+": "+d.text);else if(cmd==="exit"){var detached=worker.pthread&&Atomics.load(GROWABLE_HEAP_U32(),worker.pthread.thread+68>>2);detached&&PThread.returnWorkerToPool(worker)}else cmd==="cancelDone"?PThread.returnWorkerToPool(worker):cmd==="objectTransfer"?PThread.receiveObjectTransfer(e.data):e.data.target==="setimmediate"?worker.postMessage(e.data):err("worker sent an unknown command "+cmd);PThread.currentProxiedOperationCallerThread=void 0},worker.onerror=function(e){err("pthread sent an error! "+e.filename+":"+e.lineno+": "+e.message)},ENVIRONMENT_IS_NODE&&(worker.on("message",function(data2){worker.onmessage({data:data2})}),worker.on("error",function(data2){worker.onerror(data2)}),worker.on("exit",function(data2){console.log("worker exited - TODO: update the worker queue?")})),worker.postMessage({cmd:"load",urlOrBlob:Module.mainScriptUrlOrBlob||_scriptDir,wasmMemory,wasmModule,DYNAMIC_BASE,DYNAMICTOP_PTR})},allocateUnusedWorker:function(){var pthreadMainJs=locateFile("tfjs-backend-wasm-threaded-simd.worker.js");PThread.unusedWorkers.push(new Worker(pthreadMainJs))},getNewWorker:function(){return PThread.unusedWorkers.length==0&&(PThread.allocateUnusedWorker(),PThread.loadWasmModuleToWorker(PThread.unusedWorkers[0])),PThread.unusedWorkers.length>0?PThread.unusedWorkers.pop():null},busySpinWait:function(msecs){for(var t=performance.now()+msecs;performance.now()>2]=value,value}function _atexit(func2,arg){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(1,1,func2,arg);__ATEXIT__.unshift({func:func2,arg})}function __emscripten_notify_thread_queue(targetThreadId,mainThreadId){if(targetThreadId==mainThreadId)postMessage({cmd:"processQueuedMainThreadWork"});else if(ENVIRONMENT_IS_PTHREAD)postMessage({targetThread:targetThreadId,cmd:"processThreadQueue"});else{var pthread=PThread.pthreads[targetThreadId],worker=pthread&&pthread.worker;if(!worker)return;worker.postMessage({cmd:"processThreadQueue"})}return 1}function _abort(){abort()}function _emscripten_conditional_set_current_thread_status(expectedStatus,newStatus){expectedStatus=expectedStatus|0,newStatus=newStatus|0}function _emscripten_futex_wait(addr,val,timeout){if(addr<=0||addr>GROWABLE_HEAP_I8().length||addr&!0)return-28;if(ENVIRONMENT_IS_WORKER){var ret=Atomics.wait(GROWABLE_HEAP_I32(),addr>>2,val,timeout);if(ret==="timed-out")return-73;if(ret==="not-equal")return-6;if(ret==="ok")return 0;throw"Atomics.wait returned an unexpected value "+ret}else{var loadedVal=Atomics.load(GROWABLE_HEAP_I32(),addr>>2);if(val!=loadedVal)return-6;var tNow=performance.now(),tEnd=tNow+timeout;Atomics.store(GROWABLE_HEAP_I32(),__main_thread_futex_wait_address>>2,addr);for(var ourWaitAddress=addr;addr==ourWaitAddress;){if(tNow=performance.now(),tNow>tEnd)return-73;_emscripten_main_thread_process_queued_calls(),addr=Atomics.load(GROWABLE_HEAP_I32(),__main_thread_futex_wait_address>>2)}return 0}}function _emscripten_is_main_browser_thread(){return __pthread_is_main_browser_thread|0}function _emscripten_is_main_runtime_thread(){return __pthread_is_main_runtime_thread|0}function _emscripten_memcpy_big(dest,src,num){GROWABLE_HEAP_U8().copyWithin(dest,src,src+num)}function _emscripten_num_logical_cores(){return navigator.hardwareConcurrency}function _emscripten_proxy_to_main_thread_js(index,sync){for(var numCallArgs=arguments.length-2,stack9=stackSave(),args=stackAlloc(numCallArgs*8),b=args>>3,i=0;i>3]),buf+=8):(buf=buf+3&~3,args.push(GROWABLE_HEAP_I32()[buf>>2]),buf+=4);return args}function _emscripten_receive_on_main_thread_js(index,numCallArgs,args){_emscripten_receive_on_main_thread_js_callArgs.length=numCallArgs;for(var b=args>>3,i=0;i>>16),updateGlobalBufferAndViews(wasmMemory.buffer),1}catch(e){}}function _emscripten_resize_heap(requestedSize){requestedSize=requestedSize>>>0;var oldSize=_emscripten_get_heap_size();if(requestedSize<=oldSize)return!1;var PAGE_MULTIPLE=65536,maxHeapSize=2147483648;if(requestedSize>maxHeapSize)return!1;for(var minHeapSize=16777216,cutDown=1;cutDown<=4;cutDown*=2){var overGrownHeapSize=oldSize*(1+.2/cutDown);overGrownHeapSize=Math.min(overGrownHeapSize,requestedSize+100663296);var newSize=Math.min(maxHeapSize,alignUp(Math.max(minHeapSize,requestedSize,overGrownHeapSize),PAGE_MULTIPLE)),replacement=emscripten_realloc_buffer(newSize);if(replacement)return!0}return!1}var JSEvents={keyEvent:0,mouseEvent:0,wheelEvent:0,uiEvent:0,focusEvent:0,deviceOrientationEvent:0,deviceMotionEvent:0,fullscreenChangeEvent:0,pointerlockChangeEvent:0,visibilityChangeEvent:0,touchEvent:0,previousFullscreenElement:null,previousScreenX:null,previousScreenY:null,removeEventListenersRegistered:!1,removeAllEventListeners:function(){for(var i=JSEvents.eventHandlers.length-1;i>=0;--i)JSEvents._removeHandler(i);JSEvents.eventHandlers=[],JSEvents.deferredCalls=[]},registerRemoveEventListeners:function(){JSEvents.removeEventListenersRegistered||(__ATEXIT__.push(JSEvents.removeAllEventListeners),JSEvents.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(targetFunction,precedence,argsList){function arraysHaveEqualContent(arrA,arrB){if(arrA.length!=arrB.length)return!1;for(var i2 in arrA)if(arrA[i2]!=arrB[i2])return!1;return!0}for(var i in JSEvents.deferredCalls){var call=JSEvents.deferredCalls[i];if(call.targetFunction==targetFunction&&arraysHaveEqualContent(call.argsList,argsList))return}JSEvents.deferredCalls.push({targetFunction,precedence,argsList}),JSEvents.deferredCalls.sort(function(x,y){return x.precedence>2]=eventTypeId,GROWABLE_HEAP_I32()[varargs+4>>2]=eventData,GROWABLE_HEAP_I32()[varargs+8>>2]=userData,_emscripten_async_queue_on_thread_(targetThread,637534208,eventHandlerFunc,eventData,varargs),stackRestore(stackTop)},getTargetThreadForEventCallback:function(targetThread){switch(targetThread){case 1:return 0;case 2:return PThread.currentProxiedOperationCallerThread;default:return targetThread}},getNodeNameForTarget:function(target){return target?target==window?"#window":target==screen?"#screen":target&&target.nodeName?target.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function stringToNewUTF8(jsString){var length=lengthBytesUTF8(jsString)+1,cString=_malloc(length);return stringToUTF8(jsString,cString,length),cString}function _emscripten_set_offscreencanvas_size_on_target_thread_js(targetThread,targetCanvas,width,height){var stackTop=stackSave(),varargs=stackAlloc(12),targetCanvasPtr=0;targetCanvas&&(targetCanvasPtr=stringToNewUTF8(targetCanvas)),GROWABLE_HEAP_I32()[varargs>>2]=targetCanvasPtr,GROWABLE_HEAP_I32()[varargs+4>>2]=width,GROWABLE_HEAP_I32()[varargs+8>>2]=height,_emscripten_async_queue_on_thread_(targetThread,657457152,0,targetCanvasPtr,varargs),stackRestore(stackTop)}function _emscripten_set_offscreencanvas_size_on_target_thread(targetThread,targetCanvas,width,height){targetCanvas=targetCanvas?UTF8ToString(targetCanvas):"",_emscripten_set_offscreencanvas_size_on_target_thread_js(targetThread,targetCanvas,width,height)}function __maybeCStringToJsString(cString){return cString>2?UTF8ToString(cString):cString}var specialHTMLTargets=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function __findEventTarget(target){target=__maybeCStringToJsString(target);var domElement=specialHTMLTargets[target]||(typeof document!="undefined"?document.querySelector(target):void 0);return domElement}function __findCanvasEventTarget(target){return __findEventTarget(target)}function _emscripten_set_canvas_element_size_calling_thread(target,width,height){var canvas=__findCanvasEventTarget(target);if(!canvas)return-4;if(canvas.canvasSharedPtr&&(GROWABLE_HEAP_I32()[canvas.canvasSharedPtr>>2]=width,GROWABLE_HEAP_I32()[canvas.canvasSharedPtr+4>>2]=height),canvas.offscreenCanvas||!canvas.controlTransferredOffscreen){canvas.offscreenCanvas&&(canvas=canvas.offscreenCanvas);var autoResizeViewport=!1;if(canvas.GLctxObject&&canvas.GLctxObject.GLctx){var prevViewport=canvas.GLctxObject.GLctx.getParameter(2978);autoResizeViewport=prevViewport[0]===0&&prevViewport[1]===0&&prevViewport[2]===canvas.width&&prevViewport[3]===canvas.height}canvas.width=width,canvas.height=height,autoResizeViewport&&canvas.GLctxObject.GLctx.viewport(0,0,width,height)}else if(canvas.canvasSharedPtr){var targetThread=GROWABLE_HEAP_I32()[canvas.canvasSharedPtr+8>>2];return _emscripten_set_offscreencanvas_size_on_target_thread(targetThread,target,width,height),1}else return-4;return 0}function _emscripten_set_canvas_element_size_main_thread(target,width,height){return ENVIRONMENT_IS_PTHREAD?_emscripten_proxy_to_main_thread_js(2,1,target,width,height):_emscripten_set_canvas_element_size_calling_thread(target,width,height)}function _emscripten_set_canvas_element_size(target,width,height){var canvas=__findCanvasEventTarget(target);return canvas?_emscripten_set_canvas_element_size_calling_thread(target,width,height):_emscripten_set_canvas_element_size_main_thread(target,width,height)}function _emscripten_set_current_thread_status(newStatus){newStatus=newStatus|0}function _emscripten_set_thread_name(threadId,name){threadId=threadId|0,name=name|0}function __webgl_enable_ANGLE_instanced_arrays(ctx){var ext=ctx.getExtension("ANGLE_instanced_arrays");if(ext)return ctx.vertexAttribDivisor=function(index,divisor){ext.vertexAttribDivisorANGLE(index,divisor)},ctx.drawArraysInstanced=function(mode,first,count2,primcount){ext.drawArraysInstancedANGLE(mode,first,count2,primcount)},ctx.drawElementsInstanced=function(mode,count2,type,indices,primcount){ext.drawElementsInstancedANGLE(mode,count2,type,indices,primcount)},1}function __webgl_enable_OES_vertex_array_object(ctx){var ext=ctx.getExtension("OES_vertex_array_object");if(ext)return ctx.createVertexArray=function(){return ext.createVertexArrayOES()},ctx.deleteVertexArray=function(vao){ext.deleteVertexArrayOES(vao)},ctx.bindVertexArray=function(vao){ext.bindVertexArrayOES(vao)},ctx.isVertexArray=function(vao){return ext.isVertexArrayOES(vao)},1}function __webgl_enable_WEBGL_draw_buffers(ctx){var ext=ctx.getExtension("WEBGL_draw_buffers");if(ext)return ctx.drawBuffers=function(n,bufs){ext.drawBuffersWEBGL(n,bufs)},1}var GL={counter:1,lastError:0,buffers:[],mappedBuffers:{},programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},currentContext:null,offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,init:function(){for(var miniTempFloatBuffer=new Float32Array(GL.MINI_TEMP_BUFFER_SIZE),i=0;i>2]:-1;source+=UTF8ToString(GROWABLE_HEAP_I32()[string+i*4>>2],len<0?void 0:len)}return source},createContext:function(canvas,webGLContextAttributes){var ctx=canvas.getContext("webgl",webGLContextAttributes);if(!ctx)return 0;var handle=GL.registerContext(ctx,webGLContextAttributes);return handle},registerContext:function(ctx,webGLContextAttributes){var handle=_malloc(8);GROWABLE_HEAP_I32()[handle+4>>2]=_pthread_self();var context={handle,attributes:webGLContextAttributes,version:webGLContextAttributes.majorVersion,GLctx:ctx};return ctx.canvas&&(ctx.canvas.GLctxObject=context),GL.contexts[handle]=context,(typeof webGLContextAttributes.enableExtensionsByDefault=="undefined"||webGLContextAttributes.enableExtensionsByDefault)&&GL.initExtensions(context),handle},makeContextCurrent:function(contextHandle){return GL.currentContext=GL.contexts[contextHandle],Module.ctx=GLctx=GL.currentContext&&GL.currentContext.GLctx,!(contextHandle&&!GLctx)},getContext:function(contextHandle){return GL.contexts[contextHandle]},deleteContext:function(contextHandle){GL.currentContext===GL.contexts[contextHandle]&&(GL.currentContext=null),typeof JSEvents=="object"&&JSEvents.removeAllHandlersOnTarget(GL.contexts[contextHandle].GLctx.canvas),GL.contexts[contextHandle]&&GL.contexts[contextHandle].GLctx.canvas&&(GL.contexts[contextHandle].GLctx.canvas.GLctxObject=void 0),_free(GL.contexts[contextHandle].handle),GL.contexts[contextHandle]=null},initExtensions:function(context){if(context||(context=GL.currentContext),context.initExtensionsDone)return;context.initExtensionsDone=!0;var GLctx2=context.GLctx;__webgl_enable_ANGLE_instanced_arrays(GLctx2),__webgl_enable_OES_vertex_array_object(GLctx2),__webgl_enable_WEBGL_draw_buffers(GLctx2),GLctx2.disjointTimerQueryExt=GLctx2.getExtension("EXT_disjoint_timer_query");var automaticallyEnabledExtensions=["OES_texture_float","OES_texture_half_float","OES_standard_derivatives","OES_vertex_array_object","WEBGL_compressed_texture_s3tc","WEBGL_depth_texture","OES_element_index_uint","EXT_texture_filter_anisotropic","EXT_frag_depth","WEBGL_draw_buffers","ANGLE_instanced_arrays","OES_texture_float_linear","OES_texture_half_float_linear","EXT_blend_minmax","EXT_shader_texture_lod","EXT_texture_norm16","WEBGL_compressed_texture_pvrtc","EXT_color_buffer_half_float","WEBGL_color_buffer_float","EXT_sRGB","WEBGL_compressed_texture_etc1","EXT_disjoint_timer_query","WEBGL_compressed_texture_etc","WEBGL_compressed_texture_astc","EXT_color_buffer_float","WEBGL_compressed_texture_s3tc_srgb","EXT_disjoint_timer_query_webgl2","WEBKIT_WEBGL_compressed_texture_pvrtc"],exts=GLctx2.getSupportedExtensions()||[];exts.forEach(function(ext){automaticallyEnabledExtensions.indexOf(ext)!=-1&&GLctx2.getExtension(ext)})},populateUniformTable:function(program){for(var p2=GL.programs[program],ptable=GL.programInfos[program]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},utable=ptable.uniforms,numUniforms=GLctx.getProgramParameter(p2,35718),i=0;i>2;contextAttributes.alpha=!!GROWABLE_HEAP_I32()[a+(0>>2)],contextAttributes.depth=!!GROWABLE_HEAP_I32()[a+(4>>2)],contextAttributes.stencil=!!GROWABLE_HEAP_I32()[a+(8>>2)],contextAttributes.antialias=!!GROWABLE_HEAP_I32()[a+(12>>2)],contextAttributes.premultipliedAlpha=!!GROWABLE_HEAP_I32()[a+(16>>2)],contextAttributes.preserveDrawingBuffer=!!GROWABLE_HEAP_I32()[a+(20>>2)];var powerPreference=GROWABLE_HEAP_I32()[a+(24>>2)];contextAttributes.powerPreference=__emscripten_webgl_power_preferences[powerPreference],contextAttributes.failIfMajorPerformanceCaveat=!!GROWABLE_HEAP_I32()[a+(28>>2)],contextAttributes.majorVersion=GROWABLE_HEAP_I32()[a+(32>>2)],contextAttributes.minorVersion=GROWABLE_HEAP_I32()[a+(36>>2)],contextAttributes.enableExtensionsByDefault=GROWABLE_HEAP_I32()[a+(40>>2)],contextAttributes.explicitSwapControl=GROWABLE_HEAP_I32()[a+(44>>2)],contextAttributes.proxyContextToMainThread=GROWABLE_HEAP_I32()[a+(48>>2)],contextAttributes.renderViaOffscreenBackBuffer=GROWABLE_HEAP_I32()[a+(52>>2)];var canvas=__findCanvasEventTarget(target);if(!canvas)return-4;if(contextAttributes.explicitSwapControl)return-1;var contextHandle=GL.createContext(canvas,contextAttributes);return contextHandle}function _emscripten_webgl_create_context(a0,a12){return _emscripten_webgl_do_create_context(a0,a12)}var PATH={splitPath:function(filename){var splitPathRe=/^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;return splitPathRe.exec(filename).slice(1)},normalizeArray:function(parts,allowAboveRoot){for(var up=0,i=parts.length-1;i>=0;i--){var last=parts[i];last==="."?parts.splice(i,1):last===".."?(parts.splice(i,1),up++):up&&(parts.splice(i,1),up--)}if(allowAboveRoot)for(;up;up--)parts.unshift("..");return parts},normalize:function(path){var isAbsolute=path.charAt(0)==="/",trailingSlash=path.substr(-1)==="/";return path=PATH.normalizeArray(path.split("/").filter(function(p2){return!!p2}),!isAbsolute).join("/"),!path&&!isAbsolute&&(path="."),path&&trailingSlash&&(path+="/"),(isAbsolute?"/":"")+path},dirname:function(path){var result=PATH.splitPath(path),root=result[0],dir=result[1];return!root&&!dir?".":(dir&&(dir=dir.substr(0,dir.length-1)),root+dir)},basename:function(path){if(path==="/")return"/";var lastSlash=path.lastIndexOf("/");return lastSlash===-1?path:path.substr(lastSlash+1)},extname:function(path){return PATH.splitPath(path)[3]},join:function(){var paths=Array.prototype.slice.call(arguments,0);return PATH.normalize(paths.join("/"))},join2:function(l,r){return PATH.normalize(l+"/"+r)}},SYSCALLS={mappings:{},buffers:[null,[],[]],printChar:function(stream,curr){var buffer12=SYSCALLS.buffers[stream];curr===0||curr===10?((stream===1?out:err)(UTF8ArrayToString(buffer12,0)),buffer12.length=0):buffer12.push(curr)},varargs:void 0,get:function(){SYSCALLS.varargs+=4;var ret=GROWABLE_HEAP_I32()[SYSCALLS.varargs-4>>2];return ret},getStr:function(ptr){var ret=UTF8ToString(ptr);return ret},get64:function(low,high){return low}};function _fd_close(fd){return ENVIRONMENT_IS_PTHREAD?_emscripten_proxy_to_main_thread_js(3,1,fd):0}function _fd_seek(fd,offset_low,offset_high,whence,newOffset){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(4,1,fd,offset_low,offset_high,whence,newOffset)}function _fd_write(fd,iov,iovcnt,pnum){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(5,1,fd,iov,iovcnt,pnum);for(var num=0,i=0;i>2],len=GROWABLE_HEAP_I32()[iov+(i*8+4)>>2],j=0;j>2]=num,0}function _pthread_cleanup_pop(execute2){var routine=PThread.exitHandlers.pop();execute2&&routine()}function _pthread_cleanup_push(routine,arg){PThread.exitHandlers===null&&(PThread.exitHandlers=[]),PThread.exitHandlers.push(function(){dynCall_vi(routine,arg)})}function __spawn_thread(threadParams){if(ENVIRONMENT_IS_PTHREAD)throw"Internal Error! _spawn_thread() can only ever be called from main application thread!";var worker=PThread.getNewWorker();if(worker.pthread!==void 0)throw"Internal error!";if(!threadParams.pthread_ptr)throw"Internal error, no pthread ptr!";PThread.runningWorkers.push(worker);for(var tlsMemory=_malloc(128*4),i=0;i<128;++i)GROWABLE_HEAP_I32()[tlsMemory+i*4>>2]=0;var stackHigh=threadParams.stackBase+threadParams.stackSize,pthread=PThread.pthreads[threadParams.pthread_ptr]={worker,stackBase:threadParams.stackBase,stackSize:threadParams.stackSize,allocatedOwnStack:threadParams.allocatedOwnStack,thread:threadParams.pthread_ptr,threadInfoStruct:threadParams.pthread_ptr},tis=pthread.threadInfoStruct>>2;Atomics.store(GROWABLE_HEAP_U32(),tis+(0>>2),0),Atomics.store(GROWABLE_HEAP_U32(),tis+(4>>2),0),Atomics.store(GROWABLE_HEAP_U32(),tis+(8>>2),0),Atomics.store(GROWABLE_HEAP_U32(),tis+(68>>2),threadParams.detached),Atomics.store(GROWABLE_HEAP_U32(),tis+(104>>2),tlsMemory),Atomics.store(GROWABLE_HEAP_U32(),tis+(48>>2),0),Atomics.store(GROWABLE_HEAP_U32(),tis+(40>>2),pthread.threadInfoStruct),Atomics.store(GROWABLE_HEAP_U32(),tis+(44>>2),42),Atomics.store(GROWABLE_HEAP_U32(),tis+(108>>2),threadParams.stackSize),Atomics.store(GROWABLE_HEAP_U32(),tis+(84>>2),threadParams.stackSize),Atomics.store(GROWABLE_HEAP_U32(),tis+(80>>2),stackHigh),Atomics.store(GROWABLE_HEAP_U32(),tis+(108+8>>2),stackHigh),Atomics.store(GROWABLE_HEAP_U32(),tis+(108+12>>2),threadParams.detached),Atomics.store(GROWABLE_HEAP_U32(),tis+(108+20>>2),threadParams.schedPolicy),Atomics.store(GROWABLE_HEAP_U32(),tis+(108+24>>2),threadParams.schedPrio);var global_libc=_emscripten_get_global_libc(),global_locale=global_libc+40;Atomics.store(GROWABLE_HEAP_U32(),tis+(176>>2),global_locale),worker.pthread=pthread;var msg={cmd:"run",start_routine:threadParams.startRoutine,arg:threadParams.arg,threadInfoStruct:threadParams.pthread_ptr,selfThreadId:threadParams.pthread_ptr,parentThreadId:threadParams.parent_pthread_ptr,stackBase:threadParams.stackBase,stackSize:threadParams.stackSize};worker.runPthread=function(){msg.time=performance.now(),worker.postMessage(msg,threadParams.transferList)},worker.loaded&&(worker.runPthread(),delete worker.runPthread)}function _pthread_getschedparam(thread,policy,schedparam){if(!policy&&!schedparam)return ERRNO_CODES.EINVAL;if(!thread)return err("pthread_getschedparam called with a null thread pointer!"),ERRNO_CODES.ESRCH;var self2=GROWABLE_HEAP_I32()[thread+12>>2];if(self2!==thread)return err("pthread_getschedparam attempted on thread "+thread+", which does not point to a valid thread, or does not exist anymore!"),ERRNO_CODES.ESRCH;var schedPolicy=Atomics.load(GROWABLE_HEAP_U32(),thread+108+20>>2),schedPrio=Atomics.load(GROWABLE_HEAP_U32(),thread+108+24>>2);return policy&&(GROWABLE_HEAP_I32()[policy>>2]=schedPolicy),schedparam&&(GROWABLE_HEAP_I32()[schedparam>>2]=schedPrio),0}function _pthread_self(){return __pthread_ptr|0}Module._pthread_self=_pthread_self;function _pthread_create(pthread_ptr,attr,start_routine,arg){if(typeof SharedArrayBuffer=="undefined")return err("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!pthread_ptr)return err("pthread_create called with a null thread pointer!"),28;var transferList=[],error=0;if(ENVIRONMENT_IS_PTHREAD&&(transferList.length===0||error))return _emscripten_sync_run_in_main_thread_4(687865856,pthread_ptr,attr,start_routine,arg);if(error)return error;var stackSize=0,stackBase=0,detached=0,schedPolicy=0,schedPrio=0;if(attr){stackSize=GROWABLE_HEAP_I32()[attr>>2],stackSize+=81920,stackBase=GROWABLE_HEAP_I32()[attr+8>>2],detached=GROWABLE_HEAP_I32()[attr+12>>2]!==0;var inheritSched=GROWABLE_HEAP_I32()[attr+16>>2]===0;if(inheritSched){var prevSchedPolicy=GROWABLE_HEAP_I32()[attr+20>>2],prevSchedPrio=GROWABLE_HEAP_I32()[attr+24>>2],parentThreadPtr=PThread.currentProxiedOperationCallerThread?PThread.currentProxiedOperationCallerThread:_pthread_self();_pthread_getschedparam(parentThreadPtr,attr+20,attr+24),schedPolicy=GROWABLE_HEAP_I32()[attr+20>>2],schedPrio=GROWABLE_HEAP_I32()[attr+24>>2],GROWABLE_HEAP_I32()[attr+20>>2]=prevSchedPolicy,GROWABLE_HEAP_I32()[attr+24>>2]=prevSchedPrio}else schedPolicy=GROWABLE_HEAP_I32()[attr+20>>2],schedPrio=GROWABLE_HEAP_I32()[attr+24>>2]}else stackSize=2097152;var allocatedOwnStack=stackBase==0;allocatedOwnStack?stackBase=_memalign(16,stackSize):(stackBase-=stackSize,assert3(stackBase>0));for(var threadInfoStruct2=_malloc(232),i=0;i<232>>2;++i)GROWABLE_HEAP_U32()[(threadInfoStruct2>>2)+i]=0;GROWABLE_HEAP_I32()[pthread_ptr>>2]=threadInfoStruct2,GROWABLE_HEAP_I32()[threadInfoStruct2+12>>2]=threadInfoStruct2;var headPtr=threadInfoStruct2+156;GROWABLE_HEAP_I32()[headPtr>>2]=headPtr;var threadParams={stackBase,stackSize,allocatedOwnStack,schedPolicy,schedPrio,detached,startRoutine:start_routine,pthread_ptr:threadInfoStruct2,parent_pthread_ptr:_pthread_self(),arg,transferList};return ENVIRONMENT_IS_PTHREAD?(threadParams.cmd="spawnThread",postMessage(threadParams,transferList)):__spawn_thread(threadParams),0}function _roundf(d){return d=+d,d>=0?+Math_floor(d+.5):+Math_ceil(d-.5)}function _sysconf(name){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(6,1,name);switch(name){case 30:return 16384;case 85:var maxHeapSize=2147483648;return maxHeapSize/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 80:case 81:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:case 79:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return setErrNo(28),-1}ENVIRONMENT_IS_PTHREAD?PThread.initWorker():PThread.initMainThreadBlock();var GLctx;GL.init();var proxiedFunctionTable=[null,_atexit,_emscripten_set_canvas_element_size_main_thread,_fd_close,_fd_seek,_fd_write,_sysconf],asmLibraryArg={e:___assert_fail,r:___call_main,w:__emscripten_notify_thread_queue,a:_abort,l:_emscripten_conditional_set_current_thread_status,d:_emscripten_futex_wait,c:_emscripten_futex_wake,h:_emscripten_get_now,g:_emscripten_is_main_browser_thread,x:_emscripten_is_main_runtime_thread,q:_emscripten_memcpy_big,B:_emscripten_num_logical_cores,t:_emscripten_receive_on_main_thread_js,A:_emscripten_resize_heap,u:_emscripten_set_canvas_element_size,k:_emscripten_set_current_thread_status,s:_emscripten_set_thread_name,v:_emscripten_webgl_create_context,m:_fd_close,o:_fd_seek,i:_fd_write,p:initPthreadsJS,memory:wasmMemory||Module.wasmMemory,y:_pthread_cleanup_pop,z:_pthread_cleanup_push,j:_pthread_create,b:_pthread_self,f:_roundf,n:_sysconf,table:wasmTable},asm=createWasm();Module.asm=asm;var ___wasm_call_ctors=Module.___wasm_call_ctors=function(){return(___wasm_call_ctors=Module.___wasm_call_ctors=Module.asm.C).apply(null,arguments)},_init=Module._init=function(){return(_init=Module._init=Module.asm.D).apply(null,arguments)},_register_tensor=Module._register_tensor=function(){return(_register_tensor=Module._register_tensor=Module.asm.E).apply(null,arguments)},_dispose_data=Module._dispose_data=function(){return(_dispose_data=Module._dispose_data=Module.asm.F).apply(null,arguments)},_dispose=Module._dispose=function(){return(_dispose=Module._dispose=Module.asm.G).apply(null,arguments)},_Abs=Module._Abs=function(){return(_Abs=Module._Abs=Module.asm.H).apply(null,arguments)},_Add=Module._Add=function(){return(_Add=Module._Add=Module.asm.I).apply(null,arguments)},_AddN=Module._AddN=function(){return(_AddN=Module._AddN=Module.asm.J).apply(null,arguments)},_ArgMax=Module._ArgMax=function(){return(_ArgMax=Module._ArgMax=Module.asm.K).apply(null,arguments)},_AvgPool=Module._AvgPool=function(){return(_AvgPool=Module._AvgPool=Module.asm.L).apply(null,arguments)},_BatchMatMul=Module._BatchMatMul=function(){return(_BatchMatMul=Module._BatchMatMul=Module.asm.M).apply(null,arguments)},_ClipByValue=Module._ClipByValue=function(){return(_ClipByValue=Module._ClipByValue=Module.asm.N).apply(null,arguments)},_Conv2D=Module._Conv2D=function(){return(_Conv2D=Module._Conv2D=Module.asm.O).apply(null,arguments)},_Conv2DBackpropInput=Module._Conv2DBackpropInput=function(){return(_Conv2DBackpropInput=Module._Conv2DBackpropInput=Module.asm.P).apply(null,arguments)},_Cos=Module._Cos=function(){return(_Cos=Module._Cos=Module.asm.Q).apply(null,arguments)},_CropAndResize=Module._CropAndResize=function(){return(_CropAndResize=Module._CropAndResize=Module.asm.R).apply(null,arguments)},_Cumsum=Module._Cumsum=function(){return(_Cumsum=Module._Cumsum=Module.asm.S).apply(null,arguments)},_DepthToSpace=Module._DepthToSpace=function(){return(_DepthToSpace=Module._DepthToSpace=Module.asm.T).apply(null,arguments)},_DepthwiseConv2dNative=Module._DepthwiseConv2dNative=function(){return(_DepthwiseConv2dNative=Module._DepthwiseConv2dNative=Module.asm.U).apply(null,arguments)},_Div=Module._Div=function(){return(_Div=Module._Div=Module.asm.V).apply(null,arguments)},_Equal=Module._Equal=function(){return(_Equal=Module._Equal=Module.asm.W).apply(null,arguments)},_Exp=Module._Exp=function(){return(_Exp=Module._Exp=Module.asm.X).apply(null,arguments)},_FlipLeftRight=Module._FlipLeftRight=function(){return(_FlipLeftRight=Module._FlipLeftRight=Module.asm.Y).apply(null,arguments)},_FloorDiv=Module._FloorDiv=function(){return(_FloorDiv=Module._FloorDiv=Module.asm.Z).apply(null,arguments)},_FusedBatchNorm=Module._FusedBatchNorm=function(){return(_FusedBatchNorm=Module._FusedBatchNorm=Module.asm._).apply(null,arguments)},_FusedConv2D=Module._FusedConv2D=function(){return(_FusedConv2D=Module._FusedConv2D=Module.asm.$).apply(null,arguments)},_FusedDepthwiseConv2D=Module._FusedDepthwiseConv2D=function(){return(_FusedDepthwiseConv2D=Module._FusedDepthwiseConv2D=Module.asm.aa).apply(null,arguments)},_Gather=Module._Gather=function(){return(_Gather=Module._Gather=Module.asm.ba).apply(null,arguments)},_GatherNd=Module._GatherNd=function(){return(_GatherNd=Module._GatherNd=Module.asm.ca).apply(null,arguments)},_Greater=Module._Greater=function(){return(_Greater=Module._Greater=Module.asm.da).apply(null,arguments)},_GreaterEqual=Module._GreaterEqual=function(){return(_GreaterEqual=Module._GreaterEqual=Module.asm.ea).apply(null,arguments)},_Less=Module._Less=function(){return(_Less=Module._Less=Module.asm.fa).apply(null,arguments)},_LessEqual=Module._LessEqual=function(){return(_LessEqual=Module._LessEqual=Module.asm.ga).apply(null,arguments)},_Log=Module._Log=function(){return(_Log=Module._Log=Module.asm.ha).apply(null,arguments)},_LogicalAnd=Module._LogicalAnd=function(){return(_LogicalAnd=Module._LogicalAnd=Module.asm.ia).apply(null,arguments)},_Max=Module._Max=function(){return(_Max=Module._Max=Module.asm.ja).apply(null,arguments)},_MaxPool=Module._MaxPool=function(){return(_MaxPool=Module._MaxPool=Module.asm.ka).apply(null,arguments)},_Maximum=Module._Maximum=function(){return(_Maximum=Module._Maximum=Module.asm.la).apply(null,arguments)},_Min=Module._Min=function(){return(_Min=Module._Min=Module.asm.ma).apply(null,arguments)},_Minimum=Module._Minimum=function(){return(_Minimum=Module._Minimum=Module.asm.na).apply(null,arguments)},_Multiply=Module._Multiply=function(){return(_Multiply=Module._Multiply=Module.asm.oa).apply(null,arguments)},_Negate=Module._Negate=function(){return(_Negate=Module._Negate=Module.asm.pa).apply(null,arguments)},_NonMaxSuppressionV3=Module._NonMaxSuppressionV3=function(){return(_NonMaxSuppressionV3=Module._NonMaxSuppressionV3=Module.asm.qa).apply(null,arguments)},_NonMaxSuppressionV4=Module._NonMaxSuppressionV4=function(){return(_NonMaxSuppressionV4=Module._NonMaxSuppressionV4=Module.asm.ra).apply(null,arguments)},_NonMaxSuppressionV5=Module._NonMaxSuppressionV5=function(){return(_NonMaxSuppressionV5=Module._NonMaxSuppressionV5=Module.asm.sa).apply(null,arguments)},_NotEqual=Module._NotEqual=function(){return(_NotEqual=Module._NotEqual=Module.asm.ta).apply(null,arguments)},_OneHot=Module._OneHot=function(){return(_OneHot=Module._OneHot=Module.asm.ua).apply(null,arguments)},_PadV2=Module._PadV2=function(){return(_PadV2=Module._PadV2=Module.asm.va).apply(null,arguments)},_Pow=Module._Pow=function(){return(_Pow=Module._Pow=Module.asm.wa).apply(null,arguments)},_Prelu=Module._Prelu=function(){return(_Prelu=Module._Prelu=Module.asm.xa).apply(null,arguments)},_Relu=Module._Relu=function(){return(_Relu=Module._Relu=Module.asm.ya).apply(null,arguments)},_Relu6=Module._Relu6=function(){return(_Relu6=Module._Relu6=Module.asm.za).apply(null,arguments)},_ResizeBilinear=Module._ResizeBilinear=function(){return(_ResizeBilinear=Module._ResizeBilinear=Module.asm.Aa).apply(null,arguments)},_Reverse=Module._Reverse=function(){return(_Reverse=Module._Reverse=Module.asm.Ba).apply(null,arguments)},_RotateWithOffset=Module._RotateWithOffset=function(){return(_RotateWithOffset=Module._RotateWithOffset=Module.asm.Ca).apply(null,arguments)},_Rsqrt=Module._Rsqrt=function(){return(_Rsqrt=Module._Rsqrt=Module.asm.Da).apply(null,arguments)},_ScatterNd=Module._ScatterNd=function(){return(_ScatterNd=Module._ScatterNd=Module.asm.Ea).apply(null,arguments)},_SelectV2=Module._SelectV2=function(){return(_SelectV2=Module._SelectV2=Module.asm.Fa).apply(null,arguments)},_Sigmoid=Module._Sigmoid=function(){return(_Sigmoid=Module._Sigmoid=Module.asm.Ga).apply(null,arguments)},_Sin=Module._Sin=function(){return(_Sin=Module._Sin=Module.asm.Ha).apply(null,arguments)},_Softmax=Module._Softmax=function(){return(_Softmax=Module._Softmax=Module.asm.Ia).apply(null,arguments)},_Sqrt=Module._Sqrt=function(){return(_Sqrt=Module._Sqrt=Module.asm.Ja).apply(null,arguments)},_Square=Module._Square=function(){return(_Square=Module._Square=Module.asm.Ka).apply(null,arguments)},_SquaredDifference=Module._SquaredDifference=function(){return(_SquaredDifference=Module._SquaredDifference=Module.asm.La).apply(null,arguments)},_StridedSlice=Module._StridedSlice=function(){return(_StridedSlice=Module._StridedSlice=Module.asm.Ma).apply(null,arguments)},_Sub=Module._Sub=function(){return(_Sub=Module._Sub=Module.asm.Na).apply(null,arguments)},_Sum=Module._Sum=function(){return(_Sum=Module._Sum=Module.asm.Oa).apply(null,arguments)},_Tanh=Module._Tanh=function(){return(_Tanh=Module._Tanh=Module.asm.Pa).apply(null,arguments)},_Tile=Module._Tile=function(){return(_Tile=Module._Tile=Module.asm.Qa).apply(null,arguments)},_Transpose=Module._Transpose=function(){return(_Transpose=Module._Transpose=Module.asm.Ra).apply(null,arguments)},__FusedMatMul=Module.__FusedMatMul=function(){return(__FusedMatMul=Module.__FusedMatMul=Module.asm.Sa).apply(null,arguments)},_malloc=Module._malloc=function(){return(_malloc=Module._malloc=Module.asm.Ta).apply(null,arguments)},_free=Module._free=function(){return(_free=Module._free=Module.asm.Ua).apply(null,arguments)},_emscripten_get_global_libc=Module._emscripten_get_global_libc=function(){return(_emscripten_get_global_libc=Module._emscripten_get_global_libc=Module.asm.Va).apply(null,arguments)},___errno_location=Module.___errno_location=function(){return(___errno_location=Module.___errno_location=Module.asm.Wa).apply(null,arguments)},___em_js__initPthreadsJS=Module.___em_js__initPthreadsJS=function(){return(___em_js__initPthreadsJS=Module.___em_js__initPthreadsJS=Module.asm.Xa).apply(null,arguments)},_memalign=Module._memalign=function(){return(_memalign=Module._memalign=Module.asm.Ya).apply(null,arguments)},___pthread_tsd_run_dtors=Module.___pthread_tsd_run_dtors=function(){return(___pthread_tsd_run_dtors=Module.___pthread_tsd_run_dtors=Module.asm.Za).apply(null,arguments)},_emscripten_main_thread_process_queued_calls=Module._emscripten_main_thread_process_queued_calls=function(){return(_emscripten_main_thread_process_queued_calls=Module._emscripten_main_thread_process_queued_calls=Module.asm._a).apply(null,arguments)},_emscripten_current_thread_process_queued_calls=Module._emscripten_current_thread_process_queued_calls=function(){return(_emscripten_current_thread_process_queued_calls=Module._emscripten_current_thread_process_queued_calls=Module.asm.$a).apply(null,arguments)},_emscripten_register_main_browser_thread_id=Module._emscripten_register_main_browser_thread_id=function(){return(_emscripten_register_main_browser_thread_id=Module._emscripten_register_main_browser_thread_id=Module.asm.ab).apply(null,arguments)},_emscripten_main_browser_thread_id=Module._emscripten_main_browser_thread_id=function(){return(_emscripten_main_browser_thread_id=Module._emscripten_main_browser_thread_id=Module.asm.bb).apply(null,arguments)},_emscripten_async_run_in_main_thread=Module._emscripten_async_run_in_main_thread=function(){return(_emscripten_async_run_in_main_thread=Module._emscripten_async_run_in_main_thread=Module.asm.cb).apply(null,arguments)},_emscripten_sync_run_in_main_thread=Module._emscripten_sync_run_in_main_thread=function(){return(_emscripten_sync_run_in_main_thread=Module._emscripten_sync_run_in_main_thread=Module.asm.db).apply(null,arguments)},_emscripten_sync_run_in_main_thread_0=Module._emscripten_sync_run_in_main_thread_0=function(){return(_emscripten_sync_run_in_main_thread_0=Module._emscripten_sync_run_in_main_thread_0=Module.asm.eb).apply(null,arguments)},_emscripten_sync_run_in_main_thread_1=Module._emscripten_sync_run_in_main_thread_1=function(){return(_emscripten_sync_run_in_main_thread_1=Module._emscripten_sync_run_in_main_thread_1=Module.asm.fb).apply(null,arguments)},_emscripten_sync_run_in_main_thread_2=Module._emscripten_sync_run_in_main_thread_2=function(){return(_emscripten_sync_run_in_main_thread_2=Module._emscripten_sync_run_in_main_thread_2=Module.asm.gb).apply(null,arguments)},_emscripten_sync_run_in_main_thread_xprintf_varargs=Module._emscripten_sync_run_in_main_thread_xprintf_varargs=function(){return(_emscripten_sync_run_in_main_thread_xprintf_varargs=Module._emscripten_sync_run_in_main_thread_xprintf_varargs=Module.asm.hb).apply(null,arguments)},_emscripten_sync_run_in_main_thread_3=Module._emscripten_sync_run_in_main_thread_3=function(){return(_emscripten_sync_run_in_main_thread_3=Module._emscripten_sync_run_in_main_thread_3=Module.asm.ib).apply(null,arguments)},_emscripten_sync_run_in_main_thread_4=Module._emscripten_sync_run_in_main_thread_4=function(){return(_emscripten_sync_run_in_main_thread_4=Module._emscripten_sync_run_in_main_thread_4=Module.asm.jb).apply(null,arguments)},_emscripten_sync_run_in_main_thread_5=Module._emscripten_sync_run_in_main_thread_5=function(){return(_emscripten_sync_run_in_main_thread_5=Module._emscripten_sync_run_in_main_thread_5=Module.asm.kb).apply(null,arguments)},_emscripten_sync_run_in_main_thread_6=Module._emscripten_sync_run_in_main_thread_6=function(){return(_emscripten_sync_run_in_main_thread_6=Module._emscripten_sync_run_in_main_thread_6=Module.asm.lb).apply(null,arguments)},_emscripten_sync_run_in_main_thread_7=Module._emscripten_sync_run_in_main_thread_7=function(){return(_emscripten_sync_run_in_main_thread_7=Module._emscripten_sync_run_in_main_thread_7=Module.asm.mb).apply(null,arguments)},_emscripten_run_in_main_runtime_thread_js=Module._emscripten_run_in_main_runtime_thread_js=function(){return(_emscripten_run_in_main_runtime_thread_js=Module._emscripten_run_in_main_runtime_thread_js=Module.asm.nb).apply(null,arguments)},_emscripten_async_queue_on_thread_=Module._emscripten_async_queue_on_thread_=function(){return(_emscripten_async_queue_on_thread_=Module._emscripten_async_queue_on_thread_=Module.asm.ob).apply(null,arguments)},_emscripten_tls_init=Module._emscripten_tls_init=function(){return(_emscripten_tls_init=Module._emscripten_tls_init=Module.asm.pb).apply(null,arguments)},stackSave=Module.stackSave=function(){return(stackSave=Module.stackSave=Module.asm.qb).apply(null,arguments)},stackAlloc=Module.stackAlloc=function(){return(stackAlloc=Module.stackAlloc=Module.asm.rb).apply(null,arguments)},stackRestore=Module.stackRestore=function(){return(stackRestore=Module.stackRestore=Module.asm.sb).apply(null,arguments)},dynCall_vi=Module.dynCall_vi=function(){return(dynCall_vi=Module.dynCall_vi=Module.asm.tb).apply(null,arguments)},dynCall_v=Module.dynCall_v=function(){return(dynCall_v=Module.dynCall_v=Module.asm.ub).apply(null,arguments)},dynCall_ii=Module.dynCall_ii=function(){return(dynCall_ii=Module.dynCall_ii=Module.asm.vb).apply(null,arguments)};Module.asm=asm,Module.cwrap=cwrap,Module.PThread=PThread,Module.PThread=PThread,Module._pthread_self=_pthread_self,Module.wasmMemory=wasmMemory,Module.ExitStatus=ExitStatus;var calledRun;Module.then=function(func2){if(calledRun)func2(Module);else{var old=Module.onRuntimeInitialized;Module.onRuntimeInitialized=function(){old&&old(),func2(Module)}}return Module};function ExitStatus(status){this.name="ExitStatus",this.message="Program terminated with exit("+status+")",this.status=status}dependenciesFulfilled=function runCaller(){calledRun||run(),calledRun||(dependenciesFulfilled=runCaller)};function run(args){if(args=args||arguments_,runDependencies>0)return;if(preRun(),runDependencies>0)return;function doRun(){if(calledRun)return;if(calledRun=!0,Module.calledRun=!0,ABORT)return;initRuntime(),preMain(),Module.onRuntimeInitialized&&Module.onRuntimeInitialized(),postRun()}Module.setStatus?(Module.setStatus("Running..."),setTimeout(function(){setTimeout(function(){Module.setStatus("")},1),doRun()},1)):doRun()}if(Module.run=run,Module.preInit)for(typeof Module.preInit=="function"&&(Module.preInit=[Module.preInit]);Module.preInit.length>0;)Module.preInit.pop()();return ENVIRONMENT_IS_PTHREAD||(noExitRuntime=!0),ENVIRONMENT_IS_PTHREAD||run(),WasmBackendModuleThreadedSimd2}}();typeof exports3=="object"&&typeof module=="object"?module.exports=WasmBackendModuleThreadedSimd:typeof define=="function"&&define.amd?define([],function(){return WasmBackendModuleThreadedSimd}):typeof exports3=="object"&&(exports3.WasmBackendModuleThreadedSimd=WasmBackendModuleThreadedSimd)}),require_tfjs_backend_wasm=__commonJS2((exports3,module)=>{var WasmBackendModule=function(){var _scriptDir=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(_scriptDir=_scriptDir||__filename),function(WasmBackendModule2){WasmBackendModule2=WasmBackendModule2||{};var Module=typeof WasmBackendModule2!="undefined"?WasmBackendModule2:{},moduleOverrides={},key;for(key in Module)Module.hasOwnProperty(key)&&(moduleOverrides[key]=Module[key]);var arguments_=[],thisProgram="./this.program",quit_=function(status,toThrow){throw toThrow},ENVIRONMENT_IS_WEB=!1,ENVIRONMENT_IS_WORKER=!1,ENVIRONMENT_IS_NODE=!1,ENVIRONMENT_IS_SHELL=!1;ENVIRONMENT_IS_WEB=typeof window=="object",ENVIRONMENT_IS_WORKER=typeof importScripts=="function",ENVIRONMENT_IS_NODE=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",ENVIRONMENT_IS_SHELL=!ENVIRONMENT_IS_WEB&&!ENVIRONMENT_IS_NODE&&!ENVIRONMENT_IS_WORKER;var scriptDirectory="";function locateFile(path){return Module.locateFile?Module.locateFile(path,scriptDirectory):scriptDirectory+path}var read_,readAsync,readBinary,setWindowTitle,nodeFS,nodePath;ENVIRONMENT_IS_NODE?(ENVIRONMENT_IS_WORKER?scriptDirectory=require_path().dirname(scriptDirectory)+"/":scriptDirectory=__dirname+"/",read_=function(filename,binary){return nodeFS||(nodeFS=require("fs")),nodePath||(nodePath=require_path()),filename=nodePath.normalize(filename),nodeFS.readFileSync(filename,binary?null:"utf8")},readBinary=function(filename){var ret=read_(filename,!0);return ret.buffer||(ret=new Uint8Array(ret)),assert3(ret.buffer),ret},process.argv.length>1&&(thisProgram=process.argv[1].replace(/\\/g,"/")),arguments_=process.argv.slice(2),process.on("uncaughtException",function(ex){if(!(ex instanceof ExitStatus))throw ex}),process.on("unhandledRejection",abort),quit_=function(status){process.exit(status)},Module.inspect=function(){return"[Emscripten Module object]"}):ENVIRONMENT_IS_SHELL?(typeof read!="undefined"&&(read_=function(f){return read(f)}),readBinary=function(f){var data2;return typeof readbuffer=="function"?new Uint8Array(readbuffer(f)):(data2=read(f,"binary"),assert3(typeof data2=="object"),data2)},typeof scriptArgs!="undefined"?arguments_=scriptArgs:typeof arguments!="undefined"&&(arguments_=arguments),typeof quit=="function"&&(quit_=function(status){quit(status)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER)&&(ENVIRONMENT_IS_WORKER?scriptDirectory=self.location.href:document.currentScript&&(scriptDirectory=document.currentScript.src),_scriptDir&&(scriptDirectory=_scriptDir),scriptDirectory.indexOf("blob:")!==0?scriptDirectory=scriptDirectory.substr(0,scriptDirectory.lastIndexOf("/")+1):scriptDirectory="",read_=function(url){var xhr=new XMLHttpRequest;return xhr.open("GET",url,!1),xhr.send(null),xhr.responseText},ENVIRONMENT_IS_WORKER&&(readBinary=function(url){var xhr=new XMLHttpRequest;return xhr.open("GET",url,!1),xhr.responseType="arraybuffer",xhr.send(null),new Uint8Array(xhr.response)}),readAsync=function(url,onload,onerror){var xhr=new XMLHttpRequest;xhr.open("GET",url,!0),xhr.responseType="arraybuffer",xhr.onload=function(){if(xhr.status==200||xhr.status==0&&xhr.response){onload(xhr.response);return}onerror()},xhr.onerror=onerror,xhr.send(null)},setWindowTitle=function(title){document.title=title});var out=Module.print||console.log.bind(console),err=Module.printErr||console.warn.bind(console);for(key in moduleOverrides)moduleOverrides.hasOwnProperty(key)&&(Module[key]=moduleOverrides[key]);moduleOverrides=null,Module.arguments&&(arguments_=Module.arguments),Module.thisProgram&&(thisProgram=Module.thisProgram),Module.quit&&(quit_=Module.quit);var wasmBinary;Module.wasmBinary&&(wasmBinary=Module.wasmBinary);var noExitRuntime;Module.noExitRuntime&&(noExitRuntime=Module.noExitRuntime),typeof WebAssembly!="object"&&err("no native wasm support detected");var wasmMemory,wasmTable=new WebAssembly.Table({initial:147,maximum:147+0,element:"anyfunc"}),ABORT=!1,EXITSTATUS=0;function assert3(condition,text){condition||abort("Assertion failed: "+text)}function getCFunc(ident){var func2=Module["_"+ident];return assert3(func2,"Cannot call unknown function "+ident+", make sure it is exported"),func2}function ccall(ident,returnType,argTypes,args,opts){var toC={string:function(str){var ret2=0;if(str!=null&&str!==0){var len=(str.length<<2)+1;ret2=stackAlloc(len),stringToUTF8(str,ret2,len)}return ret2},array:function(arr){var ret2=stackAlloc(arr.length);return writeArrayToMemory(arr,ret2),ret2}};function convertReturnValue(ret2){return returnType==="string"?UTF8ToString(ret2):returnType==="boolean"?Boolean(ret2):ret2}var func2=getCFunc(ident),cArgs=[],stack9=0;if(args)for(var i=0;i=endIdx);)++endPtr;if(endPtr-idx>16&&heap.subarray&&UTF8Decoder)return UTF8Decoder.decode(heap.subarray(idx,endPtr));for(var str="";idx>10,56320|ch&1023)}}return str}function UTF8ToString(ptr,maxBytesToRead){return ptr?UTF8ArrayToString(HEAPU8,ptr,maxBytesToRead):""}function stringToUTF8Array(str,heap,outIdx,maxBytesToWrite){if(!(maxBytesToWrite>0))return 0;for(var startIdx=outIdx,endIdx=outIdx+maxBytesToWrite-1,i=0;i=55296&&u<=57343){var u1=str.charCodeAt(++i);u=65536+((u&1023)<<10)|u1&1023}if(u<=127){if(outIdx>=endIdx)break;heap[outIdx++]=u}else if(u<=2047){if(outIdx+1>=endIdx)break;heap[outIdx++]=192|u>>6,heap[outIdx++]=128|u&63}else if(u<=65535){if(outIdx+2>=endIdx)break;heap[outIdx++]=224|u>>12,heap[outIdx++]=128|u>>6&63,heap[outIdx++]=128|u&63}else{if(outIdx+3>=endIdx)break;heap[outIdx++]=240|u>>18,heap[outIdx++]=128|u>>12&63,heap[outIdx++]=128|u>>6&63,heap[outIdx++]=128|u&63}}return heap[outIdx]=0,outIdx-startIdx}function stringToUTF8(str,outPtr,maxBytesToWrite){return stringToUTF8Array(str,HEAPU8,outPtr,maxBytesToWrite)}function writeArrayToMemory(array2,buffer12){HEAP8.set(array2,buffer12)}var buffer11,HEAP8,HEAPU8,HEAP16,HEAPU16,HEAP32,HEAPU32,HEAPF32,HEAPF64;function updateGlobalBufferAndViews(buf){buffer11=buf,Module.HEAP8=HEAP8=new Int8Array(buf),Module.HEAP16=HEAP16=new Int16Array(buf),Module.HEAP32=HEAP32=new Int32Array(buf),Module.HEAPU8=HEAPU8=new Uint8Array(buf),Module.HEAPU16=HEAPU16=new Uint16Array(buf),Module.HEAPU32=HEAPU32=new Uint32Array(buf),Module.HEAPF32=HEAPF32=new Float32Array(buf),Module.HEAPF64=HEAPF64=new Float64Array(buf)}var INITIAL_INITIAL_MEMORY=Module.INITIAL_MEMORY||16777216;function callRuntimeCallbacks(callbacks3){for(;callbacks3.length>0;){var callback=callbacks3.shift();if(typeof callback=="function"){callback(Module);continue}var func2=callback.func;typeof func2=="number"?callback.arg===void 0?Module.dynCall_v(func2):Module.dynCall_vi(func2,callback.arg):func2(callback.arg===void 0?null:callback.arg)}}var __ATPRERUN__=[],__ATINIT__=[],__ATMAIN__=[],__ATPOSTRUN__=[],runtimeInitialized=!1,runtimeExited=!1;function preRun(){if(Module.preRun)for(typeof Module.preRun=="function"&&(Module.preRun=[Module.preRun]);Module.preRun.length;)addOnPreRun(Module.preRun.shift());callRuntimeCallbacks(__ATPRERUN__)}function initRuntime(){runtimeInitialized=!0,callRuntimeCallbacks(__ATINIT__)}function preMain(){callRuntimeCallbacks(__ATMAIN__)}function exitRuntime(){runtimeExited=!0}function postRun(){if(Module.postRun)for(typeof Module.postRun=="function"&&(Module.postRun=[Module.postRun]);Module.postRun.length;)addOnPostRun(Module.postRun.shift());callRuntimeCallbacks(__ATPOSTRUN__)}function addOnPreRun(cb){__ATPRERUN__.unshift(cb)}function addOnPostRun(cb){__ATPOSTRUN__.unshift(cb)}var Math_ceil=Math.ceil,Math_floor=Math.floor,runDependencies=0,runDependencyWatcher=null,dependenciesFulfilled=null;function addRunDependency(id){runDependencies++,Module.monitorRunDependencies&&Module.monitorRunDependencies(runDependencies)}function removeRunDependency(id){if(runDependencies--,Module.monitorRunDependencies&&Module.monitorRunDependencies(runDependencies),runDependencies==0&&(runDependencyWatcher!==null&&(clearInterval(runDependencyWatcher),runDependencyWatcher=null),dependenciesFulfilled)){var callback=dependenciesFulfilled;dependenciesFulfilled=null,callback()}}Module.preloadedImages={},Module.preloadedAudios={};function abort(what){throw Module.onAbort&&Module.onAbort(what),what+="",out(what),err(what),ABORT=!0,EXITSTATUS=1,what="abort("+what+"). Build with -s ASSERTIONS=1 for more info.",new WebAssembly.RuntimeError(what)}function hasPrefix(str,prefix){return String.prototype.startsWith?str.startsWith(prefix):str.indexOf(prefix)===0}var dataURIPrefix="data:application/octet-stream;base64,";function isDataURI(filename){return hasPrefix(filename,dataURIPrefix)}var fileURIPrefix="file://";function isFileURI(filename){return hasPrefix(filename,fileURIPrefix)}var wasmBinaryFile="tfjs-backend-wasm.wasm";isDataURI(wasmBinaryFile)||(wasmBinaryFile=locateFile(wasmBinaryFile));function getBinary(){try{if(wasmBinary)return new Uint8Array(wasmBinary);if(readBinary)return readBinary(wasmBinaryFile);throw"both async and sync fetching of the wasm failed"}catch(err2){abort(err2)}}function getBinaryPromise(){return!wasmBinary&&(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER)&&typeof fetch=="function"&&!isFileURI(wasmBinaryFile)?fetch(wasmBinaryFile,{credentials:"same-origin"}).then(function(response){if(!response.ok)throw"failed to load wasm binary file at '"+wasmBinaryFile+"'";return response.arrayBuffer()}).catch(function(){return getBinary()}):new Promise(function(resolve,reject){resolve(getBinary())})}function createWasm(){var info={env:asmLibraryArg,wasi_snapshot_preview1:asmLibraryArg};function receiveInstance(instance,module2){var exports5=instance.exports;Module.asm=exports5,wasmMemory=exports5.memory,updateGlobalBufferAndViews(wasmMemory.buffer),removeRunDependency("wasm-instantiate")}addRunDependency("wasm-instantiate");function receiveInstantiatedSource(output){receiveInstance(output.instance)}function instantiateArrayBuffer(receiver){return getBinaryPromise().then(function(binary){return WebAssembly.instantiate(binary,info)}).then(receiver,function(reason){err("failed to asynchronously prepare wasm: "+reason),abort(reason)})}function instantiateAsync(){if(!wasmBinary&&typeof WebAssembly.instantiateStreaming=="function"&&!isDataURI(wasmBinaryFile)&&!isFileURI(wasmBinaryFile)&&typeof fetch=="function")fetch(wasmBinaryFile,{credentials:"same-origin"}).then(function(response){var result=WebAssembly.instantiateStreaming(response,info);return result.then(receiveInstantiatedSource,function(reason){err("wasm streaming compile failed: "+reason),err("falling back to ArrayBuffer instantiation"),instantiateArrayBuffer(receiveInstantiatedSource)})});else return instantiateArrayBuffer(receiveInstantiatedSource)}if(Module.instantiateWasm)try{var exports4=Module.instantiateWasm(info,receiveInstance);return exports4}catch(e){return err("Module.instantiateWasm callback failed with error: "+e),!1}return instantiateAsync(),{}}__ATINIT__.push();function _emscripten_notify_memory_growth(memoryIndex){updateGlobalBufferAndViews(wasmMemory.buffer)}var PATH={splitPath:function(filename){var splitPathRe=/^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;return splitPathRe.exec(filename).slice(1)},normalizeArray:function(parts,allowAboveRoot){for(var up=0,i=parts.length-1;i>=0;i--){var last=parts[i];last==="."?parts.splice(i,1):last===".."?(parts.splice(i,1),up++):up&&(parts.splice(i,1),up--)}if(allowAboveRoot)for(;up;up--)parts.unshift("..");return parts},normalize:function(path){var isAbsolute=path.charAt(0)==="/",trailingSlash=path.substr(-1)==="/";return path=PATH.normalizeArray(path.split("/").filter(function(p2){return!!p2}),!isAbsolute).join("/"),!path&&!isAbsolute&&(path="."),path&&trailingSlash&&(path+="/"),(isAbsolute?"/":"")+path},dirname:function(path){var result=PATH.splitPath(path),root=result[0],dir=result[1];return!root&&!dir?".":(dir&&(dir=dir.substr(0,dir.length-1)),root+dir)},basename:function(path){if(path==="/")return"/";var lastSlash=path.lastIndexOf("/");return lastSlash===-1?path:path.substr(lastSlash+1)},extname:function(path){return PATH.splitPath(path)[3]},join:function(){var paths=Array.prototype.slice.call(arguments,0);return PATH.normalize(paths.join("/"))},join2:function(l,r){return PATH.normalize(l+"/"+r)}},SYSCALLS={mappings:{},buffers:[null,[],[]],printChar:function(stream,curr){var buffer12=SYSCALLS.buffers[stream];curr===0||curr===10?((stream===1?out:err)(UTF8ArrayToString(buffer12,0)),buffer12.length=0):buffer12.push(curr)},varargs:void 0,get:function(){SYSCALLS.varargs+=4;var ret=HEAP32[SYSCALLS.varargs-4>>2];return ret},getStr:function(ptr){var ret=UTF8ToString(ptr);return ret},get64:function(low,high){return low}};function _fd_close(fd){return 0}function _fd_seek(fd,offset_low,offset_high,whence,newOffset){}function _fd_write(fd,iov,iovcnt,pnum){for(var num=0,i=0;i>2],len=HEAP32[iov+(i*8+4)>>2],j=0;j>2]=num,0}function _exit(status){exit(status)}function _proc_exit(code){_exit(code)}function _roundf(d){return d=+d,d>=0?+Math_floor(d+.5):+Math_ceil(d-.5)}var asmLibraryArg={emscripten_notify_memory_growth:_emscripten_notify_memory_growth,fd_close:_fd_close,fd_seek:_fd_seek,fd_write:_fd_write,proc_exit:_proc_exit,roundf:_roundf},asm=createWasm();Module.asm=asm;var _init=Module._init=function(){return(_init=Module._init=Module.asm.init).apply(null,arguments)},_register_tensor=Module._register_tensor=function(){return(_register_tensor=Module._register_tensor=Module.asm.register_tensor).apply(null,arguments)},_dispose_data=Module._dispose_data=function(){return(_dispose_data=Module._dispose_data=Module.asm.dispose_data).apply(null,arguments)},_dispose=Module._dispose=function(){return(_dispose=Module._dispose=Module.asm.dispose).apply(null,arguments)},_Abs=Module._Abs=function(){return(_Abs=Module._Abs=Module.asm.Abs).apply(null,arguments)},_Add=Module._Add=function(){return(_Add=Module._Add=Module.asm.Add).apply(null,arguments)},_AddN=Module._AddN=function(){return(_AddN=Module._AddN=Module.asm.AddN).apply(null,arguments)},_ArgMax=Module._ArgMax=function(){return(_ArgMax=Module._ArgMax=Module.asm.ArgMax).apply(null,arguments)},_AvgPool=Module._AvgPool=function(){return(_AvgPool=Module._AvgPool=Module.asm.AvgPool).apply(null,arguments)},_BatchMatMul=Module._BatchMatMul=function(){return(_BatchMatMul=Module._BatchMatMul=Module.asm.BatchMatMul).apply(null,arguments)},_ClipByValue=Module._ClipByValue=function(){return(_ClipByValue=Module._ClipByValue=Module.asm.ClipByValue).apply(null,arguments)},_Conv2D=Module._Conv2D=function(){return(_Conv2D=Module._Conv2D=Module.asm.Conv2D).apply(null,arguments)},_Conv2DBackpropInput=Module._Conv2DBackpropInput=function(){return(_Conv2DBackpropInput=Module._Conv2DBackpropInput=Module.asm.Conv2DBackpropInput).apply(null,arguments)},_Cos=Module._Cos=function(){return(_Cos=Module._Cos=Module.asm.Cos).apply(null,arguments)},_CropAndResize=Module._CropAndResize=function(){return(_CropAndResize=Module._CropAndResize=Module.asm.CropAndResize).apply(null,arguments)},_Cumsum=Module._Cumsum=function(){return(_Cumsum=Module._Cumsum=Module.asm.Cumsum).apply(null,arguments)},_DepthToSpace=Module._DepthToSpace=function(){return(_DepthToSpace=Module._DepthToSpace=Module.asm.DepthToSpace).apply(null,arguments)},_DepthwiseConv2dNative=Module._DepthwiseConv2dNative=function(){return(_DepthwiseConv2dNative=Module._DepthwiseConv2dNative=Module.asm.DepthwiseConv2dNative).apply(null,arguments)},_Div=Module._Div=function(){return(_Div=Module._Div=Module.asm.Div).apply(null,arguments)},_Equal=Module._Equal=function(){return(_Equal=Module._Equal=Module.asm.Equal).apply(null,arguments)},_Exp=Module._Exp=function(){return(_Exp=Module._Exp=Module.asm.Exp).apply(null,arguments)},_FlipLeftRight=Module._FlipLeftRight=function(){return(_FlipLeftRight=Module._FlipLeftRight=Module.asm.FlipLeftRight).apply(null,arguments)},_FloorDiv=Module._FloorDiv=function(){return(_FloorDiv=Module._FloorDiv=Module.asm.FloorDiv).apply(null,arguments)},_FusedBatchNorm=Module._FusedBatchNorm=function(){return(_FusedBatchNorm=Module._FusedBatchNorm=Module.asm.FusedBatchNorm).apply(null,arguments)},_FusedConv2D=Module._FusedConv2D=function(){return(_FusedConv2D=Module._FusedConv2D=Module.asm.FusedConv2D).apply(null,arguments)},_FusedDepthwiseConv2D=Module._FusedDepthwiseConv2D=function(){return(_FusedDepthwiseConv2D=Module._FusedDepthwiseConv2D=Module.asm.FusedDepthwiseConv2D).apply(null,arguments)},_Gather=Module._Gather=function(){return(_Gather=Module._Gather=Module.asm.Gather).apply(null,arguments)},_GatherNd=Module._GatherNd=function(){return(_GatherNd=Module._GatherNd=Module.asm.GatherNd).apply(null,arguments)},_Greater=Module._Greater=function(){return(_Greater=Module._Greater=Module.asm.Greater).apply(null,arguments)},_GreaterEqual=Module._GreaterEqual=function(){return(_GreaterEqual=Module._GreaterEqual=Module.asm.GreaterEqual).apply(null,arguments)},_Less=Module._Less=function(){return(_Less=Module._Less=Module.asm.Less).apply(null,arguments)},_LessEqual=Module._LessEqual=function(){return(_LessEqual=Module._LessEqual=Module.asm.LessEqual).apply(null,arguments)},_Log=Module._Log=function(){return(_Log=Module._Log=Module.asm.Log).apply(null,arguments)},_LogicalAnd=Module._LogicalAnd=function(){return(_LogicalAnd=Module._LogicalAnd=Module.asm.LogicalAnd).apply(null,arguments)},_Max=Module._Max=function(){return(_Max=Module._Max=Module.asm.Max).apply(null,arguments)},_MaxPool=Module._MaxPool=function(){return(_MaxPool=Module._MaxPool=Module.asm.MaxPool).apply(null,arguments)},_Maximum=Module._Maximum=function(){return(_Maximum=Module._Maximum=Module.asm.Maximum).apply(null,arguments)},_Min=Module._Min=function(){return(_Min=Module._Min=Module.asm.Min).apply(null,arguments)},_Minimum=Module._Minimum=function(){return(_Minimum=Module._Minimum=Module.asm.Minimum).apply(null,arguments)},_Multiply=Module._Multiply=function(){return(_Multiply=Module._Multiply=Module.asm.Multiply).apply(null,arguments)},_Negate=Module._Negate=function(){return(_Negate=Module._Negate=Module.asm.Negate).apply(null,arguments)},_NonMaxSuppressionV3=Module._NonMaxSuppressionV3=function(){return(_NonMaxSuppressionV3=Module._NonMaxSuppressionV3=Module.asm.NonMaxSuppressionV3).apply(null,arguments)},_NonMaxSuppressionV4=Module._NonMaxSuppressionV4=function(){return(_NonMaxSuppressionV4=Module._NonMaxSuppressionV4=Module.asm.NonMaxSuppressionV4).apply(null,arguments)},_NonMaxSuppressionV5=Module._NonMaxSuppressionV5=function(){return(_NonMaxSuppressionV5=Module._NonMaxSuppressionV5=Module.asm.NonMaxSuppressionV5).apply(null,arguments)},_NotEqual=Module._NotEqual=function(){return(_NotEqual=Module._NotEqual=Module.asm.NotEqual).apply(null,arguments)},_OneHot=Module._OneHot=function(){return(_OneHot=Module._OneHot=Module.asm.OneHot).apply(null,arguments)},_PadV2=Module._PadV2=function(){return(_PadV2=Module._PadV2=Module.asm.PadV2).apply(null,arguments)},_Pow=Module._Pow=function(){return(_Pow=Module._Pow=Module.asm.Pow).apply(null,arguments)},_Prelu=Module._Prelu=function(){return(_Prelu=Module._Prelu=Module.asm.Prelu).apply(null,arguments)},_Relu=Module._Relu=function(){return(_Relu=Module._Relu=Module.asm.Relu).apply(null,arguments)},_Relu6=Module._Relu6=function(){return(_Relu6=Module._Relu6=Module.asm.Relu6).apply(null,arguments)},_ResizeBilinear=Module._ResizeBilinear=function(){return(_ResizeBilinear=Module._ResizeBilinear=Module.asm.ResizeBilinear).apply(null,arguments)},_Reverse=Module._Reverse=function(){return(_Reverse=Module._Reverse=Module.asm.Reverse).apply(null,arguments)},_RotateWithOffset=Module._RotateWithOffset=function(){return(_RotateWithOffset=Module._RotateWithOffset=Module.asm.RotateWithOffset).apply(null,arguments)},_Rsqrt=Module._Rsqrt=function(){return(_Rsqrt=Module._Rsqrt=Module.asm.Rsqrt).apply(null,arguments)},_ScatterNd=Module._ScatterNd=function(){return(_ScatterNd=Module._ScatterNd=Module.asm.ScatterNd).apply(null,arguments)},_SelectV2=Module._SelectV2=function(){return(_SelectV2=Module._SelectV2=Module.asm.SelectV2).apply(null,arguments)},_Sigmoid=Module._Sigmoid=function(){return(_Sigmoid=Module._Sigmoid=Module.asm.Sigmoid).apply(null,arguments)},_Sin=Module._Sin=function(){return(_Sin=Module._Sin=Module.asm.Sin).apply(null,arguments)},_Softmax=Module._Softmax=function(){return(_Softmax=Module._Softmax=Module.asm.Softmax).apply(null,arguments)},_Sqrt=Module._Sqrt=function(){return(_Sqrt=Module._Sqrt=Module.asm.Sqrt).apply(null,arguments)},_Square=Module._Square=function(){return(_Square=Module._Square=Module.asm.Square).apply(null,arguments)},_SquaredDifference=Module._SquaredDifference=function(){return(_SquaredDifference=Module._SquaredDifference=Module.asm.SquaredDifference).apply(null,arguments)},_StridedSlice=Module._StridedSlice=function(){return(_StridedSlice=Module._StridedSlice=Module.asm.StridedSlice).apply(null,arguments)},_Sub=Module._Sub=function(){return(_Sub=Module._Sub=Module.asm.Sub).apply(null,arguments)},_Sum=Module._Sum=function(){return(_Sum=Module._Sum=Module.asm.Sum).apply(null,arguments)},_Tanh=Module._Tanh=function(){return(_Tanh=Module._Tanh=Module.asm.Tanh).apply(null,arguments)},_Tile=Module._Tile=function(){return(_Tile=Module._Tile=Module.asm.Tile).apply(null,arguments)},_Transpose=Module._Transpose=function(){return(_Transpose=Module._Transpose=Module.asm.Transpose).apply(null,arguments)},__FusedMatMul=Module.__FusedMatMul=function(){return(__FusedMatMul=Module.__FusedMatMul=Module.asm._FusedMatMul).apply(null,arguments)},_malloc=Module._malloc=function(){return(_malloc=Module._malloc=Module.asm.malloc).apply(null,arguments)},_free=Module._free=function(){return(_free=Module._free=Module.asm.free).apply(null,arguments)},__start=Module.__start=function(){return(__start=Module.__start=Module.asm._start).apply(null,arguments)},stackSave=Module.stackSave=function(){return(stackSave=Module.stackSave=Module.asm.stackSave).apply(null,arguments)},stackAlloc=Module.stackAlloc=function(){return(stackAlloc=Module.stackAlloc=Module.asm.stackAlloc).apply(null,arguments)},stackRestore=Module.stackRestore=function(){return(stackRestore=Module.stackRestore=Module.asm.stackRestore).apply(null,arguments)};Module.asm=asm,Module.cwrap=cwrap;var calledRun;Module.then=function(func2){if(calledRun)func2(Module);else{var old=Module.onRuntimeInitialized;Module.onRuntimeInitialized=function(){old&&old(),func2(Module)}}return Module};function ExitStatus(status){this.name="ExitStatus",this.message="Program terminated with exit("+status+")",this.status=status}var calledMain=!1;dependenciesFulfilled=function runCaller(){calledRun||run(),calledRun||(dependenciesFulfilled=runCaller)};function callMain(args){var entryFunction=Module.__start;try{entryFunction();var ret=0;exit(ret,!0)}catch(e){if(e instanceof ExitStatus)return;if(e=="unwind"){noExitRuntime=!0;return}else{var toLog=e;e&&typeof e=="object"&&e.stack&&(toLog=[e,e.stack]),err("exception thrown: "+toLog),quit_(1,e)}}finally{calledMain=!0}}function run(args){if(args=args||arguments_,runDependencies>0)return;if(preRun(),runDependencies>0)return;function doRun(){if(calledRun)return;if(calledRun=!0,Module.calledRun=!0,ABORT)return;initRuntime(),preMain(),Module.onRuntimeInitialized&&Module.onRuntimeInitialized(),shouldRunNow&&callMain(args),postRun()}Module.setStatus?(Module.setStatus("Running..."),setTimeout(function(){setTimeout(function(){Module.setStatus("")},1),doRun()},1)):doRun()}Module.run=run;function exit(status,implicit){if(implicit&&noExitRuntime&&status===0)return;noExitRuntime||(ABORT=!0,EXITSTATUS=status,exitRuntime(),Module.onExit&&Module.onExit(status)),quit_(status,new ExitStatus(status))}if(Module.preInit)for(typeof Module.preInit=="function"&&(Module.preInit=[Module.preInit]);Module.preInit.length>0;)Module.preInit.pop()();var shouldRunNow=!0;return Module.noInitialRun&&(shouldRunNow=!1),noExitRuntime=!0,run(),WasmBackendModule2}}();typeof exports3=="object"&&typeof module=="object"?module.exports=WasmBackendModule:typeof define=="function"&&define.amd?define([],function(){return WasmBackendModule}):typeof exports3=="object"&&(exports3.WasmBackendModule=WasmBackendModule)}),EPSILON_FLOAT32=1e-7,EPSILON_FLOAT16=1e-4,DataStorage=class{constructor(backend3,dataMover){this.backend=backend3,this.dataMover=dataMover,this.data=new WeakMap,this.dataIdsCount=0}get(dataId){return this.data.has(dataId)||this.dataMover.moveData(this.backend,dataId),this.data.get(dataId)}set(dataId,value){this.dataIdsCount++,this.data.set(dataId,value)}has(dataId){return this.data.has(dataId)}delete(dataId){return this.dataIdsCount--,this.data.delete(dataId)}numDataIds(){return this.dataIdsCount}},KernelBackend=class{time(f){return notYetImplemented("time")}read(dataId){return notYetImplemented("read")}readSync(dataId){return notYetImplemented("readSync")}numDataIds(){return notYetImplemented("numDataIds")}disposeData(dataId){return notYetImplemented("disposeData")}write(values,shape,dtype){return notYetImplemented("write")}move(dataId,values,shape,dtype){return notYetImplemented("move")}memory(){return notYetImplemented("memory")}floatPrecision(){return notYetImplemented("floatPrecision")}epsilon(){return this.floatPrecision()===32?EPSILON_FLOAT32:EPSILON_FLOAT16}batchMatMul(a,b,transposeA,transposeB){return notYetImplemented("batchMatMul")}fusedBatchMatMul({a,b,transposeA,transposeB,bias,activation:activation2,preluActivationWeights}){return notYetImplemented("fusedBatchMatMul")}slice(x,begin,size){return notYetImplemented("slice")}stridedSlice(x,begin,end,strides){return notYetImplemented("stridedSlice")}unstack(x,axis){return notYetImplemented("unstack")}reverse(a,axis){return notYetImplemented("reverse")}concat(tensors,axis){return notYetImplemented("concat")}neg(a){return notYetImplemented("neg")}add(a,b){return notYetImplemented("add")}addN(tensors){return notYetImplemented("addN")}subtract(a,b){return notYetImplemented("subtract")}multiply(a,b){return notYetImplemented("multiply")}realDivide(a,b){return notYetImplemented("realDivide")}floorDiv(a,b){return notYetImplemented("floorDiv")}sum(x,axes){return notYetImplemented("sum")}prod(x,axes){return notYetImplemented("prod")}unsortedSegmentSum(x,segmentIds,numSegments){return notYetImplemented("unsortedSegmentSum")}argMin(x,axis){return notYetImplemented("argMin")}argMax(x,axis){return notYetImplemented("argMax")}equal(a,b){return notYetImplemented("equal")}notEqual(a,b){return notYetImplemented("notEqual")}less(a,b){return notYetImplemented("less")}lessEqual(a,b){return notYetImplemented("lessEqual")}greater(a,b){return notYetImplemented("greater")}greaterEqual(a,b){return notYetImplemented("greaterEqual")}logicalNot(a){return notYetImplemented("logicalNot")}logicalAnd(a,b){return notYetImplemented("logicalAnd")}logicalOr(a,b){return notYetImplemented("logicalOr")}where(condition){return notYetImplemented("where")}select(condition,a,b){return notYetImplemented("select")}topk(x,k,sorted){return notYetImplemented("topk")}min(x,axes){return notYetImplemented("min")}minimum(a,b){return notYetImplemented("minimum")}mod(a,b){return notYetImplemented("mod")}max(x,axes){return notYetImplemented("max")}maximum(a,b){return notYetImplemented("maximum")}all(x,axes){return notYetImplemented("all")}any(x,axes){return notYetImplemented("any")}squaredDifference(a,b){return notYetImplemented("squaredDifference")}ceil(x){return notYetImplemented("ceil")}floor(x){return notYetImplemented("floor")}round(x){return notYetImplemented("round")}sign(x){return notYetImplemented("sign")}isNaN(x){return notYetImplemented("isNaN")}isInf(x){return notYetImplemented("isInf")}isFinite(x){return notYetImplemented("isFinite")}pow(a,b){return notYetImplemented("pow")}exp(x){return notYetImplemented("exp")}expm1(x){return notYetImplemented("expm1")}softmax(x,dim){return notYetImplemented("softmax")}log(x){return notYetImplemented("log")}log1p(x){return notYetImplemented("log1p")}sqrt(x){return notYetImplemented("sqrt")}rsqrt(x){return notYetImplemented("rsqrt")}square(x){return notYetImplemented("square")}reciprocal(x){return notYetImplemented("reciprocal")}relu(x){return notYetImplemented("relu")}relu6(x){return notYetImplemented("relu6")}prelu(x,a){return notYetImplemented("prelu")}elu(x){return notYetImplemented("elu")}eluDer(dy,y){return notYetImplemented("eluDer")}selu(x){return notYetImplemented("selu")}int(x){return notYetImplemented("int")}clip(x,min8,max10){return notYetImplemented("clip")}abs(x){return notYetImplemented("abs")}complexAbs(x){return notYetImplemented("complexAbs")}sigmoid(x){return notYetImplemented("sigmoid")}softplus(x){return notYetImplemented("softplus")}sin(x){return notYetImplemented("sin")}cos(x){return notYetImplemented("cos")}tan(x){return notYetImplemented("tan")}asin(x){return notYetImplemented("asin")}acos(x){return notYetImplemented("acos")}atan(x){return notYetImplemented("atan")}atan2(a,b){return notYetImplemented("atan2")}sinh(x){return notYetImplemented("sinh")}cosh(x){return notYetImplemented("cosh")}tanh(x){return notYetImplemented("tanh")}asinh(x){return notYetImplemented("asinh")}acosh(x){return notYetImplemented("acosh")}atanh(x){return notYetImplemented("atanh")}erf(x){return notYetImplemented("erf")}step(x,alpha){return notYetImplemented("step")}fusedConv2d({input:input2,filter,convInfo,bias,activation:activation2,preluActivationWeights}){return notYetImplemented("fusedConv2d")}conv2d(x,filter,convInfo){return notYetImplemented("conv2d")}conv2dDerInput(dy,filter,convInfo){return notYetImplemented("conv2dDerInput")}conv2dDerFilter(x,dY,convInfo){return notYetImplemented("conv2dDerFilter")}fusedDepthwiseConv2D({input:input2,filter,convInfo,bias,activation:activation2,preluActivationWeights}){return notYetImplemented("fusedDepthwiseConv2D")}depthwiseConv2D(input2,filter,convInfo){return notYetImplemented("depthwiseConv2D")}depthwiseConv2DDerInput(dy,filter,convInfo){return notYetImplemented("depthwiseConv2DDerInput")}depthwiseConv2DDerFilter(x,dY,convInfo){return notYetImplemented("depthwiseConv2DDerFilter")}conv3d(x,filter,convInfo){return notYetImplemented("conv3d")}conv3dDerInput(dy,filter,convInfo){return notYetImplemented("conv3dDerInput")}conv3dDerFilter(x,dY,convInfo){return notYetImplemented("conv3dDerFilter")}maxPool(x,convInfo){return notYetImplemented("maxPool")}maxPoolBackprop(dy,x,y,convInfo){return notYetImplemented("maxPoolBackprop")}avgPool(x,convInfo){return notYetImplemented("avgPool")}avgPoolBackprop(dy,x,convInfo){return notYetImplemented("avgPoolBackprop")}avgPool3d(x,convInfo){return notYetImplemented("avgPool3d")}avgPool3dBackprop(dy,x,convInfo){return notYetImplemented("avgPool3dBackprop")}maxPool3d(x,convInfo){return notYetImplemented("maxPool3d")}maxPool3dBackprop(dy,x,y,convInfo){return notYetImplemented("maxPool3dBackprop")}reshape(x,shape){return notYetImplemented("reshape")}cast(x,dtype){return notYetImplemented("cast")}tile(x,reps){return notYetImplemented("tile")}pad(x,paddings,constantValue){return notYetImplemented("pad")}transpose(x,perm){return notYetImplemented("transpose")}gather(x,indices,axis){return notYetImplemented("gather")}gatherND(x,indices){return notYetImplemented("gatherND")}scatterND(indices,updates,shape){return notYetImplemented("scatterND")}batchToSpaceND(x,blockShape,crops){return notYetImplemented("batchToSpaceND")}spaceToBatchND(x,blockShape,paddings){return notYetImplemented("spaceToBatchND")}resizeBilinear(x,newHeight,newWidth,alignCorners){return notYetImplemented("resizeBilinear")}resizeBilinearBackprop(dy,x,alignCorners){return notYetImplemented("resizeBilinearBackprop")}resizeNearestNeighbor(x,newHEight,newWidth,alignCorners){return notYetImplemented("resizeNearestNeighbor")}resizeNearestNeighborBackprop(dy,x,alignCorners){return notYetImplemented("resizeNearestNeighborBackprop")}batchNorm(x,mean7,variance,offset,scale2,varianceEpsilon){return notYetImplemented("batchNorm")}localResponseNormalization4D(x,radius,bias,alpha,beta){return notYetImplemented("localResponseNormalization4D")}LRNGrad(dy,inputImage,outputImage,radius,bias,alpha,beta){return notYetImplemented("LRNGrad")}multinomial(logits,normalized,numSamples,seed){return notYetImplemented("multinomial")}oneHot(indices,depth,onValue,offValue){return notYetImplemented("oneHot")}cumsum(x,axis,exclusive,reverse12){return notYetImplemented("cumsum")}nonMaxSuppression(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold){return notYetImplemented("nonMaxSuppression")}fft(x){return notYetImplemented("fft")}ifft(x){return notYetImplemented("ifft")}complex(real8,imag8){return notYetImplemented("complex")}real(input2){return notYetImplemented("real")}imag(input2){return notYetImplemented("imag")}cropAndResize(image3,boxes,boxIndex,cropSize,method,extrapolationValue){return notYetImplemented("cropAndResize")}depthToSpace(x,blockSize,dataFormat){return notYetImplemented("depthToSpace")}split(value,sizeSplits,axis){return notYetImplemented("split")}sparseToDense(sparseIndices,sparseValues,outputShape,defaultValue){return notYetImplemented("sparseToDense")}diag(x){return notYetImplemented("diag")}fill(shape,value,dtype){return notYetImplemented("fill")}onesLike(x){return notYetImplemented("onesLike")}zerosLike(x){return notYetImplemented("zerosLike")}linspace(start,stop,num){return notYetImplemented("linspace")}dispose(){return notYetImplemented("dispose")}};function notYetImplemented(kernelName){throw new Error(`'${kernelName}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function shuffle(array2){let counter=array2.length,temp=0,index=0;for(;counter>0;)index=Math.random()*counter|0,counter--,temp=array2[counter],array2[counter]=array2[index],array2[index]=temp}function clamp(min8,x,max10){return Math.max(min8,Math.min(x,max10))}function nearestLargerEven(val){return val%2===0?val:val+1}function sum(arr){let sum29=0;for(let i=0;ierrorMessagePrefix+` Shapes ${shapeA} and ${shapeB} must match`)}function assertNonNull(a){assert(a!=null,()=>"The input to the tensor constructor must be a non-null value.")}function flatten(arr,result=[],skipTypedArray=!1){if(result==null&&(result=[]),Array.isArray(arr)||isTypedArray(arr)&&!skipTypedArray)for(let i=0;i0,maxCounter){return new Promise((resolve,reject)=>{let tryCount=0,tryFn=()=>{if(checkFn()){resolve();return}tryCount++;let nextBackoff=delayFn(tryCount);if(maxCounter!=null&&tryCount>=maxCounter){reject();return}setTimeout(tryFn,nextBackoff)};tryFn()})}function inferFromImplicitShape(shape,size){let shapeProd=1,implicitIdx=-1;for(let i=0;i=0)shapeProd*=shape[i];else if(shape[i]===-1){if(implicitIdx!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${implicitIdx} and dim ${i}`);implicitIdx=i}else if(shape[i]<0)throw Error(`Shapes can not be < 0. Found ${shape[i]} at dim ${i}`);if(implicitIdx===-1){if(size>0&&size!==shapeProd)throw Error(`Size(${size}) must match the product of shape ${shape}`);return shape}if(shapeProd===0)throw Error(`Cannot infer the missing size in [${shape}] when there are 0 elements`);if(size%shapeProd!==0)throw Error(`The implicit shape can't be a fractional number. Got ${size} / ${shapeProd}`);let newShape=shape.slice();return newShape[implicitIdx]=size/shapeProd,newShape}function parseAxisParam(axis,shape){let rank=shape.length;return axis=axis==null?shape.map((s,i)=>i):[].concat(axis),assert(axis.every(ax=>ax>=-rank&&ax`All values in axis param must be in range [-${rank}, ${rank}) but got axis ${axis}`),assert(axis.every(ax=>isInt(ax)),()=>`All values in axis param must be integers but got axis ${axis}`),axis.map(a=>a<0?rank+a:a)}function squeezeShape(shape,axis){let newShape=[],keptDims=[],isEmptyArray=axis!=null&&Array.isArray(axis)&&axis.length===0,axes=axis==null||isEmptyArray?null:parseAxisParam(axis,shape).sort(),j=0;for(let i=0;ii)&&shape[i]===1&&(newShape.push(shape[i]),keptDims.push(i)),axes[j]<=i&&j++}shape[i]!==1&&(newShape.push(shape[i]),keptDims.push(i))}return{newShape,keptDims}}function getTypedArrayFromDType(dtype,size){let values=null;if(dtype==null||dtype==="float32")values=new Float32Array(size);else if(dtype==="int32")values=new Int32Array(size);else if(dtype==="bool")values=new Uint8Array(size);else throw new Error(`Unknown data type ${dtype}`);return values}function getArrayFromDType(dtype,size){let values=null;if(dtype==null||dtype==="float32")values=new Float32Array(size);else if(dtype==="int32")values=new Int32Array(size);else if(dtype==="bool")values=new Uint8Array(size);else if(dtype==="string")values=new Array(size);else throw new Error(`Unknown data type ${dtype}`);return values}function checkConversionForErrors(vals,dtype){for(let i=0;ibytes+=x.length),bytes}function isString(value){return typeof value=="string"||value instanceof String}function isBoolean(value){return typeof value=="boolean"}function isNumber(value){return typeof value=="number"}function inferDtype(values){return Array.isArray(values)?inferDtype(values[0]):values instanceof Float32Array?"float32":values instanceof Int32Array||values instanceof Uint8Array?"int32":isNumber(values)?"float32":isString(values)?"string":isBoolean(values)?"bool":"float32"}function isFunction(f){return!!(f&&f.constructor&&f.call&&f.apply)}function nearestDivisor(size,start){for(let i=start;i=0;--i)strides[i]=strides[i+1]*shape[i+1];return strides}function createNestedArray(offset,shape,a){let ret=new Array;if(shape.length===1){let d=shape[0];for(let i=0;iacc*c);for(let i=0;iacc*c);if(size===0)return[];if(size!==a.length)throw new Error(`[${shape}] does not match the input size ${a.length}.`);return createNestedArray(0,shape,a)}function makeOnesTypedArray(size,dtype){let array2=makeZerosTypedArray(size,dtype);for(let i=0;iprev*curr,1);if(dtype==null||dtype==="float32")return toNestedArray(shape,new Float32Array(size));if(dtype==="int32")return toNestedArray(shape,new Int32Array(size));if(dtype==="bool")return toNestedArray(shape,new Uint8Array(size));throw new Error(`Unknown data type ${dtype}`)}function assertNonNegativeIntegerDimensions(shape){shape.forEach(dimSize=>{assert(Number.isInteger(dimSize)&&dimSize>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${shape}].`)})}function locToIndex(locs,rank,strides){if(rank===0)return 0;if(rank===1)return locs[0];let index=locs[locs.length-1];for(let i=0;i{let[key,value]=keyValue.split(":");this.urlFlags[key]=parseValue(key,value)})}}};function getQueryParams(queryString){let params={};return queryString.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(s,...t)=>(decodeParam(params,t[0],t[1]),t.join("="))),params}function decodeParam(params,name,value){params[decodeURIComponent(name)]=decodeURIComponent(value||"")}function parseValue(flagName,value){if(value=value.toLowerCase(),value==="true"||value==="false")return value==="true";if(`${+value}`===value)return+value;throw new Error(`Could not parse value flag value ${value} for flag ${flagName}.`)}function env(){return ENV}var ENV=null;function setEnvironmentGlobal(environment15){ENV=environment15}var globalNameSpace;function getGlobalNamespace(){if(globalNameSpace==null){let ns;if(typeof window!="undefined")ns=window;else if(typeof global!="undefined")ns=global;else if(typeof process!="undefined")ns=process;else if(typeof self!="undefined")ns=self;else throw new Error("Could not find a global object");globalNameSpace=ns}return globalNameSpace}function getGlobalMap(){let ns=getGlobalNamespace();return ns._tfGlobals==null&&(ns._tfGlobals=new Map),ns._tfGlobals}function getGlobal(key,init2){let globalMap=getGlobalMap();if(globalMap.has(key))return globalMap.get(key);{let singleton=init2();return globalMap.set(key,singleton),globalMap.get(key)}}var Abs="Abs",Acos="Acos",Acosh="Acosh",Add="Add",AddN="AddN",All="All",Any="Any",ArgMax="ArgMax",ArgMin="ArgMin",Asin="Asin",Asinh="Asinh",Atan="Atan",Atanh="Atanh",Atan2="Atan2",AvgPool="AvgPool",AvgPoolBackprop="AvgPoolBackprop",AvgPool3D="AvgPool3D",AvgPool3DBackprop="AvgPool3DBackprop",BatchMatMul="BatchMatMul",BatchToSpaceND="BatchToSpaceND",BroadcastTo="BroadcastTo",Cast="Cast",Ceil="Ceil",ClipByValue="ClipByValue",Complex="Complex",Concat="Concat",Conv2D="Conv2D",Conv2DBackpropFilter="Conv2DBackpropFilter",Conv2DBackpropInput="Conv2DBackpropInput",Conv3D="Conv3D",Conv3DBackpropFilterV2="Conv3DBackpropFilterV2",Conv3DBackpropInputV2="Conv3DBackpropInputV2",Cos="Cos",Cosh="Cosh",Cumsum="Cumsum",CropAndResize="CropAndResize",DepthToSpace="DepthToSpace",DepthwiseConv2dNative="DepthwiseConv2dNative",DepthwiseConv2dNativeBackpropFilter="DepthwiseConv2dNativeBackpropFilter",DepthwiseConv2dNativeBackpropInput="DepthwiseConv2dNativeBackpropInput",Diag="Diag",Dilation2D="Dilation2D",Dilation2DBackpropInput="Dilation2DBackpropInput",Dilation2DBackpropFilter="Dilation2DBackpropFilter",Div="Div",Elu="Elu",EluGrad="EluGrad",Erf="Erf",Equal="Equal",Exp="Exp",Expm1="Expm1",FFT="FFT",Fill="Fill",FlipLeftRight="FlipLeftRight",Floor="Floor",FloorDiv="FloorDiv",FusedBatchNorm="FusedBatchNorm",GatherV2="GatherV2",GatherNd="GatherNd",Greater="Greater",GreaterEqual="GreaterEqual",Identity="Identity",IFFT="IFFT",Imag="Imag",IsFinite="IsFinite",IsInf="IsInf",IsNan="IsNan",Less="Less",LessEqual="LessEqual",LinSpace="LinSpace",Log="Log",Log1p="Log1p",LogicalAnd="LogicalAnd",LogicalNot="LogicalNot",LogicalOr="LogicalOr",LogSoftmax="LogSoftmax",LRN="LRN",LRNBackprop="LRNBackprop",Max="Max",Maximum="Maximum",MaxPool="MaxPool",MaxPoolBackprop="MaxPoolBackprop",MaxPool3D="MaxPool3D",MaxPool3DBackprop="MaxPool3DBackprop",MaxPoolWithArgmax="MaxPoolWithArgmax",Mean="Mean",Min="Min",Minimum="Minimum",MirrorPad="MirrorPad",Mod="Mod",Multiply="Multiply",Negate="Negate",NotEqual="NotEqual",NonMaxSuppressionV3="NonMaxSuppressionV3",NonMaxSuppressionV4="NonMaxSuppressionV4",NonMaxSuppressionV5="NonMaxSuppressionV5",OnesLike="OnesLike",OneHot="OneHot",PadV2="PadV2",Pool="Pool",Pow="Pow",Prelu="Prelu",Prod="Prod",Range="Range",Real="Real",Reciprocal="Reciprocal",Relu="Relu",Reshape="Reshape",ResizeNearestNeighbor="ResizeNearestNeighbor",ResizeNearestNeighborGrad="ResizeNearestNeighborGrad",ResizeBilinear="ResizeBilinear",ResizeBilinearGrad="ResizeBilinearGrad",Relu6="Relu6",Reverse="Reverse",Round="Round",Rsqrt="Rsqrt",ScatterNd="ScatterNd",SelectV2="SelectV2",Selu="Selu",Slice="Slice",Sin="Sin",Sinh="Sinh",Sign="Sign",Sigmoid="Sigmoid",Softplus="Softplus",Sqrt="Sqrt",Sum="Sum",SpaceToBatchND="SpaceToBatchND",SplitV="SplitV",Softmax="Softmax",SquaredDifference="SquaredDifference",Square="Square",Sub="Sub",SparseToDense="SparseToDense",StridedSlice="StridedSlice",Tan="Tan",Tanh="Tanh",Tile="Tile",TopK="TopK",Transpose="Transpose",Unique="Unique",Unpack="Unpack",UnsortedSegmentSum="UnsortedSegmentSum",ZerosLike="ZerosLike",Step="Step",FromPixels="FromPixels",RotateWithOffset="RotateWithOffset",_FusedMatMul="_FusedMatMul",FusedConv2D="FusedConv2D",FusedDepthwiseConv2D="FusedDepthwiseConv2D",kernelRegistry=getGlobal("kernelRegistry",()=>new Map),gradRegistry=getGlobal("gradRegistry",()=>new Map);function getKernel(kernelName,backendName){let key=makeKey(kernelName,backendName);return kernelRegistry.get(key)}function getGradient(kernelName){return gradRegistry.get(kernelName)}function getKernelsForBackend(backendName){let it=kernelRegistry.entries(),result=[];for(;;){let{done,value}=it.next();if(done)break;let[key,config]=value,[backend3]=key.split("_");backend3===backendName&&result.push(config)}return result}function registerKernel(config){let{kernelName,backendName}=config,key=makeKey(kernelName,backendName);kernelRegistry.has(key)&&console.warn(`The kernel '${kernelName}' for backend '${backendName}' is already registered`),kernelRegistry.set(key,config)}function registerGradient(config){let{kernelName}=config;gradRegistry.has(kernelName)&&env().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${kernelName}'`),gradRegistry.set(kernelName,config)}function unregisterKernel(kernelName,backendName){let key=makeKey(kernelName,backendName);if(!kernelRegistry.has(key))throw new Error(`The kernel '${kernelName}' for backend '${backendName}' is not registered`);kernelRegistry.delete(key)}function unregisterGradient(kernelName){if(!gradRegistry.has(kernelName))throw new Error(`The gradient '${kernelName}' for backend is not registered`);gradRegistry.delete(kernelName)}function copyRegisteredKernels(registeredBackendName,newBackendName){let kernels=getKernelsForBackend(registeredBackendName);kernels.forEach(kernelConfig=>{let newKernelConfig=Object.assign({},kernelConfig,{backendName:newBackendName});registerKernel(newKernelConfig)})}function makeKey(kernelName,backendName){return`${backendName}_${kernelName}`}var util_exports={};__export2(util_exports,{arraysEqual:()=>arraysEqual,assert:()=>assert,assertNonNegativeIntegerDimensions:()=>assertNonNegativeIntegerDimensions,assertNonNull:()=>assertNonNull,assertShapesMatch:()=>assertShapesMatch,bytesFromStringArray:()=>bytesFromStringArray,bytesPerElement:()=>bytesPerElement,checkConversionForErrors:()=>checkConversionForErrors,clamp:()=>clamp,computeStrides:()=>computeStrides,createScalarValue:()=>createScalarValue,createShuffledIndices:()=>createShuffledIndices,decodeString:()=>decodeString,distSquared:()=>distSquared,encodeString:()=>encodeString,fetch:()=>fetch2,flatten:()=>flatten,getArrayFromDType:()=>getArrayFromDType,getTypedArrayFromDType:()=>getTypedArrayFromDType,hasEncodingLoss:()=>hasEncodingLoss,indexToLoc:()=>indexToLoc,inferDtype:()=>inferDtype,inferFromImplicitShape:()=>inferFromImplicitShape,isBoolean:()=>isBoolean,isFunction:()=>isFunction,isInt:()=>isInt,isNumber:()=>isNumber,isPromise:()=>isPromise,isScalarShape:()=>isScalarShape,isString:()=>isString,isTypedArray:()=>isTypedArray,isValidDtype:()=>isValidDtype,locToIndex:()=>locToIndex,makeOnesTypedArray:()=>makeOnesTypedArray,makeZerosNestedTypedArray:()=>makeZerosNestedTypedArray,makeZerosTypedArray:()=>makeZerosTypedArray,nearestDivisor:()=>nearestDivisor,nearestLargerEven:()=>nearestLargerEven,now:()=>now,parseAxisParam:()=>parseAxisParam,randUniform:()=>randUniform,repeatedTry:()=>repeatedTry,rightPad:()=>rightPad,shuffle:()=>shuffle,sizeFromShape:()=>sizeFromShape,sizeToSquarishShape:()=>sizeToSquarishShape,squeezeShape:()=>squeezeShape,sum:()=>sum,tanh:()=>tanh,toNestedArray:()=>toNestedArray,toTypedArray:()=>toTypedArray});function createScalarValue(value,dtype){return dtype==="string"?encodeString(value):toTypedArray([value],dtype)}function noConversionNeeded(a,dtype){return a instanceof Float32Array&&dtype==="float32"||a instanceof Int32Array&&dtype==="int32"||a instanceof Uint8Array&&dtype==="bool"}function toTypedArray(a,dtype){if(dtype==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(a)&&(a=flatten(a)),env().getBool("DEBUG")&&checkConversionForErrors(a,dtype),noConversionNeeded(a,dtype))return a;if(dtype==null||dtype==="float32"||dtype==="complex64")return new Float32Array(a);if(dtype==="int32")return new Int32Array(a);if(dtype==="bool"){let bool=new Uint8Array(a.length);for(let i=0;i{outputs=f()},timer=this.backendTimer.time(holdResultWrapperFn);for(let i=0;i{checkComputationForErrors(tensorVals,output.dtype,kernelName)})}let kernelProfile={kernelName,outputs,inputs,timeMs:timer.then(timing=>timing.kernelMs),extraInfo:timer.then(timing=>timing.getExtraProfileInfo!=null?timing.getExtraProfileInfo():"")};return kernelProfile}logKernelProfile(kernelProfile){let{kernelName,outputs,timeMs,inputs,extraInfo}=kernelProfile;outputs.forEach(result=>{Promise.all([result.data(),timeMs,extraInfo]).then(valueContainer=>{this.logger.logKernelProfile(kernelName,result,valueContainer[0],valueContainer[1],inputs,valueContainer[2])})})}};function checkComputationForErrors(vals,dtype,kernelName){if(dtype!=="float32")return!1;for(let i=0;i0?inputShape:""} `}}console.log(`%c${paddedName} %c${time2} %c${rank}D ${shape} %c${size} %c${inputShapesDescription} %c${extraInfo}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function getFilteredNodesXToY(tape2,xs,y){let tensorsFromX={},nodesFromX={};for(let i=0;itensorsFromX[output.id]=!0),anyInputFromX=!0,nodesFromX[node.id]=!0;break}if(anyInputFromX)break}}let tensorsLeadToY={};tensorsLeadToY[y.id]=!0;let nodesToY={};for(let i=tape2.length-1;i>=0;i--){let node=tape2[i],nodeInputs=node.inputs;for(let j=0;j=0;i--){let node=filteredTape[i],dys=[];if(node.outputs.forEach(o=>{let gradTensor=tensorAccumulatedGradientMap[o.id];gradTensor!=null?dys.push(gradTensor):dys.push(null)}),node.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${node.kernelName}.`);let inputGradients=node.gradient(dys);for(let inputName in node.inputs){if(!(inputName in inputGradients))throw new Error(`Cannot backprop through input ${inputName}. Available gradients found: ${Object.keys(inputGradients)}.`);let dx=tidy2(()=>inputGradients[inputName]());if(dx.dtype!=="float32")throw new Error(`Error in gradient for op ${node.kernelName}. The gradient of input ${inputName} must have 'float32' dtype, but has '${dx.dtype}'`);let x=node.inputs[inputName];if(!arraysEqual(dx.shape,x.shape))throw new Error(`Error in gradient for op ${node.kernelName}. The gradient of input '${inputName}' has shape '${dx.shape}', which does not match the shape of the input '${x.shape}'`);if(tensorAccumulatedGradientMap[x.id]==null)tensorAccumulatedGradientMap[x.id]=dx;else{let curGradient=tensorAccumulatedGradientMap[x.id];tensorAccumulatedGradientMap[x.id]=add33(curGradient,dx),curGradient.dispose()}}}}var FORMAT_LIMIT_NUM_VALS=20,FORMAT_NUM_FIRST_LAST_VALS=3,FORMAT_NUM_SIG_DIGITS=7;function tensorToString(vals,shape,dtype,verbose){let strides=computeStrides(shape),padPerCol=computeMaxSizePerColumn(vals,shape,dtype,strides),rank=shape.length,valsLines=subTensorToString(vals,shape,dtype,strides,padPerCol),lines=["Tensor"];return verbose&&(lines.push(` dtype: ${dtype}`),lines.push(` rank: ${rank}`),lines.push(` shape: [${shape}]`),lines.push(" values:")),lines.push(valsLines.map(l=>" "+l).join(` `)),lines.join(` `)}function computeMaxSizePerColumn(vals,shape,dtype,strides){let n=sizeFromShape(shape),numCols=strides[strides.length-1],padPerCol=new Array(numCols).fill(0),rank=shape.length,valuesOrTuples=dtype==="complex64"?createComplexTuples(vals):vals;if(rank>1)for(let row=0;rowFORMAT_LIMIT_NUM_VALS){let firstValsSize=FORMAT_NUM_FIRST_LAST_VALS*storagePerElement,firstVals=Array.from(vals.slice(0,firstValsSize)),lastVals=Array.from(vals.slice((size-FORMAT_NUM_FIRST_LAST_VALS)*storagePerElement,size*storagePerElement));return dtype==="complex64"&&(firstVals=createComplexTuples(firstVals),lastVals=createComplexTuples(lastVals)),["["+firstVals.map((x,i)=>valToString(x,padPerCol[i],dtype)).join(", ")+", ..., "+lastVals.map((x,i)=>valToString(x,padPerCol[size-FORMAT_NUM_FIRST_LAST_VALS+i],dtype)).join(", ")+"]"]}let displayVals=dtype==="complex64"?createComplexTuples(vals):Array.from(vals);return["["+displayVals.map((x,i)=>valToString(x,padPerCol[i],dtype)).join(", ")+"]"]}let subshape=shape.slice(1),substrides=strides.slice(1),stride=strides[0]*storagePerElement,lines=[];if(size>FORMAT_LIMIT_NUM_VALS){for(let i=0;i`Length of values '${n}' does not match the size inferred by the shape '${this.size}'.`)}if(dtype==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=values||getArrayFromDType(dtype,this.size),this.strides=computeStrides(shape)}set(value,...locs){locs.length===0&&(locs=[0]),assert(locs.length===this.rank,()=>`The number of provided coordinates (${locs.length}) must match the rank (${this.rank})`);let index=this.locToIndex(locs);this.values[index]=value}get(...locs){locs.length===0&&(locs=[0]);let i=0;for(let loc of locs){if(loc<0||loc>=this.shape[i]){let msg=`Requested out of range element at ${locs}. Buffer shape=${this.shape}`;throw new Error(msg)}i++}let index=locs[locs.length-1];for(let i2=0;i2decodeString(b))}catch(_a){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return data2}dataSync(){this.throwIfDisposed();let data2=trackerFn().readSync(this.dataId);if(this.dtype==="string")try{return data2.map(b=>decodeString(b))}catch(_a){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return data2}async bytes(){this.throwIfDisposed();let data2=await trackerFn().read(this.dataId);return this.dtype==="string"?data2:new Uint8Array(data2.buffer)}dispose(){if(this.isDisposed)return;trackerFn().disposeTensor(this),this.isDisposedInternal=!0}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(verbose=!1){return opHandler.print(this,verbose)}clone(){return this.throwIfDisposed(),opHandler.clone(this)}toString(verbose=!1){let vals=this.dataSync();return tensorToString(vals,this.shape,this.dtype,verbose)}cast(dtype){return this.throwIfDisposed(),opHandler.cast(this,dtype)}variable(trainable=!0,name,dtype){return this.throwIfDisposed(),trackerFn().makeVariable(this,trainable,name,dtype)}};Object.defineProperty(Tensor,Symbol.hasInstance,{value:instance=>!!instance&&instance.data!=null&&instance.dataSync!=null&&instance.throwIfDisposed!=null});var Variable=class extends Tensor{constructor(initialValue,trainable,name,tensorId){super(initialValue.shape,initialValue.dtype,initialValue.dataId,tensorId);this.trainable=trainable,this.name=name}assign(newValue){if(newValue.dtype!==this.dtype)throw new Error(`dtype of the new value (${newValue.dtype}) and previous value (${this.dtype}) must match`);if(!arraysEqual(newValue.shape,this.shape))throw new Error(`shape of the new value (${newValue.shape}) and previous value (${this.shape}) must match`);trackerFn().disposeTensor(this),this.dataId=newValue.dataId,trackerFn().incRef(this,null)}dispose(){trackerFn().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Variable,Symbol.hasInstance,{value:instance=>instance instanceof Tensor&&instance.assign!=null&&instance.assign instanceof Function});var tensor_util_exports={};__export2(tensor_util_exports,{assertTypesMatch:()=>assertTypesMatch,getTensorsInContainer:()=>getTensorsInContainer,isTensorInList:()=>isTensorInList,makeTypesMatch:()=>makeTypesMatch});var Rank;(function(Rank2){Rank2.R0="R0",Rank2.R1="R1",Rank2.R2="R2",Rank2.R3="R3",Rank2.R4="R4",Rank2.R5="R5",Rank2.R6="R6"})(Rank||(Rank={}));var UpcastInt32AndMap;(function(UpcastInt32AndMap2){UpcastInt32AndMap2.float32="float32",UpcastInt32AndMap2.int32="int32",UpcastInt32AndMap2.bool="int32",UpcastInt32AndMap2.complex64="complex64"})(UpcastInt32AndMap||(UpcastInt32AndMap={}));var UpcastBoolAndMap;(function(UpcastBoolAndMap2){UpcastBoolAndMap2.float32="float32",UpcastBoolAndMap2.int32="int32",UpcastBoolAndMap2.bool="bool",UpcastBoolAndMap2.complex64="complex64"})(UpcastBoolAndMap||(UpcastBoolAndMap={}));var UpcastFloat32AndMap;(function(UpcastFloat32AndMap2){UpcastFloat32AndMap2.float32="float32",UpcastFloat32AndMap2.int32="float32",UpcastFloat32AndMap2.bool="float32",UpcastFloat32AndMap2.complex64="complex64"})(UpcastFloat32AndMap||(UpcastFloat32AndMap={}));var UpcastComplex64AndMap;(function(UpcastComplex64AndMap2){UpcastComplex64AndMap2.float32="complex64",UpcastComplex64AndMap2.int32="complex64",UpcastComplex64AndMap2.bool="complex64",UpcastComplex64AndMap2.complex64="complex64"})(UpcastComplex64AndMap||(UpcastComplex64AndMap={}));var upcastTypeMap={float32:UpcastFloat32AndMap,int32:UpcastInt32AndMap,bool:UpcastBoolAndMap,complex64:UpcastComplex64AndMap};function upcastType(typeA,typeB){if(typeA==="string"||typeB==="string"){if(typeA==="string"&&typeB==="string")return"string";throw new Error(`Can not upcast ${typeA} with ${typeB}`)}return upcastTypeMap[typeA][typeB]}function sumOutType(type){return upcastType(type,"int32")}function makeTypesMatch(a,b){if(a.dtype===b.dtype)return[a,b];let dtype=upcastType(a.dtype,b.dtype);return[a.cast(dtype),b.cast(dtype)]}function assertTypesMatch(a,b){assert(a.dtype===b.dtype,()=>`The dtypes of the first(${a.dtype}) and second(${b.dtype}) input must match`)}function isTensorInList(tensor168,tensorList){return tensorList.some(x=>x.id===tensor168.id)}function getTensorsInContainer(result){let list=[],seen=new Set;return walkTensorContainer(result,list,seen),list}function walkTensorContainer(container2,list,seen){if(container2==null)return;if(container2 instanceof Tensor){list.push(container2);return}if(!isIterable(container2))return;let iterable=container2;for(let k in iterable){let val=iterable[k];seen.has(val)||(seen.add(val),walkTensorContainer(val,list,seen))}}function isIterable(obj){return Array.isArray(obj)||typeof obj=="object"}var EngineState=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null}}dispose(){for(let variableName in this.registeredVariables)this.registeredVariables[variableName].dispose()}},Engine=class{constructor(ENV5){this.ENV=ENV5,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new EngineState}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let sortedBackends=this.getSortedBackends();for(let i=0;i{kernel.setupFunc!=null&&kernel.setupFunc(this.backendInstance)})}disposeRegisteredKernels(backendName){let kernels=getKernelsForBackend(backendName);kernels.forEach(kernel=>{kernel.disposeFunc!=null&&kernel.disposeFunc(this.registry[backendName])})}initializeBackend(backendName){let registryFactoryEntry=this.registryFactory[backendName];if(registryFactoryEntry==null)throw new Error(`Cannot initialize backend ${backendName}, no registration found.`);try{let backend3=registryFactoryEntry.factory();if(backend3&&!(backend3 instanceof KernelBackend)&&typeof backend3.then=="function"){let promiseId=++this.pendingBackendInitId,success=backend3.then(backendInstance=>promiseId(promiseIdthis.registryFactory[b].priority-this.registryFactory[a].priority)}initializeBackendsAndReturnBest(){let sortedBackends=this.getSortedBackends();for(let i=0;ithis.startScope(name),()=>this.endScope(result),()=>(result=fn(),result instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),result))}scopedRun(start,end,f){start();try{let res=f();return end(),res}catch(ex){throw end(),ex}}nextTensorId(){return Engine.nextTensorId++}nextVariableId(){return Engine.nextVariableId++}clone(x){let y=this.makeTensorFromDataId(x.dataId,x.shape,x.dtype),inputs={x},grad2=dy=>({x:()=>{let dtype="float32",gradInputs={x:dy},attrs={dtype};return ENGINE.runKernelFunc(backend3=>backend3.cast(dy,dtype),gradInputs,null,Cast,attrs)}}),saved=[];return this.addTapeNode(this.state.activeScope.name,inputs,[y],grad2,saved,{}),y}runKernel(kernelName,inputs,attrs,inputsToSave,outputsToSave){let forwardFunc=null,backwardsFunc=null;return this.runKernelFunc(forwardFunc,inputs,backwardsFunc,kernelName,attrs,inputsToSave,outputsToSave)}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(kernelName,numDataIdsBefore,outInfos){let numDataIdsAfter=this.backend.numDataIds(),numOutputDataIds=0;outInfos.forEach(info=>{numOutputDataIds+=info.dtype==="complex64"?3:1});let numMoves=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],dataIdsLeaked=numDataIdsAfter-numDataIdsBefore-numOutputDataIds-numMoves;if(dataIdsLeaked>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${dataIdsLeaked} data ids) after running '${kernelName}'`)}runKernelFunc(forwardFunc,inputs,backwardsFunc,kernelName,attrs,inputsToSave,outputsToSave){let outputs,saved=[],isTapeOn=this.isTapeOn();kernelName==null&&(kernelName=this.state.activeScope!=null?this.state.activeScope.name:"");let startingBytecount=this.state.numBytes,startingNumTensors=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let kernelFunc3,kernel=getKernel(kernelName,this.backendName),out;if(kernel!=null)kernelFunc3=()=>{let numDataIdsBefore=this.backend.numDataIds();out=kernel.kernelFunc({inputs,attrs,backend:this.backend});let outInfos=Array.isArray(out)?out:[out];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(kernelName,numDataIdsBefore,outInfos);let outTensors=outInfos.map(({dataId,shape,dtype})=>this.makeTensorFromDataId(dataId,shape,dtype));if(isTapeOn){let tensorsToSave=this.getTensorsForGradient(kernelName,inputs,outTensors);if(tensorsToSave==null){outputsToSave==null&&(outputsToSave=[]);let outsToSave=outTensors.filter((_,i)=>outputsToSave[i]);tensorsToSave=(inputsToSave||[]).slice().concat(outsToSave)}saved=this.saveTensorsForBackwardMode(tensorsToSave)}return outTensors};else{let saveFunc=tensors=>{if(!isTapeOn)return;saved=tensors.map(tensor168=>this.keep(this.clone(tensor168)))};kernelFunc3=()=>{let numDataIdsBefore=this.backend.numDataIds();out=this.tidy(()=>forwardFunc(this.backend,saveFunc));let outs=Array.isArray(out)?out:[out];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(kernelName,numDataIdsBefore,outs),outs}}let kernelProfile;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?outputs=kernelFunc3():(kernelProfile=this.profiler.profileKernel(kernelName,inputs,()=>kernelFunc3()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(kernelProfile),outputs=kernelProfile.outputs)}),isTapeOn&&this.addTapeNode(kernelName,inputs,outputs,backwardsFunc,saved,attrs),this.state.profiling&&this.state.activeProfile.kernels.push({name:kernelName,bytesAdded:this.state.numBytes-startingBytecount,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-startingNumTensors,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(inputs).map(key=>inputs[key]!=null?inputs[key].shape:null),outputShapes:outputs.map(item=>item.shape),kernelTimeMs:kernelProfile.timeMs,extraInfo:kernelProfile.extraInfo}),Array.isArray(out)?outputs:outputs[0]}saveTensorsForBackwardMode(tensors){let saved=tensors.map(tensor168=>this.keep(this.clone(tensor168)));return saved}getTensorsForGradient(kernelName,inputs,outputs){let gradConfig=getGradient(kernelName);if(gradConfig!=null){let inputsToSave=gradConfig.inputsToSave||[],outputsToSave=gradConfig.outputsToSave||[],inputTensorsToSave;gradConfig.saveAllInputs?(assert(Array.isArray(inputs),()=>"saveAllInputs is true, expected inputs to be an array."),inputTensorsToSave=Object.keys(inputs).map(key=>inputs[key])):inputTensorsToSave=inputsToSave.map(inputName=>inputs[inputName]);let outputTensorsToSave=outputs.filter((_,i)=>outputsToSave[i]);return inputTensorsToSave.concat(outputTensorsToSave)}return null}makeTensor(values,shape,dtype,backend3){if(values==null)throw new Error("Values passed to engine.makeTensor() are null");dtype=dtype||"float32",backend3=backend3||this.backend;let backendVals=values;dtype==="string"&&isString(values[0])&&(backendVals=values.map(d=>encodeString(d)));let dataId=backend3.write(backendVals,shape,dtype),t=new Tensor(shape,dtype,dataId,this.nextTensorId());if(this.incRef(t,backend3),dtype==="string"){let info=this.state.tensorInfo.get(dataId),newBytes=bytesFromStringArray(backendVals);this.state.numBytes+=newBytes-info.bytes,info.bytes=newBytes}return t}makeTensorFromDataId(dataId,shape,dtype,backend3){dtype=dtype||"float32";let t=new Tensor(shape,dtype,dataId,this.nextTensorId());return this.incRef(t,backend3),t}makeVariable(initialValue,trainable=!0,name,dtype){name=name||this.nextVariableId().toString(),dtype!=null&&dtype!==initialValue.dtype&&(initialValue=initialValue.cast(dtype));let v=new Variable(initialValue,trainable,name,this.nextTensorId());if(this.state.registeredVariables[v.name]!=null)throw new Error(`Variable with name ${v.name} was already registered`);return this.state.registeredVariables[v.name]=v,this.incRef(v,this.backend),v}incRef(a,backend3){let refCount=this.state.tensorInfo.has(a.dataId)?this.state.tensorInfo.get(a.dataId).refCount:0;if(this.state.numTensors++,a.dtype==="string"&&this.state.numStringTensors++,refCount===0){this.state.numDataBuffers++;let bytes=0;a.dtype!=="complex64"&&a.dtype!=="string"&&(bytes=a.size*bytesPerElement(a.dtype)),this.state.tensorInfo.set(a.dataId,{backend:backend3||this.backend,dtype:a.dtype,shape:a.shape,bytes,refCount:0}),this.state.numBytes+=bytes}this.state.tensorInfo.get(a.dataId).refCount++,a instanceof Variable||this.track(a)}disposeTensor(a){if(!this.state.tensorInfo.has(a.dataId))return;this.state.numTensors--,a.dtype==="string"&&this.state.numStringTensors--;let info=this.state.tensorInfo.get(a.dataId),refCount=info.refCount;refCount<=1?(a.dtype!=="complex64"&&(this.state.numBytes-=info.bytes),this.state.numDataBuffers--,info.backend.disposeData(a.dataId),this.state.tensorInfo.delete(a.dataId)):this.state.tensorInfo.get(a.dataId).refCount--}disposeVariables(){for(let varName in this.state.registeredVariables){let v=this.state.registeredVariables[varName];this.disposeVariable(v)}}disposeVariable(v){this.disposeTensor(v),this.state.registeredVariables[v.name]!=null&&delete this.state.registeredVariables[v.name]}memory(){let info=this.backend.memory();return info.numTensors=this.state.numTensors,info.numDataBuffers=this.state.numDataBuffers,info.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(info.unreliable=!0,info.reasons==null&&(info.reasons=[]),info.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),info}async profile(query){this.state.profiling=!0;let startBytes=this.state.numBytes,startNumTensors=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await query(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(d=>d.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-startBytes,this.state.activeProfile.newTensors=this.state.numTensors-startNumTensors;for(let kernel of this.state.activeProfile.kernels)kernel.kernelTimeMs=await kernel.kernelTimeMs,kernel.extraInfo=await kernel.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(kernelName,inputs,outputs,gradientsFunc,saved,attrs){let tapeNode={id:this.state.nextTapeNodeId++,kernelName,inputs,outputs,saved},gradConfig=getGradient(kernelName);gradConfig!=null&&(gradientsFunc=gradConfig.gradFunc),gradientsFunc!=null&&(tapeNode.gradient=dys=>(dys=dys.map((dy,i)=>{if(dy==null){let output=outputs[i],vals=makeZerosTypedArray(output.size,output.dtype);return this.makeTensor(vals,output.shape,output.dtype)}return dy}),gradientsFunc(dys.length>1?dys:dys[0],saved,attrs))),this.state.activeTape.push(tapeNode)}keep(result){return result.kept=!0,result}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(name){let scopeInfo={track:[],name:"unnamed scope",id:this.state.nextScopeId++};name&&(scopeInfo.name=name),this.state.scopeStack.push(scopeInfo),this.state.activeScope=scopeInfo}endScope(result){let tensorsToTrackInParent=getTensorsInContainer(result),tensorsToTrackInParentSet=new Set(tensorsToTrackInParent.map(t=>t.id));for(let i=0;i{!tensor168.kept&&tensor168.scopeId===oldScope.id&&this.track(tensor168)})}gradients(f,xs,dy,allowNoGradients=!1){if(assert(xs.length>0,()=>"gradients() received an empty list of xs."),dy!=null&&dy.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${dy.dtype}'`);let y=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",f));assert(y instanceof Tensor,()=>"The result y returned by f() must be a tensor.");let filteredTape=getFilteredNodesXToY(this.state.activeTape,xs,y);if(!allowNoGradients&&filteredTape.length===0&&xs.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let accumulatedGradientMap={};accumulatedGradientMap[y.id]=dy==null?ones(y.shape):dy,backpropagateGradients(accumulatedGradientMap,filteredTape,f2=>this.tidy(f2),add);let grads2=xs.map(x=>accumulatedGradientMap[x.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(node=>{for(let tensor168 of node.saved)tensor168.dispose()}),this.state.activeTape=null),{value:y,grads:grads2}})}customGrad(f){return assert(isFunction(f),()=>"The f passed in customGrad(f) must be a function."),(...inputs)=>{assert(inputs.every(t=>t instanceof Tensor),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let res,inputMap={};return inputs.forEach((input2,i)=>{inputMap[i]=input2}),this.runKernelFunc((_,save)=>(res=f(...inputs,save),assert(res.value instanceof Tensor,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),assert(isFunction(res.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),res.value),inputMap,(dy,saved)=>{let gradRes=res.gradFunc(dy,saved),grads2=Array.isArray(gradRes)?gradRes:[gradRes];assert(grads2.length===inputs.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),assert(grads2.every(t=>t instanceof Tensor),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let gradMap={};return grads2.forEach((grad2,i)=>{gradMap[i]=()=>grad2}),gradMap})}}readSync(dataId){let info=this.state.tensorInfo.get(dataId);return info.backend.readSync(dataId)}read(dataId){let info=this.state.tensorInfo.get(dataId);return info.backend.read(dataId)}async time(query){let start=now(),timingInfo=await this.backend.time(query);return timingInfo.wallMs=now()-start,timingInfo}track(result){return this.state.activeScope!=null&&(result.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(result)),result}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new EngineState;for(let backendName in this.registry)this.disposeRegisteredKernels(backendName),this.registry[backendName].dispose(),delete this.registry[backendName];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Engine.nextTensorId=0;Engine.nextVariableId=0;function ones(shape){let values=makeOnesTypedArray(sizeFromShape(shape),"float32");return ENGINE.makeTensor(values,shape,"float32")}function getOrMakeEngine(){let ns=getGlobalNamespace();if(ns._tfengine==null){let environment15=new Environment(ns);ns._tfengine=new Engine(environment15)}return setEnvironmentGlobal(ns._tfengine.ENV),setTensorTracker(()=>ns._tfengine),ns._tfengine}var ENGINE=getOrMakeEngine();function add(a,b){let inputs={a,b};return ENGINE.runKernelFunc((backend3,save)=>{let res=backend3.add(a,b);return save([a,b]),res},inputs,null,Add)}var device_util_exports={};__export2(device_util_exports,{isBrowser:()=>isBrowser,isMobile:()=>isMobile});function _isNavigatorDefined(){return typeof navigator!="undefined"&&navigator!=null}function isMobile(){if(_isNavigatorDefined()){let a=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(a)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(a.substr(0,4))}return!1}function isBrowser(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var ENV2=env();ENV2.registerFlag("DEBUG",()=>!1,debugValue=>{debugValue&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});ENV2.registerFlag("IS_BROWSER",()=>isBrowser());ENV2.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");ENV2.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));ENV2.registerFlag("PROD",()=>!1);ENV2.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>ENV2.getBool("DEBUG"));ENV2.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);ENV2.registerFlag("IS_TEST",()=>!1);function inferShape(val,dtype){let firstElem=val;if(isTypedArray(val))return dtype==="string"?[]:[val.length];if(!Array.isArray(val))return[];let shape=[];for(;Array.isArray(firstElem)||isTypedArray(firstElem)&&dtype!=="string";)shape.push(firstElem.length),firstElem=firstElem[0];return Array.isArray(val)&&env().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&deepAssertShapeConsistency(val,shape,[]),shape}function deepAssertShapeConsistency(val,shape,indices){if(indices=indices||[],!Array.isArray(val)&&!isTypedArray(val)){assert(shape.length===0,()=>`Element arr[${indices.join("][")}] is a primitive, but should be an array/TypedArray of ${shape[0]} elements`);return}assert(shape.length>0,()=>`Element arr[${indices.join("][")}] should be a primitive, but is an array of ${val.length} elements`),assert(val.length===shape[0],()=>`Element arr[${indices.join("][")}] should have ${shape[0]} elements, but has ${val.length} elements`);let subShape=shape.slice(1);for(let i=0;i=0&&(inferredDtype=parseAsDtype),assertDtype(parseAsDtype,inferredDtype,argName,functionName),x==null||!isTypedArray(x)&&!Array.isArray(x)&&typeof x!="number"&&typeof x!="boolean"&&typeof x!="string"){let type=x==null?"null":x.constructor.name;throw new Error(`Argument '${argName}' passed to '${functionName}' must be a Tensor or TensorLike, but got '${type}'`)}let inferredShape=inferShape(x,inferredDtype);!isTypedArray(x)&&!Array.isArray(x)&&(x=[x]);let skipTypedArray=!0,values=inferredDtype!=="string"?toTypedArray(x,inferredDtype):flatten(x,[],skipTypedArray);return ENGINE.makeTensor(values,inferredShape,inferredDtype)}function convertToTensorArray(arg,argName,functionName,parseAsDtype="numeric"){if(!Array.isArray(arg))throw new Error(`Argument ${argName} passed to ${functionName} must be a \`Tensor[]\` or \`TensorLike[]\``);let tensors=arg;return tensors.map((t,i)=>convertToTensor(t,`${argName}[${i}]`,functionName),parseAsDtype)}var OP_SCOPE_SUFFIX="__op";function op(f){let keys=Object.keys(f);if(keys.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${keys.length} keys.`);let opName=keys[0],fn=f[opName];opName.endsWith("_")&&(opName=opName.substring(0,opName.length-1)),opName=opName+OP_SCOPE_SUFFIX;let f2=(...args)=>{ENGINE.startScope(opName);try{let result=fn(...args);return isPromise(result)&&console.error("Cannot return a Promise inside of tidy."),ENGINE.endScope(result),result}catch(ex){throw ENGINE.endScope(null),ex}};return Object.defineProperty(f2,"name",{value:opName,configurable:!0}),f2}function complex_(real8,imag8){let $real=convertToTensor(real8,"real","complex"),$imag=convertToTensor(imag8,"imag","complex");assertShapesMatch($real.shape,$imag.shape,`real and imag shapes, ${$real.shape} and ${$imag.shape}, must match in call to tf.complex().`);let forward=backend3=>backend3.complex($real,$imag),inputs={real:$real,imag:$imag};return ENGINE.runKernelFunc(forward,inputs,null,Complex)}var complex=op({complex_});function makeTensor(values,shape,inferredShape,dtype){if(dtype==null&&(dtype=inferDtype(values)),dtype==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!isTypedArray(values)&&!Array.isArray(values)&&typeof values!="number"&&typeof values!="boolean"&&typeof values!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(shape!=null){assertNonNegativeIntegerDimensions(shape);let providedSize=sizeFromShape(shape),inferredSize=sizeFromShape(inferredShape);assert(providedSize===inferredSize,()=>`Based on the provided shape, [${shape}], the tensor should have ${providedSize} values but has ${inferredSize}`);for(let i=0;i`Error creating a new Tensor. Inferred shape (${inferredShape}) does not match the provided shape (${shape}). `)}}return!isTypedArray(values)&&!Array.isArray(values)&&(values=[values]),shape=shape||inferredShape,values=dtype!=="string"?toTypedArray(values,dtype):flatten(values,[],!0),ENGINE.makeTensor(values,shape,dtype)}function tensor4(values,shape,dtype){let inferredShape=inferShape(values,dtype);return makeTensor(values,shape,inferredShape,dtype)}var DTYPE_VALUE_SIZE_MAP={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},NUM_BYTES_STRING_LENGTH=4;async function encodeWeights(tensors,group){let specs=[],dataPromises=[],names=Array.isArray(tensors)?tensors.map(tensor168=>tensor168.name):Object.keys(tensors);for(let i=0;i{let vals=await t.bytes(),totalNumBytes=vals.reduce((p2,c)=>p2+c.length,0)+NUM_BYTES_STRING_LENGTH*vals.length,bytes=new Uint8Array(totalNumBytes),offset=0;for(let i2=0;i2{if(totalByteLength+=x.byteLength,normalizedXs.push(x.byteLength===x.buffer.byteLength?x:new x.constructor(x)),!(x instanceof Float32Array||x instanceof Int32Array||x instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${x.constructor.name}`)});let y=new Uint8Array(totalByteLength),offset=0;return normalizedXs.forEach(x=>{y.set(new Uint8Array(x.buffer),offset),offset+=x.byteLength}),y.buffer}var useNodeBuffer=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function stringByteLength(str){return useNodeBuffer?Buffer.byteLength(str):new Blob([str]).size}function arrayBufferToBase64String(buffer11){if(useNodeBuffer)return Buffer.from(buffer11).toString("base64");let buf=new Uint8Array(buffer11),s="";for(let i=0,l=buf.length;i{totalByteLength+=buffer11.byteLength});let temp=new Uint8Array(totalByteLength),offset=0;return buffers.forEach(buffer11=>{temp.set(new Uint8Array(buffer11),offset),offset+=buffer11.byteLength}),temp.buffer}function basename(path){let SEPARATOR="/";for(path=path.trim();path.endsWith(SEPARATOR);)path=path.slice(0,path.length-1);let items=path.split(SEPARATOR);return items[items.length-1]}function getModelArtifactsInfoForJSON(modelArtifacts){if(modelArtifacts.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:modelArtifacts.modelTopology==null?0:stringByteLength(JSON.stringify(modelArtifacts.modelTopology)),weightSpecsBytes:modelArtifacts.weightSpecs==null?0:stringByteLength(JSON.stringify(modelArtifacts.weightSpecs)),weightDataBytes:modelArtifacts.weightData==null?0:modelArtifacts.weightData.byteLength}}function computeFloat16MantisaTable(){let convertMantissa=i=>{let m=i<<13,e=0;for(;(m&8388608)===0;)e-=8388608,m<<=1;return m&=~8388608,e+=947912704,m|e},mantisaTable=new Uint32Array(2048);mantisaTable[0]=0;for(let i=1;i<1024;i++)mantisaTable[i]=convertMantissa(i);for(let i=1024;i<2048;i++)mantisaTable[i]=939524096+(i-1024<<13);return mantisaTable}function computeFloat16ExponentTable(){let exponentTable=new Uint32Array(64);exponentTable[0]=0,exponentTable[31]=1199570944,exponentTable[32]=2147483648,exponentTable[63]=3347054592;for(let i=1;i<31;i++)exponentTable[i]=i<<23;for(let i=33;i<63;i++)exponentTable[i]=2147483648+(i-32<<23);return exponentTable}function computeFloat16OffsetTable(){let offsetTable=new Uint32Array(64);for(let i=0;i<64;i++)offsetTable[i]=1024;return offsetTable[0]=offsetTable[32]=0,offsetTable}function getFloat16Decoder(){let mantisaTable=computeFloat16MantisaTable(),exponentTable=computeFloat16ExponentTable(),offsetTable=computeFloat16OffsetTable();return quantizedArray=>{let buffer11=new ArrayBuffer(4*quantizedArray.length),bufferUint32View=new Uint32Array(buffer11);for(let index=0;index>10]+(float16Bits&1023)]+exponentTable[float16Bits>>10];bufferUint32View[index]=float32Bits}return new Float32Array(buffer11)}}var IORouterRegistry=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return IORouterRegistry.instance==null&&(IORouterRegistry.instance=new IORouterRegistry),IORouterRegistry.instance}static registerSaveRouter(saveRouter){IORouterRegistry.getInstance().saveRouters.push(saveRouter)}static registerLoadRouter(loadRouter){IORouterRegistry.getInstance().loadRouters.push(loadRouter)}static getSaveHandlers(url){return IORouterRegistry.getHandlers(url,"save")}static getLoadHandlers(url,loadOptions){return IORouterRegistry.getHandlers(url,"load",loadOptions)}static getHandlers(url,handlerType,loadOptions){let validHandlers=[],routers=handlerType==="load"?IORouterRegistry.getInstance().loadRouters:IORouterRegistry.getInstance().saveRouters;return routers.forEach(router=>{let handler=router(url,loadOptions);handler!==null&&validHandlers.push(handler)}),validHandlers}},registerSaveRouter=loudRouter=>IORouterRegistry.registerSaveRouter(loudRouter),registerLoadRouter=loudRouter=>IORouterRegistry.registerLoadRouter(loudRouter),getSaveHandlers=url=>IORouterRegistry.getSaveHandlers(url),getLoadHandlers=(url,loadOptions)=>IORouterRegistry.getLoadHandlers(url,loadOptions),DATABASE_NAME="tensorflowjs",DATABASE_VERSION=1,MODEL_STORE_NAME="models_store",INFO_STORE_NAME="model_info_store";function getIndexedDBFactory(){if(!env().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let theWindow=typeof window=="undefined"?self:window,factory=theWindow.indexedDB||theWindow.mozIndexedDB||theWindow.webkitIndexedDB||theWindow.msIndexedDB||theWindow.shimIndexedDB;if(factory==null)throw new Error("The current browser does not appear to support IndexedDB.");return factory}function setUpDatabase(openRequest){let db=openRequest.result;db.createObjectStore(MODEL_STORE_NAME,{keyPath:"modelPath"}),db.createObjectStore(INFO_STORE_NAME,{keyPath:"modelPath"})}var BrowserIndexedDB=class{constructor(modelPath){if(this.indexedDB=getIndexedDBFactory(),modelPath==null||!modelPath)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=modelPath}async save(modelArtifacts){if(modelArtifacts.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,modelArtifacts)}async load(){return this.databaseAction(this.modelPath)}databaseAction(modelPath,modelArtifacts){return new Promise((resolve,reject)=>{let openRequest=this.indexedDB.open(DATABASE_NAME,DATABASE_VERSION);openRequest.onupgradeneeded=()=>setUpDatabase(openRequest),openRequest.onsuccess=()=>{let db=openRequest.result;if(modelArtifacts==null){let modelTx=db.transaction(MODEL_STORE_NAME,"readonly"),modelStore=modelTx.objectStore(MODEL_STORE_NAME),getRequest=modelStore.get(this.modelPath);getRequest.onsuccess=()=>{if(getRequest.result==null)return db.close(),reject(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));resolve(getRequest.result.modelArtifacts)},getRequest.onerror=error=>(db.close(),reject(getRequest.error)),modelTx.oncomplete=()=>db.close()}else{let modelArtifactsInfo=getModelArtifactsInfoForJSON(modelArtifacts),infoTx=db.transaction(INFO_STORE_NAME,"readwrite"),infoStore=infoTx.objectStore(INFO_STORE_NAME),putInfoRequest=infoStore.put({modelPath:this.modelPath,modelArtifactsInfo}),modelTx;putInfoRequest.onsuccess=()=>{modelTx=db.transaction(MODEL_STORE_NAME,"readwrite");let modelStore=modelTx.objectStore(MODEL_STORE_NAME),putModelRequest=modelStore.put({modelPath:this.modelPath,modelArtifacts,modelArtifactsInfo});putModelRequest.onsuccess=()=>resolve({modelArtifactsInfo}),putModelRequest.onerror=error=>{infoStore=infoTx.objectStore(INFO_STORE_NAME);let deleteInfoRequest=infoStore.delete(this.modelPath);deleteInfoRequest.onsuccess=()=>(db.close(),reject(putModelRequest.error)),deleteInfoRequest.onerror=error2=>(db.close(),reject(putModelRequest.error))}},putInfoRequest.onerror=error=>(db.close(),reject(putInfoRequest.error)),infoTx.oncomplete=()=>{modelTx==null?db.close():modelTx.oncomplete=()=>db.close()}}},openRequest.onerror=error=>reject(openRequest.error)})}};BrowserIndexedDB.URL_SCHEME="indexeddb://";var indexedDBRouter=url=>env().getBool("IS_BROWSER")&&!Array.isArray(url)&&url.startsWith(BrowserIndexedDB.URL_SCHEME)?browserIndexedDB(url.slice(BrowserIndexedDB.URL_SCHEME.length)):null;IORouterRegistry.registerSaveRouter(indexedDBRouter);IORouterRegistry.registerLoadRouter(indexedDBRouter);function browserIndexedDB(modelPath){return new BrowserIndexedDB(modelPath)}function maybeStripScheme(key){return key.startsWith(BrowserIndexedDB.URL_SCHEME)?key.slice(BrowserIndexedDB.URL_SCHEME.length):key}var BrowserIndexedDBManager=class{constructor(){this.indexedDB=getIndexedDBFactory()}async listModels(){return new Promise((resolve,reject)=>{let openRequest=this.indexedDB.open(DATABASE_NAME,DATABASE_VERSION);openRequest.onupgradeneeded=()=>setUpDatabase(openRequest),openRequest.onsuccess=()=>{let db=openRequest.result,tx=db.transaction(INFO_STORE_NAME,"readonly"),store=tx.objectStore(INFO_STORE_NAME),getAllInfoRequest=store.getAll();getAllInfoRequest.onsuccess=()=>{let out={};for(let item of getAllInfoRequest.result)out[item.modelPath]=item.modelArtifactsInfo;resolve(out)},getAllInfoRequest.onerror=error=>(db.close(),reject(getAllInfoRequest.error)),tx.oncomplete=()=>db.close()},openRequest.onerror=error=>reject(openRequest.error)})}async removeModel(path){return path=maybeStripScheme(path),new Promise((resolve,reject)=>{let openRequest=this.indexedDB.open(DATABASE_NAME,DATABASE_VERSION);openRequest.onupgradeneeded=()=>setUpDatabase(openRequest),openRequest.onsuccess=()=>{let db=openRequest.result,infoTx=db.transaction(INFO_STORE_NAME,"readwrite"),infoStore=infoTx.objectStore(INFO_STORE_NAME),getInfoRequest=infoStore.get(path),modelTx;getInfoRequest.onsuccess=()=>{if(getInfoRequest.result==null)return db.close(),reject(new Error(`Cannot find model with path '${path}' in IndexedDB.`));{let deleteInfoRequest=infoStore.delete(path),deleteModelData=()=>{modelTx=db.transaction(MODEL_STORE_NAME,"readwrite");let modelStore=modelTx.objectStore(MODEL_STORE_NAME),deleteModelRequest=modelStore.delete(path);deleteModelRequest.onsuccess=()=>resolve(getInfoRequest.result.modelArtifactsInfo),deleteModelRequest.onerror=error=>reject(getInfoRequest.error)};deleteInfoRequest.onsuccess=deleteModelData,deleteInfoRequest.onerror=error=>(deleteModelData(),db.close(),reject(getInfoRequest.error))}},getInfoRequest.onerror=error=>(db.close(),reject(getInfoRequest.error)),infoTx.oncomplete=()=>{modelTx==null?db.close():modelTx.oncomplete=()=>db.close()}},openRequest.onerror=error=>reject(openRequest.error)})}},PATH_SEPARATOR="/",PATH_PREFIX="tensorflowjs_models",INFO_SUFFIX="info",MODEL_TOPOLOGY_SUFFIX="model_topology",WEIGHT_SPECS_SUFFIX="weight_specs",WEIGHT_DATA_SUFFIX="weight_data",MODEL_METADATA_SUFFIX="model_metadata";function getModelKeys(path){return{info:[PATH_PREFIX,path,INFO_SUFFIX].join(PATH_SEPARATOR),topology:[PATH_PREFIX,path,MODEL_TOPOLOGY_SUFFIX].join(PATH_SEPARATOR),weightSpecs:[PATH_PREFIX,path,WEIGHT_SPECS_SUFFIX].join(PATH_SEPARATOR),weightData:[PATH_PREFIX,path,WEIGHT_DATA_SUFFIX].join(PATH_SEPARATOR),modelMetadata:[PATH_PREFIX,path,MODEL_METADATA_SUFFIX].join(PATH_SEPARATOR)}}function getModelPathFromKey(key){let items=key.split(PATH_SEPARATOR);if(items.length<3)throw new Error(`Invalid key format: ${key}`);return items.slice(1,items.length-1).join(PATH_SEPARATOR)}function maybeStripScheme2(key){return key.startsWith(BrowserLocalStorage.URL_SCHEME)?key.slice(BrowserLocalStorage.URL_SCHEME.length):key}var BrowserLocalStorage=class{constructor(modelPath){if(!env().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,modelPath==null||!modelPath)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=modelPath,this.keys=getModelKeys(this.modelPath)}async save(modelArtifacts){if(modelArtifacts.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let topology21=JSON.stringify(modelArtifacts.modelTopology),weightSpecs=JSON.stringify(modelArtifacts.weightSpecs),modelArtifactsInfo=getModelArtifactsInfoForJSON(modelArtifacts);try{return this.LS.setItem(this.keys.info,JSON.stringify(modelArtifactsInfo)),this.LS.setItem(this.keys.topology,topology21),this.LS.setItem(this.keys.weightSpecs,weightSpecs),this.LS.setItem(this.keys.weightData,arrayBufferToBase64String(modelArtifacts.weightData)),this.LS.setItem(this.keys.modelMetadata,JSON.stringify({format:modelArtifacts.format,generatedBy:modelArtifacts.generatedBy,convertedBy:modelArtifacts.convertedBy,userDefinedMetadata:modelArtifacts.userDefinedMetadata})),{modelArtifactsInfo}}catch(err){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${modelArtifactsInfo.modelTopologyBytes}, weightSpecsBytes=${modelArtifactsInfo.weightSpecsBytes}, weightDataBytes=${modelArtifactsInfo.weightDataBytes}.`)}}}async load(){let info=JSON.parse(this.LS.getItem(this.keys.info));if(info==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(info.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let out={},topology21=JSON.parse(this.LS.getItem(this.keys.topology));if(topology21==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);out.modelTopology=topology21;let weightSpecs=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(weightSpecs==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);out.weightSpecs=weightSpecs;let metadataString=this.LS.getItem(this.keys.modelMetadata);if(metadataString!=null){let metadata=JSON.parse(metadataString);out.format=metadata.format,out.generatedBy=metadata.generatedBy,out.convertedBy=metadata.convertedBy,out.userDefinedMetadata=metadata.userDefinedMetadata}let weightDataBase64=this.LS.getItem(this.keys.weightData);if(weightDataBase64==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return out.weightData=base64StringToArrayBuffer(weightDataBase64),out}};BrowserLocalStorage.URL_SCHEME="localstorage://";var localStorageRouter=url=>env().getBool("IS_BROWSER")&&!Array.isArray(url)&&url.startsWith(BrowserLocalStorage.URL_SCHEME)?browserLocalStorage(url.slice(BrowserLocalStorage.URL_SCHEME.length)):null;IORouterRegistry.registerSaveRouter(localStorageRouter);IORouterRegistry.registerLoadRouter(localStorageRouter);function browserLocalStorage(modelPath){return new BrowserLocalStorage(modelPath)}var BrowserLocalStorageManager=class{constructor(){assert(env().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),assert(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let out={},prefix=PATH_PREFIX+PATH_SEPARATOR,suffix=PATH_SEPARATOR+INFO_SUFFIX;for(let i=0;i"scheme must not be undefined or null."),scheme.endsWith(URL_SCHEME_SUFFIX)&&(scheme=scheme.slice(0,scheme.indexOf(URL_SCHEME_SUFFIX))),assert(scheme.length>0,()=>"scheme must not be an empty string.");let registry=ModelStoreManagerRegistry.getInstance();assert(registry.managers[scheme]==null,()=>`A model store manager is already registered for scheme '${scheme}'.`),registry.managers[scheme]=manager}static getManager(scheme){let manager=this.getInstance().managers[scheme];if(manager==null)throw new Error(`Cannot find model manager for scheme '${scheme}'`);return manager}static getSchemes(){return Object.keys(this.getInstance().managers)}};function parseURL(url){if(url.indexOf(URL_SCHEME_SUFFIX)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${ModelStoreManagerRegistry.getSchemes().join(",")}`);return{scheme:url.split(URL_SCHEME_SUFFIX)[0],path:url.split(URL_SCHEME_SUFFIX)[1]}}async function cloneModelInternal(sourceURL,destURL,deleteSource=!1){assert(sourceURL!==destURL,()=>`Old path and new path are the same: '${sourceURL}'`);let loadHandlers=IORouterRegistry.getLoadHandlers(sourceURL);assert(loadHandlers.length>0,()=>`Copying failed because no load handler is found for source URL ${sourceURL}.`),assert(loadHandlers.length<2,()=>`Copying failed because more than one (${loadHandlers.length}) load handlers for source URL ${sourceURL}.`);let loadHandler=loadHandlers[0],saveHandlers=IORouterRegistry.getSaveHandlers(destURL);assert(saveHandlers.length>0,()=>`Copying failed because no save handler is found for destination URL ${destURL}.`),assert(saveHandlers.length<2,()=>`Copying failed because more than one (${loadHandlers.length}) save handlers for destination URL ${destURL}.`);let saveHandler=saveHandlers[0],sourceScheme=parseURL(sourceURL).scheme,sourcePath=parseURL(sourceURL).path,sameMedium=sourceScheme===parseURL(sourceURL).scheme,modelArtifacts=await loadHandler.load();deleteSource&&sameMedium&&await ModelStoreManagerRegistry.getManager(sourceScheme).removeModel(sourcePath);let saveResult=await saveHandler.save(modelArtifacts);return deleteSource&&!sameMedium&&await ModelStoreManagerRegistry.getManager(sourceScheme).removeModel(sourcePath),saveResult.modelArtifactsInfo}async function listModels(){let schemes=ModelStoreManagerRegistry.getSchemes(),out={};for(let scheme of schemes){let schemeOut=await ModelStoreManagerRegistry.getManager(scheme).listModels();for(let path in schemeOut){let url=scheme+URL_SCHEME_SUFFIX+path;out[url]=schemeOut[path]}}return out}async function removeModel(url){let schemeAndPath=parseURL(url),manager=ModelStoreManagerRegistry.getManager(schemeAndPath.scheme);return manager.removeModel(schemeAndPath.path)}async function copyModel(sourceURL,destURL){let deleteSource=!1;return cloneModelInternal(sourceURL,destURL,deleteSource)}async function moveModel(sourceURL,destURL){let deleteSource=!0;return cloneModelInternal(sourceURL,destURL,deleteSource)}var PlatformBrowser=class{fetch(path,init2){return fetch(path,init2)}now(){return performance.now()}encode(text,encoding){if(encoding!=="utf-8"&&encoding!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${encoding}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(text)}decode(bytes,encoding){return new TextDecoder(encoding).decode(bytes)}};if(env().get("IS_BROWSER")){env().setPlatform("browser",new PlatformBrowser);try{ModelStoreManagerRegistry.registerManager(BrowserLocalStorage.URL_SCHEME,new BrowserLocalStorageManager)}catch(err){}try{ModelStoreManagerRegistry.registerManager(BrowserIndexedDB.URL_SCHEME,new BrowserIndexedDBManager)}catch(err){}}var getNodeFetch={importFetch:()=>require_browser()},systemFetch,PlatformNode=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(path,requestInits){return env().global.fetch!=null?env().global.fetch(path,requestInits):(systemFetch==null&&(systemFetch=getNodeFetch.importFetch()),systemFetch(path,requestInits))}now(){let time2=process.hrtime();return time2[0]*1e3+time2[1]/1e6}encode(text,encoding){if(encoding!=="utf-8"&&encoding!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${encoding}`);return this.textEncoder.encode(text)}decode(bytes,encoding){return bytes.length===0?"":new this.util.TextDecoder(encoding).decode(bytes)}};env().get("IS_NODE")&&env().setPlatform("node",new PlatformNode);function buffer(shape,dtype="float32",values){return dtype=dtype||"float32",assertNonNegativeIntegerDimensions(shape),new TensorBuffer(shape,dtype,values)}function cast_(x,dtype){let $x=convertToTensor(x,"x","cast");if(!isValidDtype(dtype))throw new Error(`Failed to cast to unknown dtype ${dtype}`);if(dtype==="string"&&$x.dtype!=="string"||dtype!=="string"&&$x.dtype==="string")throw new Error("Only strings can be casted to strings");let inputs={x:$x},attrs={dtype};return ENGINE.runKernelFunc(backend3=>backend3.cast($x,dtype),inputs,null,Cast,attrs)}var cast=op({cast_});function clone_(x){let $x=convertToTensor(x,"x","clone",null),forward=()=>ENGINE.makeTensorFromDataId($x.dataId,$x.shape,$x.dtype),inputs={x:$x};return ENGINE.runKernelFunc(forward,inputs,null,Identity)}var clone=op({clone_});function print2(x,verbose=!1){console.log(x.toString(verbose))}getOrMakeEngine();var opHandler2={buffer,cast,clone,print:print2};setOpHandler(opHandler2);var io_exports={};__export2(io_exports,{browserFiles:()=>browserFiles,browserHTTPRequest:()=>browserHTTPRequest,concatenateArrayBuffers:()=>concatenateArrayBuffers,copyModel:()=>copyModel,decodeWeights:()=>decodeWeights,encodeWeights:()=>encodeWeights,fromMemory:()=>fromMemory,getLoadHandlers:()=>getLoadHandlers,getModelArtifactsInfoForJSON:()=>getModelArtifactsInfoForJSON,getSaveHandlers:()=>getSaveHandlers,http:()=>http,isHTTPScheme:()=>isHTTPScheme,listModels:()=>listModels,loadWeights:()=>loadWeights,moveModel:()=>moveModel,registerLoadRouter:()=>registerLoadRouter,registerSaveRouter:()=>registerSaveRouter,removeModel:()=>removeModel,weightsLoaderFactory:()=>weightsLoaderFactory,withSaveHandler:()=>withSaveHandler});var DEFAULT_FILE_NAME_PREFIX="model",DEFAULT_JSON_EXTENSION_NAME=".json",DEFAULT_WEIGHT_DATA_EXTENSION_NAME=".weights.bin";function defer(f){return new Promise(resolve=>setTimeout(resolve)).then(f)}var BrowserDownloads=class{constructor(fileNamePrefix){if(!env().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");fileNamePrefix.startsWith(BrowserDownloads.URL_SCHEME)&&(fileNamePrefix=fileNamePrefix.slice(BrowserDownloads.URL_SCHEME.length)),(fileNamePrefix==null||fileNamePrefix.length===0)&&(fileNamePrefix=DEFAULT_FILE_NAME_PREFIX),this.modelTopologyFileName=fileNamePrefix+DEFAULT_JSON_EXTENSION_NAME,this.weightDataFileName=fileNamePrefix+DEFAULT_WEIGHT_DATA_EXTENSION_NAME}async save(modelArtifacts){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let weightsURL=window.URL.createObjectURL(new Blob([modelArtifacts.weightData],{type:"application/octet-stream"}));if(modelArtifacts.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let weightsManifest=[{paths:["./"+this.weightDataFileName],weights:modelArtifacts.weightSpecs}],modelTopologyAndWeightManifest={modelTopology:modelArtifacts.modelTopology,format:modelArtifacts.format,generatedBy:modelArtifacts.generatedBy,convertedBy:modelArtifacts.convertedBy,weightsManifest},modelTopologyAndWeightManifestURL=window.URL.createObjectURL(new Blob([JSON.stringify(modelTopologyAndWeightManifest)],{type:"application/json"})),jsonAnchor=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(jsonAnchor.download=this.modelTopologyFileName,jsonAnchor.href=modelTopologyAndWeightManifestURL,await defer(()=>jsonAnchor.dispatchEvent(new MouseEvent("click"))),modelArtifacts.weightData!=null){let weightDataAnchor=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;weightDataAnchor.download=this.weightDataFileName,weightDataAnchor.href=weightsURL,await defer(()=>weightDataAnchor.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:getModelArtifactsInfoForJSON(modelArtifacts)}}}};BrowserDownloads.URL_SCHEME="downloads://";var BrowserFiles=class{constructor(files){if(files==null||files.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${files}`);this.files=files}async load(){let jsonFile=this.files[0],weightFiles=this.files.slice(1);return new Promise((resolve,reject)=>{let jsonReader=new FileReader;jsonReader.onload=event=>{let modelJSON=JSON.parse(event.target.result),modelTopology=modelJSON.modelTopology;if(modelTopology==null){reject(new Error(`modelTopology field is missing from file ${jsonFile.name}`));return}weightFiles.length===0&&resolve({modelTopology});let weightsManifest=modelJSON.weightsManifest;if(weightsManifest==null){reject(new Error(`weightManifest field is missing from file ${jsonFile.name}`));return}let pathToFile;try{pathToFile=this.checkManifestAndWeightFiles(weightsManifest,weightFiles)}catch(err){reject(err);return}let weightSpecs=[],paths=[],perFileBuffers=[];weightsManifest.forEach(weightsGroup=>{weightsGroup.paths.forEach(path=>{paths.push(path),perFileBuffers.push(null)}),weightSpecs.push(...weightsGroup.weights)}),weightsManifest.forEach(weightsGroup=>{weightsGroup.paths.forEach(path=>{let weightFileReader=new FileReader;weightFileReader.onload=event2=>{let weightData=event2.target.result,index=paths.indexOf(path);perFileBuffers[index]=weightData,perFileBuffers.indexOf(null)===-1&&resolve({modelTopology,weightSpecs,weightData:concatenateArrayBuffers(perFileBuffers),format:modelJSON.format,generatedBy:modelJSON.generatedBy,convertedBy:modelJSON.convertedBy,userDefinedMetadata:modelJSON.userDefinedMetadata})},weightFileReader.onerror=error=>reject(`Failed to weights data from file of path '${path}'.`),weightFileReader.readAsArrayBuffer(pathToFile[path])})})},jsonReader.onerror=error=>reject(`Failed to read model topology and weights manifest JSON from file '${jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),jsonReader.readAsText(jsonFile)})}checkManifestAndWeightFiles(manifest,files){let basenames=[],fileNames=files.map(file=>basename(file.name)),pathToFile={};for(let group of manifest)group.paths.forEach(path=>{let pathBasename=basename(path);if(basenames.indexOf(pathBasename)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${pathBasename}'`);if(basenames.push(pathBasename),fileNames.indexOf(pathBasename)===-1)throw new Error(`Weight file with basename '${pathBasename}' is not provided.`);pathToFile[path]=files[fileNames.indexOf(pathBasename)]});if(basenames.length!==files.length)throw new Error(`Mismatch in the number of files in weights manifest (${basenames.length}) and the number of weight files provided (${files.length}).`);return pathToFile}},browserDownloadsRouter=url=>env().getBool("IS_BROWSER")&&!Array.isArray(url)&&url.startsWith(BrowserDownloads.URL_SCHEME)?browserDownloads(url.slice(BrowserDownloads.URL_SCHEME.length)):null;IORouterRegistry.registerSaveRouter(browserDownloadsRouter);function browserDownloads(fileNamePrefix="model"){return new BrowserDownloads(fileNamePrefix)}function browserFiles(files){return new BrowserFiles(files)}function monitorPromisesProgress(promises,onProgress,startFraction,endFraction){checkPromises(promises),startFraction=startFraction==null?0:startFraction,endFraction=endFraction==null?1:endFraction,checkFraction(startFraction,endFraction);let resolvedPromise=0,registerMonitor=promise=>(promise.then(value=>{let fraction=startFraction+ ++resolvedPromise/promises.length*(endFraction-startFraction);return onProgress(fraction),value}),promise);function checkPromises(promises2){assert(promises2!=null&&Array.isArray(promises2)&&promises2.length>0,()=>"promises must be a none empty array")}function checkFraction(startFraction2,endFraction2){assert(startFraction2>=0&&startFraction2<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${startFraction2}`),assert(endFraction2>=0&&endFraction2<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${endFraction2}`),assert(endFraction2>=startFraction2,()=>`startFraction must be no more than endFraction, but got startFraction ${startFraction2} and endFraction ${endFraction2}`)}return Promise.all(promises.map(registerMonitor))}async function loadWeightsAsArrayBuffer(fetchURLs,loadOptions){loadOptions==null&&(loadOptions={});let fetchFunc=loadOptions.fetchFunc==null?env().platform.fetch:loadOptions.fetchFunc,requests=fetchURLs.map(fetchURL=>fetchFunc(fetchURL,loadOptions.requestInit,{isBinary:!0})),fetchStartFraction=0,fetchEndFraction=.5,responses=loadOptions.onProgress==null?await Promise.all(requests):await monitorPromisesProgress(requests,loadOptions.onProgress,fetchStartFraction,fetchEndFraction),bufferPromises=responses.map(response=>response.arrayBuffer()),bufferStartFraction=.5,bufferEndFraction=1,buffers=loadOptions.onProgress==null?await Promise.all(bufferPromises):await monitorPromisesProgress(bufferPromises,loadOptions.onProgress,bufferStartFraction,bufferEndFraction);return buffers}async function loadWeights(manifest,filePathPrefix="",weightNames,requestInit){let fetchWeights=fetchUrls=>loadWeightsAsArrayBuffer(fetchUrls,{requestInit}),loadWeights2=weightsLoaderFactory(fetchWeights);return loadWeights2(manifest,filePathPrefix,weightNames)}function weightsLoaderFactory(fetchWeightsFunction){return async(manifest,filePathPrefix="",weightNames)=>{let groupIndicesToFetchMap=manifest.map(()=>!1),groupWeightsToFetch={},weightsFound=weightNames!=null?weightNames.map(()=>!1):[],allManifestWeightNames=[];if(manifest.forEach((manifestGroupConfig,groupIndex)=>{let groupOffset=0;manifestGroupConfig.weights.forEach(weightsEntry=>{let rawDtype="quantization"in weightsEntry?weightsEntry.quantization.dtype:weightsEntry.dtype,weightsBytes=DTYPE_VALUE_SIZE_MAP[rawDtype]*sizeFromShape(weightsEntry.shape),enqueueWeightsForFetchingFn=()=>{groupIndicesToFetchMap[groupIndex]=!0,groupWeightsToFetch[groupIndex]==null&&(groupWeightsToFetch[groupIndex]=[]),groupWeightsToFetch[groupIndex].push({manifestEntry:weightsEntry,groupOffset,sizeBytes:weightsBytes})};weightNames!=null?weightNames.forEach((weightName,weightIndex)=>{weightName===weightsEntry.name&&(enqueueWeightsForFetchingFn(),weightsFound[weightIndex]=!0)}):enqueueWeightsForFetchingFn(),allManifestWeightNames.push(weightsEntry.name),groupOffset+=weightsBytes})}),!weightsFound.every(found=>found)){let weightsNotFound=weightNames.filter((_,i)=>!weightsFound[i]);throw new Error(`Could not find weights in manifest with names: ${weightsNotFound.join(", ")}. Manifest JSON has weights with names: ${allManifestWeightNames.join(", ")}.`)}let groupIndicesToFetch=groupIndicesToFetchMap.reduce((accumulator,shouldFetch,i)=>(shouldFetch&&accumulator.push(i),accumulator),[]),fetchUrls=[];groupIndicesToFetch.forEach(i=>{manifest[i].paths.forEach(filepath=>{let fetchUrl=filePathPrefix+(filePathPrefix.endsWith("/")?"":"/")+filepath;fetchUrls.push(fetchUrl)})});let buffers=await fetchWeightsFunction(fetchUrls),weightsTensorMap={},bufferIndexOffset=0;return groupIndicesToFetch.forEach(i=>{let numBuffers=manifest[i].paths.length,groupBytes=0;for(let i2=0;i2{let byteBuffer=groupBuffer.slice(weightsEntry.groupOffset,weightsEntry.groupOffset+weightsEntry.sizeBytes),nameToTensorMap=decodeWeights(byteBuffer,[weightsEntry.manifestEntry]);for(let name in nameToTensorMap)weightsTensorMap[name]=nameToTensorMap[name]}),bufferIndexOffset+=numBuffers}),weightsTensorMap}}var OCTET_STREAM_MIME_TYPE="application/octet-stream",JSON_TYPE="application/json",HTTPRequest=class{constructor(path,loadOptions){if(this.DEFAULT_METHOD="POST",loadOptions==null&&(loadOptions={}),this.weightPathPrefix=loadOptions.weightPathPrefix,this.onProgress=loadOptions.onProgress,this.weightUrlConverter=loadOptions.weightUrlConverter,loadOptions.fetchFunc!=null?(assert(typeof loadOptions.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=loadOptions.fetchFunc):this.fetch=env().platform.fetch,assert(path!=null&&path.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(path)&&assert(path.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${path.length}).`),this.path=path,loadOptions.requestInit!=null&&loadOptions.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=loadOptions.requestInit||{}}async save(modelArtifacts){if(modelArtifacts.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let init2=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);init2.body=new FormData;let weightsManifest=[{paths:["./model.weights.bin"],weights:modelArtifacts.weightSpecs}],modelTopologyAndWeightManifest={modelTopology:modelArtifacts.modelTopology,format:modelArtifacts.format,generatedBy:modelArtifacts.generatedBy,convertedBy:modelArtifacts.convertedBy,userDefinedMetadata:modelArtifacts.userDefinedMetadata,weightsManifest};init2.body.append("model.json",new Blob([JSON.stringify(modelTopologyAndWeightManifest)],{type:JSON_TYPE}),"model.json"),modelArtifacts.weightData!=null&&init2.body.append("model.weights.bin",new Blob([modelArtifacts.weightData],{type:OCTET_STREAM_MIME_TYPE}),"model.weights.bin");let response=await this.fetch(this.path,init2);if(response.ok)return{modelArtifactsInfo:getModelArtifactsInfoForJSON(modelArtifacts),responses:[response]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${response.status}.`)}async load(){let modelConfigRequest=await this.fetch(this.path,this.requestInit);if(!modelConfigRequest.ok)throw new Error(`Request to ${this.path} failed with status code ${modelConfigRequest.status}. Please verify this URL points to the model JSON of the model to load.`);let modelConfig;try{modelConfig=await modelConfigRequest.json()}catch(e){let message=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?message+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":message+=" Please make sure the server is serving valid JSON for this request.",new Error(message)}let modelTopology=modelConfig.modelTopology,weightsManifest=modelConfig.weightsManifest,generatedBy=modelConfig.generatedBy,convertedBy=modelConfig.convertedBy,format=modelConfig.format,userDefinedMetadata=modelConfig.userDefinedMetadata;if(modelTopology==null&&weightsManifest==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let weightSpecs,weightData;if(weightsManifest!=null){let results=await this.loadWeights(weightsManifest);[weightSpecs,weightData]=results}let artifacts={modelTopology,weightSpecs,weightData,userDefinedMetadata,generatedBy,convertedBy,format},initializer=modelConfig.modelInitializer;return initializer&&(artifacts.modelInitializer=initializer),artifacts}async loadWeights(weightsManifest){let weightPath=Array.isArray(this.path)?this.path[1]:this.path,[prefix,suffix]=parseUrl(weightPath),pathPrefix=this.weightPathPrefix||prefix,weightSpecs=[];for(let entry of weightsManifest)weightSpecs.push(...entry.weights);let fetchURLs=[],urlPromises=[];for(let weightsGroup of weightsManifest)for(let path of weightsGroup.paths)this.weightUrlConverter!=null?urlPromises.push(this.weightUrlConverter(path)):fetchURLs.push(pathPrefix+path+suffix);this.weightUrlConverter&&fetchURLs.push(...await Promise.all(urlPromises));let buffers=await loadWeightsAsArrayBuffer(fetchURLs,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[weightSpecs,concatenateArrayBuffers(buffers)]}};HTTPRequest.URL_SCHEME_REGEX=/^https?:\/\//;function parseUrl(url){let lastSlash=url.lastIndexOf("/"),lastSearchParam=url.lastIndexOf("?"),prefix=url.substring(0,lastSlash),suffix=lastSearchParam>lastSlash?url.substring(lastSearchParam):"";return[prefix+"/",suffix]}function isHTTPScheme(url){return url.match(HTTPRequest.URL_SCHEME_REGEX)!=null}var httpRouter=(url,loadOptions)=>{if(typeof fetch=="undefined"&&(loadOptions==null||loadOptions.fetchFunc==null))return null;{let isHTTP=!0;if(Array.isArray(url)?isHTTP=url.every(urlItem=>isHTTPScheme(urlItem)):isHTTP=isHTTPScheme(url),isHTTP)return http(url,loadOptions)}return null};IORouterRegistry.registerSaveRouter(httpRouter);IORouterRegistry.registerLoadRouter(httpRouter);function http(path,loadOptions){return new HTTPRequest(path,loadOptions)}function browserHTTPRequest(path,loadOptions){return http(path,loadOptions)}var PassthroughLoader=class{constructor(modelArtifacts){this.modelArtifacts=modelArtifacts}async load(){return this.modelArtifacts}},PassthroughSaver=class{constructor(saveHandler){this.saveHandler=saveHandler}async save(modelArtifacts){return this.saveHandler(modelArtifacts)}};function fromMemory(modelArtifacts,weightSpecs,weightData,trainingConfig){if(arguments.length===1){let isModelArtifacts=modelArtifacts.modelTopology!=null||modelArtifacts.weightSpecs!=null;return isModelArtifacts?new PassthroughLoader(modelArtifacts):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new PassthroughLoader({modelTopology:modelArtifacts}))}else return console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new PassthroughLoader({modelTopology:modelArtifacts,weightSpecs,weightData,trainingConfig})}function withSaveHandler(saveHandler){return new PassthroughSaver(saveHandler)}var math_exports={};__export2(math_exports,{confusionMatrix:()=>confusionMatrix});function reshape_(x,shape){let $x=convertToTensor(x,"x","reshape",null),inputs={x:$x},attrs={shape},forward=(backend3,save)=>(shape=inferFromImplicitShape(shape,$x.size),assert($x.size===sizeFromShape(shape),()=>"new shape and old shape must have the same number of elements."),save([$x]),backend3.reshape($x,shape));return ENGINE.runKernelFunc(forward,inputs,null,Reshape,attrs)}var reshape=op({reshape_});function matMul_(a,b,transposeA=!1,transposeB=!1){let $a=convertToTensor(a,"a","matMul"),$b=convertToTensor(b,"b","matMul");[$a,$b]=makeTypesMatch($a,$b);let forward=(backend3,save)=>{save([$a,$b]);let innerShapeA=transposeA?$a.shape[$a.rank-2]:$a.shape[$a.rank-1],innerShapeB=transposeB?$b.shape[$b.rank-1]:$b.shape[$b.rank-2],outerShapeA=transposeA?$a.shape[$a.rank-1]:$a.shape[$a.rank-2],outerShapeB=transposeB?$b.shape[$b.rank-2]:$b.shape[$b.rank-1],outerDimsA=$a.shape.slice(0,-2),outerDimsB=$b.shape.slice(0,-2),batchDimA=sizeFromShape(outerDimsA),batchDimB=sizeFromShape(outerDimsB),batchDimsCompatible=batchDimA===batchDimB||batchDimA===1||batchDimB===1;assert($a.rank>=2&&$b.rank>=2&&batchDimsCompatible,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${outerDimsA}) and (${outerDimsB}).`),assert(innerShapeA===innerShapeB,()=>`Error in matMul: inner shapes (${innerShapeA}) and (${innerShapeB}) of Tensors with shapes ${$a.shape} and ${$b.shape} and transposeA=${transposeA} and transposeB=${transposeB} must match.`);let outShapeOuterDims=batchDimA>batchDimB?outerDimsA:outerDimsB,outShape=outShapeOuterDims.concat([outerShapeA,outerShapeB]),a3D=transposeA?reshape($a,[batchDimA,innerShapeA,outerShapeA]):reshape($a,[batchDimA,outerShapeA,innerShapeA]),b3D=transposeB?reshape($b,[batchDimB,outerShapeB,innerShapeB]):reshape($b,[batchDimB,innerShapeB,outerShapeB]),res3d=backend3.batchMatMul(a3D,b3D,transposeA,transposeB);return reshape(res3d,outShape)},inputs={a:$a,b:$b},attrs={transposeA,transposeB};return ENGINE.runKernelFunc(forward,inputs,null,BatchMatMul,attrs)}var matMul=op({matMul_});function oneHot_(indices,depth,onValue=1,offValue=0){if(depth<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${depth}`);let $indices=convertToTensor(indices,"indices","oneHot","int32"),outShape=[...$indices.shape,depth],forward=(backend3,save)=>(save([$indices]),reshape(backend3.oneHot(reshape($indices,[$indices.size]),depth,onValue,offValue),outShape)),inputs={indices:$indices},attrs={depth,onValue,offValue};return ENGINE.runKernelFunc(forward,inputs,null,OneHot,attrs)}var oneHot=op({oneHot_});function transpose_(x,perm){let $x=convertToTensor(x,"x","transpose");if(perm==null&&(perm=$x.shape.map((s,i)=>i).reverse()),assert($x.rank===perm.length,()=>`Error in transpose: rank of input ${$x.rank} must match length of perm ${perm}.`),perm.forEach(axis=>{assert(axis>=0&&axis<$x.rank,()=>`All entries in 'perm' must be between 0 and ${$x.rank-1} but got ${perm}`)}),$x.rank<=1)return $x.clone();let inputs={x:$x},attrs={perm};return ENGINE.runKernelFunc(backend3=>backend3.transpose($x,perm),inputs,null,Transpose,attrs)}var transpose=op({transpose_});function confusionMatrix_(labels,predictions,numClasses){let $labels=convertToTensor(labels,"labels","confusionMatrix"),$predictions=convertToTensor(predictions,"predictions","confusionMatrix");assert(numClasses==null||numClasses>0&&Number.isInteger(numClasses),()=>`If provided, numClasses must be a positive integer, but got ${numClasses}`),assert($labels.rank===1,()=>`Expected the rank of labels to be 1, but got ${$labels.rank}`),assert($predictions.rank===1,()=>`Expected the rank of predictions to be 1, but got ${$predictions.rank}`),assert($labels.shape[0]===$predictions.shape[0],()=>`Mismatch in the number of examples: ${$labels.shape[0]} vs. ${$predictions.shape[0]}. Labels and predictions should have the same number of elements.`),assert(numClasses>0&&Number.isInteger(numClasses),()=>`numClasses is required to be a positive integer, but got ${numClasses}`);let oneHotLabels=oneHot(cast($labels,"int32"),numClasses),oneHotPredictions=oneHot(cast($predictions,"int32"),numClasses),oneHotLabelsT=transpose(oneHotLabels),product=matMul(oneHotLabelsT,oneHotPredictions);return cast(product,"int32")}var confusionMatrix=op({confusionMatrix_}),browser_exports={};__export2(browser_exports,{fromPixels:()=>fromPixels,toPixels:()=>toPixels});function tensor3d(values,shape,dtype){if(assertNonNull(values),shape!=null&&shape.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let inferredShape=inferShape(values,dtype);if(inferredShape.length!==3&&inferredShape.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(inferredShape.length===1&&shape==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return makeTensor(values,shape,inferredShape,dtype)}var fromPixels2DContext;function fromPixels_(pixels,numChannels=3){if(numChannels>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(pixels==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let isPixelData=!1,isImageData=!1,isVideo=!1,isImage=!1,isCanvasLike=!1;if(pixels.data instanceof Uint8Array)isPixelData=!0;else if(typeof ImageData!="undefined"&&pixels instanceof ImageData)isImageData=!0;else if(typeof HTMLVideoElement!="undefined"&&pixels instanceof HTMLVideoElement)isVideo=!0;else if(typeof HTMLImageElement!="undefined"&&pixels instanceof HTMLImageElement)isImage=!0;else if(pixels.getContext!=null)isCanvasLike=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${pixels.constructor.name}`);if(isVideo){let HAVE_CURRENT_DATA_READY_STATE=2;if(isVideo&&pixels.readyState element.")}let kernel=getKernel(FromPixels,ENGINE.backendName);if(kernel!=null){let inputs={pixels},attrs={numChannels};return ENGINE.runKernel(FromPixels,inputs,attrs)}let[width,height]=isVideo?[pixels.videoWidth,pixels.videoHeight]:[pixels.width,pixels.height],vals;isCanvasLike?vals=pixels.getContext("2d").getImageData(0,0,width,height).data:isImageData||isPixelData?vals=pixels.data:(isImage||isVideo)&&(fromPixels2DContext==null&&(fromPixels2DContext=document.createElement("canvas").getContext("2d")),fromPixels2DContext.canvas.width=width,fromPixels2DContext.canvas.height=height,fromPixels2DContext.drawImage(pixels,0,0,width,height),vals=fromPixels2DContext.getImageData(0,0,width,height).data);let values;if(numChannels===4)values=new Int32Array(vals);else{let numPixels=width*height;values=new Int32Array(numPixels*numChannels);for(let i=0;i4||depth===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${depth}`);if($img.dtype!=="float32"&&$img.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${$img.dtype}. Please use float32 or int32 tensors.`);let data2=await $img.data(),multiplier=$img.dtype==="float32"?255:1,bytes=new Uint8ClampedArray(width*height*4);for(let i=0;i1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${value}.`)}else if($img.dtype==="int32"&&(value<0||value>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${value}.`);depth===1?(rgba[0]=value*multiplier,rgba[1]=value*multiplier,rgba[2]=value*multiplier):rgba[d]=value*multiplier}let j=i*4;bytes[j+0]=Math.round(rgba[0]),bytes[j+1]=Math.round(rgba[1]),bytes[j+2]=Math.round(rgba[2]),bytes[j+3]=Math.round(rgba[3])}if(canvas!=null){canvas.width=width,canvas.height=height;let ctx=canvas.getContext("2d"),imageData=new ImageData(bytes,width,height);ctx.putImageData(imageData,0,0)}return $img!==img&&$img.dispose(),bytes}var fromPixels=op({fromPixels_}),gather_nd_util_exports={};__export2(gather_nd_util_exports,{prepareAndValidate:()=>prepareAndValidate});function prepareAndValidate(tensor168,indices){if(tensor168.rank<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${tensor168.rank}.`);if(indices.rank<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${indices.rank}.`);if(indices.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${indices.dtype}.`);if(indices.shape[indices.rank-1]>tensor168.rank)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${indices.shape[indices.rank-1]} vs. ${tensor168.rank}`);if(tensor168.size===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${tensor168.shape}.`);let indicesShape=indices.shape,sliceRank=indicesShape[indicesShape.length-1],nResult=1;for(let i=0;istride/sliceSize),1].slice(0,sliceRank);return[resultShape,nResult,sliceSize,strides]}var scatter_nd_util_exports={};__export2(scatter_nd_util_exports,{calculateShapes:()=>calculateShapes,validateInput:()=>validateInput,validateUpdateShape:()=>validateUpdateShape});function validateUpdateShape(shape,indices,updates){let sliceDim=indices.rank>1?indices.shape[indices.rank-1]:1,batchDim=indices.rank>1?indices.rank-1:1,shapeError=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${updates.shape}, indices.shape: ${indices.shape}, shape: ${shape}, sliceDim: ${sliceDim}, and batchDim: ${batchDim}.`;if(updates.rank1?indices.shape[indicesRank-1]:1,totalNd=shape.length,sliceSize=1;for(let i=sliceRank;iassertParamsValid,computeFlatOffset:()=>computeFlatOffset,computeOutShape:()=>computeOutShape,getNormalizedAxes:()=>getNormalizedAxes,isSliceContinous:()=>isSliceContinous,maskToAxes:()=>maskToAxes,parseSliceParams:()=>parseSliceParams,startForAxis:()=>startForAxis,startIndicesWithElidedDims:()=>startIndicesWithElidedDims,stopForAxis:()=>stopForAxis,stopIndicesWithElidedDims:()=>stopIndicesWithElidedDims,stridesForAxis:()=>stridesForAxis,stridesWithElidedDims:()=>stridesWithElidedDims});function assertParamsValid(input2,begin,size){let inputRank=input2.shape.length;assert(inputRank===begin.length,()=>`Error in slice${inputRank}D: Length of begin ${begin} must match the rank of the array (${inputRank}).`),assert(inputRank===size.length,()=>`Error in slice${inputRank}D: Length of size ${size} must match the rank of the array (${inputRank}).`);for(let i=0;i`Error in slice${inputRank}D: begin[${i}] + size[${i}] (${begin[i]+size[i]}) would overflow input.shape[${i}] (${input2.shape[i]})`)}function maskToAxes(mask){let axes=[],axis=0;for(;mask>0;)mask&1&&axes.push(axis),mask/=2,axis++;return axes}function computeOutShape(begin,end,strides){let size=[];for(let axis=0;axis0){let fullIndex=ellipsisAxes[0],numElidedAxes=numInterpolatedAxes+1;normalizedBegin=startIndicesWithElidedDims(beginMask,fullIndex,numElidedAxes,begin,inputShape),normalizedEnd=stopIndicesWithElidedDims(endMask,fullIndex,numElidedAxes,end,inputShape),normalizedStrides=stridesWithElidedDims(strides,fullIndex,numElidedAxes,inputShape)}else for(let axis=0;axis-1)newIndices[axis]=0;else{let originalAxis=unnormalizeAxis(ellipsisInsertionIndex,numElidedAxes,axis),originalValue=originalBegin[originalAxis];beginMask&1<-1)newIndices[axis]=Number.MAX_SAFE_INTEGER;else{let originalAxis=unnormalizeAxis(ellipsisInsertionIndex,numElidedAxes,axis),originalValue=originalEnd[originalAxis];endMask&1<0?start=Number.MIN_SAFE_INTEGER:start=Number.MAX_SAFE_INTEGER);let axisSize=inputShape[axis];return start<0&&(start+=axisSize),start=clamp(0,start,axisSize-1),start}function stopForAxis(endMask,stopIndices,strides,inputShape,axis,ellipsisMask){let stop=stopIndices[axis],stride=strides[axis]||1;(endMask&1<0?stop=Number.MAX_SAFE_INTEGER:stop=Number.MIN_SAFE_INTEGER);let axisSize=inputShape[axis];return stop<0&&(stop+=axisSize),stride>0?stop=clamp(0,stop,axisSize):stop=clamp(-1,stop,axisSize-1),stop}function isSliceContinous(shape,begin,size){let firstNonOneAxis=size.length;for(let i=0;i1){firstNonOneAxis=i;break}for(let i=firstNonOneAxis+1;i0||size[i]!==shape[i])return!1;return!0}function computeFlatOffset(begin,strides){let flatOffset=begin.length>0?begin[begin.length-1]:1;for(let i=0;i{assert(d!==-1,()=>"slice() does not support negative begin indexing.")});let size_;return size==null?size_=new Array(xRank).fill(-1):typeof size=="number"?size_=[size,...new Array(xRank-1).fill(-1)]:size.lengthd>=0?d:(assert(d===-1,()=>`Negative size values should be exactly -1 but got ${d} for the slice() size at index ${i}.`),x.shape[i]-begin_[i])),[begin_,size_]}var serialization_exports={};__export2(serialization_exports,{Serializable:()=>Serializable,SerializationMap:()=>SerializationMap,registerClass:()=>registerClass});var Serializable=class{getClassName(){return this.constructor.className}static fromConfig(cls,config){return new cls(config)}},SerializationMap=class{constructor(){this.classNameMap={}}static getMap(){return SerializationMap.instance==null&&(SerializationMap.instance=new SerializationMap),SerializationMap.instance}static register(cls){SerializationMap.getMap().classNameMap[cls.className]=[cls,cls.fromConfig]}};function registerClass(cls){assert(cls.className!=null,()=>"Class being registered does not have the static className property defined."),assert(typeof cls.className=="string",()=>"className is required to be a string, but got type "+typeof cls.className),assert(cls.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),SerializationMap.register(cls)}var test_util_exports={};__export2(test_util_exports,{TEST_EPSILON_FLOAT16:()=>TEST_EPSILON_FLOAT16,expectArrayBuffersEqual:()=>expectArrayBuffersEqual,expectArraysClose:()=>expectArraysClose,expectArraysEqual:()=>expectArraysEqual,expectNumbersClose:()=>expectNumbersClose,expectPromiseToFail:()=>expectPromiseToFail,expectValuesInRange:()=>expectValuesInRange,testEpsilon:()=>testEpsilon});var TEST_EPSILON_FLOAT32=.001,TEST_EPSILON_FLOAT16=.1;function expectArraysClose(actual,expected,epsilon3){return epsilon3==null&&(epsilon3=testEpsilon()),expectArraysPredicate(actual,expected,(a,b)=>areClose(a,b,epsilon3))}function testEpsilon(){return ENGINE.backend.floatPrecision()===32?TEST_EPSILON_FLOAT32:TEST_EPSILON_FLOAT16}function expectArraysPredicate(actual,expected,predicate){let checkClassType=!0;if((isTypedArray(actual)||isTypedArray(expected))&&(checkClassType=!1),isTypedArray(actual)&&isTypedArray(expected)&&(checkClassType=!0),checkClassType){let aType=actual.constructor.name,bType=expected.constructor.name;if(aType!==bType)throw new Error(`Arrays are of different type. Actual: ${aType}. Expected: ${bType}`)}if(Array.isArray(actual)&&Array.isArray(expected)){let actualShape=inferShape(actual),expectedShape=inferShape(expected);if(!arraysEqual(actualShape,expectedShape))throw new Error(`Arrays have different shapes. Actual: [${actualShape}]. Expected: [${expectedShape}]`)}let actualFlat=isTypedArray(actual)?actual:flatten(actual),expectedFlat=isTypedArray(expected)?expected:flatten(expected);if(actualFlat.length!==expectedFlat.length)throw new Error(`Arrays have different lengths actual: ${actualFlat.length} vs expected: ${expectedFlat.length}. Actual: ${actualFlat}. Expected: ${expectedFlat}.`);for(let i=0;idone.fail(),()=>done())}function expectArraysEqual(actual,expected){let exp13=typeof expected=="string"||typeof expected=="number"||typeof expected=="boolean"?[expected]:expected;return isString(actual)||isString(actual[0])||isString(expected)||isString(expected[0])?expectArraysPredicate(actual,exp13,(a,b)=>a==b):expectArraysPredicate(actual,expected,(a,b)=>areClose(a,b,0))}function expectNumbersClose(a,e,epsilon3){if(epsilon3==null&&(epsilon3=testEpsilon()),!areClose(a,e,epsilon3))throw new Error(`Numbers differ: actual === ${a}, expected === ${e}`)}function areClose(a,e,epsilon3){return!isFinite(a)&&!isFinite(e)?!0:!(isNaN(a)||isNaN(e)||Math.abs(a-e)>epsilon3)}function expectValuesInRange(actual,low,high){for(let i=0;ihigh)throw new Error(`Value out of range:${actual[i]} low: ${low}, high: ${high}`)}function expectArrayBuffersEqual(actual,expected){expect(new Float32Array(actual)).toEqual(new Float32Array(expected))}var version="2.7.0";function enableProdMode(){env().set("PROD",!0)}function enableDebugMode(){env().set("DEBUG",!0)}function disableDeprecationWarnings(){env().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function deprecationWarn(msg){env().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(msg+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}setDeprecationWarningFn(deprecationWarn);function disposeVariables(){ENGINE.disposeVariables()}function engine15(){return ENGINE}function memory(){return ENGINE.memory()}function profile(f){return ENGINE.profile(f)}function tidy(nameOrFn,fn){return ENGINE.tidy(nameOrFn,fn)}function dispose(container2){let tensors=getTensorsInContainer(container2);tensors.forEach(tensor168=>tensor168.dispose())}function keep(result){return ENGINE.keep(result)}function time(f){return ENGINE.time(f)}function setBackend(backendName){return ENGINE.setBackend(backendName)}function ready(){return ENGINE.ready()}function getBackend(){return ENGINE.backendName}function removeBackend(name){ENGINE.removeBackend(name)}function findBackend(name){return ENGINE.findBackend(name)}function findBackendFactory(name){return ENGINE.findBackendFactory(name)}function registerBackend(name,factory,priority=1){return ENGINE.registerBackend(name,factory,priority)}function backend2(){return ENGINE.backend}function setPlatform(platformName,platform){env().setPlatform(platformName,platform)}function add_(a,b){let $a=convertToTensor(a,"a","add"),$b=convertToTensor(b,"b","add");[$a,$b]=makeTypesMatch($a,$b);let forward=(backend3,save)=>{let res=backend3.add($a,$b);return save([$a,$b]),res},inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,Add)}var add2=op({add_});function floorDiv_(a,b){let $a=convertToTensor(a,"a","floorDiv"),$b=convertToTensor(b,"b","floorDiv");[$a,$b]=makeTypesMatch($a,$b);let forward=(backend3,save)=>{let res=backend3.floorDiv($a,$b);return save([$a,$b]),res},inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,FloorDiv)}var floorDiv=op({floorDiv_});function div_(a,b){let $a=convertToTensor(a,"a","div"),$b=convertToTensor(b,"b","div");if([$a,$b]=makeTypesMatch($a,$b),$a.dtype==="int32"&&$b.dtype==="int32")return floorDiv($a,$b);let forward=(backend3,save)=>{let res=backend3.realDivide($a,$b);return save([$a,$b]),res},inputs={a:$a,b:$b},attrs={};return ENGINE.runKernelFunc(forward,inputs,null,Div,attrs)}var div=op({div_});function mul_(a,b){let $a=convertToTensor(a,"a","mul"),$b=convertToTensor(b,"b","mul");[$a,$b]=makeTypesMatch($a,$b);let forward=(backend3,save)=>{let res=backend3.multiply($a,$b);return save([$a,$b]),res},inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,Multiply)}var mul=op({mul_});function abs_(x){let $x=convertToTensor(x,"x","abs"),inputs={x:$x};return ENGINE.runKernelFunc((backend3,save)=>(save([$x]),$x.dtype==="complex64"?backend3.complexAbs($x):backend3.abs($x)),inputs,null,Abs)}var abs=op({abs_});function acos_(x){let $x=convertToTensor(x,"x","acos"),inputs={x:$x};return ENGINE.runKernelFunc((backend3,save)=>{let res=backend3.acos($x);return save([$x]),res},inputs,null,Acos)}var acos=op({acos_});function acosh_(x){let $x=convertToTensor(x,"x","acosh"),inputs={x:$x};return ENGINE.runKernelFunc((backend3,save)=>{let res=backend3.acosh($x);return save([$x]),res},inputs,null,Acosh)}var acosh=op({acosh_});function addN_(tensors){assert(Array.isArray(tensors),()=>"The argument passed to tf.addN() must be a list of tensors"),assert(tensors.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${tensors.length}`);let $tensors=tensors.map((t,i)=>convertToTensor(t,`tensors${i}`,"addN")),firstTensor=$tensors[0];$tensors.forEach(t=>{if(t.dtype!==firstTensor.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),$tensors.forEach(t=>{if(!arraysEqual(t.shape,firstTensor.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let forward=(backend3,save)=>{let res=backend3.addN($tensors);return save($tensors),res},inputs=$tensors;return ENGINE.runKernelFunc(forward,inputs,null,AddN)}var addN=op({addN_});function axesAreInnerMostDims(axes,rank){for(let i=0;iaShape[dim]);return[outShape,reduceShape]}function expandShapeToKeepDim(shape,axes){let reduceSubShape=axes.map(x=>1);return combineLocations(shape,reduceSubShape,axes)}function assertAxesAreInnerMostDims(msg,axes,rank){assert(axesAreInnerMostDims(axes,rank),()=>`${msg} supports only inner-most axes for now. Got axes ${axes} and rank-${rank} input.`)}function getAxesPermutation(axes,rank){if(axesAreInnerMostDims(axes,rank))return null;let result=[];for(let i=0;iresult.push(axis)),result}function getUndoAxesPermutation(axes){return axes.map((axis,i)=>[i,axis]).sort((a,b)=>a[1]-b[1]).map(x=>x[0])}function getInnerMostAxes(numAxes,rank){let res=[];for(let i=rank-numAxes;i{let origAxes=parseAxisParam(axis,$x.shape),axes=origAxes,permutedAxes=getAxesPermutation(axes,$x.rank);permutedAxes!=null&&($x=transpose($x,permutedAxes),axes=getInnerMostAxes(axes.length,$x.rank));let res=backend3.all($x,axes);if(keepDims){let newShape=expandShapeToKeepDim(res.shape,origAxes);return reshape(res,newShape)}return res},inputs={x:$x},attrs={axis,keepDims};return ENGINE.runKernelFunc(forward,inputs,null,All,attrs)}var all=op({all_});function any_(x,axis=null,keepDims=!1){let $x=convertToTensor(x,"x","any","bool"),forward=backend3=>{let origAxes=parseAxisParam(axis,$x.shape),axes=origAxes,permutedAxes=getAxesPermutation(axes,$x.rank);permutedAxes!=null&&($x=transpose($x,permutedAxes),axes=getInnerMostAxes(axes.length,$x.rank));let res=backend3.any($x,axes);if(keepDims){let newShape=expandShapeToKeepDim(res.shape,origAxes);return reshape(res,newShape)}return res},inputs={x:$x},attrs={axis,keepDims};return ENGINE.runKernelFunc(forward,inputs,null,Any,attrs)}var any=op({any_});function argMax_(x,axis=0){let $x=convertToTensor(x,"x","argMax"),forward=(backend3,save)=>{save([$x]);let axes=parseAxisParam(axis,$x.shape),permutedAxes=getAxesPermutation(axes,$x.rank);return permutedAxes!=null&&($x=transpose($x,permutedAxes),axes=getInnerMostAxes(axes.length,$x.rank)),backend3.argMax($x,axes[0])},inputs={x:$x},attrs={axis};return ENGINE.runKernelFunc(forward,inputs,null,ArgMax,attrs)}var argMax=op({argMax_});function argMin_(x,axis=0){let $x=convertToTensor(x,"x","argMin"),forward=(backend3,save)=>{save([$x]),axis==null&&(axis=0);let axes=parseAxisParam(axis,$x.shape),permutedAxes=getAxesPermutation(axes,$x.rank);return permutedAxes!=null&&($x=transpose($x,permutedAxes),axes=getInnerMostAxes(axes.length,$x.rank)),backend3.argMin($x,axes[0])},inputs={x:$x},attrs={axis};return ENGINE.runKernelFunc(forward,inputs,null,ArgMin,attrs)}var argMin=op({argMin_});function asin_(x){let $x=convertToTensor(x,"x","asin"),inputs={x:$x};return ENGINE.runKernelFunc((backend3,save)=>{let res=backend3.asin($x);return save([$x]),res},inputs,null,Asin)}var asin=op({asin_});function asinh_(x){let $x=convertToTensor(x,"x","asinh"),inputs={x:$x};return ENGINE.runKernelFunc((backend3,save)=>{let res=backend3.asinh($x);return save([$x]),res},inputs,null,Asinh)}var asinh=op({asinh_});function atan_(x){let $x=convertToTensor(x,"x","atan"),inputs={x:$x};return ENGINE.runKernelFunc((backend3,save)=>{let res=backend3.atan($x);return save([$x]),res},inputs,null,Atan)}var atan=op({atan_});function atan2_(a,b){let $a=convertToTensor(a,"a","atan2"),$b=convertToTensor(b,"b","atan2");[$a,$b]=makeTypesMatch($a,$b);let forward=(backend3,save)=>{let res=backend3.atan2($a,$b);return save([$a,$b]),res},inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,Atan2)}var atan2=op({atan2_});function atanh_(x){let $x=convertToTensor(x,"x","atanh"),inputs={x:$x};return ENGINE.runKernelFunc((backend3,save)=>{let res=backend3.atanh($x);return save([$x]),res},inputs,null,Atanh)}var atanh=op({atanh_});function computeDilation2DInfo(inputShape,filterShape,strides,pad11,dataFormat="NHWC",dilations){let inputChannels=inputShape[3],$filterShape=[...filterShape,inputChannels],$dataFormat=convertConv2DDataFormat(dataFormat);return computeConv2DInfo(inputShape,$filterShape,strides,dilations,pad11,null,null,$dataFormat)}function computePool2DInfo(inShape,filterSize,strides,dilations,pad11,roundingMode,dataFormat="channelsLast"){let[filterHeight,filterWidth]=parseTupleParam(filterSize),filterShape;if(dataFormat==="channelsLast")filterShape=[filterHeight,filterWidth,inShape[3],inShape[3]];else if(dataFormat==="channelsFirst")filterShape=[filterHeight,filterWidth,inShape[1],inShape[1]];else throw new Error(`Unknown dataFormat ${dataFormat}`);return computeConv2DInfo(inShape,filterShape,strides,dilations,pad11,roundingMode,!1,dataFormat)}function computePool3DInfo(inShape,filterSize,strides,dilations,pad11,roundingMode,dataFormat="NDHWC"){let[filterDepth,filterHeight,filterWidth]=parse3TupleParam(filterSize),filterShape,$dataFormat;if(dataFormat==="NDHWC")$dataFormat="channelsLast",filterShape=[filterDepth,filterHeight,filterWidth,inShape[4],inShape[4]];else if(dataFormat==="NCDHW")$dataFormat="channelsFirst",filterShape=[filterDepth,filterHeight,filterWidth,inShape[1],inShape[1]];else throw new Error(`Unknown dataFormat ${dataFormat}`);return computeConv3DInfo(inShape,filterShape,strides,dilations,pad11,!1,$dataFormat,roundingMode)}function computeConv2DInfo(inShape,filterShape,strides,dilations,pad11,roundingMode,depthwise=!1,dataFormat="channelsLast"){let[batchSize,inHeight,inWidth,inChannels]=[-1,-1,-1,-1];if(dataFormat==="channelsLast")[batchSize,inHeight,inWidth,inChannels]=inShape;else if(dataFormat==="channelsFirst")[batchSize,inChannels,inHeight,inWidth]=inShape;else throw new Error(`Unknown dataFormat ${dataFormat}`);let[filterHeight,filterWidth,,filterChannels]=filterShape,[strideHeight,strideWidth]=parseTupleParam(strides),[dilationHeight,dilationWidth]=parseTupleParam(dilations),effectiveFilterHeight=getEffectiveFilterSize(filterHeight,dilationHeight),effectiveFilterWidth=getEffectiveFilterSize(filterWidth,dilationWidth),{padInfo,outHeight,outWidth}=getPadAndOutInfo(pad11,inHeight,inWidth,strideHeight,strideWidth,effectiveFilterHeight,effectiveFilterWidth,roundingMode,dataFormat),outChannels=depthwise?filterChannels*inChannels:filterChannels,outShape;return dataFormat==="channelsFirst"?outShape=[batchSize,outChannels,outHeight,outWidth]:dataFormat==="channelsLast"&&(outShape=[batchSize,outHeight,outWidth,outChannels]),{batchSize,dataFormat,inHeight,inWidth,inChannels,outHeight,outWidth,outChannels,padInfo,strideHeight,strideWidth,filterHeight,filterWidth,effectiveFilterHeight,effectiveFilterWidth,dilationHeight,dilationWidth,inShape,outShape,filterShape}}function computeConv3DInfo(inShape,filterShape,strides,dilations,pad11,depthwise=!1,dataFormat="channelsLast",roundingMode){let[batchSize,inDepth,inHeight,inWidth,inChannels]=[-1,-1,-1,-1,-1];if(dataFormat==="channelsLast")[batchSize,inDepth,inHeight,inWidth,inChannels]=inShape;else if(dataFormat==="channelsFirst")[batchSize,inChannels,inDepth,inHeight,inWidth]=inShape;else throw new Error(`Unknown dataFormat ${dataFormat}`);let[filterDepth,filterHeight,filterWidth,,filterChannels]=filterShape,[strideDepth,strideHeight,strideWidth]=parse3TupleParam(strides),[dilationDepth,dilationHeight,dilationWidth]=parse3TupleParam(dilations),effectiveFilterDepth=getEffectiveFilterSize(filterDepth,dilationDepth),effectiveFilterHeight=getEffectiveFilterSize(filterHeight,dilationHeight),effectiveFilterWidth=getEffectiveFilterSize(filterWidth,dilationWidth),{padInfo,outDepth,outHeight,outWidth}=get3DPadAndOutInfo(pad11,inDepth,inHeight,inWidth,strideDepth,strideHeight,strideWidth,effectiveFilterDepth,effectiveFilterHeight,effectiveFilterWidth,roundingMode),outChannels=depthwise?filterChannels*inChannels:filterChannels,outShape;return dataFormat==="channelsFirst"?outShape=[batchSize,outChannels,outDepth,outHeight,outWidth]:dataFormat==="channelsLast"&&(outShape=[batchSize,outDepth,outHeight,outWidth,outChannels]),{batchSize,dataFormat,inDepth,inHeight,inWidth,inChannels,outDepth,outHeight,outWidth,outChannels,padInfo,strideDepth,strideHeight,strideWidth,filterDepth,filterHeight,filterWidth,effectiveFilterDepth,effectiveFilterHeight,effectiveFilterWidth,dilationDepth,dilationHeight,dilationWidth,inShape,outShape,filterShape}}function computeOutputShape2D(inShape,fieldSize,stride,zeroPad,roundingMode){zeroPad==null&&(zeroPad=computeDefaultPad(inShape,fieldSize,stride));let inputRows=inShape[0],inputCols=inShape[1],outputRows=conditionalRound((inputRows-fieldSize+2*zeroPad)/stride+1,roundingMode);assert(isInt(outputRows),()=>`The output # of rows (${outputRows}) must be an integer. Change the stride and/or zero pad parameters`);let outputCols=conditionalRound((inputCols-fieldSize+2*zeroPad)/stride+1,roundingMode);return assert(isInt(outputCols),()=>`The output # of columns (${outputCols}) must be an integer. Change the stride and/or zero pad parameters`),[outputRows,outputCols]}function computeOutputShape4D(inShape,fieldSize,outChannels,stride,zeroPad,roundingMode){zeroPad==null&&(zeroPad=computeDefaultPad(inShape,fieldSize,stride));let inputDepth=inShape[0],inputRows=inShape[1],inputCols=inShape[2],outputDepths=conditionalRound((inputDepth-fieldSize+2*zeroPad)/stride+1,roundingMode);assert(isInt(outputDepths),()=>`The output # of depths (${outputDepths}) must be an integer. Change the stride and/or zero pad parameters`);let outputRows=conditionalRound((inputRows-fieldSize+2*zeroPad)/stride+1,roundingMode);assert(isInt(outputRows),()=>`The output # of rows (${outputRows}) must be an integer. Change the stride and/or zero pad parameters`);let outputCols=conditionalRound((inputCols-fieldSize+2*zeroPad)/stride+1,roundingMode);return assert(isInt(outputCols),()=>`The output # of columns (${outputCols}) must be an integer. Change the stride and/or zero pad parameters`),[outputDepths,outputRows,outputCols,outChannels]}function computeDefaultPad(inputShape,fieldSize,stride,dilation=1){let effectiveFieldSize=getEffectiveFilterSize(fieldSize,dilation);return Math.floor((inputShape[0]*(stride-1)-stride+effectiveFieldSize)/2)}function parseTupleParam(param){return typeof param=="number"?[param,param,param]:param.length===2?[param[0],param[1],1]:param}function parse3TupleParam(param){return typeof param=="number"?[param,param,param]:param}function getEffectiveFilterSize(filterSize,dilation){return dilation<=1?filterSize:filterSize+(filterSize-1)*(dilation-1)}function getPadAndOutInfo(pad11,inHeight,inWidth,strideHeight,strideWidth,filterHeight,filterWidth,roundingMode,dataFormat){let padInfo,outHeight,outWidth;if(typeof pad11=="number"){let padType=pad11===0?"VALID":"NUMBER";padInfo={top:pad11,bottom:pad11,left:pad11,right:pad11,type:padType};let outShape=computeOutputShape2D([inHeight,inWidth],filterHeight,strideHeight,pad11,roundingMode);outHeight=outShape[0],outWidth=outShape[1]}else if(pad11==="same"){outHeight=Math.ceil(inHeight/strideHeight),outWidth=Math.ceil(inWidth/strideWidth);let padAlongHeight=Math.max(0,(outHeight-1)*strideHeight+filterHeight-inHeight),padAlongWidth=Math.max(0,(outWidth-1)*strideWidth+filterWidth-inWidth),top=Math.floor(padAlongHeight/2),bottom=padAlongHeight-top,left=Math.floor(padAlongWidth/2),right=padAlongWidth-left;padInfo={top,bottom,left,right,type:"SAME"}}else if(pad11==="valid")padInfo={top:0,bottom:0,left:0,right:0,type:"VALID"},outHeight=Math.ceil((inHeight-filterHeight+1)/strideHeight),outWidth=Math.ceil((inWidth-filterWidth+1)/strideWidth);else if(typeof pad11=="object"){let top=dataFormat==="channelsLast"?pad11[1][0]:pad11[2][0],bottom=dataFormat==="channelsLast"?pad11[1][1]:pad11[2][1],left=dataFormat==="channelsLast"?pad11[2][0]:pad11[3][0],right=dataFormat==="channelsLast"?pad11[2][1]:pad11[3][1],padType=top===0&&bottom===0&&left===0&&right===0?"VALID":"EXPLICIT";padInfo={top,bottom,left,right,type:padType},outHeight=conditionalRound((inHeight-filterHeight+top+bottom)/strideHeight+1,roundingMode),outWidth=conditionalRound((inWidth-filterWidth+left+right)/strideWidth+1,roundingMode)}else throw Error(`Unknown padding parameter: ${pad11}`);return{padInfo,outHeight,outWidth}}function get3DPadAndOutInfo(pad11,inDepth,inHeight,inWidth,strideDepth,strideHeight,strideWidth,filterDepth,filterHeight,filterWidth,roundingMode){let padInfo,outDepth,outHeight,outWidth;if(typeof pad11=="number"){let padType=pad11===0?"VALID":"NUMBER";padInfo={top:pad11,bottom:pad11,left:pad11,right:pad11,front:pad11,back:pad11,type:padType};let outShape=computeOutputShape4D([inDepth,inHeight,inWidth,1],filterDepth,1,strideDepth,pad11,roundingMode);outDepth=outShape[0],outHeight=outShape[1],outWidth=outShape[2]}else if(pad11==="same"){outDepth=Math.ceil(inDepth/strideDepth),outHeight=Math.ceil(inHeight/strideHeight),outWidth=Math.ceil(inWidth/strideWidth);let padAlongDepth=(outDepth-1)*strideDepth+filterDepth-inDepth,padAlongHeight=(outHeight-1)*strideHeight+filterHeight-inHeight,padAlongWidth=(outWidth-1)*strideWidth+filterWidth-inWidth,front=Math.floor(padAlongDepth/2),back=padAlongDepth-front,top=Math.floor(padAlongHeight/2),bottom=padAlongHeight-top,left=Math.floor(padAlongWidth/2),right=padAlongWidth-left;padInfo={top,bottom,left,right,front,back,type:"SAME"}}else if(pad11==="valid")padInfo={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},outDepth=Math.ceil((inDepth-filterDepth+1)/strideDepth),outHeight=Math.ceil((inHeight-filterHeight+1)/strideHeight),outWidth=Math.ceil((inWidth-filterWidth+1)/strideWidth);else throw Error(`Unknown padding parameter: ${pad11}`);return{padInfo,outDepth,outHeight,outWidth}}function conditionalRound(value,roundingMode){if(!roundingMode)return value;switch(roundingMode){case"round":return Math.round(value);case"ceil":return Math.ceil(value);case"floor":return Math.floor(value);default:throw new Error(`Unknown roundingMode ${roundingMode}`)}}function tupleValuesAreOne(param){let[dimA,dimB,dimC]=parseTupleParam(param);return dimA===1&&dimB===1&&dimC===1}function eitherStridesOrDilationsAreOne(strides,dilations){return tupleValuesAreOne(strides)||tupleValuesAreOne(dilations)}function convertConv2DDataFormat(dataFormat){if(dataFormat==="NHWC")return"channelsLast";if(dataFormat==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${dataFormat}`)}function avgPool_(x,filterSize,strides,pad11,dimRoundingMode){let $x=convertToTensor(x,"x","avgPool","float32"),dilations=1;assert(eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);let x4D=$x,reshapedTo4D=!1;$x.rank===3&&(reshapedTo4D=!0,x4D=reshape($x,[1,$x.shape[0],$x.shape[1],$x.shape[2]])),assert(x4D.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${x4D.rank}.`),dimRoundingMode!=null&&assert(isInt(pad11),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${dimRoundingMode} but got pad ${pad11}.`);let forward=(backend3,save)=>{let convInfo=computePool2DInfo(x4D.shape,filterSize,strides,1,pad11,dimRoundingMode);return save([x4D]),convInfo.filterWidth===1&&convInfo.filterHeight===1&&arraysEqual(convInfo.inShape,convInfo.outShape)?x4D.clone():backend3.avgPool(x4D,convInfo)},inputs={x:x4D},attrs={filterSize,strides,pad:pad11,dimRoundingMode},res=ENGINE.runKernelFunc(forward,inputs,null,AvgPool,attrs);return res=cast(res,$x.dtype),reshapedTo4D?reshape(res,[res.shape[1],res.shape[2],res.shape[3]]):res}var avgPool=op({avgPool_});function avgPool3d_(x,filterSize,strides,pad11,dimRoundingMode,dataFormat="NDHWC",dilations){dilations==null?dilations=[1,1,1]:deprecationWarn("dilations is deprecated, this field will be gone in v3.0.0.");let $x=convertToTensor(x,"x","avgPool3d","float32"),x5D=$x,reshapedTo5D=!1;$x.rank===4&&(reshapedTo5D=!0,x5D=reshape($x,[1,$x.shape[0],$x.shape[1],$x.shape[2],$x.shape[3]])),assert(x5D.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${x5D.rank}.`),assert(dataFormat==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${dataFormat}`),assert(eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in avgPool3d: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`),dimRoundingMode!=null&&assert(isInt(pad11),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${dimRoundingMode} but got pad ${pad11}.`);let forward=(backend3,save)=>{dilations==null&&(dilations=[1,1,1]);let convInfo=computePool3DInfo(x5D.shape,filterSize,strides,dilations,pad11,dimRoundingMode,dataFormat);return save([x5D]),backend3.avgPool3d(x5D,convInfo)},inputs={x:x5D},attrs={filterSize,strides,pad:pad11,dimRoundingMode,dataFormat,dilations},res=ENGINE.runKernelFunc(forward,inputs,null,AvgPool3D,attrs);return res=cast(res,x5D.dtype),reshapedTo5D?reshape(res,[res.shape[1],res.shape[2],res.shape[3],res.shape[4]]):res}var avgPool3d=op({avgPool3d_});function assertParamsConsistent(shapes,axis){let rank=shapes[0].length;shapes.forEach((shape,i)=>{assert(shape.length===rank,()=>`Error in concat${rank}D: rank of tensors[${i}] must be the same as the rank of the rest (${rank})`)}),assert(axis>=0&&axis`Error in concat${rank}D: axis must be between 0 and ${rank-1}.`);let firstShape=shapes[0];shapes.forEach((shape,i)=>{for(let r=0;r`Error in concat${rank}D: Shape of tensors[${i}] (${shape}) does not match the shape of the rest (${firstShape}) along the non-concatenated axis ${i}.`)})}function computeOutShape2(shapes,axis){let outputShape=shapes[0].slice();for(let i=1;i=1,()=>"Pass at least one tensor to concat");let $tensors=convertToTensorArray(tensors,"tensors","concat");$tensors[0].dtype==="complex64"&&$tensors.forEach(tensor168=>{if(tensor168.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor with dtype ${tensor168.dtype}. `)});let forward=(backend3,save)=>{let $axis=parseAxisParam(axis,$tensors[0].shape)[0],outShape=computeOutShape2($tensors.map(t=>t.shape),$axis);if(sizeFromShape(outShape)===0)return tensor4([],outShape);if($tensors=$tensors.filter(t=>t.size>0),$tensors.length===1)return $tensors[0];let shapes=$tensors.map(t=>t.shape);assertParamsConsistent(shapes,$axis);let res=backend3.concat($tensors,$axis);return save($tensors),res},inputs=$tensors,attr={axis};return ENGINE.runKernelFunc(forward,inputs,null,Concat,attr)}var concat=op({concat_});function sigmoid_(x){let $x=convertToTensor(x,"x","sigmoid"),inputs={x:$x};return ENGINE.runKernelFunc((backend3,save)=>{let res=backend3.sigmoid($x);return save([res]),res},inputs,null,Sigmoid)}var sigmoid=op({sigmoid_});function slice_(x,begin,size){let $x=convertToTensor(x,"x","slice");if($x.rank===0)throw new Error("Slicing scalar is not possible");let forward=(backend3,save)=>{let[begin_,size_]=parseSliceParams($x,begin,size);return assertParamsValid($x,begin_,size_),save([$x]),backend3.slice($x,begin_,size_)},inputs={x:$x},attrs={begin,size};return ENGINE.runKernelFunc(forward,inputs,null,Slice,attrs)}var slice=op({slice_});function tanh_(x){let $x=convertToTensor(x,"x","tanh"),inputs={x:$x};return ENGINE.runKernelFunc((backend3,save)=>{let y=backend3.tanh($x);return save([y]),y},inputs,null,Tanh)}var tanh2=op({tanh_});function basicLSTMCell_(forgetBias,lstmKernel,lstmBias,data2,c,h){let $forgetBias=convertToTensor(forgetBias,"forgetBias","basicLSTMCell"),$lstmKernel=convertToTensor(lstmKernel,"lstmKernel","basicLSTMCell"),$lstmBias=convertToTensor(lstmBias,"lstmBias","basicLSTMCell"),$data=convertToTensor(data2,"data","basicLSTMCell"),$c=convertToTensor(c,"c","basicLSTMCell"),$h=convertToTensor(h,"h","basicLSTMCell"),combined=concat([$data,$h],1),weighted=matMul(combined,$lstmKernel),res=add2(weighted,$lstmBias),batchSize=res.shape[0],sliceCols=res.shape[1]/4,sliceSize=[batchSize,sliceCols],i=slice(res,[0,0],sliceSize),j=slice(res,[0,sliceCols],sliceSize),f=slice(res,[0,sliceCols*2],sliceSize),o=slice(res,[0,sliceCols*3],sliceSize),newC=add2(mul(sigmoid(i),tanh2(j)),mul($c,sigmoid(add2($forgetBias,f)))),newH=mul(tanh2(newC),sigmoid(o));return[newC,newH]}var basicLSTMCell=op({basicLSTMCell_});function batchToSpaceND_(x,blockShape,crops){let $x=convertToTensor(x,"x","batchToSpaceND"),prod5=blockShape.reduce((a,b)=>a*b);assert($x.rank>=1+blockShape.length,()=>`input rank is ${$x.rank} but should be > than blockShape.length ${blockShape.length}`),assert(crops.length===blockShape.length,()=>`crops.length is ${crops.length} but should be equal to blockShape.length ${blockShape.length}`),assert($x.shape[0]%prod5===0,()=>`input tensor batch is ${$x.shape[0]} but is not divisible by the product of the elements of blockShape ${blockShape.join(" * ")} === ${prod5}`);let forward=backend3=>backend3.batchToSpaceND($x,blockShape,crops),inputs={x:$x},attrs={blockShape,crops};return ENGINE.runKernelFunc(forward,inputs,null,BatchToSpaceND,attrs)}var batchToSpaceND=op({batchToSpaceND_});function xAs4D(x){let x4D;return x.rank===0||x.rank===1?x4D=reshape(x,[1,1,1,x.size]):x.rank===2?x4D=reshape(x,[1,1,x.shape[0],x.shape[1]]):x.rank===3?x4D=reshape(x,[1,x.shape[0],x.shape[1],x.shape[2]]):x4D=x,x4D}function batchNorm_(x,mean7,variance,offset,scale2,varianceEpsilon){varianceEpsilon==null&&(varianceEpsilon=.001);let $x=convertToTensor(x,"x","batchNorm"),$mean=convertToTensor(mean7,"mean","batchNorm"),$variance=convertToTensor(variance,"variance","batchNorm"),$scale;scale2!=null&&($scale=convertToTensor(scale2,"scale","batchNorm"));let $offset;offset!=null&&($offset=convertToTensor(offset,"offset","batchNorm")),assert($mean.rank===$variance.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),assert($offset==null||$mean.rank===$offset.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),assert($scale==null||$mean.rank===$scale.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let x4D=xAs4D($x),forward=(backend3,save)=>(save([x4D,$mean,$variance,$scale]),backend3.batchNorm(x4D,as1DOr4D($mean),as1DOr4D($variance),as1DOr4D($offset),as1DOr4D($scale),varianceEpsilon)),inputs={x:x4D,scale:$scale,offset:$offset,mean:$mean,variance:$variance},attrs={varianceEpsilon},res=ENGINE.runKernelFunc(forward,inputs,null,FusedBatchNorm,attrs);return reshape(res,$x.shape)}function as1DOr4D(x){return x==null?null:x.rank===0?reshape(x,[x.size]):x.rank===1?x:x.rank===2?reshape(x,[1,1,x.shape[0],x.shape[1]]):x.rank===3?reshape(x,[1,x.shape[0],x.shape[1],x.shape[2]]):x}var batchNorm=op({batchNorm_});function batchNorm2d_(x,mean7,variance,offset,scale2,varianceEpsilon){let $x=convertToTensor(x,"x","batchNorm"),$mean=convertToTensor(mean7,"mean","batchNorm"),$variance=convertToTensor(variance,"variance","batchNorm"),$scale;scale2!=null&&($scale=convertToTensor(scale2,"scale","batchNorm"));let $offset;return offset!=null&&($offset=convertToTensor(offset,"offset","batchNorm")),assert($x.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${$x.rank}.`),assert($mean.rank===2||$mean.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${$mean.rank}.`),assert($variance.rank===2||$variance.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${$variance.rank}.`),$scale!=null&&assert($scale.rank===2||$scale.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${$scale.rank}.`),$offset!=null&&assert($offset.rank===2||$offset.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${$offset.rank}.`),batchNorm($x,$mean,$variance,$offset,$scale,varianceEpsilon)}var batchNorm2d=op({batchNorm2d_});function batchNorm3d_(x,mean7,variance,offset,scale2,varianceEpsilon){let $x=convertToTensor(x,"x","batchNorm"),$mean=convertToTensor(mean7,"mean","batchNorm"),$variance=convertToTensor(variance,"variance","batchNorm"),$scale;scale2!=null&&($scale=convertToTensor(scale2,"scale","batchNorm"));let $offset;return offset!=null&&($offset=convertToTensor(offset,"offset","batchNorm")),assert($x.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${$x.rank}.`),assert($mean.rank===3||$mean.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${$mean.rank}.`),assert($variance.rank===3||$variance.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${$variance.rank}.`),$scale!=null&&assert($scale.rank===3||$scale.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${$scale.rank}.`),$offset!=null&&assert($offset.rank===3||$offset.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${$offset.rank}.`),batchNorm($x,$mean,$variance,$offset,$scale,varianceEpsilon)}var batchNorm3d=op({batchNorm3d_});function batchNorm4d_(x,mean7,variance,offset,scale2,varianceEpsilon){let $x=convertToTensor(x,"x","batchNorm"),$mean=convertToTensor(mean7,"mean","batchNorm"),$variance=convertToTensor(variance,"variance","batchNorm"),$scale;scale2!=null&&($scale=convertToTensor(scale2,"scale","batchNorm"));let $offset;return offset!=null&&($offset=convertToTensor(offset,"offset","batchNorm")),assert($x.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${$x.rank}.`),assert($mean.rank===4||$mean.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${$mean.rank}.`),assert($variance.rank===4||$variance.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${$variance.rank}.`),$scale!=null&&assert($scale.rank===4||$scale.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${$scale.rank}.`),$offset!=null&&assert($offset.rank===4||$offset.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${$offset.rank}.`),batchNorm($x,$mean,$variance,$offset,$scale,varianceEpsilon)}var batchNorm4d=op({batchNorm4d_});function broadcastTo_(x,shape){let input2=convertToTensor(x,"broadcastTo","x"),xShape=input2.shape;if(shape.some(d=>!(d>0)||d%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${shape}].`);if(shape.lengthinput2.rank){let newShape=input2.shape.slice();for(;newShape.length=0;i--)if(inputShape[i]===shape[i])reps[i]=1;else if(input2.shape[i]!==1)throw new Error(`broadcastTo(): [${xShape}] cannot be broadcast to [${shape}].`);let axes=reps.map((n,i)=>n>1?i:-1).filter(i=>i>=0);if(axes.length===0)return clone(input2);let forward=backend3=>backend3.tile(input2,reps),inputs={x:input2},attrs={shape,inputShape};return ENGINE.runKernelFunc(forward,inputs,null,BroadcastTo,attrs)}var broadcastTo=op({broadcastTo_});function ceil_(x){let $x=convertToTensor(x,"x","ceil"),inputs={x:$x};return ENGINE.runKernelFunc(backend3=>backend3.ceil($x),inputs,null,Ceil)}var ceil=op({ceil_});function clipByValue_(x,clipValueMin,clipValueMax){let $x=convertToTensor(x,"x","clipByValue");assert(clipValueMin<=clipValueMax,()=>`Error in clip: min (${clipValueMin}) must be less than or equal to max (${clipValueMax}).`);let inputs={x:$x},attrs={clipValueMin,clipValueMax};return ENGINE.runKernelFunc((backend3,save)=>{let res=backend3.clip($x,clipValueMin,clipValueMax);return save([$x]),res},inputs,null,ClipByValue,attrs)}var clipByValue=op({clipByValue_});function concat1d_(tensors){return concat(tensors,0)}var concat1d=op({concat1d_});function concat2d_(tensors,axis){return concat(tensors,axis)}var concat2d=op({concat2d_});function concat3d_(tensors,axis){return concat(tensors,axis)}var concat3d=op({concat3d_});function concat4d_(tensors,axis){return concat(tensors,axis)}var concat4d=op({concat4d_});function conv2d_(x,filter,strides,pad11,dataFormat="NHWC",dilations=[1,1],dimRoundingMode){let $x=convertToTensor(x,"x","conv2d"),$filter=convertToTensor(filter,"filter","conv2d"),x4D=$x,reshapedTo4D=!1;$x.rank===3&&(reshapedTo4D=!0,x4D=reshape($x,[1,$x.shape[0],$x.shape[1],$x.shape[2]])),assert(x4D.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${x4D.rank}.`),assert($filter.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${$filter.rank}.`),dimRoundingMode!=null&&assert(isInt(pad11),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${dimRoundingMode} but got pad ${pad11}.`);let inDepth=dataFormat==="NHWC"?x4D.shape[3]:x4D.shape[1];assert(inDepth===$filter.shape[2],()=>`Error in conv2d: depth of input (${inDepth}) must match input depth for filter ${$filter.shape[2]}.`),assert(eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);let forward=(backend3,save)=>{let $dataFormat=convertConv2DDataFormat(dataFormat),convInfo=computeConv2DInfo(x4D.shape,$filter.shape,strides,dilations,pad11,dimRoundingMode,!1,$dataFormat),res2=backend3.conv2d(x4D,$filter,convInfo);return save([x4D,$filter]),res2},inputs={x:x4D,filter:$filter},attrs={strides,pad:pad11,dataFormat,dilations,dimRoundingMode},res=ENGINE.runKernelFunc(forward,inputs,null,Conv2D,attrs);return reshapedTo4D?reshape(res,[res.shape[1],res.shape[2],res.shape[3]]):res}var conv2d=op({conv2d_});function conv1d_(x,filter,stride,pad11,dataFormat="NWC",dilation=1,dimRoundingMode){let $x=convertToTensor(x,"x","conv1d"),$filter=convertToTensor(filter,"filter","conv1d"),x3D=$x,reshapedTo3D=!1;$x.rank===2&&(reshapedTo3D=!0,x3D=reshape($x,[1,$x.shape[0],$x.shape[1]])),assert(x3D.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${x3D.rank}.`),assert($filter.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${$filter.rank}.`),dimRoundingMode!=null&&assert(isInt(pad11),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${dimRoundingMode} but got pad ${pad11}.`),assert(x3D.shape[2]===$filter.shape[1],()=>`Error in conv1d: depth of input (${x3D.shape[2]}) must match input depth for filter ${$filter.shape[1]}.`),assert(eitherStridesOrDilationsAreOne(stride,dilation),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${stride} and dilation '${dilation}'`),assert(dataFormat==="NWC",()=>`Error in conv1d: got dataFormat of ${dataFormat} but only NWC is currently supported.`);let filter4D=reshape($filter,[1,$filter.shape[0],$filter.shape[1],$filter.shape[2]]),input4D=reshape(x3D,[x3D.shape[0],1,x3D.shape[1],x3D.shape[2]]),strides=[1,stride],dilations=[1,dilation],conv2dDataFormat="NHWC",res=conv2d(input4D,filter4D,strides,pad11,conv2dDataFormat,dilations,dimRoundingMode);return reshapedTo3D?reshape(res,[res.shape[2],res.shape[3]]):reshape(res,[res.shape[0],res.shape[2],res.shape[3]])}var conv1d=op({conv1d_});function conv2DBackpropInput_(xShape,dy,filter,strides,pad11,dataFormat="NHWC",dimRoundingMode){assert(xShape.length===dy.rank,()=>`Length of inShape (${xShape.length}) and rank of dy (${dy.rank}) must match`);let xShape4D=xShape,dy4D=dy,reshapedTo4D=!1;dy.rank===3&&(reshapedTo4D=!0,dy4D=reshape(dy,[1,dy.shape[0],dy.shape[1],dy.shape[2]]),xShape4D=[1,xShape[0],xShape[1],xShape[2]]),assert(xShape4D.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${xShape4D.length}.`),assert(dy4D.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${dy4D.rank}`),assert(filter.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${filter.rank}`);let inDepth=dataFormat==="NHWC"?xShape4D[3]:xShape4D[1],outDepth=dataFormat==="NHWC"?dy4D.shape[3]:dy4D.shape[1];assert(inDepth===filter.shape[2],()=>`Error in conv2dDerInput: depth of input (${inDepth}) must match input depth for filter ${filter.shape[2]}.`),assert(outDepth===filter.shape[3],()=>`Error in conv2dDerInput: depth of output (${outDepth}) must match output depth for filter ${filter.shape[3]}.`),dimRoundingMode!=null&&assert(isInt(pad11),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${dimRoundingMode} but got pad ${pad11}.`);let forward=(backend3,save)=>{let dilations=1,$dataFormat=convertConv2DDataFormat(dataFormat),convInfo=computeConv2DInfo(xShape4D,filter.shape,strides,dilations,pad11,dimRoundingMode,!1,$dataFormat),res2=backend3.conv2dDerInput(dy4D,filter,convInfo);return save([dy4D,filter]),res2},inputs={dy:dy4D,filter},attrs={strides,pad:pad11,dataFormat,dimRoundingMode,inputShape:xShape4D},res=ENGINE.runKernelFunc(forward,inputs,null,Conv2DBackpropInput,attrs);return reshapedTo4D?reshape(res,[res.shape[1],res.shape[2],res.shape[3]]):res}var conv2DBackpropInput=op({conv2DBackpropInput_});function conv2dTranspose_(x,filter,outputShape,strides,pad11,dimRoundingMode){let $x=convertToTensor(x,"x","conv2dTranspose"),$filter=convertToTensor(filter,"filter","conv2dTranspose");return conv2DBackpropInput(outputShape,$x,$filter,strides,pad11,"NHWC",dimRoundingMode)}var conv2dTranspose=op({conv2dTranspose_});function conv3d_(x,filter,strides,pad11,dataFormat="NDHWC",dilations=[1,1,1]){let $x=convertToTensor(x,"x","conv3d"),$filter=convertToTensor(filter,"filter","conv3d"),x5D=$x,reshapedTo5D=!1;$x.rank===4&&(reshapedTo5D=!0,x5D=reshape($x,[1,$x.shape[0],$x.shape[1],$x.shape[2],$x.shape[3]])),assert(x5D.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${x5D.rank}.`),assert($filter.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${$filter.rank}.`),assert(x5D.shape[4]===$filter.shape[3],()=>`Error in conv3d: depth of input (${x5D.shape[4]}) must match input depth for filter ${$filter.shape[3]}.`),assert(eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`),assert(dataFormat==="NDHWC",()=>`Error in conv3d: got dataFormat of ${dataFormat} but only NDHWC is currently supported.`);let forward=(backend3,save)=>{let convInfo=computeConv3DInfo(x5D.shape,$filter.shape,strides,dilations,pad11),res2=backend3.conv3d(x5D,$filter,convInfo);return save([x5D,$filter]),res2},inputs={x:x5D,filter:$filter},attrs={strides,pad:pad11,dataFormat,dilations},res=ENGINE.runKernelFunc(forward,inputs,null,Conv3D,attrs);return reshapedTo5D?reshape(res,[res.shape[1],res.shape[2],res.shape[3],res.shape[4]]):res}var conv3d=op({conv3d_});function conv3DBackpropInput_(xShape,dy,filter,strides,pad11){assert(xShape.length===dy.rank,()=>`Length of inShape (${xShape.length}) and rank of dy (${dy.rank}) must match`);let xShape5D=xShape,dy5D=dy,reshapedTo5D=!1;dy.rank===4&&(reshapedTo5D=!0,dy5D=reshape(dy,[1,dy.shape[0],dy.shape[1],dy.shape[2],dy.shape[3]]),xShape5D=[1,xShape[0],xShape[1],xShape[2],xShape[3]]);let inDepth=xShape5D[4],outDepth=dy5D.shape[4];assert(xShape5D.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${xShape5D.length}.`),assert(dy5D.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${dy5D.rank}`),assert(filter.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${filter.rank}`),assert(inDepth===filter.shape[3],()=>`Error in conv3dDerInput: depth of input (${inDepth}) must match input depth for filter ${filter.shape[3]}.`),assert(outDepth===filter.shape[4],()=>`Error in conv3dDerInput: depth of output (${outDepth}) must match output depth for filter ${filter.shape[4]}.`);let forward=backend3=>{let dilations=1,convInfo=computeConv3DInfo(xShape5D,filter.shape,strides,dilations,pad11);return backend3.conv3dDerInput(dy5D,filter,convInfo)},inputs={dy:dy5D,filter},attrs={pad:pad11,strides,inputShape:xShape5D},res=ENGINE.runKernelFunc(forward,inputs,null,Conv3DBackpropInputV2,attrs);return reshapedTo5D?reshape(res,[res.shape[1],res.shape[2],res.shape[3],res.shape[4]]):res}var conv3DBackpropInput=op({conv3DBackpropInput_});function conv3dTranspose_(x,filter,outputShape,strides,pad11){let $x=convertToTensor(x,"x","conv3dTranspose"),$filter=convertToTensor(filter,"filter","conv3dTranspose");return conv3DBackpropInput(outputShape,$x,$filter,strides,pad11)}var conv3dTranspose=op({conv3dTranspose_});function cos_(x){let $x=convertToTensor(x,"x","cos"),inputs={x:$x};return ENGINE.runKernelFunc((backend3,save)=>{let res=backend3.cos($x);return save([$x]),res},inputs,null,Cos)}var cos=op({cos_});function cosh_(x){let $x=convertToTensor(x,"x","cosh"),inputs={x:$x};return ENGINE.runKernelFunc((backend3,save)=>{let res=backend3.cosh($x);return save([$x]),res},inputs,null,Cosh)}var cosh=op({cosh_});function cumsum_(x,axis=0,exclusive=!1,reverse12=!1){let $x=convertToTensor(x,"x","cumsum"),forward=(backend3,save)=>{let permutation=getAxesPermutation([axis],$x.rank),permutedX=$x;permutation!=null&&(permutedX=transpose($x,permutation));let permutedAxis=getInnerMostAxes(1,$x.rank)[0],value=backend3.cumsum(permutedX,permutedAxis,exclusive,reverse12);if(save([$x]),permutation!=null){let reversePermutation=getUndoAxesPermutation(permutation);value=transpose(value,reversePermutation)}return value},inputs={x:$x},attrs={axis,exclusive,reverse:reverse12};return ENGINE.runKernelFunc(forward,inputs,null,Cumsum,attrs)}var cumsum=op({cumsum_});function depthToSpace_(x,blockSize,dataFormat="NHWC"){let $x=convertToTensor(x,"x","depthToSpace"),inputHeight=dataFormat==="NHWC"?$x.shape[1]:$x.shape[2],inputWidth=dataFormat==="NHWC"?$x.shape[2]:$x.shape[3],inputDepth=dataFormat==="NHWC"?$x.shape[3]:$x.shape[1];assert(inputHeight*blockSize>=0,()=>`Negative dimension size caused by overflow when multiplying ${inputHeight} and ${blockSize} for depthToSpace with input shape ${$x.shape}`),assert(inputWidth*blockSize>=0,()=>`Negative dimension size caused by overflow when multiplying ${inputWidth} and ${blockSize} for depthToSpace with input shape ${$x.shape}`),assert(inputDepth%(blockSize*blockSize)===0,()=>`Dimension size must be evenly divisible by ${blockSize*blockSize} but is ${inputDepth} for depthToSpace with input shape ${$x.shape}`);let forward=backend3=>backend3.depthToSpace($x,blockSize,dataFormat),inputs={x:$x},attrs={blockSize,dataFormat};return ENGINE.runKernelFunc(forward,inputs,null,DepthToSpace,attrs)}var depthToSpace=op({depthToSpace_});function depthwiseConv2d_(x,filter,strides,pad11,dataFormat="NHWC",dilations=[1,1],dimRoundingMode){let $x=convertToTensor(x,"x","depthwiseConv2d"),$filter=convertToTensor(filter,"filter","depthwiseConv2d"),x4D=$x,reshapedTo4D=!1;$x.rank===3&&(reshapedTo4D=!0,x4D=reshape($x,[1,$x.shape[0],$x.shape[1],$x.shape[2]])),assert(x4D.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${x4D.rank}.`),assert($filter.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${$filter.rank}.`),assert(x4D.shape[3]===$filter.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${x4D.shape[3]}) must match the inChannels dimension in filter ${$filter.shape[2]}.`),dimRoundingMode!=null&&assert(isInt(pad11),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${dimRoundingMode} but got pad ${pad11}.`);let forward=(backend3,save)=>{dilations==null&&(dilations=[1,1]),assert(eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);let convInfo=computeConv2DInfo(x4D.shape,$filter.shape,strides,dilations,pad11,dimRoundingMode,!0),res2=backend3.depthwiseConv2D(x4D,$filter,convInfo);return save([x4D,$filter]),res2},inputs={x:x4D,filter:$filter},attrs={strides,pad:pad11,dataFormat,dilations,dimRoundingMode},res=ENGINE.runKernelFunc(forward,inputs,null,DepthwiseConv2dNative,attrs);return reshapedTo4D?reshape(res,[res.shape[1],res.shape[2],res.shape[3]]):res}var depthwiseConv2d=op({depthwiseConv2d_});function diag_(x){let $x=convertToTensor(x,"x","diag"),forward=backend3=>{let flat=reshape($x,[$x.size]),result=backend3.diag(flat),outShape=[...x.shape,...x.shape];return reshape(result,outShape)},inputs={x:$x};return ENGINE.runKernelFunc(forward,inputs,null,Diag)}var diag=op({diag_});function dilation2d_(x,filter,strides,pad11,dilations=[1,1],dataFormat="NHWC"){let $x=convertToTensor(x,"x","dilation2d"),$filter=convertToTensor(filter,"filter","dilation2d");assert($x.rank===3||$x.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${$x.rank}.`),assert($filter.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${$filter.rank}.`),assert(dataFormat==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${dataFormat}`);let x4D=$x,reshapedTo4D=!1;$x.rank===3&&(x4D=reshape($x,[1,$x.shape[0],$x.shape[1],$x.shape[2]]),reshapedTo4D=!0);let inputs={x:x4D,filter:$filter},attrs={strides,pad:pad11,dilations},res=ENGINE.runKernel(Dilation2D,inputs,attrs);return reshapedTo4D?reshape(res,[res.shape[1],res.shape[2],res.shape[3]]):res}var dilation2d=op({dilation2d_});function getBroadcastDims(inShape,outShape){let inRank=inShape.length,dims=[];for(let i=0;i1&&a===1&&dims.unshift(dim)}return dims}function getReductionAxes(inShape,outShape){let result=[];for(let i=0;i1)&&result.unshift(outAxis)}return result}function assertAndGetBroadcastShape(shapeA,shapeB){let result=[],l=Math.max(shapeA.length,shapeB.length);for(let i=0;ibackend3.equal($a,$b),inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,Equal)}var equal=op({equal_});function where_(condition,a,b){let $a=convertToTensor(a,"a","where"),$b=convertToTensor(b,"b","where"),$condition=convertToTensor(condition,"condition","where","bool"),broadcastShape=assertAndGetBroadcastShape($a.shape,$b.shape),$broadcastedA=broadcastTo($a,broadcastShape),$broadcastedB=broadcastTo($b,broadcastShape);$condition.rank===1&&assert($condition.shape[0]===$a.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),$condition.rank!==1&&assertShapesMatch($condition.shape,$broadcastedB.shape,"Error in where: ");let forward=(backend3,save)=>{let res=backend3.select($condition,$broadcastedA,$broadcastedB);return save([$condition]),res},inputs={condition:$condition,t:$broadcastedA,e:$broadcastedB};return ENGINE.runKernelFunc(forward,inputs,null,SelectV2)}var where=op({where_});function zerosLike_(x){let $x=convertToTensor(x,"x","zerosLike"),inputs={x:$x};return ENGINE.runKernelFunc(backend3=>backend3.zerosLike($x),inputs,null,ZerosLike)}var zerosLike=op({zerosLike_});function divNoNan_(a,b){let $a=convertToTensor(a,"a","div"),$b=convertToTensor(b,"b","div");[$a,$b]=makeTypesMatch($a,$b);let divResult=div($a,$b),zeros10=zerosLike(divResult),bEqualsZero=equal($b,zeros10);return where(bEqualsZero,zeros10,divResult)}var divNoNan=op({divNoNan_});function dot_(t1,t2){let $t1=convertToTensor(t1,"t1","dot"),$t2=convertToTensor(t2,"t2","dot");assert(($t1.rank===1||$t1.rank===2)&&($t2.rank===1||$t2.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${$t1.rank} and ${$t2.rank}.`);let t1Inner=$t1.rank===1?$t1.size:$t1.shape[1],t2Inner=$t2.rank===1?$t2.size:$t2.shape[0];if(assert(t1Inner===t2Inner,()=>`Error in dot: inner dimensions of inputs must match, but got ${t1Inner} and ${t2Inner}.`),$t1.rank===1&&$t2.rank===1){let t12D=reshape($t1,[1,-1]),t22D=reshape($t2,[-1,1]),t1t2=matMul(t12D,t22D);return reshape(t1t2,[])}else if($t1.rank===1&&$t2.rank===2){let t12D=reshape($t1,[1,-1]),t22D=reshape($t2,[$t2.shape[0],$t2.shape[1]]),t1t2=matMul(t12D,t22D);return reshape(t1t2,[t1t2.size])}else if($t1.rank===2&&$t2.rank===1){let t22D=reshape($t2,[-1,1]),t1t2=matMul($t1,t22D);return reshape(t1t2,[t1t2.size])}else{let t22D=reshape($t2,[$t2.shape[0],$t2.shape[1]]),t1t2=matMul($t1,t22D);return t1t2}}var dot=op({dot_});function elu_(x){let $x=convertToTensor(x,"x","elu"),forward=(backend3,save)=>{let y=backend3.elu($x);return save([y]),y},inputs={x:$x};return ENGINE.runKernelFunc(forward,inputs,null,Elu)}var elu=op({elu_});function erf_(x){let $x=convertToTensor(x,"x","erf");assert($x.dtype==="int32"||$x.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),$x.dtype==="int32"&&($x=cast($x,"float32"));let inputs={x:$x};return ENGINE.runKernelFunc((backend3,save)=>{let res=backend3.erf($x);return save([$x]),res},inputs,null,Erf)}var erf=op({erf_});function exp_(x){let $x=convertToTensor(x,"x","exp"),inputs={x:$x};return ENGINE.runKernelFunc((backend3,save)=>{let res=backend3.exp($x);return save([res]),res},inputs,null,Exp)}var exp=op({exp_});function expandDims_(x,axis=0){let parseAs=null,$x=convertToTensor(x,"x","expandDims",parseAs);assert(axis<=$x.rank,()=>"Axis must be <= rank of the tensor");let newShape=$x.shape.slice();return axis<0&&(assert(-($x.rank+1)<=axis,()=>`Axis must be in the interval [${-($x.rank+1)}, ${$x.rank}]`),axis=$x.rank+axis+1),newShape.splice(axis,0,1),reshape($x,newShape)}var expandDims=op({expandDims_});function expm1_(x){let $x=convertToTensor(x,"x","expm1"),inputs={x:$x};return ENGINE.runKernelFunc((backend3,save)=>{let res=backend3.expm1($x);return save([$x]),res},inputs,null,Expm1)}var expm1=op({expm1_});function tile_(x,reps){let parseAs=null,$x=convertToTensor(x,"x","tile",parseAs);assert($x.rank===reps.length,()=>`Error in transpose: rank of input ${$x.rank} must match length of reps ${reps}.`);let forward=(backend3,save)=>{let res=backend3.tile($x,reps);return save([$x]),res},inputsToSave=[$x],inputs={x:$x},attrs={reps};return ENGINE.runKernelFunc(forward,inputs,null,Tile,attrs,inputsToSave)}var tile=op({tile_});function eye_(numRows,numColumns,batchShape,dtype="float32"){numColumns==null&&(numColumns=numRows);let buff=buffer([numRows,numColumns],dtype),n=numRows<=numColumns?numRows:numColumns;for(let i=0;ibackend3.fill(shape,value,dtype),{},null,Fill,attrs)}function floor_(x){let $x=convertToTensor(x,"x","floor"),inputs={x:$x};return ENGINE.runKernelFunc(backend3=>backend3.floor($x),inputs,null,Floor)}var floor=op({floor_}),segment_util_exports={};__export2(segment_util_exports,{collectGatherOpShapeInfo:()=>collectGatherOpShapeInfo,computeOutShape:()=>computeOutShape3,segOpComputeOptimalWindowSize:()=>segOpComputeOptimalWindowSize});var PARALLELIZE_THRESHOLD=30;function computeOptimalWindowSize(inSize){return inSize<=PARALLELIZE_THRESHOLD?inSize:nearestDivisor(inSize,Math.floor(Math.sqrt(inSize)))}function segOpComputeOptimalWindowSize(inSize,numSegments){let done=!1,res;for(inSize<=PARALLELIZE_THRESHOLD?(res=inSize,done=!0):res=nearestDivisor(inSize,Math.floor(Math.sqrt(inSize)));!done;)res>numSegments||res===inSize?done=!0:res=nearestDivisor(inSize,res+1);return res}function computeOutShape3(aShape,axis,numSegments){let outShape=[],rank=aShape.length;for(let dim=0;dim{let parsedAxis=parseAxisParam(axis,$x.shape)[0],shapeInfo=collectGatherOpShapeInfo($x,$indices,parsedAxis),res=backend3.gather($x,reshape($indices,[$indices.size]),parsedAxis);return save([$x,$indices]),reshape(res,shapeInfo.outputShape)};return ENGINE.runKernelFunc(forward,inputs,null,GatherV2,attrs)}var gather=op({gather_});function greater_(a,b){let $a=convertToTensor(a,"a","greater"),$b=convertToTensor(b,"b","greater");[$a,$b]=makeTypesMatch($a,$b),assertAndGetBroadcastShape($a.shape,$b.shape);let forward=backend3=>backend3.greater($a,$b),inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,Greater)}var greater=op({greater_});function greaterEqual_(a,b){let $a=convertToTensor(a,"a","greaterEqual"),$b=convertToTensor(b,"b","greaterEqual");[$a,$b]=makeTypesMatch($a,$b),assertAndGetBroadcastShape($a.shape,$b.shape);let forward=(backend3,save)=>{let res=backend3.greaterEqual($a,$b);return save([$a,$b]),res},inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,GreaterEqual)}var greaterEqual=op({greaterEqual_});function imag_(input2){let $input=convertToTensor(input2,"input","imag"),forward=backend3=>backend3.imag($input),inputs={input:$input};return ENGINE.runKernelFunc(forward,inputs,null,Imag)}var imag=op({imag_});function isFinite_(x){let $x=convertToTensor(x,"x","isFinite"),inputs={x:$x};return ENGINE.runKernelFunc(backend3=>backend3.isFinite($x),inputs,null,IsFinite)}var isFinite2=op({isFinite_});function isInf_(x){let $x=convertToTensor(x,"x","isInf"),inputs={x:$x};return ENGINE.runKernelFunc(backend3=>backend3.isInf($x),inputs,null,IsInf)}var isInf=op({isInf_});function isNaN_(x){let $x=convertToTensor(x,"x","isNaN"),inputs={x:$x};return ENGINE.runKernelFunc(backend3=>backend3.isNaN($x),inputs,null,IsNan)}var isNaN2=op({isNaN_});function maximum_(a,b){let $a=convertToTensor(a,"a","maximum"),$b=convertToTensor(b,"b","maximum");[$a,$b]=makeTypesMatch($a,$b),$a.dtype==="bool"&&($a=cast($a,"int32"),$b=cast($b,"int32")),assertAndGetBroadcastShape($a.shape,$b.shape);let forward=(backend3,save)=>{let res=backend3.maximum($a,$b);return save([$a,$b]),res},inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,Maximum)}var maximum=op({maximum_});function scalar(value,dtype){if((isTypedArray(value)&&dtype!=="string"||Array.isArray(value))&&dtype!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(dtype==="string"&&isTypedArray(value)&&!(value instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");let shape=[],inferredShape=[];return makeTensor(value,shape,inferredShape,dtype)}function leakyRelu_(x,alpha=.2){let $x=convertToTensor(x,"x","leakyRelu");return maximum(mul(scalar(alpha),$x),$x)}var leakyRelu=op({leakyRelu_});function less_(a,b){let $a=convertToTensor(a,"a","less"),$b=convertToTensor(b,"b","less");[$a,$b]=makeTypesMatch($a,$b),assertAndGetBroadcastShape($a.shape,$b.shape);let forward=backend3=>backend3.less($a,$b),inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,Less)}var less=op({less_});function lessEqual_(a,b){let $a=convertToTensor(a,"a","lessEqual"),$b=convertToTensor(b,"b","lessEqual");[$a,$b]=makeTypesMatch($a,$b),assertAndGetBroadcastShape($a.shape,$b.shape);let forward=(backend3,save)=>{let res=backend3.lessEqual($a,$b);return save([$a,$b]),res},inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,LessEqual)}var lessEqual=op({lessEqual_});function linspace(start,stop,num){if(num<=0)throw new Error("The number of values should be positive.");let attrs={start,stop,num};return ENGINE.runKernelFunc(backend3=>backend3.linspace(start,stop,num),{},null,LinSpace,attrs)}function localResponseNormalization_(x,depthRadius=5,bias=1,alpha=1,beta=.5){let $x=convertToTensor(x,"x","localResponseNormalization");assert($x.rank===4||$x.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got rank ${$x.rank}.`),assert(isInt(depthRadius),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${depthRadius}.`);let x4D=$x,reshapedTo4D=!1;$x.rank===3&&(reshapedTo4D=!0,x4D=reshape($x,[1,$x.shape[0],$x.shape[1],$x.shape[2]]));let forward=(backend3,save)=>{let y=backend3.localResponseNormalization4D(x4D,depthRadius,bias,alpha,beta);return save([x4D,y]),y},inputs={x:x4D},attrs={depthRadius,bias,alpha,beta},res=ENGINE.runKernelFunc(forward,inputs,null,LRN,attrs);return reshapedTo4D?reshape(res,[res.shape[1],res.shape[2],res.shape[3]]):res}var localResponseNormalization=op({localResponseNormalization_});function log_(x){let $x=convertToTensor(x,"x","log"),inputs={x:$x};return ENGINE.runKernelFunc((backend3,save)=>{let res=backend3.log($x);return save([$x]),res},inputs,null,Log)}var log2=op({log_});function log1p_(x){let $x=convertToTensor(x,"x","log1p"),inputs={x:$x};return ENGINE.runKernelFunc((backend3,save)=>{let res=backend3.log1p($x);return save([$x]),res},inputs,null,Log1p)}var log1p=op({log1p_});function grad(f){return assert(isFunction(f),()=>"The f passed in grad(f) must be a function"),(x,dy)=>{let $x=convertToTensor(x,"x","tf.grad",null),$dy=dy!=null?convertToTensor(dy,"dy","tf.grad"):null;return ENGINE.tidy(()=>{let{value,grads:grads2}=ENGINE.gradients(()=>f($x),[$x],$dy);return $dy!=null&&assertShapesMatch(value.shape,$dy.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),checkGrads(grads2),grads2[0]})}}function grads(f){return assert(isFunction(f),()=>"The f passed in grads(f) must be a function"),(args,dy)=>{assert(Array.isArray(args),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let $args=convertToTensorArray(args,"args","tf.grads",null),$dy=dy!=null?convertToTensor(dy,"dy","tf.grads"):null;return ENGINE.tidy(()=>{let{value,grads:grads2}=ENGINE.gradients(()=>f(...$args),$args,$dy);return $dy!=null&&assertShapesMatch(value.shape,$dy.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),checkGrads(grads2),grads2})}}function valueAndGrad(f){return assert(isFunction(f),()=>"The f passed in valueAndGrad(f) must be a function"),(x,dy)=>{assert(x instanceof Tensor,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),assert(dy==null||dy instanceof Tensor,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:grads2,value}=ENGINE.gradients(()=>f(x),[x],dy);return checkGrads(grads2),{grad:grads2[0],value}}}function valueAndGrads(f){return assert(isFunction(f),()=>"The f passed in valueAndGrads(f) must be a function"),(args,dy)=>{assert(Array.isArray(args)&&args.every(arg=>arg instanceof Tensor),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),assert(dy==null||dy instanceof Tensor,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let res=ENGINE.gradients(()=>f(...args),args,dy);return dy!=null&&assertShapesMatch(res.value.shape,dy.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),checkGrads(res.grads),res}}function variableGrads(f,varList){assert(isFunction(f),()=>"The f passed in variableGrads(f) must be a function"),assert(varList==null||Array.isArray(varList)&&varList.every(v=>v instanceof Variable),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let specifiedVarList=varList!=null;if(!specifiedVarList){varList=[];for(let varName in ENGINE.registeredVariables)varList.push(ENGINE.registeredVariables[varName])}let specifiedNonTrainable=specifiedVarList?varList.filter(variable3=>!variable3.trainable):null,originalVarCount=varList.length;varList=varList.filter(variable3=>variable3.trainable),assert(varList.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${originalVarCount} variables is trainable.`);let allowNoGradients=!0,{value,grads:grads2}=ENGINE.gradients(f,varList,null,allowNoGradients);assert(grads2.some(g=>g!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),assert(value.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${value.rank} tensor`);let namedGrads={};return varList.forEach((v,i)=>{grads2[i]!=null&&(namedGrads[v.name]=grads2[i])}),specifiedNonTrainable!=null&&specifiedNonTrainable.forEach(v=>namedGrads[v.name]=null),{value,grads:namedGrads}}function customGrad(f){return ENGINE.customGrad(f)}function checkGrads(grads2){let numNullGradients=grads2.filter(g=>g==null).length;if(numNullGradients>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.`)}function neg_(x){let $x=convertToTensor(x,"x","neg"),inputs={x:$x};return ENGINE.runKernelFunc(backend3=>backend3.neg($x),inputs,null,Negate)}var neg=op({neg_});function softplus_(x){let $x=convertToTensor(x,"x","softplus"),inputs={x:$x};return ENGINE.runKernelFunc((backend3,save)=>{let res=backend3.softplus($x);return save([$x]),res},inputs,null,Softplus)}var softplus=op({softplus_});function logSigmoid_(x){let $x=convertToTensor(x,"x","logSigmoid"),customOp=customGrad(x2=>{let value=neg(softplus(neg(x2))),gradFunc=dy=>{let derX=mul(dy,sigmoid(neg(x2)));return derX};return{value,gradFunc}});return customOp($x)}var logSigmoid=op({logSigmoid_});function max_(x,axis=null,keepDims=!1){let $x=convertToTensor(x,"x","max"),forward=(backend3,save)=>{let origAxes=parseAxisParam(axis,$x.shape),axes=origAxes,permutedAxes=getAxesPermutation(axes,$x.rank),maxInput=$x;permutedAxes!=null&&(maxInput=transpose($x,permutedAxes),axes=getInnerMostAxes(axes.length,maxInput.rank));let y=backend3.max(maxInput,axes);permutedAxes!=null&&maxInput.dispose();let res=y;if(keepDims){let expandedShape=expandShapeToKeepDim(res.shape,parseAxisParam(axis,$x.shape));res=reshape(res,expandedShape),y.dispose()}return save([$x,res]),res},inputs={x:$x},attrs={reductionIndices:axis,keepDims};return ENGINE.runKernelFunc(forward,inputs,null,Max,attrs)}var max=op({max_});function sub_(a,b){let $a=convertToTensor(a,"a","sub"),$b=convertToTensor(b,"b","sub");[$a,$b]=makeTypesMatch($a,$b);let forward=(backend3,save)=>{let res=backend3.subtract($a,$b);return save([$a,$b]),res},inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,Sub)}var sub=op({sub_});function sum_(x,axis=null,keepDims=!1){let $x=convertToTensor(x,"x","sum");$x.dtype==="bool"&&($x=cast($x,"int32"));let forward=(backend3,save)=>{save([$x]);let axes=parseAxisParam(axis,$x.shape),permutation=getAxesPermutation(axes,$x.rank),reductionAxes=axes,permutedX=$x;permutation!=null&&(permutedX=transpose($x,permutation),reductionAxes=getInnerMostAxes(reductionAxes.length,$x.rank));let value=backend3.sum(permutedX,reductionAxes);if(keepDims){let newShape=expandShapeToKeepDim(value.shape,axes);value=reshape(value,newShape)}return value},inputs={x:$x},attrs={axis,keepDims};return ENGINE.runKernelFunc(forward,inputs,null,Sum,attrs)}var sum2=op({sum_});function logSoftmax_(logits,axis=-1){let $logits=convertToTensor(logits,"logits","logSoftmax");if(axis===-1&&(axis=$logits.rank-1),axis!==$logits.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${$logits.rank} and axis was ${axis}`);let forward=(backend3,save)=>{let keepDims=!0,xMax=max(logits,axis,!0),shifted=sub(logits,xMax),value=sub(cast(shifted,"float32"),log2(sum2(exp(shifted),axis,keepDims)));return save([value]),value},inputs={logits:$logits},attrs={axis};return ENGINE.runKernelFunc(forward,inputs,null,LogSoftmax,attrs)}var logSoftmax=op({logSoftmax_});function logSumExp_(x,axis=null,keepDims=!1){let $x=convertToTensor(x,"x","logSumExp"),axes=parseAxisParam(axis,$x.shape),xMax=max($x,axes,!0),a=sub($x,xMax),b=exp(a),c=sum2(b,axes),d=log2(c),res=add2(reshape(xMax,d.shape),d);if(keepDims){let newShape=expandShapeToKeepDim(res.shape,axes);return reshape(res,newShape)}return res}var logSumExp=op({logSumExp_});function logicalAnd_(a,b){let $a=convertToTensor(a,"a","logicalAnd","bool"),$b=convertToTensor(b,"b","logicalAnd","bool");assertAndGetBroadcastShape($a.shape,$b.shape);let inputs={a:$a,b:$b};return ENGINE.runKernelFunc(backend3=>backend3.logicalAnd($a,$b),inputs,null,LogicalAnd)}var logicalAnd=op({logicalAnd_});function logicalNot_(x){let $x=convertToTensor(x,"x","logicalNot","bool"),inputs={x:$x};return ENGINE.runKernelFunc(backend3=>backend3.logicalNot($x),inputs,null,LogicalNot)}var logicalNot=op({logicalNot_});function logicalOr_(a,b){let $a=convertToTensor(a,"a","logicalOr","bool"),$b=convertToTensor(b,"b","logicalOr","bool");assertAndGetBroadcastShape($a.shape,$b.shape);let inputs={a:$a,b:$b};return ENGINE.runKernelFunc(backend3=>backend3.logicalOr($a,$b),inputs,null,LogicalOr)}var logicalOr=op({logicalOr_});function logicalXor_(a,b){let $a=convertToTensor(a,"a","logicalXor","bool"),$b=convertToTensor(b,"b","logicalXor","bool");return assertAndGetBroadcastShape($a.shape,$b.shape),logicalAnd(logicalOr(a,b),logicalNot(logicalAnd(a,b)))}var logicalXor=op({logicalXor_});function maxPool_(x,filterSize,strides,pad11,dimRoundingMode){let $x=convertToTensor(x,"x","maxPool"),dilations=1,x4D=$x,reshapedTo4D=!1;$x.rank===3&&(reshapedTo4D=!0,x4D=reshape($x,[1,$x.shape[0],$x.shape[1],$x.shape[2]])),assert(x4D.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${x4D.rank}.`),assert(eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`),dimRoundingMode!=null&&assert(isInt(pad11),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${dimRoundingMode} but got pad ${pad11}.`);let forward=(backend3,save)=>{let convInfo=computePool2DInfo(x4D.shape,filterSize,strides,1,pad11,dimRoundingMode),y;return convInfo.filterWidth===1&&convInfo.filterHeight===1&&arraysEqual(convInfo.inShape,convInfo.outShape)?y=x4D.clone():y=backend3.maxPool(x4D,convInfo),save([x4D,y]),y},inputs={x:x4D},attrs={filterSize,strides,pad:pad11,dimRoundingMode},res=ENGINE.runKernelFunc(forward,inputs,null,MaxPool,attrs);return reshapedTo4D?reshape(res,[res.shape[1],res.shape[2],res.shape[3]]):res}var maxPool=op({maxPool_});function maxPool3d_(x,filterSize=[1,1,1],strides,pad11,dimRoundingMode,dataFormat="NDHWC",dilations){dilations==null?dilations=[1,1,1]:deprecationWarn("dilations is deprecated, this field will be gone in v3.0.0.");let $x=convertToTensor(x,"x","maxPool3d"),x5D=$x,reshapedTo5D=!1;$x.rank===4&&(reshapedTo5D=!0,x5D=reshape($x,[1,$x.shape[0],$x.shape[1],$x.shape[2],$x.shape[3]])),assert(x5D.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${x5D.rank}.`),assert(dataFormat==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${dataFormat}`),assert(eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in maxPool3d: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`),dimRoundingMode!=null&&assert(isInt(pad11),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${dimRoundingMode} but got pad ${pad11}.`);let forward=(backend3,save)=>{dilations==null&&(dilations=[1,1,1]);let convInfo=computePool3DInfo(x5D.shape,filterSize,strides,dilations,pad11,dimRoundingMode,dataFormat),y=backend3.maxPool3d(x5D,convInfo);return save([x5D,y]),y},inputs={x:x5D},attrs={filterSize,strides,pad:pad11,dimRoundingMode,dataFormat,dilations},res=ENGINE.runKernelFunc(forward,inputs,null,MaxPool3D,attrs);return reshapedTo5D?reshape(res,[res.shape[1],res.shape[2],res.shape[3],res.shape[4]]):res}var maxPool3d=op({maxPool3d_});function maxPoolWithArgmax_(x,filterSize,strides,pad11,includeBatchInIndex=!1){let $x=convertToTensor(x,"x","maxPoolWithArgmax"),inputs={x:$x},attrs={filterSize,strides,pad:pad11,includeBatchInIndex},result=ENGINE.runKernel(MaxPoolWithArgmax,inputs,attrs);return{result:result[0],indexes:result[1]}}var maxPoolWithArgmax=op({maxPoolWithArgmax_});function zeros(shape,dtype="float32"){if(dtype==="complex64"){let real8=zeros(shape,"float32"),imag8=zeros(shape,"float32");return complex(real8,imag8)}let values=makeZerosTypedArray(sizeFromShape(shape),dtype);return ENGINE.makeTensor(values,shape,dtype)}function ones2(shape,dtype="float32"){if(dtype==="complex64"){let real8=ones2(shape,"float32"),imag8=zeros(shape,"float32");return complex(real8,imag8)}let values=makeOnesTypedArray(sizeFromShape(shape),dtype);return ENGINE.makeTensor(values,shape,dtype)}function mean_(x,axis=null,keepDims=!1){let $x=convertToTensor(x,"x","mean"),axes=parseAxisParam(axis,$x.shape),shapes=computeOutAndReduceShapes($x.shape,axes),reduceShape=shapes[1],reduceSize=sizeFromShape(reduceShape),inputs={x:$x},attrs={axis,keepDims},forward=()=>{let reduceSizeScalar=scalar(reduceSize),xReduce=reduceSizeScalar.dtype===$x.dtype?$x:cast($x,reduceSizeScalar.dtype),res=div(xReduce,reduceSizeScalar);return sum2(res,axis,keepDims)},customOp=customGrad(x2=>{let value=ENGINE.runKernelFunc(forward,inputs,null,Mean,attrs),gradFunc=dy=>{let expandedDyShape=x2.shape.slice();axes.forEach(axis2=>{expandedDyShape[axis2]=1});let expandedDy=reshape(dy,expandedDyShape),derX=div(mul(expandedDy,ones2(x2.shape,"float32")),reduceSize);return derX};return{value,gradFunc}});return customOp($x)}var mean=op({mean_});function min_(x,axis=null,keepDims=!1){let $x=convertToTensor(x,"x","min"),forward=(backend3,save)=>{let origAxes=parseAxisParam(axis,$x.shape),axes=origAxes,permutedAxes=getAxesPermutation(axes,$x.rank),minInput=$x;permutedAxes!=null&&(minInput=transpose($x,permutedAxes),axes=getInnerMostAxes(axes.length,$x.rank));let y=backend3.min(minInput,axes);permutedAxes!=null&&minInput.dispose();let res=y;if(keepDims){let expandedShape=expandShapeToKeepDim(res.shape,origAxes);res=reshape(y,expandedShape),y.dispose()}return save([$x,res]),res},inputs={x:$x},attrs={axis,keepDims};return ENGINE.runKernelFunc(forward,inputs,null,Min,attrs)}var min=op({min_});function minimum_(a,b){let $a=convertToTensor(a,"a","minimum"),$b=convertToTensor(b,"b","minimum");[$a,$b]=makeTypesMatch($a,$b),$a.dtype==="bool"&&($a=cast($a,"int32"),$b=cast($b,"int32")),assertAndGetBroadcastShape($a.shape,$b.shape);let forward=(backend3,save)=>{let res=backend3.minimum($a,$b);return save([$a,$b]),res},inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,Minimum)}var minimum=op({minimum_});function mirrorPad_(x,paddings,mode){assert(mode==="reflect"||mode==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${mode}.`);let $x=convertToTensor(x,"x","mirrorPad");if($x.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");assert(paddings.length===$x.rank,()=>`Padding doesn't match input. Must be ${$x.rank}. Got ${paddings.length}.`);let shapeOffset=mode==="reflect"?1:0;for(let i=0;i<$x.rank;i++)assert(paddings[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),assert(paddings[i][0]>=0&&paddings[i][0]<=$x.shape[i]-shapeOffset&&paddings[i][1]>=0&&paddings[i][1]<=$x.shape[i]-shapeOffset,()=>`Padding in dimension ${i} cannot be greater than or equal to ${$x.shape[i]-shapeOffset} or less than 0 for input of shape ${$x.shape}`);let attrs={paddings,mode},inputs={x:$x};return ENGINE.runKernel(MirrorPad,inputs,attrs)}var mirrorPad=op({mirrorPad_});function mod_(a,b){let $a=convertToTensor(a,"a","mod"),$b=convertToTensor(b,"b","mod");[$a,$b]=makeTypesMatch($a,$b);let forward=(backend3,save)=>{let res=backend3.mod($a,$b);return save([$a,$b]),res},inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,Mod)}var mod=op({mod_});function square_(x){let $x=convertToTensor(x,"x","square"),attrs={},inputsToSave=[$x],outputsToSave=[];return ENGINE.runKernelFunc((backend3,save)=>(save([$x]),backend3.square($x)),{x:$x},null,"Square",attrs,inputsToSave,outputsToSave)}var square=op({square_});function moments_(x,axis=null,keepDims=!1){x=convertToTensor(x,"x","moments");let axes=parseAxisParam(axis,x.shape),xMean=mean(x,axes,keepDims),keepDimsShape=xMean.shape;keepDims||(keepDimsShape=expandShapeToKeepDim(xMean.shape,axes));let devSquared=square(sub(cast(x,"float32"),reshape(xMean,keepDimsShape))),variance=mean(devSquared,axes,keepDims);return{mean:xMean,variance}}var moments=op({moments_});function multiRNNCell_(lstmCells,data2,c,h){let $data=convertToTensor(data2,"data","multiRNNCell"),$c=convertToTensorArray(c,"c","multiRNNCell"),$h=convertToTensorArray(h,"h","multiRNNCell"),input2=$data,newStates=[];for(let i=0;i2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${origRank}`);seed=seed||Math.random();let logits2D=origRank===1?reshape($logits,[1,-1]):$logits,res=ENGINE.runKernelFunc(backend3=>backend3.multinomial(logits2D,normalized,numSamples,seed),{logits2D});return origRank===1?reshape(res,[res.size]):res}var multinomial=op({multinomial_});function notEqual_(a,b){let $a=convertToTensor(a,"a","notEqual"),$b=convertToTensor(b,"b","notEqual");[$a,$b]=makeTypesMatch($a,$b),assertAndGetBroadcastShape($a.shape,$b.shape);let forward=backend3=>backend3.notEqual($a,$b),inputs={a:$a,b:$b};return ENGINE.runKernelFunc(forward,inputs,null,NotEqual)}var notEqual=op({notEqual_});function real_(input2){let $input=convertToTensor(input2,"input","real"),forward=backend3=>backend3.real($input),inputs={input:$input};return ENGINE.runKernelFunc(forward,inputs,null,Real)}var real=op({real_});function onesLike_(x){let $x=convertToTensor(x,"x","onesLike"),forward=(backend3,save)=>{if($x.dtype==="complex64"){let r=onesLike(real($x)),i=zerosLike(imag($x));return complex(r,i)}return backend3.onesLike($x)},inputs={x:$x};return ENGINE.runKernelFunc(forward,inputs,null,OnesLike)}var onesLike=op({onesLike_});function outerProduct_(v1,v2){let $v1=convertToTensor(v1,"v1","outerProduct"),$v2=convertToTensor(v2,"v2","outerProduct");assert($v1.rank===1&&$v2.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${$v1.rank} and ${$v2.rank}.`);let v12D=reshape($v1,[-1,1]),v22D=reshape($v2,[1,-1]);return matMul(v12D,v22D)}var outerProduct=op({outerProduct_});function pad_(x,paddings,constantValue=0){let $x=convertToTensor(x,"x","pad");if($x.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let forward=(backend3,save)=>(save([$x]),backend3.pad($x,paddings,constantValue)),attrs={paddings,constantValue},inputs={x:$x};return ENGINE.runKernelFunc(forward,inputs,null,PadV2,attrs)}var pad=op({pad_});function pad1d_(x,paddings,constantValue=0){return assert(paddings.length===2,()=>"Invalid number of paddings. Must be length of 2."),pad(x,[paddings],constantValue)}var pad1d=op({pad1d_});function pad2d_(x,paddings,constantValue=0){return assert(paddings.length===2&&paddings[0].length===2&&paddings[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),pad(x,paddings,constantValue)}var pad2d=op({pad2d_});function pad3d_(x,paddings,constantValue=0){return assert(paddings.length===3&&paddings[0].length===2&&paddings[1].length===2&&paddings[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),pad(x,paddings,constantValue)}var pad3d=op({pad3d_});function pad4d_(x,paddings,constantValue=0){return assert(paddings.length===4&&paddings[0].length===2&&paddings[1].length===2&&paddings[2].length===2&&paddings[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),pad(x,paddings,constantValue)}var pad4d=op({pad4d_});function spaceToBatchND_(x,blockShape,paddings){let $x=convertToTensor(x,"x","spaceToBatchND");assert($x.rank>=1+blockShape.length,()=>`input rank ${$x.rank} should be > than [blockShape] ${blockShape.length}`),assert(paddings.length===blockShape.length,()=>`paddings.shape[0] ${paddings.length} must be equal to [blockShape] ${blockShape.length}`),assert($x.shape.reduce((a,b,i)=>i>0&&i<=blockShape.length?a&&(b+paddings[i-1][0]+paddings[i-1][1])%blockShape[i-1]===0:a,!0),()=>`input spatial dimensions ${$x.shape.slice(1)} with paddings ${paddings.toString()} must be divisible by blockShapes ${blockShape.toString()}`);let forward=backend3=>backend3.spaceToBatchND($x,blockShape,paddings),inputs={x:$x},attrs={blockShape,paddings};return ENGINE.runKernelFunc(forward,inputs,null,SpaceToBatchND,attrs)}var spaceToBatchND=op({spaceToBatchND_});function pool_(input2,windowShape,poolingType,pad11,dilations,strides){dilations==null&&(dilations=[1,1]),strides==null&&(strides=1),pad11===0&&(pad11="valid");let $x=convertToTensor(input2,"x","maxPool"),x4D=$x,reshapedTo4D=!1;$x.rank===3&&(reshapedTo4D=!0,x4D=reshape($x,[1,$x.shape[0],$x.shape[1],$x.shape[2]])),assert(eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);let convInfo=computePool2DInfo(x4D.shape,windowShape,strides,dilations,pad11),dilation=[convInfo.dilationHeight,convInfo.dilationWidth],basePadding;pad11==="same"?basePadding=withSpaceToBatchBasePaddings([convInfo.filterHeight,convInfo.filterWidth],dilation):basePadding=[[0,0],[0,0]];let isDilationOne=dilation[0]===1&&dilation[1]===1,[adjustedPadding,adjustedCrops]=requiredSpaceToBatchPaddings([convInfo.inHeight,convInfo.inWidth],dilation,basePadding),convertedPad=isDilationOne?pad11:"valid",convertedX=isDilationOne?x4D:spaceToBatchND(x4D,dilation,adjustedPadding),forwardOp=poolingType==="avg"?()=>avgPool(convertedX,windowShape,strides,convertedPad):()=>maxPool(convertedX,windowShape,strides,convertedPad),y=forwardOp(),res=isDilationOne?y:batchToSpaceND(y,dilation,adjustedCrops);return reshapedTo4D?reshape(res,[res.shape[1],res.shape[2],res.shape[3]]):res}function requiredSpaceToBatchPaddings(inputShape,blockShape,basePadding){let padStart=basePadding.map(b=>b[0]),origPadEnd=basePadding.map(b=>b[1]),fullInputShape=inputShape.concat(padStart,origPadEnd),padEndExtra=blockShape.map((b,i)=>(b-fullInputShape[i]%b)%b),padEnd=origPadEnd.map((s,i)=>s+padEndExtra[i]),paddings=blockShape.map((_,i)=>[padStart[i],padEnd[i]]),crops=blockShape.map((_,i)=>[0,padEndExtra[i]]);return[paddings,crops]}function withSpaceToBatchBasePaddings(filterShape,dilation){let dilatedFilterShape=filterShape.map((s,i)=>s+(s-1)*(dilation[i]-1)),padExtraShape=dilatedFilterShape.map(s=>s-1),padExtraStart=padExtraShape.map(s=>Math.floor(s/2)),padExtraEnd=padExtraShape.map((s,i)=>s-padExtraStart[i]);return padExtraShape.map((_,i)=>[padExtraStart[i],padExtraEnd[i]])}var pool=op({pool_});function pow_(base2,exp13){let $base=convertToTensor(base2,"base","pow"),$exp=convertToTensor(exp13,"exp","pow");[$base,$exp]=makeTypesMatch($base,$exp);let inputs={a:$base,b:$exp},forward=(backend3,save)=>{let y=backend3.pow($base,$exp);return save([$base,$exp,y]),y};return ENGINE.runKernelFunc(forward,inputs,null,Pow)}var pow=op({pow_});function prelu_(x,alpha){let $x=convertToTensor(x,"x","prelu"),$alpha=convertToTensor(alpha,"alpha","prelu"),forward=(backend3,save)=>{let res=backend3.prelu($x,$alpha);return save([$x,$alpha]),res},inputs={x:$x,alpha:$alpha};return ENGINE.runKernelFunc(forward,inputs,null,Prelu)}var prelu=op({prelu_});function prod_(x,axis=null,keepDims=!1){let $x=convertToTensor(x,"x","prod");$x.dtype==="bool"&&($x=cast($x,"int32"));let forward=backend3=>{let axes=parseAxisParam(axis,$x.shape),permutation=getAxesPermutation(axes,$x.rank),reductionAxes=axes,permutedX=$x;permutation!=null&&(permutedX=transpose($x,permutation),reductionAxes=getInnerMostAxes(reductionAxes.length,$x.rank));let value=backend3.prod(permutedX,reductionAxes);if(keepDims){let newShape=expandShapeToKeepDim(value.shape,axes);value=reshape(value,newShape)}return value},inputs={x:$x},attrs={axis,keepDims};return ENGINE.runKernelFunc(forward,inputs,null,Prod,attrs)}var prod=op({prod_});function rand_(shape,randFunction,dtype){let size=sizeFromShape(shape),values=null;if(dtype==null||dtype==="float32")values=new Float32Array(size);else if(dtype==="int32")values=new Int32Array(size);else if(dtype==="bool")values=new Uint8Array(size);else throw new Error(`Unknown data type ${dtype}`);for(let i=0;i=1||s===0);let mul64=Math.sqrt(-2*Math.log(s)/s);resultX=this.mean+this.stdDev*v1*mul64,resultY=this.mean+this.stdDev*v2*mul64,(!this.truncated||this.isValidTruncated(resultX))&&(isValid=!0)}return(!this.truncated||this.isValidTruncated(resultY))&&(this.nextVal=this.convertValue(resultY)),this.convertValue(resultX)}convertValue(value){return this.dtype==null||this.dtype==="float32"?value:Math.round(value)}isValidTruncated(value){return value<=this.upper&&value>=this.lower}},RandGamma=class{constructor(alpha,beta,dtype,seed){this.alpha=alpha,this.beta=1/beta,this.dtype=dtype;let seedValue=seed||Math.random();this.randu=seedrandom.alea(seedValue.toString()),this.randn=new MPRandGauss(0,1,dtype,!1,this.randu()),alpha<1?this.d=alpha+2/3:this.d=alpha-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let x2,v0,v1,x,u,v;for(;;){do x=this.randn.nextValue(),v=1+this.c*x;while(v<=0);if(v*=v*v,x2=x*x,v0=1-.331*x2*x2,v1=.5*x2+this.d*(1-v+Math.log(v)),u=this.randu(),uthis.dtype==null||this.dtype==="float32",this.min=min8,this.range=max10-min8,this.dtype=dtype,seed==null&&(seed=Math.random()),typeof seed=="number"&&(seed=seed.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${min8} - ${max10} <= 1 and dtype is not float`);this.random=seedrandom.alea(seed)}convertValue(value){return this.canReturnFloat()?value:Math.round(value)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function randomGamma_(shape,alpha,beta=1,dtype="float32",seed){if(beta==null&&(beta=1),dtype==null&&(dtype="float32"),dtype!=="float32"&&dtype!=="int32")throw new Error(`Unsupported data type ${dtype}`);let rgamma=new RandGamma(alpha,beta,dtype,seed),res=buffer(shape,dtype);for(let i=0;i{let sameStartStop=start===stop,increasingRangeNegativeStep=start1;if(sameStartStop||increasingRangeNegativeStep||decreasingRangePositiveStep)return zeros([0],dtype);let numElements=Math.abs(Math.ceil((stop-start)/step9)),values=makeZerosTypedArray(numElements,dtype);stop{let res=backend3.reciprocal($x);return save([$x]),res},inputs,null,Reciprocal)}var reciprocal=op({reciprocal_});function relu_(x){let $x=convertToTensor(x,"x","relu"),forward=(backend3,save)=>(save([$x]),$x.dtype==="bool"?cast($x,"int32"):backend3.relu($x)),inputs={x:$x};return ENGINE.runKernelFunc(forward,inputs,null,Relu)}var relu=op({relu_});function relu6_(x){let $x=convertToTensor(x,"x","relu6"),forward=(backend3,save)=>(save([$x]),$x.dtype==="bool"?cast($x,"int32"):backend3.relu6($x)),inputs={x:$x};return ENGINE.runKernelFunc(forward,inputs,null,Relu6)}var relu6=op({relu6_});function reverse_(x,axis){let $x=convertToTensor(x,"x","reverse"),forward=backend3=>{let axes=parseAxisParam(axis,$x.shape);if($x.rank===0)return clone($x);let res=backend3.reverse($x,axes);return reshape(res,$x.shape)},inputs={x:$x},attrs={dims:axis};return ENGINE.runKernelFunc(forward,inputs,null,Reverse,attrs)}var reverse=op({reverse_});function reverse1d_(x){let $x=convertToTensor(x,"x","reverse");return assert($x.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${$x.rank}.`),reverse($x,0)}var reverse1d=op({reverse1d_});function reverse2d_(x,axis){let $x=convertToTensor(x,"x","reverse");return assert($x.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${$x.rank}.`),reverse($x,axis)}var reverse2d=op({reverse2d_});function reverse3d_(x,axis){let $x=convertToTensor(x,"x","reverse");return assert($x.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${$x.rank}.`),reverse($x,axis)}var reverse3d=op({reverse3d_});function reverse4d_(x,axis){let $x=convertToTensor(x,"x","reverse");return assert($x.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${$x.rank}.`),reverse($x,axis)}var reverse4d=op({reverse4d_});function round_(x){let $x=convertToTensor(x,"x","round"),inputs={x:$x};return ENGINE.runKernelFunc(backend3=>backend3.round($x),inputs,null,Round)}var round=op({round_});function rsqrt_(x){let $x=convertToTensor(x,"x","rsqrt"),inputs={x:$x};return ENGINE.runKernelFunc((backend3,save)=>{let res=backend3.rsqrt($x);return save([$x]),res},inputs,null,Rsqrt)}var rsqrt=op({rsqrt_});function selu_(x){let $x=convertToTensor(x,"x","selu"),forward=(backend3,save)=>{let res=backend3.selu($x);return save([$x]),res},inputs={x:$x};return ENGINE.runKernelFunc(forward,inputs,null,Selu)}var selu=op({selu_});function separableConv2d_(x,depthwiseFilter,pointwiseFilter,strides,pad11,dilation=[1,1],dataFormat="NHWC"){let $x=convertToTensor(x,"x","separableConv2d"),$depthwiseFilter=convertToTensor(depthwiseFilter,"depthwiseFilter","separableConv2d"),$pointwiseFilter=convertToTensor(pointwiseFilter,"pointwiseFilter","separableConv2d"),x4D=$x,reshapedTo4D=!1;if($x.rank===3&&(reshapedTo4D=!0,x4D=reshape($x,[1,$x.shape[0],$x.shape[1],$x.shape[2]])),dataFormat==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");assert(x4D.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${x4D.rank}.`),assert($depthwiseFilter.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${$depthwiseFilter.rank}.`),assert($pointwiseFilter.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${$depthwiseFilter.rank}.`),assert($pointwiseFilter.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${$pointwiseFilter.shape[0]}.`),assert($pointwiseFilter.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${$pointwiseFilter.shape[1]}.`);let inChannels=$depthwiseFilter.shape[2],channelMultiplier=$depthwiseFilter.shape[3];assert($pointwiseFilter.shape[2]===inChannels*channelMultiplier,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${inChannels*channelMultiplier}, but got ${$pointwiseFilter.shape[2]}.`);let depthwise=depthwiseConv2d(x4D,$depthwiseFilter,strides,pad11,dataFormat,dilation),pointwiseStride=1,res=conv2d(depthwise,$pointwiseFilter,pointwiseStride,"valid",dataFormat);return reshapedTo4D?reshape(res,[res.shape[1],res.shape[2],res.shape[3]]):res}var separableConv2d=op({separableConv2d_});async function setdiff1dAsync_(x,y){let $x=convertToTensor(x,"x","setdiff1d"),$y=convertToTensor(y,"y","setdiff1d");assert($x.dtype===$y.dtype,()=>`x and y should have the same dtype, but got x (${$x.dtype}) and y (${$y.dtype}).`),assert($x.rank===1,()=>`x should be 1D tensor, but got x (${$x.shape}).`),assert($y.rank===1,()=>`y should be 1D tensor, but got y (${$y.shape}).`);let xVals=await $x.data(),yVals=await $y.data(),ySet=new Set(yVals),outputSize=0;for(let i=0;ibackend3.sign($x),inputs,null,Sign)}var sign=op({sign_});function sin_(x){let $x=convertToTensor(x,"x","sin"),inputs={x:$x};return ENGINE.runKernelFunc((backend3,save)=>{let res=backend3.sin($x);return save([$x]),res},inputs,null,Sin)}var sin=op({sin_});function sinh_(x){let $x=convertToTensor(x,"x","sinh"),inputs={x:$x};return ENGINE.runKernelFunc((backend3,save)=>{let res=backend3.sinh($x);return save([$x]),res},inputs,null,Sinh)}var sinh=op({sinh_});function slice1d_(x,begin,size){let $x=convertToTensor(x,"x","slice1d");return assert($x.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${$x.rank} tensor`),slice($x,[begin],[size])}var slice1d=op({slice1d_});function slice2d_(x,begin,size){let $x=convertToTensor(x,"x","slice2d");return assert($x.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${$x.rank} tensor`),slice($x,begin,size)}var slice2d=op({slice2d_});function slice3d_(x,begin,size){let $x=convertToTensor(x,"x","slice3d");return assert($x.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${$x.rank} tensor`),slice($x,begin,size)}var slice3d=op({slice3d_});function slice4d_(x,begin,size){let $x=convertToTensor(x,"x","slice4d");return assert($x.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${$x.rank} tensor`),slice($x,begin,size)}var slice4d=op({slice4d_});function softmax_(logits,dim=-1){let $logits=convertToTensor(logits,"logits","softmax","float32");if(dim===-1&&(dim=$logits.rank-1),dim!==$logits.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${$logits.rank} and dim was ${dim}`);let inputs={logits:$logits},attrs={dim};return ENGINE.runKernelFunc((backend3,save)=>{let y=backend3.softmax($logits,dim);return save([y]),y},inputs,null,Softmax,attrs)}var softmax=op({softmax_});function fft_(input2){assert(input2.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${input2.dtype}.`);let inputs={input:input2};return ENGINE.runKernelFunc(backend3=>{let innerDimensionSize=input2.shape[input2.shape.length-1],batch=input2.size/innerDimensionSize,input2D=input2.as2D(batch,innerDimensionSize),result=backend3.fft(input2D);return result.reshape(input2.shape)},inputs,null,FFT)}var fft=op({fft_});function ifft_(input2){assert(input2.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${input2.dtype}.`);let inputs={input:input2};return ENGINE.runKernelFunc(backend3=>{let innerDimensionSize=input2.shape[input2.shape.length-1],batch=input2.size/innerDimensionSize,input2D=reshape(input2,[batch,innerDimensionSize]),result=backend3.ifft(input2D);return reshape(result,input2.shape)},inputs,null,IFFT)}var ifft=op({ifft_});function irfft_(input2){let innerDimensionSize=input2.shape[input2.shape.length-1],batch=input2.size/innerDimensionSize,ret;if(innerDimensionSize<=2){let complexInput=reshape(input2,[batch,innerDimensionSize]);ret=ifft(complexInput)}else{let outputShape=[batch,2*(innerDimensionSize-1)],realInput=reshape(real(input2),[batch,innerDimensionSize]),imagInput=reshape(imag(input2),[batch,innerDimensionSize]),realConjugate=reverse(slice(realInput,[0,1],[batch,innerDimensionSize-2]),1),imagConjugate=mul(reverse(slice(imagInput,[0,1],[batch,innerDimensionSize-2]),1),scalar(-1)),r=concat([realInput,realConjugate],1),i=concat([imagInput,imagConjugate],1),complexInput=reshape(complex(r,i),[outputShape[0],outputShape[1]]);ret=ifft(complexInput)}if(ret=real(ret),input2.rank===3&&input2.shape[0]!==0){let temp=ret,batch2=input2.shape[0];ret=reshape(ret,[batch2,ret.shape[0]/batch2,ret.shape[1]]),temp.dispose()}return ret}var irfft=op({irfft_});function prepareSplitSize(x,numOrSizeSplits,axis=0){let splitSizes=[];if(typeof numOrSizeSplits=="number")assert(x.shape[axis]%numOrSizeSplits===0,()=>"Number of splits must evenly divide the axis."),splitSizes=new Array(numOrSizeSplits).fill(x.shape[axis]/numOrSizeSplits);else{let numOfNegs=numOrSizeSplits.reduce((count2,value)=>(value===-1&&(count2+=1),count2),0);assert(numOfNegs<=1,()=>"There should be only one negative value in split array.");let negIndex=numOrSizeSplits.indexOf(-1);if(negIndex!==-1){let total=numOrSizeSplits.reduce((a,b)=>b>0?a+b:a);numOrSizeSplits[negIndex]=x.shape[axis]-total}assert(x.shape[axis]===numOrSizeSplits.reduce((a,b)=>a+b),()=>"The sum of sizes must match the size of the axis dimension."),splitSizes=numOrSizeSplits}return splitSizes}function split_(x,numOrSizeSplits,axis=0){let $x=convertToTensor(x,"x","split"),forward=(backend3,_)=>{let $axis=parseAxisParam(axis,$x.shape)[0],splitSizes=prepareSplitSize($x,numOrSizeSplits,$axis);return backend3.split($x,splitSizes,$axis)},inputs={x:$x},attr={numOrSizeSplits,axis};return ENGINE.runKernelFunc(forward,inputs,null,SplitV,attr)}var split=op({split_});function rfft_(input2,fftLength){assert(input2.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${input2.dtype}`);let innerDimensionSize=input2.shape[input2.shape.length-1],batch=input2.size/innerDimensionSize,adjustedInput;if(fftLength!=null&&fftLength0),size=input2.shape.map(v=>v);size[input2.shape.length-1]=fftLength,adjustedInput=slice(input2,begin,size),innerDimensionSize=fftLength}else if(fftLength!=null&&fftLength>innerDimensionSize){let zerosShape=input2.shape.map(v=>v);zerosShape[input2.shape.length-1]=fftLength-innerDimensionSize,adjustedInput=concat([input2,zeros(zerosShape)],input2.shape.length-1),innerDimensionSize=fftLength}else adjustedInput=input2;let zerosInput=zerosLike(adjustedInput),complexInput=reshape(complex(adjustedInput,zerosInput),[batch,innerDimensionSize]),ret=fft(complexInput),half=Math.floor(innerDimensionSize/2)+1,realValues=real(ret),imagValues=imag(ret),realComplexConjugate=split(realValues,[half,innerDimensionSize-half],realValues.shape.length-1),imagComplexConjugate=split(imagValues,[half,innerDimensionSize-half],imagValues.shape.length-1),outputShape=adjustedInput.shape.slice();return outputShape[adjustedInput.shape.length-1]=half,reshape(complex(realComplexConjugate[0],imagComplexConjugate[0]),outputShape)}var rfft=op({rfft_});function sqrt_(x){let $x=convertToTensor(x,"x","sqrt"),inputs={x:$x};return ENGINE.runKernelFunc((backend3,save)=>{let res=backend3.sqrt($x);return save([$x]),res},inputs,null,Sqrt)}var sqrt=op({sqrt_});function squaredDifference_(a,b){let $a=convertToTensor(a,"a","squaredDifference"),$b=convertToTensor(b,"b","squaredDifference");[$a,$b]=makeTypesMatch($a,$b),assertAndGetBroadcastShape($a.shape,$b.shape);let forward=(backend3,save)=>{let res=backend3.squaredDifference($a,$b);return save([$a,$b]),res},inputs={a:$a,b:$b},attrs={};return ENGINE.runKernelFunc(forward,inputs,null,SquaredDifference,attrs)}var squaredDifference=op({squaredDifference_});function squeeze_(x,axis){let $x=convertToTensor(x,"x","squeeze");return reshape($x,squeezeShape($x.shape,axis).newShape)}var squeeze=op({squeeze_});function stack_(tensors,axis=0){let $tensors=convertToTensorArray(tensors,"tensors","stack");if(assert($tensors.length>=1,()=>"Pass at least one tensor to tf.stack"),$tensors.length===1)return expandDims($tensors[0],axis);let rank=$tensors[0].rank,shape=$tensors[0].shape,dtype=$tensors[0].dtype;assert(axis<=rank,()=>"Axis must be <= rank of the tensor"),$tensors.forEach(t=>{assertShapesMatch(shape,t.shape,"All tensors passed to stack must have matching shapes"),assert(dtype===t.dtype,()=>"All tensors passed to stack must have matching dtypes")});let expandedTensors=$tensors.map(t=>expandDims(t,axis));return concat(expandedTensors,axis)}var stack=op({stack_});function step_(x,alpha=0){let $x=convertToTensor(x,"x","step"),inputs={x:$x},attrs={alpha};return ENGINE.runKernelFunc(backend3=>backend3.step($x,alpha),inputs,null,Step,attrs)}var step=op({step_});function stridedSlice_(x,begin,end,strides,beginMask=0,endMask=0,ellipsisMask=0,newAxisMask=0,shrinkAxisMask=0){let $x=convertToTensor(x,"x","stridedSlice"),forward=backend3=>{strides==null&&(strides=new Array(begin.length));let ellipsisAxes=maskToAxes(ellipsisMask);if(ellipsisAxes.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(ellipsisMask!==0&&newAxisMask!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(ellipsisMask!==0&&shrinkAxisMask!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let numInterpolatedAxes=$x.rank-begin.length,expandAxes=maskToAxes(newAxisMask),newShape=$x.shape.slice();expandAxes.forEach(axis=>{begin[axis]=0,end[axis]=1,newShape.splice(axis,0,1)}),$x=reshape($x,newShape);let{begin:normalizedBegin,end:normalizedEnd,strides:normalizedStrides}=getNormalizedAxes($x.shape,ellipsisAxes,numInterpolatedAxes,begin,end,strides,beginMask,endMask,ellipsisMask);begin=normalizedBegin,end=normalizedEnd,strides=normalizedStrides;let shrinkAxes=maskToAxes(shrinkAxisMask);shrinkAxes.forEach(axis=>{end[axis]=begin[axis]+1,strides[axis]=1});let size=computeOutShape(begin,end,strides),outShape=size.filter((_,axis)=>shrinkAxes.indexOf(axis)===-1),nonStrided=strides.every(v=>v===1);if(nonStrided)return reshape(slice($x,begin,size),outShape);let res=backend3.stridedSlice($x,begin,end,strides);return reshape(res,outShape)},inputs={x:$x},attrs={begin,end,strides,beginMask,endMask,ellipsisMask,newAxisMask,shrinkAxisMask};return ENGINE.runKernelFunc(forward,inputs,null,StridedSlice,attrs)}var stridedSlice=op({stridedSlice_});function tan_(x){let $x=convertToTensor(x,"x","tan"),inputs={x:$x};return ENGINE.runKernelFunc((backend3,save)=>{let res=backend3.tan($x);return save([$x]),res},inputs,null,Tan)}var tan=op({tan_});function tensor2d(values,shape,dtype){if(assertNonNull(values),shape!=null&&shape.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let inferredShape=inferShape(values,dtype);if(inferredShape.length!==2&&inferredShape.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(inferredShape.length===1&&shape==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return makeTensor(values,shape,inferredShape,dtype)}function tensor4d(values,shape,dtype){if(assertNonNull(values),shape!=null&&shape.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let inferredShape=inferShape(values,dtype);if(inferredShape.length!==4&&inferredShape.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(inferredShape.length===1&&shape==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return makeTensor(values,shape,inferredShape,dtype)}function tensor5d(values,shape,dtype){if(assertNonNull(values),shape!=null&&shape.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let inferredShape=inferShape(values,dtype);if(inferredShape.length!==5&&inferredShape.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(inferredShape.length===1&&shape==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return makeTensor(values,shape,inferredShape,dtype)}function tensor6d(values,shape,dtype){if(assertNonNull(values),shape!=null&&shape.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let inferredShape=inferShape(values,dtype);if(inferredShape.length!==6&&inferredShape.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(inferredShape.length===1&&shape==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return shape=shape||inferredShape,makeTensor(values,shape,inferredShape,dtype)}function topk_(x,k=1,sorted=!0){let $x=convertToTensor(x,"x","topk");if($x.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let lastDim=$x.shape[$x.shape.length-1];if(k>lastDim)throw new Error(`'k' passed to topk() must be <= the last dimension (${lastDim}) but got ${k}`);let inputs={x:$x},attrs={k,sorted},[values,indices]=ENGINE.runKernelFunc(b=>b.topk($x,k,sorted),inputs,null,TopK,attrs);return{values,indices}}var topk=op({topk_});function truncatedNormal_(shape,mean7=0,stdDev=1,dtype,seed){if(dtype!=null&&dtype==="bool")throw new Error("Unsupported data type $ { dtype }");let randGauss=new MPRandGauss(mean7,stdDev,dtype,!0,seed),res=buffer(shape,dtype);for(let i=0;i0,()=>"The input tensor must be at least 1D");let inputs={x:$x},attrs={axis},[values,indices]=ENGINE.runKernel(Unique,inputs,attrs);return{values,indices}}var unique=op({unique_});function unsortedSegmentSum_(x,segmentIds,numSegments){let $x=convertToTensor(x,"x","unsortedSegmentSum"),$segmentIds=convertToTensor(segmentIds,"segmentIds","unsortedSegmentSum","int32");assert(isInt(numSegments),()=>"numSegments must be of dtype int");let inputs={x:$x,segmentIds:$segmentIds},attrs={numSegments},forward=(backend3,save)=>{let res=backend3.unsortedSegmentSum($x,$segmentIds,numSegments);return save([$segmentIds]),res};return ENGINE.runKernelFunc(forward,inputs,null,UnsortedSegmentSum,attrs)}var unsortedSegmentSum=op({unsortedSegmentSum_});function unstack_(x,axis=0){let $x=convertToTensor(x,"x","unstack");assert(axis>=-$x.shape.length&&axis<$x.shape.length,()=>`Axis = ${axis} is not in [-${$x.shape.length}, ${$x.shape.length})`),axis<0&&(axis+=$x.shape.length);let inputs={value:$x},attrs={axis},forward=backend3=>backend3.unstack($x,axis);return ENGINE.runKernelFunc(forward,inputs,null,Unpack,attrs)}var unstack=op({unstack_});function variable(initialValue,trainable=!0,name,dtype){return ENGINE.makeVariable(initialValue,trainable,name,dtype)}function whereImpl(condShape,condVals){let indices=[];for(let i=0;i0,()=>"mask cannot be scalar"),assertShapesMatch(tensorShape.slice(axisFrom,axisFrom+maskDim),$mask.shape,"mask's shape must match the first K dimensions of tensor's shape,");let leadingSize=1;for(let i=axisFrom;i"Shape mismatch in v and x");let one=scalar(1),oneMinusDecay=sub(one,$decay),update=mul(sub($x,$v),oneMinusDecay);if(zeroDebias){assert(step9!=null,()=>"When using zeroDebias: true, step is required.");let $step=convertToTensor(step9,"step","movingAverage");update=div(update,sub(one,pow($decay,$step)))}return add2($v,update)}var movingAverage=op({movingAverage_});function scatterND_(indices,updates,shape){let $indices=convertToTensor(indices,"indices","scatterND","int32"),$updates=convertToTensor(updates,"updates","scatterND");validateInput($updates,$indices,shape);let forward=backend3=>backend3.scatterND($indices,$updates,shape),inputs={indices:$indices,updates:$updates},attrs={shape};return ENGINE.runKernelFunc(forward,inputs,null,ScatterNd,attrs)}var scatterND=op({scatterND_});function validateInput2(sparseIndices,sparseValues,outputShape,defaultValues){if(sparseIndices.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${sparseIndices.dtype}.`);if(sparseIndices.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${sparseIndices.shape}.`);let numElems=sparseIndices.rank>0?sparseIndices.shape[0]:1,numDims=sparseIndices.rank>1?sparseIndices.shape[1]:1;if(outputShape.length!==numDims)throw new Error(`outputShape has incorrect number of elements:, ${outputShape.length}, should be: ${numDims}.`);let numValues=sparseValues.size;if(!(sparseValues.rank===0||sparseValues.rank===1&&numValues===numElems))throw new Error(`sparseValues has incorrect shape ${sparseValues.shape}, should be [] or [${numElems}]`);if(sparseValues.dtype!==defaultValues.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function sparseToDense_(sparseIndices,sparseValues,outputShape,defaultValue=0){let $sparseIndices=convertToTensor(sparseIndices,"sparseIndices","sparseToDense","int32"),$sparseValues=convertToTensor(sparseValues,"sparseValues","sparseToDense"),$defaultValue=convertToTensor(defaultValue,"defaultValue","sparseToDense",$sparseValues.dtype);validateInput2($sparseIndices,$sparseValues,outputShape,$defaultValue);let inputs={sparseIndices:$sparseIndices,sparseValues:$sparseValues,defaultValue:$defaultValue},attrs={outputShape};return ENGINE.runKernelFunc(backend3=>backend3.sparseToDense($sparseIndices,$sparseValues,outputShape,$defaultValue),inputs,null,SparseToDense,attrs)}var sparseToDense=op({sparseToDense_});function gatherND_(x,indices){let $indices=convertToTensor(indices,"indices","gatherND","int32"),$x=convertToTensor(x,"x","gatherND"),forward=backend3=>backend3.gatherND($x,$indices),inputs={params:$x,indices:$indices};return ENGINE.runKernelFunc(forward,inputs,null,GatherNd)}var gatherND=op({gatherND_});function getNoiseShape(x,noiseShape){if(noiseShape==null)return x.shape.slice();if(arraysEqual(x.shape,noiseShape))return noiseShape;if(x.shape.length===noiseShape.length){let newDimension=[];for(let i=0;i`x has to be a floating point tensor since it's going to be scaled, but got a ${$x.dtype} tensor instead.`),assert(rate>=0&&rate<1,()=>`rate must be a float in the range [0, 1), but got ${rate}.`),rate===0)return x instanceof Tensor?$x.clone():$x;let $noiseShape=getNoiseShape($x,noiseShape),keepProb=1-rate,multiplier=div(floor(add2(randomUniform($noiseShape,0,1,"float32",seed),keepProb)),keepProb);return mul($x,multiplier)}var dropout=op({dropout_});function enclosingPowerOfTwo(value){return Math.floor(Math.pow(2,Math.ceil(Math.log(value)/Math.log(2))))}function cosineWindow(windowLength,a,b){let even=1-windowLength%2,newValues=new Float32Array(windowLength);for(let i=0;i1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${$predictions.rank}`),assert($predictions.rank-1===$targets.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${$predictions.rank} and targets rank ${$targets.rank}`),assertShapesMatch($predictions.shape.slice(0,$predictions.shape.length-1),$targets.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let lastDim=$predictions.shape[$predictions.shape.length-1];assert(k>0&&k<=lastDim,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${lastDim}), but got ${k}`);let predictionsVals=await $predictions.data(),targetsVals=await $targets.data(),[batch,size]=[predictionsVals.length/lastDim,lastDim],precision3=getTypedArrayFromDType("bool",batch);for(let b=0;bb2.value-a.value),precision3[b]=0;for(let i=0;iconv2d5,depthwiseConv2d:()=>depthwiseConv2d2,matMul:()=>matMul2});function conv2DBackpropFilter_(x,dy,filterShape,strides,pad11,dataFormat="NHWC",dimRoundingMode){let x4D=x;x.rank===3&&(x4D=reshape(x,[1,x.shape[0],x.shape[1],x.shape[2]]));let dy4D=dy;dy4D.rank===3&&(dy4D=reshape(dy,[1,dy.shape[0],dy.shape[1],dy.shape[2]])),assert(x4D.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${x4D.shape}.`),assert(dy4D.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${dy4D.shape}.`),assert(filterShape.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${filterShape}.`);let inDepth=dataFormat==="NHWC"?x4D.shape[3]:x4D.shape[1],outDepth=dataFormat==="NHWC"?dy4D.shape[3]:dy4D.shape[1];assert(inDepth===filterShape[2],()=>`Error in conv2dDerFilter: depth of input ${inDepth}) must match input depth in filter (${filterShape[2]}.`),assert(outDepth===filterShape[3],()=>`Error in conv2dDerFilter: depth of dy (${outDepth}) must match output depth for filter (${filterShape[3]}).`),dimRoundingMode!=null&&assert(isInt(pad11),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${dimRoundingMode} but got pad ${pad11}.`);let forward=backend3=>{let dilations=1,$dataFormat=convertConv2DDataFormat(dataFormat),convInfo=computeConv2DInfo(x4D.shape,filterShape,strides,dilations,pad11,dimRoundingMode,!1,$dataFormat);return backend3.conv2dDerFilter(x4D,dy4D,convInfo)},inputs={x:x4D,dy:dy4D},attrs={strides,pad:pad11,dataFormat,dimRoundingMode,filterShape};return ENGINE.runKernelFunc(forward,inputs,null,Conv2DBackpropFilter,attrs)}var conv2DBackpropFilter=op({conv2DBackpropFilter_});function getFusedDyActivation(dy,y,activation2){if(activation2==null||activation2==="linear")return dy;if(activation2==="relu")return mul(dy,step(y));throw new Error(`Cannot compute gradient for fused activation ${activation2}.`)}function getFusedBiasGradient(bias,dyActivation){let res=dyActivation,reduceAxes=getReductionAxes(bias.shape,dyActivation.shape);return reduceAxes.length>0&&(res=sum2(res,reduceAxes)),reshape(res,bias.shape)}function applyActivation(x,activation2,preluActivationWeights){if(activation2==="linear")return x;if(activation2==="relu")return relu(x);if(activation2==="elu")return elu(x);if(activation2==="relu6")return relu6(x);if(activation2==="prelu")return prelu(x,preluActivationWeights);throw new Error(`Unknown fused activation ${activation2}.`)}var shouldFuse=(gradientDepth,activation2)=>{let gradientMode=gradientDepth>0;return!gradientMode||activation2==="linear"};function fusedConv2d_({x,filter,strides,pad:pad11,dataFormat="NHWC",dilations=[1,1],dimRoundingMode,bias,activation:activation2="linear",preluActivationWeights}){if(activation2=activation2||"linear",shouldFuse(ENGINE.state.gradientDepth,activation2)===!1){let result=conv2d(x,filter,strides,pad11,dataFormat,dilations,dimRoundingMode);return bias!=null&&(result=add2(result,bias)),applyActivation(result,activation2,preluActivationWeights)}let $x=convertToTensor(x,"x","conv2d"),$filter=convertToTensor(filter,"filter","conv2d"),x4D=$x,reshapedTo4D=!1;$x.rank===3&&(reshapedTo4D=!0,x4D=reshape($x,[1,$x.shape[0],$x.shape[1],$x.shape[2]])),assert(x4D.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${x4D.rank}.`),assert($filter.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${$filter.rank}.`),dimRoundingMode!=null&&assert(isInt(pad11),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${dimRoundingMode} but got pad ${pad11}.`),assert(x4D.shape[3]===$filter.shape[2],()=>`Error in conv2d: depth of input (${x4D.shape[3]}) must match input depth for filter ${$filter.shape[2]}.`),assert(eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`),assert(dataFormat==="NHWC",()=>`Error in conv2d: got dataFormat of ${dataFormat} but only NHWC is currently supported.`);let convInfo=computeConv2DInfo(x4D.shape,$filter.shape,strides,dilations,pad11,dimRoundingMode),$bias;bias!=null&&($bias=convertToTensor(bias,"bias","fused conv2d"),[$bias]=makeTypesMatch($bias,$x),assertAndGetBroadcastShape(convInfo.outShape,$bias.shape));let $preluActivationWeights;preluActivationWeights!=null&&($preluActivationWeights=convertToTensor(preluActivationWeights,"prelu weights","fused conv2d"));let grad2=(dy,saved)=>{let[$filter2,x4D2,y,$bias2]=saved,dyActivation=getFusedDyActivation(dy,y,activation2);assert(tupleValuesAreOne(dilations),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${dilations}'`);let xDer=conv2DBackpropInput(x4D2.shape,dyActivation,$filter2,strides,pad11),filterDer=conv2DBackpropFilter(x4D2,dyActivation,$filter2.shape,strides,pad11),der=[xDer,filterDer];if($bias2!=null){let biasDer=getFusedBiasGradient($bias2,dyActivation);der.push(biasDer)}return der},forward=backend3=>{let res=backend3.fusedConv2d({input:x4D,filter:$filter,convInfo,bias:$bias,activation:activation2,preluActivationWeights:$preluActivationWeights});return res},inputs={x:x4D,filter:$filter,bias:$bias,preluActivationWeights:$preluActivationWeights},attrs={strides,pad:pad11,dataFormat,dilations,dimRoundingMode,activation:activation2};if(bias==null){let customOp=customGrad((x4D2,filter2,save)=>{let res=ENGINE.runKernelFunc(forward,inputs,null,FusedConv2D,attrs);return save([filter2,x4D2,res]),reshapedTo4D&&(res=reshape(res,[res.shape[1],res.shape[2],res.shape[3]])),{value:res,gradFunc:grad2}});return customOp(x4D,$filter)}else{let customOpWithBias=customGrad((x4D2,filter2,bias2,save)=>{let res=ENGINE.runKernelFunc(forward,inputs,null,FusedConv2D,attrs);return save([filter2,x4D2,res,bias2]),reshapedTo4D&&(res=reshape(res,[res.shape[1],res.shape[2],res.shape[3]])),{value:res,gradFunc:grad2}});return customOpWithBias(x4D,$filter,$bias)}}var conv2d5=op({fusedConv2d_});function depthwiseConv2dNativeBackpropFilter_(x,dy,filterShape,strides,pad11,dilations=[1,1],dimRoundingMode){let x4D=x;x.rank===3&&(x4D=reshape(x,[1,x.shape[0],x.shape[1],x.shape[2]]));let dy4D=dy;dy4D.rank===3&&(dy4D=reshape(dy,[1,dy.shape[0],dy.shape[1],dy.shape[2]]));let forward=backend3=>{let convInfo=computeConv2DInfo(x.shape,filterShape,strides,dilations,pad11,dimRoundingMode,!0);return backend3.depthwiseConv2DDerFilter(x4D,dy4D,convInfo)},inputs={x:x4D,dy:dy4D},attrs={strides,pad:pad11,dimRoundingMode,dilations,filterShape};return ENGINE.runKernelFunc(forward,inputs,null,DepthwiseConv2dNativeBackpropFilter,attrs)}var depthwiseConv2dNativeBackpropFilter=op({depthwiseConv2dNativeBackpropFilter_});function depthwiseConv2dNativeBackpropInput_(xShape,dy,filter,strides,pad11,dilations=[1,1],dimRoundingMode){let dy4D=dy,reshapedTo4D=!1;dy.rank===3&&(reshapedTo4D=!0,dy4D=reshape(dy,[1,dy.shape[0],dy.shape[1],dy.shape[2]]));let forward=backend3=>{let convInfo=computeConv2DInfo(xShape,filter.shape,strides,dilations,pad11,dimRoundingMode,!0);return backend3.depthwiseConv2DDerInput(dy4D,filter,convInfo)},inputs={dy:dy4D,filter},attrs={strides,pad:pad11,dimRoundingMode,dilations,inputShape:xShape},res=ENGINE.runKernelFunc(forward,inputs,null,DepthwiseConv2dNativeBackpropInput,attrs);return reshapedTo4D?reshape(res,[res.shape[1],res.shape[2],res.shape[3]]):res}var depthwiseConv2dNativeBackpropInput=op({depthwiseConv2dNativeBackpropInput_});function fusedDepthwiseConv2d_({x,filter,strides,pad:pad11,dataFormat="NHWC",dilations=[1,1],dimRoundingMode,bias,activation:activation2="linear",preluActivationWeights}){if(shouldFuse(ENGINE.state.gradientDepth,activation2)===!1){let result=depthwiseConv2d(x,filter,strides,pad11,dataFormat,dilations,dimRoundingMode);return bias!=null&&(result=add2(result,bias)),applyActivation(result,activation2,preluActivationWeights)}let $x=convertToTensor(x,"x","depthwiseConv2d"),$filter=convertToTensor(filter,"filter","depthwiseConv2d"),x4D=$x,reshapedTo4D=!1;$x.rank===3&&(reshapedTo4D=!0,x4D=reshape($x,[1,$x.shape[0],$x.shape[1],$x.shape[2]])),assert(x4D.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${x4D.rank}.`),assert($filter.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${$filter.rank}.`),assert(x4D.shape[3]===$filter.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${x4D.shape[3]}) must match the inChannels dimension in filter ${$filter.shape[2]}.`),dilations==null&&(dilations=[1,1]),assert(eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`),dimRoundingMode!=null&&assert(isInt(pad11),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${dimRoundingMode} but got pad ${pad11}.`);let convInfo=computeConv2DInfo(x4D.shape,$filter.shape,strides,dilations,pad11,dimRoundingMode,!0),$bias;bias!=null&&($bias=convertToTensor(bias,"bias","fused conv2d"),[$bias]=makeTypesMatch($bias,$x),assertAndGetBroadcastShape(convInfo.outShape,$bias.shape));let $preluActivationWeights;preluActivationWeights!=null&&($preluActivationWeights=convertToTensor(preluActivationWeights,"prelu weights","fused depthwiseConv2d"));let grad2=(dy,saved)=>{assert(tupleValuesAreOne(dilations),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${dilations}'`);let[$filter2,x4D2,y,bias2]=saved,dyActivation=getFusedDyActivation(dy,y,activation2),xDer=depthwiseConv2dNativeBackpropInput(x4D2.shape,dyActivation,$filter2,strides,pad11,dilations,dimRoundingMode),filterDer=depthwiseConv2dNativeBackpropFilter(x4D2,dyActivation,$filter2.shape,strides,pad11,dilations,dimRoundingMode);if(bias2!=null){let biasDer=getFusedBiasGradient($bias,dyActivation);return[xDer,filterDer,biasDer]}return[xDer,filterDer]},forward=backend3=>{let res=backend3.fusedDepthwiseConv2D({input:x4D,filter:$filter,convInfo,bias:$bias,activation:activation2,preluActivationWeights:$preluActivationWeights});return res},inputs={x:x4D,filter:$filter,bias:$bias,preluActivationWeights:$preluActivationWeights},attrs={strides,pad:pad11,dataFormat,dilations,dimRoundingMode,activation:activation2};if(bias==null){let customOp=customGrad((x4D2,filter2,save)=>{let res=ENGINE.runKernelFunc(forward,inputs,null,FusedDepthwiseConv2D,attrs);return save([filter2,x4D2,res]),reshapedTo4D&&(res=reshape(res,[res.shape[1],res.shape[2],res.shape[3]])),{value:res,gradFunc:grad2}});return customOp(x4D,$filter)}else{let customOpWithBias=customGrad((x4D2,filter2,bias2,save)=>{let res=ENGINE.runKernelFunc(forward,inputs,null,FusedDepthwiseConv2D,attrs);return save([filter2,x4D2,res,bias2]),reshapedTo4D&&(res=reshape(res,[res.shape[1],res.shape[2],res.shape[3]])),{value:res,gradFunc:grad2}});return customOpWithBias(x4D,$filter,$bias)}}var depthwiseConv2d2=op({fusedDepthwiseConv2d_});function fusedMatMul_({a,b,transposeA=!1,transposeB=!1,bias,activation:activation2="linear",preluActivationWeights}){if(shouldFuse(ENGINE.state.gradientDepth,activation2)===!1){let result=matMul(a,b,transposeA,transposeB);return bias!=null&&(result=add2(result,bias)),applyActivation(result,activation2,preluActivationWeights)}let $a=convertToTensor(a,"a","fused matMul"),$b=convertToTensor(b,"b","fused matMul");[$a,$b]=makeTypesMatch($a,$b);let innerShapeA=transposeA?$a.shape[$a.rank-2]:$a.shape[$a.rank-1],innerShapeB=transposeB?$b.shape[$b.rank-1]:$b.shape[$b.rank-2],outerShapeA=transposeA?$a.shape[$a.rank-1]:$a.shape[$a.rank-2],outerShapeB=transposeB?$b.shape[$b.rank-2]:$b.shape[$b.rank-1],outerDimsA=$a.shape.slice(0,-2),outerDimsB=$b.shape.slice(0,-2),batchDimA=sizeFromShape(outerDimsA),batchDimB=sizeFromShape(outerDimsB);assert($a.rank>=2&&$b.rank>=2&&$a.rank===$b.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${$a.rank} and ${$b.rank}.`),assert(arraysEqual(outerDimsA,outerDimsB),()=>`Error in fused matMul: outer dimensions (${outerDimsA}) and (${outerDimsB}) of Tensors with shapes ${$a.shape} and ${$b.shape} must match.`),assert(innerShapeA===innerShapeB,()=>`Error in fused matMul: inner shapes (${innerShapeA}) and (${innerShapeB}) of Tensors with shapes ${$a.shape} and ${$b.shape} and transposeA=${transposeA} and transposeB=${transposeB} must match.`);let outShape=$a.shape.slice(0,-2).concat([outerShapeA,outerShapeB]),a3D=transposeA?reshape($a,[batchDimA,innerShapeA,outerShapeA]):reshape($a,[batchDimA,outerShapeA,innerShapeA]),b3D=transposeB?reshape($b,[batchDimB,outerShapeB,innerShapeB]):reshape($b,[batchDimB,innerShapeB,outerShapeB]),$bias;bias!=null&&($bias=convertToTensor(bias,"bias","fused matMul"),[$bias]=makeTypesMatch($bias,$a),assertAndGetBroadcastShape(outShape,$bias.shape));let $preluActivationWeights;preluActivationWeights!=null&&($preluActivationWeights=convertToTensor(preluActivationWeights,"prelu weights","fused matMul"));let grad2=(dy,saved)=>{let[a3D2,b3D2,y,$bias2]=saved,dyActivation=getFusedDyActivation(reshape(dy,y.shape),y,activation2),aDer,bDer;if(!transposeA&&!transposeB?(aDer=matMul(dyActivation,b3D2,!1,!0),bDer=matMul(a3D2,dyActivation,!0,!1)):!transposeA&&transposeB?(aDer=matMul(dyActivation,b3D2,!1,!1),bDer=matMul(dyActivation,a3D2,!0,!1)):transposeA&&!transposeB?(aDer=matMul(b3D2,dyActivation,!1,!0),bDer=matMul(a3D2,dyActivation,!1,!1)):(aDer=matMul(b3D2,dyActivation,!0,!0),bDer=matMul(dyActivation,a3D2,!0,!0)),bias!=null){let biasDer=getFusedBiasGradient($bias2,dyActivation);return[aDer,bDer,biasDer]}else return[aDer,bDer]},forward=backend3=>{let y=backend3.fusedBatchMatMul({a:a3D,b:b3D,transposeA,transposeB,bias:$bias,activation:activation2,preluActivationWeights:$preluActivationWeights});return y},inputs={a:a3D,b:b3D,bias:$bias,preluActivationWeights:$preluActivationWeights},attrs={transposeA,transposeB,activation:activation2};if(bias==null){let customOp=customGrad((a3D2,b3D2,save)=>{let res=ENGINE.runKernelFunc(forward,inputs,null,_FusedMatMul,attrs);return save([a3D2,b3D2,res]),{value:reshape(res,outShape),gradFunc:grad2}});return customOp(a3D,b3D)}else{let customOpWithBias=customGrad((a3D2,b3D2,$bias2,save)=>{let res=ENGINE.runKernelFunc(forward,inputs,null,_FusedMatMul,attrs);return save([a3D2,b3D2,res,$bias2]),{value:reshape(res,outShape),gradFunc:grad2}});return customOpWithBias(a3D,b3D,$bias)}}var matMul2=op({fusedMatMul_});function hammingWindow_(windowLength){return cosineWindow(windowLength,.54,.46)}var hammingWindow=op({hammingWindow_});function hannWindow_(windowLength){return cosineWindow(windowLength,.5,.5)}var hannWindow=op({hannWindow_});function frame_(signal2,frameLength,frameStep,padEnd=!1,padValue=0){let start=0,output=[];for(;start+frameLength<=signal2.size;)output.push(slice(signal2,start,frameLength)),start+=frameStep;if(padEnd)for(;start`Error in cropAndResize: image must be rank 4,but got rank ${$image.rank}.`),assert($boxes.rank===2&&$boxes.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${numBoxes},4] but had shape ${$boxes.shape}.`),assert($boxInd.rank===1&&$boxInd.shape[0]===numBoxes,()=>`Error in cropAndResize: boxInd must be have size [${numBoxes}] but had shape ${$boxes.shape}.`),assert(cropSize.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${cropSize.length}.`),assert(cropSize[0]>=1&&cropSize[1]>=1,()=>`cropSize must be atleast [1,1], but was ${cropSize}`),assert(method==="bilinear"||method==="nearest",()=>`method must be bilinear or nearest, but was ${method}`);let forward=backend3=>backend3.cropAndResize($image,$boxes,$boxInd,cropSize,method,extrapolationValue),inputs={image:$image,boxes:$boxes,boxInd:$boxInd},attrs={method,extrapolationValue,cropSize},res=ENGINE.runKernelFunc(forward,inputs,null,CropAndResize,attrs);return res}var cropAndResize=op({cropAndResize_});function flipLeftRight_(image3){let $image=convertToTensor(image3,"image","flipLeftRight","float32");assert($image.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${$image.rank}.`);let inputs={image:$image},res=ENGINE.runKernel(FlipLeftRight,inputs,{});return res}var flipLeftRight=op({flipLeftRight_});function rotateWithOffset_(image3,radians,fillValue=0,center=.5){let $image=convertToTensor(image3,"image","rotateWithOffset","float32");assert($image.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${$image.rank}.`);let inputs={image:$image},attrs={radians,fillValue,center},res=ENGINE.runKernel(RotateWithOffset,inputs,attrs);return res}var rotateWithOffset=op({rotateWithOffset_});function nonMaxSuppSanityCheck(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma){iouThreshold==null&&(iouThreshold=.5),scoreThreshold==null&&(scoreThreshold=Number.NEGATIVE_INFINITY),softNmsSigma==null&&(softNmsSigma=0);let numBoxes=boxes.shape[0];return maxOutputSize=Math.min(maxOutputSize,numBoxes),assert(0<=iouThreshold&&iouThreshold<=1,()=>`iouThreshold must be in [0, 1], but was '${iouThreshold}'`),assert(boxes.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${boxes.rank}'`),assert(boxes.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${boxes.shape[1]}`),assert(scores.rank===1,()=>"scores must be a 1D tensor"),assert(scores.shape[0]===numBoxes,()=>`scores has incompatible shape with boxes. Expected ${numBoxes}, but was ${scores.shape[0]}`),assert(0<=softNmsSigma&&softNmsSigma<=1,()=>`softNmsSigma must be in [0, 1], but was '${softNmsSigma}'`),{maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma}}function nonMaxSuppression_(boxes,scores,maxOutputSize,iouThreshold=.5,scoreThreshold=Number.NEGATIVE_INFINITY){let $boxes=convertToTensor(boxes,"boxes","nonMaxSuppression"),$scores=convertToTensor(scores,"scores","nonMaxSuppression"),inputs=nonMaxSuppSanityCheck($boxes,$scores,maxOutputSize,iouThreshold,scoreThreshold);maxOutputSize=inputs.maxOutputSize,iouThreshold=inputs.iouThreshold,scoreThreshold=inputs.scoreThreshold;let attrs={maxOutputSize,iouThreshold,scoreThreshold};return ENGINE.runKernelFunc(b=>b.nonMaxSuppression($boxes,$scores,maxOutputSize,iouThreshold,scoreThreshold),{boxes:$boxes,scores:$scores},null,NonMaxSuppressionV3,attrs)}var nonMaxSuppression=op({nonMaxSuppression_});function binaryInsert(arr,element,comparator){let index=binarySearch(arr,element,comparator),insertionPoint=index<0?-(index+1):index;arr.splice(insertionPoint,0,element)}function binarySearch(arr,target,comparator){return binarySearch_(arr,target,comparator||defaultComparator)}function defaultComparator(a,b){return a>b?1:a>>1);let compareResult=comparator(target,arr[middle]);compareResult>0?left=middle+1:(right=middle,found=!compareResult)}return found?left:-left-1}function nonMaxSuppressionV3Impl(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold){return nonMaxSuppressionImpl_(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,0).selectedIndices}function nonMaxSuppressionV4Impl(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,padToMaxOutputSize){return nonMaxSuppressionImpl_(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,0,!1,padToMaxOutputSize,!0)}function nonMaxSuppressionV5Impl(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma){return nonMaxSuppressionImpl_(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma,!0)}function nonMaxSuppressionImpl_(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma,returnScoresTensor=!1,padToMaxOutputSize=!1,returnValidOutputs=!1){let candidates=[];for(let i=0;iscoreThreshold&&candidates.push({score:scores[i],boxIndex:i,suppressBeginIndex:0});candidates.sort(ascendingComparator);let scale2=softNmsSigma>0?-.5/softNmsSigma:0,selectedIndices=[],selectedScores=[];for(;selectedIndices.length0;){let candidate=candidates.pop(),{score:originalScore,boxIndex,suppressBeginIndex}=candidate;if(originalScore=suppressBeginIndex;--j){let iou=intersectionOverUnion(boxes,boxIndex,selectedIndices[j]);if(iou>=iouThreshold){ignoreCandidate=!0;break}if(candidate.score=candidate.score*suppressWeight(iouThreshold,scale2,iou),candidate.score<=scoreThreshold)break}candidate.suppressBeginIndex=selectedIndices.length,ignoreCandidate||(candidate.score===originalScore?(selectedIndices.push(boxIndex),selectedScores.push(candidate.score)):candidate.score>scoreThreshold&&binaryInsert(candidates,candidate,ascendingComparator))}let validOutputs=selectedIndices.length,elemsToPad=maxOutputSize-validOutputs;padToMaxOutputSize&&elemsToPad>0&&(selectedIndices.push(...new Array(elemsToPad).fill(0)),selectedScores.push(...new Array(elemsToPad).fill(0)));let result={selectedIndices:tensor1d(selectedIndices,"int32")};return returnScoresTensor&&(result.selectedScores=tensor1d(selectedScores,"float32")),returnValidOutputs&&(result.validOutputs=scalar(validOutputs,"int32")),result}function intersectionOverUnion(boxes,i,j){let iCoord=boxes.subarray(i*4,i*4+4),jCoord=boxes.subarray(j*4,j*4+4),yminI=Math.min(iCoord[0],iCoord[2]),xminI=Math.min(iCoord[1],iCoord[3]),ymaxI=Math.max(iCoord[0],iCoord[2]),xmaxI=Math.max(iCoord[1],iCoord[3]),yminJ=Math.min(jCoord[0],jCoord[2]),xminJ=Math.min(jCoord[1],jCoord[3]),ymaxJ=Math.max(jCoord[0],jCoord[2]),xmaxJ=Math.max(jCoord[1],jCoord[3]),areaI=(ymaxI-yminI)*(xmaxI-xminI),areaJ=(ymaxJ-yminJ)*(xmaxJ-xminJ);if(areaI<=0||areaJ<=0)return 0;let intersectionYmin=Math.max(yminI,yminJ),intersectionXmin=Math.max(xminI,xminJ),intersectionYmax=Math.min(ymaxI,ymaxJ),intersectionXmax=Math.min(xmaxI,xmaxJ),intersectionArea=Math.max(intersectionYmax-intersectionYmin,0)*Math.max(intersectionXmax-intersectionXmin,0);return intersectionArea/(areaI+areaJ-intersectionArea)}function suppressWeight(iouThreshold,scale2,iou){let weight=Math.exp(scale2*iou*iou);return iou<=iouThreshold?weight:0}function ascendingComparator(c1,c2){return c1.score-c2.score||c1.score===c2.score&&c2.boxIndex-c1.boxIndex}async function nonMaxSuppressionAsync_(boxes,scores,maxOutputSize,iouThreshold=.5,scoreThreshold=Number.NEGATIVE_INFINITY){let $boxes=convertToTensor(boxes,"boxes","nonMaxSuppressionAsync"),$scores=convertToTensor(scores,"scores","nonMaxSuppressionAsync"),inputs=nonMaxSuppSanityCheck($boxes,$scores,maxOutputSize,iouThreshold,scoreThreshold);maxOutputSize=inputs.maxOutputSize,iouThreshold=inputs.iouThreshold,scoreThreshold=inputs.scoreThreshold;let boxesAndScores=await Promise.all([$boxes.data(),$scores.data()]),boxesVals=boxesAndScores[0],scoresVals=boxesAndScores[1],res=nonMaxSuppressionV3Impl(boxesVals,scoresVals,maxOutputSize,iouThreshold,scoreThreshold);return $boxes!==boxes&&$boxes.dispose(),$scores!==scores&&$scores.dispose(),res}var nonMaxSuppressionAsync=nonMaxSuppressionAsync_;function nonMaxSuppressionWithScore_(boxes,scores,maxOutputSize,iouThreshold=.5,scoreThreshold=Number.NEGATIVE_INFINITY,softNmsSigma=0){let $boxes=convertToTensor(boxes,"boxes","nonMaxSuppression"),$scores=convertToTensor(scores,"scores","nonMaxSuppression"),params=nonMaxSuppSanityCheck($boxes,$scores,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma);maxOutputSize=params.maxOutputSize,iouThreshold=params.iouThreshold,scoreThreshold=params.scoreThreshold,softNmsSigma=params.softNmsSigma;let inputs={boxes:$boxes,scores:$scores},attrs={maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma},result=ENGINE.runKernel(NonMaxSuppressionV5,inputs,attrs);return{selectedIndices:result[0],selectedScores:result[1]}}var nonMaxSuppressionWithScore=op({nonMaxSuppressionWithScore_});async function nonMaxSuppressionWithScoreAsync_(boxes,scores,maxOutputSize,iouThreshold=.5,scoreThreshold=Number.NEGATIVE_INFINITY,softNmsSigma=0){let $boxes=convertToTensor(boxes,"boxes","nonMaxSuppressionAsync"),$scores=convertToTensor(scores,"scores","nonMaxSuppressionAsync"),params=nonMaxSuppSanityCheck($boxes,$scores,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma);maxOutputSize=params.maxOutputSize,iouThreshold=params.iouThreshold,scoreThreshold=params.scoreThreshold,softNmsSigma=params.softNmsSigma;let boxesAndScores=await Promise.all([$boxes.data(),$scores.data()]),boxesVals=boxesAndScores[0],scoresVals=boxesAndScores[1],res=nonMaxSuppressionV5Impl(boxesVals,scoresVals,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma);return $boxes!==boxes&&$boxes.dispose(),$scores!==scores&&$scores.dispose(),res}var nonMaxSuppressionWithScoreAsync=nonMaxSuppressionWithScoreAsync_;function nonMaxSuppressionPadded_(boxes,scores,maxOutputSize,iouThreshold=.5,scoreThreshold=Number.NEGATIVE_INFINITY,padToMaxOutputSize=!1){let $boxes=convertToTensor(boxes,"boxes","nonMaxSuppression"),$scores=convertToTensor(scores,"scores","nonMaxSuppression"),params=nonMaxSuppSanityCheck($boxes,$scores,maxOutputSize,iouThreshold,scoreThreshold,null),$maxOutputSize=params.maxOutputSize,$iouThreshold=params.iouThreshold,$scoreThreshold=params.scoreThreshold,inputs={boxes:$boxes,scores:$scores},attrs={maxOutputSize:$maxOutputSize,iouThreshold:$iouThreshold,scoreThreshold:$scoreThreshold,padToMaxOutputSize},result=ENGINE.runKernel(NonMaxSuppressionV4,inputs,attrs);return{selectedIndices:result[0],validOutputs:result[1]}}var nonMaxSuppressionPadded=op({nonMaxSuppressionPadded_});async function nonMaxSuppressionPaddedAsync_(boxes,scores,maxOutputSize,iouThreshold=.5,scoreThreshold=Number.NEGATIVE_INFINITY,padToMaxOutputSize=!1){let $boxes=convertToTensor(boxes,"boxes","nonMaxSuppressionAsync"),$scores=convertToTensor(scores,"scores","nonMaxSuppressionAsync"),params=nonMaxSuppSanityCheck($boxes,$scores,maxOutputSize,iouThreshold,scoreThreshold,null),$maxOutputSize=params.maxOutputSize,$iouThreshold=params.iouThreshold,$scoreThreshold=params.scoreThreshold,[boxesVals,scoresVals]=await Promise.all([$boxes.data(),$scores.data()]),res=nonMaxSuppressionV4Impl(boxesVals,scoresVals,$maxOutputSize,$iouThreshold,$scoreThreshold,padToMaxOutputSize);return $boxes!==boxes&&$boxes.dispose(),$scores!==scores&&$scores.dispose(),res}var nonMaxSuppressionPaddedAsync=nonMaxSuppressionPaddedAsync_;function resizeBilinear_(images,size,alignCorners=!1){let $images=convertToTensor(images,"images","resizeBilinear");assert($images.rank===3||$images.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${$images.rank}.`),assert(size.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${size}.`);let batchImages=$images,reshapedTo4D=!1;$images.rank===3&&(reshapedTo4D=!0,batchImages=reshape($images,[1,$images.shape[0],$images.shape[1],$images.shape[2]]));let[newHeight,newWidth]=size,forward=(backend3,save)=>(save([batchImages]),backend3.resizeBilinear(batchImages,newHeight,newWidth,alignCorners)),inputs={images:batchImages},attrs={alignCorners,size},res=ENGINE.runKernelFunc(forward,inputs,null,ResizeBilinear,attrs);return reshapedTo4D?reshape(res,[res.shape[1],res.shape[2],res.shape[3]]):res}var resizeBilinear=op({resizeBilinear_});function resizeNearestNeighbor_(images,size,alignCorners=!1){let $images=convertToTensor(images,"images","resizeNearestNeighbor");assert($images.rank===3||$images.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${$images.rank}.`),assert(size.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${size}.`),assert($images.dtype==="float32"||$images.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype");let batchImages=$images,reshapedTo4D=!1;$images.rank===3&&(reshapedTo4D=!0,batchImages=reshape($images,[1,$images.shape[0],$images.shape[1],$images.shape[2]]));let[newHeight,newWidth]=size,inputs={images:batchImages},attrs={alignCorners,size},forward=(backend3,save)=>(save([batchImages]),backend3.resizeNearestNeighbor(batchImages,newHeight,newWidth,alignCorners)),res=ENGINE.runKernelFunc(forward,inputs,null,ResizeNearestNeighbor,attrs);return reshapedTo4D?reshape(res,[res.shape[1],res.shape[2],res.shape[3]]):res}var resizeNearestNeighbor=op({resizeNearestNeighbor_});function bandPart_(a,numLower,numUpper){assert(numLower%1===0,()=>`bandPart(): numLower must be an integer, got ${numLower}.`),assert(numUpper%1===0,()=>`bandPart(): numUpper must be an integer, got ${numUpper}.`);let $a=convertToTensor(a,"a","bandPart");assert($a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${$a.rank}.`);let shape=$a.shape,[M,N]=$a.shape.slice(-2);if(!(numLower<=M))throw new Error(`bandPart(): numLower (${numLower}) must not be greater than the number of rows (${M}).`);if(!(numUpper<=N))throw new Error(`bandPart(): numUpper (${numUpper}) must not be greater than the number of columns (${N}).`);numLower<0&&(numLower=M),numUpper<0&&(numUpper=N);let i=reshape(range(0,M,1,"int32"),[-1,1]),j=range(0,N,1,"int32"),ij=sub(i,j),inBand=logicalAnd(lessEqual(ij,scalar(+numLower,"int32")),greaterEqual(ij,scalar(-numUpper,"int32"))),zero=zeros([M,N],$a.dtype);return reshape(stack(unstack(reshape($a,[-1,M,N])).map(mat=>where(inBand,mat,zero))),shape)}var bandPart=op({bandPart_});function gramSchmidt_(xs){let inputIsTensor2D;if(Array.isArray(xs)){inputIsTensor2D=!1,assert(xs!=null&&xs.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let dim=xs[0].shape[0];for(let i=1;i`Gram-Schmidt: Non-unique lengths found in the input vectors: (${xs[i].shape[0]} vs. ${dim})`)}else inputIsTensor2D=!0,xs=split(xs,xs.shape[0],0).map(x=>squeeze(x,[0]));assert(xs.length<=xs[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${xs.length}) exceeds number of dimensions (${xs[0].shape[0]}).`);let ys=[],xs1d=xs;for(let i=0;i{let x=xs1d[i];if(i>0)for(let j=0;j=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${x.rank}`),x.rank===2)return qr2d(x,fullMatrices);{let outerDimsProd=x.shape.slice(0,x.shape.length-2).reduce((value,prev)=>value*prev),x2ds=unstack(reshape(x,[outerDimsProd,x.shape[x.shape.length-2],x.shape[x.shape.length-1]]),0),q2ds=[],r2ds=[];x2ds.forEach(x2d=>{let[q2d,r2d]=qr2d(x2d,fullMatrices);q2ds.push(q2d),r2ds.push(r2d)});let q=reshape(stack(q2ds,0),x.shape),r=reshape(stack(r2ds,0),x.shape);return[q,r]}}function qr2d(x,fullMatrices=!1){return ENGINE.tidy(()=>{assert(x.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${x.shape.length}D Tensor.`);let m=x.shape[0],n=x.shape[1],q=eye(m),r=clone(x),one2D=tensor2d([[1]],[1,1]),w=clone(one2D),iters=m>=n?n:m;for(let j=0;j{let rjEnd1=slice(r,[j,j],[m-j,1]),normX=norm(rjEnd1),rjj=slice(r,[j,j],[1,1]),s=where(greater(rjj,0),tensor2d([[-1]]),tensor2d([[1]])),u1=sub(rjj,mul(s,normX)),wPre=div(rjEnd1,u1);wPre.shape[0]===1?w=clone(one2D):w=concat([one2D,slice(wPre,[1,0],[wPre.shape[0]-1,wPre.shape[1]])],0);let tau=neg(div(matMul(s,u1),normX)),rjEndAll=slice(r,[j,0],[m-j,n]),tauTimesW=mul(tau,w),wT=transpose(w);if(j===0)r=sub(rjEndAll,matMul(tauTimesW,matMul(wT,rjEndAll)));else{let rTimesTau=sub(rjEndAll,matMul(tauTimesW,matMul(wT,rjEndAll)));r=concat([slice(r,[0,0],[j,n]),rTimesTau],0)}let tawTimesWT=transpose(tauTimesW),qAllJEnd=slice(q,[0,j],[m,q.shape[1]-j]);if(j===0)q=sub(qAllJEnd,matMul(matMul(qAllJEnd,w),tawTimesWT));else{let qTimesTau=sub(qAllJEnd,matMul(matMul(qAllJEnd,w),tawTimesWT));q=concat([slice(q,[0,0],[m,j]),qTimesTau],1)}return[w,r,q]}),dispose([rTemp,wTemp,qTemp])}return!fullMatrices&&m>n&&(q=slice(q,[0,0],[m,n]),r=slice(r,[0,0],[n,n])),[q,r]})}var qr=op({qr_}),Reduction;(function(Reduction2){Reduction2[Reduction2.NONE=0]="NONE",Reduction2[Reduction2.MEAN=1]="MEAN",Reduction2[Reduction2.SUM=2]="SUM",Reduction2[Reduction2.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Reduction||(Reduction={}));function computeWeightedLoss_(losses8,weights,reduction2=Reduction.SUM_BY_NONZERO_WEIGHTS){let $losses=convertToTensor(losses8,"losses","computeWeightedLoss"),$weights=null;weights!=null&&($weights=convertToTensor(weights,"weights","computeWeightedLoss"));let weightedLoss=$weights==null?$losses:mul($losses,$weights);if(reduction2===Reduction.NONE)return weightedLoss;if(reduction2===Reduction.SUM)return sum2(weightedLoss);if(reduction2===Reduction.MEAN){if($weights==null)return mean(weightedLoss);{let broadcastFactor=$losses.size/$weights.size,result=div(sum2(weightedLoss),sum2($weights));return broadcastFactor>1?div(result,scalar(broadcastFactor)):result}}if(reduction2===Reduction.SUM_BY_NONZERO_WEIGHTS){if($weights==null)return div(sum2(weightedLoss),scalar($losses.size));{let broadcastedWeights=mul($weights,ones2($losses.shape)),numNonZeros=cast(sum2(notEqual(broadcastedWeights,scalar(0))),"float32");return div(sum2(weightedLoss),numNonZeros)}}throw Error(`Unknown reduction: ${reduction2}`)}var computeWeightedLoss=op({computeWeightedLoss_});function absoluteDifference_(labels,predictions,weights,reduction2=Reduction.SUM_BY_NONZERO_WEIGHTS){let $labels=convertToTensor(labels,"labels","absoluteDifference"),$predictions=convertToTensor(predictions,"predictions","absoluteDifference"),$weights=null;weights!=null&&($weights=convertToTensor(weights,"weights","absoluteDifference")),assertShapesMatch($labels.shape,$predictions.shape,"Error in absoluteDifference: ");let losses8=abs(sub($labels,$predictions));return computeWeightedLoss(losses8,$weights,reduction2)}var absoluteDifference=op({absoluteDifference_});function cosineDistance_(labels,predictions,axis,weights,reduction2=Reduction.SUM_BY_NONZERO_WEIGHTS){let $labels=convertToTensor(labels,"labels","cosineDistance"),$predictions=convertToTensor(predictions,"predictions","cosineDistance"),$weights=null;weights!=null&&($weights=convertToTensor(weights,"weights","cosineDistance")),assertShapesMatch($labels.shape,$predictions.shape,"Error in cosineDistance: ");let one=scalar(1),losses8=sub(one,sum2(mul($labels,$predictions),axis,!0));return computeWeightedLoss(losses8,$weights,reduction2)}var cosineDistance=op({cosineDistance_});function hingeLoss_(labels,predictions,weights,reduction2=Reduction.SUM_BY_NONZERO_WEIGHTS){let $labels=convertToTensor(labels,"labels","hingeLoss"),$predictions=convertToTensor(predictions,"predictions","hingeLoss"),$weights=null;weights!=null&&($weights=convertToTensor(weights,"weights","hingeLoss")),assertShapesMatch($labels.shape,$predictions.shape,"Error in hingeLoss: ");let one=scalar(1);$labels=sub(mul(scalar(2),$labels),one);let losses8=relu(sub(one,mul($labels,$predictions)));return computeWeightedLoss(losses8,$weights,reduction2)}var hingeLoss=op({hingeLoss_});function huberLoss_(labels,predictions,weights,delta=1,reduction2=Reduction.SUM_BY_NONZERO_WEIGHTS){let $labels=convertToTensor(labels,"labels","huberLoss"),$predictions=convertToTensor(predictions,"predictions","huberLoss"),$weights=null;weights!=null&&($weights=convertToTensor(weights,"weights","huberLoss")),assertShapesMatch($labels.shape,$predictions.shape,"Error in huberLoss: ");let deltaScalar=scalar(delta),error=abs(sub($predictions,$labels)),quadratic=minimum(error,deltaScalar),linear=sub(error,quadratic),losses8=add2(mul(scalar(.5),square(quadratic)),mul(deltaScalar,linear));return computeWeightedLoss(losses8,$weights,reduction2)}var huberLoss=op({huberLoss_});function logLoss_(labels,predictions,weights,epsilon3=1e-7,reduction2=Reduction.SUM_BY_NONZERO_WEIGHTS){let $labels=convertToTensor(labels,"labels","logLoss"),$predictions=convertToTensor(predictions,"predictions","logLoss"),$weights=null;weights!=null&&($weights=convertToTensor(weights,"weights","logLoss")),assertShapesMatch($labels.shape,$predictions.shape,"Error in logLoss: ");let one=scalar(1),epsilonScalar=scalar(epsilon3),l13=neg(mul($labels,log2(add2($predictions,epsilonScalar)))),l23=mul(sub(one,$labels),log2(add2(sub(one,$predictions),epsilonScalar))),losses8=sub(l13,l23);return computeWeightedLoss(losses8,$weights,reduction2)}var logLoss=op({logLoss_});function meanSquaredError_(labels,predictions,weights,reduction2=Reduction.SUM_BY_NONZERO_WEIGHTS){let $labels=convertToTensor(labels,"labels","meanSquaredError"),$predictions=convertToTensor(predictions,"predictions","meanSquaredError"),$weights=null;weights!=null&&($weights=convertToTensor(weights,"weights","meanSquaredError")),assertShapesMatch($labels.shape,$predictions.shape,"Error in meanSquaredError: ");let losses8=squaredDifference($labels,$predictions);return computeWeightedLoss(losses8,$weights,reduction2)}var meanSquaredError=op({meanSquaredError_});function sigmoidCrossEntropyWithLogits_(labels,logits){let $labels=convertToTensor(labels,"labels","sigmoidCrossEntropyWithLogits"),$logits=convertToTensor(logits,"logits","sigmoidCrossEntropyWithLogits");assertShapesMatch($labels.shape,$logits.shape,"Error in sigmoidCrossEntropyWithLogits: ");let maxOutput=relu($logits),outputXTarget=mul($logits,$labels),sigmoidOutput=log1p(exp(neg(abs($logits))));return add2(sub(maxOutput,outputXTarget),sigmoidOutput)}function sigmoidCrossEntropy_(multiClassLabels,logits,weights,labelSmoothing=0,reduction2=Reduction.SUM_BY_NONZERO_WEIGHTS){let $multiClassLabels=convertToTensor(multiClassLabels,"multiClassLabels","sigmoidCrossEntropy"),$logits=convertToTensor(logits,"logits","sigmoidCrossEntropy"),$weights=null;if(weights!=null&&($weights=convertToTensor(weights,"weights","sigmoidCrossEntropy")),assertShapesMatch($multiClassLabels.shape,$logits.shape,"Error in sigmoidCrossEntropy: "),labelSmoothing>0){let labelSmoothingScalar=scalar(labelSmoothing),one=scalar(1),half=scalar(.5);$multiClassLabels=add2(mul($multiClassLabels,sub(one,labelSmoothingScalar)),mul(half,labelSmoothingScalar))}let losses8=sigmoidCrossEntropyWithLogits_($multiClassLabels,$logits);return computeWeightedLoss(losses8,$weights,reduction2)}var sigmoidCrossEntropy=op({sigmoidCrossEntropy_});function softmaxCrossEntropyWithLogits_(labels,logits,dim=-1){if(dim===-1&&(dim=logits.rank-1),dim!==logits.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${logits.rank} and dim was ${dim}`);let customOp=customGrad((labels2,logits2,save)=>{let keepDims=!0,lse=logSumExp(logits2,[dim],keepDims),logResult=sub(cast(logits2,"float32"),lse);save([labels2,logResult]);let costVector=neg(mul(logResult,labels2)),value=sum2(costVector,[dim]),gradFunc=(dy,saved)=>{let[labels3,logResult2]=saved,dyShape=expandShapeToKeepDim(dy.shape,[dim]);return[mul(reshape(dy,dyShape),sub(cast(labels3,"float32"),exp(logResult2))),mul(reshape(dy,dyShape),sub(exp(logResult2),cast(labels3,"float32")))]};return{value,gradFunc}});return customOp(labels,logits)}function softmaxCrossEntropy_(onehotLabels,logits,weights,labelSmoothing=0,reduction2=Reduction.SUM_BY_NONZERO_WEIGHTS){let $onehotLabels=convertToTensor(onehotLabels,"onehotLabels","softmaxCrossEntropy"),$logits=convertToTensor(logits,"logits","softmaxCrossEntropy"),$weights=null;if(weights!=null&&($weights=convertToTensor(weights,"weights","softmaxCrossEntropy")),assertShapesMatch($onehotLabels.shape,$logits.shape,"Error in softmaxCrossEntropy: "),labelSmoothing>0){let labelSmoothingScalar=scalar(labelSmoothing),one=scalar(1),numClasses=scalar($onehotLabels.shape[1]);$onehotLabels=add2(mul($onehotLabels,sub(one,labelSmoothingScalar)),div(labelSmoothingScalar,numClasses))}let losses8=softmaxCrossEntropyWithLogits_($onehotLabels,$logits);return computeWeightedLoss(losses8,$weights,reduction2)}var softmaxCrossEntropy=op({softmaxCrossEntropy_}),spectral={fft,ifft,rfft,irfft},signal={hammingWindow,hannWindow,frame,stft},image={flipLeftRight,resizeNearestNeighbor,resizeBilinear,rotateWithOffset,cropAndResize,nonMaxSuppression,nonMaxSuppressionAsync,nonMaxSuppressionWithScore,nonMaxSuppressionWithScoreAsync,nonMaxSuppressionPadded,nonMaxSuppressionPaddedAsync},linalg={bandPart,gramSchmidt,qr},losses={absoluteDifference,computeWeightedLoss,cosineDistance,hingeLoss,huberLoss,logLoss,meanSquaredError,sigmoidCrossEntropy,softmaxCrossEntropy},Optimizer=class extends Serializable{minimize(f,returnCost=!1,varList){let{value,grads:grads2}=this.computeGradients(f,varList);if(varList!=null){let gradArray=varList.map(v=>({name:v.name,tensor:grads2[v.name]}));this.applyGradients(gradArray)}else this.applyGradients(grads2);return dispose(grads2),returnCost?value:(value.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(f,varList){return variableGrads(f,varList)}dispose(){this.iterations_!=null&&dispose(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:scalar(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(weightValues){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(weightValues){return this.iterations_=(await weightValues[0].tensor.data())[0],weightValues.slice(1)}};Object.defineProperty(Optimizer,Symbol.hasInstance,{value:instance=>instance.minimize!=null&&instance.computeGradients!=null&&instance.applyGradients!=null});var AdadeltaOptimizer=class extends Optimizer{constructor(learningRate,rho,epsilon3=null){super();this.learningRate=learningRate,this.rho=rho,this.epsilon=epsilon3,this.accumulatedGrads=[],this.accumulatedUpdates=[],epsilon3==null&&(this.epsilon=ENGINE.backend.epsilon())}applyGradients(variableGradients){let variableNames=Array.isArray(variableGradients)?variableGradients.map(item=>item.name):Object.keys(variableGradients);variableNames.forEach((name,i)=>{let value=ENGINE.registeredVariables[name],trainable=!1;this.accumulatedGrads[i]==null&&(this.accumulatedGrads[i]={originalName:`${name}/accum_grad`,variable:tidy(()=>zerosLike(value).variable(trainable))}),this.accumulatedUpdates[i]==null&&(this.accumulatedUpdates[i]={originalName:`${name}/accum_var`,variable:tidy(()=>zerosLike(value).variable(trainable))});let gradient=Array.isArray(variableGradients)?variableGradients[i].tensor:variableGradients[name];if(gradient==null)return;let accumulatedGrad=this.accumulatedGrads[i].variable,accumulatedUpdate=this.accumulatedUpdates[i].variable;tidy(()=>{let newAccumulatedGrad=add2(mul(accumulatedGrad,this.rho),mul(square(gradient),1-this.rho)),updates=mul(div(sqrt(add2(accumulatedUpdate,this.epsilon)),sqrt(add2(accumulatedGrad,this.epsilon))),gradient),newAccumulatedUpdate=add2(mul(accumulatedUpdate,this.rho),mul(square(updates),1-this.rho));accumulatedGrad.assign(newAccumulatedGrad),accumulatedUpdate.assign(newAccumulatedUpdate);let newValue=add2(mul(updates,-this.learningRate),value);value.assign(newValue)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(dispose(this.accumulatedGrads.map(v=>v.variable)),dispose(this.accumulatedUpdates.map(v=>v.variable)))}async getWeights(){let variables5=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(variables5.map(v=>({name:v.originalName,tensor:v.variable})))}async setWeights(weightValues){weightValues=await this.extractIterations(weightValues);let variableCount=weightValues.length/2,trainable=!1;this.accumulatedGrads=weightValues.slice(0,variableCount).map(v=>({originalName:v.name,variable:v.tensor.variable(trainable)})),this.accumulatedUpdates=weightValues.slice(variableCount,variableCount*2).map(v=>({originalName:v.name,variable:v.tensor.variable(trainable)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(cls,config){return new cls(config.learningRate,config.rho,config.epsilon)}};AdadeltaOptimizer.className="Adadelta";registerClass(AdadeltaOptimizer);var AdagradOptimizer=class extends Optimizer{constructor(learningRate,initialAccumulatorValue=.1){super();this.learningRate=learningRate,this.initialAccumulatorValue=initialAccumulatorValue,this.accumulatedGrads=[]}applyGradients(variableGradients){let variableNames=Array.isArray(variableGradients)?variableGradients.map(item=>item.name):Object.keys(variableGradients);variableNames.forEach((name,i)=>{let value=ENGINE.registeredVariables[name];if(this.accumulatedGrads[i]==null){let trainable=!1;this.accumulatedGrads[i]={originalName:`${name}/accumulator`,variable:tidy(()=>fill(value.shape,this.initialAccumulatorValue).variable(trainable))}}let gradient=Array.isArray(variableGradients)?variableGradients[i].tensor:variableGradients[name];if(gradient==null)return;let accumulatedGrad=this.accumulatedGrads[i].variable;tidy(()=>{let newAccumulatedGrad=add2(accumulatedGrad,square(gradient));accumulatedGrad.assign(newAccumulatedGrad);let newValue=add2(mul(div(gradient,sqrt(add2(newAccumulatedGrad,ENGINE.backend.epsilon()))),-this.learningRate),value);value.assign(newValue)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&dispose(this.accumulatedGrads.map(v=>v.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(v=>({name:v.originalName,tensor:v.variable})))}async setWeights(weightValues){weightValues=await this.extractIterations(weightValues);let trainable=!1;this.accumulatedGrads=weightValues.map(v=>({originalName:v.name,variable:v.tensor.variable(trainable)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(cls,config){return new cls(config.learningRate,config.initialAccumulatorValue)}};AdagradOptimizer.className="Adagrad";registerClass(AdagradOptimizer);var AdamOptimizer=class extends Optimizer{constructor(learningRate,beta1,beta2,epsilon3=null){super();this.learningRate=learningRate,this.beta1=beta1,this.beta2=beta2,this.epsilon=epsilon3,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],tidy(()=>{this.accBeta1=scalar(beta1).variable(),this.accBeta2=scalar(beta2).variable()}),epsilon3==null&&(this.epsilon=ENGINE.backend.epsilon())}applyGradients(variableGradients){let varNames=Array.isArray(variableGradients)?variableGradients.map(v=>v.name):Object.keys(variableGradients);tidy(()=>{let oneMinusAccBeta1=sub(1,this.accBeta1),oneMinusAccBeta2=sub(1,this.accBeta2);varNames.forEach((name,i)=>{let value=ENGINE.registeredVariables[name],trainable=!1;this.accumulatedFirstMoment[i]==null&&(this.accumulatedFirstMoment[i]={originalName:`${name}/m`,variable:tidy(()=>zerosLike(value).variable(trainable))}),this.accumulatedSecondMoment[i]==null&&(this.accumulatedSecondMoment[i]={originalName:`${name}/v`,variable:tidy(()=>zerosLike(value).variable(trainable))});let gradient=Array.isArray(variableGradients)?variableGradients[i].tensor:variableGradients[name];if(gradient==null)return;let firstMoment=this.accumulatedFirstMoment[i].variable,secondMoment=this.accumulatedSecondMoment[i].variable,newFirstMoment=add2(mul(firstMoment,this.beta1),mul(gradient,1-this.beta1)),newSecondMoment=add2(mul(secondMoment,this.beta2),mul(square(gradient),1-this.beta2)),biasCorrectedFirstMoment=div(newFirstMoment,oneMinusAccBeta1),biasCorrectedSecondMoment=div(newSecondMoment,oneMinusAccBeta2);firstMoment.assign(newFirstMoment),secondMoment.assign(newSecondMoment);let newValue=add2(mul(div(biasCorrectedFirstMoment,add2(sqrt(biasCorrectedSecondMoment),this.epsilon)),-this.learningRate),value);value.assign(newValue)}),this.accBeta1.assign(mul(this.accBeta1,this.beta1)),this.accBeta2.assign(mul(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&dispose(this.accumulatedFirstMoment.map(v=>v.variable)),this.accumulatedSecondMoment!=null&&dispose(this.accumulatedSecondMoment.map(v=>v.variable))}async getWeights(){let variables5=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(variables5.map(v=>({name:v.originalName,tensor:v.variable})))}async setWeights(weightValues){weightValues=await this.extractIterations(weightValues),tidy(()=>{this.accBeta1.assign(pow(this.beta1,this.iterations_+1)),this.accBeta2.assign(pow(this.beta2,this.iterations_+1))});let variableCount=weightValues.length/2,trainable=!1;this.accumulatedFirstMoment=weightValues.slice(0,variableCount).map(v=>({originalName:v.name,variable:v.tensor.variable(trainable)})),this.accumulatedSecondMoment=weightValues.slice(variableCount,variableCount*2).map(v=>({originalName:v.name,variable:v.tensor.variable(trainable)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(cls,config){return new cls(config.learningRate,config.beta1,config.beta2,config.epsilon)}};AdamOptimizer.className="Adam";registerClass(AdamOptimizer);var AdamaxOptimizer=class extends Optimizer{constructor(learningRate,beta1,beta2,epsilon3=null,decay=0){super();this.learningRate=learningRate,this.beta1=beta1,this.beta2=beta2,this.epsilon=epsilon3,this.decay=decay,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],tidy(()=>{this.iteration=scalar(0).variable(),this.accBeta1=scalar(beta1).variable()}),epsilon3==null&&(this.epsilon=ENGINE.backend.epsilon())}applyGradients(variableGradients){let variableNames=Array.isArray(variableGradients)?variableGradients.map(item=>item.name):Object.keys(variableGradients);tidy(()=>{let oneMinusAccBeta1=sub(1,this.accBeta1),lr=div(-this.learningRate,add2(mul(this.iteration,this.decay),1));variableNames.forEach((name,i)=>{let value=ENGINE.registeredVariables[name],trainable=!1;this.accumulatedFirstMoment[i]==null&&(this.accumulatedFirstMoment[i]={originalName:`${name}/m`,variable:zerosLike(value).variable(trainable)}),this.accumulatedWeightedInfNorm[i]==null&&(this.accumulatedWeightedInfNorm[i]={originalName:`${name}/v`,variable:zerosLike(value).variable(trainable)});let gradient=Array.isArray(variableGradients)?variableGradients[i].tensor:variableGradients[name];if(gradient==null)return;let firstMoment=this.accumulatedFirstMoment[i].variable,weightedInfNorm=this.accumulatedWeightedInfNorm[i].variable,newFirstMoment=add2(mul(firstMoment,this.beta1),mul(gradient,1-this.beta1)),ut0=mul(weightedInfNorm,this.beta2),ut1=abs(gradient),newWeightedInfNorm=maximum(ut0,ut1);firstMoment.assign(newFirstMoment),weightedInfNorm.assign(newWeightedInfNorm);let newValue=add2(mul(div(lr,oneMinusAccBeta1),div(newFirstMoment,add2(newWeightedInfNorm,this.epsilon))),value);value.assign(newValue)}),this.iteration.assign(add2(this.iteration,1)),this.accBeta1.assign(mul(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&dispose(this.accumulatedFirstMoment.map(v=>v.variable)),this.accumulatedWeightedInfNorm!=null&&dispose(this.accumulatedWeightedInfNorm.map(v=>v.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(weightValues){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(cls,config){return new cls(config.learningRate,config.beta1,config.beta2,config.epsilon,config.decay)}};AdamaxOptimizer.className="Adamax";registerClass(AdamaxOptimizer);var SGDOptimizer=class extends Optimizer{constructor(learningRate){super();this.learningRate=learningRate,this.setLearningRate(learningRate)}applyGradients(variableGradients){let varNames=Array.isArray(variableGradients)?variableGradients.map(v=>v.name):Object.keys(variableGradients);varNames.forEach((name,i)=>{let gradient=Array.isArray(variableGradients)?variableGradients[i].tensor:variableGradients[name];if(gradient==null)return;let value=ENGINE.registeredVariables[name];tidy(()=>{let newValue=add2(mul(this.c,gradient),value);value.assign(newValue)})}),this.incrementIterations()}setLearningRate(learningRate){this.learningRate=learningRate,this.c!=null&&this.c.dispose(),this.c=keep(scalar(-learningRate))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(weightValues){if(weightValues=await this.extractIterations(weightValues),weightValues.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(cls,config){return new cls(config.learningRate)}};SGDOptimizer.className="SGD";registerClass(SGDOptimizer);var MomentumOptimizer=class extends SGDOptimizer{constructor(learningRate,momentum,useNesterov=!1){super(learningRate);this.learningRate=learningRate,this.momentum=momentum,this.useNesterov=useNesterov,this.accumulations=[],this.m=scalar(this.momentum)}applyGradients(variableGradients){let variableNames=Array.isArray(variableGradients)?variableGradients.map(item=>item.name):Object.keys(variableGradients);variableNames.forEach((name,i)=>{let value=ENGINE.registeredVariables[name];if(this.accumulations[i]==null){let trainable=!1;this.accumulations[i]={originalName:`${name}/momentum`,variable:tidy(()=>zerosLike(value).variable(trainable))}}let accumulation=this.accumulations[i].variable,gradient=Array.isArray(variableGradients)?variableGradients[i].tensor:variableGradients[name];if(gradient==null)return;tidy(()=>{let newValue,newAccumulation=add2(mul(this.m,accumulation),gradient);this.useNesterov?newValue=add2(mul(this.c,add2(gradient,mul(newAccumulation,this.m))),value):newValue=add2(mul(this.c,newAccumulation),value),accumulation.assign(newAccumulation),value.assign(newValue)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&dispose(this.accumulations.map(v=>v.variable))}setMomentum(momentum){this.momentum=momentum}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(v=>({name:v.originalName,tensor:v.variable})))}async setWeights(weightValues){weightValues=await this.extractIterations(weightValues);let trainable=!1;this.accumulations=weightValues.map(v=>({originalName:v.name,variable:v.tensor.variable(trainable)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(cls,config){return new cls(config.learningRate,config.momentum,config.useNesterov)}};MomentumOptimizer.className="Momentum";registerClass(MomentumOptimizer);var RMSPropOptimizer=class extends Optimizer{constructor(learningRate,decay=.9,momentum=0,epsilon3=null,centered=!1){super();if(this.learningRate=learningRate,this.decay=decay,this.momentum=momentum,this.epsilon=epsilon3,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=centered,epsilon3==null&&(this.epsilon=ENGINE.backend.epsilon()),learningRate==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(variableGradients){let variableNames=Array.isArray(variableGradients)?variableGradients.map(item=>item.name):Object.keys(variableGradients);variableNames.forEach((name,i)=>{let value=ENGINE.registeredVariables[name],trainable=!1;this.accumulatedMeanSquares[i]==null&&(this.accumulatedMeanSquares[i]={originalName:`${name}/rms`,variable:tidy(()=>zerosLike(value).variable(trainable))}),this.accumulatedMoments[i]==null&&(this.accumulatedMoments[i]={originalName:`${name}/momentum`,variable:tidy(()=>zerosLike(value).variable(trainable))}),this.accumulatedMeanGrads[i]==null&&this.centered&&(this.accumulatedMeanGrads[i]={originalName:`${name}/mg`,variable:tidy(()=>zerosLike(value).variable(trainable))});let gradient=Array.isArray(variableGradients)?variableGradients[i].tensor:variableGradients[name];if(gradient==null)return;let accumulatedMeanSquare=this.accumulatedMeanSquares[i].variable,accumulatedMoments=this.accumulatedMoments[i].variable;tidy(()=>{let newAccumulatedMeanSquare=add2(mul(accumulatedMeanSquare,this.decay),mul(square(gradient),1-this.decay));if(this.centered){let accumulatedMeanGrad=this.accumulatedMeanGrads[i].variable,newAccumulatedMeanGrad=add2(mul(accumulatedMeanGrad,this.decay),mul(gradient,1-this.decay)),gradContribution=div(mul(gradient,this.learningRate),sqrt(sub(newAccumulatedMeanSquare,add2(square(newAccumulatedMeanGrad),this.epsilon)))),newAccumulatedMoments=add2(mul(accumulatedMoments,this.momentum),gradContribution);accumulatedMeanSquare.assign(newAccumulatedMeanSquare),accumulatedMeanGrad.assign(newAccumulatedMeanGrad),accumulatedMoments.assign(newAccumulatedMoments);let newValue=sub(value,newAccumulatedMoments);value.assign(newValue)}else{let newAccumulatedMeanSquare2=add2(mul(accumulatedMeanSquare,this.decay),mul(square(gradient),1-this.decay)),newAccumulatedMoments=add2(mul(accumulatedMoments,this.momentum),div(mul(gradient,this.learningRate),sqrt(add2(newAccumulatedMeanSquare2,this.epsilon))));accumulatedMeanSquare.assign(newAccumulatedMeanSquare2),accumulatedMoments.assign(newAccumulatedMoments);let newValue=sub(value,newAccumulatedMoments);value.assign(newValue)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&dispose(this.accumulatedMeanSquares.map(v=>v.variable)),this.accumulatedMeanGrads!=null&&this.centered&&dispose(this.accumulatedMeanGrads.map(v=>v.variable)),this.accumulatedMoments!=null&&dispose(this.accumulatedMoments.map(v=>v.variable))}async getWeights(){let variables5=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&variables5.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(variables5.map(v=>({name:v.originalName,tensor:v.variable})))}async setWeights(weightValues){weightValues=await this.extractIterations(weightValues);let variableCount=this.centered?weightValues.length/3:weightValues.length/2,trainable=!1;this.accumulatedMeanSquares=weightValues.slice(0,variableCount).map(v=>({originalName:v.name,variable:v.tensor.variable(trainable)})),this.accumulatedMoments=weightValues.slice(variableCount,variableCount*2).map(v=>({originalName:v.name,variable:v.tensor.variable(trainable)})),this.centered&&(this.accumulatedMeanGrads=weightValues.slice(variableCount*2,variableCount*3).map(v=>({originalName:v.name,variable:v.tensor.variable(trainable)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(cls,config){return new cls(config.learningRate,config.decay,config.momentum,config.epsilon,config.centered)}};RMSPropOptimizer.className="RMSProp";registerClass(RMSPropOptimizer);var OptimizerConstructors=class{static sgd(learningRate){return new SGDOptimizer(learningRate)}static momentum(learningRate,momentum,useNesterov=!1){return new MomentumOptimizer(learningRate,momentum,useNesterov)}static rmsprop(learningRate,decay=.9,momentum=0,epsilon3=null,centered=!1){return new RMSPropOptimizer(learningRate,decay,momentum,epsilon3,centered)}static adam(learningRate=.001,beta1=.9,beta2=.999,epsilon3=null){return new AdamOptimizer(learningRate,beta1,beta2,epsilon3)}static adadelta(learningRate=.001,rho=.95,epsilon3=null){return new AdadeltaOptimizer(learningRate,rho,epsilon3)}static adamax(learningRate=.002,beta1=.9,beta2=.999,epsilon3=null,decay=0){return new AdamaxOptimizer(learningRate,beta1,beta2,epsilon3,decay)}static adagrad(learningRate,initialAccumulatorValue=.1){return new AdagradOptimizer(learningRate,initialAccumulatorValue)}},train={sgd:OptimizerConstructors.sgd,momentum:OptimizerConstructors.momentum,adadelta:OptimizerConstructors.adadelta,adagrad:OptimizerConstructors.adagrad,rmsprop:OptimizerConstructors.rmsprop,adamax:OptimizerConstructors.adamax,adam:OptimizerConstructors.adam},delayCallback=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:f=>f())();function nextFrame(){return new Promise(resolve=>delayCallback(()=>resolve()))}var backend_util_exports={};__export2(backend_util_exports,{ERF_A1:()=>ERF_A1,ERF_A2:()=>ERF_A2,ERF_A3:()=>ERF_A3,ERF_A4:()=>ERF_A4,ERF_A5:()=>ERF_A5,ERF_P:()=>ERF_P,PARALLELIZE_THRESHOLD:()=>PARALLELIZE_THRESHOLD,SELU_SCALE:()=>SELU_SCALE,SELU_SCALEALPHA:()=>SELU_SCALEALPHA,applyActivation:()=>applyActivation,assertAndGetBroadcastShape:()=>assertAndGetBroadcastShape,assertAxesAreInnerMostDims:()=>assertAxesAreInnerMostDims,assertParamsConsistent:()=>assertParamsConsistent,assignToTypedArray:()=>assignToTypedArray,axesAreInnerMostDims:()=>axesAreInnerMostDims,calculateShapes:()=>calculateShapes,castTensor:()=>castTensor,combineLocations:()=>combineLocations,complexWithEvenIndex:()=>complexWithEvenIndex,complexWithOddIndex:()=>complexWithOddIndex,computeConv2DInfo:()=>computeConv2DInfo,computeConv3DInfo:()=>computeConv3DInfo,computeDefaultPad:()=>computeDefaultPad,computeDilation2DInfo:()=>computeDilation2DInfo,computeOptimalWindowSize:()=>computeOptimalWindowSize,computeOutAndReduceShapes:()=>computeOutAndReduceShapes,computeOutShape:()=>computeOutShape2,computePool2DInfo:()=>computePool2DInfo,computePool3DInfo:()=>computePool3DInfo,convertConv2DDataFormat:()=>convertConv2DDataFormat,eitherStridesOrDilationsAreOne:()=>eitherStridesOrDilationsAreOne,expandShapeToKeepDim:()=>expandShapeToKeepDim,exponent:()=>exponent,exponents:()=>exponents,getAxesPermutation:()=>getAxesPermutation,getBroadcastDims:()=>getBroadcastDims,getComplexWithIndex:()=>getComplexWithIndex,getFusedBiasGradient:()=>getFusedBiasGradient,getFusedDyActivation:()=>getFusedDyActivation,getImageCenter:()=>getImageCenter,getInnerMostAxes:()=>getInnerMostAxes,getPermuted:()=>getPermuted,getReductionAxes:()=>getReductionAxes,getReshaped:()=>getReshaped,getReshapedPermuted:()=>getReshapedPermuted,getSliceBeginCoords:()=>getSliceBeginCoords,getSliceSize:()=>getSliceSize,getUndoAxesPermutation:()=>getUndoAxesPermutation,linspaceImpl:()=>linspaceImpl,log:()=>log6,mergeRealAndImagArrays:()=>mergeRealAndImagArrays,prepareAndValidate:()=>prepareAndValidate,prepareSplitSize:()=>prepareSplitSize,reshapeTensor:()=>reshapeTensor,segment_util:()=>segment_util_exports,shouldFuse:()=>shouldFuse,slice_util:()=>slice_util_exports,splitRealAndImagArrays:()=>splitRealAndImagArrays,tupleValuesAreOne:()=>tupleValuesAreOne,upcastType:()=>upcastType,validateInput:()=>validateInput,validateUpdateShape:()=>validateUpdateShape,warn:()=>warn});function getImageCenter(center,imageHeight,imageWidth){let centerX=imageWidth*(typeof center=="number"?center:center[0]),centerY=imageHeight*(typeof center=="number"?center:center[1]);return[centerX,centerY]}function getReshaped(inputShape,blockShape,prod5,batchToSpace=!0){let reshaped=[];if(batchToSpace)reshaped=reshaped.concat(blockShape.slice(0)),reshaped.push(inputShape[0]/prod5),reshaped=reshaped.concat(inputShape.slice(1));else{reshaped=reshaped.concat(inputShape[0]);let spatialLength=blockShape.length;for(let i=0;i=blockShapeRank*2+1||i%2===1?permutedAfterBatch.push(i):permutedBeforeBatch.push(i);permuted.push(...permutedBeforeBatch),permuted.push(0),permuted.push(...permutedAfterBatch)}return permuted}function getReshapedPermuted(inputShape,blockShape,prod5,batchToSpace=!0){let reshapedPermuted=[];batchToSpace?reshapedPermuted.push(inputShape[0]/prod5):reshapedPermuted.push(inputShape[0]*prod5);for(let i=1;inonMaxSuppressionV3Impl,nonMaxSuppressionV4Impl:()=>nonMaxSuppressionV4Impl,nonMaxSuppressionV5Impl:()=>nonMaxSuppressionV5Impl,split:()=>split5,tile:()=>tile4,topkImpl:()=>topkImpl,whereImpl:()=>whereImpl});function split5(x,sizeSplits,axis){let begin=new Array(x.rank).fill(0),size=x.shape.slice();return sizeSplits.map(s=>{let sliceSize=[...size];sliceSize[axis]=s;let sliceT=slice(x,begin,sliceSize);return begin[axis]+=s,sliceT})}function tile4(xBuf,reps){let newShape=new Array(xBuf.rank);for(let i=0;ib2.value-a.value);let outOffset=b*k,topKVals=allTopKVals.subarray(outOffset,outOffset+k),topKIndices=allTopKIndices.subarray(outOffset,outOffset+k);for(let i=0;i{let[x]=saved;return{x:()=>mul(dy,step(cast(x,"float32"),-1))}}},acosGradConfig={kernelName:Acos,inputsToSave:["x"],gradFunc:(dy,saved)=>{let[x]=saved;return{x:()=>{let a=square(cast(x,"float32")),b=sqrt(sub(scalar(1),a));return neg(div(dy,b))}}}},acoshGradConfig={kernelName:Acosh,inputsToSave:["x"],gradFunc:(dy,saved)=>{let[x]=saved;return{x:()=>{let a=sqrt(sub(square(cast(x,"float32")),1));return div(dy,a)}}}},addGradConfig={kernelName:Add,inputsToSave:["a","b"],gradFunc:(dy,saved)=>{let[a,b]=saved,outShape=assertAndGetBroadcastShape(a.shape,b.shape),derA=()=>{let res=dy,reduceAxes=getReductionAxes(a.shape,outShape);return reduceAxes.length>0&&(res=sum2(res,reduceAxes)),reshape(res,a.shape)},derB=()=>{let res=dy,reduceAxes=getReductionAxes(b.shape,outShape);return reduceAxes.length>0&&(res=sum2(res,reduceAxes)),reshape(res,b.shape)};return{a:derA,b:derB}}},addNGradConfig={kernelName:AddN,saveAllInputs:!0,gradFunc:(dy,saved)=>{let ders={};return saved.forEach((_,i)=>{ders[i]=()=>dy.clone()}),ders}},argMaxGradConfig={kernelName:ArgMax,inputsToSave:["x"],gradFunc:(dy,saved)=>{let[x]=saved;return{x:()=>zerosLike(x)}}},argMinGradConfig={kernelName:ArgMin,inputsToSave:["x"],gradFunc:(dy,saved)=>{let[x]=saved;return{x:()=>zerosLike(x)}}},asinGradConfig={kernelName:Asin,inputsToSave:["x"],gradFunc:(dy,saved)=>{let[x]=saved;return{x:()=>div(dy,sqrt(sub(scalar(1),square(cast(x,"float32")))))}}},asinhGradConfig={kernelName:Asinh,inputsToSave:["x"],gradFunc:(dy,saved)=>{let[x]=saved;return{x:()=>{let a=sqrt(add2(scalar(1),square(cast(x,"float32"))));return div(dy,a)}}}},atan2GradConfig={kernelName:Atan2,inputsToSave:["a","b"],gradFunc:(dy,saved)=>{let[a,b]=saved,outShape=assertAndGetBroadcastShape(a.shape,b.shape),derA=()=>{let d=add2(square(a),square(b)),res=mul(dy,div(b,d)),reduceAxes=getReductionAxes(a.shape,outShape);return reduceAxes.length>0&&(res=sum2(res,reduceAxes)),reshape(res,a.shape)},derB=()=>{let d=add2(square(a),square(b)),res=neg(mul(dy,div(a,d))),reduceAxes=getReductionAxes(b.shape,outShape);return reduceAxes.length>0&&(res=sum2(res,reduceAxes)),reshape(res,b.shape)};return{a:derA,b:derB}}},atanGradConfig={kernelName:Atan,inputsToSave:["x"],gradFunc:(dy,saved)=>{let[x]=saved;return{x:()=>div(dy,add2(square(cast(x,"float32")),1))}}},atanhGradConfig={kernelName:Atanh,inputsToSave:["x"],gradFunc:(dy,saved)=>{let[x]=saved;return{x:()=>div(dy,sub(scalar(1),square(cast(x,"float32"))))}}};function avgPool3dBackprop_(dy,input2,filterSize,strides,dilations=[1,1,1],pad11,dimRoundingMode){let $dy=convertToTensor(dy,"dy","avgPool3dBackprop"),$input=convertToTensor(input2,"input","avgPool3dBackprop"),dy5D=$dy,input5D=$input,reshapedTo5D=!1;$input.rank===4&&(reshapedTo5D=!0,dy5D=reshape($dy,[1,$dy.shape[0],$dy.shape[1],$dy.shape[2],$dy.shape[3]]),input5D=reshape($input,[1,$input.shape[0],$input.shape[1],$input.shape[2],$input.shape[3]])),assert(dy5D.rank===5,()=>`Error in avgPool3dBackprop: dy must be rank 5 but got rank ${dy5D.rank}.`),assert(input5D.rank===5,()=>`Error in avgPool3dBackprop: input must be rank 5 but got rank ${input5D.rank}.`),assert(eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in avgPool3dBackprop: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`),dimRoundingMode!=null&&assert(isInt(pad11),()=>`Error in maxPool3dBackprop: pad must be an integer when using, dimRoundingMode ${dimRoundingMode} but got pad ${pad11}.`);let forward=backend3=>{let convInfo=computePool3DInfo(input5D.shape,filterSize,strides,dilations,pad11,dimRoundingMode);return backend3.avgPool3dBackprop(dy5D,input5D,convInfo)},inputs={dy:dy5D,input:input5D},attrs={filterSize,strides,dilations,pad:pad11,dimRoundingMode},res=ENGINE.runKernelFunc(forward,inputs,null,AvgPool3DBackprop,attrs);return reshapedTo5D?reshape(res,[res.shape[1],res.shape[2],res.shape[3],res.shape[4]]):res}var avgPool3dBackprop=op({avgPool3dBackprop_}),avgPool3DGradConfig={kernelName:AvgPool3D,inputsToSave:["x"],gradFunc:(dy,saved,attrs)=>{let[x]=saved,{filterSize,strides,dilations,pad:pad11,dimRoundingMode}=attrs,$dilations=dilations==null?[1,1,1]:dilations;return{x:()=>avgPool3dBackprop(dy,x,filterSize,strides,$dilations,pad11,dimRoundingMode)}}};function avgPoolBackprop_(dy,input2,filterSize,strides,pad11){let $dy=convertToTensor(dy,"dy","avgPoolBackprop"),$input=convertToTensor(input2,"input","avgPoolBackprop");assert($input.rank===$dy.rank,()=>`Rank of input (${$input.rank}) does not match rank of dy (${$dy.rank})`);let input4D=$input,dy4D=$dy,reshapedTo4D=!1;$input.rank===3&&(reshapedTo4D=!0,input4D=reshape($input,[1,$input.shape[0],$input.shape[1],$input.shape[2]]),dy4D=reshape($dy,[1,$dy.shape[0],$dy.shape[1],$dy.shape[2]])),assert(dy4D.rank===4,()=>`Error in avgPoolBackprop: dy must be rank 4 but got rank ${dy4D.rank}.`),assert(input4D.rank===4,()=>`Error in avgPoolBackprop: input must be rank 4 but got rank ${input4D.rank}.`);let forward=backend3=>{let convInfo=computePool2DInfo(input4D.shape,filterSize,strides,1,pad11);return backend3.avgPoolBackprop(dy4D,input4D,convInfo)},inputs={dy:dy4D,input:input4D},attrs={filterSize,strides,pad:pad11},res=ENGINE.runKernelFunc(forward,inputs,null,AvgPoolBackprop,attrs);return reshapedTo4D?reshape(res,[res.shape[1],res.shape[2],res.shape[3]]):res}var avgPoolBackprop=op({avgPoolBackprop_}),avgPoolGradConfig={kernelName:AvgPool,inputsToSave:["x"],gradFunc:(dy,saved,attrs)=>{let[x]=saved,{filterSize,strides,pad:pad11}=attrs;return{x:()=>avgPoolBackprop(dy,x,filterSize,strides,pad11)}}},batchMatMulGradConfig={kernelName:BatchMatMul,inputsToSave:["a","b"],gradFunc:(dy,saved,attrs)=>{let[a,b]=saved,{transposeA,transposeB}=attrs;return!transposeA&&!transposeB?{a:()=>matMul(dy,b,!1,!0),b:()=>matMul(a,dy,!0,!1)}:!transposeA&&transposeB?{a:()=>matMul(dy,b,!1,!1),b:()=>matMul(dy,a,!0,!1)}:transposeA&&!transposeB?{a:()=>matMul(b,dy,!1,!0),b:()=>matMul(a,dy,!1,!1)}:{a:()=>matMul(b,dy,!0,!0),b:()=>matMul(dy,a,!0,!0)}}},batchToSpaceNDGradConfig={kernelName:BatchToSpaceND,gradFunc:(dy,saved,attrs)=>{let{blockShape,crops}=attrs;return{x:()=>spaceToBatchND(dy,blockShape,crops)}}},broadcastToGradConfig={kernelName:BroadcastTo,gradFunc:(dy,saved,attrs)=>{let broadCastToAttrs=attrs,inputShape=broadCastToAttrs.inputShape,outputShape=broadCastToAttrs.shape,reps=Array.from(outputShape);for(let i=inputShape.length-1;i>=0;i--)if(inputShape[i]===outputShape[i])reps[i]=1;else if(inputShape[i]!==1)throw new Error(`broadcastTo(): [${inputShape}] cannot be broadcast to [${outputShape}].`);let axes=[];for(let i=0;i1&&axes.push(i);return{x:()=>sum2(dy,axes,!0)}}},castGradConfig={kernelName:Cast,gradFunc:dy=>({x:()=>dy.clone()})},ceilGradConfig={kernelName:Ceil,gradFunc:dy=>({x:()=>zerosLike(dy)})},clipByValueGradConfig={kernelName:ClipByValue,inputsToSave:["x"],gradFunc:(dy,saved,attrs)=>{let[x]=saved,{clipValueMin,clipValueMax}=attrs;return{x:()=>where(logicalAnd(greaterEqual(x,clipValueMin),lessEqual(x,clipValueMax)),dy,zerosLike(dy))}}},concatGradConfig={kernelName:Concat,saveAllInputs:!0,gradFunc:(dy,saved,attrs)=>{let shapes=saved.map(t=>t.shape),{axis}=attrs,$axis=parseAxisParam(axis,saved[0].shape)[0],sizeSplits=shapes.map(s=>s[$axis]),derTensors=split(dy,sizeSplits,$axis);return derTensors.map(t=>()=>t)}},conv2DGradConfig={kernelName:Conv2D,inputsToSave:["x","filter"],gradFunc:(dy,saved,attrs)=>{let[x4D,$filter]=saved,{dilations,strides,pad:pad11,dataFormat}=attrs;return assert(tupleValuesAreOne(dilations),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${dilations}'`),{x:()=>conv2DBackpropInput(x4D.shape,dy,$filter,strides,pad11,dataFormat),filter:()=>conv2DBackpropFilter(x4D,dy,$filter.shape,strides,pad11,dataFormat)}}},conv2DBackpropInputGradConfig={kernelName:Conv2DBackpropInput,inputsToSave:["dy","filter"],gradFunc:(ddx,saved,attrs)=>{let[dy,filter]=saved,{strides,pad:pad11,dataFormat,dimRoundingMode}=attrs;return{dy:()=>conv2d(ddx,filter,strides,pad11,dataFormat,1,dimRoundingMode),filter:()=>conv2DBackpropFilter(ddx,dy,filter.shape,strides,pad11,dataFormat,dimRoundingMode)}}};function conv3DBackpropFilter_(x,dy,filterShape,strides,pad11){let x5D=x;x.rank===4&&(x5D=reshape(x,[1,x.shape[0],x.shape[1],x.shape[2],x.shape[3]]));let dy5D=dy;dy5D.rank===4&&(dy5D=reshape(dy,[1,dy.shape[0],dy.shape[1],dy.shape[2],dy.shape[3]])),assert(x5D.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${x5D.shape}.`),assert(dy5D.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${dy5D.shape}.`),assert(filterShape.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${filterShape}.`),assert(x5D.shape[4]===filterShape[3],()=>`Error in conv3dDerFilter: depth of input ${x5D.shape[4]}) must match input depth in filter (${filterShape[3]}.`),assert(dy5D.shape[4]===filterShape[4],()=>`Error in conv3dDerFilter: depth of dy (${dy5D.shape[4]}) must match output depth for filter (${filterShape[4]}).`);let forward=backend3=>{let dilations=1,convInfo=computeConv3DInfo(x5D.shape,filterShape,strides,dilations,pad11);return backend3.conv3dDerFilter(x5D,dy5D,convInfo)},inputs={x:x5D,dy:dy5D},attrs={strides,pad:pad11,filterShape};return ENGINE.runKernelFunc(forward,inputs,null,Conv3DBackpropFilterV2,attrs)}var conv3DBackpropFilter=op({conv3DBackpropFilter_}),conv3DGradConfig={kernelName:Conv3D,inputsToSave:["x","filter"],gradFunc:(dy,saved,attrs)=>{let{dilations,strides,pad:pad11}=attrs;assert(tupleValuesAreOne(dilations),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${dilations}'`);let[x5D,$filter]=saved;return{x:()=>conv3DBackpropInput(x5D.shape,dy,$filter,strides,pad11),filter:()=>conv3DBackpropFilter(x5D,dy,$filter.shape,strides,pad11)}}},cosGradConfig={kernelName:Cos,inputsToSave:["x"],gradFunc:(dy,saved)=>{let[x]=saved;return{x:()=>mul(neg(sin(cast(x,"float32"))),dy)}}},coshGradConfig={kernelName:Cosh,inputsToSave:["x"],gradFunc:(dy,saved)=>{let[x]=saved;return{x:()=>mul(sinh(cast(x,"float32")),dy)}}},cumsumGradConfig={kernelName:Cumsum,inputsToSave:["x"],gradFunc:(dy,saved,attrs)=>{let[x]=saved,{axis,exclusive,reverse:reverse12}=attrs;return{x:()=>{let permutation=getAxesPermutation([axis],x.rank),out=cumsum(dy,axis,exclusive,!reverse12);return permutation!=null&&(out=transpose(out,permutation)),out}}}},depthwiseConv2dNativeGradConfig={kernelName:DepthwiseConv2dNative,inputsToSave:["x","filter"],gradFunc:(dy,saved,attrs)=>{let{dilations,strides,pad:pad11,dimRoundingMode}=attrs,$dilations=dilations==null?[1,1]:dilations;assert(tupleValuesAreOne($dilations),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${$dilations}'`);let[x,filter]=saved;return assert(x.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${x.rank}.`),assert(filter.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${filter.rank}.`),assert(x.shape[3]===filter.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${x.shape[3]}) must match the inChannels dimension in filter ${filter.shape[2]}.`),assert(eitherStridesOrDilationsAreOne(strides,$dilations),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${strides} and dilations '${$dilations}'.`),dimRoundingMode!=null&&assert(isInt(pad11),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${dimRoundingMode} but got pad ${pad11}.`),{x:()=>depthwiseConv2dNativeBackpropInput(x.shape,dy,filter,strides,pad11,dilations,dimRoundingMode),filter:()=>depthwiseConv2dNativeBackpropFilter(x,dy,filter.shape,strides,pad11,dilations,dimRoundingMode)}}},dilation2dGradConfig={kernelName:Dilation2D,inputsToSave:["x","filter"],gradFunc:(dy,saved,attrs)=>{let[x,filter]=saved,inputInputs={x,filter,dy},filterInputs={x,filter,dy};return{x:()=>ENGINE.runKernel(Dilation2DBackpropInput,inputInputs,attrs),filter:()=>ENGINE.runKernel(Dilation2DBackpropFilter,filterInputs,attrs)}}},divGradConfig={kernelName:Div,inputsToSave:["a","b"],gradFunc:(dy,saved)=>{let[a,b]=saved,outShape=assertAndGetBroadcastShape(a.shape,b.shape),derA=()=>{let res=div(dy,cast(b,"float32")),reduceAxes=getReductionAxes(a.shape,outShape);return reduceAxes.length>0?reshape(sum2(res,reduceAxes),a.shape):res},derB=()=>{let res=mul(dy,cast(a,"float32")),reduceAxes=getReductionAxes(b.shape,outShape);reduceAxes.length>0&&(res=reshape(sum2(res,reduceAxes),b.shape));let tmp=square(b);return neg(div(res,cast(tmp,"float32")))};return{a:derA,b:derB}}},eluGradConfig={kernelName:Elu,outputsToSave:[!0],gradFunc:(dy,saved)=>{let[y]=saved,backPropKernelFunc=backend3=>backend3.eluDer(dy,y),inputs={dy,y};return{x:()=>ENGINE.runKernelFunc(backPropKernelFunc,inputs,null,EluGrad)}}},erfGradConfig={kernelName:Erf,inputsToSave:["x"],gradFunc:(dy,saved)=>{let[x]=saved,a=mul(exp(neg(square(x))),2/Math.sqrt(Math.PI));return{x:()=>mul(dy,a)}}},expGradConfig={kernelName:Exp,outputsToSave:[!0],gradFunc:(dy,saved)=>{let[y]=saved;return{x:()=>mul(dy,y)}}},expm1GradConfig={kernelName:Expm1,inputsToSave:["x"],gradFunc:(dy,saved)=>{let[x]=saved;return{x:()=>mul(dy,exp(x))}}},floorGradConfig={kernelName:Floor,gradFunc:dy=>({x:()=>zerosLike(dy)})},floorDivGradConfig={kernelName:FloorDiv,inputsToSave:["a","b"],gradFunc:(dy,saved)=>{let[a,b]=saved,outShape=assertAndGetBroadcastShape(a.shape,b.shape),derA=()=>{let res=div(dy,cast(b,"float32")),reduceAxes=getReductionAxes(a.shape,outShape);return reduceAxes.length>0?reshape(sum2(res,reduceAxes),a.shape):res},derB=()=>{let res=mul(dy,cast(a,"float32")),reduceAxes=getReductionAxes(b.shape,outShape);reduceAxes.length>0&&(res=reshape(sum2(res,reduceAxes),b.shape));let tmp=square(b);return neg(div(res,cast(tmp,"float32")))};return{a:derA,b:derB}}},fusedBatchNormGradConfig={kernelName:FusedBatchNorm,inputsToSave:["x","mean","variance","scale"],gradFunc:(dy,saved,attrs)=>{let{varianceEpsilon}=attrs,[x,mean7,variance,scale2]=saved,scaleValue=scale2==null?scalar(1):scale2,reductionAxes=getReductionAxes(mean7.shape,x.shape),tileShape=[];if(mean7.rank===1){for(let i=0;imean7.rank===1?reshape(mul(mul(dy,tile(reshape(oneOverSqrtVariance,[1,1,1,mean7.shape[0]]),tileShape)),scaleValue),x.shape):reshape(mul(mul(dy,oneOverSqrtVariance),scaleValue),x.shape),derMean=()=>{let meanDer=mul(mul(oneOverSqrtVariance,scalar(-1)),dyTimesScaleValue);return mean7.rank===1&&(meanDer=sum2(meanDer,reductionAxes)),reshape(meanDer,mean7.shape)},derVariance=()=>{let varianceDer=mul(mul(minusHalfRCube,xMinusMean),dyTimesScaleValue);return mean7.rank===1&&(varianceDer=sum2(varianceDer,reductionAxes)),reshape(varianceDer,mean7.shape)},derScale=()=>{let xMinusMean2TimesRsqrt=mul(xMinusMean,oneOverSqrtVariance),scaleDer=mul(dy,xMinusMean2TimesRsqrt);return mean7.rank===1&&(scaleDer=sum2(scaleDer,reductionAxes)),reshape(scaleDer,mean7.shape)},derOffset=()=>{let offsetDer=dy;return mean7.rank===1&&(offsetDer=sum2(offsetDer,reductionAxes)),reshape(offsetDer,mean7.shape)};return{x:derX,mean:derMean,variance:derVariance,scale:derScale,offset:derOffset}}},gatherGradConfig={kernelName:GatherV2,inputsToSave:["x","indices"],gradFunc:(dy,saved,attrs)=>{let[x,indices]=saved,{axis}=attrs,parsedAxis=parseAxisParam(axis,x.shape)[0],derX=()=>{let paramsShape=x.shape,indicesSize=indices.size,outerShape=paramsShape.slice(0,parsedAxis),outerDims=outerShape.length,innerShape=paramsShape.slice(axis,paramsShape.length).slice(1),innerDims=innerShape.length,outerAxesIndices=arrayRange(0,outerDims),innerAxesIndices=arrayRange(outerDims+1,outerDims+1+innerDims),valuesShape=arrayConcat([outerShape,[indicesSize],innerShape]),values=reshape(dy,valuesShape),reshapedIndices=reshape(indices,[indicesSize]),transposeDims=arrayConcat([[outerDims],outerAxesIndices,innerAxesIndices]),valuesTranspose=transpose(values,transposeDims),paramsGrad=unsortedSegmentSum(valuesTranspose,reshapedIndices,x.shape[parsedAxis]),invertTransposeDims=getUndoAxesPermutation(transposeDims);return paramsGrad=transpose(paramsGrad,invertTransposeDims),paramsGrad};return{x:derX,indices:()=>indices}}};function arrayRange(start,stop){let result=[];for(let i=start;i{let[a,b]=saved;return{a:()=>zerosLike(a),b:()=>zerosLike(b)}}},identityGradConfig={kernelName:Identity,gradFunc:dy=>({x:()=>cast(dy,"float32")})},isFiniteGradConfig={kernelName:IsFinite,gradFunc:dy=>({x:()=>zerosLike(dy)})},isInfGradConfig={kernelName:IsInf,gradFunc:dy=>({x:()=>zerosLike(dy)})},isNanGradConfig={kernelName:IsNan,gradFunc:dy=>({x:()=>zerosLike(dy)})},log1pGradConfig={kernelName:Log1p,inputsToSave:["x"],gradFunc:(dy,saved)=>{let[x]=saved;return{x:()=>div(dy,add2(x,1))}}},logGradConfig={kernelName:Log,inputsToSave:["x"],gradFunc:(dy,saved)=>{let[x]=saved;return{x:()=>div(dy,cast(x,"float32"))}}},logSoftmaxGradConfig={kernelName:LogSoftmax,inputsToSave:[],outputsToSave:[!0],gradFunc:(dy,saved,attrs)=>{let[value]=saved,{axis}=attrs;return{logits:()=>{let keepDims=!0,softmax6=exp(value);return sub(dy,mul(sum2(dy,axis,keepDims),softmax6))}}}};function localResponseNormalizationBackprop_(x,y,dy,depthRadius=5,bias=1,alpha=1,beta=.5){let forward=backend3=>backend3.LRNGrad(dy,x,y,depthRadius,bias,alpha,beta),inputs={x,y,dy},attrs={depthRadius,bias,alpha,beta};return ENGINE.runKernelFunc(forward,inputs,null,LRNBackprop,attrs)}var localResponseNormalizationBackprop=op({localResponseNormalizationBackprop_}),lrnGradConfig={kernelName:LRN,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(dy,saved,attrs)=>{let[x,y]=saved,{depthRadius,bias,alpha,beta}=attrs;return{x:()=>localResponseNormalizationBackprop(x,y,dy,depthRadius,bias,alpha,beta)}}};function gradForMinAndMax(dy,y,xOrig,origAxes){return y.rank{let dx=mul(dy,cast(equal(xOrig,y),dy.dtype));return dx}}}var maxGradConfig={kernelName:Max,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(dy,saved,attrs)=>{let maxAttrs=attrs,{reductionIndices}=maxAttrs,x=saved[0],y=saved[1],origAxes=parseAxisParam(reductionIndices,x.shape),maxGrad=gradForMinAndMax(dy,y,x,origAxes);return{x:()=>maxGrad.x()}}},maximumGradConfig={kernelName:Maximum,inputsToSave:["a","b"],gradFunc:(dy,saved)=>{let[a,b]=saved,derA=()=>mul(dy,cast(greaterEqual(a,b),"float32")),derB=()=>mul(dy,cast(less(a,b),"float32"));return{a:derA,b:derB}}};function maxPool3dBackprop_(dy,input2,output,filterSize,strides,dilations=[1,1,1],pad11,dimRoundingMode){let $dy=convertToTensor(dy,"dy","maxPool3dBackprop"),$input=convertToTensor(input2,"input","maxPool3dBackprop"),$output=convertToTensor(output,"output","maxPool3dBackprop"),dy5D=$dy,input5D=$input,output5D=$output,reshapedTo5D=!1;$input.rank===4&&(reshapedTo5D=!0,dy5D=reshape($dy,[1,$dy.shape[0],$dy.shape[1],$dy.shape[2],$dy.shape[3]]),input5D=reshape($input,[1,$input.shape[0],$input.shape[1],$input.shape[2],$input.shape[3]]),output5D=reshape($output,[1,$output.shape[0],$output.shape[1],$output.shape[2],$output.shape[3]])),assert(dy5D.rank===5,()=>`Error in maxPool3dBackprop: dy must be rank 5 but got rank ${dy5D.rank}.`),assert(input5D.rank===5,()=>`Error in maxPool3dBackprop: input must be rank 5 but got rank ${input5D.rank}.`),assert(output5D.rank===5,()=>`Error in maxPool3dBackprop: output must be rank 5 but got rank ${output5D.rank}.`),assert(eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in maxPool3dBackprop: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`),dimRoundingMode!=null&&assert(isInt(pad11),()=>`Error in maxPool3dBackprop: pad must be an integer when using, dimRoundingMode ${dimRoundingMode} but got pad ${pad11}.`);let forward=backend3=>{let convInfo=computePool3DInfo(input5D.shape,filterSize,strides,dilations,pad11,dimRoundingMode);return backend3.maxPool3dBackprop(dy5D,input5D,output5D,convInfo)},inputs={dy:dy5D,input:input5D,output:output5D},attrs={filterSize,strides,dilations,pad:pad11,dimRoundingMode},res=ENGINE.runKernelFunc(forward,inputs,null,MaxPool3DBackprop,attrs);return reshapedTo5D?reshape(res,[res.shape[1],res.shape[2],res.shape[3],res.shape[4]]):res}var maxPool3dBackprop=op({maxPool3dBackprop_}),maxPool3DGradConfig={kernelName:MaxPool3D,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(dy,saved,attrs)=>{let[x,y]=saved,{filterSize,strides,dilations,pad:pad11,dimRoundingMode}=attrs,$dilations=dilations==null?[1,1,1]:dilations;return{x:()=>maxPool3dBackprop(dy,x,y,filterSize,strides,$dilations,pad11,dimRoundingMode)}}};function maxPoolBackprop_(dy,input2,output,filterSize,strides,pad11,dimRoundingMode){let $dy=convertToTensor(dy,"dy","maxPoolBackprop"),$input=convertToTensor(input2,"input","maxPoolBackprop"),$output=convertToTensor(output,"output","maxPoolBackprop");assert($input.rank===$dy.rank,()=>`Rank of input (${$input.rank}) does not match rank of dy (${$dy.rank})`),assert($dy.rank===4,()=>`Error in maxPoolBackprop: dy must be rank 4 but got rank ${$dy.rank}.`),assert($input.rank===4,()=>`Error in maxPoolBackprop: input must be rank 4 but got rank ${$input.rank}.`),dimRoundingMode!=null&&assert(isInt(pad11),()=>`Error in maxPoolBackprop: pad must be an integer when using, dimRoundingMode ${dimRoundingMode} but got pad ${pad11}.`);let forward=backend3=>{let convInfo=computePool2DInfo($input.shape,filterSize,strides,1,pad11,dimRoundingMode);return backend3.maxPoolBackprop($dy,$input,$output,convInfo)},inputs={dy:$dy,input:$input,output:$output},attrs={filterSize,strides,pad:pad11,dimRoundingMode};return ENGINE.runKernelFunc(forward,inputs,null,MaxPoolBackprop,attrs)}var maxPoolBackprop=op({maxPoolBackprop_}),maxPoolGradConfig={kernelName:MaxPool,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(dy,saved,attrs)=>{let[x,y]=saved,{filterSize,strides,pad:pad11}=attrs;return{x:()=>maxPoolBackprop(dy,x,y,filterSize,strides,pad11)}}},minGradConfig={kernelName:Min,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(dy,saved,attrs)=>{let minAttrs=attrs,{axis}=minAttrs,[x,y]=saved,origAxes=parseAxisParam(axis,x.shape),minGrad=gradForMinAndMax(dy,y,x,origAxes);return{x:()=>minGrad.x()}}},minimumGradConfig={kernelName:Minimum,inputsToSave:["a","b"],gradFunc:(dy,saved)=>{let[a,b]=saved,derA=()=>mul(dy,cast(lessEqual(a,b),"float32")),derB=()=>mul(dy,cast(greater(a,b),"float32"));return{a:derA,b:derB}}},mirrorPadGradConfig={kernelName:MirrorPad,inputsToSave:["x"],gradFunc:(dy,saved,attrs)=>{let x=saved[0],{paddings}=attrs,begin=paddings.map(p2=>p2[0]);return{x:()=>slice(dy,begin,x.shape)}}},modGradConfig={kernelName:Mod,inputsToSave:["a","b"],gradFunc:(dy,saved)=>{let[a,b]=saved,outShape=assertAndGetBroadcastShape(a.shape,b.shape),derA=()=>{let reduceAxes=getReductionAxes(a.shape,outShape);return reduceAxes.length>0?reshape(sum2(dy,reduceAxes),a.shape):dy},derB=()=>{let res=mul(dy,neg(floor(div(a,b)))),reduceAxes=getReductionAxes(b.shape,outShape);return reduceAxes.length>0?reshape(sum2(res,reduceAxes),b.shape):res};return{a:derA,b:derB}}},multiplyGradConfig={kernelName:Multiply,inputsToSave:["a","b"],gradFunc:(dy,saved)=>{let[a,b]=saved,outShape=assertAndGetBroadcastShape(a.shape,b.shape),derA=()=>{let res=mul(dy,cast(b,"float32")),reduceAxes=getReductionAxes(a.shape,outShape);return reduceAxes.length>0?reshape(sum2(res,reduceAxes),a.shape):res},derB=()=>{let res=mul(dy,cast(a,"float32")),reduceAxes=getReductionAxes(b.shape,outShape);return reduceAxes.length>0?reshape(sum2(res,reduceAxes),b.shape):res};return{a:derA,b:derB}}},negateGradConfig={kernelName:Negate,gradFunc:dy=>({x:()=>neg(dy)})},oneHotGradConfig={kernelName:OneHot,inputsToSave:["indices"],gradFunc:(dy,saved)=>{let indices=saved[0];return{indices:()=>zeros(indices.shape,"float32")}}},onesLikeGradConfig={kernelName:OnesLike,gradFunc:dy=>({x:()=>zerosLike(dy)})},padV2GradConfig={kernelName:PadV2,inputsToSave:["x"],gradFunc:(dy,saved,attrs)=>{let x=saved[0],{paddings}=attrs,begin=paddings.map(p2=>p2[0]);return{x:()=>slice(dy,begin,x.shape)}}},powGradConfig={kernelName:Pow,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(dy,saved)=>{let[a,b,y]=saved,base2=a,exp13=b,outShape=assertAndGetBroadcastShape(base2.shape,exp13.shape),derBase=()=>{let expFloat=cast(exp13,"float32"),res=mul(dy,mul(expFloat,pow(base2,sub(expFloat,scalar(1))))),reduceAxes=getReductionAxes(base2.shape,outShape);return reduceAxes.length>0&&(res=sum2(res,reduceAxes)),reshape(res,base2.shape)},derExp=()=>{let condition=greater(base2,0),logBase=where(condition,log2(base2),zerosLike(base2)),res=mul(dy,mul(y,logBase)),reduceAxes=getReductionAxes(exp13.shape,outShape);return reduceAxes.length>0&&(res=sum2(res,reduceAxes)),reshape(res,exp13.shape)};return{a:derBase,b:derExp}}},preluGradConfig={kernelName:Prelu,inputsToSave:["x","alpha"],gradFunc:(dy,saved)=>{let[x,alpha]=saved,mask=greater(x,0);return{x:()=>where(mask,dy,mul(dy,alpha)),alpha:()=>{let res=where(mask,zerosLike(dy),mul(dy,x)),reduceAxes=getReductionAxes(alpha.shape,dy.shape);return reduceAxes.length>0&&(res=sum2(res,reduceAxes)),reshape(res,alpha.shape)}}}},reciprocalGradConfig={kernelName:Reciprocal,inputsToSave:["x"],gradFunc:(dy,saved)=>{let[x]=saved;return{x:()=>div(dy,neg(square(x)))}}},relu6GradConfig={kernelName:Relu6,inputsToSave:["x"],gradFunc:(dy,saved)=>{let[x]=saved,mask=mul(lessEqual(x,6),step(x));return{x:()=>mul(dy,cast(mask,"float32"))}}},reluGradConfig={kernelName:Relu,inputsToSave:["x"],gradFunc:(dy,saved)=>{let[x]=saved;return{x:()=>mul(dy,cast(step(x),"float32"))}}},reshapeGradConfig={kernelName:Reshape,inputsToSave:["x"],gradFunc:(dy,saved)=>{let[x]=saved;return{x:()=>reshape(dy,x.shape)}}},resizeBilinearGradConfig={kernelName:ResizeBilinear,inputsToSave:["images"],gradFunc:(dy,saved,attrs)=>{let[images]=saved,backPropKernelFunc=backend3=>{let{alignCorners}=attrs;return backend3.resizeBilinearBackprop(dy,images,alignCorners)},inputs={images},imagesDer=()=>ENGINE.runKernelFunc(backPropKernelFunc,inputs,null,ResizeBilinearGrad,attrs);return{images:imagesDer}}},resizeNearestNeighborGradConfig={kernelName:ResizeNearestNeighbor,inputsToSave:["images"],gradFunc:(dy,saved,attrs)=>{let[images]=saved,backPropKernelFunc=backend3=>{let{alignCorners}=attrs;return backend3.resizeNearestNeighborBackprop(dy,images,alignCorners)},inputs={images},imagesDer=()=>ENGINE.runKernelFunc(backPropKernelFunc,inputs,null,ResizeNearestNeighborGrad,attrs);return{images:imagesDer}}},reverseGradConfig={kernelName:Reverse,gradFunc:(dy,saved,attrs)=>{let{dims}=attrs,axes=parseAxisParam(dims,dy.shape);return{x:()=>reverse(dy,axes)}}},roundGradConfig={kernelName:Round,gradFunc:dy=>({x:()=>zerosLike(dy)})},rsqrtGradConfig={kernelName:Rsqrt,inputsToSave:["x"],gradFunc:(dy,saved)=>{let[x]=saved;return{x:()=>neg(div(dy,mul(pow(x,1.5),2)))}}},selectV2PoolGradConfig={kernelName:SelectV2,inputsToSave:["condition"],gradFunc:(dy,saved)=>{let[condition]=saved;return{condition:()=>cast(zerosLike(condition),"float32"),t:()=>mul(dy,cast(condition,dy.dtype)),e:()=>mul(dy,cast(logicalNot(condition),dy.dtype))}}},seluGradConfig={kernelName:Selu,inputsToSave:["x"],gradFunc:(dy,saved)=>{let[x]=saved;return{x:()=>{let mask=greater(x,scalar(0)),scaleAlpha2=scalar(SELU_SCALEALPHA),scale2=scalar(SELU_SCALE),greaterThanZeroDer=mul(dy,scale2),lessEqualZeroDer=mul(mul(dy,scaleAlpha2),exp(cast(x,"float32")));return where(mask,greaterThanZeroDer,lessEqualZeroDer)}}}},sigmoidGradConfig={kernelName:Sigmoid,outputsToSave:[!0],gradFunc:(dy,saved)=>{let[y]=saved;return{x:()=>mul(dy,mul(y,sub(scalar(1),y)))}}},signGradConfig={kernelName:Sign,gradFunc:dy=>({x:()=>zerosLike(dy)})},sinGradConfig={kernelName:Sin,inputsToSave:["x"],gradFunc:(dy,saved)=>{let[x]=saved;return{x:()=>mul(cos(cast(x,"float32")),dy)}}},sinhGradConfig={kernelName:Sinh,inputsToSave:["x"],gradFunc:(dy,saved)=>{let[x]=saved;return{x:()=>mul(cosh(cast(x,"float32")),dy)}}},sliceGradConfig={kernelName:Slice,inputsToSave:["x"],gradFunc:(dy,saved,attrs)=>{let[x]=saved,{begin,size}=attrs,inputShape=x.shape,[begin_,size_]=parseSliceParams(x,begin,size),paddings=[];for(let i=0;ipad(dy,paddings)}}},softmaxGradConfig={kernelName:Softmax,outputsToSave:[!0],gradFunc:(dy,saved,attrs)=>{let[y]=saved,{dim}=attrs,keepDims=!0,dyTimesY=mul(dy,y);return{logits:()=>sub(dyTimesY,mul(sum2(dyTimesY,[dim],keepDims),y))}}},softplusGradConfig={kernelName:Softplus,inputsToSave:["x"],gradFunc:(dy,saved)=>{let[x]=saved;return{x:()=>mul(dy,sigmoid(x))}}},spaceToBatchNDGradConfig={kernelName:SpaceToBatchND,gradFunc:(dy,saved,attrs)=>{let{blockShape,paddings}=attrs;return{x:()=>batchToSpaceND(dy,blockShape,paddings)}}},splitVGradConfig={kernelName:SplitV,gradFunc:(dy,saved,attrs)=>{let{axis}=attrs;return{x:()=>concat(dy,axis)}}},sqrtGradConfig={kernelName:Sqrt,inputsToSave:["x"],gradFunc:(dy,saved)=>{let[x]=saved;return{x:()=>div(dy,mul(sqrt(cast(x,"float32")),2))}}},squareGradConfig={kernelName:Square,inputsToSave:["x"],gradFunc:(dy,saved)=>{let[x]=saved;return{x:()=>mul(dy,mul(cast(x,"float32"),2))}}},squaredDifferenceGradConfig={kernelName:SquaredDifference,inputsToSave:["a","b"],gradFunc:(dy,saved)=>{let[a,b]=saved,two=scalar(2),derA=()=>mul(dy,mul(two,sub(a,b))),derB=()=>mul(dy,mul(two,sub(b,a)));return{a:derA,b:derB}}},stepGradConfig={kernelName:Step,gradFunc:dy=>({x:()=>zerosLike(dy)})},subGradConfig={kernelName:Sub,inputsToSave:["a","b"],gradFunc:(dy,saved)=>{let[a,b]=saved,outShape=assertAndGetBroadcastShape(a.shape,b.shape),derA=()=>{let res=dy,reduceAxes=getReductionAxes(a.shape,outShape);return reduceAxes.length>0&&(res=sum2(res,reduceAxes)),reshape(res,a.shape)},derB=()=>{let res=dy,reduceAxes=getReductionAxes(b.shape,outShape);return reduceAxes.length>0&&(res=sum2(res,reduceAxes)),reshape(neg(res),b.shape)};return{a:derA,b:derB}}},sumGradConfig={kernelName:Sum,inputsToSave:["x"],gradFunc:(dy,saved,attrs)=>{let[x]=saved,expandedDyShape=x.shape.slice(),{axis}=attrs,axes=parseAxisParam(axis,x.shape);axes.forEach(axis2=>{expandedDyShape[axis2]=1});let expandedDy=reshape(dy,expandedDyShape),derX=mul(expandedDy,ones2(x.shape,"float32"));return{x:()=>derX}}},tanGradConfig={kernelName:Tan,inputsToSave:["x"],gradFunc:(dy,saved)=>{let[x]=saved;return{x:()=>div(dy,square(cos(x)))}}},tanhGradConfig={kernelName:Tanh,outputsToSave:[!0],gradFunc:(dy,saved)=>{let[y]=saved;return{x:()=>mul(sub(scalar(1),square(y)),dy)}}},tileGradConfig={kernelName:Tile,inputsToSave:["x"],gradFunc:(dy,saved,attrs)=>{let[x]=saved,{reps}=attrs,derX=()=>{let xGrad=zerosLike(x);if(x.rank===1)for(let i=0;i{let transposeAttrs=attrs,{perm}=transposeAttrs,undoPerm=getUndoAxesPermutation(perm);return{x:()=>transpose(dy,undoPerm)}}},unpackGradConfig={kernelName:Unpack,gradFunc:(dy,saved,attrs)=>{let unpackAttrs=attrs,{axis}=unpackAttrs;return{value:()=>stack(dy,axis)}}},unsortedSegmentSumGradConfig={kernelName:UnsortedSegmentSum,inputsToSave:["segmentIds"],gradFunc:(dy,saved)=>{let[segmentIds]=saved,derX=()=>gatherDropNegatives(dy,segmentIds);return{x:derX}}};function gatherDropNegatives(x,indices){let zeroClippedIndices=maximum(indices,zerosLike(indices)),gathered=gather(x,zeroClippedIndices),isPositive=greaterEqual(indices,scalar(0,"int32")),numIters=gathered.rank-isPositive.rank;for(let i=0;i({x:()=>zerosLike(dy)})},gradConfigs=[absGradConfig,acosGradConfig,acoshGradConfig,addGradConfig,addNGradConfig,argMaxGradConfig,argMinGradConfig,asinGradConfig,asinhGradConfig,atan2GradConfig,atanGradConfig,atanhGradConfig,avgPool3DGradConfig,avgPoolGradConfig,batchMatMulGradConfig,batchToSpaceNDGradConfig,broadcastToGradConfig,castGradConfig,ceilGradConfig,clipByValueGradConfig,concatGradConfig,conv2DBackpropInputGradConfig,conv2DGradConfig,conv3DGradConfig,cosGradConfig,coshGradConfig,cumsumGradConfig,depthwiseConv2dNativeGradConfig,dilation2dGradConfig,divGradConfig,eluGradConfig,erfGradConfig,expGradConfig,expm1GradConfig,floorDivGradConfig,floorGradConfig,fusedBatchNormGradConfig,gatherGradConfig,greaterEqualGradConfig,identityGradConfig,isFiniteGradConfig,isInfGradConfig,isNanGradConfig,log1pGradConfig,logGradConfig,logSoftmaxGradConfig,lrnGradConfig,maxGradConfig,maxGradConfig,maximumGradConfig,maxPool3DGradConfig,maxPoolGradConfig,minGradConfig,minimumGradConfig,mirrorPadGradConfig,modGradConfig,multiplyGradConfig,negateGradConfig,oneHotGradConfig,onesLikeGradConfig,padV2GradConfig,padV2GradConfig,powGradConfig,preluGradConfig,reciprocalGradConfig,relu6GradConfig,reluGradConfig,reshapeGradConfig,resizeBilinearGradConfig,resizeNearestNeighborGradConfig,reverseGradConfig,roundGradConfig,rsqrtGradConfig,selectV2PoolGradConfig,seluGradConfig,sigmoidGradConfig,signGradConfig,sinGradConfig,sinhGradConfig,sliceGradConfig,softmaxGradConfig,softplusGradConfig,spaceToBatchNDGradConfig,spaceToBatchNDGradConfig,splitVGradConfig,splitVGradConfig,sqrtGradConfig,squaredDifferenceGradConfig,squareGradConfig,stepGradConfig,subGradConfig,sumGradConfig,tanGradConfig,tanhGradConfig,tileGradConfig,transposeGradConfig,unpackGradConfig,unsortedSegmentSumGradConfig,zerosLikeGradConfig];for(let gradientConfig of gradConfigs)registerGradient(gradientConfig);Tensor.prototype.abs=function(){return this.throwIfDisposed(),abs(this)};Tensor.prototype.acos=function(){return this.throwIfDisposed(),acos(this)};Tensor.prototype.acosh=function(){return this.throwIfDisposed(),acosh(this)};Tensor.prototype.addStrict=function(x){return this.throwIfDisposed(),addStrict(this,x)};Tensor.prototype.add=function(b){return this.throwIfDisposed(),add2(this,b)};Tensor.prototype.all=function(axis,keepDims){return this.throwIfDisposed(),all(this,axis,keepDims)};Tensor.prototype.any=function(axis,keepDims){return this.throwIfDisposed(),any(this,axis,keepDims)};Tensor.prototype.argMax=function(axis){return this.throwIfDisposed(),argMax(this,axis)};Tensor.prototype.argMin=function(axis){return this.throwIfDisposed(),argMin(this,axis)};Tensor.prototype.asScalar=function(){return this.throwIfDisposed(),assert(this.size===1,()=>"The array must have only 1 element."),reshape(this,[])};Tensor.prototype.asType=function(dtype){return this.throwIfDisposed(),cast(this,dtype)};Tensor.prototype.as1D=function(){return this.throwIfDisposed(),reshape(this,[this.size])};Tensor.prototype.as2D=function(rows,columns){return this.throwIfDisposed(),reshape(this,[rows,columns])};Tensor.prototype.as3D=function(rows,columns,depth){return this.throwIfDisposed(),reshape(this,[rows,columns,depth])};Tensor.prototype.as4D=function(rows,columns,depth,depth2){return this.throwIfDisposed(),reshape(this,[rows,columns,depth,depth2])};Tensor.prototype.as5D=function(rows,columns,depth,depth2,depth3){return this.throwIfDisposed(),reshape(this,[rows,columns,depth,depth2,depth3])};Tensor.prototype.asin=function(){return this.throwIfDisposed(),asin(this)};Tensor.prototype.asinh=function(){return this.throwIfDisposed(),asinh(this)};Tensor.prototype.atan=function(){return this.throwIfDisposed(),atan(this)};Tensor.prototype.atan2=function(b){return this.throwIfDisposed(),atan2(this,b)};Tensor.prototype.atanh=function(){return this.throwIfDisposed(),atanh(this)};Tensor.prototype.avgPool=function(filterSize,strides,pad11,dimRoundingMode){return this.throwIfDisposed(),avgPool(this,filterSize,strides,pad11,dimRoundingMode)};Tensor.prototype.batchToSpaceND=function(blockShape,crops){return this.throwIfDisposed(),batchToSpaceND(this,blockShape,crops)};Tensor.prototype.batchNorm=function(mean7,variance,offset,scale2,varianceEpsilon){return this.throwIfDisposed(),batchNorm(this,mean7,variance,offset,scale2,varianceEpsilon)};Tensor.prototype.broadcastTo=function(shape){return this.throwIfDisposed(),broadcastTo(this,shape)};Tensor.prototype.cast=function(dtype){return this.throwIfDisposed(),cast(this,dtype)};Tensor.prototype.ceil=function(){return this.throwIfDisposed(),ceil(this)};Tensor.prototype.clipByValue=function(min8,max10){return this.throwIfDisposed(),clipByValue(this,min8,max10)};Tensor.prototype.concat=function(x,axis){return this.throwIfDisposed(),x instanceof Tensor&&(x=[x]),concat([this,...x],axis)};Tensor.prototype.conv1d=function(filter,stride,pad11,dataFormat,dilation,dimRoundingMode){return this.throwIfDisposed(),conv1d(this,filter,stride,pad11,dataFormat,dilation,dimRoundingMode)};Tensor.prototype.conv2dTranspose=function(filter,outputShape,strides,pad11,dimRoundingMode){return this.throwIfDisposed(),conv2dTranspose(this,filter,outputShape,strides,pad11,dimRoundingMode)};Tensor.prototype.conv2d=function(filter,strides,pad11,dataFormat,dilations,dimRoundingMode){return this.throwIfDisposed(),conv2d(this,filter,strides,pad11,dataFormat,dilations,dimRoundingMode)};Tensor.prototype.cos=function(){return this.throwIfDisposed(),cos(this)};Tensor.prototype.cosh=function(){return this.throwIfDisposed(),cosh(this)};Tensor.prototype.cumsum=function(axis,exclusive,reverse12){return this.throwIfDisposed(),cumsum(this,axis,exclusive,reverse12)};Tensor.prototype.depthToSpace=function(blockSize,dataFormat){return this.throwIfDisposed(),depthToSpace(this,blockSize,dataFormat)};Tensor.prototype.depthwiseConv2D=function(filter,strides,pad11,dataFormat,dilations,dimRoundingMode){return deprecationWarn("depthwiseConv2D is deprecated, use depthwiseConv2d instead"),this.throwIfDisposed(),depthwiseConv2d(this,filter,strides,pad11,dataFormat,dilations,dimRoundingMode)};Tensor.prototype.depthwiseConv2d=function(filter,strides,pad11,dataFormat,dilations,dimRoundingMode){return this.throwIfDisposed(),depthwiseConv2d(this,filter,strides,pad11,dataFormat,dilations,dimRoundingMode)};Tensor.prototype.dilation2d=function(filter,strides,pad11,dilations,dataFormat){return this.throwIfDisposed(),dilation2d(this,filter,strides,pad11,dilations,dataFormat)};Tensor.prototype.divNoNan=function(b){return this.throwIfDisposed(),divNoNan(this,b)};Tensor.prototype.divStrict=function(x){return this.throwIfDisposed(),divStrict(this,x)};Tensor.prototype.div=function(b){return this.throwIfDisposed(),div(this,b)};Tensor.prototype.dot=function(b){return this.throwIfDisposed(),dot(this,b)};Tensor.prototype.elu=function(){return this.throwIfDisposed(),elu(this)};Tensor.prototype.equalStrict=function(x){return this.throwIfDisposed(),equalStrict(this,x)};Tensor.prototype.equal=function(b){return this.throwIfDisposed(),equal(this,b)};Tensor.prototype.erf=function(){return this.throwIfDisposed(),erf(this)};Tensor.prototype.exp=function(){return this.throwIfDisposed(),exp(this)};Tensor.prototype.expandDims=function(axis){return this.throwIfDisposed(),expandDims(this,axis)};Tensor.prototype.expm1=function(){return this.throwIfDisposed(),expm1(this)};Tensor.prototype.fft=function(){return this.throwIfDisposed(),fft(this)};Tensor.prototype.flatten=function(){return this.throwIfDisposed(),reshape(this,[this.size])};Tensor.prototype.floor=function(){return this.throwIfDisposed(),floor(this)};Tensor.prototype.floorDiv=function(b){return this.throwIfDisposed(),floorDiv(this,b)};Tensor.prototype.gather=function(indices,axis){return this.throwIfDisposed(),gather(this,indices,axis)};Tensor.prototype.greaterEqualStrict=function(x){return this.throwIfDisposed(),greaterEqualStrict(this,x)};Tensor.prototype.greaterEqual=function(b){return this.throwIfDisposed(),greaterEqual(this,b)};Tensor.prototype.greaterStrict=function(x){return this.throwIfDisposed(),greaterStrict(this,x)};Tensor.prototype.greater=function(b){return this.throwIfDisposed(),greater(this,b)};Tensor.prototype.ifft=function(){return this.throwIfDisposed(),ifft(this)};Tensor.prototype.irfft=function(){return this.throwIfDisposed(),irfft(this)};Tensor.prototype.isFinite=function(){return this.throwIfDisposed(),isFinite2(this)};Tensor.prototype.isInf=function(){return this.throwIfDisposed(),isInf(this)};Tensor.prototype.isNaN=function(){return this.throwIfDisposed(),isNaN2(this)};Tensor.prototype.leakyRelu=function(alpha){return this.throwIfDisposed(),leakyRelu(this,alpha)};Tensor.prototype.lessEqualStrict=function(x){return this.throwIfDisposed(),lessEqualStrict(this,x)};Tensor.prototype.lessEqual=function(b){return this.throwIfDisposed(),lessEqual(this,b)};Tensor.prototype.lessStrict=function(x){return this.throwIfDisposed(),lessStrict(this,x)};Tensor.prototype.less=function(b){return this.throwIfDisposed(),less(this,b)};Tensor.prototype.localResponseNormalization=function(depthRadius,bias,alpha,beta){return this.throwIfDisposed(),localResponseNormalization(this,depthRadius,bias,alpha,beta)};Tensor.prototype.logSigmoid=function(){return this.throwIfDisposed(),logSigmoid(this)};Tensor.prototype.logSoftmax=function(axis){return this.throwIfDisposed(),logSoftmax(this,axis)};Tensor.prototype.logSumExp=function(axis,keepDims){return this.throwIfDisposed(),logSumExp(this,axis,keepDims)};Tensor.prototype.log=function(){return this.throwIfDisposed(),log2(this)};Tensor.prototype.log1p=function(){return this.throwIfDisposed(),log1p(this)};Tensor.prototype.logicalAnd=function(b){return this.throwIfDisposed(),logicalAnd(this,b)};Tensor.prototype.logicalNot=function(){return this.throwIfDisposed(),logicalNot(this)};Tensor.prototype.logicalOr=function(b){return this.throwIfDisposed(),logicalOr(this,b)};Tensor.prototype.logicalXor=function(b){return this.throwIfDisposed(),logicalXor(this,b)};Tensor.prototype.matMul=function(b,transposeA,transposeB){return this.throwIfDisposed(),matMul(this,b,transposeA,transposeB)};Tensor.prototype.maxPool=function(filterSize,strides,pad11,dimRoundingMode){return this.throwIfDisposed(),maxPool(this,filterSize,strides,pad11,dimRoundingMode)};Tensor.prototype.max=function(axis,keepDims){return this.throwIfDisposed(),max(this,axis,keepDims)};Tensor.prototype.maximumStrict=function(x){return this.throwIfDisposed(),maximumStrict(this,x)};Tensor.prototype.maximum=function(b){return this.throwIfDisposed(),maximum(this,b)};Tensor.prototype.mean=function(axis,keepDims){return this.throwIfDisposed(),mean(this,axis,keepDims)};Tensor.prototype.min=function(axis,keepDims){return this.throwIfDisposed(),min(this,axis,keepDims)};Tensor.prototype.minimumStrict=function(x){return this.throwIfDisposed(),minimumStrict(this,x)};Tensor.prototype.minimum=function(b){return this.throwIfDisposed(),minimum(this,b)};Tensor.prototype.mirrorPad=function(paddings,mode){return this.throwIfDisposed(),mirrorPad(this,paddings,mode)};Tensor.prototype.modStrict=function(x){return this.throwIfDisposed(),modStrict(this,x)};Tensor.prototype.mod=function(b){return this.throwIfDisposed(),mod(this,b)};Tensor.prototype.mulStrict=function(x){return this.throwIfDisposed(),mulStrict(this,x)};Tensor.prototype.mul=function(b){return this.throwIfDisposed(),mul(this,b)};Tensor.prototype.neg=function(){return this.throwIfDisposed(),neg(this)};Tensor.prototype.norm=function(ord,axis,keepDims){return this.throwIfDisposed(),norm(this,ord,axis,keepDims)};Tensor.prototype.notEqualStrict=function(x){return this.throwIfDisposed(),notEqualStrict(this,x)};Tensor.prototype.notEqual=function(b){return this.throwIfDisposed(),notEqual(this,b)};Tensor.prototype.oneHot=function(depth,onValue=1,offValue=0){return this.throwIfDisposed(),oneHot(this,depth,onValue,offValue)};Tensor.prototype.onesLike=function(){return this.throwIfDisposed(),onesLike(this)};Tensor.prototype.pad=function(paddings,constantValue){return this.throwIfDisposed(),pad(this,paddings,constantValue)};Tensor.prototype.pool=function(windowShape,poolingType,padding2,dilationRate,strides){return this.throwIfDisposed(),pool(this,windowShape,poolingType,padding2,dilationRate,strides)};Tensor.prototype.powStrict=function(exp13){return this.throwIfDisposed(),powStrict(this,exp13)};Tensor.prototype.pow=function(exp13){return this.throwIfDisposed(),pow(this,exp13)};Tensor.prototype.prelu=function(alpha){return this.throwIfDisposed(),prelu(this,alpha)};Tensor.prototype.prod=function(axis,keepDims){return this.throwIfDisposed(),prod(this,axis,keepDims)};Tensor.prototype.reciprocal=function(){return this.throwIfDisposed(),reciprocal(this)};Tensor.prototype.relu=function(){return this.throwIfDisposed(),relu(this)};Tensor.prototype.relu6=function(){return this.throwIfDisposed(),relu6(this)};Tensor.prototype.reshapeAs=function(x){return this.throwIfDisposed(),reshape(this,x.shape)};Tensor.prototype.reshape=function(shape){return this.throwIfDisposed(),reshape(this,shape)};Tensor.prototype.resizeBilinear=function(newShape2D,alignCorners){return this.throwIfDisposed(),resizeBilinear(this,newShape2D,alignCorners)};Tensor.prototype.resizeNearestNeighbor=function(newShape2D,alignCorners){return this.throwIfDisposed(),resizeNearestNeighbor(this,newShape2D,alignCorners)};Tensor.prototype.reverse=function(axis){return this.throwIfDisposed(),reverse(this,axis)};Tensor.prototype.rfft=function(){return this.throwIfDisposed(),rfft(this)};Tensor.prototype.round=function(){return this.throwIfDisposed(),round(this)};Tensor.prototype.rsqrt=function(){return this.throwIfDisposed(),rsqrt(this)};Tensor.prototype.selu=function(){return this.throwIfDisposed(),selu(this)};Tensor.prototype.separableConv2d=function(depthwiseFilter,pointwiseFilter,strides,pad11,dilation,dataFormat){return this.throwIfDisposed(),separableConv2d(this,depthwiseFilter,pointwiseFilter,strides,pad11,dilation,dataFormat)};Tensor.prototype.sigmoid=function(){return this.throwIfDisposed(),sigmoid(this)};Tensor.prototype.sign=function(){return this.throwIfDisposed(),sign(this)};Tensor.prototype.sin=function(){return this.throwIfDisposed(),sin(this)};Tensor.prototype.sinh=function(){return this.throwIfDisposed(),sinh(this)};Tensor.prototype.slice=function(begin,size){return this.throwIfDisposed(),slice(this,begin,size)};Tensor.prototype.softmax=function(dim){return this.throwIfDisposed(),softmax(this,dim)};Tensor.prototype.softplus=function(){return this.throwIfDisposed(),softplus(this)};Tensor.prototype.spaceToBatchND=function(blockShape,paddings){return this.throwIfDisposed(),spaceToBatchND(this,blockShape,paddings)};Tensor.prototype.split=function(numOrSizeSplits,axis){return this.throwIfDisposed(),split(this,numOrSizeSplits,axis)};Tensor.prototype.sqrt=function(){return this.throwIfDisposed(),sqrt(this)};Tensor.prototype.square=function(){return this.throwIfDisposed(),square(this)};Tensor.prototype.squaredDifference=function(b){return this.throwIfDisposed(),squaredDifference(this,b)};Tensor.prototype.squaredDifferenceStrict=function(x){return this.throwIfDisposed(),squaredDifferenceStrict(this,x)};Tensor.prototype.squeeze=function(axis){return this.throwIfDisposed(),squeeze(this,axis)};Tensor.prototype.stack=function(x,axis){this.throwIfDisposed();let tensorsToBeStacked=x instanceof Tensor?[this,x]:[this,...x];return stack(tensorsToBeStacked,axis)};Tensor.prototype.step=function(alpha){return this.throwIfDisposed(),step(this,alpha)};Tensor.prototype.stridedSlice=function(begin,end,strides,beginMask,endMask,ellipsisMask,newAxisMask,shrinkAxisMask){return this.throwIfDisposed(),stridedSlice(this,begin,end,strides,beginMask,endMask,ellipsisMask,newAxisMask,shrinkAxisMask)};Tensor.prototype.subStrict=function(x){return this.throwIfDisposed(),subStrict(this,x)};Tensor.prototype.sub=function(b){return this.throwIfDisposed(),sub(this,b)};Tensor.prototype.sum=function(axis,keepDims){return this.throwIfDisposed(),sum2(this,axis,keepDims)};Tensor.prototype.tan=function(){return this.throwIfDisposed(),tan(this)};Tensor.prototype.tanh=function(){return this.throwIfDisposed(),tanh2(this)};Tensor.prototype.tile=function(reps){return this.throwIfDisposed(),tile(this,reps)};Tensor.prototype.toBool=function(){return this.throwIfDisposed(),cast(this,"bool")};Tensor.prototype.toFloat=function(){return this.throwIfDisposed(),cast(this,"float32")};Tensor.prototype.toInt=function(){return this.throwIfDisposed(),cast(this,"int32")};Tensor.prototype.topk=function(k,sorted){return this.throwIfDisposed(),topk(this,k,sorted)};Tensor.prototype.transpose=function(perm){return this.throwIfDisposed(),transpose(this,perm)};Tensor.prototype.unique=function(axis){return this.throwIfDisposed(),unique(this,axis)};Tensor.prototype.unsortedSegmentSum=function(segmentIds,numSegments){return this.throwIfDisposed(),unsortedSegmentSum(this,segmentIds,numSegments)};Tensor.prototype.unstack=function(axis){return this.throwIfDisposed(),unstack(this,axis)};Tensor.prototype.where=function(condition,x){return this.throwIfDisposed(),where(condition,this,x)};Tensor.prototype.zerosLike=function(){return this.throwIfDisposed(),zerosLike(this)};var exports_constraints_exports={};__export2(exports_constraints_exports,{maxNorm:()=>maxNorm,minMaxNorm:()=>minMaxNorm,nonNeg:()=>nonNeg,unitNorm:()=>unitNorm});var _epsilon;function epsilon(){return _epsilon==null&&(_epsilon=backend2().epsilon()),_epsilon}function imageDataFormat(){return"channelsLast"}var AttributeError=class extends Error{constructor(message){super(message);Object.setPrototypeOf(this,AttributeError.prototype)}},RuntimeError=class extends Error{constructor(message){super(message);Object.setPrototypeOf(this,RuntimeError.prototype)}},ValueError=class extends Error{constructor(message){super(message);Object.setPrototypeOf(this,ValueError.prototype)}},NotImplementedError=class extends Error{constructor(message){super(message);Object.setPrototypeOf(this,NotImplementedError.prototype)}},AssertionError=class extends Error{constructor(message){super(message);Object.setPrototypeOf(this,AssertionError.prototype)}},IndexError=class extends Error{constructor(message){super(message);Object.setPrototypeOf(this,IndexError.prototype)}};function pyListRepeat(value,numValues){if(Array.isArray(value)){let newArray=[];for(let i=0;ip1.toUpperCase())}var _GLOBAL_CUSTOM_OBJECTS={};function serializeKerasObject(instance){if(instance==null)return null;let dict={};return dict.className=instance.getClassName(),dict.config=instance.getConfig(),dict}function convertNDArrayScalarsInConfig(config){if(config==null||typeof config!="object")return;if(Array.isArray(config))config.forEach(configItem=>convertNDArrayScalarsInConfig(configItem));else{let fields=Object.keys(config);for(let field of fields){let value=config[field];value!=null&&typeof value=="object"&&(!Array.isArray(value)&&value.type==="ndarray"&&typeof value.value=="number"?config[field]=value.value:convertNDArrayScalarsInConfig(value))}}}function deserializeKerasObject(identifier,moduleObjects={},customObjects={},printableModuleName="object",fastWeightInit=!1){if(typeof identifier=="string"){let functionName=identifier,fn;if(functionName in customObjects)fn=customObjects[functionName];else if(functionName in _GLOBAL_CUSTOM_OBJECTS)fn=_GLOBAL_CUSTOM_OBJECTS[functionName];else if(fn=moduleObjects[functionName],fn==null)throw new ValueError(`Unknown ${printableModuleName}: ${identifier}. This may be due to one of the following reasons: 1. The ${printableModuleName} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. 2. The custom ${printableModuleName} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return fn}else{let config=identifier;if(config.className==null||config.config==null)throw new ValueError(`${printableModuleName}: Improper config format: ${JSON.stringify(config)}. 'className' and 'config' must set.`);let className=config.className,cls,fromConfig;if(className in customObjects?[cls,fromConfig]=customObjects[className]:className in _GLOBAL_CUSTOM_OBJECTS?[cls,fromConfig]=_GLOBAL_CUSTOM_OBJECTS.className:className in moduleObjects&&([cls,fromConfig]=moduleObjects[className]),cls==null)throw new ValueError(`Unknown ${printableModuleName}: ${className}. This may be due to one of the following reasons: 1. The ${printableModuleName} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. 2. The custom ${printableModuleName} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(fromConfig!=null){let customObjectsCombined={};for(let key of Object.keys(_GLOBAL_CUSTOM_OBJECTS))customObjectsCombined[key]=_GLOBAL_CUSTOM_OBJECTS[key];for(let key of Object.keys(customObjects))customObjectsCombined[key]=customObjects[key];let nestedConfig=config.config;nestedConfig.customObjects=customObjectsCombined;let backupCustomObjects=Object.assign({},_GLOBAL_CUSTOM_OBJECTS);for(let key of Object.keys(customObjects))_GLOBAL_CUSTOM_OBJECTS[key]=customObjects[key];convertNDArrayScalarsInConfig(config.config);let returnObj=fromConfig(cls,config.config,customObjects,fastWeightInit);return _GLOBAL_CUSTOM_OBJECTS=Object.assign({},backupCustomObjects),returnObj}else{let backupCustomObjects=Object.assign({},_GLOBAL_CUSTOM_OBJECTS);for(let key of Object.keys(customObjects))_GLOBAL_CUSTOM_OBJECTS[key]=customObjects[key];let returnObj=new cls(config.config);return _GLOBAL_CUSTOM_OBJECTS=Object.assign({},backupCustomObjects),returnObj}}}function numberCompare(a,b){return ab?1:0}function reverseNumberCompare(a,b){return-1*numberCompare(a,b)}function unique5(xs){if(xs==null)return xs;let out=[];for(let x of xs)out.indexOf(x)===-1&&out.push(x);return out}function isObjectEmpty(obj){if(obj==null)throw new ValueError(`Invalid value in obj: ${JSON.stringify(obj)}`);for(let key in obj)if(obj.hasOwnProperty(key))return!1;return!0}function checkStringTypeUnionValue(values,label,value){if(value==null)return;if(values.indexOf(value)<0)throw new ValueError(`${value} is not a valid ${label}. Valid values are ${values} or null/undefined.`)}function checkArrayTypeAndLength(x,expectedType,minLength=0,maxLength=Infinity){return assert2(minLength>=0),assert2(maxLength>=minLength),Array.isArray(x)&&x.length>=minLength&&x.length<=maxLength&&x.every(e=>typeof e===expectedType)}function assertPositiveInteger(value,name){Array.isArray(value)?(util_exports.assert(value.length>0,()=>`${name} is unexpectedly an empty array.`),value.forEach((v,i)=>assertPositiveInteger(v,`element ${i+1} of ${name}`))):util_exports.assert(Number.isInteger(value)&&value>0,()=>`Expected ${name} to be a positive integer, but got ${formatAsFriendlyString(value)}.`)}function formatAsFriendlyString(value){return value===null?"null":Array.isArray(value)?"["+value.map(v=>formatAsFriendlyString(v)).join(",")+"]":typeof value=="string"?`"${value}"`:`${value}`}function debounce(f,waitMs){let lastTime=util_exports.now(),lastResult,f2=(...args)=>{let now22=util_exports.now();return now22-lastTimesqrt(sum2(mul(w,w),axis,!0)))}var Constraint=class extends serialization_exports.Serializable{getConfig(){return{}}},MaxNorm=class extends Constraint{constructor(args){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=args.maxValue!=null?args.maxValue:this.defaultMaxValue,this.axis=args.axis!=null?args.axis:this.defaultAxis}apply(w){return tidy(()=>{let norms=calcL2Norms(w,this.axis),desired=clipByValue(norms,0,this.maxValue);return mul(w,div(desired,add2(epsilon(),norms)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};MaxNorm.className="MaxNorm";serialization_exports.registerClass(MaxNorm);var UnitNorm=class extends Constraint{constructor(args){super();this.defaultAxis=0,this.axis=args.axis!=null?args.axis:this.defaultAxis}apply(w){return tidy(()=>div(w,add2(epsilon(),calcL2Norms(w,this.axis))))}getConfig(){return{axis:this.axis}}};UnitNorm.className="UnitNorm";serialization_exports.registerClass(UnitNorm);var NonNeg=class extends Constraint{apply(w){return relu(w)}};NonNeg.className="NonNeg";serialization_exports.registerClass(NonNeg);var MinMaxNorm=class extends Constraint{constructor(args){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=args.minValue!=null?args.minValue:this.defaultMinValue,this.maxValue=args.maxValue!=null?args.maxValue:this.defaultMaxValue,this.rate=args.rate!=null?args.rate:this.defaultRate,this.axis=args.axis!=null?args.axis:this.defaultAxis}apply(w){return tidy(()=>{let norms=calcL2Norms(w,this.axis),desired=add2(mul(this.rate,clipByValue(norms,this.minValue,this.maxValue)),mul(1-this.rate,norms));return mul(w,div(desired,add2(epsilon(),norms)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};MinMaxNorm.className="MinMaxNorm";serialization_exports.registerClass(MinMaxNorm);var CONSTRAINT_IDENTIFIER_REGISTRY_SYMBOL_MAP={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function serializeConstraint(constraint){return serializeKerasObject(constraint)}function deserializeConstraint(config,customObjects={}){return deserializeKerasObject(config,serialization_exports.SerializationMap.getMap().classNameMap,customObjects,"constraint")}function getConstraint(identifier){if(identifier==null)return null;if(typeof identifier=="string"){let className=identifier in CONSTRAINT_IDENTIFIER_REGISTRY_SYMBOL_MAP?CONSTRAINT_IDENTIFIER_REGISTRY_SYMBOL_MAP[identifier]:identifier,config={className,config:{}};return deserializeConstraint(config)}else return identifier instanceof Constraint?identifier:deserializeConstraint(identifier)}function maxNorm(args){return new MaxNorm(args)}function unitNorm(args){return new UnitNorm(args)}function nonNeg(){return new NonNeg}function minMaxNorm(config){return new MinMaxNorm(config)}var exports_initializers_exports={};__export2(exports_initializers_exports,{constant:()=>constant,glorotNormal:()=>glorotNormal,glorotUniform:()=>glorotUniform,heNormal:()=>heNormal,heUniform:()=>heUniform,identity:()=>identity,leCunNormal:()=>leCunNormal,leCunUniform:()=>leCunUniform,ones:()=>ones8,orthogonal:()=>orthogonal,randomNormal:()=>randomNormal3,randomUniform:()=>randomUniform2,truncatedNormal:()=>truncatedNormal2,varianceScaling:()=>varianceScaling,zeros:()=>zeros9});var VALID_DATA_FORMAT_VALUES=["channelsFirst","channelsLast"],VALID_PADDING_MODE_VALUES=["valid","same","causal"],VALID_POOL_MODE_VALUES=["max","avg"],VALID_BIDIRECTIONAL_MERGE_MODES=["sum","mul","concat","ave"],nameMap=new Map;function checkDataFormat(value){checkStringTypeUnionValue(VALID_DATA_FORMAT_VALUES,"DataFormat",value)}function checkPaddingMode(value){checkStringTypeUnionValue(VALID_PADDING_MODE_VALUES,"PaddingMode",value)}function checkPoolMode(value){checkStringTypeUnionValue(VALID_POOL_MODE_VALUES,"PoolMode",value)}var _nameScopeStack=[],_nameScopeDivider="/";function nameScope(name,fn){_nameScopeStack.push(name);try{let val=fn();return _nameScopeStack.pop(),val}catch(e){throw _nameScopeStack.pop(),e}}function currentNameScopePrefix(){return _nameScopeStack.length===0?"":_nameScopeStack.join(_nameScopeDivider)+_nameScopeDivider}function getScopedTensorName(tensorName){if(!isValidTensorName(tensorName))throw new Error("Not a valid tensor name: '"+tensorName+"'");return currentNameScopePrefix()+tensorName}function getUniqueTensorName(scopedName){if(!isValidTensorName(scopedName))throw new Error("Not a valid tensor name: '"+scopedName+"'");nameMap.has(scopedName)||nameMap.set(scopedName,0);let index=nameMap.get(scopedName);if(nameMap.set(scopedName,nameMap.get(scopedName)+1),index>0){let result=`${scopedName}_${index}`;return nameMap.set(result,1),result}else return scopedName}var tensorNameRegex=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function isValidTensorName(name){return!!name.match(tensorNameRegex)}function isInteger(x){return x===parseInt(x.toString(),10)}function arrayProd(array2,begin,end){begin==null&&(begin=0),end==null&&(end=array2.length);let prod5=1;for(let i=begin;i{if(x.shape.length!==2)throw new ValueError(`repeat() expects a rank-2 tensor, but received a rank-${x.shape.length} tensor.`);let y=expandDims2(x,1);return tile8(y,[1,n,1])})}function flatten3(x){let newShape=[arrayProd(x.shape)];return x.reshape(newShape)}function batchFlatten(x){if(x.rank<=1)throw new ValueError(`batchFlatten requires a minimum rank of 2. Got rank: ${x.rank}.`);let newShape=[x.shape[0],arrayProd(x.shape,1)];return x.reshape(newShape)}function sliceAlongFirstAxis(array2,start,size){return tidy(()=>{switch(array2.rank){case 1:return slice1d(array2,start,size);case 2:return slice2d(array2,[start,0],[size,array2.shape[1]]);case 3:return slice3d(array2,[start,0,0],[size,array2.shape[1],array2.shape[2]]);case 4:return slice4d(array2,[start,0,0,0],[size,array2.shape[1],array2.shape[2],array2.shape[3]]);case 5:return slice(array2,[start,0,0,0,0],[size,array2.shape[1],array2.shape[2],array2.shape[3],array2.shape[4]]);case 6:return slice(array2,[start,0,0,0,0,0],[size,array2.shape[1],array2.shape[2],array2.shape[3],array2.shape[4],array2.shape[5]]);default:throw new ValueError(`sliceAlongFirstAxis() received an unsupported tensor rank: ${array2.rank}`)}})}function sliceAlongLastAxis(array2,start,size){return tidy(()=>{switch(array2.rank){case 1:return slice1d(array2,start,size);case 2:return slice2d(array2,[0,start],[array2.shape[0],size]);case 3:return slice3d(array2,[0,0,start],[array2.shape[0],array2.shape[1],size]);case 4:return slice4d(array2,[0,0,0,start],[array2.shape[0],array2.shape[1],array2.shape[2],size]);default:throw new ValueError(`sliceAlongLastAxis() received an unsupported tensor rank: ${array2.rank}`)}})}function sliceAlongAxis(array2,start,size,axis){return tidy(()=>{switch(array2.rank){case 1:return slice1d(array2,start,size);case 2:switch(axis){case 1:return sliceAlongFirstAxis(array2,start,size);case 2:return sliceAlongLastAxis(array2,start,size);default:throw new ValueError(`The axis is not within the rank of the tensor ${axis}`)}case 3:switch(axis){case 1:return sliceAlongFirstAxis(array2,start,size);case 2:return slice3d(array2,[0,start,0],[array2.shape[0],size,array2.shape[2]]);case 3:return sliceAlongLastAxis(array2,start,size);default:throw new ValueError(`The axis is not within the rank of the tensor ${axis}`)}case 4:switch(axis){case 1:return sliceAlongFirstAxis(array2,start,size);case 2:return slice4d(array2,[0,start,0,0],[array2.shape[0],size,array2.shape[2],array2.shape[3]]);case 3:return slice4d(array2,[0,0,start,0],[array2.shape[0],array2.shape[1],size,array2.shape[3]]);case 4:return sliceAlongLastAxis(array2,start,size);default:throw new ValueError(`The axis is not within the rank of the tensor ${axis}`)}default:throw new ValueError(`sliceAlongLastAxis() received an unsupported tensor rank: ${array2.rank}`)}})}function concatenate(tensors,axis=-1){let rank;return axis<0&&(rank=tensors[0].rank,rank!==0?axis=rank:axis=0),axis===tensors[0].rank&&(axis=-1),concat(tensors,axis)}function concatAlongFirstAxis(a,b){switch(a.rank){case 1:return concat1d([a,b]);case 2:return concat2d([a,b],0);case 3:return concat3d([a,b],0);case 4:return concat4d([a,b],0);default:throw new ValueError(`concatAlongFirstAxis() received an unsupported tensor rank: ${a.rank}`)}}function tile8(x,n){if(Array.isArray(n)||(n=[n]),x.rank!==n.length)throw new ValueError(`The length of input n (${n.length}) does not match the number of dimensions in input x (${x.rank})`);return tile(x,n)}function randomNormal2(shape,mean7=0,stddev=1,dtype,seed){return randomNormal(shape,mean7,stddev,dtype,seed)}function dot5(a,b,activation2,bias){if(a.rank<2||b.rank<2)throw new NotImplementedError(`dot requires both inputs to be rank >= 2 but got x shape = ${a.shape} and y shape = ${b.shape}`);if(b.rank>=3){let xLastDim=a.shape.slice(-1)[0],ySecondLastDim=b.shape.slice(-2)[0];if(xLastDim!==ySecondLastDim)throw new NotImplementedError(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${a.shape} and y shape = ${b.shape}`)}if(a.rank===2&&b.rank===2){let transposeA=!1,transposeB=!1;return fused_ops_exports.matMul({a,b,transposeA,transposeB,bias:bias?reshapeBias(a.rank,bias,imageDataFormat()):null,activation:activation2})}else{let aFirstDims=a.shape.slice(),aLastDim=aFirstDims.pop();a=a.reshape([-1,aLastDim]);let bShape=b.shape.slice(),bLastDim=bShape.pop(),ySecondLastDim=bShape.pop(),yOtherDims=[...bShape,bLastDim],perm=Array.from({length:b.rank},(_,i)=>i===0?b.rank-2:i<=b.rank-2?i-1:i);b=b.transpose(perm).reshape([ySecondLastDim,-1]);let outputShape=[...aFirstDims,...yOtherDims],transposeA=!1,transposeB=!1;return fused_ops_exports.matMul({a,b,transposeA,transposeB,bias:bias?reshapeBias(a.rank,bias,imageDataFormat()):null,activation:activation2}).reshape(outputShape)}}function gather7(reference,indices,axis){return tidy(()=>(Array.isArray(indices)?indices=tensor1d(indices,"int32"):indices=indices.toInt(),gather(reference,indices,axis)))}function square24(x){return mul(x,x)}function reshapeBias(xRank,bias,dataFormat){let biasShape=bias.shape;if(bias.rank!==1&&bias.rank!==xRank)throw new ValueError(`Unexpected bias dimensions: ${bias.rank}; expected it to be 1 or ${xRank}`);if(xRank===5){if(dataFormat==="channelsFirst")return biasShape.length===1?bias.reshape([1,biasShape[0],1,1,1]):bias.reshape([1,biasShape[3],biasShape[0],biasShape[1],biasShape[2]]);if(dataFormat==="channelsLast")return biasShape.length===1?bias.reshape([1,1,1,1,biasShape[0]]):bias.reshape([1].concat(biasShape))}else if(xRank===4){if(dataFormat==="channelsFirst")return biasShape.length===1?bias.reshape([1,biasShape[0],1,1]):bias.reshape([1,biasShape[2],biasShape[0],biasShape[1]]);if(dataFormat==="channelsLast")return biasShape.length===1?bias.reshape([1,1,1,biasShape[0]]):bias.reshape([1].concat(biasShape))}else if(xRank===3){if(dataFormat==="channelsFirst")return biasShape.length===1?bias.reshape([1,biasShape[0],1]):bias.reshape([1,biasShape[1],biasShape[0]]);if(dataFormat==="channelsLast")return biasShape.length===1?bias.reshape([1,1,biasShape[0]]):bias.reshape([1].concat(biasShape))}else if(xRank<3)return bias;throw new ValueError(`Unsupported input rank by biasAdd: ${bias.rank}`)}function biasAdd(x,bias,dataFormat){return tidy(()=>(dataFormat==null&&(dataFormat=imageDataFormat()),checkDataFormat(dataFormat),x.add(reshapeBias(x.rank,bias,dataFormat))))}function elu6(x,alpha=1){if(alpha!==1)throw new NotImplementedError(`Support for alpha values other than 1 (${alpha}) is not implemented yet.`);return elu(x)}function softsign(x){return tidy(()=>div(x,abs(x).add(1)))}function dropout2(x,level,noiseShape,seed){return tidy(()=>dropout(x,level,noiseShape,seed))}function hardSigmoid(x){return tidy(()=>{let y=add2(.5,mul(.2,x));return clipByValue(y,0,1)})}function inTrainPhase(x,alt,training5=!1){return training5?x():alt()}var VALID_FAN_MODE_VALUES=["fanIn","fanOut","fanAvg"],VALID_DISTRIBUTION_VALUES=["normal","uniform","truncatedNormal"];function checkFanMode(value){checkStringTypeUnionValue(VALID_FAN_MODE_VALUES,"FanMode",value)}function checkDistribution(value){checkStringTypeUnionValue(VALID_DISTRIBUTION_VALUES,"Distribution",value)}var Initializer=class extends serialization_exports.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Zeros=class extends Initializer{apply(shape,dtype){return zeros(shape,dtype)}};Zeros.className="Zeros";serialization_exports.registerClass(Zeros);var Ones=class extends Initializer{apply(shape,dtype){return ones2(shape,dtype)}};Ones.className="Ones";serialization_exports.registerClass(Ones);var Constant=class extends Initializer{constructor(args){super();if(typeof args!="object")throw new ValueError(`Expected argument of type ConstantConfig but got ${args}`);if(args.value===void 0)throw new ValueError(`config must have value set but got ${args}`);this.value=args.value}apply(shape,dtype){return tidy(()=>mul(scalar(this.value),ones2(shape,dtype)))}getConfig(){return{value:this.value}}};Constant.className="Constant";serialization_exports.registerClass(Constant);var RandomUniform=class extends Initializer{constructor(args){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=args.minval||this.DEFAULT_MINVAL,this.maxval=args.maxval||this.DEFAULT_MAXVAL,this.seed=args.seed}apply(shape,dtype){return randomUniform(shape,this.minval,this.maxval,dtype)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};RandomUniform.className="RandomUniform";serialization_exports.registerClass(RandomUniform);var RandomNormal=class extends Initializer{constructor(args){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=args.mean||this.DEFAULT_MEAN,this.stddev=args.stddev||this.DEFAULT_STDDEV,this.seed=args.seed}apply(shape,dtype){if(dtype=dtype||"float32",dtype!=="float32"&&dtype!=="int32")throw new NotImplementedError(`randomNormal does not support dType ${dtype}.`);return randomNormal2(shape,this.mean,this.stddev,dtype,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};RandomNormal.className="RandomNormal";serialization_exports.registerClass(RandomNormal);var TruncatedNormal=class extends Initializer{constructor(args){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=args.mean||this.DEFAULT_MEAN,this.stddev=args.stddev||this.DEFAULT_STDDEV,this.seed=args.seed}apply(shape,dtype){if(dtype=dtype||"float32",dtype!=="float32"&&dtype!=="int32")throw new NotImplementedError(`truncatedNormal does not support dType ${dtype}.`);return truncatedNormal(shape,this.mean,this.stddev,dtype,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};TruncatedNormal.className="TruncatedNormal";serialization_exports.registerClass(TruncatedNormal);var Identity2=class extends Initializer{constructor(args){super();this.gain=args.gain!=null?args.gain:1}apply(shape,dtype){return tidy(()=>{if(shape.length!==2||shape[0]!==shape[1])throw new ValueError("Identity matrix initializer can only be used for 2D square matrices.");return mul(this.gain,eye(shape[0]))})}getConfig(){return{gain:this.gain}}};Identity2.className="Identity";serialization_exports.registerClass(Identity2);function computeFans(shape,dataFormat="channelsLast"){let fanIn,fanOut;if(checkDataFormat(dataFormat),shape.length===2)fanIn=shape[0],fanOut=shape[1];else if([3,4,5].indexOf(shape.length)!==-1){if(dataFormat==="channelsFirst"){let receptiveFieldSize=arrayProd(shape,2);fanIn=shape[1]*receptiveFieldSize,fanOut=shape[0]*receptiveFieldSize}else if(dataFormat==="channelsLast"){let receptiveFieldSize=arrayProd(shape,0,shape.length-2);fanIn=shape[shape.length-2]*receptiveFieldSize,fanOut=shape[shape.length-1]*receptiveFieldSize}}else{let shapeProd=arrayProd(shape);fanIn=Math.sqrt(shapeProd),fanOut=Math.sqrt(shapeProd)}return[fanIn,fanOut]}var VarianceScaling=class extends Initializer{constructor(args){super();if(args.scale<0)throw new ValueError(`scale must be a positive float. Got: ${args.scale}`);this.scale=args.scale==null?1:args.scale,this.mode=args.mode==null?"fanIn":args.mode,checkFanMode(this.mode),this.distribution=args.distribution==null?"normal":args.distribution,checkDistribution(this.distribution),this.seed=args.seed}apply(shape,dtype){let fans=computeFans(shape),fanIn=fans[0],fanOut=fans[1],scale2=this.scale;if(this.mode==="fanIn"?scale2/=Math.max(1,fanIn):this.mode==="fanOut"?scale2/=Math.max(1,fanOut):scale2/=Math.max(1,(fanIn+fanOut)/2),this.distribution==="normal"){let stddev=Math.sqrt(scale2);if(dtype=dtype||"float32",dtype!=="float32"&&dtype!=="int32")throw new NotImplementedError(`${this.getClassName()} does not support dType ${dtype}.`);return truncatedNormal(shape,0,stddev,dtype,this.seed)}else{let limit=Math.sqrt(3*scale2);return randomUniform(shape,-limit,limit,dtype)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};VarianceScaling.className="VarianceScaling";serialization_exports.registerClass(VarianceScaling);var GlorotUniform=class extends VarianceScaling{constructor(args){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:args==null?null:args.seed})}getClassName(){return VarianceScaling.className}};GlorotUniform.className="GlorotUniform";serialization_exports.registerClass(GlorotUniform);var GlorotNormal=class extends VarianceScaling{constructor(args){super({scale:1,mode:"fanAvg",distribution:"normal",seed:args==null?null:args.seed})}getClassName(){return VarianceScaling.className}};GlorotNormal.className="GlorotNormal";serialization_exports.registerClass(GlorotNormal);var HeNormal=class extends VarianceScaling{constructor(args){super({scale:2,mode:"fanIn",distribution:"normal",seed:args==null?null:args.seed})}getClassName(){return VarianceScaling.className}};HeNormal.className="HeNormal";serialization_exports.registerClass(HeNormal);var HeUniform=class extends VarianceScaling{constructor(args){super({scale:2,mode:"fanIn",distribution:"uniform",seed:args==null?null:args.seed})}getClassName(){return VarianceScaling.className}};HeUniform.className="HeUniform";serialization_exports.registerClass(HeUniform);var LeCunNormal=class extends VarianceScaling{constructor(args){super({scale:1,mode:"fanIn",distribution:"normal",seed:args==null?null:args.seed})}getClassName(){return VarianceScaling.className}};LeCunNormal.className="LeCunNormal";serialization_exports.registerClass(LeCunNormal);var LeCunUniform=class extends VarianceScaling{constructor(args){super({scale:1,mode:"fanIn",distribution:"uniform",seed:args==null?null:args.seed})}getClassName(){return VarianceScaling.className}};LeCunUniform.className="LeCunNormal";serialization_exports.registerClass(LeCunUniform);var Orthogonal=class extends Initializer{constructor(args){super();if(this.DEFAULT_GAIN=1,this.gain=args.gain==null?this.DEFAULT_GAIN:args.gain,this.seed=args.seed,this.seed!=null)throw new NotImplementedError("Random seed is not implemented for Orthogonal Initializer yet.")}apply(shape,dtype){return tidy(()=>{if(shape.length<2)throw new NotImplementedError("Shape must be at least 2D.");shape[0]*shape[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${shape[0]*shape[1]}) elements: Slowness may result.`);let normalizedShape=shape[0]>shape[1]?[shape[1],shape[0]]:shape,a=randomNormal2(normalizedShape,0,1,"float32"),q=linalg.gramSchmidt(a);return shape[0]>shape[1]&&(q=q.transpose()),mul(this.gain,q)})}getConfig(){return{gain:this.gain,seed:this.seed}}};Orthogonal.className="Orthogonal";serialization_exports.registerClass(Orthogonal);var INITIALIZER_IDENTIFIER_REGISTRY_SYMBOL_MAP={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function deserializeInitializer(config,customObjects={}){return deserializeKerasObject(config,serialization_exports.SerializationMap.getMap().classNameMap,customObjects,"initializer")}function serializeInitializer(initializer){return serializeKerasObject(initializer)}function getInitializer(identifier){if(typeof identifier=="string"){let className=identifier in INITIALIZER_IDENTIFIER_REGISTRY_SYMBOL_MAP?INITIALIZER_IDENTIFIER_REGISTRY_SYMBOL_MAP[identifier]:identifier;if(className==="GlorotNormal")return new GlorotNormal;if(className==="GlorotUniform")return new GlorotUniform;if(className==="HeNormal")return new HeNormal;if(className==="HeUniform")return new HeUniform;if(className==="LeCunNormal")return new LeCunNormal;if(className==="LeCunUniform")return new LeCunUniform;{let config={};return config.className=className,config.config={},deserializeInitializer(config)}}else return identifier instanceof Initializer?identifier:deserializeInitializer(identifier)}function zeros9(){return new Zeros}function ones8(){return new Ones}function constant(args){return new Constant(args)}function randomUniform2(args){return new RandomUniform(args)}function randomNormal3(args){return new RandomNormal(args)}function truncatedNormal2(args){return new TruncatedNormal(args)}function identity(args){return new Identity2(args)}function varianceScaling(config){return new VarianceScaling(config)}function glorotUniform(args){return new GlorotUniform(args)}function glorotNormal(args){return new GlorotNormal(args)}function heNormal(args){return new HeNormal(args)}function heUniform(args){return new HeUniform(args)}function leCunNormal(args){return new LeCunNormal(args)}function leCunUniform(args){return new LeCunUniform(args)}function orthogonal(args){return new Orthogonal(args)}var exports_layers_exports={};__export2(exports_layers_exports,{Layer:()=>Layer,RNN:()=>RNN,RNNCell:()=>RNNCell,activation:()=>activation,add:()=>add31,alphaDropout:()=>alphaDropout,average:()=>average,averagePooling1d:()=>averagePooling1d,averagePooling2d:()=>averagePooling2d,averagePooling3d:()=>averagePooling3d,avgPool1d:()=>avgPool1d,avgPool2d:()=>avgPool2d,avgPool3d:()=>avgPool3d2,avgPooling1d:()=>avgPooling1d,avgPooling2d:()=>avgPooling2d,avgPooling3d:()=>avgPooling3d,batchNormalization:()=>batchNormalization2,bidirectional:()=>bidirectional,concatenate:()=>concatenate2,conv1d:()=>conv1d5,conv2d:()=>conv2d10,conv2dTranspose:()=>conv2dTranspose2,conv3d:()=>conv3d3,convLstm2d:()=>convLstm2d,convLstm2dCell:()=>convLstm2dCell,cropping2D:()=>cropping2D,dense:()=>dense,depthwiseConv2d:()=>depthwiseConv2d4,dot:()=>dot6,dropout:()=>dropout3,elu:()=>elu7,embedding:()=>embedding,flatten:()=>flatten4,gaussianDropout:()=>gaussianDropout,gaussianNoise:()=>gaussianNoise,globalAveragePooling1d:()=>globalAveragePooling1d,globalAveragePooling2d:()=>globalAveragePooling2d,globalMaxPool1d:()=>globalMaxPool1d,globalMaxPool2d:()=>globalMaxPool2d,globalMaxPooling1d:()=>globalMaxPooling1d,globalMaxPooling2d:()=>globalMaxPooling2d,gru:()=>gru,gruCell:()=>gruCell,input:()=>input,inputLayer:()=>inputLayer,layerNormalization:()=>layerNormalization,leakyReLU:()=>leakyReLU,lstm:()=>lstm,lstmCell:()=>lstmCell,masking:()=>masking,maxPool1d:()=>maxPool1d,maxPool2d:()=>maxPool2d,maxPooling1d:()=>maxPooling1d,maxPooling2d:()=>maxPooling2d,maxPooling3d:()=>maxPooling3d,maximum:()=>maximum9,minimum:()=>minimum7,multiply:()=>multiply,permute:()=>permute,prelu:()=>prelu6,reLU:()=>reLU,repeatVector:()=>repeatVector,reshape:()=>reshape87,rnn:()=>rnn2,separableConv2d:()=>separableConv2d2,simpleRNN:()=>simpleRNN,simpleRNNCell:()=>simpleRNNCell,softmax:()=>softmax4,spatialDropout1d:()=>spatialDropout1d,stackedRNNCells:()=>stackedRNNCells,thresholdedReLU:()=>thresholdedReLU,timeDistributed:()=>timeDistributed,upSampling2d:()=>upSampling2d,zeroPadding2d:()=>zeroPadding2d});var _nextUniqueTensorId=0;function getNextUniqueTensorId(){return _nextUniqueTensorId++}var _uidPrefixes={};function getUid(prefix=""){return prefix in _uidPrefixes||(_uidPrefixes[prefix]=0),_uidPrefixes[prefix]+=1,prefix+_uidPrefixes[prefix].toString()}function isArrayOfShapes(x){return Array.isArray(x)&&Array.isArray(x[0])}function normalizeShapeList(x){return x.length===0?[]:Array.isArray(x[0])?x:[x]}function getExactlyOneTensor(xs){let x;if(Array.isArray(xs)){if(xs.length!==1)throw new ValueError(`Expected Tensor length to be 1; got ${xs.length}`);x=xs[0]}else x=xs;return x}function getExactlyOneShape(shapes){if(Array.isArray(shapes)&&Array.isArray(shapes[0])){if(shapes.length===1)return shapes=shapes,shapes[0];throw new ValueError(`Expected exactly 1 Shape; got ${shapes.length}`)}else return shapes}function countParamsInWeights(weights){let count2=0;for(let weight of weights)weight.shape.length===0?count2+=1:count2+=weight.shape.reduce((a,b)=>a*b);return count2}var DEFAULT_VARIABLE_NAME_PREFIX="Variable",LayerVariable=class{constructor(val,dtype="float32",name=DEFAULT_VARIABLE_NAME_PREFIX,trainable=!0,constraint=null){this.dtype=dtype==null?"float32":dtype,this.shape=val.shape,this.id=getNextUniqueTensorId(),name=name==null?DEFAULT_VARIABLE_NAME_PREFIX:name,this.originalName=getScopedTensorName(name),this.name=getUniqueTensorName(this.originalName),this.trainable_=trainable,this.constraint=constraint,this.val=variable(val,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(newVal){return this.assertNotDisposed(),checkShapesMatch(this.val,newVal),this.val.id!==newVal.id&&(this.val.assign(newVal),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(trainable){this.trainable_=trainable,this.val.trainable=trainable}};function checkShapesMatch(x,y){if(x.shape.toString()!==y.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(x.shape)+" vs. "+JSON.stringify(y.shape))}function batchGetValue(xs){return xs.map(x=>x.read())}function batchSetValue(variablesAndValues){variablesAndValues.forEach(variableAndValue=>{let variable3=variableAndValue[0];variable3.write(variableAndValue[1])})}var InputSpec=class{constructor(args){this.dtype=args.dtype,this.shape=args.shape,args.shape!=null?this.ndim=args.shape.length:this.ndim=args.ndim,this.maxNDim=args.maxNDim,this.minNDim=args.minNDim,this.axes=args.axes||{}}},SymbolicTensor=class{constructor(dtype,shape,sourceLayer,inputs,callArgs,name,outputTensorIndex){this.dtype=dtype,this.shape=shape,this.sourceLayer=sourceLayer,this.inputs=inputs,this.callArgs=callArgs,this.outputTensorIndex=outputTensorIndex,this.id=getNextUniqueTensorId(),name!=null&&(this.originalName=getScopedTensorName(name),this.name=getUniqueTensorName(this.originalName)),this.rank=shape.length}},_nextNodeID=0,Node=class{constructor(args,callArgs){this.callArgs=callArgs,this.id=_nextNodeID++,this.outboundLayer=args.outboundLayer,this.inboundLayers=args.inboundLayers,this.nodeIndices=args.nodeIndices,this.tensorIndices=args.tensorIndices,this.inputTensors=args.inputTensors,this.outputTensors=args.outputTensors,this.inputMasks=args.inputMasks,this.outputMasks=args.outputMasks,this.inputShapes=args.inputShapes,this.outputShapes=args.outputShapes;for(let layer of args.inboundLayers)layer!=null&&layer.outboundNodes.push(this);args.outboundLayer.inboundNodes.push(this)}getConfig(){let inboundNames=[];for(let layer of this.inboundLayers)layer!=null?inboundNames.push(layer.name):inboundNames.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:inboundNames,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},_nextLayerID=0,Layer=class extends serialization_exports.Serializable{constructor(args={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=_nextLayerID++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let name=args.name;if(!name){let prefix=this.getClassName();name=toSnakeCase(prefix)+"_"+getUid(prefix)}if(this.name=name,this.trainable_=args.trainable==null?!0:args.trainable,args.inputShape!=null||args.batchInputShape!=null){let batchInputShape;if(args.batchInputShape!=null)batchInputShape=args.batchInputShape;else if(args.inputShape!=null){let batchSize=null;args.batchSize!=null&&(batchSize=args.batchSize),batchInputShape=[batchSize].concat(args.inputShape)}this.batchInputShape=batchInputShape;let dtype=args.dtype;dtype==null&&(dtype=args.inputDType),dtype==null&&(dtype="float32"),this.dtype=dtype}args.weights!=null?this.initialWeights=args.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(layer,nodeIndex){return layer.name+"_ib-"+nodeIndex.toString()}getNodeAtIndex(nodeIndex,attrName){if(this.inboundNodes.length===0)throw new RuntimeError(`The layer has never been called and thus has no defined ${attrName}.`);if(this.inboundNodes.length<=nodeIndex)throw new ValueError(`Asked to get ${attrName} at node ${nodeIndex}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[nodeIndex]}getInputAt(nodeIndex){return singletonOrArray(this.getNodeAtIndex(nodeIndex,"input").inputTensors)}getOutputAt(nodeIndex){return singletonOrArray(this.getNodeAtIndex(nodeIndex,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new AttributeError(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new AttributeError(`Layer ${this.name} is not connected, no input to return.`);return singletonOrArray(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new AttributeError(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new AttributeError(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return singletonOrArray(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(lossFn=>lossFn())}get updates(){return this._updates}get built(){return this._built}set built(built){this._built=built}get trainable(){return this.trainable_}set trainable(trainable){this._trainableWeights.forEach(w=>w.trainable=trainable),this.trainable_=trainable}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(w=>w.trainable):[]}set trainableWeights(weights){this._trainableWeights=weights}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(w=>!w.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(weights){this._nonTrainableWeights=weights}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(inputs){if(inputs=toList(inputs),this.inputSpec==null||this.inputSpec.length===0)return;let inputSpec=toList(this.inputSpec);if(inputs.length!==inputSpec.length)throw new ValueError(`Layer ${this.name} expects ${inputSpec.length} inputs, but it received ${inputs.length} input tensors. Input received: ${inputs}`);for(let inputIndex=0;inputIndexspec.maxNDim)throw new ValueError(`Input ${inputIndex} is incompatible with layer ${this.name}: expected max_ndim=${spec.maxNDim}, found ndim=${ndim}`);if(spec.minNDim!=null&&ndim=0?xShape[axis]:xShape[xShape.length+axis];if(value!=null&&[value,null].indexOf(xShapeAtAxis)===-1)throw new ValueError(`Input ${inputIndex} is incompatible with layer ${this.name}: expected axis ${axis} of input shape to have value ${value} but got shape ${xShape}.`)}}if(spec.shape!=null)for(let i=0;i{if(!this.built){this.assertInputCompatibility(inputs);let inputShapes=[];for(let xElem of toList(inputs))inputShapes.push(xElem.shape);this.build(singletonOrArray(inputShapes)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&noneAreSymbolic&&(this._refCount=1)}if(this.assertInputCompatibility(inputs),noneAreSymbolic){let output=this.call(inputs,kwargs),outputList=toList(output),outputListCopy=[];for(let x of outputList)inputsList.indexOf(x)!==-1&&(x=x.clone()),outputListCopy.push(x);if(output=singletonOrArray(outputListCopy),this.activityRegularizer!=null)throw new NotImplementedError("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return output}else{let inputShape=collectInputShape(inputs),outputShape=this.computeOutputShape(inputShape),output,outputDType=guessOutputDType(inputs);if(this.warnOnIncompatibleInputShape(Array.isArray(inputs)?inputShape[0]:inputShape),outputShape!=null&&outputShape.length>0&&Array.isArray(outputShape[0])?output=outputShape.map((shape,index)=>new SymbolicTensor(outputDType,shape,this,toList(inputs),kwargs,this.name,index)):output=new SymbolicTensor(outputDType,outputShape,this,toList(inputs),kwargs,this.name),this.addInboundNode(inputs,output,null,null,inputShape,outputShape,kwargs),this._refCount++,this.activityRegularizer!=null)throw new NotImplementedError("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return output}})}warnOnIncompatibleInputShape(inputShape){if(this.batchInputShape==null)return;if(inputShape.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(inputShape)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let dimMismatch=!1;this.batchInputShape.forEach((dimension,i)=>{dimension!=null&&inputShape[i]!=null&&inputShape[i]!==dimension&&(dimMismatch=!0)}),dimMismatch&&console.warn(`The shape of the input tensor (${JSON.stringify(inputShape)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new AttributeError(`The layer ${this.name} has never been called and thus has no defined output shape.`);let allOutputShapes=[];for(let node of this.inboundNodes){let shapeString=JSON.stringify(node.outputShapes);allOutputShapes.indexOf(shapeString)===-1&&allOutputShapes.push(shapeString)}if(allOutputShapes.length===1){let outputShapes=this.inboundNodes[0].outputShapes;return Array.isArray(outputShapes)&&Array.isArray(outputShapes[0])&&outputShapes.length===1?outputShapes[0]:outputShapes}else throw new AttributeError(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new RuntimeError(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return countParamsInWeights(this.weights)}build(inputShape){this.built=!0}getWeights(trainableOnly=!1){return batchGetValue(trainableOnly?this.trainableWeights:this.weights)}setWeights(weights){tidy(()=>{let params=this.weights;if(params.length!==weights.length)throw new ValueError(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${weights.length}, but the layer was expecting ${params.length} weights. Provided weights: ${weights}...`);if(params.length===0)return;let weightValueTuples=[],paramValues=batchGetValue(params);for(let i=0;iregularizer.apply(weight.read())),trainable==null&&(trainable=!0),trainable?this._trainableWeights.push(weight):this._nonTrainableWeights.push(weight),weight}setFastWeightInitDuringBuild(value){this.fastWeightInitDuringBuild=value}addLoss(losses8){if(losses8==null||Array.isArray(losses8)&&losses8.length===0)return;losses8=toList(losses8),this._losses!==void 0&&this._losses!==null&&this.losses.push(...losses8)}computeOutputShape(inputShape){return inputShape}computeMask(inputs,mask){if(!this.supportsMasking){if(mask!=null)if(Array.isArray(mask))mask.forEach(maskElement=>{if(maskElement!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return mask}addInboundNode(inputTensors,outputTensors,inputMasks,outputMasks,inputShapes,outputShapes,kwargs=null){let inputTensorList=toList(inputTensors);outputTensors=toList(outputTensors),inputMasks=toList(inputMasks),outputMasks=toList(outputMasks),inputShapes=normalizeShapeList(inputShapes),outputShapes=normalizeShapeList(outputShapes);let inboundLayers=[],nodeIndices=[],tensorIndices=[];for(let x of inputTensorList)inboundLayers.push(x.sourceLayer),nodeIndices.push(x.nodeIndex),tensorIndices.push(x.tensorIndex);new Node({outboundLayer:this,inboundLayers,nodeIndices,tensorIndices,inputTensors:inputTensorList,outputTensors,inputMasks,outputMasks,inputShapes,outputShapes},kwargs);for(let i=0;iweight.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let numDisposedVariables=0;return--this._refCount===0&&(numDisposedVariables=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables}}};function collectInputShape(inputTensors){inputTensors=toList(inputTensors);let shapes=[];for(let x of inputTensors)shapes.push(x.shape);return singletonOrArray(shapes)}function guessOutputDType(inputTensors){return"float32"}function getSourceInputs(tensor168,layer,nodeIndex){if((layer==null||nodeIndex!=null&&nodeIndex>0)&&(layer=tensor168.sourceLayer,nodeIndex=tensor168.nodeIndex),layer.inboundNodes.length===0)return[tensor168];{let node=layer.inboundNodes[nodeIndex];if(node.inboundLayers.length===0)return node.inputTensors;{let sourceTensors=[];for(let i=0;i0){let values=await Promise.all(promises);for(let i=0;iadd2(this.totals[key],mul(value,batchSize)));this.totals[key]=total,oldTotalsToDispose!=null&&oldTotalsToDispose.dispose()}}}async onEpochEnd(epoch,logs5){if(logs5!=null)for(let key of this.params.metrics){if(this.totals[key]==null)continue;typeof this.totals[key]=="number"?logs5[key]=this.totals[key]/this.seen:tidy(()=>{let log10=mul(div(1,this.seen),this.totals[key]);logs5[key]=log10,this.totals[key].dispose(),keep(logs5[key])})}}},History=class extends BaseCallback{async onTrainBegin(logs5){this.epoch=[],this.history={}}async onEpochEnd(epoch,logs5){logs5==null&&(logs5={}),this.epoch.push(epoch);for(let key in logs5)this.history[key]==null&&(this.history[key]=[]),this.history[key].push(logs5[key])}async syncData(){let promises=[],keys=[],indices=[];for(let key in this.history){let valueArray=this.history[key];for(let i=0;inew CustomCallback(callbackConfig,yieldEvery))}var CallbackConstructorRegistry=class{constructor(){}static registerCallbackConstructor(verbosityLevel,callbackConstructor){util_exports.assert(verbosityLevel>=0&&Number.isInteger(verbosityLevel),()=>`Verbosity level is expected to be an integer >= 0, but got ${verbosityLevel}`),CallbackConstructorRegistry.checkForDuplicate(callbackConstructor),CallbackConstructorRegistry.constructors[verbosityLevel]==null&&(CallbackConstructorRegistry.constructors[verbosityLevel]=[]),CallbackConstructorRegistry.constructors[verbosityLevel].push(callbackConstructor)}static checkForDuplicate(callbackConstructor){for(let levelName in CallbackConstructorRegistry.constructors){let constructors=CallbackConstructorRegistry.constructors[+levelName];constructors.forEach(ctor=>{if(ctor===callbackConstructor)throw new ValueError("Duplicate callback constructor.")})}}static clear(){CallbackConstructorRegistry.constructors={}}static createCallbacks(verbosityLevel){let constructors=[];for(let levelName in CallbackConstructorRegistry.constructors){let level=+levelName;verbosityLevel>=level&&constructors.push(...CallbackConstructorRegistry.constructors[level])}return constructors.map(ctor=>new ctor)}};CallbackConstructorRegistry.constructors={};function configureCallbacks(callbacks3,verbose,epochs,initialEpoch,numTrainSamples,stepsPerEpoch,batchSize,doValidation,callbackMetrics){let history=new History,actualCallbacks=[new BaseLogger,...CallbackConstructorRegistry.createCallbacks(verbose)];callbacks3!=null&&actualCallbacks.push(...callbacks3),actualCallbacks.push(history);let callbackList=new CallbackList(actualCallbacks);return callbackList.setParams({epochs,initialEpoch,samples:numTrainSamples,steps:stepsPerEpoch,batchSize,verbose,doValidation,metrics:callbackMetrics}),{callbackList,history}}function deserialize(config,customObjects={},fastWeightInit=!1){return deserializeKerasObject(config,serialization_exports.SerializationMap.getMap().classNameMap,customObjects,"layer",fastWeightInit)}function l2Normalize(x,axis){return tidy(()=>{x.dtype!=="float32"&&(x=x.asType("float32"));let squareSum=sum2(square24(x),axis,!0),epsilonTensor=fill(squareSum.shape,epsilon()),norm5=sqrt(maximum(squareSum,epsilonTensor));return div(x,norm5)})}function meanSquaredError2(yTrue,yPred){return tidy(()=>mean(square24(sub(yPred,yTrue)),-1))}function meanAbsoluteError(yTrue,yPred){return tidy(()=>mean(abs(sub(yPred,yTrue)),-1))}function meanAbsolutePercentageError(yTrue,yPred){return tidy(()=>{let diff=sub(yTrue,yPred),clippedTrue=clipByValue(abs(yTrue),epsilon(),Number.MAX_VALUE),absResult=abs(div(diff,clippedTrue));return mul(100,mean(absResult,-1))})}function meanSquaredLogarithmicError(yTrue,yPred){return tidy(()=>{let clippedPred=clipByValue(yPred,epsilon(),Number.MAX_VALUE),firstLog=log2(add2(1,clippedPred)),clippedTrue=clipByValue(yTrue,epsilon(),Number.MAX_VALUE),secondLog=log2(add2(1,clippedTrue));return mean(square24(sub(firstLog,secondLog)),-1)})}function squaredHinge(yTrue,yPred){return tidy(()=>{let maxResult=maximum(0,sub(1,mul(yTrue,yPred)));return mean(square24(maxResult),-1)})}function hinge(yTrue,yPred){return tidy(()=>{let maxResult=maximum(0,sub(1,mul(yTrue,yPred)));return mean(maxResult,-1)})}function categoricalHinge(yTrue,yPred){return tidy(()=>{let pos=sum2(mul(yTrue,yPred),-1),neg20=max(mul(sub(1,yTrue),yPred),-1);return maximum(0,add2(1,sub(neg20,pos)))})}function logcosh(yTrue,yPred){return tidy(()=>{let log22=Math.log(2),predictionDiff=sub(yPred,yTrue),logcoshResult=sub(add2(predictionDiff,softplus(mul(-2,predictionDiff))),log22);return mean(logcoshResult,-1)})}function categoricalCrossentropy(target,output,fromLogits=!1){return tidy(()=>{if(fromLogits)output=softmax(output);else{let outputSum=sum2(output,output.shape.length-1,!0);output=div(output,outputSum)}return output=clipByValue(output,epsilon(),1-epsilon()),neg(sum2(mul(target.toFloat(),log2(output)),output.shape.length-1))})}function sparseCategoricalCrossentropy(target,output,fromLogits=!1){return tidy(()=>{let flatTarget=floor(flatten3(target)).toInt();output=clipByValue(output,epsilon(),1-epsilon());let outputShape=output.shape,oneHotTarget=oneHot(flatTarget,outputShape[outputShape.length-1]).reshape(outputShape);return categoricalCrossentropy(oneHotTarget,output,fromLogits)})}function sigmoidCrossEntropyWithLogits(labels,logits){if(!util_exports.arraysEqual(labels.shape,logits.shape))throw new ValueError(`logits and labels must have the same shape, but got shapes ${JSON.stringify(labels.shape)} and ${JSON.stringify(logits.shape)}`);return tidy(()=>{let reluLogits=logits.relu(),negAbsLogits=logits.abs().neg();return reluLogits.sub(logits.mul(labels)).add(negAbsLogits.exp().log1p())})}function binaryCrossentropy(yTrue,yPred){return tidy(()=>{let y;return y=clipByValue(yPred,epsilon(),1-epsilon()),y=log2(div(y,sub(1,y))),mean(sigmoidCrossEntropyWithLogits(yTrue,y),-1)})}function kullbackLeiblerDivergence(yTrue,yPred){return tidy(()=>{let clippedTrue=clipByValue(yTrue,epsilon(),1),clippedPred=clipByValue(yPred,epsilon(),1);return sum2(mul(yTrue,log2(div(clippedTrue,clippedPred))),-1)})}function poisson(yTrue,yPred){return tidy(()=>{let logPred=log2(add2(epsilon(),yPred));return mean(sub(yPred,mul(yTrue,logPred)),-1)})}function cosineProximity(yTrue,yPred){return tidy(()=>{let trueNormalized=l2Normalize(yTrue,-1),predNormalized=l2Normalize(yPred,-1),trueXPred=mul(trueNormalized,predNormalized);return neg(sum2(trueXPred,-1))})}var lossesMap={meanSquaredError:meanSquaredError2,meanAbsoluteError,meanAbsolutePercentageError,meanSquaredLogarithmicError,squaredHinge,hinge,categoricalHinge,logcosh,categoricalCrossentropy,sparseCategoricalCrossentropy,binaryCrossentropy,kullbackLeiblerDivergence,poisson,cosineProximity};function get(identifierOrFn){if(typeof identifierOrFn=="string"){if(identifierOrFn in lossesMap)return lossesMap[identifierOrFn];let errMsg=`Unknown loss ${identifierOrFn}`;throw identifierOrFn.toLowerCase().includes("softmaxcrossentropy")&&(errMsg=`Unknown loss ${identifierOrFn}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new ValueError(errMsg)}else return identifierOrFn}function binaryAccuracy(yTrue,yPred){return tidy(()=>{let threshold2=mul(.5,onesLike(yPred)),yPredThresholded=cast48(greater(yPred,threshold2),yTrue.dtype);return mean(equal(yTrue,yPredThresholded),-1)})}function categoricalAccuracy(yTrue,yPred){return tidy(()=>cast48(equal(argMax(yTrue,-1),argMax(yPred,-1)),"float32"))}function truePositives(yTrue,yPred){return tidy(()=>logicalAnd(yTrue.equal(1),yPred.equal(1)).sum().cast("float32"))}function falseNegatives(yTrue,yPred){return tidy(()=>logicalAnd(yTrue.equal(1),yPred.equal(0)).sum().cast("float32"))}function falsePositives(yTrue,yPred){return tidy(()=>logicalAnd(yTrue.equal(0),yPred.equal(1)).sum().cast("float32"))}function precision(yTrue,yPred){return tidy(()=>{let tp=truePositives(yTrue,yPred),fp=falsePositives(yTrue,yPred),denominator=tp.add(fp);return where(greater(denominator,0),tp.div(denominator),0).cast("float32")})}function recall(yTrue,yPred){return tidy(()=>{let tp=truePositives(yTrue,yPred),fn=falseNegatives(yTrue,yPred),denominator=tp.add(fn);return where(greater(denominator,0),tp.div(denominator),0).cast("float32")})}function binaryCrossentropy2(yTrue,yPred){return binaryCrossentropy(yTrue,yPred)}function sparseCategoricalAccuracy(yTrue,yPred){return yTrue.rank===yPred.rank&&(yTrue=yTrue.squeeze([yTrue.rank-1])),yPred=yPred.argMax(-1),yPred.dtype!==yTrue.dtype&&(yPred=yPred.asType(yTrue.dtype)),equal(yTrue,yPred).asType("float32")}var mse=meanSquaredError2,MSE=meanSquaredError2,mae=meanAbsoluteError,MAE=meanAbsoluteError,mape=meanAbsolutePercentageError,MAPE=meanAbsolutePercentageError,categoricalCrossentropy2=categoricalCrossentropy,cosine=cosineProximity,sparseCategoricalCrossentropy2=sparseCategoricalCrossentropy,metricsMap={binaryAccuracy,categoricalAccuracy,precision,categoricalCrossentropy:categoricalCrossentropy2,sparseCategoricalCrossentropy:sparseCategoricalCrossentropy2,mse,MSE,mae,MAE,mape,MAPE,cosine};function get2(identifier){if(typeof identifier=="string"&&identifier in metricsMap)return metricsMap[identifier];if(typeof identifier!="string"&&identifier!=null)return identifier;throw new ValueError(`Unknown metric ${identifier}`)}function getLossOrMetricName(fn){if(assert2(fn!==null,`Unknown LossOrMetricFn ${fn}`),typeof fn=="string")return fn;{let fnName;for(let key of Object.keys(lossesMap))if(lossesMap[key]===fn){fnName=key;break}if(fnName!==void 0)return fnName;for(let key of Object.keys(metricsMap))if(metricsMap[key]===fn){fnName=key;break}return fnName!==void 0?fnName:fn.name}}function getOptimizer(identifier){let optimizerMap={Adagrad:()=>train.adagrad(.01),Adadelta:()=>train.adadelta(1,.95,epsilon()),Adam:()=>train.adam(.001,.9,.999,epsilon()),Adamax:()=>train.adamax(.002,.9,.999,epsilon(),0),RMSProp:()=>train.rmsprop(.001,.9,0,epsilon()),SGD:()=>train.sgd(.01)};if(optimizerMap.adagrad=optimizerMap.Adagrad,optimizerMap.adadelta=optimizerMap.Adadelta,optimizerMap.adam=optimizerMap.Adam,optimizerMap.adamax=optimizerMap.Adamax,optimizerMap.rmsprop=optimizerMap.RMSProp,optimizerMap.sgd=optimizerMap.SGD,identifier in optimizerMap)return optimizerMap[identifier]();throw new ValueError(`Unknown Optimizer ${identifier}`)}var MAX_USER_DEFINED_METADATA_SERIALIZED_LENGTH=1*1024*1024;function checkUserDefinedMetadata(userDefinedMetadata,modelName,checkSize=!1){if(userDefinedMetadata==null||typeof userDefinedMetadata!="object"||Object.getPrototypeOf(userDefinedMetadata)!==Object.prototype||!plainObjectCheck(userDefinedMetadata))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(checkSize){let out=JSON.stringify(userDefinedMetadata);out.length>MAX_USER_DEFINED_METADATA_SERIALIZED_LENGTH&&console.warn(`User-defined metadata of model "${modelName}" is too large in size (length=${out.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${MAX_USER_DEFINED_METADATA_SERIALIZED_LENGTH}.`)}}function plainObjectCheck(x){if(x===null)return!0;if(typeof x=="object")if(Object.getPrototypeOf(x)===Object.prototype){let keys=Object.keys(x);for(let key of keys){if(typeof key!="string")return!1;if(!plainObjectCheck(x[key]))return!1}return!0}else if(Array.isArray(x)){for(let item of x)if(!plainObjectCheck(item))return!1;return!0}else return!1;else{let xType=typeof x;return xType==="string"||xType==="number"||xType==="boolean"}}function printSummary(model2,lineLength,positions,printFn=console.log){let sequentialLike=isModelSequentialLike(model2),toDisplay=["Layer (type)","Output shape","Param #"];sequentialLike?(lineLength=lineLength||65,positions=positions||[.45,.85,1]):(lineLength=lineLength||98,positions=positions||[.33,.55,.67,1]),positions[positions.length-1]<=1&&(positions=positions.map(p2=>Math.floor(lineLength*p2)));let relevantNodes;if(!sequentialLike){toDisplay.push("Receives inputs"),relevantNodes=[];for(let depth in model2.nodesByDepth)relevantNodes.push(...model2.nodesByDepth[depth])}printFn("_".repeat(lineLength)),printRow(toDisplay,positions,printFn),printFn("=".repeat(lineLength));let layers=model2.layers;for(let i=0;i1||depthNodes.length===1&&depthNodes[0].inboundLayers.length>1){sequentialLike=!1;break}nodes.push(...depthNodes)}if(sequentialLike)for(let layer of model2.layers){let flag=!1;for(let node of layer.inboundNodes)if(nodes.indexOf(node)!==-1)if(flag){sequentialLike=!1;break}else flag=!0;if(!sequentialLike)break}return sequentialLike}function printRow(fields,positions,printFn=console.log){let line="";for(let i=0;i0&&(line=line.slice(0,line.length-1)+" "),line+=fields[i],line=line.slice(0,positions[i]),line+=" ".repeat(positions[i]-line.length);printFn(line)}function printLayerSummary(layer,positions,printFn){let outputShape;try{outputShape=JSON.stringify(layer.outputShape)}catch(err){outputShape="multiple"}let name=layer.name,className=layer.getClassName(),fields=[`${name} (${className})`,outputShape,layer.countParams().toString()];printRow(fields,positions,printFn)}function printLayerSummaryWithConnections(layer,positions,relevantNodes,printFn){let outputShape;try{outputShape=JSON.stringify(layer.outputShape)}catch(err){outputShape="multiple"}let connections=[];for(let node of layer.inboundNodes){if(relevantNodes!=null&&relevantNodes.length>0&&relevantNodes.indexOf(node)===-1)continue;for(let i=0;it.name),finalOutputs=[],feedNames=feedDict.names();for(let outputName of outputNames)feedNames.indexOf(outputName)!==-1?finalOutputs.push(feedDict.getValue(outputName)):finalOutputs.push(null);probe!=null&&(probe.maxNumTensors=-Infinity,probe.minNumTensors=Infinity);let fetchAndFeedKey=outputNames.join(",")+"|"+feedDict.names().join(","),sorted,recipientCounts;if(cachedSorted[fetchAndFeedKey]==null){let out=getTopologicalSortAndRecipientCounts(fetchArray,feedDict);sorted=out.sorted,recipientCounts=out.recipientCounts,cachedSorted[fetchAndFeedKey]=sorted,cachedRecipientCounts[fetchAndFeedKey]=recipientCounts}sorted=cachedSorted[fetchAndFeedKey],recipientCounts={},training5||Object.assign(recipientCounts,cachedRecipientCounts[fetchAndFeedKey]);let internalFeedDict=new FeedDict(feedDict);for(let i=0;iprobe.maxNumTensors&&(probe.maxNumTensors=numTensors),numTensors0,()=>"Expected at least one fetch, got none");let finalSorted=[],finalRecipientMap={};if(fetches.length===1){let out=getTopologicalSortAndRecipientCountsForOneFetch(fetches[0],feedDict);finalSorted=out.sorted,finalRecipientMap=out.recipientMap}else{let visited=new Set;for(let fetch3 of fetches){let{sorted,recipientMap}=getTopologicalSortAndRecipientCountsForOneFetch(fetch3,feedDict);for(let symbolicTensor of sorted)visited.has(symbolicTensor.name)||(finalSorted.push(symbolicTensor),visited.add(symbolicTensor.name));for(let name in recipientMap)finalRecipientMap[name]==null&&(finalRecipientMap[name]=new Set),recipientMap[name].forEach(recipient=>finalRecipientMap[name].add(recipient))}}return{sorted:finalSorted,recipientCounts:recipientMap2Counts(finalRecipientMap)}}function recipientMap2Counts(recipientMap){let recipientCounts={};for(let name in recipientMap)recipientCounts[name]=recipientMap[name].size;return recipientCounts}function getTopologicalSortAndRecipientCountsForOneFetch(fetch3,feedDict){let visited=new Set,sorted=[],recipientMap={};for(let key of feedDict.names())visited.add(key);let stack9=[],marks=[];for(stack9.push(fetch3);stack9.length>0;){let top=stack9[stack9.length-1];if(visited.has(top.name)){stack9.pop();continue}let topIsMarked=marks[marks.length-1]===stack9.length-1;if(top.inputs.length===0||topIsMarked)stack9.pop(),sorted.push(top),visited.add(top.name),topIsMarked&&marks.pop();else{marks.push(stack9.length-1);for(let input2 of top.inputs){if(recipientMap[input2.name]==null&&(recipientMap[input2.name]=new Set),recipientMap[input2.name].add(top.name),visited.has(input2.name))continue;stack9.push(input2)}}}return{sorted,recipientMap}}function getNodeOutputs(fetch3){let layerOutputs;if(fetch3.sourceLayer.inboundNodes.length===1)layerOutputs=fetch3.sourceLayer.output;else{let nodeIndex=null;for(let i=0;ix.name)}`);unique5(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(x=>x.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let x of this.outputs){let layer=x.sourceLayer,nodeIndex=x.nodeIndex,tensorIndex=x.tensorIndex;this.outputLayers.push(layer),this.outputLayersNodeIndices.push(nodeIndex),this.outputLayersTensorIndices.push(tensorIndex)}for(let x of this.inputs){let layer=x.sourceLayer,nodeIndex=x.nodeIndex,tensorIndex=x.tensorIndex;assert2(nodeIndex===0,"input layer has >1 nodes"),assert2(tensorIndex===0,"input layer has >1 tensors"),this.inputLayers.push(layer),this.inputLayersNodeIndices.push(nodeIndex),this.inputLayersTensorIndices.push(tensorIndex)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let i=0;ix.shape),this.internalOutputShapes=this.outputs.map(x=>x.shape);let nodesDepths={},nodeIDToNode={},layersDepths={},layerIDToLayer={},layerIndices={},nodesInDecreasingDepth=[],buildMapOfGraph=(tensor168,finishedNodes2,nodesInProgress2,layer,nodeIndex,tensorIndex)=>{(layer==null||nodeIndex==null||tensorIndex==null)&&(layer=tensor168.sourceLayer,nodeIndex=tensor168.nodeIndex,tensorIndex=tensor168.tensorIndex);let node=layer.inboundNodes[nodeIndex];if(nodesInProgress2.indexOf(node)!==-1)throw new RuntimeError(`The tensor ${tensor168.name} at layer "${layer.name}" is part of a cycle.`);if(finishedNodes2.indexOf(node)!==-1)return;this.containerNodes.add(Container.nodeKey(layer,nodeIndex)),layer.id in layerIndices||(layerIndices[layer.id]=Object.keys(layerIndices).length),nodesInProgress2.indexOf(node)===-1&&nodesInProgress2.push(node);let numInboundLayers=node.inboundLayers.length;for(let i=0;i=0;)nodesInProgress2.splice(nodesInProgress2.indexOf(node),1);nodesInDecreasingDepth.push(node)},finishedNodes=[],nodesInProgress=[];for(let x of this.outputs)buildMapOfGraph(x,finishedNodes,nodesInProgress);let reversedNodesInDecreasingDepth=nodesInDecreasingDepth.slice().reverse();for(let node of reversedNodesInDecreasingDepth){nodeIDToNode[node.id]=node,node.id in nodesDepths||(nodesDepths[node.id]=0);let depth=nodesDepths[node.id],previousDepth=layersDepths[node.outboundLayer.id]==null?0:layersDepths[node.outboundLayer.id];depth=Math.max(depth,previousDepth),layersDepths[node.outboundLayer.id]=depth,layerIDToLayer[node.outboundLayer.id]=node.outboundLayer,nodesDepths[node.id]=depth;for(let i=0;iparseInt(x,10)).sort(reverseNumberCompare);this.layers=[];for(let depth of depthKeys){let layersForDepth=layersByDepth[depth];layersForDepth.sort((a,b)=>{let aIndex=layerIndices[a.id],bIndex=layerIndices[b.id];return aIndexbIndex?1:0});for(let layer of layersForDepth)layer instanceof Container&&this.internalContainerRefs.push(layer),this.layers.push(layer)}this.layersByDepth=layersByDepth,depthKeys=Object.keys(nodesByDepth).map(x=>parseInt(x,10)).sort(reverseNumberCompare);let computableTensors=this.inputs.slice(),layersWithCompleteInput=[];for(let depth of depthKeys)for(let node of nodesByDepth[depth]){let layer=node.outboundLayer;if(layer!=null){for(let x of node.inputTensors)if(computableTensors.indexOf(x)===-1)throw new RuntimeError(`Graph disconnected: cannot obtain value for tensor ${x} at layer "${layer.name}". The following previous layers were accessed without issue: ${layersWithCompleteInput}`);for(let x of node.outputTensors)computableTensors.push(x);layersWithCompleteInput.push(layer.name)}}this.nodesByDepth=nodesByDepth;let allNames=this.layers.map(x=>x.name);for(let name of allNames){let numOccurrences=allNames.filter(x=>x===name).length;if(numOccurrences!==1)throw new RuntimeError(`The name "${name}" is used ${numOccurrences} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(allNames))}this.outboundNodes=[],this.inboundNodes=[],new Node({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(x=>null),outputMasks:this.outputs.map(x=>null),inputShapes:this.inputs.map(x=>x.shape),outputShapes:this.outputs.map(x=>x.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let result={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let layer of this.layers)result.numDisposedVariables+=layer.dispose().numDisposedVariables;for(let container2 of this.internalContainerRefs)result.numDisposedVariables+=container2.dispose().numDisposedVariables}return result.refCountAfterDispose=this._refCount,result}get trainable(){return this.trainable_}set trainable(trainable){this.layers.forEach(layer=>{layer._trainableWeights.forEach(w=>w.trainable=trainable)}),this.trainable_=trainable}get trainableWeights(){if(this._trainableWeights.length>0)throw new ValueError("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let weights=[];for(let layer of this.layers)weights=weights.concat(layer.trainableWeights);return weights}get nonTrainableWeights(){let weights=[];for(let layer of this.layers)weights.push(...layer.nonTrainableWeights);if(!this.trainable){let trainableWeights=[];for(let layer of this.layers)trainableWeights.push(...layer.trainableWeights);return trainableWeights.concat(weights)}return weights}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(weights,strict=!0){let nameToWeight={},totalWeightsCount=0;for(let layer of this.layers)for(let weight of layer.weights){if(nameToWeight[weight.originalName]!=null)throw new ValueError(`Duplicate weight name: ${weight.originalName}`);nameToWeight[weight.originalName]=weight,totalWeightsCount++}let weightValueTuples=[];for(let name in weights){let validatedName=name;if(nameToWeight[name]==null){let tokens=name.split("/"),shortenNameArray=tokens.slice(0,-2).concat([tokens[tokens.length-1]]);validatedName=shortenNameArray.join("/")}if(nameToWeight[validatedName]!=null)weightValueTuples.push([nameToWeight[validatedName],weights[name]]);else if(strict)throw new ValueError(`Provided weight data has no target variable: ${name}`);delete nameToWeight[validatedName]}if(strict){let unsetNames=[];for(let name in nameToWeight)unsetNames.push(name);if(unsetNames.length>0)throw new ValueError(`${unsetNames.length} of ${totalWeightsCount} weights are not set: ${unsetNames}`)}batchSetValue(weightValueTuples)}updatedConfig(){let theConfig=this.getConfig(),modelConfig={};return modelConfig.className=this.getClassName(),modelConfig.config=theConfig,modelConfig.kerasVersion=`tfjs-layers ${version2}`,modelConfig.backend="TensorFlow.js",modelConfig}toJSON(unused,returnString=!0){let modelConfig=convertTsToPythonic(this.updatedConfig());return returnString?JSON.stringify(modelConfig):modelConfig}call(inputs,kwargs){return tidy(()=>{inputs=toList(inputs);let feedDict=new FeedDict;for(let i=0;i{inputs=toList(inputs);let masks;return mask==null?masks=pyListRepeat(null,inputs.length):masks=toList(mask),this.runInternalGraph(inputs,masks)[1]})}computeOutputShape(inputShape){let inputShapes=normalizeShapeList(inputShape);if(inputShapes.length!==this.inputLayers.length)throw new ValueError(`Invalid inputShape argument ${inputShape}: model has ${this.inputLayers.length} tensor inputs.`);let layersToOutputShapes={};for(let i=0;iparseInt(x,10)).sort(reverseNumberCompare);if(depthKeys.length>1)for(let depth of depthKeys){let nodes=this.nodesByDepth[depth];for(let node of nodes){let layer=node.outboundLayer;if(this.inputLayers.map(x=>x.id).indexOf(layer.id)!==-1)continue;let inputShapes2=[];for(let j=0;jparseInt(x,10)).sort(reverseNumberCompare);for(let depth of depthKeys){let nodes=this.nodesByDepth[depth];for(let node of nodes){let layer=node.outboundLayer,referenceInputTensors=node.inputTensors,referenceOutputTensors=node.outputTensors,computedData=new Array;for(let x of referenceInputTensors)x.id in tensorMap&&computedData.push(tensorMap[x.id]);if(computedData.length===referenceInputTensors.length){let kwargs={},computedTensors,computedMasks,outputTensors2,outputMasks2;if(node.callArgs!=null&&(kwargs=node.callArgs),computedData.length===1){let[computedTensor,computedMask]=computedData[0];kwargs.mask==null&&(kwargs.mask=computedMask),outputTensors2=toList(layer.call(computedTensor,kwargs)),outputMasks2=toList(layer.computeMask(computedTensor,computedMask)),computedTensors=[computedTensor],computedMasks=[computedMask]}else computedTensors=computedData.map(x=>x[0]),computedMasks=computedData.map(x=>x[1]),kwargs.mask==null&&(kwargs.mask=computedMasks),outputTensors2=toList(layer.call(computedTensors,kwargs)),outputMasks2=toList(layer.computeMask(computedTensors,computedMasks));if(layer.activityRegularizer)throw new NotImplementedError("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let i=0;i{let losses8=[];for(let layer of this.layers)for(let nodeIndex=0;nodeIndex0){let nodeData=[];for(let i=0;i0&&layer.apply(singletonOrArray(inputTensors2),kwargs)}function processLayer(layerData){let layerName=layerData.name,layer=deserialize(layerData,config.customObjects!=null?config.customObjects:{});layer.setFastWeightInitDuringBuild(fastWeightInit),createdLayers[layerName]=layer;let inboundNodesData=layerData.inboundNodes;inboundNodesData.forEach(nodeData=>{if(!(nodeData instanceof Array))throw new ValueError(`Corrupted configuration, expected array for nodeData: ${nodeData}`);addUnprocessedNode(layer,nodeData)})}let name=config.name,layersFromConfig=config.layers;for(let layerData of layersFromConfig)processLayer(layerData);for(;!isObjectEmpty(unprocessedNodes);)for(let layerData of layersFromConfig){let layer=createdLayers[layerData.name];if(layer.name in unprocessedNodes){let currentUnprocessedNodesForLayer=unprocessedNodes[layer.name];delete unprocessedNodes[layer.name];for(let nodeData of currentUnprocessedNodesForLayer)processNode(layer,nodeData)}}let inputTensors=[],outputTensors=[],inputLayersFromConfig=config.inputLayers;for(let layerData of inputLayersFromConfig){let layerName=layerData[0],nodeIndex=layerData[1],tensorIndex=layerData[2];assert2(layerName in createdLayers);let layer=createdLayers[layerName],layerOutputTensors=layer.inboundNodes[nodeIndex].outputTensors;inputTensors.push(layerOutputTensors[tensorIndex])}let outputLayersFromConfig=config.outputLayers;for(let layerData of outputLayersFromConfig){let layerName=layerData[0],nodeIndex=layerData[1],tensorIndex=layerData[2];assert2(layerName in createdLayers);let layer=createdLayers[layerName],layerOutputTensors=layer.inboundNodes[nodeIndex].outputTensors;outputTensors.push(layerOutputTensors[tensorIndex])}return new cls({inputs:inputTensors,outputs:outputTensors,name})}get stateful(){if(this._stateful)throw new ValueError("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let layer of this.layers)if(layer.stateful)return!0;return!1}resetStates(){tidy(()=>{this.layers.forEach(layer=>{layer.stateful&&layer.resetStates()})})}};function standardizeSampleOrClassWeights(xWeight,outputNames,weightType){let numOutputs=outputNames.length;if(xWeight==null||Array.isArray(xWeight)&&xWeight.length===0)return outputNames.map(name=>null);if(numOutputs===1)return Array.isArray(xWeight)&&xWeight.length===1?xWeight:typeof xWeight=="object"&&outputNames[0]in xWeight?[xWeight[outputNames[0]]]:[xWeight];if(Array.isArray(xWeight)){if(xWeight.length!==numOutputs)throw new Error(`Provided ${weightType} is an array of ${xWeight.length} element(s), but the model has ${numOutputs} outputs. Make sure a set of weights is provided for each model output.`);return xWeight}else if(typeof xWeight=="object"&&Object.keys(xWeight).length>0&&typeof xWeight[Object.keys(xWeight)[0]]=="object"){let output=[];return outputNames.forEach(outputName=>{outputName in xWeight?output.push(xWeight[outputName]):output.push(null)}),output}else throw new Error(`The model has multiple (${numOutputs}) outputs, so ${weightType} must be either an array with ${numOutputs} elements or an object with ${outputNames} keys. Provided ${weightType} not understood: ${JSON.stringify(xWeight)}`)}function standardizeClassWeights(classWeight,outputNames){return standardizeSampleOrClassWeights(classWeight,outputNames,"classWeight")}async function standardizeWeights(y,sampleWeight,classWeight,sampleWeightMode){if(sampleWeight!=null||sampleWeightMode!=null)throw new Error("Support sampleWeight is not implemented yet");if(classWeight!=null){let yClasses=tidy(()=>{if(y.shape.length===1)return y.clone();if(y.shape.length===2)if(y.shape[1]>1){let axis=1;return y.argMax(axis)}else{if(y.shape[1]===1)return y.reshape([y.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${y.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${y.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),yClassIndices=Array.from(await yClasses.data());dispose(yClasses);let classSampleWeight=[];return yClassIndices.forEach(classIndex=>{if(classWeight[classIndex]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${classIndex} exists in the data but not in classWeight`);classSampleWeight.push(classWeight[classIndex])}),tensor1d(classSampleWeight,"float32")}else return null}function computeWeightedLoss2(losses8,sampleWeights){return mul(losses8,sampleWeights)}var DEFAULT_VALIDATION_BATCH_SIZE=32;function standardizeDataIteratorOutput(model2,iteratorOut){let xs,ys,iteratorOutObj=iteratorOut;xs=iteratorOutObj.xs,ys=iteratorOutObj.ys,util_exports.assert(xs!=null&&ys!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${iteratorOut}`);let flattenedXs=flattenTensorOrArrayOrMap("input",model2.inputNames,xs),flattenedYs=flattenTensorOrArrayOrMap("output",model2.outputNames,ys),batchSize=flattenedXs[0].shape[0];util_exports.assert(flattenedXs.length===model2.inputs.length,()=>`LayersModel has ${model2.inputs.length} inputs, but the dataset provides ${flattenedXs.length} inputs. (Expected input keys: ${JSON.stringify(model2.inputNames)})`),util_exports.assert(flattenedYs.length===model2.outputs.length,()=>`LayersModel has ${model2.outputs.length} outputs, but the dataset provides ${flattenedYs.length} outputs. (Expected output keys: ${JSON.stringify(model2.outputNames)})`);for(let xIndex=0;xIndex`Batch size mismatch: input ${model2.inputNames[xIndex]} has ${flattenedXs[xIndex].shape[0]}; expected ${batchSize} based on input ${model2.inputNames[0]}.`);for(let yIndex=0;yIndex`Batch size mismatch: output ${model2.outputNames[yIndex]} has ${flattenedYs[yIndex].shape[0]}; expected ${batchSize} based on input ${model2.inputNames[0]}.`);return{xs:flattenedXs,ys:flattenedYs}}function flattenTensorOrArrayOrMap(inputOrOutput,names,values){if(values instanceof Tensor)return[values];if(Array.isArray(values))return util_exports.assert(values.length===names.length,()=>`Received an array of ${values.length} Tensors, but expected ${names.length} to match the ${inputOrOutput} keys ${names}.`),values;{let result=[];for(let name of names){if(values[name]==null)throw new ValueError(`The feature data generated by the dataset lacks the required ${inputOrOutput} key '${name}'.`);result.push(values[name])}return result}}function standardizeTensorValidationData(data2){if(data2.length===3)throw new NotImplementedError("Validation with sample weights is not implemented yet.");return{xs:data2[0],ys:data2[1]}}async function fitDataset(model2,dataset5,args){let hasBatchesPerEpoch=args.batchesPerEpoch!=null;if(util_exports.assert(model2.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),util_exports.assert(args!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),util_exports.assert(args.epochs!=null&&args.epochs>0&&Number.isInteger(args.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${args.epochs}`),util_exports.assert(!hasBatchesPerEpoch||args.batchesPerEpoch>0&&Number.isInteger(args.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${args.batchesPerEpoch}`),util_exports.assert(args.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),model2.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");model2.isTraining=!0;try{let doValidation=args.validationData!=null,valXs,valYs;if(doValidation)if(isDatasetObject(args.validationData))util_exports.assert(args.validationBatches==null||args.validationBatches>0&&Number.isInteger(args.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${args.validationBatches}`);else{let validationData=standardizeTensorValidationData(args.validationData);valXs=validationData.xs,valYs=validationData.ys}let trainFunction=model2.makeTrainFunction(),outLabels=model2.getDedupedMetricsNames(),callbackMetrics;doValidation?callbackMetrics=outLabels.slice().concat(outLabels.map(n=>"val_"+n)):callbackMetrics=outLabels.slice();let callbacks3=standardizeCallbacks(args.callbacks,args.yieldEvery),verbose=args.verbose==null?1:args.verbose,{callbackList,history}=configureCallbacks(callbacks3,verbose,args.epochs,null,null,getStepsPerEpoch(dataset5,args),null,doValidation,callbackMetrics);callbackList.setModel(model2),model2.history=history,await callbackList.onTrainBegin(),model2.stopTraining_=!1;let epoch=args.initialEpoch==null?0:args.initialEpoch,dataIterator=await dataset5.iterator();for(;epoch=args.batchesPerEpoch:iteratorOut.done){if(doValidation){let valOuts;isDatasetObject(args.validationData)?valOuts=toList(await model2.evaluateDataset(args.validationData,{batches:args.validationBatches})):valOuts=toList(model2.evaluate(valXs,valYs,{batchSize:args.validationBatchSize==null?DEFAULT_VALIDATION_BATCH_SIZE:args.validationBatchSize,verbose:0}));for(let i=0;i0)throw new NotImplementedError("Verbose mode is not implemented yet.");util_exports.assert(!hasBatches||args.batches>0&&Number.isInteger(args.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(args.batches)}`);let dataIterator=isLazyIteratorObject(dataset5)?dataset5:await dataset5.iterator(),numExamples=0,batch=0;for(;hasBatches?batch{if(iteratorOut.value){let{xs,ys}=standardizeDataIteratorOutput(model2,iteratorOut.value),xsAndYs=xs.concat(ys),batchOuts=tidy(()=>f(xsAndYs));if(dispose(xsAndYs),batch===0)for(let i=0;iadd2(outs[i],mul(batchSize,batchOut))),batch>0&&dispose(oldScalar)}dispose(batchOuts),numExamples+=batchSize,++batch}return outs}),iteratorOut.done){hasBatches&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${args.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let i=0;i0&&Number.isInteger(batchSize),()=>`batchSize is required to be a positive integer, but got ${batchSize}`)}function sliceArrays(arrays,start,stop){return arrays==null?[null]:Array.isArray(arrays)?arrays.map(array2=>sliceAlongFirstAxis(array2,start,stop-start)):sliceAlongFirstAxis(arrays,start,stop-start)}function sliceArraysByIndices(arrays,indices){return tidy(()=>arrays==null?null:Array.isArray(arrays)?arrays.map(array2=>sliceArraysByIndices(array2,indices)):gather7(arrays,indices.dtype==="int32"?indices:indices.toInt()))}function makeBatches(size,batchSize){let output=[],batchStart=0,batchEnd=null;for(;batchStart=size&&(batchEnd=size),output.push([batchStart,batchEnd]),batchStart=batchEnd;return output}async function fitLoop(model2,f,ins,outLabels,batchSize,epochs,verbose,callbacks3,valF,valIns,shuffle2,callbackMetrics,initialEpoch,stepsPerEpoch,validationSteps){batchSize==null&&(batchSize=32),epochs==null&&(epochs=1),shuffle2==null&&(shuffle2=!0),initialEpoch==null&&(initialEpoch=0);let doValidation=!1;if(valF!=null&&valIns!=null&&(doValidation=!0),validationSteps!=null&&(doValidation=!0,stepsPerEpoch==null))throw new ValueError("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let numTrainSamples=model2.checkNumSamples(ins,batchSize,stepsPerEpoch,"steps_per_epoch"),indexArray;numTrainSamples!=null&&(indexArray=range4(0,numTrainSamples)),verbose==null&&(verbose=1);let{callbackList,history}=configureCallbacks(callbacks3,verbose,epochs,initialEpoch,numTrainSamples,stepsPerEpoch,batchSize,doValidation,callbackMetrics);callbackList.setModel(model2),model2.history=history,await callbackList.onTrainBegin(),model2.stopTraining_=!1;for(let epoch=initialEpoch;epoch{let batchStart=batches[batchIndex][0],batchEnd=batches[batchIndex][1],batchIds=sliceAlongFirstAxis(epochIndexArray1D,batchStart,batchEnd-batchStart);batchLogs.batch=batchIndex,batchLogs.size=batchEnd-batchStart;let insBatch=sliceArraysByIndices(ins,batchIds),outs=f(insBatch);for(let i=0;i0){if(doValidation=!0,args.validationData.length===2)inputValX=args.validationData[0],inputValY=args.validationData[1];else throw args.validationData.length===3?new NotImplementedError("validationData including sample weights is not supported yet."):new ValueError(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${args.validationData} is invalid.`);let checkBatchAxis2=!0,valStandardized=await model2.standardizeUserData(inputValX,inputValY,null,null,checkBatchAxis2,batchSize);valX=valStandardized[0],valY=valStandardized[1],valIns=valX.concat(valY)}else if(args.validationSplit!=null&&args.validationSplit>0&&args.validationSplit<1){doValidation=!0;let splitAt=Math.floor(inputs[0].shape[0]*(1-args.validationSplit)),originalBatchSize=inputs[0].shape[0];valX=sliceArrays(inputs,splitAt,originalBatchSize),inputs=sliceArrays(inputs,0,splitAt),valY=sliceArrays(targets,splitAt,originalBatchSize),targets=sliceArrays(targets,0,splitAt),valIns=valX.concat(valY)}else args.validationSteps!=null&&(doValidation=!0);let ins=inputs.concat(targets).concat(sampleWeights);model2.checkTrainableWeightsConsistency();let trainFunction=model2.makeTrainFunction(),outLabels=model2.getDedupedMetricsNames(),valFunction,callbackMetrics;doValidation?(model2.makeTestFunction(),valFunction=model2.testFunction,callbackMetrics=outLabels.slice().concat(outLabels.map(n=>"val_"+n))):(valFunction=null,valIns=[],callbackMetrics=outLabels.slice());let callbacks3=standardizeCallbacks(args.callbacks,args.yieldEvery),out=await fitLoop(model2,trainFunction,ins,outLabels,batchSize,args.epochs,args.verbose,callbacks3,valFunction,valIns,args.shuffle,callbackMetrics,args.initialEpoch,null,null);return out}finally{model2.isTraining=!1,disposeNewTensors(inputs,x),disposeNewTensors(targets,y),disposeNewTensors(valX,inputValX),disposeNewTensors(valY,inputValY),sampleWeights!=null&&dispose(sampleWeights)}}function ensureTensorsRank2OrHigher(tensors){let outs=[];tensors instanceof Tensor&&(tensors=[tensors]);for(let i=0;ioldTensorIds.push(t.id));else if(refTensors!=null)for(let name in refTensors){let oldTensor=refTensors[name];oldTensorIds.push(oldTensor.id)}let tensorsToDispose=[];if(tensors instanceof Tensor)oldTensorIds.indexOf(tensors.id)===-1&&tensorsToDispose.push(tensors);else if(Array.isArray(tensors))tensors.forEach(t=>{oldTensorIds.indexOf(t.id)===-1&&tensorsToDispose.push(t)});else if(tensors!=null)for(let name in tensors){let tensor168=tensors[name];oldTensorIds.indexOf(tensor168.id)===-1&&tensorsToDispose.push(tensor168)}tensorsToDispose.forEach(t=>{t.isDisposed||t.dispose()})}function isDataTensor(x){return x instanceof Tensor}function isDataArray(x){return Array.isArray(x)}function isDataDict(x){return!isDataTensor(x)&&!isDataArray(x)}function standardizeInputData(data2,names,shapes,checkBatchAxis=!0,exceptionPrefix=""){if(names==null||names.length===0){if(data2!=null){let gotUnexpectedData=!1;if(isDataArray(data2)&&data2.length>0)gotUnexpectedData=!0;else if(isDataDict(data2)){for(let key in data2)if(data2.hasOwnProperty(key)){gotUnexpectedData=!0;break}}else gotUnexpectedData=!0;if(gotUnexpectedData)throw new ValueError(`Error when checking model ${exceptionPrefix} expected no data, but got ${data2}`)}return[]}if(data2==null)return names.map(name=>null);let arrays;if(isDataDict(data2)){data2=data2,arrays=[];for(let name of names){if(data2[name]==null)throw new ValueError(`No data provided for "${name}". Need data for each key in: ${names}`);arrays.push(data2[name])}}else if(isDataArray(data2)){if(data2=data2,data2.length!==names.length)throw new ValueError(`Error when checking model ${exceptionPrefix}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${names.length} Tensor(s), but instead got the following list of Tensor(s): ${data2}`);arrays=data2}else{if(data2=data2,names.length>1)throw new ValueError(`The model ${exceptionPrefix} expects ${names.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${data2.shape}`);arrays=[data2]}if(arrays=ensureTensorsRank2OrHigher(arrays),shapes!=null)for(let i=0;i=0&&dim!==refDim)throw new ValueError(`Error when checking ${exceptionPrefix}: expected ${names[i]} to have shape [${shapes[i]}], but got array with shape [${array2.shape}].`)}}return arrays}function checkArrayLengths(inputs,targets,weights){let setX=unique5(inputs.map(input2=>input2.shape[0]));setX.sort();let setY=unique5(targets.map(target=>target.shape[0]));if(setY.sort(),setX.length>1)throw new ValueError(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(inputs.map(input2=>input2.shape))}`);if(setY.length>1)throw new ValueError(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(targets.map(target=>target.shape))}`);if(setX.length>0&&setY.length>0&&!util_exports.arraysEqual(setX,setY))throw new ValueError(`Input Tensors should have the same number of samples as target Tensors. Found ${setX[0]} input sample(s) and ${setY[0]} target sample(s).`)}function checkLossAndTargetCompatibility(targets,lossFns,outputShapes){let keyLosses=[meanSquaredError2,binaryCrossentropy,categoricalCrossentropy];for(let i=0;i1)throw new ValueError(`The model expects ${names.length} ${exceptionPrefix} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(data2.shape)}.`);arrays=[data2]}if(shapes!=null)for(let i=0;i[]);let wrappedMetrics;if(typeof metrics2=="string"||typeof metrics2=="function")wrappedMetrics=[metrics2];else if(Array.isArray(metrics2)||typeof metrics2=="object")wrappedMetrics=metrics2;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${metrics2}`);if(Array.isArray(wrappedMetrics))return outputNames.map(name=>wrappedMetrics);{let nestedMetrics=[];for(let name of outputNames){let outputMetrics=wrappedMetrics.hasOwnProperty(name)?wrappedMetrics[name]:[];Array.isArray(outputMetrics)||(outputMetrics=[outputMetrics]),nestedMetrics.push(outputMetrics)}return nestedMetrics}}var LAYERS_MODEL_FORMAT_NAME="layers-model",LayersModel=class extends Container{constructor(args){super(args);this.isTraining=!1}summary(lineLength,positions,printFn=console.log){if(!this.built)throw new ValueError("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");printSummary(this,lineLength,positions,printFn)}compile(args){if(args.loss==null&&(args.loss=[]),this.loss=args.loss,typeof args.optimizer=="string")this.optimizer_=getOptimizer(args.optimizer),this.isOptimizerOwned=!0;else{if(!(args.optimizer instanceof Optimizer))throw new ValueError("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=args.optimizer,this.isOptimizerOwned=!1}let lossFunctions=[];if(!Array.isArray(args.loss)&&typeof args.loss!="string"&&typeof args.loss!="function"){args.loss=args.loss;for(let name in args.loss)if(this.outputNames.indexOf(name)===-1)throw new ValueError(`Unknown entry in loss dictionary: "${name}". Only expected the following keys: ${this.outputNames}`);for(let name of this.outputNames)args.loss[name]==null&&console.warn(`Output "${name}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${name} during training`),lossFunctions.push(get(args.loss[name]))}else if(Array.isArray(args.loss)){if(args.loss.length!==this.outputs.length)throw new ValueError(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${args.loss}.`);let theLosses=args.loss;lossFunctions=theLosses.map(l=>get(l))}else{let lossFunction=get(args.loss);this.outputs.forEach(_=>{lossFunctions.push(lossFunction)})}this.lossFunctions=lossFunctions,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let i=0;i{for(let i=0;i1&&(this.metricsTensors.push([weightedLoss,i]),this.metricsNames.push(this.outputNames[i]+"_loss"))}});let nestedMetrics=collectMetrics(args.metrics,this.outputNames),appendMetric=(outputIndex,metricName,metricTensor)=>{this.outputNames.length>1&&(metricName=this.outputNames[outputIndex]+"_"+metricName),this.metricsNames.push(metricName),this.metricsTensors.push([metricTensor,outputIndex])};nameScope("metric",()=>{for(let i=0;i{let metricNamePrefix="",metricName,accFn,weightedMetricFn;for(let metric of metrics2){if(typeof metric=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(metric)!==-1){let outputShape=this.internalOutputShapes[i];outputShape[outputShape.length-1]===1||this.lossFunctions[i]===binaryCrossentropy?["accuracy","acc"].indexOf(metric)!==-1?accFn=binaryAccuracy:["crossentropy","ce"].indexOf(metric)!==-1&&(accFn=binaryCrossentropy2):this.lossFunctions[i]===sparseCategoricalCrossentropy?["accuracy","acc"].indexOf(metric)!==-1?accFn=sparseCategoricalAccuracy:["crossentropy","ce"].indexOf(metric)!==-1&&(accFn=sparseCategoricalCrossentropy2):["accuracy","acc"].indexOf(metric)!==-1?accFn=categoricalAccuracy:["crossentropy","ce"].indexOf(metric)!==-1&&(accFn=categoricalCrossentropy2);let suffix;["accuracy","acc"].indexOf(metric)!==-1?suffix="acc":["crossentropy","ce"].indexOf(metric)!==-1&&(suffix="ce"),weightedMetricFn=accFn,metricName=metricNamePrefix+suffix}else{let metricFn=get2(metric);weightedMetricFn=metricFn,metricName=metricNamePrefix+getLossOrMetricName(metric)}let metricResult;nameScope(metricName,()=>{metricResult=weightedMetricFn}),appendMetric(i,metricName,metricResult)}};handleMetrics(outputMetrics)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){if(this.collectedTrainableWeights==null)return;this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(x,y,args={}){let batchSize=args.batchSize==null?32:args.batchSize;checkBatchSize(batchSize);let checkBatchAxis=!0,standardizedOuts=this.standardizeUserDataXY(x,y,checkBatchAxis,batchSize);try{let ins=standardizedOuts[0].concat(standardizedOuts[1]);this.makeTestFunction();let f=this.testFunction,testOuts=this.testLoop(f,ins,batchSize,args.verbose,args.steps);return singletonOrArray(testOuts)}finally{disposeNewTensors(standardizedOuts[0],x),disposeNewTensors(standardizedOuts[1],y)}}async evaluateDataset(dataset5,args){return this.makeTestFunction(),evaluateDataset(this,dataset5,args)}checkNumSamples(ins,batchSize,steps,stepsName="steps"){let numSamples;if(steps!=null){if(numSamples=null,batchSize!=null)throw new ValueError(`If ${stepsName} is set, batchSize must be null or undefined.Got batchSize = ${batchSize}`)}else if(ins!=null)Array.isArray(ins)?numSamples=ins[0].shape[0]:numSamples=ins.shape[0];else throw new ValueError(`Either the input data should have a defined shape, or ${stepsName} shoud be specified.`);return numSamples}execute(inputs,outputs){if(Array.isArray(outputs)&&outputs.length===0)throw new ValueError("`outputs` is an empty Array, which is not allowed.");let outputsIsArray=Array.isArray(outputs),outputNames=outputsIsArray?outputs:[outputs],outputSymbolicTensors=this.retrieveSymbolicTensors(outputNames),feedDict=new FeedDict;if(inputs instanceof Tensor&&(inputs=[inputs]),Array.isArray(inputs)){if(inputs.length!==this.inputs.length)throw new ValueError(`The number of inputs provided (${inputs.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;ioutput.name);for(let i=0;i0){let remainingNames=[];throw outputSymbolicTensors.forEach((tensor168,i)=>{tensor168==null&&remainingNames.push(symbolicTensorNames[i])}),new ValueError(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(remainingNames)}`)}return outputSymbolicTensors}predictLoop(ins,batchSize=32,verbose=!1){return tidy(()=>{let numSamples=this.checkNumSamples(ins);if(verbose)throw new NotImplementedError("Verbose predictLoop() is not implemented yet.");let batches=makeBatches(numSamples,batchSize),outsBatches=this.outputs.map(output=>[]);for(let batchIndex=0;batchIndex{let batchStart=batches[batchIndex][0],batchEnd=batches[batchIndex][1],insBatch=sliceArrays(ins,batchStart,batchEnd),feeds=[];if(Array.isArray(insBatch))for(let i=0;ioutsBatches[i].push(batchOut))}return singletonOrArray(outsBatches.map(batches2=>concat(batches2,0)))})}predict(x,args={}){let xsRank2OrHigher=ensureTensorsRank2OrHigher(x);checkInputData(xsRank2OrHigher,this.inputNames,this.feedInputShapes,!1);try{let batchSize=args.batchSize==null?32:args.batchSize;return checkBatchSize(batchSize),this.predictLoop(xsRank2OrHigher,batchSize)}finally{disposeNewTensors(xsRank2OrHigher,x)}}predictOnBatch(x){checkInputData(x,this.inputNames,this.feedInputShapes,!0);let batchSize=(Array.isArray(x)?x[0]:x).shape[0];return this.predictLoop(x,batchSize)}standardizeUserDataXY(x,y,checkBatchAxis=!0,batchSize){if(this.optimizer_==null)throw new RuntimeError("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let outputShapes=[];for(let i=0;i0&&x[0].shape[0]%batchSize!==0)throw new ValueError(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${batchSize}. Found: ${x[0].shape[0]} sample(s).`);return[x,y]}async standardizeUserData(x,y,sampleWeight,classWeight,checkBatchAxis=!0,batchSize){let[standardXs,standardYs]=this.standardizeUserDataXY(x,y,checkBatchAxis,batchSize);if(sampleWeight!=null)throw new Error("sample weight is not supported yet.");let standardSampleWeights=null;if(classWeight!=null){let classWeights=standardizeClassWeights(classWeight,this.outputNames);standardSampleWeights=[];for(let i=0;i{let numSamples=this.checkNumSamples(ins,batchSize,steps,"steps"),outs=[];if(verbose>0)throw new NotImplementedError("Verbose mode is not implemented yet.");if(steps!=null)throw new NotImplementedError("steps mode in testLoop() is not implemented yet");{let batches=makeBatches(numSamples,batchSize),indexArray=tensor1d(range4(0,numSamples));for(let batchIndex=0;batchIndex1){let dupIndex=count(outLabels.slice(0,i),label);newLabel+=`_${dupIndex}`}dedupedOutLabels.push(newLabel)}return dedupedOutLabels}makeTrainFunction(){return data2=>{let lossValues=[],inputs=data2.slice(0,this.inputs.length),targets=data2.slice(this.inputs.length,this.inputs.length+this.outputs.length),sampleWeights=data2.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),metricsValues=[],totalLossFunction=()=>{let feeds=[];for(let i=0;i1&&i{totalLoss=add2(totalLoss,regularizerLoss)}),totalLoss},variables5=this.collectedTrainableWeights.map(param=>param.read()),returnCost=!0,totalLossValue=this.optimizer_.minimize(totalLossFunction,returnCost,variables5);return[totalLossValue].concat(metricsValues)}}makeTestFunction(){this.testFunction=data2=>tidy(()=>{let valOutputs=[],totalLoss,inputs=data2.slice(0,this.inputs.length),targets=data2.slice(this.inputs.length,this.inputs.length+this.outputs.length),feeds=[];for(let i=0;itoSnakeCase(name))}else{let outputNames=Object.keys(this.loss);lossNames={};let losses8=this.loss;for(let outputName of outputNames)if(typeof losses8[outputName]=="string")lossNames[outputName]=toSnakeCase(losses8[outputName]);else throw new Error("Serialization of non-string loss is not supported.")}return lossNames}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[toSnakeCase(getLossOrMetricName(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(metric=>toSnakeCase(getLossOrMetricName(metric)));{let metricsIdentifiers={};for(let key in this.metrics)metricsIdentifiers[key]=toSnakeCase(getLossOrMetricName(this.metrics[key]));return metricsIdentifiers}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(trainingConfig){if(trainingConfig.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(trainingConfig.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(trainingConfig.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let tsConfig=convertPythonicToTs(trainingConfig.optimizer_config),optimizer7=deserialize(tsConfig),loss;if(typeof trainingConfig.loss=="string")loss=toCamelCase(trainingConfig.loss);else if(Array.isArray(trainingConfig.loss))loss=trainingConfig.loss.map(lossEntry=>toCamelCase(lossEntry));else if(trainingConfig.loss!=null){loss={};for(let key in trainingConfig.loss)loss[key]=toCamelCase(trainingConfig.loss[key])}let metrics2;if(Array.isArray(trainingConfig.metrics))metrics2=trainingConfig.metrics.map(metric=>toCamelCase(metric));else if(trainingConfig.metrics!=null){metrics2={};for(let key in trainingConfig.metrics)metrics2[key]=toCamelCase(trainingConfig.metrics[key])}this.compile({loss,metrics:metrics2,optimizer:optimizer7})}async save(handlerOrURL,config){if(typeof handlerOrURL=="string"){let handlers=io_exports.getSaveHandlers(handlerOrURL);if(handlers.length===0)throw new ValueError(`Cannot find any save handlers for URL '${handlerOrURL}'`);if(handlers.length>1)throw new ValueError(`Found more than one (${handlers.length}) save handlers for URL '${handlerOrURL}'`);handlerOrURL=handlers[0]}if(handlerOrURL.save==null)throw new ValueError("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let weightDataAndSpecs=await io_exports.encodeWeights(this.getNamedWeights(config)),returnString=!1,unusedArg=null,modelConfig=this.toJSON(unusedArg,returnString),modelArtifacts={modelTopology:modelConfig,format:LAYERS_MODEL_FORMAT_NAME,generatedBy:`TensorFlow.js tfjs-layers v${version2}`,convertedBy:null},includeOptimizer=config==null?!1:config.includeOptimizer;if(includeOptimizer&&this.optimizer!=null){modelArtifacts.trainingConfig=this.getTrainingConfig();let weightType="optimizer",{data:optimizerWeightData,specs:optimizerWeightSpecs}=await io_exports.encodeWeights(await this.optimizer.getWeights(),weightType);weightDataAndSpecs.specs.push(...optimizerWeightSpecs),weightDataAndSpecs.data=io_exports.concatenateArrayBuffers([weightDataAndSpecs.data,optimizerWeightData])}if(this.userDefinedMetadata!=null){let checkSize=!0;checkUserDefinedMetadata(this.userDefinedMetadata,this.name,checkSize),modelArtifacts.userDefinedMetadata=this.userDefinedMetadata}return modelArtifacts.weightData=weightDataAndSpecs.data,modelArtifacts.weightSpecs=weightDataAndSpecs.specs,handlerOrURL.save(modelArtifacts)}setUserDefinedMetadata(userDefinedMetadata){checkUserDefinedMetadata(userDefinedMetadata,this.name),this.userDefinedMetadata=userDefinedMetadata}getUserDefinedMetadata(){return this.userDefinedMetadata}};LayersModel.className="Model";serialization_exports.registerClass(LayersModel);var Functional=class extends LayersModel{};Functional.className="Functional";serialization_exports.registerClass(Functional);async function modelFromJSON(modelAndWeightsConfig,customObjects){"modelTopology"in modelAndWeightsConfig||(modelAndWeightsConfig={modelTopology:modelAndWeightsConfig}),modelAndWeightsConfig=modelAndWeightsConfig;let modelTopology=modelAndWeightsConfig.modelTopology;modelTopology.model_config!=null&&(modelTopology=modelTopology.model_config);let tsConfig=convertPythonicToTs(modelTopology),model2=deserialize(tsConfig,customObjects);if(modelAndWeightsConfig.weightsManifest!=null){let weightValues=await io_exports.loadWeights(modelAndWeightsConfig.weightsManifest,modelAndWeightsConfig.pathPrefix,model2.weights.map(weight=>weight.originalName)),uniqueWeightValues={};for(let weight of model2.weights)uniqueWeightValues[weight.originalName]=weightValues[weight.originalName];model2.loadWeights(uniqueWeightValues),dispose(weightValues)}return model2}async function loadLayersModelInternal(pathOrIOHandler,options){if(options==null&&(options={}),typeof pathOrIOHandler=="string"){let handlers=io_exports.getLoadHandlers(pathOrIOHandler,options);if(handlers.length===0)handlers.push(io_exports.browserHTTPRequest(pathOrIOHandler,options));else if(handlers.length>1)throw new ValueError(`Found more than one (${handlers.length}) load handlers for URL '${pathOrIOHandler}'`);pathOrIOHandler=handlers[0]}return loadLayersModelFromIOHandler(pathOrIOHandler,void 0,options)}async function loadLayersModelFromIOHandler(handler,customObjects,options){if(options==null&&(options={}),handler.load==null)throw new ValueError("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let artifacts=await handler.load(),modelTopology=artifacts.modelTopology;modelTopology.model_config!=null&&(modelTopology=modelTopology.model_config);let strict=options.strict==null?!0:options.strict,fastWeightInit=artifacts.weightData!=null&&artifacts.weightSpecs!=null&&strict,model2=deserialize(convertPythonicToTs(modelTopology),customObjects,fastWeightInit),trainingConfig=artifacts.trainingConfig;if(trainingConfig!=null&&model2.loadTrainingConfig(trainingConfig),artifacts.userDefinedMetadata!=null&&model2.setUserDefinedMetadata(artifacts.userDefinedMetadata),artifacts.weightData!=null){if(artifacts.weightSpecs==null)throw new ValueError("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights,optimizerWeights}=decodeModelAndOptimizerWeights(artifacts.weightData,artifacts.weightSpecs);model2.loadWeights(modelWeights,strict),model2.optimizer!=null&&optimizerWeights.length>0&&await model2.optimizer.setWeights(optimizerWeights),dispose(modelWeights),dispose(optimizerWeights.map(w=>w.tensor))}return model2}function decodeModelAndOptimizerWeights(buffer11,specs){let name2Tensor=io_exports.decodeWeights(buffer11,specs),modelWeights={},optimizerWeights=[];return specs.forEach(spec=>{spec.group==="optimizer"?optimizerWeights.push({name:spec.name,tensor:name2Tensor[spec.name]}):modelWeights[spec.name]=name2Tensor[spec.name]}),{modelWeights,optimizerWeights}}var Sequential=class extends LayersModel{constructor(args){super({inputs:[],outputs:[]});if(args=args||{},this.trainable=!0,this.built=!1,this.name=args.name!=null?args.name:getUid("sequential_"),args.layers!=null)for(let layer of args.layers)this.add(layer)}checkShape(layer){let shape=layer.inboundNodes[0].outputTensors[0].shape;if(shape.some(x=>x<0))throw new ValueError(`Negative dimension size caused by adding layer ${layer.name} with input shape [${layer.inboundNodes[0].inputTensors[0].shape}]`)}add(layer){let isLayerModelInstance=layer instanceof Sequential||layer instanceof LayersModel,modelLayer;if(isLayerModelInstance){if(modelLayer=layer,modelLayer.outputs.length!==1)throw new ValueError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(modelLayer.inputs.length!==1)throw new ValueError("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(layer.inboundNodes.length===0){if(layer.batchInputShape==null)throw new ValueError("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let x=Input({batchShape:layer.batchInputShape,dtype:layer.dtype,name:layer.name+"_input"});layer.apply(x)}if(isLayerModelInstance)this.outputs=modelLayer.outputs,this.inputs=modelLayer.inputs;else{if(layer.inboundNodes.length!==1)throw new ValueError(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${layer.name} which has ${layer.inboundNodes.length} pre-existing inbound connections.`);if(layer.inboundNodes[0].outputTensors.length!==1)throw new ValueError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(layer),this.outputs=[layer.inboundNodes[0].outputTensors[0]],this.inputs=getSourceInputs(this.outputs[0])}this.inboundNodes=[],new Node({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:pyListRepeat(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(x=>x.shape),outputShapes:this.outputs[0].shape})}else{let outputTensor=layer.apply(this.outputs[0]);if(Array.isArray(outputTensor))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(layer),this.outputs=[outputTensor],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(layer),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let lastLayerIndex=this.layers.length-1;this.layers[lastLayerIndex].outboundNodes=[],this.outputs=[this.layers[lastLayerIndex].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(inputs,kwargs){return this.model==null&&this.build(),this.model.call(inputs,kwargs)}build(inputShape){if(getExactlyOneShape(inputShape),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new LayersModel({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(lineLength,positions,printFn=console.log){this.built||this.build(),super.summary(lineLength,positions,printFn)}setWeights(weights){this.model==null&&this.build(),this.model.setWeights(weights)}evaluate(x,y,args={}){if(!this.built)throw new RuntimeError("The model needs to be compiled before being used.");return this.model.evaluate(x,y,args)}async evaluateDataset(dataset5,args){if(!this.built)throw new RuntimeError("The model needs to be compiled before being used.");return this.model.evaluateDataset(dataset5,args)}predict(x,args={}){return this.model==null&&this.build(),this.model.predict(x,args)}predictOnBatch(x){return this.model==null&&this.build(),this.model.predictOnBatch(x)}compile(args){this.build(),this.model.compile(args),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(optimizer7){this.model.optimizer=optimizer7}async fit(x,y,args={}){if(!this.built)throw new RuntimeError("The model needs to be compiled before being used.");return this.model.fit(x,y,args)}async fitDataset(dataset5,args){if(!this.built)throw new RuntimeError("The model needs to be compiled before being used.");return this.model.fitDataset(dataset5,args)}async trainOnBatch(x,y){return this.model.trainOnBatch(x,y)}static fromConfig(cls,config,customObjects={},fastWeightInit=!1){let configArray,extraModelConfig={};if(config instanceof Array){if(!(config[0].className!=null)||config[0].className==="Merge")throw new ValueError("Legacy serialization format not supported yet.");configArray=config}else util_exports.assert(config.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),configArray=config.layers,delete config.layers,extraModelConfig=config;let model2=new cls(extraModelConfig);if(!(model2 instanceof Sequential))throw new NotImplementedError(`Sequential.fromConfig called on non-Sequential input: ${model2}`);for(let conf of configArray){let customObjects2,layer=deserialize(conf,customObjects2,fastWeightInit);fastWeightInit&&layer.setFastWeightInitDuringBuild(!0),model2.add(layer)}return model2}set stopTraining(stop){if(this.model==null)throw new ValueError("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=stop}get stopTraining(){if(this.model==null)throw new ValueError("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let layers=[];for(let layer of this.layers){let dict={};dict.className=layer.getClassName(),dict.config=layer.getConfig(),layers.push(dict)}return{name:this.name,layers}}};Sequential.className="Sequential";serialization_exports.registerClass(Sequential);function model(args){return new LayersModel(args)}function sequential(config){return new Sequential(config)}function loadLayersModel(pathOrIOHandler,options){return options==null&&(options={}),loadLayersModelInternal(pathOrIOHandler,options)}function input(config){return Input(config)}function registerCallbackConstructor(verbosityLevel,callbackConstructor){CallbackConstructorRegistry.registerCallbackConstructor(verbosityLevel,callbackConstructor)}var Activation=class extends serialization_exports.Serializable{getConfig(){return{}}},Elu2=class extends Activation{apply(x,alpha=1){return elu6(x,alpha)}};Elu2.className="elu";serialization_exports.registerClass(Elu2);var Selu2=class extends Activation{apply(x){return selu(x)}};Selu2.className="selu";serialization_exports.registerClass(Selu2);var Relu2=class extends Activation{apply(x){return relu(x)}};Relu2.className="relu";serialization_exports.registerClass(Relu2);var Relu62=class extends Activation{apply(x){return tidy(()=>minimum(6,relu(x)))}};Relu62.className="relu6";serialization_exports.registerClass(Relu62);var Linear=class extends Activation{apply(x){return x}};Linear.className="linear";serialization_exports.registerClass(Linear);var Sigmoid2=class extends Activation{apply(x){return sigmoid(x)}};Sigmoid2.className="sigmoid";serialization_exports.registerClass(Sigmoid2);var HardSigmoid=class extends Activation{apply(x){return hardSigmoid(x)}};HardSigmoid.className="hardSigmoid";serialization_exports.registerClass(HardSigmoid);var Softplus2=class extends Activation{apply(x){return softplus(x)}};Softplus2.className="softplus";serialization_exports.registerClass(Softplus2);var Softsign=class extends Activation{apply(x){return softsign(x)}};Softsign.className="softsign";serialization_exports.registerClass(Softsign);var Tanh2=class extends Activation{apply(x){return tanh2(x)}};Tanh2.className="tanh";serialization_exports.registerClass(Tanh2);var Softmax2=class extends Activation{apply(x,axis=-1){return softmax(x,axis)}};Softmax2.className="softmax";serialization_exports.registerClass(Softmax2);var LogSoftmax2=class extends Activation{apply(x,axis=-1){return logSoftmax(x,axis)}};LogSoftmax2.className="logSoftmax";serialization_exports.registerClass(LogSoftmax2);var Swish=class extends Activation{apply(x,alpha=1){return tidy(()=>sigmoid(x.mul(alpha)).mul(x))}};Swish.className="swish";serialization_exports.registerClass(Swish);function serializeActivation(activation2){return activation2.getClassName()}function deserializeActivation(config,customObjects={}){return deserializeKerasObject(config,serialization_exports.SerializationMap.getMap().classNameMap,customObjects,"activation")}function getActivation(identifier){if(identifier==null){let config={};return config.className="linear",config.config={},deserializeActivation(config)}if(typeof identifier=="string"){let config={};return config.className=identifier,config.config={},deserializeActivation(config)}else return identifier instanceof Activation?identifier:deserializeActivation(identifier)}function assertObjectArgs(args){if(args!=null&&typeof args!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${args}`)}var Regularizer=class extends serialization_exports.Serializable{},L1L2=class extends Regularizer{constructor(args){super();assertObjectArgs(args),this.l1=args==null||args.l1==null?.01:args.l1,this.l2=args==null||args.l2==null?.01:args.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(x){return tidy(()=>{let regularization=zeros([1]);return this.hasL1&&(regularization=add2(regularization,sum2(mul(this.l1,abs(x))))),this.hasL2&&(regularization=add2(regularization,sum2(mul(this.l2,square24(x))))),regularization.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(cls,config){return new cls({l1:config.l1,l2:config.l2})}};L1L2.className="L1L2";serialization_exports.registerClass(L1L2);function l1(args){return assertObjectArgs(args),new L1L2({l1:args!=null?args.l1:null,l2:0})}function l2(args){return assertObjectArgs(args),new L1L2({l2:args!=null?args.l2:null,l1:0})}var REGULARIZER_IDENTIFIER_REGISTRY_SYMBOL_MAP={l1l2:"L1L2"};function serializeRegularizer(constraint){return serializeKerasObject(constraint)}function deserializeRegularizer(config,customObjects={}){return deserializeKerasObject(config,serialization_exports.SerializationMap.getMap().classNameMap,customObjects,"regularizer")}function getRegularizer(identifier){if(identifier==null)return null;if(typeof identifier=="string"){let className=identifier in REGULARIZER_IDENTIFIER_REGISTRY_SYMBOL_MAP?REGULARIZER_IDENTIFIER_REGISTRY_SYMBOL_MAP[identifier]:identifier,config={className,config:{}};return deserializeRegularizer(config)}else return identifier instanceof Regularizer?identifier:deserializeRegularizer(identifier)}var ReLU=class extends Layer{constructor(args){super(args==null?{}:args);this.supportsMasking=!0,args!=null&&(this.maxValue=args.maxValue)}call(inputs,kwargs){inputs=getExactlyOneTensor(inputs);let output=relu(inputs);return this.maxValue!=null&&(output=clipByValue(output,0,this.maxValue)),output}computeOutputShape(inputShape){return inputShape}getConfig(){let config={maxValue:this.maxValue},baseConfig=super.getConfig();return Object.assign(config,baseConfig),config}};ReLU.className="ReLU";serialization_exports.registerClass(ReLU);var LeakyReLU=class extends Layer{constructor(args){super(args==null?{}:args);this.DEFAULT_ALPHA=.3,args==null&&(args={}),this.alpha=args.alpha==null?this.DEFAULT_ALPHA:args.alpha}call(inputs,kwargs){let x=getExactlyOneTensor(inputs);return leakyRelu(x,this.alpha)}computeOutputShape(inputShape){return inputShape}getConfig(){let config={alpha:this.alpha},baseConfig=super.getConfig();return Object.assign(config,baseConfig),config}};LeakyReLU.className="LeakyReLU";serialization_exports.registerClass(LeakyReLU);var PReLU=class extends Layer{constructor(args){super(args==null?{}:args);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",args==null&&(args={}),this.supportsMasking=!0,this.alphaInitializer=getInitializer(args.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=getRegularizer(args.alphaRegularizer),this.alphaConstraint=getConstraint(args.alphaConstraint),args.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(args.sharedAxes))this.sharedAxes=args.sharedAxes;else if(typeof args.sharedAxes=="number")this.sharedAxes=[args.sharedAxes];else throw new ValueError(`Expected sharedAxes to be a number or an array of numbers, but got ${args.sharedAxes}`)}build(inputShape){inputShape=getExactlyOneShape(inputShape);let paramShape=inputShape.slice(1);if(this.sharedAxes!=null)for(let i of this.sharedAxes)paramShape[i-1]=1;this.alpha=this.addWeight("alpha",paramShape,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let axes={};if(this.sharedAxes!=null)for(let i=1;i(checkDataFormat(dataFormat),dataFormat==="channelsFirst"?transpose(x,[0,2,3,1]):x))}function preprocessConv3DInput(x,dataFormat){return tidy(()=>(checkDataFormat(dataFormat),dataFormat==="channelsFirst"?transpose(x,[0,2,3,4,1]):x))}function conv1dWithBias(x,kernel,bias,strides=1,padding2="valid",dataFormat,dilationRate=1){return tidy(()=>{if(dataFormat==null&&(dataFormat=imageDataFormat()),checkDataFormat(dataFormat),x.shape.length!==3)throw new ValueError(`The input of a conv1dWithBias operation should be 3, but is ${x.shape.length} instead.`);if(kernel.shape.length!==3)throw new ValueError(`The kernel for a conv1dWithBias operation should be 3, but is ${kernel.shape.length} instead`);if(bias!=null&&bias.shape.length!==1)throw new ValueError(`The bias for a conv1dWithBias operation should be 1, but is ${kernel.shape.length} instead`);if(dataFormat==="channelsFirst"&&(x=transpose(x,[0,2,1])),padding2==="causal")throw new NotImplementedError("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let y=conv1d(x,kernel,strides,padding2==="same"?"same":"valid","NWC",dilationRate);return bias!=null&&(y=biasAdd(y,bias)),y})}function conv2dWithBiasActivation(x,kernel,bias,strides=[1,1],padding2="valid",dataFormat,dilationRate,activation2=null){return tidy(()=>{if(dataFormat==null&&(dataFormat=imageDataFormat()),checkDataFormat(dataFormat),x.rank!==3&&x.rank!==4)throw new ValueError(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${x.rank}.`);if(kernel.rank!==3&&kernel.rank!==4)throw new ValueError(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${x.rank}.`);let y=preprocessConv2DInput(x,dataFormat);if(padding2==="causal")throw new NotImplementedError("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return y=fused_ops_exports.conv2d({x:y,filter:kernel,strides,pad:padding2==="same"?"same":"valid",dilations:dilationRate,dataFormat:"NHWC",bias,activation:activation2}),dataFormat==="channelsFirst"&&(y=transpose(y,[0,3,1,2])),y})}function conv3dWithBias(x,kernel,bias,strides=[1,1,1],padding2="valid",dataFormat,dilationRate){return tidy(()=>{if(dataFormat==null&&(dataFormat=imageDataFormat()),checkDataFormat(dataFormat),x.rank!==4&&x.rank!==5)throw new ValueError(`conv3dWithBias expects input to be of rank 4 or 5, but received ${x.rank}.`);if(kernel.rank!==4&&kernel.rank!==5)throw new ValueError(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${x.rank}.`);let y=preprocessConv3DInput(x,dataFormat);if(padding2==="causal")throw new NotImplementedError("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return y=conv3d(y,kernel,strides,padding2==="same"?"same":"valid","NDHWC",dilationRate),bias!=null&&(y=biasAdd(y,bias)),dataFormat==="channelsFirst"&&(y=transpose(y,[0,4,1,2,3])),y})}var BaseConv=class extends Layer{constructor(rank,args){super(args);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",BaseConv.verifyArgs(args),this.rank=rank,assertPositiveInteger(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new NotImplementedError(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=normalizeArray(args.kernelSize,rank,"kernelSize"),this.strides=normalizeArray(args.strides==null?1:args.strides,rank,"strides"),this.padding=args.padding==null?"valid":args.padding,checkPaddingMode(this.padding),this.dataFormat=args.dataFormat==null?"channelsLast":args.dataFormat,checkDataFormat(this.dataFormat),this.activation=getActivation(args.activation),this.useBias=args.useBias==null?!0:args.useBias,this.biasInitializer=getInitializer(args.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=getConstraint(args.biasConstraint),this.biasRegularizer=getRegularizer(args.biasRegularizer),this.activityRegularizer=getRegularizer(args.activityRegularizer),this.dilationRate=normalizeArray(args.dilationRate==null?1:args.dilationRate,rank,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new ValueError(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new ValueError(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new ValueError(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(args){if(assert2("kernelSize"in args,"required key 'kernelSize' not in config"),typeof args.kernelSize!="number"&&!checkArrayTypeAndLength(args.kernelSize,"number",1,3))throw new ValueError(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(args.kernelSize)}.`)}getConfig(){let config={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:serializeActivation(this.activation),useBias:this.useBias,biasInitializer:serializeInitializer(this.biasInitializer),biasRegularizer:serializeRegularizer(this.biasRegularizer),activityRegularizer:serializeRegularizer(this.activityRegularizer),biasConstraint:serializeConstraint(this.biasConstraint)},baseConfig=super.getConfig();return Object.assign(config,baseConfig),config}},Conv=class extends BaseConv{constructor(rank,args){super(rank,args);this.kernel=null,Conv.verifyArgs(args),this.filters=args.filters,assertPositiveInteger(this.filters,"filters"),this.kernelInitializer=getInitializer(args.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=getConstraint(args.kernelConstraint),this.kernelRegularizer=getRegularizer(args.kernelRegularizer)}build(inputShape){inputShape=getExactlyOneShape(inputShape);let channelAxis=this.dataFormat==="channelsFirst"?1:inputShape.length-1;if(inputShape[channelAxis]==null)throw new ValueError(`The channel dimension of the input should be defined. Found ${inputShape[channelAxis]}`);let inputDim=inputShape[channelAxis],kernelShape=this.kernelSize.concat([inputDim,this.filters]);this.kernel=this.addWeight("kernel",kernelShape,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[channelAxis]:inputDim}}],this.built=!0}call(inputs,kwargs){return tidy(()=>{inputs=getExactlyOneTensor(inputs);let outputs,biasValue=this.bias==null?null:this.bias.read(),fusedActivationName=mapActivationToFusedKernel(this.activation.getClassName());if(fusedActivationName!=null&&this.rank===2)outputs=conv2dWithBiasActivation(inputs,this.kernel.read(),biasValue,this.strides,this.padding,this.dataFormat,this.dilationRate,fusedActivationName);else{if(this.rank===1)outputs=conv1dWithBias(inputs,this.kernel.read(),biasValue,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)outputs=conv2dWithBiasActivation(inputs,this.kernel.read(),biasValue,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)outputs=conv3dWithBias(inputs,this.kernel.read(),biasValue,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new NotImplementedError("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(outputs=this.activation.apply(outputs))}return outputs})}computeOutputShape(inputShape){inputShape=getExactlyOneShape(inputShape);let newSpace=[],space=this.dataFormat==="channelsLast"?inputShape.slice(1,inputShape.length-1):inputShape.slice(2);for(let i=0;i 0 but got ${JSON.stringify(args.filters)}`)}},Conv2D2=class extends Conv{constructor(args){super(2,args);Conv2D2.verifyArgs(args)}getConfig(){let config=super.getConfig();return delete config.rank,config}static verifyArgs(args){if(typeof args.kernelSize!="number"&&!checkArrayTypeAndLength(args.kernelSize,"number",1,2))throw new ValueError(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(args.kernelSize)}.`)}};Conv2D2.className="Conv2D";serialization_exports.registerClass(Conv2D2);var Conv3D2=class extends Conv{constructor(args){super(3,args);Conv3D2.verifyArgs(args)}getConfig(){let config=super.getConfig();return delete config.rank,config}static verifyArgs(args){if(typeof args.kernelSize!="number"&&!(Array.isArray(args.kernelSize)&&(args.kernelSize.length===1||args.kernelSize.length===3)))throw new ValueError(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(args.kernelSize)}.`)}};Conv3D2.className="Conv3D";serialization_exports.registerClass(Conv3D2);var Conv2DTranspose=class extends Conv2D2{constructor(args){super(args);if(this.inputSpec=[new InputSpec({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new ValueError(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(inputShape){if(inputShape=getExactlyOneShape(inputShape),inputShape.length!==4)throw new ValueError("Input should have rank 4; Received input shape: "+JSON.stringify(inputShape));let channelAxis=this.dataFormat==="channelsFirst"?1:inputShape.length-1;if(inputShape[channelAxis]==null)throw new ValueError("The channel dimension of the inputs should be defined. Found `None`.");let inputDim=inputShape[channelAxis],kernelShape=this.kernelSize.concat([this.filters,inputDim]);this.kernel=this.addWeight("kernel",kernelShape,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new InputSpec({ndim:4,axes:{[channelAxis]:inputDim}})],this.built=!0}call(inputs,kwargs){return tidy(()=>{let input2=getExactlyOneTensor(inputs);if(input2.shape.length!==4)throw new ValueError(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${input2.shape.length}`);let inputShape=input2.shape,batchSize=inputShape[0],hAxis,wAxis;this.dataFormat==="channelsFirst"?(hAxis=2,wAxis=3):(hAxis=1,wAxis=2);let height=inputShape[hAxis],width=inputShape[wAxis],kernelH=this.kernelSize[0],kernelW=this.kernelSize[1],strideH=this.strides[0],strideW=this.strides[1],outHeight=deconvLength(height,strideH,kernelH,this.padding),outWidth=deconvLength(width,strideW,kernelW,this.padding),outputShape=[batchSize,outHeight,outWidth,this.filters];this.dataFormat!=="channelsLast"&&(input2=transpose(input2,[0,2,3,1]));let outputs=conv2dTranspose(input2,this.kernel.read(),outputShape,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(outputs=transpose(outputs,[0,3,1,2])),this.bias!=null&&(outputs=biasAdd(outputs,this.bias.read(),this.dataFormat)),this.activation!=null&&(outputs=this.activation.apply(outputs)),outputs})}computeOutputShape(inputShape){inputShape=getExactlyOneShape(inputShape);let outputShape=inputShape.slice(),channelAxis,heightAxis,widthAxis;this.dataFormat==="channelsFirst"?(channelAxis=1,heightAxis=2,widthAxis=3):(channelAxis=3,heightAxis=1,widthAxis=2);let kernelH=this.kernelSize[0],kernelW=this.kernelSize[1],strideH=this.strides[0],strideW=this.strides[1];return outputShape[channelAxis]=this.filters,outputShape[heightAxis]=deconvLength(outputShape[heightAxis],strideH,kernelH,this.padding),outputShape[widthAxis]=deconvLength(outputShape[widthAxis],strideW,kernelW,this.padding),outputShape}getConfig(){let config=super.getConfig();return delete config.dilationRate,config}};Conv2DTranspose.className="Conv2DTranspose";serialization_exports.registerClass(Conv2DTranspose);var SeparableConv=class extends Conv{constructor(rank,config){super(rank,config);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,config.filters==null)throw new ValueError("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(config.kernelInitializer!=null||config.kernelRegularizer!=null||config.kernelConstraint!=null)throw new ValueError("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(config.padding!=null&&config.padding!=="same"&&config.padding!=="valid")throw new ValueError(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(config.padding)}`);this.depthMultiplier=config.depthMultiplier==null?1:config.depthMultiplier,this.depthwiseInitializer=getInitializer(config.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=getRegularizer(config.depthwiseRegularizer),this.depthwiseConstraint=getConstraint(config.depthwiseConstraint),this.pointwiseInitializer=getInitializer(config.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=getRegularizer(config.pointwiseRegularizer),this.pointwiseConstraint=getConstraint(config.pointwiseConstraint)}build(inputShape){if(inputShape=getExactlyOneShape(inputShape),inputShape.length{inputs=getExactlyOneTensor(inputs);let output;if(this.rank===1)throw new NotImplementedError("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(inputs=transpose(inputs,[0,2,3,1])),output=separableConv2d(inputs,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(output=biasAdd(output,this.bias.read(),this.dataFormat)),this.activation!=null&&(output=this.activation.apply(output)),this.dataFormat==="channelsFirst"&&(output=transpose(output,[0,3,1,2])),output})}getConfig(){let config=super.getConfig();return delete config.rank,delete config.kernelInitializer,delete config.kernelRegularizer,delete config.kernelConstraint,config.depthwiseInitializer=serializeInitializer(this.depthwiseInitializer),config.pointwiseInitializer=serializeInitializer(this.pointwiseInitializer),config.depthwiseRegularizer=serializeRegularizer(this.depthwiseRegularizer),config.pointwiseRegularizer=serializeRegularizer(this.pointwiseRegularizer),config.depthwiseConstraint=serializeConstraint(this.depthwiseConstraint),config.pointwiseConstraint=serializeConstraint(this.pointwiseConstraint),config}};SeparableConv.className="SeparableConv";var SeparableConv2D=class extends SeparableConv{constructor(args){super(2,args)}};SeparableConv2D.className="SeparableConv2D";serialization_exports.registerClass(SeparableConv2D);var Conv1D=class extends Conv{constructor(args){super(1,args);Conv1D.verifyArgs(args),this.inputSpec=[{ndim:3}]}getConfig(){let config=super.getConfig();return delete config.rank,delete config.dataFormat,config}static verifyArgs(args){if(typeof args.kernelSize!="number"&&!checkArrayTypeAndLength(args.kernelSize,"number",1,1))throw new ValueError(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(args.kernelSize)}.`)}};Conv1D.className="Conv1D";serialization_exports.registerClass(Conv1D);var Cropping2D=class extends Layer{constructor(args){super(args);typeof args.cropping=="number"?this.cropping=[[args.cropping,args.cropping],[args.cropping,args.cropping]]:typeof args.cropping[0]=="number"?this.cropping=[[args.cropping[0],args.cropping[0]],[args.cropping[1],args.cropping[1]]]:this.cropping=args.cropping,this.dataFormat=args.dataFormat===void 0?"channelsLast":args.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(inputShape){return this.dataFormat==="channelsFirst"?[inputShape[0],inputShape[1],inputShape[2]-this.cropping[0][0]-this.cropping[0][1],inputShape[3]-this.cropping[1][0]-this.cropping[1][1]]:[inputShape[0],inputShape[1]-this.cropping[0][0]-this.cropping[0][1],inputShape[2]-this.cropping[1][0]-this.cropping[1][1],inputShape[3]]}call(inputs,kwargs){return tidy(()=>{if(inputs=getExactlyOneTensor(inputs),this.dataFormat==="channelsLast"){let hSliced=sliceAlongAxis(inputs,this.cropping[0][0],inputs.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return sliceAlongAxis(hSliced,this.cropping[1][0],inputs.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let hSliced=sliceAlongAxis(inputs,this.cropping[0][0],inputs.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return sliceAlongAxis(hSliced,this.cropping[1][0],inputs.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let config={cropping:this.cropping,dataFormat:this.dataFormat},baseConfig=super.getConfig();return Object.assign(config,baseConfig),config}};Cropping2D.className="Cropping2D";serialization_exports.registerClass(Cropping2D);var UpSampling2D=class extends Layer{constructor(args){super(args);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=args.size==null?this.DEFAULT_SIZE:args.size,this.dataFormat=args.dataFormat==null?"channelsLast":args.dataFormat}computeOutputShape(inputShape){if(this.dataFormat==="channelsFirst"){let height=inputShape[2]==null?null:this.size[0]*inputShape[2],width=inputShape[3]==null?null:this.size[1]*inputShape[3];return[inputShape[0],inputShape[1],height,width]}else{let height=inputShape[1]==null?null:this.size[0]*inputShape[1],width=inputShape[2]==null?null:this.size[1]*inputShape[2];return[inputShape[0],height,width,inputShape[3]]}}call(inputs,kwargs){return tidy(()=>{let input2=getExactlyOneTensor(inputs),inputShape=input2.shape;if(this.dataFormat==="channelsFirst"){input2=transpose(input2,[0,2,3,1]);let height=this.size[0]*inputShape[2],width=this.size[1]*inputShape[3],resized=input2.resizeNearestNeighbor([height,width]);return transpose(resized,[0,3,1,2])}else{let height=this.size[0]*inputShape[1],width=this.size[1]*inputShape[2];return input2.resizeNearestNeighbor([height,width])}})}getConfig(){let config={size:this.size,dataFormat:this.dataFormat},baseConfig=super.getConfig();return Object.assign(config,baseConfig),config}};UpSampling2D.className="UpSampling2D";serialization_exports.registerClass(UpSampling2D);function depthwiseConv2d3(x,depthwiseKernel,strides=[1,1],padding2="valid",dataFormat,dilationRate){return tidy(()=>{dataFormat==null&&(dataFormat=imageDataFormat()),checkDataFormat(dataFormat);let y=preprocessConv2DInput(x,dataFormat);if(x.rank!==4)throw new ValueError(`Input for depthwiseConv2d is required to be 4-D, but is instead ${x.rank}-D`);if(depthwiseKernel.rank!==4)throw new ValueError(`depthwiseKernel is required to be 4-D, but is instead ${depthwiseKernel.rank}-D`);return y=depthwiseConv2d(y,depthwiseKernel,strides,padding2==="same"?"same":"valid","NHWC",dilationRate),dataFormat==="channelsFirst"&&(y=transpose(y,[0,3,1,2])),y})}var DepthwiseConv2D=class extends BaseConv{constructor(args){super(2,args);this.depthwiseKernel=null,this.depthMultiplier=args.depthMultiplier==null?1:args.depthMultiplier,this.depthwiseInitializer=getInitializer(args.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=getConstraint(args.depthwiseConstraint),this.depthwiseRegularizer=getRegularizer(args.depthwiseRegularizer)}build(inputShape){if(inputShape=getExactlyOneShape(inputShape),inputShape.length<4)throw new ValueError(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(inputShape)}.`);let channelAxis=this.dataFormat==="channelsFirst"?1:3;if(inputShape[channelAxis]==null||inputShape[channelAxis]<0)throw new ValueError(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${inputShape[channelAxis]}).`);let inputDim=inputShape[channelAxis],depthwiseKernelShape=[this.kernelSize[0],this.kernelSize[1],inputDim,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",depthwiseKernelShape,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[inputDim*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(inputs,kwargs){return tidy(()=>{inputs=getExactlyOneTensor(inputs);let outputs=depthwiseConv2d3(inputs,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(outputs=biasAdd(outputs,this.bias.read(),this.dataFormat)),this.activation!=null&&(outputs=this.activation.apply(outputs)),outputs})}computeOutputShape(inputShape){inputShape=getExactlyOneShape(inputShape);let rows=this.dataFormat==="channelsFirst"?inputShape[2]:inputShape[1],cols=this.dataFormat==="channelsFirst"?inputShape[3]:inputShape[2],outFilters=this.dataFormat==="channelsFirst"?inputShape[1]*this.depthMultiplier:inputShape[3]*this.depthMultiplier,outRows=convOutputLength(rows,this.kernelSize[0],this.padding,this.strides[0]),outCols=convOutputLength(cols,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[inputShape[0],outFilters,outRows,outCols]:[inputShape[0],outRows,outCols,outFilters]}getConfig(){let config=super.getConfig();return config.depthMultiplier=this.depthMultiplier,config.depthwiseInitializer=serializeInitializer(this.depthwiseInitializer),config.depthwiseRegularizer=serializeRegularizer(this.depthwiseRegularizer),config.depthwiseConstraint=serializeConstraint(this.depthwiseRegularizer),config}};DepthwiseConv2D.className="DepthwiseConv2D";serialization_exports.registerClass(DepthwiseConv2D);function standardizeArgs(inputs,initialState,constants,numConstants){if(Array.isArray(inputs)){if(initialState!=null||constants!=null)throw new ValueError("When inputs is an array, neither initialState or constants should be provided");numConstants!=null&&(constants=inputs.slice(inputs.length-numConstants,inputs.length),inputs=inputs.slice(0,inputs.length-numConstants)),inputs.length>1&&(initialState=inputs.slice(1,inputs.length)),inputs=inputs[0]}function toListOrNull(x){return x==null||Array.isArray(x)?x:[x]}return initialState=toListOrNull(initialState),constants=toListOrNull(constants),{inputs,initialState,constants}}function rnn(stepFunction,inputs,initialStates,goBackwards=!1,mask,constants,unroll=!1,needPerStepOutputs=!1){return tidy(()=>{let ndim=inputs.shape.length;if(ndim<3)throw new ValueError(`Input should be at least 3D, but is ${ndim}D.`);let axes=[1,0].concat(range4(2,ndim));if(inputs=transpose(inputs,axes),constants!=null)throw new NotImplementedError("The rnn() functoin of the deeplearn.js backend does not support constants yet.");unroll&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),mask!=null&&(mask=mask.asType("bool").asType("float32"),mask.rank===ndim-1&&(mask=expandDims(mask,-1)),mask=transpose(mask,axes)),goBackwards&&(inputs=reverse(inputs,0),mask!=null&&(mask=reverse(mask,0)));let perStepOutputs=[],lastOutput,states=initialStates,timeSteps=inputs.shape[0],perStepInputs=unstack(inputs),perStepMasks;mask!=null&&(perStepMasks=unstack(mask));for(let t=0;tstepFunction(currentInput,states));if(mask==null)lastOutput=stepOutputs[0],states=stepOutputs[1];else{let maskedOutputs=tidy(()=>{let stepMask=perStepMasks[t],negStepMask=onesLike(stepMask).sub(stepMask),output=stepOutputs[0].mul(stepMask).add(states[0].mul(negStepMask)),newStates=states.map((state6,i)=>stepOutputs[1][i].mul(stepMask).add(state6.mul(negStepMask)));return{output,newStates}});lastOutput=maskedOutputs.output,states=maskedOutputs.newStates}needPerStepOutputs&&perStepOutputs.push(lastOutput)}let outputs;if(needPerStepOutputs){let axis=1;outputs=stack(perStepOutputs,axis)}return[lastOutput,outputs,states]})}var RNN=class extends Layer{constructor(args){super(args);let cell;if(args.cell==null)throw new ValueError("cell property is missing for the constructor of RNN.");if(Array.isArray(args.cell)?cell=new StackedRNNCells({cells:args.cell}):cell=args.cell,cell.stateSize==null)throw new ValueError("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=cell,this.returnSequences=args.returnSequences==null?!1:args.returnSequences,this.returnState=args.returnState==null?!1:args.returnState,this.goBackwards=args.goBackwards==null?!1:args.goBackwards,this._stateful=args.stateful==null?!1:args.stateful,this.unroll=args.unroll==null?!1:args.unroll,this.supportsMasking=!0,this.inputSpec=[new InputSpec({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let numStates=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return range4(0,numStates).map(x=>null)}else return this.states_}setStates(states){this.states_=states}computeOutputShape(inputShape){isArrayOfShapes(inputShape)&&(inputShape=inputShape[0]),inputShape=inputShape;let stateSize=this.cell.stateSize;Array.isArray(stateSize)||(stateSize=[stateSize]);let outputDim=stateSize[0],outputShape;if(this.returnSequences?outputShape=[inputShape[0],inputShape[1],outputDim]:outputShape=[inputShape[0],outputDim],this.returnState){let stateShape=[];for(let dim of stateSize)stateShape.push([inputShape[0],dim]);return[outputShape].concat(stateShape)}else return outputShape}computeMask(inputs,mask){return tidy(()=>{Array.isArray(mask)&&(mask=mask[0]);let outputMask=this.returnSequences?mask:null;if(this.returnState){let stateMask=this.states.map(s=>null);return[outputMask].concat(stateMask)}else return outputMask})}get states(){if(this.states_==null){let numStates=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,output=[];for(let i=0;ispec.shape[spec.shape.length-1]),stateSize))throw new ValueError(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=stateSize.map(dim=>new InputSpec({shape:[null,dim]}));this.stateful&&this.resetStates()}resetStates(states,training5=!1){tidy(()=>{if(!this.stateful)throw new AttributeError("Cannot call resetStates() on an RNN Layer that is not stateful.");let batchSize=this.inputSpec[0].shape[0];if(batchSize==null)throw new ValueError("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(dim=>zeros([batchSize,dim])):this.states_=[zeros([batchSize,this.cell.stateSize])];else if(states==null)dispose(this.states_),this.keptStates!=null&&(dispose(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(dim=>zeros([batchSize,dim])):this.states_[0]=zeros([batchSize,this.cell.stateSize]);else{if(Array.isArray(states)||(states=[states]),states.length!==this.states_.length)throw new ValueError(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${states.length} state value(s). Input received: ${states}`);training5===!0?this.keptStates.push(this.states_.slice()):dispose(this.states_);for(let index=0;indexkeep(state6.clone()))})}apply(inputs,kwargs){let initialState=kwargs==null?null:kwargs.initialState,constants=kwargs==null?null:kwargs.constants;kwargs==null&&(kwargs={});let standardized=standardizeArgs(inputs,initialState,constants,this.numConstants);inputs=standardized.inputs,initialState=standardized.initialState,constants=standardized.constants;let additionalInputs=[],additionalSpecs=[];if(initialState!=null){kwargs.initialState=initialState,additionalInputs=additionalInputs.concat(initialState),this.stateSpec=[];for(let state6 of initialState)this.stateSpec.push(new InputSpec({shape:state6.shape}));additionalSpecs=additionalSpecs.concat(this.stateSpec)}constants!=null&&(kwargs.constants=constants,additionalInputs=additionalInputs.concat(constants),this.numConstants=constants.length);let isTensor=additionalInputs[0]instanceof SymbolicTensor;if(isTensor){let fullInput=[inputs].concat(additionalInputs),fullInputSpec=this.inputSpec.concat(additionalSpecs),originalInputSpec=this.inputSpec;this.inputSpec=fullInputSpec;let output=super.apply(fullInput,kwargs);return this.inputSpec=originalInputSpec,output}else return super.apply(inputs,kwargs)}call(inputs,kwargs){return tidy(()=>{let mask=kwargs==null?null:kwargs.mask,training5=kwargs==null?null:kwargs.training,initialState=kwargs==null?null:kwargs.initialState;inputs=getExactlyOneTensor(inputs),initialState==null&&(this.stateful?initialState=this.states_:initialState=this.getInitialState(inputs));let numStates=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(initialState.length!==numStates)throw new ValueError(`RNN Layer has ${numStates} state(s) but was passed ${initialState.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let cellCallKwargs={training:training5},step9=(inputs2,states2)=>{let outputs2=this.cell.call([inputs2].concat(states2),cellCallKwargs);return[outputs2[0],outputs2.slice(1)]},rnnOutputs=rnn(step9,inputs,initialState,this.goBackwards,mask,null,this.unroll,this.returnSequences),lastOutput=rnnOutputs[0],outputs=rnnOutputs[1],states=rnnOutputs[2];this.stateful&&this.resetStates(states,training5);let output=this.returnSequences?outputs:lastOutput;return this.returnState?[output].concat(states):output})}getInitialState(inputs){return tidy(()=>{let initialState=zeros(inputs.shape);return initialState=sum2(initialState,[1,2]),initialState=expandDims2(initialState),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(dim=>dim>1?tile8(initialState,[1,dim]):initialState):this.cell.stateSize>1?[tile8(initialState,[1,this.cell.stateSize])]:[initialState]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(value){super.setFastWeightInitDuringBuild(value),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(value)}getConfig(){let baseConfig=super.getConfig(),config={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(config.numConstants=this.numConstants);let cellConfig=this.cell.getConfig();return this.getClassName()===RNN.className&&(config.cell={className:this.cell.getClassName(),config:cellConfig}),Object.assign({},cellConfig,baseConfig,config)}static fromConfig(cls,config,customObjects={}){let cellConfig=config.cell,cell=deserialize(cellConfig,customObjects);return new cls(Object.assign(config,{cell}))}};RNN.className="RNN";serialization_exports.registerClass(RNN);var RNNCell=class extends Layer{},SimpleRNNCell=class extends RNNCell{constructor(args){super(args);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=args.units,assertPositiveInteger(this.units,"units"),this.activation=getActivation(args.activation==null?this.DEFAULT_ACTIVATION:args.activation),this.useBias=args.useBias==null?!0:args.useBias,this.kernelInitializer=getInitializer(args.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=getInitializer(args.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=getInitializer(args.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=getRegularizer(args.kernelRegularizer),this.recurrentRegularizer=getRegularizer(args.recurrentRegularizer),this.biasRegularizer=getRegularizer(args.biasRegularizer),this.kernelConstraint=getConstraint(args.kernelConstraint),this.recurrentConstraint=getConstraint(args.recurrentConstraint),this.biasConstraint=getConstraint(args.biasConstraint),this.dropout=min6([1,max8([0,args.dropout==null?0:args.dropout])]),this.recurrentDropout=min6([1,max8([0,args.recurrentDropout==null?0:args.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(inputShape){inputShape=getExactlyOneShape(inputShape),this.kernel=this.addWeight("kernel",[inputShape[inputShape.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(inputs,kwargs){return tidy(()=>{if(inputs=inputs,inputs.length!==2)throw new ValueError(`SimpleRNNCell expects 2 input Tensors, got ${inputs.length}.`);let prevOutput=inputs[1];inputs=inputs[0];let training5=kwargs.training==null?!1:kwargs.training;0onesLike(inputs),rate:this.dropout,training:training5})),0onesLike(prevOutput),rate:this.recurrentDropout,training:training5}));let h,dpMask=this.dropoutMask,recDpMask=this.recurrentDropoutMask;dpMask!=null?h=dot5(mul(inputs,dpMask),this.kernel.read()):h=dot5(inputs,this.kernel.read()),this.bias!=null&&(h=biasAdd(h,this.bias.read())),recDpMask!=null&&(prevOutput=mul(prevOutput,recDpMask));let output=add2(h,dot5(prevOutput,this.recurrentKernel.read()));return this.activation!=null&&(output=this.activation.apply(output)),[output,output]})}getConfig(){let baseConfig=super.getConfig(),config={units:this.units,activation:serializeActivation(this.activation),useBias:this.useBias,kernelInitializer:serializeInitializer(this.kernelInitializer),recurrentInitializer:serializeInitializer(this.recurrentInitializer),biasInitializer:serializeInitializer(this.biasInitializer),kernelRegularizer:serializeRegularizer(this.kernelRegularizer),recurrentRegularizer:serializeRegularizer(this.recurrentRegularizer),biasRegularizer:serializeRegularizer(this.biasRegularizer),activityRegularizer:serializeRegularizer(this.activityRegularizer),kernelConstraint:serializeConstraint(this.kernelConstraint),recurrentConstraint:serializeConstraint(this.recurrentConstraint),biasConstraint:serializeConstraint(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},baseConfig,config)}};SimpleRNNCell.className="SimpleRNNCell";serialization_exports.registerClass(SimpleRNNCell);var SimpleRNN=class extends RNN{constructor(args){args.cell=new SimpleRNNCell(args),super(args)}call(inputs,kwargs){return tidy(()=>{this.cell.dropoutMask!=null&&(dispose(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(dispose(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let mask=kwargs==null?null:kwargs.mask,training5=kwargs==null?null:kwargs.training,initialState=kwargs==null?null:kwargs.initialState;return super.call(inputs,{mask,training:training5,initialState})})}static fromConfig(cls,config){return new cls(config)}};SimpleRNN.className="SimpleRNN";serialization_exports.registerClass(SimpleRNN);var GRUCell=class extends RNNCell{constructor(args){super(args);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",args.resetAfter)throw new ValueError("GRUCell does not support reset_after parameter set to true.");this.units=args.units,assertPositiveInteger(this.units,"units"),this.activation=getActivation(args.activation===void 0?this.DEFAULT_ACTIVATION:args.activation),this.recurrentActivation=getActivation(args.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:args.recurrentActivation),this.useBias=args.useBias==null?!0:args.useBias,this.kernelInitializer=getInitializer(args.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=getInitializer(args.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=getInitializer(args.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=getRegularizer(args.kernelRegularizer),this.recurrentRegularizer=getRegularizer(args.recurrentRegularizer),this.biasRegularizer=getRegularizer(args.biasRegularizer),this.kernelConstraint=getConstraint(args.kernelConstraint),this.recurrentConstraint=getConstraint(args.recurrentConstraint),this.biasConstraint=getConstraint(args.biasConstraint),this.dropout=min6([1,max8([0,args.dropout==null?0:args.dropout])]),this.recurrentDropout=min6([1,max8([0,args.recurrentDropout==null?0:args.recurrentDropout])]),this.implementation=args.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(inputShape){inputShape=getExactlyOneShape(inputShape);let inputDim=inputShape[inputShape.length-1];this.kernel=this.addWeight("kernel",[inputDim,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(inputs,kwargs){return tidy(()=>{if(inputs=inputs,inputs.length!==2)throw new ValueError(`GRUCell expects 2 input Tensors (inputs, h, c), got ${inputs.length}.`);let training5=kwargs.training==null?!1:kwargs.training,hTMinus1=inputs[1];inputs=inputs[0],0onesLike(inputs),rate:this.dropout,training:training5,count:3})),0onesLike(hTMinus1),rate:this.recurrentDropout,training:training5,count:3}));let dpMask=this.dropoutMask,recDpMask=this.recurrentDropoutMask,z,r,hh;0{this.cell.dropoutMask!=null&&(dispose(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(dispose(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let mask=kwargs==null?null:kwargs.mask,training5=kwargs==null?null:kwargs.training,initialState=kwargs==null?null:kwargs.initialState;return super.call(inputs,{mask,training:training5,initialState})})}static fromConfig(cls,config){return config.implmentation===0&&(config.implementation=1),new cls(config)}};GRU.className="GRU";serialization_exports.registerClass(GRU);var LSTMCell=class extends RNNCell{constructor(args){super(args);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=args.units,assertPositiveInteger(this.units,"units"),this.activation=getActivation(args.activation===void 0?this.DEFAULT_ACTIVATION:args.activation),this.recurrentActivation=getActivation(args.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:args.recurrentActivation),this.useBias=args.useBias==null?!0:args.useBias,this.kernelInitializer=getInitializer(args.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=getInitializer(args.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=getInitializer(args.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=args.unitForgetBias,this.kernelRegularizer=getRegularizer(args.kernelRegularizer),this.recurrentRegularizer=getRegularizer(args.recurrentRegularizer),this.biasRegularizer=getRegularizer(args.biasRegularizer),this.kernelConstraint=getConstraint(args.kernelConstraint),this.recurrentConstraint=getConstraint(args.recurrentConstraint),this.biasConstraint=getConstraint(args.biasConstraint),this.dropout=min6([1,max8([0,args.dropout==null?0:args.dropout])]),this.recurrentDropout=min6([1,max8([0,args.recurrentDropout==null?0:args.recurrentDropout])]),this.implementation=args.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(inputShape){var _a;inputShape=getExactlyOneShape(inputShape);let inputDim=inputShape[inputShape.length-1];this.kernel=this.addWeight("kernel",[inputDim,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let biasInitializer;if(this.useBias){if(this.unitForgetBias){let capturedBiasInit=this.biasInitializer,capturedUnits=this.units;biasInitializer=new(_a=class extends Initializer{apply(shape,dtype){let bI=capturedBiasInit.apply([capturedUnits]),bF=new Ones().apply([capturedUnits]),bCAndH=capturedBiasInit.apply([capturedUnits*2]);return concatAlongFirstAxis(concatAlongFirstAxis(bI,bF),bCAndH)}},_a.className="CustomInit",_a)}else biasInitializer=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,biasInitializer,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(inputs,kwargs){return tidy(()=>{let training5=kwargs.training==null?!1:kwargs.training;if(inputs=inputs,inputs.length!==3)throw new ValueError(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${inputs.length}.`);let hTMinus1=inputs[1],cTMinus1=inputs[2];inputs=inputs[0],0onesLike(inputs),rate:this.dropout,training:training5,count:4})),0onesLike(hTMinus1),rate:this.recurrentDropout,training:training5,count:4}));let dpMask=this.dropoutMask,recDpMask=this.recurrentDropoutMask,i,f,c,o;0{this.cell.dropoutMask!=null&&(dispose(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(dispose(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let mask=kwargs==null?null:kwargs.mask,training5=kwargs==null?null:kwargs.training,initialState=kwargs==null?null:kwargs.initialState;return super.call(inputs,{mask,training:training5,initialState})})}static fromConfig(cls,config){return config.implmentation===0&&(config.implementation=1),new cls(config)}};LSTM.className="LSTM";serialization_exports.registerClass(LSTM);var StackedRNNCells=class extends RNNCell{constructor(args){super(args);this.cells=args.cells}get stateSize(){let stateSize=[];for(let cell of this.cells.slice().reverse())Array.isArray(cell.stateSize)?stateSize.push(...cell.stateSize):stateSize.push(cell.stateSize);return stateSize}call(inputs,kwargs){return tidy(()=>{inputs=inputs;let states=inputs.slice(1),nestedStates=[];for(let cell of this.cells.slice().reverse())Array.isArray(cell.stateSize)?nestedStates.push(states.splice(0,cell.stateSize.length)):nestedStates.push(states.splice(0,1));nestedStates.reverse();let newNestedStates=[],callInputs;for(let i=0;i{nameScope(`RNNCell_${i}`,()=>{cell.build(inputShape),Array.isArray(cell.stateSize)?outputDim=cell.stateSize[0]:outputDim=cell.stateSize,inputShape=[inputShape[0],outputDim]})}),this.built=!0}getConfig(){let baseConfig=super.getConfig(),getCellConfig=cell=>({className:cell.getClassName(),config:cell.getConfig()}),cellConfigs=this.cells.map(getCellConfig),config={cells:cellConfigs};return Object.assign({},baseConfig,config)}static fromConfig(cls,config,customObjects={}){let cells=[];for(let cellConfig of config.cells)cells.push(deserialize(cellConfig,customObjects));return new cls({cells})}get trainableWeights(){if(!this.trainable)return[];let weights=[];for(let cell of this.cells)weights.push(...cell.trainableWeights);return weights}get nonTrainableWeights(){let weights=[];for(let cell of this.cells)weights.push(...cell.nonTrainableWeights);if(!this.trainable){let trainableWeights=[];for(let cell of this.cells)trainableWeights.push(...cell.trainableWeights);return trainableWeights.concat(weights)}return weights}getWeights(){let weights=[];for(let cell of this.cells)weights.push(...cell.weights);return batchGetValue(weights)}setWeights(weights){let tuples=[];for(let cell of this.cells){let numParams=cell.weights.length,inputWeights=weights.splice(numParams);for(let i=0;idropout2(ones9(),rate),createMask=()=>inTrainPhase(droppedInputs,ones9,training5);if(!count2||count2<=1)return keep(createMask().clone());let masks=Array(count2).fill(void 0).map(createMask);return masks.map(m=>keep(m.clone()))}var __rest=function(s,e){var t={};for(var p2 in s)Object.prototype.hasOwnProperty.call(s,p2)&&e.indexOf(p2)<0&&(t[p2]=s[p2]);if(s!=null&&typeof Object.getOwnPropertySymbols=="function")for(var i=0,p2=Object.getOwnPropertySymbols(s);i{if(this.cell.dropoutMask!=null&&(dispose(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(dispose(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),kwargs&&kwargs.constants)throw new ValueError("ConvRNN2D cell does not support constants");let mask=kwargs==null?null:kwargs.mask,training5=kwargs==null?null:kwargs.training,initialState=kwargs==null?null:kwargs.initialState;return super.call(inputs,{mask,training:training5,initialState})})}computeOutputShape(inputShape){let outShape=this.computeSingleOutputShape(inputShape);return this.returnSequences||(outShape=[outShape[0],...outShape.slice(2)]),this.returnState&&(outShape=[outShape,...Array(2).fill([inputShape[0],...outShape.slice(-3)])]),outShape}getInitialState(inputs){return tidy(()=>{let{stateSize}=this.cell,inputShape=inputs.shape,outputShape=this.computeSingleOutputShape(inputShape),stateShape=[outputShape[0],...outputShape.slice(2)],initialState=zeros(stateShape);return Array.isArray(stateSize)?Array(stateSize.length).fill(initialState):[initialState]})}resetStates(states,training5=!1){tidy(()=>{if(!this.stateful)throw new AttributeError("Cannot call resetStates() on an RNN Layer that is not stateful.");let inputShape=this.inputSpec[0].shape,outputShape=this.computeSingleOutputShape(inputShape),stateShape=[outputShape[0],...outputShape.slice(2)],batchSize=inputShape[0];if(batchSize==null)throw new ValueError("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>zeros(stateShape)):this.states_=[zeros(stateShape)];else if(states==null)dispose(this.states_),this.keptStates!=null&&(dispose(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>zeros(stateShape)):this.states_[0]=zeros(stateShape);else{if(Array.isArray(states)||(states=[states]),states.length!==this.states_.length)throw new ValueError(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${states.length} state value(s). Input received: ${states}`);training5?this.keptStates.push(this.states_.slice()):dispose(this.states_);for(let index=0;indexkeep(state6.clone()))})}computeSingleOutputShape(inputShape){let{dataFormat,filters,kernelSize,padding:padding2,strides,dilationRate}=this.cell,isChannelsFirst=dataFormat==="channelsFirst",h=inputShape[isChannelsFirst?3:2],w=inputShape[isChannelsFirst?4:3],hOut=convOutputLength(h,kernelSize[0],padding2,strides[0],dilationRate[0]),wOut=convOutputLength(w,kernelSize[1],padding2,strides[1],dilationRate[1]),outShape=[...inputShape.slice(0,2),...isChannelsFirst?[filters,hOut,wOut]:[hOut,wOut,filters]];return outShape}};ConvRNN2D.className="ConvRNN2D";var ConvLSTM2DCell=class extends LSTMCell{constructor(args){let{filters,kernelSize,strides,padding:padding2,dataFormat,dilationRate}=args;super(Object.assign({},args,{units:filters}));this.filters=filters,assertPositiveInteger(this.filters,"filters"),this.kernelSize=normalizeArray(kernelSize,2,"kernelSize"),this.kernelSize.forEach(size=>assertPositiveInteger(size,"kernelSize")),this.strides=normalizeArray(strides||1,2,"strides"),this.strides.forEach(stride=>assertPositiveInteger(stride,"strides")),this.padding=padding2||"valid",checkPaddingMode(this.padding),this.dataFormat=dataFormat||"channelsLast",checkDataFormat(this.dataFormat),this.dilationRate=normalizeArray(dilationRate||1,2,"dilationRate"),this.dilationRate.forEach(rate=>assertPositiveInteger(rate,"dilationRate"))}build(inputShape){var _a;inputShape=getExactlyOneShape(inputShape);let channelAxis=this.dataFormat==="channelsFirst"?1:inputShape.length-1;if(inputShape[channelAxis]==null)throw new ValueError(`The channel dimension of the input should be defined. Found ${inputShape[channelAxis]}`);let inputDim=inputShape[channelAxis],numOfKernels=4,kernelShape=this.kernelSize.concat([inputDim,this.filters*numOfKernels]);this.kernel=this.addWeight("kernel",kernelShape,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let recurrentKernelShape=this.kernelSize.concat([this.filters,this.filters*numOfKernels]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",recurrentKernelShape,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let biasInitializer;if(this.unitForgetBias){let init2=this.biasInitializer,filters=this.filters;biasInitializer=new(_a=class extends Initializer{apply(shape,dtype){let biasI=init2.apply([filters]),biasF=ones2([filters]),biasCAndO=init2.apply([filters*2]);return concatenate([biasI,biasF,biasCAndO])}},_a.className="CustomInit",_a)}else biasInitializer=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*numOfKernels],null,biasInitializer,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(inputs,kwargs){return tidy(()=>{if(inputs.length!==3)throw new ValueError(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${inputs.length}.`);let training5=kwargs.training||!1,x=inputs[0],hTMinus1=inputs[1],cTMinus1=inputs[2],numOfKernels=4;0onesLike(x),rate:this.dropout,training:training5,count:numOfKernels}));let dropoutMask=this.dropoutMask,applyDropout=(x2,mask,index)=>!mask||!mask[index]?x2:mul(mask[index],x2),xI=applyDropout(x,dropoutMask,0),xF=applyDropout(x,dropoutMask,1),xC=applyDropout(x,dropoutMask,2),xO=applyDropout(x,dropoutMask,3);0onesLike(hTMinus1),rate:this.recurrentDropout,training:training5,count:numOfKernels}));let recDropoutMask=this.recurrentDropoutMask,hI=applyDropout(hTMinus1,recDropoutMask,0),hF=applyDropout(hTMinus1,recDropoutMask,1),hC=applyDropout(hTMinus1,recDropoutMask,2),hO=applyDropout(hTMinus1,recDropoutMask,3),kernelChannelAxis=3,[kernelI,kernelF,kernelC,kernelO]=split(this.kernel.read(),numOfKernels,kernelChannelAxis),[biasI,biasF,biasC,biasO]=this.useBias?split(this.bias.read(),numOfKernels):[null,null,null,null];xI=this.inputConv(xI,kernelI,biasI,this.padding),xF=this.inputConv(xF,kernelF,biasF,this.padding),xC=this.inputConv(xC,kernelC,biasC,this.padding),xO=this.inputConv(xO,kernelO,biasO,this.padding);let[recKernelI,recKernelF,recKernelC,recKernelO]=split(this.recurrentKernel.read(),numOfKernels,kernelChannelAxis);hI=this.recurrentConv(hI,recKernelI),hF=this.recurrentConv(hF,recKernelF),hC=this.recurrentConv(hC,recKernelC),hO=this.recurrentConv(hO,recKernelO);let i=this.recurrentActivation.apply(add2(xI,hI)),f=this.recurrentActivation.apply(add2(xF,hF)),c=add2(mul(f,cTMinus1),mul(i,this.activation.apply(add2(xC,hC)))),h=mul(this.recurrentActivation.apply(add2(xO,hO)),this.activation.apply(c));return[h,h,c]})}getConfig(){let _a=super.getConfig(),{units:_}=_a,baseConfig=__rest(_a,["units"]),config={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},baseConfig,config)}inputConv(x,w,b,padding2){let out=conv2d(x,w,this.strides,padding2||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return b?biasAdd(out,b,this.dataFormat):out}recurrentConv(x,w){let strides=1;return conv2d(x,w,strides,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};ConvLSTM2DCell.className="ConvLSTM2DCell";serialization_exports.registerClass(ConvLSTM2DCell);var ConvLSTM2D=class extends ConvRNN2D{constructor(args){let cell=new ConvLSTM2DCell(args);super(Object.assign({},args,{cell}))}static fromConfig(cls,config){return new cls(config)}};ConvLSTM2D.className="ConvLSTM2D";serialization_exports.registerClass(ConvLSTM2D);var Dropout=class extends Layer{constructor(args){super(args);this.rate=Math.max(Math.min(args.rate,1),0),this.noiseShape=args.noiseShape,this.seed=args.seed,this.supportsMasking=!0}getNoiseShape(input2){if(this.noiseShape==null)return this.noiseShape;let inputShape=input2.shape,noiseShape=[];for(let i=0;i{this.invokeCallHook(inputs,kwargs);let input2=getExactlyOneTensor(inputs);if(0dropout2(input2,this.rate,noiseShape,this.seed),()=>input2,training5);return output}return inputs})}getConfig(){let config={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},baseConfig=super.getConfig();return Object.assign(config,baseConfig),config}dispose(){return super.dispose()}};Dropout.className="Dropout";serialization_exports.registerClass(Dropout);var SpatialDropout1D=class extends Dropout{constructor(args){super(args);this.inputSpec=[{ndim:3}]}getNoiseShape(input2){let inputShape=input2.shape;return[inputShape[0],1,inputShape[2]]}};SpatialDropout1D.className="SpatialDropout1D";serialization_exports.registerClass(SpatialDropout1D);var Dense=class extends Layer{constructor(args){super(args);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",args.batchInputShape==null&&args.inputShape==null&&args.inputDim!=null){let batchSize=null;args.batchSize!=null&&(batchSize=args.batchSize),this.batchInputShape=[batchSize,args.inputDim]}this.units=args.units,assertPositiveInteger(this.units,"units"),this.activation=getActivation(args.activation),args.useBias!=null&&(this.useBias=args.useBias),this.kernelInitializer=getInitializer(args.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=getInitializer(args.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=getConstraint(args.kernelConstraint),this.biasConstraint=getConstraint(args.biasConstraint),this.kernelRegularizer=getRegularizer(args.kernelRegularizer),this.biasRegularizer=getRegularizer(args.biasRegularizer),this.activityRegularizer=getRegularizer(args.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(inputShape){inputShape=getExactlyOneShape(inputShape);let inputLastDim=inputShape[inputShape.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[inputLastDim,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:inputLastDim}}],this.built=!0}computeOutputShape(inputShape){inputShape=getExactlyOneShape(inputShape);let outputShape=inputShape.slice();return outputShape[outputShape.length-1]=this.units,outputShape}call(inputs,kwargs){return tidy(()=>{this.invokeCallHook(inputs,kwargs);let input2=getExactlyOneTensor(inputs),fusedActivationName=mapActivationToFusedKernel(this.activation.getClassName()),output;return fusedActivationName!=null?output=dot5(input2,this.kernel.read(),fusedActivationName,this.bias?this.bias.read():null):(output=dot5(input2,this.kernel.read()),this.bias!=null&&(output=biasAdd(output,this.bias.read())),this.activation!=null&&(output=this.activation.apply(output))),output})}getConfig(){let config={units:this.units,activation:serializeActivation(this.activation),useBias:this.useBias,kernelInitializer:serializeInitializer(this.kernelInitializer),biasInitializer:serializeInitializer(this.biasInitializer),kernelRegularizer:serializeRegularizer(this.kernelRegularizer),biasRegularizer:serializeRegularizer(this.biasRegularizer),activityRegularizer:serializeRegularizer(this.activityRegularizer),kernelConstraint:serializeConstraint(this.kernelConstraint),biasConstraint:serializeConstraint(this.biasConstraint)},baseConfig=super.getConfig();return Object.assign(config,baseConfig),config}};Dense.className="Dense";serialization_exports.registerClass(Dense);var Flatten=class extends Layer{constructor(args){args=args||{},super(args),this.inputSpec=[{minNDim:3}],this.dataFormat=args.dataFormat}computeOutputShape(inputShape){inputShape=getExactlyOneShape(inputShape);for(let dim of inputShape.slice(1))if(dim==null)throw new ValueError(`The shape of the input to "Flatten" is not fully defined (got ${inputShape.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[inputShape[0],arrayProd(inputShape,1)]}call(inputs,kwargs){return tidy(()=>{this.invokeCallHook(inputs,kwargs);let input2=getExactlyOneTensor(inputs);if(this.dataFormat==="channelsFirst"&&input2.rank>1){let permutation=[0];for(let i=2;i{this.invokeCallHook(inputs,kwargs);let input2=getExactlyOneTensor(inputs);return this.activation.apply(input2)})}getConfig(){let config={activation:serializeActivation(this.activation)},baseConfig=super.getConfig();return Object.assign(config,baseConfig),config}};Activation2.className="Activation";serialization_exports.registerClass(Activation2);var RepeatVector=class extends Layer{constructor(args){super(args);this.n=args.n,this.inputSpec=[{ndim:2}]}computeOutputShape(inputShape){return[inputShape[0],this.n,inputShape[1]]}call(inputs,kwargs){return tidy(()=>(inputs=getExactlyOneTensor(inputs),repeat(inputs,this.n)))}getConfig(){let config={n:this.n},baseConfig=super.getConfig();return Object.assign(config,baseConfig),config}};RepeatVector.className="RepeatVector";serialization_exports.registerClass(RepeatVector);var Reshape2=class extends Layer{constructor(args){super(args);this.targetShape=args.targetShape;for(let i=0;i{this.invokeCallHook(inputs,kwargs);let input2=getExactlyOneTensor(inputs),inputShape=input2.shape,outputShape=inputShape.slice(0,1).concat(this.fixUnknownDimension(inputShape.slice(1),this.targetShape));return input2.reshape(outputShape)})}getConfig(){let config={targetShape:this.targetShape},baseConfig=super.getConfig();return Object.assign(config,baseConfig),config}};Reshape2.className="Reshape";serialization_exports.registerClass(Reshape2);var Permute=class extends Layer{constructor(args){super(args);if(args.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(args.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${args.dims} instead.`);let expectedSortedIndices=range4(1,args.dims.length+1);if(!util_exports.arraysEqual(args.dims.slice().sort(),expectedSortedIndices))throw new Error("Invalid permutation `dims`: "+JSON.stringify(args.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=args.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new InputSpec({ndim:this.dims.length+1})]}computeOutputShape(inputShape){inputShape=getExactlyOneShape(inputShape);let outputShape=inputShape.slice();return this.dims.forEach((dim,i)=>{outputShape[i+1]=inputShape[dim]}),outputShape}call(inputs,kwargs){return transpose(getExactlyOneTensor(inputs),this.dimsIncludingBatch)}getConfig(){let config={dims:this.dims},baseConfig=super.getConfig();return Object.assign(config,baseConfig),config}};Permute.className="Permute";serialization_exports.registerClass(Permute);var Masking=class extends Layer{constructor(args){super(args==null?{}:args);this.supportsMasking=!0,args!=null?this.maskValue=args.maskValue==null?0:args.maskValue:this.maskValue=0}computeOutputShape(inputShape){return inputShape}getConfig(){let baseConfig=super.getConfig(),config={maskValue:this.maskValue};return Object.assign(config,baseConfig),config}computeMask(inputs,mask){let input2=getExactlyOneTensor(inputs),axis=-1;return any(notEqual(input2,this.maskValue),axis)}call(inputs,kwargs){return tidy(()=>{this.invokeCallHook(inputs,kwargs);let input2=getExactlyOneTensor(inputs),axis=-1,keepDims=!0,booleanMask=any(notEqual(input2,this.maskValue),axis,keepDims),output=input2.mul(booleanMask.asType(input2.dtype));return output})}};Masking.className="Masking";serialization_exports.registerClass(Masking);var Embedding=class extends Layer{constructor(args){super(args);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",args.batchInputShape==null&&args.inputShape==null){let batchSize=null;args.batchSize!=null&&(batchSize=args.batchSize),args.inputLength==null?this.batchInputShape=[batchSize,null]:this.batchInputShape=[batchSize].concat(toList(args.inputLength))}this.inputDim=args.inputDim,assertPositiveInteger(this.inputDim,"inputDim"),this.outputDim=args.outputDim,assertPositiveInteger(this.outputDim,"outputDim"),this.embeddingsInitializer=getInitializer(args.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=getRegularizer(args.embeddingsRegularizer),this.activityRegularizer=getRegularizer(args.activityRegularizer),this.embeddingsConstraint=getConstraint(args.embeddingsConstraint),this.maskZero=args.maskZero,this.supportsMasking=args.maskZero,this.inputLength=args.inputLength}build(inputShape){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(inputShape){}computeMask(inputs,mask){return tidy(()=>this.maskZero?(inputs=getExactlyOneTensor(inputs),notEqual(inputs,zerosLike(inputs))):null)}computeOutputShape(inputShape){if(inputShape=getExactlyOneShape(inputShape),this.inputLength==null)return[...inputShape,this.outputDim];let inLens=toList(this.inputLength);if(inLens.length!==inputShape.length-1)throw new ValueError(`"inputLength" is ${this.inputLength}, but received input shape has shape ${inputShape}`);{let i=0;for(let k=0;k{this.invokeCallHook(inputs,kwargs);let input2=getExactlyOneTensor(inputs);input2.dtype!=="int32"&&(input2=cast48(input2,"int32"));let output=gather7(this.embeddings.read(),input2.as1D());return output.reshape(getExactlyOneShape(this.computeOutputShape(input2.shape)))})}getConfig(){let config={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:serializeInitializer(this.embeddingsInitializer),embeddingsRegularizer:serializeRegularizer(this.embeddingsRegularizer),activityRegularizer:serializeRegularizer(this.activityRegularizer),embeddingsConstraint:serializeConstraint(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},baseConfig=super.getConfig();return Object.assign(config,baseConfig),config}};Embedding.className="Embedding";serialization_exports.registerClass(Embedding);var Merge=class extends Layer{constructor(args){super(args||{});this.supportsMasking=!0}mergeFunction(inputs){throw new NotImplementedError}computeElementwiseOpOutputShape(shape1,shape2){if(shape1==null||shape2==null)return null;if(shape1.length1)throw new ValueError(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(inputShape)}.`);let outputShape=inputShape[0]==null?null:inputShape[0].slice(1);for(let i=1;ishape.length);inputShape.indexOf(null)===-1&&unique5(allRanks).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(inputs,kwargs){return tidy(()=>{if(inputs=inputs,this.reshapeRequired){let reshapedInputs=[],inputDims=inputs.map(input2=>input2.rank);if(inputDims.indexOf(null)===-1){let maxNDim=max8(inputDims);for(let x of inputs){let xNDim=x.rank;for(let k=0;k1){let dims=range4(1,xNDim).concat([0]);reshapedInputs.push(transpose(x,dims)),transposed=!0}else reshapedInputs.push(x)}let y=this.mergeFunction(reshapedInputs),yNDim=y.rank;if(transposed){if(yNDim==null){let yShape=y.shape,yNDim2=yShape.length,batchSize=yShape[yNDim2-1],newShape=[batchSize].concat(yShape.slice(0,yShape.length-1));y=transpose(y.reshape([-1,batchSize]),[1,0]).reshape(newShape)}else if(yNDim>1){let dims=[yNDim-1].concat(range4(0,yNDim-1));y=transpose(y,dims)}}return y}}else return this.mergeFunction(inputs)})}computeOutputShape(inputShape){inputShape=inputShape;let outputShape;inputShape[0]==null?outputShape=null:outputShape=inputShape[0].slice(1);for(let i=1;i{if(mask==null)return null;if(!Array.isArray(mask))throw new ValueError("`mask` should be an Array");if(!Array.isArray(inputs))throw new ValueError("`inputs` should be an Array");if(mask.length!==inputs.length)throw new ValueError(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${inputs.length} vs ${mask.length})`);if(mask.every(m=>m==null))return null;mask=mask.map(m=>m==null?m:expandDims(m,0));let output=mask[0];for(let i=1;i{let output=inputs[0].clone();for(let i=1;i{let output=inputs[0].clone();for(let i=1;i{let output=inputs[0].clone();for(let i=1;i{let output=inputs[0];for(let i=1;i{let output=inputs[0];for(let i=1;i1)throw new ValueError("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(inputShape))}mergeFunction(inputs){return tidy(()=>concatenate(inputs,this.axis))}computeOutputShape(inputShape){if(!(Array.isArray(inputShape)&&Array.isArray(inputShape[0])))throw new ValueError("A `Concatenate` layer should be called on a list of inputs.");let inputShapes=inputShape,outputShape=inputShapes[0].slice(),axis=this.axis<0?outputShape.length+this.axis:this.axis;for(let shape of inputShapes.slice(1)){if(outputShape[axis]==null||shape[axis]==null){outputShape[axis]=null;break}outputShape[axis]+=shape[axis]}return outputShape}computeMask(inputs,mask){if(mask==null)return null;if(!Array.isArray(mask))throw new ValueError("`mask` should be an array for Concatenate");if(!Array.isArray(inputs))throw new ValueError("`inputs` should be an array for Concatenate");if(mask.length!==inputs.length)throw new ValueError(`Mismatch in the length of mask (${mask.length}) and the legnth of inputs (${inputs.length})`);return tidy(()=>{let allNullMasks=!0;if(mask.forEach(m=>{if(m!=null){allNullMasks=!1;return}}),allNullMasks)return null;let outputMasks=[];for(let i=0;i3||y.shape.length>3)throw new NotImplementedError("batchDot is not implemented for tensors of 4D or higher rank yet");if(util_exports.assert(x.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${x.shape.length}`),util_exports.assert(x.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${y.shape.length}`),typeof axes=="number"&&(axes=[axes,axes]),x.dtype==="complex64"||y.dtype==="complex64")throw new NotImplementedError("batchDot is not implemented for complex64-type Tensors yet.");let xNDim=x.shape.length,yNDim=y.shape.length;axes==null&&(axes=[xNDim-1,yNDim-2]);let axesArray=axes;return tidy(()=>{let diff;if(xNDim>yNDim){diff=xNDim-yNDim;let diffShape=[];for(let i=0;ixNDim){diff=yNDim-xNDim;let diffShape=[];for(let i=0;i0){let idx;xNDim>yNDim?idx=xNDim+yNDim-3:idx=xNDim-1;let squeezeAxes=[];for(let i=idx;i"A `Dot` layer should be called on a list of exactly 2 inputs.");let shape1=inputShape[0],shape2=inputShape[1];if(shape1.length>3||shape2.length>3)throw new NotImplementedError("Dot layer does not support tensors of 4D or higher rank yet.");let axes=this.interpretAxes(shape1,shape2);if(shape1[axes[0]]!==shape2[axes[1]])throw new ValueError(`Dimension incompatibility: ${shape1[axes[0]]} !== ${shape2[axes[1]]}`)}mergeFunction(inputs){if(inputs.length!==2)throw new ValueError(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${inputs.length} input(s).`);let x1=inputs[0],x2=inputs[1],axes;return Array.isArray(this.axes)?axes=this.axes.map((axis,i)=>interpretAxis(axis,inputs[i].shape.length)):axes=[interpretAxis(this.axes,x1.shape.length),interpretAxis(this.axes,x2.shape.length)],this.normalize&&(x1=l2Normalize(x1,axes[0]),x2=l2Normalize(x2,axes[1])),batchDot(x1,x2,axes)}interpretAxes(shape1,shape2){let axes;return Array.isArray(this.axes)?axes=this.axes:axes=[interpretAxis(this.axes,shape1.length),interpretAxis(this.axes,shape2.length)],axes}computeOutputShape(inputShape){util_exports.assert(Array.isArray(inputShape)&&inputShape.length===2&&Array.isArray(inputShape[0])&&Array.isArray(inputShape[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let shape1=inputShape[0].slice(),shape2=inputShape[1].slice();if(shape1.length>3||shape2.length>3)throw new NotImplementedError("Dot layer does not support tensors of 4D or higher rank yet.");let axes=this.interpretAxes(shape1,shape2);shape1.splice(axes[0],1),shape2.splice(axes[1],1),shape2.splice(0,1);let outputShape=shape1.concat(shape2);return outputShape.length===1&&outputShape.push(1),outputShape}computeMask(inputs,mask){return null}getConfig(){let config={axes:this.axes,normalize:this.normalize},baseConfig=super.getConfig();return Object.assign(config,baseConfig),config}};Dot.className="Dot";serialization_exports.registerClass(Dot);var GaussianNoise=class extends Layer{constructor(args){super(args);this.supportsMasking=!0,this.stddev=args.stddev}computeOutputShape(inputShape){return inputShape}getConfig(){let baseConfig=super.getConfig(),config={stddev:this.stddev};return Object.assign(config,baseConfig),config}call(inputs,kwargs){return tidy(()=>{this.invokeCallHook(inputs,kwargs);let input2=getExactlyOneTensor(inputs),noised=()=>randomNormal2(input2.shape,0,this.stddev).add(input2),output=inTrainPhase(noised,()=>input2,kwargs.training||!1);return output})}};GaussianNoise.className="GaussianNoise";serialization_exports.registerClass(GaussianNoise);var GaussianDropout=class extends Layer{constructor(args){super(args);this.supportsMasking=!0,this.rate=args.rate}computeOutputShape(inputShape){return inputShape}getConfig(){let baseConfig=super.getConfig(),config={rate:this.rate};return Object.assign(config,baseConfig),config}call(inputs,kwargs){return tidy(()=>{this.invokeCallHook(inputs,kwargs);let input2=getExactlyOneTensor(inputs);if(this.rate>0&&this.rate<1){let noised=()=>{let stddev=Math.sqrt(this.rate/(1-this.rate));return input2.mul(randomNormal2(input2.shape,1,stddev))};return inTrainPhase(noised,()=>input2,kwargs.training||!1)}return input2})}};GaussianDropout.className="GaussianDropout";serialization_exports.registerClass(GaussianDropout);var AlphaDropout=class extends Layer{constructor(args){super(args);this.supportsMasking=!0,this.rate=args.rate,this.noiseShape=args.noiseShape}_getNoiseShape(inputs){return this.noiseShape||getExactlyOneTensor(inputs).shape}computeOutputShape(inputShape){return inputShape}getConfig(){let baseConfig=super.getConfig(),config={rate:this.rate};return Object.assign(config,baseConfig),config}call(inputs,kwargs){return tidy(()=>{if(this.rate<1&&this.rate>0){let noiseShape=this._getNoiseShape(inputs),droppedInputs=()=>{let input2=getExactlyOneTensor(inputs),alpha=1.6732632423543772,scale2=1.0507009873554805,alphaP=-alpha*scale2,keptIdx=greaterEqual(randomUniform(noiseShape),this.rate);keptIdx=cast48(keptIdx,"float32");let a=((1-this.rate)*(1+this.rate*alphaP**2))**-.5,b=-a*alphaP*this.rate,x=input2.mul(keptIdx).add(keptIdx.add(-1).mul(alphaP));return x.mul(a).add(b)};return inTrainPhase(droppedInputs,()=>getExactlyOneTensor(inputs),kwargs.training||!1)}return inputs})}};AlphaDropout.className="AlphaDropout";serialization_exports.registerClass(AlphaDropout);function batchNormalization(x,mean7,variance,beta,gamma,epsilon3=.001){let out;if(x.rank===2)out=batchNorm2d(x,mean7,variance,beta,gamma,epsilon3);else if(x.rank===3)out=batchNorm3d(x,mean7,variance,beta,gamma,epsilon3);else if(x.rank===4)out=batchNorm4d(x,mean7,variance,beta,gamma,epsilon3);else throw new NotImplementedError(`batchNormalization is not implemented for array of rank ${x.rank} yet`);return out}function regularNormalizeBatchInTraining(x,gamma,beta,reductionAxes,epsilon3=.001){return tidy(()=>{let meanAndVariance=moments(x,reductionAxes),mean7=meanAndVariance.mean,variance=meanAndVariance.variance,normed=batchNormalization(x,mean7,variance,beta,gamma,epsilon3);return[normed,mean7,variance]})}function broadcastNormalizeBatchInTraining(x,gamma,beta,reductionAxes,epsilon3=.001){return tidy(()=>{let meanAndVariance=moments(x,reductionAxes),mean7=meanAndVariance.mean,variance=meanAndVariance.variance,targetShape=[];for(let axis of range4(0,x.rank))reductionAxes.indexOf(axis)!==-1?targetShape.push(1):targetShape.push(x.shape[axis]);let broadcastMean=mean7.reshape(targetShape),broadcastVariance=variance.reshape(targetShape),broadcastGamma=gamma==null?null:gamma.reshape(targetShape),broadcastBeta=beta==null?null:beta.reshape(targetShape),normed=batchNormalization(x,broadcastMean,broadcastVariance,broadcastBeta,broadcastGamma,epsilon3);return[normed,mean7,variance]})}function normalizeBatchInTraining(x,gamma,beta,reductionAxes,epsilon3=.001){return util_exports.arraysEqual(reductionAxes.slice().sort(),range4(0,x.rank-1))?regularNormalizeBatchInTraining(x,gamma,beta,reductionAxes,epsilon3):broadcastNormalizeBatchInTraining(x,gamma,beta,reductionAxes,epsilon3)}var BatchNormalization=class extends Layer{constructor(args){args==null&&(args={}),super(args),this.supportsMasking=!0,this.axis=args.axis==null?-1:args.axis,this.momentum=args.momentum==null?.99:args.momentum,this.epsilon=args.epsilon==null?.001:args.epsilon,this.center=args.center==null?!0:args.center,this.scale=args.scale==null?!0:args.scale,this.betaInitializer=getInitializer(args.betaInitializer||"zeros"),this.gammaInitializer=getInitializer(args.gammaInitializer||"ones"),this.movingMeanInitializer=getInitializer(args.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=getInitializer(args.movingVarianceInitializer||"ones"),this.betaConstraint=getConstraint(args.betaConstraint),this.gammaConstraint=getConstraint(args.gammaConstraint),this.betaRegularizer=getRegularizer(args.betaRegularizer),this.gammaRegularizer=getRegularizer(args.gammaRegularizer)}build(inputShape){inputShape=getExactlyOneShape(inputShape);let axis=this.axis>=0?this.axis:this.axis+inputShape.length,dim=inputShape[axis];if(dim==null)throw new ValueError(`Axis ${axis} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(inputShape)}.`);this.inputSpec=[new InputSpec({ndim:inputShape.length,axes:{[axis]:dim}})];let shape=[dim];this.scale&&(this.gamma=this.addWeight("gamma",shape,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",shape,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",shape,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",shape,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(inputs,kwargs){return tidy(()=>{let training5=kwargs.training==null?!1:kwargs.training,input2=getExactlyOneTensor(inputs),inputShape=input2.shape,ndim=inputShape.length,reductionAxes=range4(0,ndim),axis=this.axis>=0?this.axis:this.axis+ndim;reductionAxes.splice(axis,1);let broadcastShape=pyListRepeat(1,ndim);broadcastShape[axis]=inputShape[axis];let sortedReductionAxes=reductionAxes.slice();sortedReductionAxes.sort();let needsBroadcasting=!util_exports.arraysEqual(sortedReductionAxes,range4(0,ndim).slice(0,ndim-1)),normalizeInference=()=>{if(needsBroadcasting){let broadcastMovingMean=this.movingMean.read().reshape(broadcastShape),broadcastMovingVariance=this.movingVariance.read().reshape(broadcastShape),broadcastBeta=this.center?this.beta.read().reshape(broadcastShape):null,broadcastGamma=this.scale?this.gamma.read().reshape(broadcastShape):null;return batchNormalization(input2,broadcastMovingMean,broadcastMovingVariance,broadcastBeta,broadcastGamma,this.epsilon)}else return batchNormalization(input2,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!training5)return normalizeInference();let[normedTraining,mean7,variance]=normalizeBatchInTraining(input2,this.gamma.read(),this.beta.read(),reductionAxes,this.epsilon),doMovingAverage=(variable3,value,momentum)=>{tidy(()=>{let decay=1-momentum,origValue=variable3.read(),updateDelta=origValue.sub(value).mul(decay);variable3.write(origValue.sub(updateDelta))})},updateMovingMeanAndVariance=()=>{doMovingAverage(this.movingMean,mean7,this.momentum),doMovingAverage(this.movingVariance,variance,this.momentum)};return updateMovingMeanAndVariance(),normedTraining})}getConfig(){let config={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:serializeInitializer(this.betaInitializer),gammaInitializer:serializeInitializer(this.gammaInitializer),movingMeanInitializer:serializeInitializer(this.movingMeanInitializer),movingVarianceInitializer:serializeInitializer(this.movingVarianceInitializer),betaRegularizer:serializeRegularizer(this.betaRegularizer),gammaRegularizer:serializeRegularizer(this.gammaRegularizer),betaConstraint:serializeConstraint(this.betaConstraint),gammaConstraint:serializeConstraint(this.gammaConstraint)},baseConfig=super.getConfig();return Object.assign(config,baseConfig),config}};BatchNormalization.className="BatchNormalization";serialization_exports.registerClass(BatchNormalization);var LayerNormalization=class extends Layer{constructor(args){if(args==null&&(args={}),super(args),this.axis=args.axis==null?-1:args.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let axis of this.axis)if(!Number.isInteger(axis))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=args.epsilon==null?.001:args.epsilon,this.center=args.center==null?!0:args.center,this.scale=args.scale==null?!0:args.scale,this.betaInitializer=getInitializer(args.betaInitializer||"zeros"),this.gammaInitializer=getInitializer(args.gammaInitializer||"ones"),this.betaRegularizer=getRegularizer(args.betaRegularizer),this.gammaRegularizer=getRegularizer(args.gammaRegularizer),this.supportsMasking=!0}build(inputShape){inputShape=getExactlyOneShape(inputShape);let nDims=inputShape.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let i=0;i=nDims)throw new Error(`Invalid axis: ${axis}`);if(this.axis.length!==unique5(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let paramShape=this.axis.map(axis=>inputShape[axis]),trainable=!0;this.scale?this.gamma=this.addWeight("gamma",paramShape,"float32",this.gammaInitializer,this.gammaRegularizer,trainable):this.gamma=null,this.center?this.beta=this.addWeight("beta",paramShape,"float32",this.betaInitializer,this.betaRegularizer,trainable):this.beta=null,this.built=!0}call(inputs,kwargs){let input2=getExactlyOneTensor(inputs),inputShape=input2.shape,nDims=inputShape.length;return tidy(()=>{let keepDims=!0,{mean:mean7,variance}=moments(input2,this.axis,keepDims),broadcastShape=pyListRepeat(1,nDims);for(let dim of this.axis)broadcastShape[dim]=inputShape[dim];let broadcast=v=>v!=null&&v.shape.length!==nDims&&this.axis!==[nDims-1]?v.reshape(broadcastShape):v,scale2=broadcast(this.gamma.read()),offset=broadcast(this.beta.read()),momentsTiling=[],scaleOffsetTiling=[];for(let i=0;i{if(x.rank!==4)throw new ValueError(`temporalPadding expects input tensor to be 4-D, but received a ${x.rank}-D tensor.`);if(padding2==null&&(padding2=[[1,1],[1,1]]),padding2.length!==2||padding2[0].length!==2||padding2[1].length!==2)throw new ValueError("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(dataFormat==null&&(dataFormat=imageDataFormat()),dataFormat!=="channelsLast"&&dataFormat!=="channelsFirst")throw new ValueError(`Unknown data format: ${dataFormat}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let pattern;return dataFormat==="channelsFirst"?pattern=[[0,0],[0,0],padding2[0],padding2[1]]:pattern=[[0,0],padding2[0],padding2[1],[0,0]],pad(x,pattern)})}var ZeroPadding2D=class extends Layer{constructor(args){if(args==null&&(args={}),super(args),this.dataFormat=args.dataFormat==null?imageDataFormat():args.dataFormat,args.padding==null)this.padding=[[1,1],[1,1]];else if(typeof args.padding=="number")this.padding=[[args.padding,args.padding],[args.padding,args.padding]];else{if(args.padding=args.padding,args.padding.length!==2)throw new ValueError(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${args.padding.length} array.`);let heightPadding,widthPadding;if(typeof args.padding[0]=="number")heightPadding=[args.padding[0],args.padding[0]],widthPadding=[args.padding[1],args.padding[1]];else{if(args.padding=args.padding,args.padding[0].length!==2)throw new ValueError(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${args.padding[0].length} array.`);if(heightPadding=args.padding[0],args.padding[1].length!==2)throw new ValueError(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${args.padding[1].length} array.`);widthPadding=args.padding[1]}this.padding=[heightPadding,widthPadding]}this.inputSpec=[new InputSpec({ndim:4})]}computeOutputShape(inputShape){inputShape=getExactlyOneShape(inputShape);let rows,cols;return this.dataFormat==="channelsFirst"?(inputShape[2]!=null&&inputShape[2]>=0?rows=inputShape[2]+this.padding[0][0]+this.padding[0][1]:rows=null,inputShape[3]!=null&&inputShape[3]>=0?cols=inputShape[3]+this.padding[1][0]+this.padding[1][1]:cols=null,[inputShape[0],inputShape[1],rows,cols]):(inputShape[1]!=null&&inputShape[1]>=0?rows=inputShape[1]+this.padding[0][0]+this.padding[0][1]:rows=null,inputShape[2]!=null&&inputShape[2]>=0?cols=inputShape[2]+this.padding[1][0]+this.padding[1][1]:cols=null,[inputShape[0],rows,cols,inputShape[3]])}call(inputs,kwargs){return tidy(()=>spatial2dPadding(getExactlyOneTensor(inputs),this.padding,this.dataFormat))}getConfig(){let config={padding:this.padding,dataFormat:this.dataFormat},baseConfig=super.getConfig();return Object.assign(config,baseConfig),config}};ZeroPadding2D.className="ZeroPadding2D";serialization_exports.registerClass(ZeroPadding2D);function pool2d(x,poolSize,strides,padding2,dataFormat,poolMode){return tidy(()=>{checkDataFormat(dataFormat),checkPoolMode(poolMode),checkPaddingMode(padding2),strides==null&&(strides=[1,1]),padding2==null&&(padding2="valid"),dataFormat==null&&(dataFormat=imageDataFormat()),poolMode==null&&(poolMode="max"),x=preprocessConv2DInput(x,dataFormat);let y,paddingString=padding2==="same"?"same":"valid";return poolMode==="max"?y=maxPool(x,poolSize,strides,paddingString):y=avgPool(x,poolSize,strides,paddingString),dataFormat==="channelsFirst"&&(y=transpose(y,[0,3,1,2])),y})}function pool3d(x,poolSize,strides,padding2,dataFormat,poolMode){return tidy(()=>{checkDataFormat(dataFormat),checkPoolMode(poolMode),checkPaddingMode(padding2),strides==null&&(strides=[1,1,1]),padding2==null&&(padding2="valid"),dataFormat==null&&(dataFormat=imageDataFormat()),poolMode==null&&(poolMode="max"),x=preprocessConv3DInput(x,dataFormat);let y,paddingString=padding2==="same"?"same":"valid";return poolMode==="max"?y=maxPool3d(x,poolSize,strides,paddingString):y=avgPool3d(x,poolSize,strides,paddingString),dataFormat==="channelsFirst"&&(y=transpose(y,[0,4,1,2,3])),y})}var Pooling1D=class extends Layer{constructor(args){if(args.poolSize==null&&(args.poolSize=2),super(args),typeof args.poolSize=="number")this.poolSize=[args.poolSize];else if(Array.isArray(args.poolSize)&&args.poolSize.length===1&&typeof args.poolSize[0]=="number")this.poolSize=args.poolSize;else throw new ValueError(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(args.poolSize)}`);if(assertPositiveInteger(this.poolSize,"poolSize"),args.strides==null)this.strides=this.poolSize;else if(typeof args.strides=="number")this.strides=[args.strides];else if(Array.isArray(args.strides)&&args.strides.length===1&&typeof args.strides[0]=="number")this.strides=args.strides;else throw new ValueError(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(args.strides)}`);assertPositiveInteger(this.strides,"strides"),this.padding=args.padding==null?"valid":args.padding,checkPaddingMode(this.padding),this.inputSpec=[new InputSpec({ndim:3})]}computeOutputShape(inputShape){inputShape=getExactlyOneShape(inputShape);let length=convOutputLength(inputShape[1],this.poolSize[0],this.padding,this.strides[0]);return[inputShape[0],length,inputShape[2]]}call(inputs,kwargs){return tidy(()=>{this.invokeCallHook(inputs,kwargs),inputs=expandDims2(getExactlyOneTensor(inputs),2);let output=this.poolingFunction(getExactlyOneTensor(inputs),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return squeeze(output,[2])})}getConfig(){let config={poolSize:this.poolSize,padding:this.padding,strides:this.strides},baseConfig=super.getConfig();return Object.assign(config,baseConfig),config}},MaxPooling1D=class extends Pooling1D{constructor(args){super(args)}poolingFunction(inputs,poolSize,strides,padding2,dataFormat){return checkDataFormat(dataFormat),checkPaddingMode(padding2),pool2d(inputs,poolSize,strides,padding2,dataFormat,"max")}};MaxPooling1D.className="MaxPooling1D";serialization_exports.registerClass(MaxPooling1D);var AveragePooling1D=class extends Pooling1D{constructor(args){super(args)}poolingFunction(inputs,poolSize,strides,padding2,dataFormat){return checkDataFormat(dataFormat),checkPaddingMode(padding2),pool2d(inputs,poolSize,strides,padding2,dataFormat,"avg")}};AveragePooling1D.className="AveragePooling1D";serialization_exports.registerClass(AveragePooling1D);var Pooling2D=class extends Layer{constructor(args){if(args.poolSize==null&&(args.poolSize=[2,2]),super(args),this.poolSize=Array.isArray(args.poolSize)?args.poolSize:[args.poolSize,args.poolSize],args.strides==null)this.strides=this.poolSize;else if(Array.isArray(args.strides)){if(args.strides.length!==2)throw new ValueError(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${args.strides.length}.`);this.strides=args.strides}else this.strides=[args.strides,args.strides];assertPositiveInteger(this.poolSize,"poolSize"),assertPositiveInteger(this.strides,"strides"),this.padding=args.padding==null?"valid":args.padding,this.dataFormat=args.dataFormat==null?"channelsLast":args.dataFormat,checkDataFormat(this.dataFormat),checkPaddingMode(this.padding),this.inputSpec=[new InputSpec({ndim:4})]}computeOutputShape(inputShape){inputShape=getExactlyOneShape(inputShape);let rows=this.dataFormat==="channelsFirst"?inputShape[2]:inputShape[1],cols=this.dataFormat==="channelsFirst"?inputShape[3]:inputShape[2];return rows=convOutputLength(rows,this.poolSize[0],this.padding,this.strides[0]),cols=convOutputLength(cols,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[inputShape[0],inputShape[1],rows,cols]:[inputShape[0],rows,cols,inputShape[3]]}call(inputs,kwargs){return tidy(()=>(this.invokeCallHook(inputs,kwargs),this.poolingFunction(getExactlyOneTensor(inputs),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let config={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},baseConfig=super.getConfig();return Object.assign(config,baseConfig),config}},MaxPooling2D=class extends Pooling2D{constructor(args){super(args)}poolingFunction(inputs,poolSize,strides,padding2,dataFormat){return checkDataFormat(dataFormat),checkPaddingMode(padding2),pool2d(inputs,poolSize,strides,padding2,dataFormat,"max")}};MaxPooling2D.className="MaxPooling2D";serialization_exports.registerClass(MaxPooling2D);var AveragePooling2D=class extends Pooling2D{constructor(args){super(args)}poolingFunction(inputs,poolSize,strides,padding2,dataFormat){return checkDataFormat(dataFormat),checkPaddingMode(padding2),pool2d(inputs,poolSize,strides,padding2,dataFormat,"avg")}};AveragePooling2D.className="AveragePooling2D";serialization_exports.registerClass(AveragePooling2D);var Pooling3D=class extends Layer{constructor(args){if(args.poolSize==null&&(args.poolSize=[2,2,2]),super(args),this.poolSize=Array.isArray(args.poolSize)?args.poolSize:[args.poolSize,args.poolSize,args.poolSize],args.strides==null)this.strides=this.poolSize;else if(Array.isArray(args.strides)){if(args.strides.length!==3)throw new ValueError(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${args.strides.length}.`);this.strides=args.strides}else this.strides=[args.strides,args.strides,args.strides];assertPositiveInteger(this.poolSize,"poolSize"),assertPositiveInteger(this.strides,"strides"),this.padding=args.padding==null?"valid":args.padding,this.dataFormat=args.dataFormat==null?"channelsLast":args.dataFormat,checkDataFormat(this.dataFormat),checkPaddingMode(this.padding),this.inputSpec=[new InputSpec({ndim:5})]}computeOutputShape(inputShape){inputShape=getExactlyOneShape(inputShape);let depths=this.dataFormat==="channelsFirst"?inputShape[2]:inputShape[1],rows=this.dataFormat==="channelsFirst"?inputShape[3]:inputShape[2],cols=this.dataFormat==="channelsFirst"?inputShape[4]:inputShape[3];return depths=convOutputLength(depths,this.poolSize[0],this.padding,this.strides[0]),rows=convOutputLength(rows,this.poolSize[1],this.padding,this.strides[1]),cols=convOutputLength(cols,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[inputShape[0],inputShape[1],depths,rows,cols]:[inputShape[0],depths,rows,cols,inputShape[4]]}call(inputs,kwargs){return tidy(()=>(this.invokeCallHook(inputs,kwargs),this.poolingFunction(getExactlyOneTensor(inputs),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let config={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},baseConfig=super.getConfig();return Object.assign(config,baseConfig),config}},MaxPooling3D=class extends Pooling3D{constructor(args){super(args)}poolingFunction(inputs,poolSize,strides,padding2,dataFormat){return checkDataFormat(dataFormat),checkPaddingMode(padding2),pool3d(inputs,poolSize,strides,padding2,dataFormat,"max")}};MaxPooling3D.className="MaxPooling3D";serialization_exports.registerClass(MaxPooling3D);var AveragePooling3D=class extends Pooling3D{constructor(args){super(args)}poolingFunction(inputs,poolSize,strides,padding2,dataFormat){return checkDataFormat(dataFormat),checkPaddingMode(padding2),pool3d(inputs,poolSize,strides,padding2,dataFormat,"avg")}};AveragePooling3D.className="AveragePooling3D";serialization_exports.registerClass(AveragePooling3D);var GlobalPooling1D=class extends Layer{constructor(args){super(args);this.inputSpec=[new InputSpec({ndim:3})]}computeOutputShape(inputShape){return[inputShape[0],inputShape[2]]}call(inputs,kwargs){throw new NotImplementedError}},GlobalAveragePooling1D=class extends GlobalPooling1D{constructor(args){super(args||{})}call(inputs,kwargs){return tidy(()=>{let input2=getExactlyOneTensor(inputs);return mean(input2,1)})}};GlobalAveragePooling1D.className="GlobalAveragePooling1D";serialization_exports.registerClass(GlobalAveragePooling1D);var GlobalMaxPooling1D=class extends GlobalPooling1D{constructor(args){super(args||{})}call(inputs,kwargs){return tidy(()=>{let input2=getExactlyOneTensor(inputs);return max(input2,1)})}};GlobalMaxPooling1D.className="GlobalMaxPooling1D";serialization_exports.registerClass(GlobalMaxPooling1D);var GlobalPooling2D=class extends Layer{constructor(args){super(args);this.dataFormat=args.dataFormat==null?"channelsLast":args.dataFormat,checkDataFormat(this.dataFormat),this.inputSpec=[new InputSpec({ndim:4})]}computeOutputShape(inputShape){return inputShape=inputShape,this.dataFormat==="channelsLast"?[inputShape[0],inputShape[3]]:[inputShape[0],inputShape[1]]}call(inputs,kwargs){throw new NotImplementedError}getConfig(){let config={dataFormat:this.dataFormat},baseConfig=super.getConfig();return Object.assign(config,baseConfig),config}},GlobalAveragePooling2D=class extends GlobalPooling2D{call(inputs,kwargs){return tidy(()=>{let input2=getExactlyOneTensor(inputs);return this.dataFormat==="channelsLast"?mean(input2,[1,2]):mean(input2,[2,3])})}};GlobalAveragePooling2D.className="GlobalAveragePooling2D";serialization_exports.registerClass(GlobalAveragePooling2D);var GlobalMaxPooling2D=class extends GlobalPooling2D{call(inputs,kwargs){return tidy(()=>{let input2=getExactlyOneTensor(inputs);return this.dataFormat==="channelsLast"?max(input2,[1,2]):max(input2,[2,3])})}};GlobalMaxPooling2D.className="GlobalMaxPooling2D";serialization_exports.registerClass(GlobalMaxPooling2D);var Wrapper=class extends Layer{constructor(args){super(args);this.layer=args.layer}build(inputShape){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(value){this.layer!=null&&(this.layer.trainable=value)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(weights){this.layer.setWeights(weights)}getConfig(){let config={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},baseConfig=super.getConfig();return Object.assign(config,baseConfig),config}setFastWeightInitDuringBuild(value){super.setFastWeightInitDuringBuild(value),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(value)}static fromConfig(cls,config,customObjects={}){let layerConfig=config.layer,layer=deserialize(layerConfig,customObjects);delete config.layer;let newConfig={layer};return Object.assign(newConfig,config),new cls(newConfig)}},TimeDistributed=class extends Wrapper{constructor(args){super(args);this.supportsMasking=!0}build(inputShape){if(inputShape=getExactlyOneShape(inputShape),inputShape.length<3)throw new ValueError(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(inputShape)}`);this.inputSpec=[{shape:inputShape}];let childInputShape=[inputShape[0]].concat(inputShape.slice(2));this.layer.built||(this.layer.build(childInputShape),this.layer.built=!0),super.build(inputShape)}computeOutputShape(inputShape){inputShape=getExactlyOneShape(inputShape);let childInputShape=[inputShape[0]].concat(inputShape.slice(2)),childOutputShape=this.layer.computeOutputShape(childInputShape),timesteps=inputShape[1];return[childOutputShape[0],timesteps].concat(childOutputShape.slice(1))}call(inputs,kwargs){return tidy(()=>{inputs=getExactlyOneTensor(inputs);let step9=(inputs2,states)=>{let output=getExactlyOneTensor(this.layer.call(inputs2,kwargs));return[output,[]]},rnnOutputs=rnn(step9,inputs,[],!1,null,null,!1,!0),y=rnnOutputs[1];return y})}};TimeDistributed.className="TimeDistributed";serialization_exports.registerClass(TimeDistributed);function checkBidirectionalMergeMode(value){checkStringTypeUnionValue(VALID_BIDIRECTIONAL_MERGE_MODES,"BidirectionalMergeMode",value)}var DEFAULT_BIDIRECTIONAL_MERGE_MODE="concat",Bidirectional=class extends Wrapper{constructor(args){super(args);let layerConfig=args.layer.getConfig(),forwDict={};forwDict.className=args.layer.getClassName(),forwDict.config=layerConfig,this.forwardLayer=deserialize(forwDict),layerConfig.goBackwards=!(layerConfig.goBackwards===!0);let backDict={};if(backDict.className=args.layer.getClassName(),backDict.config=layerConfig,this.backwardLayer=deserialize(backDict),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=args.mergeMode===void 0?DEFAULT_BIDIRECTIONAL_MERGE_MODE:args.mergeMode,checkBidirectionalMergeMode(this.mergeMode),args.weights)throw new NotImplementedError("weights support is not implemented for Bidirectional layer yet.");this._stateful=args.layer.stateful,this.returnSequences=args.layer.returnSequences,this.returnState=args.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=args.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(value){this._trainable=value,this.forwardLayer!=null&&(this.forwardLayer.trainable=value),this.backwardLayer!=null&&(this.backwardLayer.trainable=value)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(weights){let numWeights=weights.length,numeightsOver2=Math.floor(numWeights/2);this.forwardLayer.setWeights(weights.slice(0,numeightsOver2)),this.backwardLayer.setWeights(weights.slice(numeightsOver2))}computeOutputShape(inputShape){let layerShapes=this.forwardLayer.computeOutputShape(inputShape);Array.isArray(layerShapes)&&Array.isArray(layerShapes[0])||(layerShapes=[layerShapes]),layerShapes=layerShapes;let outputShape,outputShapes,stateShape;return this.returnState&&(stateShape=layerShapes.slice(1)),outputShape=layerShapes[0],outputShape=outputShape,this.mergeMode==="concat"?(outputShape[outputShape.length-1]*=2,outputShapes=[outputShape]):this.mergeMode==null?outputShapes=[outputShape,outputShape.slice()]:outputShapes=[outputShape],this.returnState?this.mergeMode==null?outputShapes.concat(stateShape).concat(stateShape.slice()):[outputShape].concat(stateShape).concat(stateShape.slice()):singletonOrArray(outputShapes)}apply(inputs,kwargs){let initialState=kwargs==null?null:kwargs.initialState,constants=kwargs==null?null:kwargs.constants;kwargs==null&&(kwargs={});let standardized=standardizeArgs(inputs,initialState,constants,this.numConstants);if(inputs=standardized.inputs,initialState=standardized.initialState,constants=standardized.constants,Array.isArray(inputs)&&(initialState=inputs.slice(1),inputs=inputs[0]),(initialState==null||initialState.length===0)&&constants==null)return super.apply(inputs,kwargs);let additionalInputs=[],additionalSpecs=[];if(initialState!=null){let numStates=initialState.length;if(numStates%2>0)throw new ValueError("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");kwargs.initialState=initialState,additionalInputs.push(...initialState);let stateSpecs=initialState.map(state6=>new InputSpec({shape:state6.shape}));this.forwardLayer.stateSpec=stateSpecs.slice(0,numStates/2),this.backwardLayer.stateSpec=stateSpecs.slice(numStates/2),additionalSpecs.push(...stateSpecs)}if(constants!=null)throw new NotImplementedError("Support for constants in Bidirectional layers is not implemented yet.");let isSymbolicTensor=additionalInputs[0]instanceof SymbolicTensor;for(let tensor168 of additionalInputs)if(tensor168 instanceof SymbolicTensor!==isSymbolicTensor)throw new ValueError("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(isSymbolicTensor){let fullInput=[inputs].concat(additionalInputs),fullInputSpec=this.inputSpec.concat(additionalSpecs),originalInputSpec=this.inputSpec;this.inputSpec=fullInputSpec;let output=super.apply(fullInput,kwargs);return this.inputSpec=originalInputSpec,output}else return super.apply(inputs,kwargs)}call(inputs,kwargs){return tidy(()=>{let initialState=kwargs.initialState,y,yRev;if(initialState==null)y=this.forwardLayer.call(inputs,kwargs),yRev=this.backwardLayer.call(inputs,kwargs);else{let forwardState=initialState.slice(0,initialState.length/2),backwardState=initialState.slice(initialState.length/2);y=this.forwardLayer.call(inputs,Object.assign(kwargs,{initialState:forwardState})),yRev=this.backwardLayer.call(inputs,Object.assign(kwargs,{initialState:backwardState}))}let states;this.returnState&&(Array.isArray(y)&&(states=y.slice(1).concat(yRev.slice(1))),y=y[0],yRev=yRev[0]),this.returnSequences&&(yRev=reverse(yRev,1));let output;return this.mergeMode==="concat"?output=concatenate([y,yRev]):this.mergeMode==="sum"?output=add2(y,yRev):this.mergeMode==="ave"?output=mul(.5,add2(y,yRev)):this.mergeMode==="mul"?output=mul(y,yRev):this.mergeMode==null&&(output=[y,yRev]),this.returnState?this.mergeMode==null?output.concat(states):[output].concat(states):output})}resetStates(states){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(inputShape){nameScope(this.forwardLayer.name,()=>{this.forwardLayer.build(inputShape)}),nameScope(this.backwardLayer.name,()=>{this.backwardLayer.build(inputShape)}),this.built=!0}computeMask(inputs,mask){Array.isArray(mask)&&(mask=mask[0]);let outputMask;if(this.returnSequences?this.mergeMode==null?outputMask=[mask,mask]:outputMask=mask:this.mergeMode==null?outputMask=[null,null]:outputMask=null,this.returnState){let states=this.forwardLayer.states,stateMask=states.map(state6=>null);return Array.isArray(outputMask)?outputMask.concat(stateMask).concat(stateMask):[outputMask].concat(stateMask).concat(stateMask)}else return outputMask}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(value){super.setFastWeightInitDuringBuild(value),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(value),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(value)}getConfig(){let config={mergeMode:this.mergeMode},baseConfig=super.getConfig();return Object.assign(config,baseConfig),config}static fromConfig(cls,config){let rnnLayer=deserialize(config.layer);if(delete config.layer,config.numConstants!=null)throw new NotImplementedError("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let newConfig=config;return newConfig.layer=rnnLayer,new cls(newConfig)}};Bidirectional.className="Bidirectional";serialization_exports.registerClass(Bidirectional);function inputLayer(args){return new InputLayer(args)}function elu7(args){return new ELU(args)}function reLU(args){return new ReLU(args)}function leakyReLU(args){return new LeakyReLU(args)}function prelu6(args){return new PReLU(args)}function softmax4(args){return new Softmax3(args)}function thresholdedReLU(args){return new ThresholdedReLU(args)}function conv1d5(args){return new Conv1D(args)}function conv2d10(args){return new Conv2D2(args)}function conv2dTranspose2(args){return new Conv2DTranspose(args)}function conv3d3(args){return new Conv3D2(args)}function separableConv2d2(args){return new SeparableConv2D(args)}function cropping2D(args){return new Cropping2D(args)}function upSampling2d(args){return new UpSampling2D(args)}function depthwiseConv2d4(args){return new DepthwiseConv2D(args)}function activation(args){return new Activation2(args)}function dense(args){return new Dense(args)}function dropout3(args){return new Dropout(args)}function spatialDropout1d(args){return new SpatialDropout1D(args)}function flatten4(args){return new Flatten(args)}function repeatVector(args){return new RepeatVector(args)}function reshape87(args){return new Reshape2(args)}function permute(args){return new Permute(args)}function embedding(args){return new Embedding(args)}function add31(args){return new Add2(args)}function average(args){return new Average(args)}function concatenate2(args){return new Concatenate(args)}function maximum9(args){return new Maximum2(args)}function minimum7(args){return new Minimum2(args)}function multiply(args){return new Multiply2(args)}function dot6(args){return new Dot(args)}function batchNormalization2(args){return new BatchNormalization(args)}function layerNormalization(args){return new LayerNormalization(args)}function zeroPadding2d(args){return new ZeroPadding2D(args)}function averagePooling1d(args){return new AveragePooling1D(args)}function avgPool1d(args){return averagePooling1d(args)}function avgPooling1d(args){return averagePooling1d(args)}function averagePooling2d(args){return new AveragePooling2D(args)}function avgPool2d(args){return averagePooling2d(args)}function avgPooling2d(args){return averagePooling2d(args)}function averagePooling3d(args){return new AveragePooling3D(args)}function avgPool3d2(args){return averagePooling3d(args)}function avgPooling3d(args){return averagePooling3d(args)}function globalAveragePooling1d(args){return new GlobalAveragePooling1D(args)}function globalAveragePooling2d(args){return new GlobalAveragePooling2D(args)}function globalMaxPooling1d(args){return new GlobalMaxPooling1D(args)}function globalMaxPooling2d(args){return new GlobalMaxPooling2D(args)}function maxPooling1d(args){return new MaxPooling1D(args)}function maxPooling2d(args){return new MaxPooling2D(args)}function maxPooling3d(args){return new MaxPooling3D(args)}function gru(args){return new GRU(args)}function gruCell(args){return new GRUCell(args)}function lstm(args){return new LSTM(args)}function lstmCell(args){return new LSTMCell(args)}function simpleRNN(args){return new SimpleRNN(args)}function simpleRNNCell(args){return new SimpleRNNCell(args)}function convLstm2d(args){return new ConvLSTM2D(args)}function convLstm2dCell(args){return new ConvLSTM2DCell(args)}function rnn2(args){return new RNN(args)}function stackedRNNCells(args){return new StackedRNNCells(args)}function bidirectional(args){return new Bidirectional(args)}function timeDistributed(args){return new TimeDistributed(args)}var globalMaxPool1d=globalMaxPooling1d,globalMaxPool2d=globalMaxPooling2d,maxPool1d=maxPooling1d,maxPool2d=maxPooling2d;function gaussianNoise(args){return new GaussianNoise(args)}function gaussianDropout(args){return new GaussianDropout(args)}function alphaDropout(args){return new AlphaDropout(args)}function masking(args){return new Masking(args)}var exports_metrics_exports={};__export2(exports_metrics_exports,{MAPE:()=>MAPE2,MSE:()=>MSE2,binaryAccuracy:()=>binaryAccuracy2,binaryCrossentropy:()=>binaryCrossentropy3,categoricalAccuracy:()=>categoricalAccuracy2,categoricalCrossentropy:()=>categoricalCrossentropy3,cosineProximity:()=>cosineProximity2,mape:()=>mape2,meanAbsoluteError:()=>meanAbsoluteError2,meanAbsolutePercentageError:()=>meanAbsolutePercentageError2,meanSquaredError:()=>meanSquaredError3,mse:()=>mse2,precision:()=>precision2,recall:()=>recall2,sparseCategoricalAccuracy:()=>sparseCategoricalAccuracy2});function binaryAccuracy2(yTrue,yPred){return binaryAccuracy(yTrue,yPred)}function binaryCrossentropy3(yTrue,yPred){return binaryCrossentropy2(yTrue,yPred)}function sparseCategoricalAccuracy2(yTrue,yPred){return sparseCategoricalAccuracy(yTrue,yPred)}function categoricalAccuracy2(yTrue,yPred){return categoricalAccuracy(yTrue,yPred)}function categoricalCrossentropy3(yTrue,yPred){return categoricalCrossentropy2(yTrue,yPred)}function precision2(yTrue,yPred){return precision(yTrue,yPred)}function recall2(yTrue,yPred){return recall(yTrue,yPred)}function cosineProximity2(yTrue,yPred){return cosineProximity(yTrue,yPred)}function meanAbsoluteError2(yTrue,yPred){return meanAbsoluteError(yTrue,yPred)}function meanAbsolutePercentageError2(yTrue,yPred){return meanAbsolutePercentageError(yTrue,yPred)}function MAPE2(yTrue,yPred){return meanAbsolutePercentageError(yTrue,yPred)}function mape2(yTrue,yPred){return meanAbsolutePercentageError(yTrue,yPred)}function meanSquaredError3(yTrue,yPred){return meanSquaredError2(yTrue,yPred)}function MSE2(yTrue,yPred){return meanSquaredError2(yTrue,yPred)}function mse2(yTrue,yPred){return meanSquaredError2(yTrue,yPred)}var exports_models_exports={};__export2(exports_models_exports,{modelFromJSON:()=>modelFromJSON});var exports_regularizers_exports={};__export2(exports_regularizers_exports,{l1:()=>l12,l1l2:()=>l1l2,l2:()=>l22});function l1l2(config){return new L1L2(config)}function l12(config){return l1(config)}function l22(config){return l2(config)}var Callback=class extends BaseCallback{constructor(){super(...arguments);this.model=null}setModel(model2){if(!(model2 instanceof LayersModel))throw new Error("model must be a LayersModel, not some other Container");this.model=model2}};function less7(currVal,prevVal){return currValprevVal}var EarlyStopping=class extends Callback{constructor(args){super();if(args==null&&(args={}),args.restoreBestWeights)throw new NotImplementedError("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=args.monitor||"val_loss",this.minDelta=Math.abs(args.minDelta||0),this.patience=args.patience||0,this.verbose=args.verbose||0,this.mode=args.mode||"auto",this.baseline=args.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=less7:this.mode==="max"?this.monitorFunc=greater11:this.monitor.indexOf("acc")!==-1?this.monitorFunc=greater11:this.monitorFunc=less7,this.monitorFunc===less7&&(this.minDelta*=-1)}async onTrainBegin(logs5){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===less7?Infinity:-Infinity}async onEpochEnd(epoch,logs5){await resolveScalarsInLogs(logs5);let current=this.getMonitorValue(logs5);if(current==null)return;this.monitorFunc(current-this.minDelta,this.best)?(this.best=current,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=epoch,this.model.stopTraining=!0))}async onTrainEnd(logs5){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(logs5){logs5==null&&(logs5={});let monitorValue=logs5[this.monitor];return monitorValue==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(logs5)}`),monitorValue}};function earlyStopping(args){return new EarlyStopping(args)}var callbacks={earlyStopping},DataType;(function(DataType2){DataType2[DataType2.DT_INVALID=0]="DT_INVALID",DataType2[DataType2.DT_FLOAT=1]="DT_FLOAT",DataType2[DataType2.DT_DOUBLE=2]="DT_DOUBLE",DataType2[DataType2.DT_INT32=3]="DT_INT32",DataType2[DataType2.DT_UINT8=4]="DT_UINT8",DataType2[DataType2.DT_INT16=5]="DT_INT16",DataType2[DataType2.DT_INT8=6]="DT_INT8",DataType2[DataType2.DT_STRING=7]="DT_STRING",DataType2[DataType2.DT_COMPLEX64=8]="DT_COMPLEX64",DataType2[DataType2.DT_INT64=9]="DT_INT64",DataType2[DataType2.DT_BOOL=10]="DT_BOOL",DataType2[DataType2.DT_QINT8=11]="DT_QINT8",DataType2[DataType2.DT_QUINT8=12]="DT_QUINT8",DataType2[DataType2.DT_QINT32=13]="DT_QINT32",DataType2[DataType2.DT_BFLOAT16=14]="DT_BFLOAT16",DataType2[DataType2.DT_FLOAT_REF=101]="DT_FLOAT_REF",DataType2[DataType2.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",DataType2[DataType2.DT_INT32_REF=103]="DT_INT32_REF",DataType2[DataType2.DT_UINT8_REF=104]="DT_UINT8_REF",DataType2[DataType2.DT_INT16_REF=105]="DT_INT16_REF",DataType2[DataType2.DT_INT8_REF=106]="DT_INT8_REF",DataType2[DataType2.DT_STRING_REF=107]="DT_STRING_REF",DataType2[DataType2.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",DataType2[DataType2.DT_INT64_REF=109]="DT_INT64_REF",DataType2[DataType2.DT_BOOL_REF=110]="DT_BOOL_REF",DataType2[DataType2.DT_QINT8_REF=111]="DT_QINT8_REF",DataType2[DataType2.DT_QUINT8_REF=112]="DT_QUINT8_REF",DataType2[DataType2.DT_QINT32_REF=113]="DT_QINT32_REF",DataType2[DataType2.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(DataType||(DataType={}));var SaverDef;(function(SaverDef2){let CheckpointFormatVersion;(function(CheckpointFormatVersion2){CheckpointFormatVersion2[CheckpointFormatVersion2.LEGACY=0]="LEGACY",CheckpointFormatVersion2[CheckpointFormatVersion2.V1=1]="V1",CheckpointFormatVersion2[CheckpointFormatVersion2.V2=2]="V2"})(CheckpointFormatVersion=SaverDef2.CheckpointFormatVersion||(SaverDef2.CheckpointFormatVersion={}))})(SaverDef||(SaverDef={}));var CUSTOM_OPS={};function registerOp(name,opFunc){let opMapper={tfOpName:name,category:"custom",inputs:[],attrs:[],customExecutor:opFunc};CUSTOM_OPS[name]=opMapper}function getRegisteredOp(name){return CUSTOM_OPS[name]}function deregisterOp(name){delete CUSTOM_OPS[name]}function getParamValue(paramName,node,tensorMap,context,resourceManager){let inputParam=node.inputParams[paramName];if(inputParam&&inputParam.inputIndexStart!==void 0){let start=inputParam.inputIndexStart,end=inputParam.inputIndexEnd===0?void 0:inputParam.inputIndexEnd===void 0?start+1:inputParam.inputIndexEnd;if(inputParam.type==="tensor")return getTensor(node.inputNames[inputParam.inputIndexStart],tensorMap,context,resourceManager);if(inputParam.type==="tensors"){let inputs=node.inputNames.slice(start,end);return inputs.map(name=>getTensor(name,tensorMap,context,resourceManager))}let tensor168=getTensor(node.inputNames.slice(start)[0],tensorMap,context,resourceManager),data2=tensor168.dataSync();return inputParam.type==="number"?data2[0]:util_exports.toNestedArray(tensor168.shape,data2)}let attrParam=node.attrParams[paramName];return attrParam&&attrParam.value}function getTensor(name,tensorsMap,context,resourceManager){let[nodeName,index]=parseNodeName(name);if(resourceManager!=null){let tensor168=resourceManager.getHashTableHandleByName(nodeName);if(tensor168!=null)return tensor168}let contextId=context.currentContextIds.find(contextId2=>!!tensorsMap[getNodeNameWithContextId(nodeName,contextId2)]);return contextId!==void 0?tensorsMap[getNodeNameWithContextId(nodeName,contextId)][index]:void 0}function getTensorsForCurrentContenxt(name,tensorsMap,context){return tensorsMap[getNodeNameWithContextId(name,context.currentContextId)]}function getNodeNameAndIndex(inputName,context){let[nodeName,index]=parseNodeName(inputName);return[getNodeNameWithContextId(nodeName,context&&context.currentContextId),index]}function getNodeNameWithContextId(name,contextId){return contextId?`${name}-${contextId}`:name}function parseNodeName(name){let parts=name.split(":");if(parts.length===1)return[name,0];let nodeName=parts[0];return[nodeName,Number(parts[parts.length-1])]}function getPadding(node,tensorMap,context){let pad11=getParamValue("pad",node,tensorMap,context);if(pad11==="explicit"){pad11=getParamValue("explicitPaddings",node,tensorMap,context);let explicitPadding=[[0,0],[0,0],[0,0],[0,0]];for(let i=0;i<4;i++)explicitPadding[i][0]=pad11[i*2],explicitPadding[i][1]=pad11[i*2+1];return explicitPadding}return pad11}function cloneTensor(tensor168){return tensor168.kept?tensor168:clone(tensor168)}var arithmetic_exports={};__export2(arithmetic_exports,{json:()=>json});var json=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],basic_math_exports={};__export2(basic_math_exports,{json:()=>json2});var json2=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"clip_value_min",name:"clipValueMin",type:"number"},{tfName:"clip_value_max",name:"clipValueMax",type:"number"}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"clipValueMin",name:"clipValueMin",type:"number",defaultValue:0},{tfName:"clipValueMax",name:"clipValueMax",type:"number",defaultValue:6}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],control_exports={};__export2(control_exports,{json:()=>json3});var json3=[{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],convolution_exports={};__export2(convolution_exports,{json:()=>json4});var json4=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],creation_exports={};__export2(creation_exports,{json:()=>json5});var json5=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],dynamic_exports={};__export2(dynamic_exports,{json:()=>json6});var json6=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],evaluation_exports={};__export2(evaluation_exports,{json:()=>json7});var json7=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],graph_exports={};__export2(graph_exports,{json:()=>json8});var json8=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],hash_table_exports={};__export2(hash_table_exports,{json:()=>json9});var json9=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]}],image_exports={};__export2(image_exports,{json:()=>json10});var json10=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],logical_exports={};__export2(logical_exports,{json:()=>json11});var json11=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],matrices_exports={};__export2(matrices_exports,{json:()=>json12});var json12=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],normalization_exports={};__export2(normalization_exports,{json:()=>json13});var json13=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],reduction_exports={};__export2(reduction_exports,{json:()=>json14});var json14=[{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],slice_join_exports={};__export2(slice_join_exports,{json:()=>json15});var json15=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool",notSupported:!0}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],spectral_exports={};__export2(spectral_exports,{json:()=>json16});var json16=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],transformation_exports={};__export2(transformation_exports,{json:()=>json17});var json17=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],OperationMapper=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let ops69=[arithmetic_exports,basic_math_exports,control_exports,convolution_exports,creation_exports,dynamic_exports,evaluation_exports,logical_exports,image_exports,graph_exports,matrices_exports,normalization_exports,reduction_exports,slice_join_exports,spectral_exports,transformation_exports,hash_table_exports],mappersJson=[].concat(...ops69.map(op2=>op2.json));this.opMappers=mappersJson.reduce((map,mapper)=>(map[mapper.tfOpName]=mapper,map),{})}transformGraph(graph2,signature={}){let tfNodes=graph2.node,placeholders=[],weights=[],initNodes=[],nodes=tfNodes.reduce((map,node)=>(map[node.name]=this.mapNode(node),node.op.startsWith("Placeholder")?placeholders.push(map[node.name]):node.op==="Const"?weights.push(map[node.name]):(node.input==null||node.input.length===0)&&initNodes.push(map[node.name]),map),{}),inputs=[],outputs=[],inputNodeNameToKey={},outputNodeNameToKey={};signature!=null&&(inputNodeNameToKey=this.mapSignatureEntries(signature.inputs),outputNodeNameToKey=this.mapSignatureEntries(signature.outputs));let allNodes=Object.keys(nodes);allNodes.forEach(key=>{let node=nodes[key];node.inputNames.forEach(name=>{let[nodeName]=getNodeNameAndIndex(name);node.inputs.push(nodes[nodeName]),nodes[nodeName].children.push(node)})}),Object.keys(outputNodeNameToKey).length===0?allNodes.forEach(key=>{let node=nodes[key];node.children.length===0&&outputs.push(node)}):Object.keys(outputNodeNameToKey).forEach(name=>{let[nodeName]=getNodeNameAndIndex(name),node=nodes[nodeName];node!=null&&(node.signatureKey=outputNodeNameToKey[name],outputs.push(node))}),Object.keys(inputNodeNameToKey).length>0?Object.keys(inputNodeNameToKey).forEach(name=>{let[nodeName]=getNodeNameAndIndex(name),node=nodes[nodeName];node&&(node.signatureKey=inputNodeNameToKey[name],inputs.push(node))}):inputs=placeholders;let functions={};graph2.library!=null&&graph2.library.function!=null&&(functions=graph2.library.function.reduce((functions2,func2)=>(functions2[func2.signature.name]=this.mapFunction(func2),functions2),{}));let result={nodes,inputs,outputs,weights,placeholders,signature,functions};return initNodes.length>0&&(result.initNodes=initNodes),result}mapSignatureEntries(entries){return Object.keys(entries||{}).reduce((prev,curr)=>(prev[entries[curr].name]=curr,prev),{})}mapNode(node){let mapper=getRegisteredOp(node.op)||this.opMappers[node.op]||{};node.attr==null&&(node.attr={});let newNode={name:node.name,op:node.op,category:mapper.category,inputNames:(node.input||[]).map(input2=>input2.startsWith("^")?input2.substr(1):input2),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:node.attr};return mapper.inputs!=null&&(newNode.inputParams=mapper.inputs.reduce((map,param)=>(map[param.name]={type:param.type,inputIndexStart:param.start,inputIndexEnd:param.end},map),{})),mapper.attrs!=null&&(newNode.attrParams=mapper.attrs.reduce((map,param)=>{let type=param.type,value;switch(param.type){case"string":value=getStringParam(node.attr,param.tfName,param.defaultValue),value===void 0&&!!param.tfDeprecatedName&&(value=getStringParam(node.attr,param.tfDeprecatedName,param.defaultValue));break;case"string[]":value=getStringArrayParam(node.attr,param.tfName,param.defaultValue),value===void 0&&!!param.tfDeprecatedName&&(value=getStringArrayParam(node.attr,param.tfDeprecatedName,param.defaultValue));break;case"number":value=getNumberParam(node.attr,param.tfName,param.defaultValue||0),value===void 0&&!!param.tfDeprecatedName&&(value=getNumberParam(node.attr,param.tfDeprecatedName,param.defaultValue));break;case"number[]":value=getNumericArrayParam(node.attr,param.tfName,param.defaultValue),value===void 0&&!!param.tfDeprecatedName&&(value=getNumericArrayParam(node.attr,param.tfDeprecatedName,param.defaultValue));break;case"bool":value=getBoolParam(node.attr,param.tfName,param.defaultValue),value===void 0&&!!param.tfDeprecatedName&&(value=getBoolParam(node.attr,param.tfDeprecatedName,param.defaultValue));break;case"bool[]":value=getBoolArrayParam(node.attr,param.tfName,param.defaultValue),value===void 0&&!!param.tfDeprecatedName&&(value=getBoolArrayParam(node.attr,param.tfDeprecatedName,param.defaultValue));break;case"shape":value=getTensorShapeParam(node.attr,param.tfName,param.defaultValue),value===void 0&&!!param.tfDeprecatedName&&(value=getTensorShapeParam(node.attr,param.tfDeprecatedName,param.defaultValue));break;case"shape[]":value=getTensorShapeArrayParam(node.attr,param.tfName,param.defaultValue),value===void 0&&!!param.tfDeprecatedName&&(value=getTensorShapeArrayParam(node.attr,param.tfDeprecatedName,param.defaultValue));break;case"dtype":value=getDtypeParam(node.attr,param.tfName,param.defaultValue),value===void 0&&!!param.tfDeprecatedName&&(value=getDtypeParam(node.attr,param.tfDeprecatedName,param.defaultValue));break;case"dtype[]":value=getDtypeArrayParam(node.attr,param.tfName,param.defaultValue),value===void 0&&!!param.tfDeprecatedName&&(value=getDtypeArrayParam(node.attr,param.tfDeprecatedName,param.defaultValue));break;case"func":value=getFuncParam(node.attr,param.tfName,param.defaultValue),value===void 0&&!!param.tfDeprecatedName&&(value=getFuncParam(node.attr,param.tfDeprecatedName,param.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${param.type} for op: ${node.op}`)}return map[param.name]={value,type},map},{})),newNode}mapFunction(functionDef){let tfNodes=functionDef.nodeDef,placeholders=[],weights=[],nodes={};tfNodes!=null&&(nodes=tfNodes.reduce((map,node)=>(map[node.name]=this.mapNode(node),node.op==="Const"&&weights.push(map[node.name]),map),{}));let inputs=[],outputs=[];functionDef.signature.inputArg.forEach(arg=>{let[nodeName]=getNodeNameAndIndex(arg.name),node={name:nodeName,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:parseDtypeParam(arg.type),type:"dtype"}},children:[]};node.signatureKey=arg.name,inputs.push(node),nodes[nodeName]=node});let allNodes=Object.keys(nodes);allNodes.forEach(key=>{let node=nodes[key];node.inputNames.forEach(name=>{let[nodeName]=getNodeNameAndIndex(name);node.inputs.push(nodes[nodeName]),nodes[nodeName].children.push(node)})});let returnNodeMap=functionDef.ret;functionDef.signature.outputArg.forEach(output=>{let[nodeName,index]=getNodeNameAndIndex(returnNodeMap[output.name]),node=nodes[nodeName];node!=null&&(node.defaultOutput=index,outputs.push(node))});let signature=this.mapArgsToSignature(functionDef);return{nodes,inputs,outputs,weights,placeholders,signature}}mapArgsToSignature(functionDef){return{methodName:functionDef.signature.name,inputs:functionDef.signature.inputArg.reduce((map,arg)=>(map[arg.name]=this.mapArgToTensorInfo(arg),map),{}),outputs:functionDef.signature.outputArg.reduce((map,arg)=>(map[arg.name]=this.mapArgToTensorInfo(arg,functionDef.ret),map),{})}}mapArgToTensorInfo(arg,nameMap2){let name=arg.name;return nameMap2!=null&&(name=nameMap2[name]),{name,dtype:arg.type}}};function decodeBase64(text){let global2=env().global;if(typeof global2.atob!="undefined")return global2.atob(text);if(typeof Buffer!="undefined")return new Buffer(text,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function parseStringParam(s,keepCase){let value=Array.isArray(s)?String.fromCharCode.apply(null,s):decodeBase64(s);return keepCase?value:value.toLowerCase()}function getStringParam(attrs,name,def,keepCase=!1){let param=attrs[name];return param!=null?parseStringParam(param.s,keepCase):def}function getBoolParam(attrs,name,def){let param=attrs[name];return param?param.b:def}function getNumberParam(attrs,name,def){let param=attrs[name]||{},value=param.i!=null?param.i:param.f!=null?param.f:def;return typeof value=="number"?value:parseInt(value,10)}function parseDtypeParam(value){typeof value=="string"&&(value=DataType[value]);switch(value){case DataType.DT_FLOAT:return"float32";case DataType.DT_INT32:case DataType.DT_INT64:case DataType.DT_INT8:case DataType.DT_UINT8:return"int32";case DataType.DT_BOOL:return"bool";case DataType.DT_DOUBLE:return"float32";case DataType.DT_STRING:return"string";default:return null}}function getFuncParam(attrs,name,def){let param=attrs[name];return param&¶m.func?param.func.name:def}function getDtypeParam(attrs,name,def){let param=attrs[name];return param&¶m.type?parseDtypeParam(param.type):def}function getDtypeArrayParam(attrs,name,def){let param=attrs[name];return param&¶m.list&¶m.list.type?param.list.type.map(v=>parseDtypeParam(v)):def}function parseTensorShapeParam(shape){return shape.unknownRank?void 0:shape.dim!=null?shape.dim.map(dim=>typeof dim.size=="number"?dim.size:parseInt(dim.size,10)):[]}function getTensorShapeParam(attrs,name,def){let param=attrs[name];return param&¶m.shape?parseTensorShapeParam(param.shape):def}function getNumericArrayParam(attrs,name,def){let param=attrs[name];return param?((param.list.f&¶m.list.f.length?param.list.f:param.list.i)||[]).map(v=>typeof v=="number"?v:parseInt(v,10)):def}function getStringArrayParam(attrs,name,def,keepCase=!1){let param=attrs[name];return param&¶m.list&¶m.list.s?param.list.s.map(v=>parseStringParam(v,keepCase)):def}function getTensorShapeArrayParam(attrs,name,def){let param=attrs[name];return param&¶m.list&¶m.list.shape?param.list.shape.map(v=>parseTensorShapeParam(v)):def}function getBoolArrayParam(attrs,name,def){let param=attrs[name];return param&¶m.list&¶m.list.b?param.list.b:def}var NodeValueImpl=class{constructor(node,tensorMap,context){this.node=node,this.tensorMap=tensorMap,this.context=context,this.inputs=[],this.attrs={},this.inputs=node.inputNames.map(name=>this.getInput(name)),node.rawAttrs!=null&&(this.attrs=Object.keys(node.rawAttrs).reduce((attrs,key)=>(attrs[key]=this.getAttr(key),attrs),{}))}getInput(name){return getTensor(name,this.tensorMap,this.context)}getAttr(name,defaultValue){let value=this.node.rawAttrs[name];if(value.tensor!=null)return getTensor(name,this.tensorMap,this.context);if(value.i!=null||value.f!=null)return getNumberParam(this.node.rawAttrs,name,defaultValue);if(value.s!=null)return getStringParam(this.node.rawAttrs,name,defaultValue);if(value.b!=null)return getBoolParam(this.node.rawAttrs,name,defaultValue);if(value.shape!=null)return getTensorShapeParam(this.node.rawAttrs,name,defaultValue);if(value.type!=null)return getDtypeParam(this.node.rawAttrs,name,defaultValue);if(value.list!=null){if(value.list.i!=null||value.list.f!=null)return getNumericArrayParam(this.node.rawAttrs,name,defaultValue);if(value.list.s!=null)return getStringArrayParam(this.node.rawAttrs,name,defaultValue);if(value.list.shape!=null)return getTensorShapeArrayParam(this.node.rawAttrs,name,defaultValue);if(value.list.b!=null)return getBoolArrayParam(this.node.rawAttrs,name,defaultValue);if(value.list.type!=null)return getDtypeArrayParam(this.node.rawAttrs,name,defaultValue)}return defaultValue}},executeOp=(node,tensorMap,context)=>{switch(node.op){case"BiasAdd":case"AddV2":case"Add":return[add2(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))];case"AddN":return[addN(getParamValue("tensors",node,tensorMap,context))];case"FloorMod":case"Mod":return[mod(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))];case"Mul":return[mul(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))];case"RealDiv":case"Div":return[div(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))];case"DivNoNan":return[divNoNan(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))];case"FloorDiv":return[floorDiv(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))];case"Sub":return[sub(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))];case"Minimum":return[minimum(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))];case"Maximum":return[maximum(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))];case"Pow":return[pow(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))];case"SquaredDifference":return[squaredDifference(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))];default:throw TypeError(`Node type ${node.op} is not implemented`)}},executeOp2=(node,tensorMap,context)=>{switch(node.op){case"Abs":case"ComplexAbs":return[abs(getParamValue("x",node,tensorMap,context))];case"Acos":return[acos(getParamValue("x",node,tensorMap,context))];case"Acosh":return[acosh(getParamValue("x",node,tensorMap,context))];case"Asin":return[asin(getParamValue("x",node,tensorMap,context))];case"Asinh":return[asinh(getParamValue("x",node,tensorMap,context))];case"Atan":return[atan(getParamValue("x",node,tensorMap,context))];case"Atan2":return[atan2(getParamValue("x",node,tensorMap,context),getParamValue("y",node,tensorMap,context))];case"Atanh":return[atanh(getParamValue("x",node,tensorMap,context))];case"Ceil":return[ceil(getParamValue("x",node,tensorMap,context))];case"Complex":return[complex(getParamValue("real",node,tensorMap,context),getParamValue("imag",node,tensorMap,context))];case"Cos":return[cos(getParamValue("x",node,tensorMap,context))];case"Cosh":return[cosh(getParamValue("x",node,tensorMap,context))];case"Elu":return[elu(getParamValue("x",node,tensorMap,context))];case"Erf":return[erf(getParamValue("x",node,tensorMap,context))];case"Exp":return[exp(getParamValue("x",node,tensorMap,context))];case"Expm1":return[expm1(getParamValue("x",node,tensorMap,context))];case"Floor":return[floor(getParamValue("x",node,tensorMap,context))];case"Log":return[log2(getParamValue("x",node,tensorMap,context))];case"Log1p":return[log1p(getParamValue("x",node,tensorMap,context))];case"Imag":return[imag(getParamValue("x",node,tensorMap,context))];case"Neg":return[neg(getParamValue("x",node,tensorMap,context))];case"Reciprocal":return[reciprocal(getParamValue("x",node,tensorMap,context))];case"Real":return[real(getParamValue("x",node,tensorMap,context))];case"Relu":return[relu(getParamValue("x",node,tensorMap,context))];case"Round":return[round(getParamValue("x",node,tensorMap,context))];case"Selu":return[selu(getParamValue("x",node,tensorMap,context))];case"Sigmoid":return[sigmoid(getParamValue("x",node,tensorMap,context))];case"Sin":return[sin(getParamValue("x",node,tensorMap,context))];case"Sign":return[sign(getParamValue("x",node,tensorMap,context))];case"Sinh":return[sinh(getParamValue("x",node,tensorMap,context))];case"Softplus":return[softplus(getParamValue("x",node,tensorMap,context))];case"Sqrt":return[sqrt(getParamValue("x",node,tensorMap,context))];case"Square":return[square(getParamValue("x",node,tensorMap,context))];case"Tanh":return[tanh2(getParamValue("x",node,tensorMap,context))];case"Tan":return[tan(getParamValue("x",node,tensorMap,context))];case"Relu6":case"ClipByValue":return[clipByValue(getParamValue("x",node,tensorMap,context),getParamValue("clipValueMin",node,tensorMap,context),getParamValue("clipValueMax",node,tensorMap,context))];case"Rsqrt":return[rsqrt(getTensor(node.inputNames[0],tensorMap,context))];case"Prod":return[prod(getParamValue("x",node,tensorMap,context),getParamValue("axes",node,tensorMap,context))];case"LeakyRelu":return[leakyRelu(getParamValue("x",node,tensorMap,context),getParamValue("alpha",node,tensorMap,context))];case"Prelu":return[prelu(getParamValue("x",node,tensorMap,context),getParamValue("alpha",node,tensorMap,context))];default:throw TypeError(`Node type ${node.op} is not implemented`)}};function assertShapesMatchAllowUndefinedSize(shapeA,shapeB,errorMessagePrefix=""){util_exports.assert(shapesEqualAllowUndefinedSize(shapeA,shapeB),()=>errorMessagePrefix+` Shapes ${shapeA} and ${shapeB} must match`)}function shapesEqualAllowUndefinedSize(n1,n2){if(n1.length!==n2.length)return!1;for(let i=0;i{(keepIds==null||!keepIds.has(tensor168.tensor.id))&&tensor168.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(index){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(index<0||index>=this.size())throw new Error(`Tried to read from index ${index}, but array size is: ${this.size()}`);let tensorWithState=this.tensors[index];if(tensorWithState.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${index} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(tensorWithState.cleared=!0),tensorWithState.read=!0,tensorWithState.tensor}readMany(indices){return indices.map(index=>this.read(index))}write(index,tensor168){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(index<0||!this.dynamicSize&&index>=this.maxSize)throw new Error(`Tried to write to index ${index}, but array is not resizeable and size is: ${this.maxSize}`);let t=this.tensors[index]||{};if(tensor168.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${index}, because the value dtype is ${tensor168.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=tensor168.shape),assertShapesMatchAllowUndefinedSize(this.elementShape,tensor168.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${index}.`),t.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${index}, because it has already been read.`);if(t.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${index}, because it has already been written.`);t.tensor=tensor168,keep(tensor168),t.written=!0,this.tensors[index]=t}writeMany(indices,tensors){if(indices.length!==tensors.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${indices.length} is not the same as tensors size: ${tensors.length}.`);indices.forEach((i,index)=>this.write(i,tensors[index]))}gather(indices,dtype){if(!!dtype&&dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${dtype}`);if(indices)indices=indices.slice(0,this.size());else{indices=[];for(let i=0;i=this.maxSize)throw new Error(`Max index must be < array size (${maxIndex} vs. ${this.maxSize})`);this.writeMany(indices,unstack(tensor168,0))}split(length,tensor168){if(tensor168.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${tensor168.dtype}`);let totalLength=0,cumulativeLengths=length.map(len=>(totalLength+=len,totalLength));if(totalLength!==tensor168.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is ${totalLength}, and tensor's shape is: ${tensor168.shape}`);if(!this.dynamicSize&&length.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${length.length}), and the TensorArray is not marked as dynamically resizeable`);let elementPerRow=totalLength===0?0:tensor168.size/totalLength,tensors=[];tidy(()=>{tensor168=reshape(tensor168,[1,totalLength,elementPerRow]);for(let i=0;i{if(elementDtype!==tensor168.dtype)throw new Error(`Invalid data types; op elements ${elementDtype}, but list elements ${tensor168.dtype}`);assertShapesMatchAllowUndefinedSize(elementShape,tensor168.shape,"TensorList shape mismatch: "),keep(tensor168)}),this.idTensor=scalar(0),this.maxNumElements=maxNumElements,keep(this.idTensor)}get id(){return this.idTensor.id}copy(){return new TensorList([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(keepIds){this.tensors.forEach(tensor168=>{(keepIds==null||!keepIds.has(tensor168.id))&&tensor168.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(elementShape,elementDtype,numElements=-1){if(elementDtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${elementDtype}, but list elements ${this.elementDtype}`);if(numElements!==-1&&this.tensors.length!==numElements)throw new Error(`Operation expected a list with ${numElements} elements but got a list with ${this.tensors.length} elements.`);return assertShapesMatchAllowUndefinedSize(elementShape,this.elementShape,"TensorList shape mismatch: "),tidy(()=>{let reshapedTensors=this.tensors.map(tensor168=>reshape(tensor168,elementShape));return stack(reshapedTensors,0)})}popBack(elementShape,elementDtype){if(elementDtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${elementDtype}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let tensor168=this.tensors.pop();return assertShapesMatchAllowUndefinedSize(tensor168.shape,elementShape,"TensorList shape mismatch: "),reshape(tensor168,elementShape)}pushBack(tensor168){if(tensor168.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${tensor168.dtype}, but list elements ${this.elementDtype}`);if(assertShapesMatchAllowUndefinedSize(tensor168.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");keep(tensor168),this.tensors.push(tensor168)}resize(size){if(size<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${size}`);if(this.maxNumElements!==-1&&size>this.maxNumElements)throw new Error(`TensorListResize input size ${size} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=size}getItem(elementIndex,elementShape,elementDtype){if(elementDtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${elementDtype}, but list elements ${this.elementDtype}`);if(elementIndex<0||elementIndex>this.tensors.length)throw new Error(`Trying to access element ${elementIndex} in a list with ${this.tensors.length} elements.`);if(this.tensors[elementIndex]==null)throw new Error(`element at index ${elementIndex} is null.`);return assertShapesMatchAllowUndefinedSize(this.tensors[elementIndex].shape,elementShape,"TensorList shape mismatch: "),this.tensors[elementIndex]}setItem(elementIndex,tensor168){if(tensor168.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${tensor168.dtype}, but list elements ${this.elementDtype}`);if(elementIndex<0||this.maxNumElements!==-1&&elementIndex>=this.maxNumElements)throw new Error(`Trying to set element ${elementIndex} in a list with max ${this.maxNumElements} elements.`);assertShapesMatchAllowUndefinedSize(this.elementShape,tensor168.shape,"TensorList shape mismatch: "),keep(tensor168),this.tensors[elementIndex]=tensor168}gather(indices,elementDtype,elementShape){if(elementDtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${elementDtype}, but list elements ${this.elementDtype}`);return assertShapesMatchAllowUndefinedSize(this.elementShape,elementShape,"TensorList shape mismatch: "),indices=indices.slice(0,this.size()),indices.length===0?tensor4([],[0].concat(this.elementShape)):tidy(()=>{let tensors=indices.map(i=>reshape(this.tensors[i],elementShape));return stack(tensors,0)})}concat(elementDtype,elementShape){if(!!elementDtype&&elementDtype!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${elementDtype}`);return assertShapesMatchAllowUndefinedSize(this.elementShape,elementShape,"TensorList shape mismatch: "),this.size()===0?tensor4([],[0].concat(this.elementShape)):tidy(()=>{let tensors=this.tensors.map(t=>reshape(t,elementShape));return concat(tensors,0)})}};function fromTensor(tensor168,elementShape,elementDtype){let dtype=tensor168.dtype;if(tensor168.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${tensor168.shape}`);if(tensor168.dtype!==elementDtype)throw new Error(`Invalid data types; op elements ${tensor168.dtype}, but list elements ${elementDtype}`);let outputShape=tensor168.shape.slice(1);assertShapesMatchAllowUndefinedSize(outputShape,elementShape,"TensorList shape mismatch: ");let tensorList=unstack(tensor168);return new TensorList(tensorList,elementShape,dtype)}function reserve(elementShape,elementDtype,numElements){return new TensorList([],elementShape,elementDtype,numElements)}function scatter(tensor168,indices,elementShape,numElements){if(indices.length!==tensor168.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${indices.length} vs. ${tensor168.shape[0]}`);let maxIndex=Math.max(...indices);if(numElements!=null&&numElements!==-1&&maxIndex>=numElements)throw new Error(`Max index must be < array size (${maxIndex} vs. ${numElements})`);let list=new TensorList([],elementShape,tensor168.dtype,numElements),tensors=unstack(tensor168,0);return indices.forEach((value,index)=>{list.setItem(value,tensors[index])}),list}function split9(tensor168,length,elementShape){let totalLength=0,cumulativeLengths=length.map(len=>(totalLength+=len,totalLength));if(totalLength!==tensor168.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is ${totalLength}, and tensor's shape is: ${tensor168.shape}`);let elementPerRow=totalLength===0?0:tensor168.size/totalLength,tensors=tidy(()=>{let tensors2=[];tensor168=reshape(tensor168,[1,totalLength,elementPerRow]);for(let i=0;i{switch(node.op){case"If":case"StatelessIf":{let thenFunc=getParamValue("thenBranch",node,tensorMap,context),elseFunc=getParamValue("elseBranch",node,tensorMap,context),cond=getParamValue("cond",node,tensorMap,context),args=getParamValue("args",node,tensorMap,context),condValue=await cond.data();return condValue[0]?context.functionMap[thenFunc].executeFunctionAsync(args,context.tensorArrayMap,context.tensorListMap):context.functionMap[elseFunc].executeFunctionAsync(args,context.tensorArrayMap,context.tensorListMap)}case"While":case"StatelessWhile":{let bodyFunc=getParamValue("body",node,tensorMap,context),condFunc=getParamValue("cond",node,tensorMap,context),args=getParamValue("args",node,tensorMap,context),condResult=await context.functionMap[condFunc].executeFunctionAsync(args,context.tensorArrayMap,context.tensorListMap),argIds=args.map(tensor168=>tensor168.id),condValue=await condResult[0].data();condResult.forEach(tensor168=>{!tensor168.kept&&argIds.indexOf(tensor168.id)===-1&&tensor168.dispose()});let result=args;for(;condValue[0];){let origResult=result;result=await context.functionMap[bodyFunc].executeFunctionAsync(result,context.tensorArrayMap,context.tensorListMap);let resultIds=result.map(tensor168=>tensor168.id);origResult.forEach(tensor168=>{!tensor168.kept&&argIds.indexOf(tensor168.id)===-1&&resultIds.indexOf(tensor168.id)===-1&&tensor168.dispose()});let condResult2=await context.functionMap[condFunc].executeFunctionAsync(result,context.tensorArrayMap,context.tensorListMap);condValue=await condResult2[0].data(),condResult2.forEach(tensor168=>{!tensor168.kept&&argIds.indexOf(tensor168.id)===-1&&resultIds.indexOf(tensor168.id)===-1&&tensor168.dispose()})}return result}case"LoopCond":{let pred=getParamValue("pred",node,tensorMap,context);return[cloneTensor(pred)]}case"Switch":{let pred=getParamValue("pred",node,tensorMap,context),data2=getParamValue("data",node,tensorMap,context);return data2.kept||(data2=cloneTensor(data2)),(await pred.data())[0]?[void 0,data2]:[data2,void 0]}case"Merge":{let inputName=node.inputNames.find(name=>getTensor(name,tensorMap,context)!==void 0);if(inputName){let data2=getTensor(inputName,tensorMap,context);return[cloneTensor(data2)]}return}case"Enter":{let frameId=getParamValue("frameName",node,tensorMap,context),data2=getParamValue("tensor",node,tensorMap,context);return context.enterFrame(frameId),[cloneTensor(data2)]}case"Exit":{let data2=getParamValue("tensor",node,tensorMap,context);return context.exitFrame(),[cloneTensor(data2)]}case"NextIteration":{let data2=getParamValue("tensor",node,tensorMap,context);return context.nextIteration(),[cloneTensor(data2)]}case"TensorArrayV3":{let size=getParamValue("size",node,tensorMap,context),dtype=getParamValue("dtype",node,tensorMap,context),elementShape=getParamValue("elementShape",node,tensorMap,context),dynamicSize=getParamValue("dynamicSize",node,tensorMap,context),clearAfterRead=getParamValue("clearAfterRead",node,tensorMap,context),identicalElementShapes=getParamValue("identicalElementShapes",node,tensorMap,context),name=getParamValue("name",node,tensorMap,context),tensorArray=new TensorArray(name,dtype,size,elementShape,identicalElementShapes,dynamicSize,clearAfterRead);return context.addTensorArray(tensorArray),[tensorArray.idTensor,scalar(1)]}case"TensorArrayWriteV3":{let id=getParamValue("tensorArrayId",node,tensorMap,context),index=getParamValue("index",node,tensorMap,context),writeTensor=getParamValue("tensor",node,tensorMap,context),writeTensorArray=context.getTensorArray(id.id);return writeTensorArray.write(index,writeTensor),[writeTensorArray.idTensor]}case"TensorArrayReadV3":{let readId=getParamValue("tensorArrayId",node,tensorMap,context),readIndex=getParamValue("index",node,tensorMap,context),readTensorArray=context.getTensorArray(readId.id);return[readTensorArray.read(readIndex)]}case"TensorArrayGatherV3":{let gatherId=getParamValue("tensorArrayId",node,tensorMap,context),gatherIndices=getParamValue("indices",node,tensorMap,context),gatherDtype=getParamValue("dtype",node,tensorMap,context),gatherTensorArray=context.getTensorArray(gatherId.id);return[gatherTensorArray.gather(gatherIndices,gatherDtype)]}case"TensorArrayScatterV3":{let scatterId=getParamValue("tensorArrayId",node,tensorMap,context),scatterIndices=getParamValue("indices",node,tensorMap,context),scatterTensor=getParamValue("tensor",node,tensorMap,context),scatterTensorArray=context.getTensorArray(scatterId.id);return scatterTensorArray.scatter(scatterIndices,scatterTensor),[scatterTensorArray.idTensor]}case"TensorArrayConcatV3":{let concatId=getParamValue("tensorArrayId",node,tensorMap,context),concatTensorArray=context.getTensorArray(concatId.id),concatDtype=getParamValue("dtype",node,tensorMap,context);return[concatTensorArray.concat(concatDtype)]}case"TensorArraySplitV3":{let splitId=getParamValue("tensorArrayId",node,tensorMap,context),splitTensor=getParamValue("tensor",node,tensorMap,context),lengths=getParamValue("lengths",node,tensorMap,context),splitTensorArray=context.getTensorArray(splitId.id);return splitTensorArray.split(lengths,splitTensor),[splitTensorArray.idTensor]}case"TensorArraySizeV3":{let sizeId=getParamValue("tensorArrayId",node,tensorMap,context),sizeTensorArray=context.getTensorArray(sizeId.id);return[scalar(sizeTensorArray.size(),"int32")]}case"TensorArrayCloseV3":{let closeId=getParamValue("tensorArrayId",node,tensorMap,context),closeTensorArray=context.getTensorArray(closeId.id);return closeTensorArray.clearAndClose(),[closeTensorArray.idTensor]}case"TensorListSetItem":{let idTensor=getParamValue("tensorListId",node,tensorMap,context),index=getParamValue("index",node,tensorMap,context),writeTensor=getParamValue("tensor",node,tensorMap,context),tensorList=context.getTensorList(idTensor.id);return tensorList.setItem(index,writeTensor),[tensorList.idTensor]}case"TensorListGetItem":{let idTensor=getParamValue("tensorListId",node,tensorMap,context),readIndex=getParamValue("index",node,tensorMap,context),elementShape=getParamValue("elementShape",node,tensorMap,context),elementDType=getParamValue("elementDType",node,tensorMap,context),tensorList=context.getTensorList(idTensor.id);return[tensorList.getItem(readIndex,elementShape,elementDType)]}case"TensorListScatterV2":case"TensorListScatter":{let scatterIndices=getParamValue("indices",node,tensorMap,context),scatterTensor=getParamValue("tensor",node,tensorMap,context),elementShape=getParamValue("elementShape",node,tensorMap,context),numElements=getParamValue("numElements",node,tensorMap,context),tensorList=scatter(scatterTensor,scatterIndices,elementShape,numElements);return context.addTensorList(tensorList),[tensorList.idTensor]}case"TensorListReserve":{let elementShape=getParamValue("elementShape",node,tensorMap,context),elementDtype=getParamValue("elementDType",node,tensorMap,context),numElements=getParamValue("numElements",node,tensorMap,context),tensorList=reserve(elementShape,elementDtype,numElements);return context.addTensorList(tensorList),[tensorList.idTensor]}case"TensorListGather":{let gatherId=getParamValue("tensorListId",node,tensorMap,context),gatherIndices=getParamValue("indices",node,tensorMap,context),elementShape=getParamValue("elementShape",node,tensorMap,context),elementDtype=getParamValue("elementDType",node,tensorMap,context),tensorList=context.getTensorList(gatherId.id);return[tensorList.gather(gatherIndices,elementDtype,elementShape)]}case"TensorListStack":{let idTensor=getParamValue("tensorListId",node,tensorMap,context),elementShape=getParamValue("elementShape",node,tensorMap,context),elementDtype=getParamValue("elementDType",node,tensorMap,context),numElements=getParamValue("numElements",node,tensorMap,context),tensorList=context.getTensorList(idTensor.id);return[tensorList.stack(elementShape,elementDtype,numElements)]}case"TensorListFromTensor":{let tensor168=getParamValue("tensor",node,tensorMap,context),elementShape=getParamValue("elementShape",node,tensorMap,context),elementDtype=getParamValue("elementDType",node,tensorMap,context),tensorList=fromTensor(tensor168,elementShape,elementDtype);return context.addTensorList(tensorList),[tensorList.idTensor]}case"TensorListConcat":{let concatId=getParamValue("tensorListId",node,tensorMap,context),tensorList=context.getTensorList(concatId.id),concatDtype=getParamValue("dtype",node,tensorMap,context),elementShape=getParamValue("elementShape",node,tensorMap,context);return[tensorList.concat(concatDtype,elementShape)]}case"TensorListPushBack":{let idTensor=getParamValue("tensorListId",node,tensorMap,context),writeTensor=getParamValue("tensor",node,tensorMap,context),tensorList=context.getTensorList(idTensor.id);return tensorList.pushBack(writeTensor),[tensorList.idTensor]}case"TensorListPopBack":{let idTensor=getParamValue("tensorListId",node,tensorMap,context),elementShape=getParamValue("elementShape",node,tensorMap,context),elementDType=getParamValue("elementDType",node,tensorMap,context),tensorList=context.getTensorList(idTensor.id);return[tensorList.popBack(elementShape,elementDType)]}case"TensorListSplit":{let splitTensor=getParamValue("tensor",node,tensorMap,context),elementShape=getParamValue("elementShape",node,tensorMap,context),lengths=getParamValue("lengths",node,tensorMap,context),tensorList=split9(splitTensor,lengths,elementShape);return context.addTensorList(tensorList),[tensorList.idTensor]}default:throw TypeError(`Node type ${node.op} is not implemented`)}};function fusedConvAndDepthWiseParams(node,tensorMap,context){let[extraOp,activationFunc]=getParamValue("fusedOps",node,tensorMap,context),isBiasAdd=extraOp==="biasadd",isPrelu=activationFunc==="prelu",isBatchNorm=extraOp==="fusedbatchnorm",numArgs=getParamValue("numArgs",node,tensorMap,context);if(isBiasAdd){if(isPrelu&&numArgs!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!isPrelu&&numArgs!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(isBatchNorm)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");let stride=getParamValue("strides",node,tensorMap,context),pad11=getPadding(node,tensorMap,context),dataFormat=getParamValue("dataFormat",node,tensorMap,context).toUpperCase(),dilations=getParamValue("dilations",node,tensorMap,context),[biasArg,preluArg]=getParamValue("args",node,tensorMap,context);return{stride,pad:pad11,dataFormat,dilations,biasArg,preluArg,activationFunc}}var executeOp4=(node,tensorMap,context)=>{switch(node.op){case"Conv1D":{let stride=getParamValue("stride",node,tensorMap,context),pad11=getParamValue("pad",node,tensorMap,context),dataFormat=getParamValue("dataFormat",node,tensorMap,context).toUpperCase(),dilation=getParamValue("dilation",node,tensorMap,context);return[conv1d(getParamValue("x",node,tensorMap,context),getParamValue("filter",node,tensorMap,context),stride,pad11,dataFormat,dilation)]}case"Conv2D":{let stride=getParamValue("strides",node,tensorMap,context),pad11=getPadding(node,tensorMap,context),dataFormat=getParamValue("dataFormat",node,tensorMap,context).toUpperCase(),dilations=getParamValue("dilations",node,tensorMap,context);return[conv2d(getParamValue("x",node,tensorMap,context),getParamValue("filter",node,tensorMap,context),[stride[1],stride[2]],pad11,dataFormat,[dilations[1],dilations[2]])]}case"_FusedConv2D":{let{stride,pad:pad11,dataFormat,dilations,biasArg,preluArg,activationFunc}=fusedConvAndDepthWiseParams(node,tensorMap,context);return[fused_ops_exports.conv2d({x:getParamValue("x",node,tensorMap,context),filter:getParamValue("filter",node,tensorMap,context),strides:[stride[1],stride[2]],pad:pad11,dataFormat,dilations:[dilations[1],dilations[2]],bias:biasArg,activation:activationFunc,preluActivationWeights:preluArg})]}case"FusedDepthwiseConv2dNative":{let{stride,pad:pad11,dataFormat,dilations,biasArg,preluArg,activationFunc}=fusedConvAndDepthWiseParams(node,tensorMap,context);return[fused_ops_exports.depthwiseConv2d({x:getParamValue("x",node,tensorMap,context),filter:getParamValue("filter",node,tensorMap,context),strides:[stride[1],stride[2]],pad:pad11,dataFormat,dilations:[dilations[1],dilations[2]],bias:biasArg,activation:activationFunc,preluActivationWeights:preluArg})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let shape=getParamValue("outputShape",node,tensorMap,context),stride=getParamValue("strides",node,tensorMap,context),pad11=getPadding(node,tensorMap,context);return[conv2dTranspose(getParamValue("x",node,tensorMap,context),getParamValue("filter",node,tensorMap,context),shape,[stride[1],stride[2]],pad11)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let stride=getParamValue("strides",node,tensorMap,context),pad11=getPadding(node,tensorMap,context),dilations=getParamValue("dilations",node,tensorMap,context),dataFormat=getParamValue("dataFormat",node,tensorMap,context).toUpperCase();return[depthwiseConv2d(getParamValue("input",node,tensorMap,context),getParamValue("filter",node,tensorMap,context),[stride[1],stride[2]],pad11,dataFormat,[dilations[1],dilations[2]])]}case"Conv3D":{let stride=getParamValue("strides",node,tensorMap,context),pad11=getParamValue("pad",node,tensorMap,context),dataFormat=getParamValue("dataFormat",node,tensorMap,context).toUpperCase(),dilations=getParamValue("dilations",node,tensorMap,context);return[conv3d(getParamValue("x",node,tensorMap,context),getParamValue("filter",node,tensorMap,context),[stride[1],stride[2],stride[3]],pad11,dataFormat,[dilations[1],dilations[2],dilations[3]])]}case"AvgPool":{let stride=getParamValue("strides",node,tensorMap,context),pad11=getParamValue("pad",node,tensorMap,context),kernelSize=getParamValue("kernelSize",node,tensorMap,context);return[avgPool(getParamValue("x",node,tensorMap,context),[kernelSize[1],kernelSize[2]],[stride[1],stride[2]],pad11)]}case"MaxPool":{let stride=getParamValue("strides",node,tensorMap,context),pad11=getParamValue("pad",node,tensorMap,context),kernelSize=getParamValue("kernelSize",node,tensorMap,context);return[maxPool(getParamValue("x",node,tensorMap,context),[kernelSize[1],kernelSize[2]],[stride[1],stride[2]],pad11)]}case"MaxPoolWithArgmax":{let stride=getParamValue("strides",node,tensorMap,context),pad11=getParamValue("pad",node,tensorMap,context),kernelSize=getParamValue("kernelSize",node,tensorMap,context),includeBatchInIndex=getParamValue("includeBatchInIndex",node,tensorMap,context),{result,indexes}=maxPoolWithArgmax(getParamValue("x",node,tensorMap,context),[kernelSize[1],kernelSize[2]],[stride[1],stride[2]],pad11,includeBatchInIndex);return[result,indexes]}case"AvgPool3D":{let stride=getParamValue("strides",node,tensorMap,context),pad11=getParamValue("pad",node,tensorMap,context),kernelSize=getParamValue("kernelSize",node,tensorMap,context);return[avgPool3d(getParamValue("x",node,tensorMap,context),[kernelSize[1],kernelSize[2],kernelSize[3]],[stride[1],stride[2],stride[3]],pad11)]}case"MaxPool3D":{let stride=getParamValue("strides",node,tensorMap,context),pad11=getParamValue("pad",node,tensorMap,context),kernelSize=getParamValue("kernelSize",node,tensorMap,context);return[maxPool3d(getParamValue("x",node,tensorMap,context),[kernelSize[1],kernelSize[2],kernelSize[3]],[stride[1],stride[2],stride[3]],pad11)]}case"Dilation2D":{let strides=getParamValue("strides",node,tensorMap,context),pad11=getParamValue("pad",node,tensorMap,context),dilations=getParamValue("dilations",node,tensorMap,context),strideHeight=strides[1],strideWidth=strides[2],dilationHeight=dilations[1],dilationWidth=dilations[2];return[dilation2d(getParamValue("x",node,tensorMap,context),getParamValue("filter",node,tensorMap,context),[strideHeight,strideWidth],pad11,[dilationHeight,dilationWidth],"NHWC")]}default:throw TypeError(`Node type ${node.op} is not implemented`)}},executeOp5=(node,tensorMap,context)=>{switch(node.op){case"Fill":{let shape=getParamValue("shape",node,tensorMap,context),dtype=getParamValue("dtype",node,tensorMap,context),value=getParamValue("value",node,tensorMap,context);return[fill(shape,value,dtype)]}case"LinSpace":{let start=getParamValue("start",node,tensorMap,context),stop=getParamValue("stop",node,tensorMap,context),num=getParamValue("num",node,tensorMap,context);return[linspace(start,stop,num)]}case"Multinomial":{let logits=getParamValue("logits",node,tensorMap,context),numSamples=getParamValue("numSamples",node,tensorMap,context),seed=getParamValue("seed",node,tensorMap,context);return[multinomial(logits,numSamples,seed)]}case"OneHot":{let indices=getParamValue("indices",node,tensorMap,context),depth=getParamValue("depth",node,tensorMap,context),onValue=getParamValue("onValue",node,tensorMap,context),offValue=getParamValue("offValue",node,tensorMap,context);return[oneHot(indices,depth,onValue,offValue)]}case"Ones":return[ones2(getParamValue("shape",node,tensorMap,context),getParamValue("dtype",node,tensorMap,context))];case"OnesLike":return[onesLike(getParamValue("x",node,tensorMap,context))];case"RandomUniform":return[randomUniform(getParamValue("shape",node,tensorMap,context),getParamValue("minval",node,tensorMap,context),getParamValue("maxval",node,tensorMap,context),getParamValue("dtype",node,tensorMap,context))];case"Range":{let start=getParamValue("start",node,tensorMap,context),stop=getParamValue("stop",node,tensorMap,context),step9=getParamValue("step",node,tensorMap,context);return[range(start,stop,step9,getParamValue("dtype",node,tensorMap,context))]}case"TruncatedNormal":{let shape=getParamValue("shape",node,tensorMap,context),mean7=getParamValue("mean",node,tensorMap,context),stdDev=getParamValue("stdDev",node,tensorMap,context),seed=getParamValue("seed",node,tensorMap,context);return[truncatedNormal(shape,mean7,stdDev,getParamValue("dtype",node,tensorMap,context),seed)]}case"Zeros":return[zeros(getParamValue("shape",node,tensorMap,context),getParamValue("dtype",node,tensorMap,context))];case"ZerosLike":return[zerosLike(getParamValue("x",node,tensorMap,context))];default:throw TypeError(`Node type ${node.op} is not implemented`)}};function nmsParams(node,tensorMap,context){let boxes=getParamValue("boxes",node,tensorMap,context),scores=getParamValue("scores",node,tensorMap,context),maxOutputSize=getParamValue("maxOutputSize",node,tensorMap,context),iouThreshold=getParamValue("iouThreshold",node,tensorMap,context),scoreThreshold=getParamValue("scoreThreshold",node,tensorMap,context),softNmsSigma=getParamValue("softNmsSigma",node,tensorMap,context);return{boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma}}var executeOp6=async(node,tensorMap,context)=>{switch(node.op){case"NonMaxSuppressionV5":{let{boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma}=nmsParams(node,tensorMap,context),result=await image.nonMaxSuppressionWithScoreAsync(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma);return[result.selectedIndices,result.selectedScores]}case"NonMaxSuppressionV4":{let{boxes,scores,maxOutputSize,iouThreshold,scoreThreshold}=nmsParams(node,tensorMap,context),padToMaxOutputSize=getParamValue("padToMaxOutputSize",node,tensorMap,context),result=await image.nonMaxSuppressionPaddedAsync(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold,padToMaxOutputSize);return[result.selectedIndices,result.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes,scores,maxOutputSize,iouThreshold,scoreThreshold}=nmsParams(node,tensorMap,context);return[await image.nonMaxSuppressionAsync(boxes,scores,maxOutputSize,iouThreshold,scoreThreshold)]}case"Where":{let condition=cast(getParamValue("condition",node,tensorMap,context),"bool"),result=[await whereAsync(condition)];return condition.dispose(),result}case"ListDiff":return setdiff1dAsync(getParamValue("x",node,tensorMap,context),getParamValue("y",node,tensorMap,context));default:throw TypeError(`Node type ${node.op} is not implemented`)}},executeOp7=(node,tensorMap,context)=>{switch(node.op){case"TopKV2":{let x=getParamValue("x",node,tensorMap,context),k=getParamValue("k",node,tensorMap,context),sorted=getParamValue("sorted",node,tensorMap,context),result=topk(x,k,sorted);return[result.values,result.indices]}case"Unique":{let x=getParamValue("x",node,tensorMap,context),result=unique(x);return[result.values,result.indices]}case"UniqueV2":{let x=getParamValue("x",node,tensorMap,context),axis=getParamValue("axis",node,tensorMap,context),result=unique(x,axis);return[result.values,result.indices]}default:throw TypeError(`Node type ${node.op} is not implemented`)}},executeOp8=(node,tensorMap,context)=>{switch(node.op){case"Const":return tensorMap[node.name];case"PlaceholderWithDefault":let def=getParamValue("default",node,tensorMap,context);return[getTensor(node.name,tensorMap,context)||def];case"Placeholder":return[getTensor(node.name,tensorMap,context)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let data22=getParamValue("x",node,tensorMap,context);return[cloneTensor(data22)]}case"IdentityN":return getParamValue("x",node,tensorMap,context).map(t=>cloneTensor(t));case"Snapshot":let snapshot=getParamValue("x",node,tensorMap,context);return[cloneTensor(snapshot)];case"Shape":return[tensor1d(getParamValue("x",node,tensorMap,context).shape,"int32")];case"ShapeN":return getParamValue("x",node,tensorMap,context).map(t=>tensor1d(t.shape));case"Size":return[scalar(getParamValue("x",node,tensorMap,context).size,"int32")];case"Rank":return[scalar(getParamValue("x",node,tensorMap,context).rank,"int32")];case"NoOp":return[scalar(1)];case"Print":let input2=getParamValue("x",node,tensorMap,context),data2=getParamValue("data",node,tensorMap,context),message=getParamValue("message",node,tensorMap,context),summarize=getParamValue("summarize",node,tensorMap,context);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(message);for(let i=0;ivalue.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}async import(keys,values){this.checkKeyAndValueTensor(keys,values);let $keys=await keys.data();return this.tensorMap.forEach(value=>value.dispose()),this.tensorMap.clear(),tidy(()=>{let $values=unstack(values),keysLength=$keys.length,valuesLength=$values.length;util_exports.assert(keysLength===valuesLength,()=>`The number of elements doesn't match, keys has ${keysLength} elements, the values has ${valuesLength} elements.`);for(let i=0;i{let result=[];for(let i=0;i<$keys.length;i++){let key=$keys[i],value=this.findWithDefault(key,defaultValue);result.push(value)}return stack(result)})}findWithDefault(key,defaultValue){let result=this.tensorMap.get(key);return result!=null?result:defaultValue}checkKeyAndValueTensor(key,value){if(key.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${key.dtype}`);if(value.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${value.dtype}`)}},executeOp9=async(node,tensorMap,context,resourceManager)=>{switch(node.op){case"HashTable":case"HashTableV2":{let keyDType=getParamValue("keyDType",node,tensorMap,context),valueDType=getParamValue("valueDType",node,tensorMap,context),hashTable2=new HashTable(keyDType,valueDType);return resourceManager.addHashTable(node.name,hashTable2),[hashTable2.handle]}case"LookupTableImport":case"LookupTableImportV2":{let handle=getParamValue("tableHandle",node,tensorMap,context,resourceManager),keys=getParamValue("keys",node,tensorMap,context),values=getParamValue("values",node,tensorMap,context),hashTable2=resourceManager.getHashTableById(handle.id);return[await hashTable2.import(keys,values)]}case"LookupTableFind":case"LookupTableFindV2":{let handle=getParamValue("tableHandle",node,tensorMap,context,resourceManager),keys=getParamValue("keys",node,tensorMap,context),defaultValue=getParamValue("defaultValue",node,tensorMap,context),hashTable2=resourceManager.getHashTableById(handle.id);return[await hashTable2.find(keys,defaultValue)]}default:throw TypeError(`Node type ${node.op} is not implemented`)}},executeOp10=(node,tensorMap,context)=>{switch(node.op){case"ResizeBilinear":{let images=getParamValue("images",node,tensorMap,context),size=getParamValue("size",node,tensorMap,context),alignCorners=getParamValue("alignCorners",node,tensorMap,context);return[image.resizeBilinear(images,[size[0],size[1]],alignCorners)]}case"ResizeNearestNeighbor":{let images=getParamValue("images",node,tensorMap,context),size=getParamValue("size",node,tensorMap,context),alignCorners=getParamValue("alignCorners",node,tensorMap,context);return[image.resizeNearestNeighbor(images,[size[0],size[1]],alignCorners)]}case"CropAndResize":{let image3=getParamValue("image",node,tensorMap,context),boxes=getParamValue("boxes",node,tensorMap,context),boxInd=getParamValue("boxInd",node,tensorMap,context),cropSize=getParamValue("cropSize",node,tensorMap,context),method=getParamValue("method",node,tensorMap,context),extrapolationValue=getParamValue("extrapolationValue",node,tensorMap,context);return[image.cropAndResize(image3,boxes,boxInd,cropSize,method,extrapolationValue)]}default:throw TypeError(`Node type ${node.op} is not implemented`)}},executeOp11=(node,tensorMap,context)=>{switch(node.op){case"Equal":return[equal(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))];case"NotEqual":return[notEqual(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))];case"Greater":return[greater(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))];case"GreaterEqual":return[greaterEqual(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))];case"Less":return[less(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))];case"LessEqual":return[lessEqual(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))];case"LogicalAnd":return[logicalAnd(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))];case"LogicalNot":return[logicalNot(getParamValue("a",node,tensorMap,context))];case"LogicalOr":return[logicalOr(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))];case"Select":case"SelectV2":return[where(getParamValue("condition",node,tensorMap,context),getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context))];default:throw TypeError(`Node type ${node.op} is not implemented`)}},executeOp12=(node,tensorMap,context)=>{switch(node.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[matMul(getParamValue("a",node,tensorMap,context),getParamValue("b",node,tensorMap,context),getParamValue("transposeA",node,tensorMap,context),getParamValue("transposeB",node,tensorMap,context))];case"Transpose":return[transpose(getParamValue("x",node,tensorMap,context),getParamValue("perm",node,tensorMap,context))];case"_FusedMatMul":let[extraOp,activationFunc]=getParamValue("fusedOps",node,tensorMap,context),isBiasAdd=extraOp==="biasadd",isPrelu=activationFunc==="prelu",numArgs=getParamValue("numArgs",node,tensorMap,context);if(isBiasAdd){if(isPrelu&&numArgs!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!isPrelu&&numArgs!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[biasArg,preluArg]=getParamValue("args",node,tensorMap,context);return[fused_ops_exports.matMul({a:getParamValue("a",node,tensorMap,context),b:getParamValue("b",node,tensorMap,context),transposeA:getParamValue("transposeA",node,tensorMap,context),transposeB:getParamValue("transposeB",node,tensorMap,context),bias:biasArg,activation:activationFunc,preluActivationWeights:preluArg})];default:throw TypeError(`Node type ${node.op} is not implemented`)}},executeOp13=(node,tensorMap,context)=>{switch(node.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[batchNorm(getParamValue("x",node,tensorMap,context),getParamValue("mean",node,tensorMap,context),getParamValue("variance",node,tensorMap,context),getParamValue("offset",node,tensorMap,context),getParamValue("scale",node,tensorMap,context),getParamValue("epsilon",node,tensorMap,context))];case"FusedBatchNormV3":return[batchNorm(getParamValue("x",node,tensorMap,context),getParamValue("mean",node,tensorMap,context),getParamValue("variance",node,tensorMap,context),getParamValue("offset",node,tensorMap,context),getParamValue("scale",node,tensorMap,context),getParamValue("epsilon",node,tensorMap,context))];case"LRN":return[localResponseNormalization(getParamValue("x",node,tensorMap,context),getParamValue("radius",node,tensorMap,context),getParamValue("bias",node,tensorMap,context),getParamValue("alpha",node,tensorMap,context),getParamValue("beta",node,tensorMap,context))];case"Softmax":return[softmax(getParamValue("x",node,tensorMap,context))];case"LogSoftmax":return[logSoftmax(getParamValue("x",node,tensorMap,context))];case"SparseToDense":return[sparseToDense(getParamValue("sparseIndices",node,tensorMap,context),getParamValue("outputShape",node,tensorMap,context),getParamValue("sparseValues",node,tensorMap,context),getParamValue("defaultValue",node,tensorMap,context))];default:throw TypeError(`Node type ${node.op} is not implemented`)}},executeOp14=(node,tensorMap,context)=>{switch(node.op){case"Max":{let axis=getParamValue("axis",node,tensorMap,context),keepDims=getParamValue("keepDims",node,tensorMap,context);return[max(getParamValue("x",node,tensorMap,context),axis,keepDims)]}case"Mean":{let axis=getParamValue("axis",node,tensorMap,context),keepDims=getParamValue("keepDims",node,tensorMap,context);return[mean(getParamValue("x",node,tensorMap,context),axis,keepDims)]}case"Min":{let axis=getParamValue("axis",node,tensorMap,context),keepDims=getParamValue("keepDims",node,tensorMap,context);return[min(getParamValue("x",node,tensorMap,context),axis,keepDims)]}case"Sum":{let axis=getParamValue("axis",node,tensorMap,context),keepDims=getParamValue("keepDims",node,tensorMap,context);return[sum2(getParamValue("x",node,tensorMap,context),axis,keepDims)]}case"All":{let axis=getParamValue("axis",node,tensorMap,context),keepDims=getParamValue("keepDims",node,tensorMap,context);return[all(getParamValue("x",node,tensorMap,context),axis,keepDims)]}case"Any":{let axis=getParamValue("axis",node,tensorMap,context),keepDims=getParamValue("keepDims",node,tensorMap,context);return[any(getParamValue("x",node,tensorMap,context),axis,keepDims)]}case"ArgMax":{let axis=getParamValue("axis",node,tensorMap,context);return[argMax(getParamValue("x",node,tensorMap,context),axis)]}case"ArgMin":{let axis=getParamValue("axis",node,tensorMap,context);return[argMin(getParamValue("x",node,tensorMap,context),axis)]}case"Prod":{let axis=getParamValue("axis",node,tensorMap,context),keepDims=getParamValue("keepDims",node,tensorMap,context);return[prod(getParamValue("x",node,tensorMap,context),axis,keepDims)]}case"Cumsum":{let axis=getParamValue("axis",node,tensorMap,context),exclusive=getParamValue("exclusive",node,tensorMap,context),reverse12=getParamValue("reverse",node,tensorMap,context);return[cumsum(getParamValue("x",node,tensorMap,context),axis,exclusive,reverse12)]}default:throw TypeError(`Node type ${node.op} is not implemented`)}},executeOp15=(node,tensorMap,context)=>{switch(node.op){case"ConcatV2":case"Concat":{let n=getParamValue("n",node,tensorMap,context),axis=getParamValue("axis",node,tensorMap,context),inputs=getParamValue("tensors",node,tensorMap,context);return inputs=inputs.slice(0,n),[concat(inputs,axis)]}case"GatherV2":case"Gather":{let axis=getParamValue("axis",node,tensorMap,context),input2=getParamValue("x",node,tensorMap,context),indices=getParamValue("indices",node,tensorMap,context);return[gather(input2,cast(indices,"int32"),axis)]}case"ReverseV2":case"Reverse":{let axis=getParamValue("axis",node,tensorMap,context),input2=getParamValue("x",node,tensorMap,context);return[reverse(input2,axis)]}case"Slice":{let begin=getParamValue("begin",node,tensorMap,context),size=getParamValue("size",node,tensorMap,context);return[slice(getParamValue("x",node,tensorMap,context),begin,size)]}case"StridedSlice":{let begin=getParamValue("begin",node,tensorMap,context),end=getParamValue("end",node,tensorMap,context),strides=getParamValue("strides",node,tensorMap,context),beginMask=getParamValue("beginMask",node,tensorMap,context),endMask=getParamValue("endMask",node,tensorMap,context),ellipsisMask=getParamValue("ellipsisMask",node,tensorMap,context),newAxisMask=getParamValue("newAxisMask",node,tensorMap,context),shrinkAxisMask=getParamValue("shrinkAxisMask",node,tensorMap,context),tensor168=getParamValue("x",node,tensorMap,context);return[stridedSlice(tensor168,begin,end,strides,beginMask,endMask,ellipsisMask,newAxisMask,shrinkAxisMask)]}case"Pack":return tidy(()=>{let axis=getParamValue("axis",node,tensorMap,context),tensors=getParamValue("tensors",node,tensorMap,context),shape=tensors[0].shape,squeezedShape=squeeze(tensors[0]).shape,mapped=tensors.map(tensor168=>{let sameShape=util_exports.arraysEqual(tensor168.shape,shape);if(!sameShape&&!util_exports.arraysEqual(squeeze(tensor168).shape,squeezedShape))throw new Error("the input tensors shape does not match");return sameShape?tensor168:reshape(tensor168,shape)});return[stack(mapped,axis)]});case"Unpack":{let axis=getParamValue("axis",node,tensorMap,context),tensor168=getParamValue("tensor",node,tensorMap,context);return unstack(tensor168,axis)}case"Tile":{let reps=getParamValue("reps",node,tensorMap,context);return[tile(getParamValue("x",node,tensorMap,context),reps)]}case"Split":case"SplitV":{let axis=getParamValue("axis",node,tensorMap,context),numOrSizeSplits=getParamValue("numOrSizeSplits",node,tensorMap,context),tensor168=getParamValue("x",node,tensorMap,context);return split(tensor168,numOrSizeSplits,axis)}case"ScatterNd":{let indices=getParamValue("indices",node,tensorMap,context),values=getParamValue("values",node,tensorMap,context),shape=getParamValue("shape",node,tensorMap,context);return[scatterND(indices,values,shape)]}case"GatherNd":{let x=getParamValue("x",node,tensorMap,context),indices=getParamValue("indices",node,tensorMap,context);return[gatherND(x,indices)]}case"SparseToDense":{let indices=getParamValue("sparseIndices",node,tensorMap,context),shape=getParamValue("outputShape",node,tensorMap,context),sparseValues=getParamValue("sparseValues",node,tensorMap,context),defaultValue=getParamValue("defaultValue",node,tensorMap,context);return[sparseToDense(indices,sparseValues,shape,sparseValues.dtype===defaultValue.dtype?defaultValue:cast(defaultValue,sparseValues.dtype))]}default:throw TypeError(`Node type ${node.op} is not implemented`)}},executeOp16=(node,tensorMap,context)=>{switch(node.op){case"FFT":return[fft(getParamValue("x",node,tensorMap,context))];case"IFFT":return[ifft(getParamValue("x",node,tensorMap,context))];case"RFFT":return[rfft(getParamValue("x",node,tensorMap,context))];case"IRFFT":return[irfft(getParamValue("x",node,tensorMap,context))];default:throw TypeError(`Node type ${node.op} is not implemented`)}},executeOp17=(node,tensorMap,context)=>{switch(node.op){case"Cast":return[cast(getParamValue("x",node,tensorMap,context),getParamValue("dtype",node,tensorMap,context))];case"ExpandDims":{let axis=getParamValue("axis",node,tensorMap,context);return[expandDims(getParamValue("x",node,tensorMap,context),axis)]}case"Squeeze":{let axis=getParamValue("axis",node,tensorMap,context);return[squeeze(getParamValue("x",node,tensorMap,context),axis)]}case"Reshape":return[reshape(getParamValue("x",node,tensorMap,context),getParamValue("shape",node,tensorMap,context))];case"MirrorPad":return[mirrorPad(getParamValue("x",node,tensorMap,context),getParamValue("padding",node,tensorMap,context),getParamValue("mode",node,tensorMap,context))];case"PadV2":case"Pad":return[pad(getParamValue("x",node,tensorMap,context),getParamValue("padding",node,tensorMap,context),getParamValue("constantValue",node,tensorMap,context))];case"SpaceToBatchND":{let blockShape=getParamValue("blockShape",node,tensorMap,context),paddings=getParamValue("paddings",node,tensorMap,context);return[spaceToBatchND(getParamValue("x",node,tensorMap,context),blockShape,paddings)]}case"BatchToSpaceND":{let blockShape=getParamValue("blockShape",node,tensorMap,context),crops=getParamValue("crops",node,tensorMap,context);return[batchToSpaceND(getParamValue("x",node,tensorMap,context),blockShape,crops)]}case"DepthToSpace":{let blockSize=getParamValue("blockSize",node,tensorMap,context),dataFormat=getParamValue("dataFormat",node,tensorMap,context).toUpperCase();return[depthToSpace(getParamValue("x",node,tensorMap,context),blockSize,dataFormat)]}case"BroadcastTo":return[broadcastTo(getParamValue("x",node,tensorMap,context),getParamValue("shape",node,tensorMap,context))];default:throw TypeError(`Node type ${node.op} is not implemented`)}};function executeOp18(node,tensorMap,context,resourceManager){let value=((node2,tensorMap2,context2)=>{switch(node2.category){case"arithmetic":return tidy(()=>executeOp(node2,tensorMap2,context2));case"basic_math":return tidy(()=>executeOp2(node2,tensorMap2,context2));case"control":return executeOp3(node2,tensorMap2,context2);case"convolution":return tidy(()=>executeOp4(node2,tensorMap2,context2));case"creation":return tidy(()=>executeOp5(node2,tensorMap2,context2));case"dynamic":return executeOp6(node2,tensorMap2,context2);case"evaluation":return tidy(()=>executeOp7(node2,tensorMap2,context2));case"image":return tidy(()=>executeOp10(node2,tensorMap2,context2));case"graph":return tidy(()=>executeOp8(node2,tensorMap2,context2));case"logical":return tidy(()=>executeOp11(node2,tensorMap2,context2));case"matrices":return tidy(()=>executeOp12(node2,tensorMap2,context2));case"normalization":return tidy(()=>executeOp13(node2,tensorMap2,context2));case"reduction":return tidy(()=>executeOp14(node2,tensorMap2,context2));case"slice_join":return tidy(()=>executeOp15(node2,tensorMap2,context2));case"spectral":return tidy(()=>executeOp16(node2,tensorMap2,context2));case"transformation":return tidy(()=>executeOp17(node2,tensorMap2,context2));case"hash_table":return executeOp9(node2,tensorMap2,context2,resourceManager);case"custom":let opMapper=getRegisteredOp(node2.op);if(opMapper&&opMapper.customExecutor)return opMapper.customExecutor(new NodeValueImpl(node2,tensorMap2,context2));throw TypeError(`Custom op ${node2.op} is not registered.`);default:throw TypeError(`Unknown op '${node2.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(node,tensorMap,context);return util_exports.isPromise(value)?value.then(data2=>[].concat(data2)):[].concat(value)}var ExecutionContext=class{constructor(weightMap={},tensorArrayMap={},tensorListMap={},functionMap={}){this.weightMap=weightMap,this.tensorArrayMap=tensorArrayMap,this.tensorListMap=tensorListMap,this.functionMap=functionMap,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(id,frameName){return{id,frameName,iterationId:0}}set currentContext(contexts2){this.contexts!==contexts2&&(this.contexts=contexts2,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let names=[];for(let i=0;icontext.id===0&&context.iterationId===0?"":`${context.frameName}-${context.iterationId}`).join("/"):""}enterFrame(frameId){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,frameId)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let context=Object.assign({},this.contexts[this.contexts.length-1]);context.iterationId+=1,context.id=this.lastId,this.contexts.splice(-1,1,context),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(name){return this.weightMap[name]}addTensorArray(tensorArray){this.tensorArrayMap[tensorArray.id]=tensorArray}getTensorArray(id){return this.tensorArrayMap[id]}addTensorList(tensorList){this.tensorListMap[tensorList.id]=tensorList}getTensorList(id){return this.tensorListMap[id]}dispose(keepIds){for(let key in this.tensorArrayMap)this.tensorArrayMap[key].clearAndClose(keepIds);for(let key in this.tensorListMap)this.tensorListMap[key].clearAndClose(keepIds)}};function getExecutionSubgraph(inputs,outputs,weightMap,initNodes){let usedNodes=new Set,missingInputs=[],dynamicNode=null,syncInputs=null,seen=new Set,inputNodeNames=Object.keys(inputs).map(name=>parseNodeName(name)[0]),initNodeNames=[];initNodes!=null&&(initNodeNames=initNodes.map(node=>parseNodeName(node.name)[0]));let frontier=[...outputs];for(;frontier.length>0;){let node=frontier.pop();if((isControlFlow(node)||isDynamicShape(node)||isHashTable(node))&&dynamicNode==null&&(dynamicNode=node,syncInputs=dynamicNode.children.map(child=>child.name).filter(name=>usedNodes.has(name))),usedNodes.add(node.name),weightMap[node.name]!=null)continue;if(inputNodeNames.indexOf(node.name)!==-1)continue;if(initNodeNames.indexOf(node.name)!==-1)continue;if(node.inputs.length===0){missingInputs.push(node.name);continue}node.inputs.forEach(input2=>{if(seen.has(input2.name))return;seen.add(input2.name),frontier.push(input2)})}return{inputs,outputs,usedNodes,missingInputs,dynamicNode,syncInputs}}function getNodesInTopologicalOrder(graph2,weightMap,executionInfo){let{usedNodes,inputs}=executionInfo,frontier=[],inputNodes=Object.keys(inputs).map(name=>parseNodeName(name)[0]).map(name=>graph2.nodes[name]),initNodes=graph2.initNodes;inputNodes.forEach(input2=>{usedNodes.has(input2.name)&&frontier.push(input2)}),graph2.weights.forEach(weight=>{usedNodes.has(weight.name)&&frontier.push(weight)}),initNodes!=null&&initNodes.forEach(node=>{usedNodes.has(node.name)&&frontier.push(node)});let seen=new Set,orderedNodes=[];for(;frontier.length>0;){let node=frontier.pop();seen.add(node.name),weightMap[node.name]||orderedNodes.push(node),node.children.forEach(child=>{!seen.has(child.name)&&usedNodes.has(child.name)&&child.inputs.every(input2=>seen.has(input2.name))&&frontier.push(child)})}return orderedNodes}var CONTROL_FLOW_OPS=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],DYNAMIC_SHAPE_OPS=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],HASH_TABLE_OPS=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2"];function isControlFlow(node){return CONTROL_FLOW_OPS.indexOf(node.op)>=0}function isDynamicShape(node){return DYNAMIC_SHAPE_OPS.indexOf(node.op)>=0}function isHashTable(node){return HASH_TABLE_OPS.indexOf(node.op)>=0}var GraphExecutor=class{constructor(graph2,parent){this.graph=graph2,this.parent=parent,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=graph2.outputs,this._inputs=graph2.inputs,this._initNodes=graph2.initNodes,this._signature=graph2.signature,this._functions=graph2.functions,graph2.functions!=null&&Object.keys(graph2.functions).forEach(name=>{this._functionExecutorMap[name]=new GraphExecutor(graph2.functions[name],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(weightMap){let weightIds=Object.keys(weightMap).map(key=>weightMap[key].map(tensor168=>tensor168.id));this._weightIds=[].concat(...weightIds),this._weightMap=weightMap}set resourceManager(resourceManager){this._resourceManager=resourceManager}get inputs(){return this._inputs.map(node=>({name:node.name,shape:node.attrParams.shape?node.attrParams.shape.value:void 0,dtype:node.attrParams.dtype?node.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(node=>({name:node.name,shape:node.attrParams.shape?node.attrParams.shape.value:void 0,dtype:node.attrParams.dtype?node.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(node=>node.signatureKey||node.name)}get outputNodes(){return this._outputs.map(node=>{let name=node.signatureKey||node.name;return node.defaultOutput?`${name}:${node.defaultOutput}`:name})}get functions(){return Object.keys(this._functions).reduce((map,key)=>(map[key]=this._functions[key].signature,map),{})}getCompilationKey(inputs,outputs){let sortedInputs=inputs.map(node=>node.name).sort(),sortedOutputs=outputs.map(node=>node.name).sort();return sortedInputs.join(this.SEPERATOR)+"--"+sortedOutputs.join(this.SEPERATOR)}compile(inputs,outputs){let executionInfo=getExecutionSubgraph(inputs,outputs,this.weightMap,this._initNodes),{missingInputs,dynamicNode,syncInputs}=executionInfo;if(dynamicNode!=null)throw new Error(`This execution contains the node '${dynamicNode.name}', which has the dynamic op '${dynamicNode.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${syncInputs}]`);if(missingInputs.length>0){let outNames=outputs.map(n=>n.name),inNames=Object.keys(inputs);throw new Error(`Cannot compute the outputs [${outNames}] from the provided inputs [${inNames}]. Missing the following inputs: [${missingInputs}]`)}return getNodesInTopologicalOrder(this.graph,this.weightMap,executionInfo)}execute(inputs,outputs){inputs=this.mapInputs(inputs);let names=Object.keys(inputs).sort();this.checkInputs(inputs),this.checkInputShapeAndType(inputs),outputs=this.mapOutputs(outputs),this.checkOutputs(outputs);let inputNodes=names.map(name=>this.graph.nodes[parseNodeName(name)[0]]),outputNodeNames=outputs.map(name=>parseNodeName(name)[0]),outputNodes=outputNodeNames.map(name=>this.graph.nodes[name]);outputNodes.length===0&&(outputNodes=this._outputs);let compilationKey=this.getCompilationKey(inputNodes,outputNodes),orderedNodes=this.compiledMap.get(compilationKey);orderedNodes==null&&(orderedNodes=this.compile(inputs,outputNodes),this.compiledMap.set(compilationKey,orderedNodes));let tensorArrayMap={},tensorListMap={};return tidy(()=>{let context=new ExecutionContext(this.weightMap,tensorArrayMap,tensorListMap,this.functionExecutorMap),tensorsMap=Object.assign({},this.weightMap);Object.keys(inputs).forEach(name=>{let[nodeName,index]=parseNodeName(name),tensors=[];tensors[index]=inputs[name],tensorsMap[nodeName]=tensors});let tensorsToKeep=this.getFrozenTensorIds(tensorsMap),intermediateTensorConsumerCount={};for(let i=0;igetTensor(name,tensorsMap,context))})}getFrozenTensorIds(tensorMap){let ids=[].concat.apply([],Object.keys(tensorMap).map(key=>tensorMap[key]).map(tensors=>tensors.map(tensor168=>tensor168.id)));return new Set(ids)}checkTensorForDisposal(nodeName,node,tensorMap,context,tensorsToKeep,outputNames,intermediateTensorConsumerCount){if(node.category==="control"||outputNames.indexOf(nodeName)!==-1)return;tensorMap[nodeName].forEach(tensor168=>{tensor168!=null&&(intermediateTensorConsumerCount[tensor168.id]=(intermediateTensorConsumerCount[tensor168.id]||0)+node.children.length)}),node.inputs.forEach(input2=>{if(input2.category!=="control"){let tensors=getTensorsForCurrentContenxt(input2.name,tensorMap,context);tensors!=null&&tensors.forEach(tensor168=>{if(tensor168&&!tensorsToKeep.has(tensor168.id)){let count2=intermediateTensorConsumerCount[tensor168.id];count2===1?(tensor168.dispose(),delete intermediateTensorConsumerCount[tensor168.id]):count2!=null&&intermediateTensorConsumerCount[tensor168.id]--}})}})}async executeAsync(inputs,outputs){return this._executeAsync(inputs,outputs)}async _executeAsync(inputs,outputs,isFunctionExecution=!1,tensorArrayMap={},tensorListMap={}){isFunctionExecution||(inputs=this.mapInputs(inputs),this.checkInputs(inputs),this.checkInputShapeAndType(inputs),outputs=this.mapOutputs(outputs),this.checkOutputs(outputs));let context=new ExecutionContext(this.weightMap,tensorArrayMap,tensorListMap,this.functionExecutorMap),tensorMap=await this.executeWithControlFlow(inputs,context,outputs,isFunctionExecution),results=outputs.map(name=>getTensor(name,tensorMap,context)),outputIds=results.map(t=>t.id),inputIds=Object.keys(inputs).map(name=>inputs[name].id),keepIds=new Set([...outputIds,...inputIds,...this.weightIds]);return Object.keys(tensorMap).forEach(key=>{let tensorArray=tensorMap[key];tensorArray.forEach(tensor168=>{tensor168&&!tensor168.isDisposed&&!keepIds.has(tensor168.id)&&tensor168.dispose()})}),this.parent==null&&context.dispose(keepIds),results}async executeFunctionAsync(inputs,tensorArrayMap,tensorListMap){let mappedInputs=inputs.reduce((map,tensor168,index)=>(map[this.inputs[index].name]=tensor168,map),{});return this._executeAsync(mappedInputs,this.outputNodes,!0,tensorArrayMap,tensorListMap)}async executeWithControlFlow(inputs,context,outputNames,isFunctionExecution){let names=Object.keys(inputs),inputNodes=names.map(name=>this.graph.nodes[parseNodeName(name)[0]]),outputNodeNames=outputNames.map(name=>parseNodeName(name)[0]),outputNodes=outputNodeNames.map(name=>this.graph.nodes[name]);outputNodes.length===0&&(outputNodes=this._outputs);let{usedNodes,missingInputs,dynamicNode,syncInputs}=getExecutionSubgraph(inputs,outputNodes,this.weightMap,this._initNodes),stack9=[...inputNodes,...this.graph.weights,...this._initNodes||[]].map(node=>({node,contexts:context.currentContext})),tensorsMap=Object.assign({},this.weightMap);Object.keys(inputs).forEach(name=>{let[nodeName,index]=parseNodeName(name),tensors=[];tensors[index]=inputs[name],tensorsMap[nodeName]=tensors});let intermediateTensorConsumerCount={},tensorsToKeep=this.getFrozenTensorIds(tensorsMap),added={};for(;stack9.length>0;){let promises=this.processStack(inputNodes,stack9,context,tensorsMap,added,tensorsToKeep,outputNodeNames,intermediateTensorConsumerCount,usedNodes);await Promise.all(promises)}dynamicNode==null&&!isFunctionExecution&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let missingOutputs=outputNodes.filter(node=>!isControlFlow(node)&&!getTensor(node.name,tensorsMap,context)).map(node=>node.name);if(missingOutputs.length>0){let alternativeMsg="";throw dynamicNode!=null&&(alternativeMsg=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${syncInputs}]`),new Error(`Cannot compute the outputs [${missingOutputs}] from the provided inputs [${names}]. Consider providing the following inputs: [${missingInputs}]. ${alternativeMsg}`)}return tensorsMap}processStack(inputNodes,stack9,context,tensorMap,added,tensorsToKeep,outputNames,intermediateTensorConsumerCount,usedNodes){let promises=[];for(;stack9.length>0;){let item=stack9.pop();context.currentContext=item.contexts;let nodeName="";if(item.node.op==="Enter"&&getParamValue("isConstant",item.node,tensorMap,context)&&([nodeName]=getNodeNameAndIndex(item.node.name,context)),tensorMap[item.node.name]==null){let tensors=executeOp18(item.node,tensorMap,context,this._resourceManager);nodeName||([nodeName]=getNodeNameAndIndex(item.node.name,context));let currentContext=context.currentContext;util_exports.isPromise(tensors)?promises.push(tensors.then(t=>(tensorMap[nodeName]=t,context.currentContext=currentContext,this.checkTensorForDisposal(nodeName,item.node,tensorMap,context,tensorsToKeep,outputNames,intermediateTensorConsumerCount),this.processChildNodes(item.node,stack9,context,tensorMap,added,usedNodes),t))):(tensorMap[nodeName]=tensors,this.checkTensorForDisposal(nodeName,item.node,tensorMap,context,tensorsToKeep,outputNames,intermediateTensorConsumerCount),this.processChildNodes(item.node,stack9,context,tensorMap,added,usedNodes))}else this.processChildNodes(item.node,stack9,context,tensorMap,added,usedNodes)}return promises}processChildNodes(node,stack9,context,tensorMap,added,usedNodes){node.children.forEach(childNode=>{let[nodeName]=getNodeNameAndIndex(childNode.name,context);if(added[nodeName]||!usedNodes.has(childNode.name))return;childNode.op==="Merge"?childNode.inputNames.some(name=>!!getTensor(name,tensorMap,context))&&(added[nodeName]=!0,stack9.push({contexts:context.currentContext,node:childNode})):childNode.inputNames.every(name=>!!getTensor(name,tensorMap,context))&&(added[nodeName]=!0,stack9.push({contexts:context.currentContext,node:childNode}))})}dispose(){Object.keys(this.weightMap).forEach(key=>this.weightMap[key].forEach(tensor168=>tensor168.dispose()))}checkInputShapeAndType(inputs){Object.keys(inputs).forEach(name=>{let input2=inputs[name],[nodeName]=parseNodeName(name),node=this.graph.nodes[nodeName];if(node.attrParams.shape&&node.attrParams.shape.value){let shape=node.attrParams.shape.value,match=shape.length===input2.shape.length&&input2.shape.every((dim,index)=>shape[index]===-1||shape[index]===dim);util_exports.assert(match,()=>`The shape of dict['${node.name}'] provided in model.execute(dict) must be [${shape}], but was [${input2.shape}]`)}node.attrParams.dtype&&node.attrParams.dtype.value&&util_exports.assert(input2.dtype===node.attrParams.dtype.value,()=>`The dtype of dict['${node.name}'] provided in model.execute(dict) must be ${node.attrParams.dtype.value}, but was ${input2.dtype}`)})}mapInputs(inputs){let result={};for(let inputName in inputs)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[inputName]!=null){let tensor168=this._signature.inputs[inputName];result[tensor168.name]=inputs[inputName]}else result[inputName]=inputs[inputName];return result}checkInputs(inputs){let notInGraph=Object.keys(inputs).filter(name=>{let[nodeName]=parseNodeName(name);return this.graph.nodes[nodeName]==null});if(notInGraph.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${notInGraph}] that are not part of graph`)}mapOutputs(outputs){return outputs.map(name=>{if(this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[name]!=null){let tensor168=this._signature.outputs[name];return tensor168.name}return name},{})}checkOutputs(outputs){outputs.forEach(name=>{let[normalizedName]=parseNodeName(name);if(!this.graph.nodes[normalizedName])throw new Error(`The output '${name}' is not found in the graph`)})}},ResourceManager=class{constructor(hashTableNameToHandle={},hashTableMap={}){this.hashTableNameToHandle=hashTableNameToHandle,this.hashTableMap=hashTableMap}addHashTable(name,hashTable2){this.hashTableNameToHandle[name]=hashTable2.handle,this.hashTableMap[hashTable2.id]=hashTable2}getHashTableHandleByName(name){return this.hashTableNameToHandle[name]}getHashTableById(id){return this.hashTableMap[id]}dispose(){for(let key in this.hashTableMap)this.hashTableMap[key].clearAndClose(),delete this.hashTableMap[key];for(let name in this.hashTableNameToHandle)this.hashTableNameToHandle[name].dispose(),delete this.hashTableNameToHandle[name]}},TFHUB_SEARCH_PARAM="?tfjs-format=file",DEFAULT_MODEL_NAME="model.json",GraphModel=class{constructor(modelUrl,loadOptions={}){this.modelUrl=modelUrl,this.loadOptions=loadOptions,this.version="n/a",loadOptions==null&&(this.loadOptions={}),this.resourceManager=new ResourceManager}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}findIOHandler(){let path=this.modelUrl;if(path.load!=null)this.handler=path;else if(this.loadOptions.requestInit!=null)this.handler=io_exports.browserHTTPRequest(path,this.loadOptions);else{let handlers=io_exports.getLoadHandlers(path,this.loadOptions);if(handlers.length===0)handlers.push(io_exports.browserHTTPRequest(path,this.loadOptions));else if(handlers.length>1)throw new Error(`Found more than one (${handlers.length}) load handlers for URL '${[path]}'`);this.handler=handlers[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let artifacts=await this.handler.load();return this.loadSync(artifacts)}loadSync(artifacts){this.artifacts=artifacts;let graph2=this.artifacts.modelTopology,signature={};this.artifacts.userDefinedMetadata!=null&&(signature=this.artifacts.userDefinedMetadata.signature),this.version=`${graph2.versions.producer}.${graph2.versions.minConsumer}`;let weightMap=io_exports.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new GraphExecutor(OperationMapper.Instance.transformGraph(graph2,signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(weightMap),this.executor.resourceManager=this.resourceManager,artifacts.modelInitializer!=null){let initializer=OperationMapper.Instance.transformGraph(artifacts.modelInitializer);this.initializer=new GraphExecutor(initializer),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(handlerOrURL,config){if(typeof handlerOrURL=="string"){let handlers=io_exports.getSaveHandlers(handlerOrURL);if(handlers.length===0)throw new Error(`Cannot find any save handlers for URL '${handlerOrURL}'`);if(handlers.length>1)throw new Error(`Found more than one (${handlers.length}) save handlers for URL '${handlerOrURL}'`);handlerOrURL=handlers[0]}if(handlerOrURL.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return handlerOrURL.save(this.artifacts)}predict(inputs,config){return this.execute(inputs,this.outputNodes)}normalizeInputs(inputs){if(!(inputs instanceof Tensor)&&!Array.isArray(inputs))return inputs;if(inputs=Array.isArray(inputs)?inputs:[inputs],inputs.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${inputs.length} input tensors.`);return this.inputNodes.reduce((map,inputName,i)=>(map[inputName]=inputs[i],map),{})}normalizeOutputs(outputs){return outputs=outputs||this.outputNodes,Array.isArray(outputs)?outputs:[outputs]}execute(inputs,outputs){inputs=this.normalizeInputs(inputs),outputs=this.normalizeOutputs(outputs);let result=this.executor.execute(inputs,outputs);return result.length>1?result:result[0]}async executeAsync(inputs,outputs){inputs=this.normalizeInputs(inputs),outputs=this.normalizeOutputs(outputs);let result=await this.executor.executeAsync(inputs,outputs);return result.length>1?result:result[0]}convertTensorMapToTensorsMap(map){return Object.keys(map).reduce((newMap,key)=>(newMap[key]=[map[key]],newMap),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function loadGraphModel(modelUrl,options={}){if(modelUrl==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");options==null&&(options={}),options.fromTFHub&&modelUrl.load==null&&(modelUrl.endsWith("/")||(modelUrl=modelUrl+"/"),modelUrl=`${modelUrl}${DEFAULT_MODEL_NAME}${TFHUB_SEARCH_PARAM}`);let model2=new GraphModel(modelUrl,options);return await model2.load(),model2}var version6="2.7.0",dist_exports={};__export2(dist_exports,{CSVDataset:()=>CSVDataset,Dataset:()=>Dataset,FileDataSource:()=>FileDataSource,TextLineDataset:()=>TextLineDataset,URLDataSource:()=>URLDataSource,array:()=>array,csv:()=>csv,func:()=>func,generator:()=>generator,microphone:()=>microphone,version_data:()=>version8,webcam:()=>webcam,zip:()=>zip});var seedrandom3=__toModule2(require_seedrandom4()),seedrandom2=__toModule2(require_seedrandom4());function deepMap(input2,mapFn){return deepMapInternal(input2,mapFn)}function deepMapInternal(input2,mapFn,seen=new Map,containedIn=new Set){if(input2==null)return null;if(containedIn.has(input2))throw new Error("Circular references are not supported.");if(seen.has(input2))return seen.get(input2);let result=mapFn(input2);if(result.recurse&&result.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(result.recurse)if(isIterable2(input2)){let mappedIterable=Array.isArray(input2)?[]:{};containedIn.add(input2);for(let k in input2){let child=input2[k],childResult=deepMapInternal(child,mapFn,seen,containedIn);mappedIterable[k]=childResult}return containedIn.delete(input2),mappedIterable}else throw new Error(`Can't recurse into non-iterable type: ${input2}`);else return seen.set(input2,result.value),result.value}function deepZip(inputs,zipFn=zipToList){return deepZipInternal(inputs,zipFn)}function deepZipInternal(inputs,zipFn,containedIn=new Set){let input2=inputs[0];if(containedIn.has(input2))throw new Error("Circular references are not supported.");let result=zipFn(inputs);if(result.recurse&&result.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(result.recurse)if(isIterable2(input2)){let mappedIterable=Array.isArray(input2)?[]:{};containedIn.add(input2);for(let k in input2){let children=inputs.map(x=>x[k]),childResult=deepZipInternal(children,zipFn,containedIn);mappedIterable[k]=childResult}return containedIn.delete(input2),mappedIterable}else throw new Error(`Can't recurse into non-iterable type: ${input2}`);else return result.value}function zipToList(x){return x===null?null:isIterable2(x[0])?{value:null,recurse:!0}:{value:x,recurse:!1}}async function deepMapAndAwaitAll(input2,mapFn){let seen=new Map;deepMapInternal(input2,mapFn,seen);for(let key of Array.from(seen.keys())){let value=seen.get(key);if(util_exports.isPromise(value)){let mappedValue=await value;seen.set(key,mappedValue)}}let result=deepMapInternal(input2,mapFn,seen);return result}function isIterable2(obj){return obj!=null&&!ArrayBuffer.isView(obj)&&(Array.isArray(obj)||typeof obj=="object"&&!(obj instanceof Tensor))}function canTensorify(obj){return obj==null||isPrimitive(obj)||Array.isArray(obj)||typeof obj=="object"&&obj instanceof Tensor||util_exports.isTypedArray(obj)}function isPrimitive(value){return value===null||typeof value!="object"&&typeof value!="function"}function deepClone(container2){return deepMap(container2,cloneIfTensor)}function cloneIfTensor(item){return item instanceof Tensor?{value:item.clone(),recurse:!1}:isIterable2(item)?{value:null,recurse:!0}:{value:item,recurse:!1}}var RingBuffer=class{constructor(capacity){if(this.capacity=capacity,this.begin=0,this.end=0,capacity==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(capacity<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(capacity),this.doubledCapacity=2*capacity}wrap(index){for(;index<0;)index+=this.doubledCapacity;return index%this.doubledCapacity}get(index){if(index<0)throw new RangeError("Can't get item at a negative index.");return this.data[index%this.capacity]}set(index,value){if(index<0)throw new RangeError("Can't set item at a negative index.");this.data[index%this.capacity]=value}length(){let length=this.end-this.begin;return length<0&&(length=this.doubledCapacity+length),length}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(value){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,value),this.end=this.wrap(this.end+1)}pushAll(values){for(let value of values)this.push(value)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let result=this.get(this.end);return this.set(this.end,void 0),result}unshift(value){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,value)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let result=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),result}shuffleExcise(relativeIndex){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let index=this.wrap(this.begin+relativeIndex),result=this.get(index);return this.set(index,this.pop()),result}},GrowingRingBuffer=class extends RingBuffer{constructor(){super(GrowingRingBuffer.INITIAL_CAPACITY)}isFull(){return!1}push(value){super.isFull()&&this.expand(),super.push(value)}unshift(value){super.isFull()&&this.expand(),super.unshift(value)}expand(){let newCapacity=this.capacity*2,newData=new Array(newCapacity),len=this.length();for(let i=0;ix===!0)}rowMajorBatch(batchSize,smallLastBatch=!0){return new RowMajorBatchIterator(this,batchSize,smallLastBatch)}columnMajorBatch(batchSize,smallLastBatch=!0,zipFn=zipToList){let rowBatches=this.rowMajorBatch(batchSize,smallLastBatch);return rowBatches.map(x=>deepZip(x,zipFn))}concatenate(iterator,baseErrorHandler){return new ChainedIterator(iteratorFromItems([this,iterator]),baseErrorHandler)}take(count2){return count2<0||count2==null?this:new TakeIterator(this,count2)}skip(count2){return count2<0||count2==null?this:new SkipIterator(this,count2)}prefetch(bufferSize){return new PrefetchIterator(this,bufferSize)}shuffle(windowSize,seed){return new ShuffleIterator(this,windowSize,seed)}serial(){return new SerialIterator(this)}},ArrayIterator=class extends LazyIterator{constructor(items){super();this.items=items,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let item=this.items[this.trav];return this.trav++,{value:deepClone(item),done:!1}}},FunctionCallIterator=class extends LazyIterator{constructor(nextFn){super();this.nextFn=nextFn}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},SerialIterator=class extends LazyIterator{constructor(upstream){super();this.upstream=upstream,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},SkipIterator=class extends LazyIterator{constructor(upstream,maxCount){super();this.upstream=upstream,this.maxCount=maxCount,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++ Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},RowMajorBatchIterator=class extends LazyIterator{constructor(upstream,batchSize,enableSmallLastBatch=!0){super();this.upstream=upstream,this.batchSize=batchSize,this.enableSmallLastBatch=enableSmallLastBatch,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let batch=[];for(;batch.length0?{value:batch,done:!1}:{value:null,done:!0};batch.push(item.value)}return{value:batch,done:!1}}},FilterIterator=class extends LazyIterator{constructor(upstream,predicate){super();this.upstream=upstream,this.predicate=predicate,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let item=await this.upstream.next();if(item.done||this.predicate(item.value))return item;dispose(item.value)}}},MapIterator=class extends LazyIterator{constructor(upstream,transform){super();this.upstream=upstream,this.transform=transform}summary(){return`${this.upstream.summary()} -> Map`}async next(){let item=await this.upstream.next();if(item.done)return{value:null,done:!0};let inputTensors=tensor_util_exports.getTensorsInContainer(item.value),mapped=this.transform(item.value),outputTensors=tensor_util_exports.getTensorsInContainer(mapped);for(let t of inputTensors)tensor_util_exports.isTensorInList(t,outputTensors)||t.dispose();return{value:mapped,done:!1}}},ErrorHandlingLazyIterator=class extends LazyIterator{constructor(upstream,handler){super();this.upstream=upstream,this.handler=handler,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},AsyncMapIterator=class extends LazyIterator{constructor(upstream,transform){super();this.upstream=upstream,this.transform=transform}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let item=await this.upstream.next();if(item.done)return{value:null,done:!0};let inputTensors=tensor_util_exports.getTensorsInContainer(item.value),mapped=await this.transform(item.value),outputTensors=tensor_util_exports.getTensorsInContainer(mapped);for(let t of inputTensors)tensor_util_exports.isTensorInList(t,outputTensors)||t.dispose();return{value:mapped,done:!1}}},OneToManyIterator=class extends LazyIterator{constructor(){super();this.outputQueue=new GrowingRingBuffer,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},FlatmapIterator=class extends OneToManyIterator{constructor(upstream,transform){super();this.upstream=upstream,this.transform=transform}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let item=await this.upstream.next();if(item.done)return!1;let inputTensors=tensor_util_exports.getTensorsInContainer(item.value),mappedArray=this.transform(item.value),outputTensors=tensor_util_exports.getTensorsInContainer(mappedArray);this.outputQueue.pushAll(mappedArray);for(let t of inputTensors)tensor_util_exports.isTensorInList(t,outputTensors)||t.dispose();return!0}},ChainedIterator=class extends LazyIterator{constructor(iterators,baseErrorHandler){super();this.baseErrorHandler=baseErrorHandler,this.lastRead=null,this.iterator=null,this.moreIterators=iterators}summary(){let upstreamSummaries="TODO: fill in upstream of chained summaries";return`${upstreamSummaries} -> Chained`}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(lastRead){if(await lastRead,this.iterator==null){let iteratorResult=await this.moreIterators.next();if(iteratorResult.done)return{value:null,done:!0};this.iterator=iteratorResult.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let itemResult=await this.iterator.next();return itemResult.done?(this.iterator=null,this.readFromChain(lastRead)):itemResult}},ZipMismatchMode;(function(ZipMismatchMode2){ZipMismatchMode2[ZipMismatchMode2.FAIL=0]="FAIL",ZipMismatchMode2[ZipMismatchMode2.SHORTEST=1]="SHORTEST",ZipMismatchMode2[ZipMismatchMode2.LONGEST=2]="LONGEST"})(ZipMismatchMode||(ZipMismatchMode={}));var ZipIterator=class extends LazyIterator{constructor(iterators,mismatchMode=ZipMismatchMode.FAIL){super();this.iterators=iterators,this.mismatchMode=mismatchMode,this.count=0,this.currentPromise=null}summary(){let upstreamSummaries="TODO: fill in upstream of zip summaries";return`{${upstreamSummaries}} -> Zip`}async nextState(afterState){await afterState;let numIterators=0,iteratorsDone=0;function getNext(container2){if(container2 instanceof LazyIterator){let result=container2.next();return{value:result.then(x=>(numIterators++,x.done&&iteratorsDone++,x.value)),recurse:!1}}else return{value:null,recurse:!0}}let mapped=await deepMapAndAwaitAll(this.iterators,getNext);if(numIterators===iteratorsDone)return{value:null,done:!0};if(iteratorsDone>0)switch(this.mismatchMode){case ZipMismatchMode.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case ZipMismatchMode.SHORTEST:return{value:null,done:!0};case ZipMismatchMode.LONGEST:default:}return this.count++,{value:mapped,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},PrefetchIterator=class extends LazyIterator{constructor(upstream,bufferSize){super();this.upstream=upstream,this.bufferSize=bufferSize,this.buffer=new RingBuffer(bufferSize)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let v=this.upstream.next();this.buffer.push(v)}}next(){return this.refill(),this.buffer.shift()}},ShuffleIterator=class extends PrefetchIterator{constructor(upstream,windowSize,seed){super(upstream,windowSize);this.upstream=upstream,this.windowSize=windowSize,this.upstreamExhausted=!1,this.random=seedrandom2.alea(seed||util_exports.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(max10){return Math.floor(this.random()*max10)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let chosenIndex=this.chooseIndex(),result=await this.buffer.shuffleExcise(chosenIndex);if(result.done)this.upstreamExhausted=!0;else return this.refill(),result}return{value:null,done:!0}}},Dataset=class{constructor(){this.size=null}batch(batchSize,smallLastBatch=!0){let base2=this;util_exports.assert(batchSize>0,()=>`batchSize needs to be positive, but it is ${batchSize}`);let size;return this.size===Infinity||this.size==null?size=this.size:smallLastBatch?size=Math.ceil(this.size/batchSize):size=Math.floor(this.size/batchSize),datasetFromIteratorFn(async()=>(await base2.iterator()).columnMajorBatch(batchSize,smallLastBatch,deepBatchConcat),size)}concatenate(dataset5){let base2=this,size;return this.size===Infinity||dataset5.size===Infinity?size=Infinity:this.size!=null&&dataset5.size!=null?size=this.size+dataset5.size:size=null,datasetFromIteratorFn(async()=>(await base2.iterator()).concatenate(await dataset5.iterator()),size)}filter(predicate){let base2=this,size;return this.size===Infinity?size=Infinity:size=null,datasetFromIteratorFn(async()=>(await base2.iterator()).filter(x=>tidy(()=>predicate(x))),size)}async forEachAsync(f){return(await this.iterator()).forEachAsync(f)}map(transform){let base2=this;return datasetFromIteratorFn(async()=>(await base2.iterator()).map(x=>tidy(()=>transform(x))),this.size)}mapAsync(transform){let base2=this;return datasetFromIteratorFn(async()=>(await base2.iterator()).mapAsync(transform),this.size)}prefetch(bufferSize){if(bufferSize==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let base2=this;return datasetFromIteratorFn(async()=>(await base2.iterator()).prefetch(bufferSize),this.size)}repeat(count2){let base2=this,size;return this.size!=null&&count2>0?size=this.size*count2:count2===0?size=0:this.size!=null&&(count2===void 0||count2<0)?size=Infinity:size=null,datasetFromIteratorFn(async()=>{let iteratorIterator=iteratorFromFunction(async()=>({value:await base2.iterator(),done:!1}));return iteratorFromConcatenated(iteratorIterator.take(count2))},size)}skip(count2){let base2=this,size;return this.size!=null&&count2>=0&&this.size>=count2?size=this.size-count2:this.size!=null&&(this.size(await base2.iterator()).skip(count2),size)}shuffle(bufferSize,seed,reshuffleEachIteration=!0){if(bufferSize==null||bufferSize<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let base2=this,random=seedrandom3.alea(seed||util_exports.now().toString());return datasetFromIteratorFn(async()=>{let seed2=random.int32();return reshuffleEachIteration&&(seed2+=random.int32()),(await base2.iterator()).shuffle(bufferSize,seed2.toString())},this.size)}take(count2){let base2=this,size;return this.size!=null&&this.size>count2?size=count2:this.size!=null&&this.size<=count2?size=this.size:size=null,datasetFromIteratorFn(async()=>(await base2.iterator()).take(count2),size)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Dataset.MAX_BUFFER_SIZE=1e4;function datasetFromIteratorFn(iteratorFn,size=null){return new class extends Dataset{constructor(){super(...arguments);this.size=size}async iterator(){return iteratorFn()}}}function array(items){return datasetFromIteratorFn(async()=>iteratorFromItems(items),items.length)}function zip(datasets){if(!isIterable2(datasets))throw new Error("The argument to zip() must be an object or array.");let size;if(Array.isArray(datasets))for(let i=0;i{let streams=await deepMapAndAwaitAll(datasets,d=>{if(d instanceof Dataset)return{value:d.iterator(),recurse:!1};if(isIterable2(d))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return iteratorFromZipped(streams,ZipMismatchMode.SHORTEST)},size)}function deepBatchConcat(rows){if(rows===null)return null;let exampleRow=rows[0];if(canTensorify(exampleRow)){let value=batchConcat(rows);return{value,recurse:!1}}return{value:null,recurse:!0}}function batchConcat(arrays){if(arrays.length===0)throw new Error("Can't make a batch of zero elements.");return arrays[0]instanceof Tensor?stack(arrays):tensor4(arrays)}var TextLineDataset=class extends Dataset{constructor(input2){super();this.input=input2}async iterator(){let inputIterator=await this.input.iterator(),utf8Iterator=inputIterator.decodeUTF8(),lineIterator=utf8Iterator.split(` `).map(line=>(line.endsWith("\r")&&(line=line.slice(0,-1)),line));return lineIterator}},CODE_QUOTE='"',STATE_OUT=Symbol("out"),STATE_FIELD=Symbol("field"),STATE_QUOTE=Symbol("quote"),STATE_QUOTE_AFTER_QUOTE=Symbol("quoteafterquote"),STATE_WITHIN_QUOTE_IN_QUOTE=Symbol("quoteinquote"),CSVDataset=class extends Dataset{constructor(input2,csvConfig){super();this.input=input2,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new TextLineDataset(input2),csvConfig||(csvConfig={}),this.hasHeader=!(csvConfig.hasHeader===!1),this.fullColumnNames=csvConfig.columnNames,this.columnConfigs=csvConfig.columnConfigs,this.configuredColumnsOnly=csvConfig.configuredColumnsOnly,csvConfig.delimWhitespace?(util_exports.assert(csvConfig.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=csvConfig.delimiter?csvConfig.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let columnNamesFromFile=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!columnNamesFromFile)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&columnNamesFromFile&&util_exports.assert(columnNamesFromFile.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+columnNamesFromFile.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=columnNamesFromFile);let counts=this.fullColumnNames.reduce((countAcc,name)=>(countAcc[name]=countAcc[name]+1||1,countAcc),{}),duplicateNames=Object.keys(counts).filter(name=>counts[name]>1);if(util_exports.assert(duplicateNames.length===0,()=>"Duplicate column names found: "+duplicateNames.toString()),this.columnConfigs)for(let key of Object.keys(this.columnConfigs)){let index=this.fullColumnNames.indexOf(key);if(index===-1)throw new Error('The key "'+key+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let iter=await this.base.iterator(),firstElement=await iter.next();if(firstElement.done)throw new Error("No data was found for CSV parsing.");let firstLine=firstElement.value,headers=this.parseRow(firstLine,!1);return headers}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let lines=await this.base.iterator();return this.hasHeader&&(lines=lines.skip(1)),lines.map(x=>this.makeDataElement(x))}makeDataElement(line){let values=this.parseRow(line),features={},labels={};for(let i=0;i14||!Number.isInteger(fftSizeLog2))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=microphoneConfig.numFramesPerSpectrogram||43,this.sampleRateHz=microphoneConfig.sampleRateHz,this.columnTruncateLength=microphoneConfig.columnTruncateLength||this.fftSize,this.audioTrackConstraints=microphoneConfig.audioTrackConstraints,this.smoothingTimeConstant=microphoneConfig.smoothingTimeConstant||0,this.includeSpectrogram=!(microphoneConfig.includeSpectrogram===!1),this.includeWaveform=microphoneConfig.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(microphoneConfig={}){if(env().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let microphoneIterator=new MicrophoneIterator(microphoneConfig);return await microphoneIterator.start(),microphoneIterator}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(e){throw new Error(`Error thrown while initializing video stream: ${e.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let ctxConstructor=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new ctxConstructor,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let streamSource=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,streamSource.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let spectrogramTensor,waveformTensor,audioDataQueue=await this.getAudioData();if(this.includeSpectrogram){let freqData=this.flattenQueue(audioDataQueue.freqDataQueue);spectrogramTensor=this.getTensorFromAudioDataArray(freqData,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let timeData=this.flattenQueue(audioDataQueue.timeDataQueue);waveformTensor=this.getTensorFromAudioDataArray(timeData,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:spectrogramTensor,waveform:waveformTensor},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let freqDataQueue=[],timeDataQueue=[],currentFrames=0;return new Promise(resolve=>{let intervalID=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&resolve({freqDataQueue,timeDataQueue}),freqDataQueue.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),timeDataQueue.push(this.timeData.slice())),++currentFrames===this.numFrames&&(clearInterval(intervalID),resolve({freqDataQueue,timeDataQueue}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(queue){let frameSize=queue[0].length,freqData=new Float32Array(queue.length*frameSize);return queue.forEach((data2,i)=>freqData.set(data2,i*frameSize)),freqData}getTensorFromAudioDataArray(freqData,shape){let vals=new Float32Array(util_exports.sizeFromShape(shape));return vals.set(freqData,vals.length-freqData.length),tensor4(vals,shape)}},WebcamIterator=class extends LazyIterator{constructor(webcamVideoElement,webcamConfig){super();if(this.webcamVideoElement=webcamVideoElement,this.webcamConfig=webcamConfig,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=tensor1d([0],"int32"),this.webcamConfig.centerCrop){let widthCroppingRatio=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,heightCroppingRatio=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,widthCropStart=(1-widthCroppingRatio)/2,heightCropStart=(1-heightCroppingRatio)/2,widthCropEnd=widthCropStart+widthCroppingRatio,heightCropEnd=heightCroppingRatio+heightCropStart;this.cropBox=tensor2d([heightCropStart,widthCropStart,heightCropEnd,widthCropEnd],[1,4])}else this.cropBox=tensor2d([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(webcamVideoElement,webcamConfig={}){if(env().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!webcamVideoElement){if(webcamVideoElement=document.createElement("video"),!webcamConfig.resizeWidth||!webcamConfig.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");webcamVideoElement.width=webcamConfig.resizeWidth,webcamVideoElement.height=webcamConfig.resizeHeight}let webcamIterator=new WebcamIterator(webcamVideoElement,webcamConfig);return await webcamIterator.start(),webcamIterator}async start(){this.webcamConfig.facingMode&&util_exports.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(error){console.log(error),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(resolve=>{this.webcamVideoElement.onloadedmetadata=()=>{resolve()}})}async next(){if(this.isClosed)return{value:null,done:!0};let img;try{img=browser_exports.fromPixels(this.webcamVideoElement)}catch(e){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(e)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(img),done:!1}}catch(e){throw new Error(`Error thrown cropping the video: ${e.message}`)}finally{img.dispose()}else return{value:img,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(img){return tidy(()=>{let expandedImage=img.toFloat().expandDims(0),resizedImage;resizedImage=image.cropAndResize(expandedImage,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let shape=resizedImage.shape;return resizedImage.reshape(shape.slice(1))})}async capture(){return(await this.next()).value}stop(){let tracks=this.stream.getTracks();tracks.forEach(track=>track.stop());try{this.webcamVideoElement.srcObject=null}catch(error){console.log(error),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},DataSource=class{},StringIterator=class extends LazyIterator{split(separator){return new SplitIterator(this,separator)}},SplitIterator=class extends StringIterator{constructor(upstream,separator){super();this.upstream=upstream,this.impl=new SplitIteratorImpl(upstream,separator)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},SplitIteratorImpl=class extends OneToManyIterator{constructor(upstream,separator){super();this.upstream=upstream,this.separator=separator,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let chunkResult=await this.upstream.next();if(chunkResult.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let lines=chunkResult.value.split(this.separator);lines[0]=this.carryover+lines[0];for(let line of lines.slice(0,-1))this.outputQueue.push(line);return this.carryover=lines[lines.length-1],!0}},ByteChunkIterator=class extends LazyIterator{decodeUTF8(){return new Utf8Iterator(this)}},Utf8Iterator=class extends StringIterator{constructor(upstream){super();this.upstream=upstream,this.impl=new Utf8IteratorImpl(upstream)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Utf8IteratorImpl=class extends OneToManyIterator{constructor(upstream){super();if(this.upstream=upstream,env().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder}=require_string_decoder();this.decoder=new StringDecoder("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let chunkResult=await this.upstream.next(),chunk;if(chunkResult.done)return!1;chunk=chunkResult.value;let text;return env().get("IS_BROWSER")?text=this.decoder.decode(chunk,{stream:!0}):text=this.decoder.write(Buffer.from(chunk.buffer)),this.outputQueue.push(text),!0}},FileChunkIterator=class extends ByteChunkIterator{constructor(file,options={}){super();this.file=file,this.options=options,util_exports.assert(file instanceof Uint8Array||(env().get("IS_BROWSER")?file instanceof File||file instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=options.offset||0,this.chunkSize=options.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){if(this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size))return{value:null,done:!0};let chunk=new Promise((resolve,reject)=>{let end=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)resolve(new Uint8Array(this.file.slice(this.offset,end)));else{let fileReader=new FileReader;fileReader.onload=event=>{let data2=fileReader.result;if(data2 instanceof ArrayBuffer&&(data2=new Uint8Array(data2)),!(data2 instanceof Uint8Array))return reject(new TypeError("FileReader returned unknown type."));resolve(data2)},fileReader.onabort=event=>reject(new Error("Aborted")),fileReader.onerror=event=>reject(new Error(event.type));let slice21=this.file.slice(this.offset,end);fileReader.readAsArrayBuffer(slice21)}this.offset=end});return{value:await chunk,done:!1}}};async function urlChunkIterator(url,options={}){let urlString,requestInit;typeof url=="string"?urlString=url:(urlString=url.url,requestInit=getRequestInitFromRequest(url));let response=await util_exports.fetch(urlString,requestInit);if(response.ok){let uint8Array=new Uint8Array(await response.arrayBuffer());return new FileChunkIterator(uint8Array,options)}else throw new Error(response.statusText)}var getRequestInitFromRequest=request=>{let init2={method:request.method,headers:request.headers,body:request.body,mode:request.mode,credentials:request.credentials,cache:request.cache,redirect:request.redirect,referrer:request.referrer,integrity:request.integrity};return init2};function isLocalPath(source){return typeof source=="string"&&source.substr(0,7)==="file://"}var FileDataSource=class extends DataSource{constructor(input2,options={}){super();this.input=input2,this.options=options}async iterator(){if(isLocalPath(this.input)&&env().get("IS_NODE")){let fs=require("fs");this.input=fs.readFileSync(this.input.substr(7))}return new FileChunkIterator(this.input,this.options)}},URLDataSource=class extends DataSource{constructor(url,fileOptions={}){super();this.url=url,this.fileOptions=fileOptions}async iterator(){return isLocalPath(this.url)?new FileDataSource(this.url,this.fileOptions).iterator():urlChunkIterator(this.url,this.fileOptions)}};function csv(source,csvConfig={}){return new CSVDataset(new URLDataSource(source),csvConfig)}function func(f){let iter=iteratorFromFunction(f);return datasetFromIteratorFn(async()=>iter)}function generator(generator2){return datasetFromIteratorFn(async()=>{let gen=await generator2();return iteratorFromFunction(()=>gen.next())})}async function webcam(webcamVideoElement,webcamConfig){return WebcamIterator.create(webcamVideoElement,webcamConfig)}async function microphone(microphoneConfig){return MicrophoneIterator.create(microphoneConfig)}var version8="2.7.0",seedrandom4=__toModule2(require_seedrandom6());function assertNotComplex(tensor168,opName){Array.isArray(tensor168)||(tensor168=[tensor168]),tensor168.forEach(t=>{t!=null&&util_exports.assert(t.dtype!=="complex64",()=>`${opName} does not support complex64 tensors in the CPU backend.`)})}var nonMaxSuppressionV3Impl2=kernel_impls_exports.nonMaxSuppressionV3Impl,split10=kernel_impls_exports.split,tile9=kernel_impls_exports.tile,topkImpl2=kernel_impls_exports.topkImpl,whereImpl2=kernel_impls_exports.whereImpl,MathBackendCPU=class extends KernelBackend{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new DataStorage(this,engine15())}write(values,shape,dtype){this.firstUse&&(this.firstUse=!1,env().get("IS_NODE")&&backend_util_exports.warn(` ============================ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details. ============================`));let dataId={};return this.data.set(dataId,{values,dtype,refCount:1}),dataId}makeTensorInfo(shape,dtype,values){let outId;if(dtype==="string"&&values!=null&&values.length>0&&util_exports.isString(values[0])){let encodedValues=values.map(d=>util_exports.encodeString(d));outId=this.write(encodedValues,shape,dtype)}else outId=this.write(values,shape,dtype);return{dataId:outId,shape,dtype}}incRef(dataId){let tensorData=this.data.get(dataId);tensorData.refCount++}decRef(dataId){if(this.data.has(dataId)){let tensorData=this.data.get(dataId);tensorData.refCount--}}move(dataId,values,shape,dtype){this.data.set(dataId,{values,dtype,refCount:1})}numDataIds(){return this.data.numDataIds()}async read(dataId){return this.readSync(dataId)}readSync(dataId){let{dtype,complexTensorInfos}=this.data.get(dataId);if(dtype==="complex64"){let realValues=this.readSync(complexTensorInfos.real.dataId),imagValues=this.readSync(complexTensorInfos.imag.dataId);return backend_util_exports.mergeRealAndImagArrays(realValues,imagValues)}return this.data.get(dataId).values}bufferSync(t){let data2=this.readSync(t.dataId),decodedData=data2;if(t.dtype==="string")try{decodedData=data2.map(d=>util_exports.decodeString(d))}catch(_a){throw new Error("Failed to decode encoded string bytes into utf-8")}return buffer(t.shape,t.dtype,decodedData)}makeOutput(values,shape,dtype){let dataId=this.write(values,shape,dtype);return engine15().makeTensorFromDataId(dataId,shape,dtype,this)}disposeData(dataId){if(this.data.has(dataId)){let{complexTensorInfos}=this.data.get(dataId);complexTensorInfos!=null&&(this.disposeData(complexTensorInfos.real.dataId),this.disposeData(complexTensorInfos.imag.dataId)),this.data.delete(dataId)}}disposeIntermediateTensorInfo(tensorInfo){let dataId=tensorInfo.dataId;if(this.data.has(dataId)){let tensorData=this.data.get(dataId);tensorData.refCount--,tensorData.refCount<1&&this.disposeData(dataId)}}async time(f){let start=util_exports.now();f();let kernelMs=util_exports.now()-start;return{kernelMs}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}stridedSlice(x,begin,end,strides){assertNotComplex(x,"stridedSlice");let outShape=slice_util_exports.computeOutShape(begin,end,strides);if(outShape.some(axis=>axis===0))return tensor4([],outShape);let buffer11=buffer(outShape,x.dtype),xBuf=this.bufferSync(x);for(let i=0;iinLoc[ax]=x.shape[ax]-1-inLoc[ax]),buffer11.set(xBuf.get(...inLoc),...outLoc)}return buffer11.toTensor()}neg(x){return assertNotComplex(x,"neg"),mul(scalar(-1),x)}addN(tensors){assertNotComplex(tensors,"addN");let vals=tensors.map(t=>this.readSync(t.dataId)),result=buffer(tensors[0].shape,tensors[0].dtype),resultVals=result.values;for(let i=0;iMath.pow(aValue,bValue))}floorDiv(a,b){assertNotComplex([a,b],"floorDiv");let op2=(a6,b2)=>Math.floor(a6/b2),outputDtype="int32";return this.broadcastedBinaryOp(a,b,outputDtype,op2)}sum(x,axes){assertNotComplex(x,"sum"),backend_util_exports.assertAxesAreInnerMostDims("sum",axes,x.rank);let[outShape,reduceShape]=backend_util_exports.computeOutAndReduceShapes(x.shape,axes),resultDtype=upcastType(x.dtype,"int32"),result=zeros(outShape,resultDtype),reduceSize=util_exports.sizeFromShape(reduceShape),vals=this.readSync(result.dataId),aVals=this.readSync(x.dataId);for(let i=0;imax10&&(max10=value,maxIndex=j)}vals[i]=maxIndex}return result}cumsum(x,axis,exclusive,reverse12){if(assertNotComplex(x,"cumsum"),axis!==x.rank-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${x.rank-1} but got axis=${axis}`);let resultDtype=upcastType(x.dtype,"int32"),result=zeros(x.shape,resultDtype),vals=this.readSync(result.dataId),aVals=this.readSync(x.dataId),finalDim=x.shape[x.rank-1],indexAdjuster=reverse12?(i,j)=>i+finalDim-j-1:(i,j)=>i+j;for(let i=0;iaVal===bVal?1:0)}notEqual(a,b){return assertNotComplex([a,b],"notEqual"),this.broadcastedBinaryOp(a,b,"bool",(aVal,bVal)=>aVal!==bVal?1:0)}less(a,b){return assertNotComplex([a,b],"less"),this.broadcastedBinaryOp(a,b,"bool",(aVal,bVal)=>aValaVal<=bVal?1:0)}greater(a,b){return assertNotComplex([a,b],"greater"),this.broadcastedBinaryOp(a,b,"bool",(aVal,bVal)=>aVal>bVal?1:0)}greaterEqual(a,b){return assertNotComplex([a,b],"greaterEqual"),this.broadcastedBinaryOp(a,b,"bool",(aVal,bVal)=>aVal>=bVal?1:0)}logicalAnd(a,b){return assertNotComplex([a,b],"logicalAnd"),this.broadcastedBinaryOp(a,b,"bool",(aVal,bVal)=>aVal&&bVal)}logicalOr(a,b){return assertNotComplex([a,b],"logicalOr"),this.broadcastedBinaryOp(a,b,"bool",(aVal,bVal)=>aVal||bVal)}select(condition,a,b){assertNotComplex([condition,a,b],"select");let values=this.readSync(condition.dataId),aValues=this.readSync(a.dataId),bValues=this.readSync(b.dataId),result=zeros(a.shape,upcastType(a.dtype,b.dtype)),newValues=this.readSync(result.dataId),index=0,offset=condition.rank===0||condition.rank>1||a.rank===1?1:util_exports.sizeFromShape(a.shape.slice(1));for(let i=0;iMath.min(aVal,bVal))}mod(a,b){return assertNotComplex([a,b],"mod"),this.broadcastedBinaryOp(a,b,a.dtype,(aVal,bVal)=>{let rem=aVal%bVal;return aVal<0&&bVal<0||aVal>=0&&bVal>=0?rem:(rem+bVal)%bVal})}maximum(a,b){return assertNotComplex([a,b],"maximum"),this.broadcastedBinaryOp(a,b,a.dtype,(aVal,bVal)=>Math.max(aVal,bVal))}all(x,axes){assertNotComplex(x,"all"),backend_util_exports.assertAxesAreInnerMostDims("all",axes,x.rank);let[outShape,reduceShape]=backend_util_exports.computeOutAndReduceShapes(x.shape,axes),result=zeros(outShape,x.dtype),reduceSize=util_exports.sizeFromShape(reduceShape),vals=this.readSync(result.dataId),aVals=this.readSync(x.dataId);for(let i=0;i{let diff=aVal-bVal;return diff*diff})}eluDer(dy,y){assertNotComplex([dy,y],"eluDer");let resultValues=new Float32Array(y.size),values=this.readSync(y.dataId),dyValues=this.readSync(dy.dataId);for(let i=0;i=1?resultValues[i]=dyValues[i]:resultValues[i]=dyValues[i]*(v+1)}return this.makeOutput(resultValues,y.shape,"float32")}atan2(a,b){return assertNotComplex([a,b],"atan2"),this.broadcastedBinaryOp(a,b,a.dtype,(aValue,bValue)=>Math.atan2(aValue,bValue))}tile(x,reps){return assertNotComplex(x,"tile"),tile9(this.bufferSync(x),reps)}gather(x,indices,axis){assertNotComplex([x,indices],"gather");let newShape=x.shape.slice(),indicesValues=this.readSync(indices.dataId);newShape[axis]=indicesValues.length;let result=buffer(newShape,x.dtype),xBuf=this.bufferSync(x);for(let i=0;ia*b),reshaped=backend_util_exports.getReshaped(x.shape,blockShape,prod5),permuted=backend_util_exports.getPermuted(reshaped.length,blockShape.length),reshapedPermuted=backend_util_exports.getReshapedPermuted(x.shape,blockShape,prod5),sliceBeginCoords=backend_util_exports.getSliceBeginCoords(crops,blockShape.length),sliceSize=backend_util_exports.getSliceSize(reshapedPermuted,crops,blockShape.length);return transpose(x.reshape(reshaped),permuted).reshape(reshapedPermuted).slice(sliceBeginCoords,sliceSize)}pool3d(x,convInfo,poolType){assertNotComplex(x,"pool3d");let strideDepth=convInfo.strideDepth,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,dilationDepth=convInfo.dilationDepth,dilationHeight=convInfo.dilationHeight,dilationWidth=convInfo.dilationWidth,effectiveFilterDepth=convInfo.effectiveFilterDepth,effectiveFilterHeight=convInfo.effectiveFilterHeight,effectiveFilterWidth=convInfo.effectiveFilterWidth,padFront=convInfo.padInfo.front,padTop=convInfo.padInfo.top,padLeft=convInfo.padInfo.left,initialValue=poolType==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,xValues=this.readSync(x.dataId),output=buffer(convInfo.outShape,x.dtype),outputVals=output.values,outputBatchStrides=convInfo.outShape[1]*convInfo.outShape[2]*convInfo.outShape[3]*convInfo.outShape[4],outputDepthStrides=convInfo.outShape[2]*convInfo.outShape[3]*convInfo.outShape[4],outputRowStrides=convInfo.outShape[3]*convInfo.outShape[4],outputColStrides=convInfo.outShape[4];for(let batch=0;batchminMaxValue?minMaxValue=pixel:poolType==="avg"&&(avgValue+=pixel,count2++),isNaN(minMaxValue))break}if(isNaN(minMaxValue))break}if(isNaN(minMaxValue))break}let outputOffset=outputColOffset+channel;outputVals[outputOffset]=poolType==="avg"?avgValue/count2:minMaxValue}}}}return output.toTensor()}avgPool3d(x,convInfo){return assertNotComplex(x,"avgPool3d"),this.pool3d(x,convInfo,"avg").toFloat()}avgPool3dBackprop(dy,x,convInfo){assertNotComplex([dy,x],"avgPool3dBackprop");let strideDepth=convInfo.strideDepth,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,filterDepth=convInfo.filterDepth,filterHeight=convInfo.filterHeight,filterWidth=convInfo.filterWidth,dilationDepth=convInfo.dilationDepth,dilationHeight=convInfo.dilationHeight,dilationWidth=convInfo.dilationWidth,effectiveFilterDepth=convInfo.effectiveFilterDepth,effectiveFilterHeight=convInfo.effectiveFilterHeight,effectiveFilterWidth=convInfo.effectiveFilterWidth,padFront=effectiveFilterDepth-1-convInfo.padInfo.front,padLeft=effectiveFilterWidth-1-convInfo.padInfo.left,padTop=effectiveFilterHeight-1-convInfo.padInfo.top,dx=buffer(x.shape,"float32"),avgMultiplier=1/(filterDepth*filterHeight*filterWidth),dyBuf=this.bufferSync(dy);for(let batch=0;batch=convInfo.outDepth||Math.floor(dyDepth)!==dyDepth)continue;for(let wRow=0;wRow=convInfo.outHeight||Math.floor(dyRow)!==dyRow)continue;for(let wCol=0;wCol=convInfo.outWidth||Math.floor(dyCol)!==dyCol)continue;let pixel=dyBuf.get(batch,dyDepth,dyRow,dyCol,channel);dotProd+=pixel}}}dx.set(dotProd*avgMultiplier,batch,dxDepth,dxRow,dxCol,channel)}return dx.toTensor()}maxPool3d(x,convInfo){return assertNotComplex(x,"maxPool3d"),this.pool3d(x,convInfo,"max").toFloat()}maxPool3dPositions(x,convInfo){let maxPositions=buffer(convInfo.outShape,"int32"),strideDepth=convInfo.strideDepth,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,dilationDepth=convInfo.dilationDepth,dilationHeight=convInfo.dilationHeight,dilationWidth=convInfo.dilationWidth,effectiveFilterDepth=convInfo.effectiveFilterDepth,effectiveFilterHeight=convInfo.effectiveFilterHeight,effectiveFilterWidth=convInfo.effectiveFilterWidth,padFront=convInfo.padInfo.front,padTop=convInfo.padInfo.top,padLeft=convInfo.padInfo.left,xBuf=this.bufferSync(x);for(let batch=0;batch=maxValue&&(maxValue=pixel,maxPosition=wDepth*effectiveFilterHeight*effectiveFilterWidth+wRow*effectiveFilterHeight+wCol)}}}maxPositions.set(maxPosition,batch,yDepth,yRow,yCol,channel)}}}return maxPositions.toTensor()}maxPool3dBackprop(dy,x,y,convInfo){assertNotComplex([x,y],"maxPool3dBackprop");let maxPositions=this.maxPool3dPositions(x,convInfo),strideDepth=convInfo.strideDepth,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,dilationDepth=convInfo.dilationDepth,dilationHeight=convInfo.dilationHeight,dilationWidth=convInfo.dilationWidth,effectiveFilterDepth=convInfo.effectiveFilterDepth,effectiveFilterHeight=convInfo.effectiveFilterHeight,effectiveFilterWidth=convInfo.effectiveFilterWidth,padFront=effectiveFilterDepth-1-convInfo.padInfo.front,padLeft=effectiveFilterWidth-1-convInfo.padInfo.left,padTop=effectiveFilterHeight-1-convInfo.padInfo.top,dx=buffer(x.shape,"float32"),maxPosBuf=this.bufferSync(maxPositions),dyBuf=this.bufferSync(dy);for(let batch=0;batch=convInfo.outDepth||Math.floor(dyDepth)!==dyDepth)continue;for(let wRow=0;wRow=convInfo.outHeight||Math.floor(dyRow)!==dyRow)continue;for(let wCol=0;wCol=convInfo.outWidth||Math.floor(dyCol)!==dyCol)continue;let maxPos=effectiveFilterDepth*effectiveFilterHeight*effectiveFilterWidth-1-maxPosBuf.get(batch,dyDepth,dyRow,dyCol,channel),curPos=wDepth*effectiveFilterHeight*effectiveFilterWidth+wRow*effectiveFilterWidth+wCol,mask=maxPos===curPos?1:0;if(mask===0)continue;let pixel=dyBuf.get(batch,dyDepth,dyRow,dyCol,channel);dotProd+=pixel*mask}}}dx.set(dotProd,batch,dxDepth,dxRow,dxCol,channel)}return dx.toTensor()}resizeBilinear(x,newHeight,newWidth,alignCorners){assertNotComplex(x,"resizeBilinear");let[batch,oldHeight,oldWidth,numChannels]=x.shape,xValues=this.readSync(x.dataId),result=new Float32Array(util_exports.sizeFromShape([batch,newHeight,newWidth,numChannels])),effectiveInputSize=[alignCorners&&newHeight>1?oldHeight-1:oldHeight,alignCorners&&newWidth>1?oldWidth-1:oldWidth],effectiveOutputSize=[alignCorners&&newHeight>1?newHeight-1:newHeight,alignCorners&&newWidth>1?newWidth-1:newWidth],outputIdx=0,effectiveRowSizeRatio=effectiveInputSize[0]/effectiveOutputSize[0],effectiveColSizeRatio=effectiveInputSize[1]/effectiveOutputSize[1];for(let b=0;b1?xHeight-1:xHeight,alignCorners&&yWidth>1?xWidth-1:xWidth],effectiveYSize=[alignCorners&&yHeight>1?yHeight-1:yHeight,alignCorners&&yWidth>1?yWidth-1:yWidth],heightScale=effectiveXSize[0]/effectiveYSize[0],widthScale=effectiveXSize[1]/effectiveYSize[1],dyValues=this.readSync(dy.dataId),offset=0;for(let b=0;b1?oldHeight-1:oldHeight,alignCorners&&newWidth>1?oldWidth-1:oldWidth],effectiveOutputSize=[alignCorners&&newHeight>1?newHeight-1:newHeight,alignCorners&&newWidth>1?newWidth-1:newWidth],effectiveRowSizeRatio=effectiveInputSize[0]/effectiveOutputSize[0],effectiveColSizeRatio=effectiveInputSize[1]/effectiveOutputSize[1],outputOffset=0;for(let b=0;b1?xHeight-1:xHeight,alignCorners&&yWidth>1?xWidth-1:xWidth],effectiveYSize=[alignCorners&&yHeight>1?yHeight-1:yHeight,alignCorners&&yWidth>1?yWidth-1:yWidth],heightScale=effectiveXSize[0]/effectiveYSize[0],widthScale=effectiveXSize[1]/effectiveYSize[1],invHeightScale=1/heightScale,invWidthScale=1/widthScale,winHeight=Math.ceil(invHeightScale)*2+2,winWidth=Math.ceil(invWidthScale)*2+2;for(let b=0;b=yHeight)continue;let dyROffset=batchOffset+dyR*dy.strides[1],sourceFracRow=dyR*heightScale,sourceNearestRow=Math.min(xHeight-1,alignCorners?Math.round(sourceFracRow):Math.floor(sourceFracRow));if(r!==sourceNearestRow)continue;for(let dyCIndex=0;dyCIndex=yWidth)continue;let dyCOffset=dyROffset+dyC*dy.strides[2],sourceFracCol=dyC*widthScale,sourceNearestCol=Math.min(xWidth-1,alignCorners?Math.round(sourceFracCol):Math.floor(sourceFracCol));c===sourceNearestCol&&(accum+=dyValues[dyCOffset+d])}}output[colOffset+d]=accum}}}}return tensor4d(output,x.shape,x.dtype)}localResponseNormalization4D(x,depthRadius,bias,alpha,beta){assertNotComplex(x,"localResponseNormalization4D");let channels=x.shape[3],maxD=channels-1,xValues=this.readSync(x.dataId),size=x.size,result=new Float32Array(size);function sumAcrossChannels(offset){let currentChannel=offset%channels,beginSumOffset=offset-currentChannel+Math.max(0,currentChannel-depthRadius),endSumOffset=offset-currentChannel+Math.min(currentChannel+depthRadius,maxD),sum29=0;for(;beginSumOffset<=endSumOffset;beginSumOffset++){let z=xValues[beginSumOffset];sum29+=z*z}return sum29}for(let offset=0;offset=0&&indicesVal[event]`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${dataFormat}`),util_exports.assert(blockSize>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${blockSize}`);let batchSize=x.shape[0],inputHeight=x.shape[1],inputWidth=x.shape[2],inputDepth=x.shape[3],outputHeight=inputHeight*blockSize,outputWidth=inputWidth*blockSize,outputDepth=inputDepth/(blockSize*blockSize),xValues=this.readSync(x.dataId),result=new Float32Array(batchSize*outputHeight*outputWidth*outputDepth),outputIdx=0;for(let b=0;baLoc[d]=0);let aIndex=aBuf.locToIndex(aLoc),bLoc=loc.slice(-b.rank);bBroadcastDims.forEach(d=>bLoc[d]=0);let bIndex=bBuf.locToIndex(bLoc);resVals[i]=op2(aVals[aIndex],bVals[bIndex])}}return result.toTensor()}split(x,sizeSplits,axis){return split10(x,sizeSplits,axis)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}cropAndResize(images,boxes,boxIndex,cropSize,method,extrapolationValue){let[batch,imageHeight,imageWidth,numChannels]=images.shape,numBoxes=boxes.shape[0],[cropHeight,cropWidth]=cropSize,output=buffer([numBoxes,cropHeight,cropWidth,numChannels],"float32"),boxVals=this.readSync(boxes.dataId),boxIndVals=this.readSync(boxIndex.dataId),imageVals=this.readSync(images.dataId),inStride=images.strides,outStride=output.strides;for(let b=0;b=batch)continue;let heightScale=cropHeight>1?(y2-y1)*(imageHeight-1)/(cropHeight-1):0,widthScale=cropWidth>1?(x2-x1)*(imageWidth-1)/(cropWidth-1):0;for(let y=0;y1?y1*(imageHeight-1)+y*heightScale:.5*(y1+y2)*(imageHeight-1);if(yInd<0||yInd>imageHeight-1){for(let x=0;x1?x1*(imageWidth-1)+x*widthScale:.5*(x1+x2)*(imageWidth-1);if(xInd<0||xInd>imageWidth-1){for(let c=0;c1?x1*(imageWidth-1)+x*widthScale:.5*(x1+x2)*(imageWidth-1);if(xInd<0||xInd>imageWidth-1){for(let c=0;c=x.size/sliceSize)throw new Error(`Invalid indices: ${index} does not index into ${x.shape}`);for(let k=0;k=outputSize/sliceSize)throw new Error(`Invalid indices: ${index} does not index into ${shape}`);for(let k=0;kaddImpl,ceilImpl:()=>ceilImpl,expImpl:()=>expImpl,expm1Impl:()=>expm1Impl,floorImpl:()=>floorImpl,logImpl:()=>logImpl,maxImpl:()=>maxImpl,multiplyImpl:()=>multiplyImpl,notEqualImpl:()=>notEqualImpl,rsqrtImpl:()=>rsqrtImpl,simpleAbsImpl:()=>simpleAbsImpl,sliceImpl:()=>sliceImpl,squaredDifferenceImpl:()=>squaredDifferenceImpl,subImpl:()=>subImpl,transposeImpl:()=>transposeImpl,uniqueImpl:()=>uniqueImpl});function simpleAbsImpl(vals){let resultValues=new Float32Array(vals.length);for(let i=0;i{let{x}=args.inputs,cpuBackend=args.backend,resultValues=new Float32Array(util_exports.sizeFromShape(x.shape));if(x.dtype!=="complex64"){let values=cpuBackend.data.get(x.dataId).values;resultValues=simpleAbsImpl(values)}else{let complexVals=cpuBackend.data.get(x.dataId),real8=complexVals.complexTensorInfos.real,imag8=complexVals.complexTensorInfos.imag,realVals=cpuBackend.data.get(real8.dataId).values,imagVals=cpuBackend.data.get(imag8.dataId).values;for(let i=0;i{let newShape=backend_util_exports.assertAndGetBroadcastShape(aShape,bShape),resultRank=newShape.length,resultStrides=util_exports.computeStrides(newShape),resultSize=util_exports.sizeFromShape(newShape),result=util_exports.getTypedArrayFromDType(dtype,resultSize),aRank=aShape.length,bRank=bShape.length,aStrides=util_exports.computeStrides(aShape),bStrides=util_exports.computeStrides(bShape),aBroadcastDims=backend_util_exports.getBroadcastDims(aShape,newShape),bBroadcastDims=backend_util_exports.getBroadcastDims(bShape,newShape);if(aBroadcastDims.length+bBroadcastDims.length===0)for(let i=0;iaLoc[d]=0);let aIndex=util_exports.locToIndex(aLoc,aRank,aStrides),bLoc=loc.slice(-bRank);bBroadcastDims.forEach(d=>bLoc[d]=0);let bIndex=util_exports.locToIndex(bLoc,bRank,bStrides);result[i]=op2(aVals[aIndex],bVals[bIndex])}return[result,newShape]}}function complex9(args){let{inputs,backend:backend3}=args,{real:real8,imag:imag8}=inputs,realVals=backend3.data.get(real8.dataId).values,imagVals=backend3.data.get(imag8.dataId).values,complexInfo=backend3.makeTensorInfo(real8.shape,"complex64"),complex11=backend3.data.get(complexInfo.dataId);return complex11.complexTensorInfos={real:backend3.makeTensorInfo(real8.shape,"float32",realVals),imag:backend3.makeTensorInfo(imag8.shape,"float32",imagVals)},complexInfo}var complexConfig={kernelName:Complex,backendName:"cpu",kernelFunc:complex9};function identity2(args){let{inputs,backend:backend3}=args,{x}=inputs;return backend3.incRef(x.dataId),{dataId:x.dataId,shape:x.shape,dtype:x.dtype}}var identityConfig={kernelName:Identity,backendName:"cpu",kernelFunc:identity2};function real6(args){let{inputs,backend:backend3}=args,{input:input2}=inputs,real8=backend3.data.get(input2.dataId).complexTensorInfos.real,realVal=backend3.data.get(real8.dataId).values;return backend3.makeTensorInfo(real8.shape,real8.dtype,realVal)}var realConfig={kernelName:Real,backendName:"cpu",kernelFunc:real6};function cast49(args){let{inputs,backend:backend3,attrs}=args,{x}=inputs,{dtype}=attrs;if(dtype==="complex64"){if(x.dtype==="complex64")return identity2({inputs:{x},backend:backend3});let zerosTensor=zeros(x.shape),floatX=cast49({inputs:{x},backend:backend3,attrs:{dtype:"float32"}}),result=complex9({inputs:{real:floatX,imag:zerosTensor},backend:backend3});return zerosTensor.dispose(),backend3.disposeIntermediateTensorInfo(floatX),result}if(x.dtype==="complex64"){let realPart=real6({inputs:{input:x},backend:backend3}),result=cast49({inputs:{x:realPart},backend:backend3,attrs:{dtype}});return backend3.disposeIntermediateTensorInfo(realPart),result}if(!util_exports.hasEncodingLoss(x.dtype,dtype)){let result=identity2({inputs:{x},backend:backend3});return{dataId:result.dataId,shape:result.shape,dtype}}if(dtype==="int32"){let values=backend3.data.get(x.dataId).values,resultValues=Int32Array.from(values);return backend3.makeTensorInfo(x.shape,"int32",resultValues)}if(dtype==="bool"){let xVals=backend3.data.get(x.dataId).values,zero=util_exports.toTypedArray([0],x.dtype),[resultData,resultShape]=createSimpleBinaryKernelImpl((a,b)=>a!==b?1:0)(x.shape,[],xVals,zero,"bool");return backend3.makeTensorInfo(resultShape,"bool",resultData)}throw new Error(`Error in Cast: failed to cast ${x.dtype} to ${dtype}`)}var castConfig={kernelName:Cast,backendName:"cpu",kernelFunc:cast49};function binaryKernelFunc(name,simpleImpl,complexImpl,dtype){return complexImpl==null?({inputs,backend:backend3})=>{let{a,b}=inputs,cpuBackend=backend3;assertNotComplex([a,b],name);let aVals=cpuBackend.data.get(a.dataId).values,bVals=cpuBackend.data.get(b.dataId).values,$dtype=dtype||a.dtype,[resultData,resultShape]=simpleImpl(a.shape,b.shape,aVals,bVals,$dtype);return cpuBackend.makeTensorInfo(resultShape,$dtype,resultData)}:({inputs,backend:backend3})=>{let{a,b}=inputs,cpuBackend=backend3;if(a.dtype==="complex64"||b.dtype==="complex64"){let $aComplex=cast49({inputs:{x:a},backend:cpuBackend,attrs:{dtype:"complex64"}}),$aComplexVals=cpuBackend.data.get($aComplex.dataId),aReal=$aComplexVals.complexTensorInfos.real,aImag=$aComplexVals.complexTensorInfos.imag,aRealVals=cpuBackend.data.get(aReal.dataId).values,aImagVals=cpuBackend.data.get(aImag.dataId).values,$bComplex=cast49({inputs:{x:b},backend:cpuBackend,attrs:{dtype:"complex64"}}),$bComplexVals=cpuBackend.data.get($bComplex.dataId),bReal=$bComplexVals.complexTensorInfos.real,bImag=$bComplexVals.complexTensorInfos.imag,bRealVals=cpuBackend.data.get(bReal.dataId).values,bImagVals=cpuBackend.data.get(bImag.dataId).values,[resultRealData,resultImagData,resultShape]=complexImpl(a.shape,b.shape,aRealVals,aImagVals,bRealVals,bImagVals),resultReal=cpuBackend.makeTensorInfo(resultShape,"float32",resultRealData),resultImag=cpuBackend.makeTensorInfo(resultShape,"float32",resultImagData),result=complex9({inputs:{real:resultReal,imag:resultImag},backend:cpuBackend});return cpuBackend.disposeIntermediateTensorInfo($aComplex),cpuBackend.disposeIntermediateTensorInfo($bComplex),cpuBackend.disposeIntermediateTensorInfo(resultReal),cpuBackend.disposeIntermediateTensorInfo(resultImag),result}else{let aVals=cpuBackend.data.get(a.dataId).values,bVals=cpuBackend.data.get(b.dataId).values,$dtype=dtype||a.dtype,[resultData,resultShape]=simpleImpl(a.shape,b.shape,aVals,bVals,$dtype);return cpuBackend.makeTensorInfo(resultShape,$dtype,resultData)}}}function createComplexBinaryKernelImpl(op2){return(aShape,bShape,aRealVals,aImagVals,bRealVals,bImagVals)=>{let resultShape=backend_util_exports.assertAndGetBroadcastShape(aShape,bShape),resultSize=util_exports.sizeFromShape(resultShape),resultRank=resultShape.length,resultStrides=util_exports.computeStrides(resultShape),resultRealVals=util_exports.getTypedArrayFromDType("float32",resultSize),resultImagVals=util_exports.getTypedArrayFromDType("float32",resultSize),aBroadcastDims=backend_util_exports.getBroadcastDims(aShape,resultShape),bBroadcastDims=backend_util_exports.getBroadcastDims(bShape,resultShape),aVals=backend_util_exports.mergeRealAndImagArrays(aRealVals,aImagVals),bVals=backend_util_exports.mergeRealAndImagArrays(bRealVals,bImagVals),aRank=aShape.length,aStrides=util_exports.computeStrides(aShape),bRank=bShape.length,bStrides=util_exports.computeStrides(bShape);if(aBroadcastDims.length+bBroadcastDims.length===0)for(let i=0;iaLoc[d]=0);let aIndex=util_exports.locToIndex(aLoc,aRank,aStrides),bLoc=loc.slice(-bRank);bBroadcastDims.forEach(d=>bLoc[d]=0);let bIndex=util_exports.locToIndex(bLoc,bRank,bStrides),opResult=op2(aVals[aIndex*2],aVals[aIndex*2+1],bVals[bIndex*2],bVals[bIndex*2+1]);resultRealVals[i]=opResult.real,resultImagVals[i]=opResult.imag}return[resultRealVals,resultImagVals,resultShape]}}var addImpl=createSimpleBinaryKernelImpl((a,b)=>a+b),addComplexImpl=createComplexBinaryKernelImpl((aReal,aImag,bReal,bImag)=>({real:aReal+bReal,imag:aImag+bImag})),add32=binaryKernelFunc(Add,addImpl,addComplexImpl),addConfig={kernelName:Add,backendName:"cpu",kernelFunc:add32};function createSimpleUnaryImpl(op2){return(values,dtype,attrs)=>{let newValues=util_exports.getTypedArrayFromDType(dtype,values.length);for(let i=0;i{let{x}=inputs;if(assertNotComplex(x,name),x.dtype==="string"||dtype==="string")throw new Error("unaryKernelFunc does not support string input/output");let cpuBackend=backend3,values=cpuBackend.data.get(x.dataId).values,xSize=util_exports.sizeFromShape(x.shape),$dtype=dtype||x.dtype,newValues=util_exports.getArrayFromDType($dtype,xSize);for(let i=0;i{let{x}=inputs;if(assertNotComplex(x,name),x.dtype==="string"||dtype==="string")throw new Error("unaryKernelFunc does not support string input/output");let cpuBackend=backend3,values=cpuBackend.data.get(x.dataId).values,$dtype=dtype||x.dtype,newValues=unaryImpl(values,$dtype,attrs);return cpuBackend.makeTensorInfo(x.shape,$dtype,newValues)}}var ceilImpl=createSimpleUnaryImpl(xi=>Math.ceil(xi)),ceil4=unaryKernelFuncFromImpl(Ceil,ceilImpl),ceilConfig={kernelName:Ceil,backendName:"cpu",kernelFunc:ceil4},expImpl=createSimpleUnaryImpl(xi=>Math.exp(xi)),exp12=unaryKernelFuncFromImpl(Exp,expImpl),expConfig={kernelName:Exp,backendName:"cpu",kernelFunc:exp12},expm1Impl=createSimpleUnaryImpl(xi=>Math.expm1(xi)),expm14=unaryKernelFuncFromImpl(Expm1,expm1Impl),expm1Config={kernelName:Expm1,backendName:"cpu",kernelFunc:expm14},floorImpl=createSimpleUnaryImpl(xi=>Math.floor(xi)),floor6=unaryKernelFuncFromImpl(Floor,floorImpl),floorConfig={kernelName:Floor,backendName:"cpu",kernelFunc:floor6},logImpl=createSimpleUnaryImpl(xi=>Math.log(xi)),log9=unaryKernelFuncFromImpl(Log,logImpl),logConfig={kernelName:Log,backendName:"cpu",kernelFunc:log9};function maxImpl(aVals,reduceSize,outShape,dtype){let vals=util_exports.getTypedArrayFromDType(dtype,util_exports.sizeFromShape(outShape));for(let i=0;imax10&&(max10=value)}vals[i]=max10}return vals}var multiplyImpl=createSimpleBinaryKernelImpl((aValue,bValue)=>aValue*bValue),multiplyComplexImpl=createComplexBinaryKernelImpl((aReal,aImag,bReal,bImag)=>({real:aReal*bReal-aImag*bImag,imag:aReal*bImag+aImag*bReal})),multiply2=binaryKernelFunc(Multiply,multiplyImpl,multiplyComplexImpl),multiplyConfig={kernelName:Multiply,backendName:"cpu",kernelFunc:multiply2},notEqualImpl=createSimpleBinaryKernelImpl((a,b)=>a!==b?1:0),notEqual2=binaryKernelFunc(NotEqual,notEqualImpl,null,"bool"),notEqualConfig={kernelName:NotEqual,backendName:"cpu",kernelFunc:notEqual2},rsqrtImpl=createSimpleUnaryImpl(xi=>1/Math.sqrt(xi)),rsqrt5=unaryKernelFuncFromImpl(Rsqrt,rsqrtImpl),rsqrtConfig={kernelName:Rsqrt,backendName:"cpu",kernelFunc:rsqrt5};function sliceImpl(vals,begin,size,shape,dtype){let isContinous=slice_util_exports.isSliceContinous(shape,begin,size),length=util_exports.sizeFromShape(size),xStrides=util_exports.computeStrides(shape);if(isContinous){let flatOffset=slice_util_exports.computeFlatOffset(begin,xStrides);return vals.subarray(flatOffset,flatOffset+length)}let outVals=util_exports.getTypedArrayFromDType(dtype,length);for(let i=0;iidx+begin[j]),xIndex=util_exports.locToIndex(xLoc,shape.length,xStrides);outVals[i]=vals[xIndex]}return outVals}function slice19(args){let{inputs,backend:backend3,attrs}=args,{x}=inputs,{begin,size}=attrs;assertNotComplex(x,"slice");let[$begin,$size]=slice_util_exports.parseSliceParams(x,begin,size);slice_util_exports.assertParamsValid(x,$begin,$size);let vals=backend3.data.get(x.dataId).values,outVals=sliceImpl(vals,$begin,$size,x.shape,x.dtype);return backend3.makeTensorInfo($size,x.dtype,outVals)}var sliceConfig={kernelName:Slice,backendName:"cpu",kernelFunc:slice19},squaredDifferenceImpl=createSimpleBinaryKernelImpl((a,b)=>{let diff=a-b;return diff*diff}),squaredDifference2=binaryKernelFunc(SquaredDifference,squaredDifferenceImpl),squaredDifferenceConfig={kernelName:SquaredDifference,backendName:"cpu",kernelFunc:squaredDifference2},subImpl=createSimpleBinaryKernelImpl((aValue,bValue)=>aValue-bValue),subComplexImpl=createComplexBinaryKernelImpl((aReal,aImag,bReal,bImag)=>({real:aReal-bReal,imag:aImag-bImag})),sub34=binaryKernelFunc(Sub,subImpl,subComplexImpl),subConfig={kernelName:Sub,backendName:"cpu",kernelFunc:sub34};function transposeImpl(xVals,xShape,dtype,perm,newShape){let xRank=xShape.length,xSize=util_exports.sizeFromShape(xShape),xStrides=util_exports.computeStrides(xShape),newStrides=util_exports.computeStrides(newShape),result=util_exports.getTypedArrayFromDType(dtype,util_exports.sizeFromShape(newShape));for(let i=0;i{for(let m=0;mnew MathBackendCPU,1);var elu8=unaryKernelFunc(Elu,xi=>xi>=0?xi:Math.exp(xi)-1),eluConfig={kernelName:Elu,backendName:"cpu",kernelFunc:elu8},preluImpl=createSimpleBinaryKernelImpl((xValue,aValue)=>xValue<0?aValue*xValue:xValue);function prelu7(args){let{inputs,backend:backend3}=args,{x,alpha}=inputs;assertNotComplex([x,alpha],"prelu");let aVals=backend3.data.get(x.dataId).values,bVals=backend3.data.get(alpha.dataId).values,[resultData,resultShape]=preluImpl(x.shape,alpha.shape,aVals,bVals,x.dtype);return backend3.makeTensorInfo(resultShape,x.dtype,resultData)}var preluConfig={kernelName:Prelu,backendName:"cpu",kernelFunc:prelu7},relu9=unaryKernelFunc(Relu,xi=>Math.max(0,xi)),reluConfig={kernelName:Relu,backendName:"cpu",kernelFunc:relu9},relu66=unaryKernelFunc(Relu6,xi=>Math.min(Math.max(0,xi),6)),relu6Config={kernelName:Relu6,backendName:"cpu",kernelFunc:relu66};function applyActivation2(backend3,x,activation2,preluActivationWeights){if(activation2==="linear")return identity2({inputs:{x},backend:backend3});if(activation2==="relu")return relu9({inputs:{x},backend:backend3});if(activation2==="elu")return elu8({inputs:{x},backend:backend3});if(activation2==="relu6")return relu66({inputs:{x},backend:backend3});if(activation2==="prelu")return prelu7({inputs:{x,alpha:preluActivationWeights},backend:backend3});throw new Error(`Activation ${activation2} has not been implemented for the CPU backend.`)}function reshape88(args){let{inputs,backend:backend3,attrs}=args,{x}=inputs,{shape}=attrs,xSize=util_exports.sizeFromShape(x.shape),$shape=util_exports.inferFromImplicitShape(shape,xSize),$xSize=util_exports.sizeFromShape($shape);util_exports.assert(xSize===$xSize,()=>`The new shape (${$shape}) has ${$xSize} elements and the old shape (${x.shape}) has ${xSize} elements. The new shape and old shape must have the same number of elements.`),backend3.incRef(x.dataId);let xData=backend3.data.get(x.dataId);if(xData.complexTensorInfos!=null){let real8=xData.complexTensorInfos.real,imag8=xData.complexTensorInfos.imag;real8.shape=$shape,imag8.shape=$shape}return{dataId:x.dataId,shape:$shape,dtype:x.dtype}}var reshapeConfig={kernelName:Reshape,backendName:"cpu",kernelFunc:reshape88};function batchMatMul(args){let{inputs,backend:backend3,attrs}=args,{a,b}=inputs,{transposeA,transposeB}=attrs;assertNotComplex([a,b],"matMul");let aRank=a.shape.length,bRank=b.shape.length,innerShapeA=transposeA?a.shape[aRank-2]:a.shape[aRank-1],innerShapeB=transposeB?b.shape[bRank-1]:b.shape[bRank-2],outerShapeA=transposeA?a.shape[aRank-1]:a.shape[aRank-2],outerShapeB=transposeB?b.shape[bRank-2]:b.shape[bRank-1],outerDimsA=a.shape.slice(0,-2),outerDimsB=b.shape.slice(0,-2),batchDimA=util_exports.sizeFromShape(outerDimsA),batchDimB=util_exports.sizeFromShape(outerDimsB),batchDimsCompatible=batchDimA===batchDimB||batchDimA===1||batchDimB===1;util_exports.assert(aRank>=2&&bRank>=2&&batchDimsCompatible,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${outerDimsA}) and (${outerDimsB}).`);let outShapeOuterDims=batchDimA>batchDimB?a.shape.slice(0,-2):b.shape.slice(0,-2),outShape=outShapeOuterDims.concat([outerShapeA,outerShapeB]);util_exports.assert(innerShapeA===innerShapeB,()=>`Error in matMul: inner shapes (${innerShapeA}) and (${innerShapeB}) of Tensors with shapes ${a.shape} and ${b.shape} and transposeA=${transposeA} and transposeB=${transposeB} must match.`);let a3dShape=transposeA?[batchDimA,innerShapeA,outerShapeA]:[batchDimA,outerShapeA,innerShapeA],b3dShape=transposeB?[batchDimB,outerShapeB,innerShapeB]:[batchDimB,innerShapeB,outerShapeB],a3d=reshape88({inputs:{x:a},backend:backend3,attrs:{shape:a3dShape}}),b3d=reshape88({inputs:{x:b},backend:backend3,attrs:{shape:b3dShape}}),sharedDim=transposeA?a3d.shape[1]:a3d.shape[2],leftDim=transposeA?a3d.shape[2]:a3d.shape[1],rightDim=transposeB?b3d.shape[1]:b3d.shape[2],batchDim=Math.max(batchDimA,batchDimB),a3dValues=backend3.data.get(a3d.dataId).values,b3dValues=backend3.data.get(b3d.dataId).values,a3dStrides=util_exports.computeStrides(a3d.shape),b3dStrides=util_exports.computeStrides(b3d.shape),[aBatch,aOuterStep,aInnerStep]=transposeA?[a3dStrides[0],1,a3dStrides[1]]:[a3dStrides[0],a3dStrides[1],1],[bInnerStep,bOuterStep,bBatch]=transposeB?[1,b3dStrides[1],b3dStrides[0]]:[b3dStrides[1],1,b3dStrides[0]],size=leftDim*rightDim,result=buffer([batchDim,leftDim,rightDim],a3d.dtype),resVals=result.values,blockSize=backend3.blockSize;for(let bi=0;biMath.acos(xi)),acosConfig={kernelName:Acos,backendName:"cpu",kernelFunc:acos4},acosh4=unaryKernelFunc(Acosh,xi=>Math.acosh(xi)),acoshConfig={kernelName:Acosh,backendName:"cpu",kernelFunc:acosh4},asin4=unaryKernelFunc(Asin,xi=>Math.asin(xi)),asinConfig={kernelName:Asin,backendName:"cpu",kernelFunc:asin4},asinh4=unaryKernelFunc(Asinh,xi=>Math.asinh(xi)),asinhConfig={kernelName:Asinh,backendName:"cpu",kernelFunc:asinh4},atan5=unaryKernelFunc(Atan,xi=>Math.atan(xi)),atanConfig={kernelName:Atan,backendName:"cpu",kernelFunc:atan5},atanh4=unaryKernelFunc(Atanh,xi=>Math.atanh(xi)),atanhConfig={kernelName:Atanh,backendName:"cpu",kernelFunc:atanh4};function pool5(xValues,xShape,dtype,strides,convInfo,poolType){let strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,dilationHeight=convInfo.dilationHeight,dilationWidth=convInfo.dilationWidth,effectiveFilterHeight=convInfo.effectiveFilterHeight,effectiveFilterWidth=convInfo.effectiveFilterWidth,padTop=convInfo.padInfo.top,padLeft=convInfo.padInfo.left,initialValue=poolType==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,output=buffer(convInfo.outShape,dtype),outputVals=output.values,outputBatchStrides=convInfo.outShape[1]*convInfo.outShape[2]*convInfo.outShape[3],outputRowStrides=convInfo.outShape[2]*convInfo.outShape[3],outputColStrides=convInfo.outShape[3];for(let b=0;bminMaxValue?minMaxValue=pixel:poolType==="avg"&&(avgValue+=pixel,count2++)}if(isNaN(minMaxValue))break}let outputOffset=outputRowOffset+yC*outputColStrides+d;outputVals[outputOffset]=poolType==="avg"?avgValue/count2:minMaxValue}}}return output}function maxPoolPositions(xValues,xShape,dtype,convInfo,flattenPositions=!1,includeBatchInIndex=!1){let maxPositions=buffer(convInfo.outShape,"int32"),strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,dilationHeight=convInfo.dilationHeight,dilationWidth=convInfo.dilationWidth,effectiveFilterHeight=convInfo.effectiveFilterHeight,effectiveFilterWidth=convInfo.effectiveFilterWidth,padTop=convInfo.padInfo.top,padLeft=convInfo.padInfo.left,xBuf=buffer(xShape,dtype,xValues);for(let b=0;bmaxValue&&(maxValue=pixel,flattenPositions?maxPosition=includeBatchInIndex?((b*convInfo.inHeight+xR)*convInfo.inWidth+xC)*convInfo.inChannels+d:(xR*convInfo.inWidth+xC)*convInfo.inChannels+d:maxPosition=wR*effectiveFilterWidth+wC)}}maxPositions.set(maxPosition,b,yR,yC,d)}}return maxPositions}function avgPool2(args){let{inputs,backend:backend3,attrs}=args,{x}=inputs;assertNotComplex(x,"avgPool");let{filterSize,strides,pad:pad11,dimRoundingMode}=attrs,dilations=1;util_exports.assert(backend_util_exports.eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);let convInfo=backend_util_exports.computePool2DInfo(x.shape,filterSize,strides,dilations,pad11,dimRoundingMode),res;if(convInfo.filterWidth===1&&convInfo.filterHeight===1&&util_exports.arraysEqual(convInfo.inShape,convInfo.outShape))res=identity2({inputs:{x},backend:backend3});else{let xValues=backend3.data.get(x.dataId).values,strides2=util_exports.computeStrides(x.shape),buffer11=pool5(xValues,x.shape,x.dtype,strides2,convInfo,"avg");res=backend3.makeTensorInfo(convInfo.outShape,x.dtype,buffer11.values)}return res}var avgPoolConfig={kernelName:AvgPool,backendName:"cpu",kernelFunc:avgPool2};function avgPoolBackprop2(args){let{inputs,backend:backend3,attrs}=args,{dy,input:input2}=inputs,x=input2;assertNotComplex([dy,input2],"avgPoolBackprop");let{filterSize,strides,pad:pad11}=attrs,convInfo=backend_util_exports.computePool2DInfo(x.shape,filterSize,strides,1,pad11),strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,filterHeight=convInfo.filterHeight,filterWidth=convInfo.filterWidth,dilationHeight=convInfo.dilationHeight,dilationWidth=convInfo.dilationWidth,effectiveFilterHeight=convInfo.effectiveFilterHeight,effectiveFilterWidth=convInfo.effectiveFilterWidth,padLeft=effectiveFilterWidth-1-convInfo.padInfo.left,padTop=effectiveFilterHeight-1-convInfo.padInfo.top,dx=buffer(x.shape,"float32"),avgMultiplier=1/(filterHeight*filterWidth),dyData=backend3.data.get(dy.dataId).values,dyBuf=buffer(dy.shape,"float32",dyData);for(let b=0;b=convInfo.outHeight||Math.floor(dyR)!==dyR)continue;for(let wC=0;wC=convInfo.outWidth||Math.floor(dyC)!==dyC)continue;let pixel=dyBuf.get(b,dyR,dyC,d);dotProd+=pixel}}dx.set(dotProd*avgMultiplier,b,dxR,dxC,d)}return backend3.makeTensorInfo(dx.shape,dx.dtype,dx.values)}var avgPoolBackpropConfig={kernelName:AvgPoolBackprop,backendName:"cpu",kernelFunc:avgPoolBackprop2};function batchNorm2(args){let{inputs,backend:backend3,attrs}=args,{x,scale:scale2,offset,mean:mean7,variance}=inputs;util_exports.assert(mean7.shape.length===variance.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),util_exports.assert(offset==null||mean7.shape.length===offset.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),util_exports.assert(scale2==null||mean7.shape.length===scale2.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),assertNotComplex([x,mean7,variance,scale2,offset],"batchNorm");let{varianceEpsilon}=attrs;varianceEpsilon==null&&(varianceEpsilon=.001);let xVals=backend3.data.get(x.dataId).values,mVals=backend3.data.get(mean7.dataId).values,varVals=backend3.data.get(variance.dataId).values,sVals=scale2?backend3.data.get(scale2.dataId).values:new Float32Array([1]),offVals=offset?backend3.data.get(offset.dataId).values:new Float32Array([0]),outVals=new Float32Array(xVals.length),offValsLength=offVals.length,sValsLength=sVals.length,varValsLength=varVals.length,mValsLength=mVals.length,offi=0,mi=0,si=0,vi=0;for(let i=0;i=offValsLength&&(offi=0),mi>=mValsLength&&(mi=0),si>=sValsLength&&(si=0),vi>=varValsLength&&(vi=0);return backend3.makeTensorInfo(x.shape,x.dtype,outVals)}var batchNormConfig={kernelName:FusedBatchNorm,backendName:"cpu",kernelFunc:batchNorm2},clip=unaryKernelFunc(ClipByValue,(xi,attrs)=>{let clipAttrs=attrs;return xi>clipAttrs.clipValueMax?clipAttrs.clipValueMax:xit.shape),$axis);if(util_exports.sizeFromShape(outShape)===0)return backend3.makeTensorInfo(outShape,inputs[0].dtype,[]);let $inputs=inputs.filter(t=>util_exports.sizeFromShape(t.shape)>0);if($inputs.length===1)return $inputs[0];let shapes=$inputs.map(t=>t.shape);if(backend_util_exports.assertParamsConsistent(shapes,$axis),$inputs[0].dtype==="complex64"){let reals=$inputs.map(t=>real6({inputs:{input:t},backend:backend3})),imags=$inputs.map(t=>imag6({inputs:{input:t},backend:backend3})),realConcated=concat17({inputs:reals,backend:backend3,attrs:{axis:$axis}}),imagConcated=concat17({inputs:imags,backend:backend3,attrs:{axis:$axis}}),result=complex9({inputs:{real:realConcated,imag:imagConcated},backend:backend3});return reals.forEach(r=>backend3.disposeIntermediateTensorInfo(r)),imags.forEach(i=>backend3.disposeIntermediateTensorInfo(i)),backend3.disposeIntermediateTensorInfo(realConcated),backend3.disposeIntermediateTensorInfo(imagConcated),result}let inputs2D=$inputs.map(t=>{let innerSize=util_exports.sizeFromShape(t.shape.slice($axis)),shape=[-1,innerSize];return reshape88({inputs:{x:t},backend:backend3,attrs:{shape}})});outShape=backend_util_exports.computeOutShape(inputs2D.map(t=>t.shape),1);let outVals=util_exports.getTypedArrayFromDType($inputs[0].dtype,util_exports.sizeFromShape(outShape));if(inputs2D[0].shape[0]===1){let offset=0;inputs2D.forEach(t=>{let val=backend3.data.get(t.dataId).values,size=util_exports.sizeFromShape(t.shape);outVals.set(val,offset),offset+=size})}else{let colOffset=0;inputs2D.forEach(t=>{let tVals=backend3.data.get(t.dataId).values,tIdx=0;for(let row=0;rowt.shape),$axis),outInfo=backend3.makeTensorInfo(finalOutShape,inputs[0].dtype,outVals);return inputs2D.forEach(t=>backend3.disposeIntermediateTensorInfo(t)),outInfo}var concatConfig={kernelName:Concat,backendName:"cpu",kernelFunc:concat17};function conv2D(args){let{inputs,backend:backend3,attrs}=args,{x,filter}=inputs,{strides,pad:pad11,dataFormat,dilations,dimRoundingMode}=attrs;assertNotComplex([x,filter],"conv2d");let $dataFormat=backend_util_exports.convertConv2DDataFormat(dataFormat),convInfo=backend_util_exports.computeConv2DInfo(x.shape,filter.shape,strides,dilations,pad11,dimRoundingMode,!1,$dataFormat),filterHeight=convInfo.filterHeight,filterWidth=convInfo.filterWidth,dilationHeight=convInfo.dilationHeight,dilationWidth=convInfo.dilationWidth,padLeft=convInfo.padInfo.left,padTop=convInfo.padInfo.top,isChannelsLast=convInfo.dataFormat==="channelsLast",y=new TensorBuffer(convInfo.outShape,x.dtype),xStrides=util_exports.computeStrides(x.shape),filterStrides=util_exports.computeStrides(filter.shape),xBatchStride=xStrides[0],xRowStride=isChannelsLast?xStrides[1]:xStrides[2],xColStride=isChannelsLast?xStrides[2]:1,xChannelStride=isChannelsLast?1:xStrides[1],yBatchStride=y.strides[0],yRowStride=isChannelsLast?y.strides[1]:y.strides[2],yColStride=isChannelsLast?y.strides[2]:1,yChannelStride=isChannelsLast?1:y.strides[1],xVals=backend3.data.get(x.dataId).values,wVals=backend3.data.get(filter.dataId).values,yVals=y.values;for(let b=0;b=convInfo.inHeight)continue;let wOffset1=wR*filterStrides[0],xOffset2=xOffset1+xR*xRowStride;for(let yC=0;yC=convInfo.inWidth)continue;let wOffset2=wOffset1+wC*filterStrides[1],xOffset3=xOffset2+xC*xColStride,wOffset3=wOffset2;for(let d1=0;d1=convInfo.inDepth)continue;let wOffset1=wF*filterStrides[0],xOffset2=xOffset1+xF*xStrides[1];for(let yR=0;yR=convInfo.inHeight)continue;let wOffset2=wOffset1+wR*filterStrides[1],xOffset3=xOffset2+xR*xStrides[2];for(let yC=0;yC=convInfo.inWidth)continue;let wOffset3=wOffset2+wC*filterStrides[2],xOffset4=xOffset3+xC*convInfo.inChannels,wOffset4=wOffset3;for(let d1=0;d1Math.cos(xi)),cosConfig={kernelName:Cos,backendName:"cpu",kernelFunc:cos6},cosh5=unaryKernelFunc(Cosh,xi=>Math.cosh(xi)),coshConfig={kernelName:Cosh,backendName:"cpu",kernelFunc:cosh5};function depthwiseConv2dNative(args){let{inputs,backend:backend3,attrs}=args,{x,filter}=inputs,{strides,pad:pad11,dilations,dimRoundingMode}=attrs;assertNotComplex([x,filter],"depthwiseConv2DNative");let xStrides=util_exports.computeStrides(x.shape),filterStrides=util_exports.computeStrides(filter.shape),$dilations=dilations;$dilations==null&&($dilations=[1,1]),util_exports.assert(backend_util_exports.eitherStridesOrDilationsAreOne(strides,$dilations),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${strides} and dilations '${$dilations}'`);let convInfo=backend_util_exports.computeConv2DInfo(x.shape,filter.shape,strides,$dilations,pad11,dimRoundingMode,!0),{filterHeight,filterWidth,dilationHeight,dilationWidth,padInfo}=convInfo,padLeft=padInfo.left,padTop=padInfo.top,chMul=convInfo.outChannels/convInfo.inChannels,y=new TensorBuffer(convInfo.outShape,x.dtype),xVals=backend3.data.get(x.dataId).values,wVals=backend3.data.get(filter.dataId).values,yVals=y.values;for(let b=0;b=convInfo.inHeight)continue;let wOffset1=wR*filterStrides[0],xOffset2=xOffset1+xR*xStrides[1];for(let yC=0;yC=convInfo.inWidth)continue;let wOffset2=wOffset1+wC*filterStrides[1],xOffset3=xOffset2+xC*convInfo.inChannels,yOffset4=yOffset3,wOffset3=wOffset2;for(let d1=0;d1{let{x,filter}=inputs,{strides,pad:pad11,dilations}=attrs,cpuBackend=backend3,xVals=cpuBackend.data.get(x.dataId).values,xRank=x.shape.length,filterVals=cpuBackend.data.get(filter.dataId).values,filterRank=filter.shape.length,{batchSize,inHeight,inWidth,inChannels,outHeight,outWidth,padInfo,strideHeight,strideWidth,filterHeight,filterWidth,dilationHeight,dilationWidth,outShape}=backend_util_exports.computeDilation2DInfo(x.shape,filter.shape,strides,pad11,"NHWC",dilations),outSize=util_exports.sizeFromShape(outShape),outRank=outShape.length,outputVals=util_exports.getArrayFromDType(x.dtype,outSize);for(let b=0;b=0&&hIn=0&&wIncurVal&&(curVal=val)}}}let outputIndex=util_exports.locToIndex([b,hOut,wOut,d],outRank,util_exports.computeStrides(outShape));outputVals[outputIndex]=curVal}}}let dataId=cpuBackend.write(util_exports.toTypedArray(outputVals,x.dtype),outShape,x.dtype);return{dataId,shape:outShape,dtype:x.dtype}}},dilation2dBackpropFilterConfig={kernelName:Dilation2DBackpropFilter,backendName:"cpu",kernelFunc:({inputs,backend:backend3,attrs})=>{let{x,filter,dy}=inputs,{strides,pad:pad11,dilations}=attrs,cpuBackend=backend3,$x=util_exports.toNestedArray(x.shape,cpuBackend.data.get(x.dataId).values),$filter=util_exports.toNestedArray(filter.shape,cpuBackend.data.get(filter.dataId).values),{batchSize,inHeight,inWidth,inChannels,outHeight,outWidth,padInfo,strideHeight,strideWidth,filterHeight,filterWidth,dilationHeight,dilationWidth,outShape}=backend_util_exports.computeDilation2DInfo(x.shape,filter.shape,strides,pad11,"NHWC",dilations);util_exports.assert(dy.rank===outShape.length,()=>`Error in ${Dilation2DBackpropFilter}, dy must have the same rank as output ${outShape.length}, but got ${dy.rank}`);let $dy=util_exports.toNestedArray(outShape,cpuBackend.data.get(dy.dataId).values),gradients8=util_exports.makeZerosNestedTypedArray(filter.shape,filter.dtype);for(let b=0;b=0&&hIn=0&&wIncurVal&&(curVal=val,hMax=h,wMax=w)}}}gradients8[hMax][wMax][d]+=$dy[b][hOut][wOut][d]}}}let dataId=cpuBackend.write(util_exports.toTypedArray(gradients8,x.dtype),filter.shape,filter.dtype);return{dataId,shape:filter.shape,dtype:filter.dtype}}},dilation2dBackpropInputConfig={kernelName:Dilation2DBackpropInput,backendName:"cpu",kernelFunc:({inputs,backend:backend3,attrs})=>{let{x,filter,dy}=inputs,{strides,pad:pad11,dilations}=attrs,cpuBackend=backend3,$x=util_exports.toNestedArray(x.shape,cpuBackend.data.get(x.dataId).values),$filter=util_exports.toNestedArray(filter.shape,cpuBackend.data.get(filter.dataId).values),{batchSize,inHeight,inWidth,inChannels,outHeight,outWidth,padInfo,strideHeight,strideWidth,filterHeight,filterWidth,dilationHeight,dilationWidth,outShape}=backend_util_exports.computeDilation2DInfo(x.shape,filter.shape,strides,pad11,"NHWC",dilations);util_exports.assert(dy.rank===outShape.length,()=>`Error in ${Dilation2DBackpropInput}, dy must have the same rank as output ${outShape.length}, but got ${dy.rank}`);let $dy=util_exports.toNestedArray(outShape,cpuBackend.data.get(dy.dataId).values),gradients8=util_exports.makeZerosNestedTypedArray(x.shape,x.dtype);for(let b=0;b=0&&hIn=0&&wIncurVal&&(curVal=val,hInMax=hIn,wInMax=wIn)}}}gradients8[b][hInMax][wInMax][d]+=$dy[b][hOut][wOut][d]}}}let dataId=cpuBackend.write(util_exports.toTypedArray(gradients8,x.dtype),x.shape,x.dtype);return{dataId,shape:x.shape,dtype:x.dtype}}},divImpl=createSimpleBinaryKernelImpl((a,b)=>a/b),div35=binaryKernelFunc(Div,divImpl),divConfig={kernelName:Div,backendName:"cpu",kernelFunc:div35},p=backend_util_exports.ERF_P,a1=backend_util_exports.ERF_A1,a2=backend_util_exports.ERF_A2,a3=backend_util_exports.ERF_A3,a4=backend_util_exports.ERF_A4,a5=backend_util_exports.ERF_A5,erf4=unaryKernelFunc(Erf,xi=>{let sign5=Math.sign(xi),v=Math.abs(xi),t=1/(1+p*v);return sign5*(1-((((a5*t+a4)*t+a3)*t+a2)*t+a1)*t*Math.exp(-v*v))}),erfConfig={kernelName:Erf,backendName:"cpu",kernelFunc:erf4};function fftBatch(input2,inverse,cpuBackend){let inputShape=input2.shape,batch=inputShape[0],innerDim=inputShape[1],inputVals=cpuBackend.data.get(input2.dataId),real2D=inputVals.complexTensorInfos.real,imag2D=inputVals.complexTensorInfos.imag,resultShape=[batch,innerDim],resultSize=util_exports.sizeFromShape(resultShape),resultReal=util_exports.getTypedArrayFromDType("float32",resultSize),resultImag=util_exports.getTypedArrayFromDType("float32",resultSize);for(let b=0;b{let{image:image3}=inputs,cpuBackend=backend3,output=util_exports.getTypedArrayFromDType(image3.dtype,util_exports.sizeFromShape(image3.shape)),[batch,imageHeight,imageWidth,numChannels]=image3.shape,imageVals=cpuBackend.data.get(image3.dataId).values;for(let batchIdx=0;batchIdx=0&&coordXNumber.isFinite(xi)?1:0,"bool"),isFiniteConfig={kernelName:IsFinite,backendName:"cpu",kernelFunc:isFinite3},isInf2=unaryKernelFunc(IsInf,xi=>Math.abs(xi)===Infinity?1:0,"bool"),isInfConfig={kernelName:IsInf,backendName:"cpu",kernelFunc:isInf2},isNaN3=unaryKernelFunc(IsNan,xi=>Number.isNaN(xi)?1:0,"bool"),isNaNConfig={kernelName:IsNan,backendName:"cpu",kernelFunc:isNaN3},log1p5=unaryKernelFunc(Log1p,xi=>Math.log1p(xi)),log1pConfig={kernelName:Log1p,backendName:"cpu",kernelFunc:log1p5},logicalNot2=unaryKernelFunc(LogicalNot,xi=>xi?0:1,"bool"),logicalNotConfig={kernelName:LogicalNot,backendName:"cpu",kernelFunc:logicalNot2},maxConfig={kernelName:Max,backendName:"cpu",kernelFunc:({inputs,attrs,backend:backend3})=>{let{x}=inputs,{reductionIndices,keepDims}=attrs,cpuBackend=backend3,xShape=x.shape,xRank=xShape.length,origAxes=util_exports.parseAxisParam(reductionIndices,xShape),axes=origAxes,permutedAxes=backend_util_exports.getAxesPermutation(axes,xRank),xVals=cpuBackend.data.get(x.dataId).values;if(permutedAxes!=null){let newShape=new Array(xRank);for(let i=0;i`Error in maxPool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);let convInfo=backend_util_exports.computePool2DInfo(x.shape,filterSize,strides,dilations,pad11,dimRoundingMode),res;if(convInfo.filterWidth===1&&convInfo.filterHeight===1&&util_exports.arraysEqual(convInfo.inShape,convInfo.outShape))res=identity2({inputs:{x},backend:backend3});else{let xValues=backend3.data.get(x.dataId).values,strides2=util_exports.computeStrides(x.shape),buffer11=pool5(xValues,x.shape,x.dtype,strides2,convInfo,"max");res=backend3.makeTensorInfo(convInfo.outShape,x.dtype,buffer11.values)}return res}var maxPoolConfig={kernelName:MaxPool,backendName:"cpu",kernelFunc:maxPool2};function maxPoolBackprop2(args){let{inputs,backend:backend3,attrs}=args,{dy,input:input2,output}=inputs,x=input2;assertNotComplex([input2,output],"maxPoolBackprop");let{filterSize,strides,pad:pad11,dimRoundingMode}=attrs,convInfo=backend_util_exports.computePool2DInfo(x.shape,filterSize,strides,1,pad11,dimRoundingMode),xValues=backend3.data.get(x.dataId).values,maxPosBuf=buffer(convInfo.outShape,x.dtype,maxPoolPositions(xValues,x.shape,x.dtype,convInfo).values),strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,dilationHeight=convInfo.dilationHeight,dilationWidth=convInfo.dilationWidth,effectiveFilterHeight=convInfo.effectiveFilterHeight,effectiveFilterWidth=convInfo.effectiveFilterWidth,padLeft=effectiveFilterWidth-1-convInfo.padInfo.left,padTop=effectiveFilterHeight-1-convInfo.padInfo.top,dx=buffer(x.shape,"float32"),dyData=backend3.data.get(dy.dataId).values,dyBuf=buffer(dy.shape,"float32",dyData);for(let b=0;b=convInfo.outHeight||Math.floor(dyR)!==dyR)continue;for(let wC=0;wC=convInfo.outWidth||Math.floor(dyC)!==dyC)continue;let maxPos=effectiveFilterHeight*effectiveFilterWidth-1-maxPosBuf.get(b,dyR,dyC,d),curPos=wR*effectiveFilterWidth+wC,mask=maxPos===curPos?1:0;if(mask===0)continue;let pixel=dyBuf.get(b,dyR,dyC,d);dotProd+=pixel*mask}}dx.set(dotProd,b,dxR,dxC,d)}return backend3.makeTensorInfo(dx.shape,dx.dtype,dx.values)}var maxPoolBackpropConfig={kernelName:MaxPoolBackprop,backendName:"cpu",kernelFunc:maxPoolBackprop2};function maxPoolWithArgmaxImpl(xValues,xShape,dtype,includeBatchInIndex,convInfo){let strides=util_exports.computeStrides(xShape),maxPools=pool5(xValues,xShape,dtype,strides,convInfo,"max"),maxPositions=maxPoolPositions(xValues,xShape,dtype,convInfo,!0,includeBatchInIndex);return[maxPools.values,maxPositions.values]}var maxPoolWithArgmaxConfig={kernelName:MaxPoolWithArgmax,backendName:"cpu",kernelFunc:({inputs,attrs,backend:backend3})=>{let{x}=inputs,{filterSize,strides,pad:pad11,includeBatchInIndex}=attrs,cpuBackend=backend3;assertNotComplex(x,"MaxPoolWithArgmax");let values=cpuBackend.data.get(x.dataId).values,convInfo=backend_util_exports.computePool2DInfo(x.shape,filterSize,strides,[1,1],pad11),[pooled,indexes]=maxPoolWithArgmaxImpl(values,x.shape,x.dtype,includeBatchInIndex,convInfo),pooledDataId=cpuBackend.write(pooled,convInfo.outShape,x.dtype),indexesDataId=cpuBackend.write(indexes,convInfo.outShape,x.dtype);return[{dataId:pooledDataId,shape:convInfo.outShape,dtype:x.dtype},{dataId:indexesDataId,shape:convInfo.outShape,dtype:"int32"}]}};function mirrorPad2(args){let{inputs,backend:backend3,attrs}=args,{x}=inputs,{paddings,mode}=attrs;assertNotComplex(x,"mirrorPad");let outShape=paddings.map((p2,i)=>p2[0]+x.shape[i]+p2[1]),start=paddings.map(p2=>p2[0]),end=paddings.map((p2,i)=>p2[0]+x.shape[i]),offset=mode==="reflect"?0:1,xVals=backend3.data.get(x.dataId).values,xRank=x.shape.length,xStrides=util_exports.computeStrides(x.shape),resultSize=util_exports.sizeFromShape(outShape),resultRank=outShape.length,resultStrides=util_exports.computeStrides(outShape),resVals=util_exports.getTypedArrayFromDType(x.dtype,resultSize);for(let i=0;i=end[i2]&&(coords2[i2]=(end[i2]-1)*2-coords2[i2]+offset);coords2=coords2.map((c,i2)=>c-start[i2]);let inIndex=util_exports.locToIndex(coords2,xRank,xStrides);resVals[i]=xVals[inIndex]}let outId=backend3.write(resVals,outShape,x.dtype);return{dataId:outId,shape:outShape,dtype:x.dtype}}var mirrorPadConfig={kernelName:MirrorPad,backendName:"cpu",kernelFunc:mirrorPad2},nonMaxSuppressionV4Impl2=kernel_impls_exports.nonMaxSuppressionV4Impl,nonMaxSuppressionV4Config={kernelName:NonMaxSuppressionV4,backendName:"cpu",kernelFunc:({inputs,backend:backend3,attrs})=>{let{boxes,scores}=inputs,{maxOutputSize,iouThreshold,scoreThreshold,padToMaxOutputSize}=attrs,cpuBackend=backend3;assertNotComplex(boxes,"NonMaxSuppressionPadded");let boxesVals=cpuBackend.data.get(boxes.dataId).values,scoresVals=cpuBackend.data.get(scores.dataId).values,{selectedIndices,validOutputs}=nonMaxSuppressionV4Impl2(boxesVals,scoresVals,maxOutputSize,iouThreshold,scoreThreshold,padToMaxOutputSize);return[selectedIndices,validOutputs]}},nonMaxSuppressionV5Impl2=kernel_impls_exports.nonMaxSuppressionV5Impl,nonMaxSuppressionV5Config={kernelName:NonMaxSuppressionV5,backendName:"cpu",kernelFunc:({inputs,backend:backend3,attrs})=>{let{boxes,scores}=inputs,{maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma}=attrs,cpuBackend=backend3;assertNotComplex(boxes,"NonMaxSuppressionWithScore");let boxesVals=cpuBackend.data.get(boxes.dataId).values,scoresVals=cpuBackend.data.get(scores.dataId).values,maxOutputSizeVal=maxOutputSize,iouThresholdVal=iouThreshold,scoreThresholdVal=scoreThreshold,softNmsSigmaVal=softNmsSigma,{selectedIndices,selectedScores}=nonMaxSuppressionV5Impl2(boxesVals,scoresVals,maxOutputSizeVal,iouThresholdVal,scoreThresholdVal,softNmsSigmaVal);return[selectedIndices,selectedScores]}};function padV2(args){let{inputs,backend:backend3,attrs}=args,{x}=inputs,{paddings,constantValue}=attrs;assertNotComplex(x,"pad");let outShape=paddings.map((p2,i)=>p2[0]+x.shape[i]+p2[1]),start=paddings.map(p2=>p2[0]),xVals=backend3.data.get(x.dataId).values,xSize=util_exports.sizeFromShape(x.shape),xRank=x.shape.length,xStrides=util_exports.computeStrides(x.shape),resultSize=util_exports.sizeFromShape(outShape),resultRank=outShape.length,resultStrides=util_exports.computeStrides(outShape),resVals=util_exports.getTypedArrayFromDType(x.dtype,resultSize);constantValue!==0&&resVals.fill(constantValue);for(let i=0;ic+start[i2]),outIndex=util_exports.locToIndex(outCoords,resultRank,resultStrides);resVals[outIndex]=xVals[i]}let outId=backend3.write(resVals,outShape,x.dtype);return{dataId:outId,shape:outShape,dtype:x.dtype}}var padV2Config={kernelName:PadV2,backendName:"cpu",kernelFunc:padV2},reciprocal4=unaryKernelFunc(Reciprocal,xi=>1/xi),reciprocalConfig={kernelName:Reciprocal,backendName:"cpu",kernelFunc:reciprocal4},rotateWithOffsetConfig={kernelName:RotateWithOffset,backendName:"cpu",kernelFunc:({inputs,attrs,backend:backend3})=>{let{image:image3}=inputs,{radians,fillValue,center}=attrs,cpuBackend=backend3,output=util_exports.getTypedArrayFromDType(image3.dtype,util_exports.sizeFromShape(image3.shape)),[batch,imageHeight,imageWidth,numChannels]=image3.shape,[centerX,centerY]=backend_util_exports.getImageCenter(center,imageHeight,imageWidth),fullOpacityValue=255,sinFactor=Math.sin(radians),cosFactor=Math.cos(radians),imageVals=cpuBackend.data.get(image3.dataId).values;for(let batchIdx=0;batchIdx=0&&coordX=0&&coordY{let base2=Math.floor(xi);return xi-base2<.5?Math.floor(xi):xi-base2>.5?Math.ceil(xi):base2%2===0?base2:base2+1}),roundConfig={kernelName:Round,backendName:"cpu",kernelFunc:round4},scaleAlpha=backend_util_exports.SELU_SCALEALPHA,scale=backend_util_exports.SELU_SCALE,selu5=unaryKernelFunc(Selu,xi=>xi>=0?scale*xi:scaleAlpha*(Math.exp(xi)-1)),seluConfig={kernelName:Selu,backendName:"cpu",kernelFunc:selu5},sigmoid7=unaryKernelFunc(Sigmoid,xi=>1/(1+Math.exp(-xi))),sigmoidConfig={kernelName:Sigmoid,backendName:"cpu",kernelFunc:sigmoid7},sign4=unaryKernelFunc(Sign,xi=>xi<0?-1:xi>0?1:0),signConfig={kernelName:Sign,backendName:"cpu",kernelFunc:sign4},sin5=unaryKernelFunc(Sin,xi=>Math.sin(xi)),sinConfig={kernelName:Sin,backendName:"cpu",kernelFunc:sin5},sinh5=unaryKernelFunc(Sinh,xi=>Math.sinh(xi)),sinhConfig={kernelName:Sinh,backendName:"cpu",kernelFunc:sinh5},epsilon2=11920928955078125e-23,threshold=Math.log(epsilon2)+2,softplus5=unaryKernelFunc(Softplus,xi=>{let tooLarge=xi>-threshold,tooSmall=xiMath.sqrt(xi)),sqrtConfig={kernelName:Sqrt,backendName:"cpu",kernelFunc:sqrt13},squareConfig={kernelName:Square,backendName:"cpu",kernelFunc:({inputs,backend:backend3})=>{let{x}=inputs,cpuBackend=backend3;assertNotComplex(x,"square");let values=cpuBackend.data.get(x.dataId).values,newValues=new Float32Array(values.length);for(let i=0;i{let stepAttrs=attrs;return isNaN(xi)?NaN:xi>0?1:stepAttrs.alpha}),stepConfig={kernelName:Step,backendName:"cpu",kernelFunc:step8},tan4=unaryKernelFunc(Tan,xi=>Math.tan(xi)),tanConfig={kernelName:Tan,backendName:"cpu",kernelFunc:tan4},tanh6=unaryKernelFunc(Tanh,xi=>Math.tanh(xi)),tanhConfig={kernelName:Tanh,backendName:"cpu",kernelFunc:tanh6};function unique6(args){let{inputs,attrs,backend:backend3}=args,{axis}=attrs,{x}=inputs;assertNotComplex(x,"unique");let values=backend3.data.get(x.dataId).values,{outputValues,outputShape,indices}=uniqueImpl(values,axis,x.shape,x.dtype);return[backend3.makeTensorInfo(outputShape,x.dtype,outputValues),backend3.makeTensorInfo([indices.length],"int32",indices)]}var uniqueConfig={kernelName:Unique,backendName:"cpu",kernelFunc:unique6},kernelConfigs=[_fusedMatMulConfig,absConfig,acosConfig,acoshConfig,addConfig,asinConfig,asinhConfig,atanConfig,atanhConfig,avgPoolConfig,avgPoolBackpropConfig,batchMatMulConfig,batchNormConfig,castConfig,ceilConfig,clipConfig,complexConfig,concatConfig,conv2DBackpropFilterConfig,conv2DBackpropInputConfig,conv2DConfig,conv3DBackpropFilterV2Config,conv3DBackpropInputV2Config,conv3DConfig,cosConfig,coshConfig,depthwiseConv2dNativeConfig,depthwiseConv2dNativeBackpropFilterConfig,depthwiseConv2dNativeBackpropInputConfig,dilation2dConfig,dilation2dBackpropInputConfig,dilation2dBackpropFilterConfig,divConfig,eluConfig,erfConfig,expConfig,expm1Config,fftConfig,fillConfig,flipLeftRightConfig,floorConfig,fusedConv2DConfig,fusedDepthwiseConv2DConfig,identityConfig,ifftConfig,imagConfig,isFiniteConfig,isInfConfig,isNaNConfig,logConfig,log1pConfig,logicalNotConfig,maxPoolConfig,maxPoolBackpropConfig,maxPoolWithArgmaxConfig,maxConfig,mirrorPadConfig,multiplyConfig,nonMaxSuppressionV4Config,nonMaxSuppressionV5Config,notEqualConfig,padV2Config,preluConfig,realConfig,reciprocalConfig,reluConfig,relu6Config,reshapeConfig,rotateWithOffsetConfig,roundConfig,rsqrtConfig,seluConfig,sigmoidConfig,signConfig,sinConfig,sinhConfig,sliceConfig,softplusConfig,spaceToBatchNDConfig,sqrtConfig,squareConfig,squaredDifferenceConfig,stepConfig,subConfig,tanConfig,tanhConfig,transposeConfig,uniqueConfig];for(let kernelConfig of kernelConfigs)registerKernel(kernelConfig);var contexts={},WEBGL_ATTRIBUTES={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function setWebGLContext(webGLVersion,gl){contexts[webGLVersion]=gl}function getWebGLContext(webGLVersion){if(!(webGLVersion in contexts)){let newCtx=getWebGLRenderingContext(webGLVersion);if(newCtx!==null)contexts[webGLVersion]=newCtx;else return console.log("Could not get context for WebGL version",webGLVersion),null}let gl=contexts[webGLVersion];return gl.isContextLost()?(delete contexts[webGLVersion],getWebGLContext(webGLVersion)):(gl.disable(gl.DEPTH_TEST),gl.disable(gl.STENCIL_TEST),gl.disable(gl.BLEND),gl.disable(gl.DITHER),gl.disable(gl.POLYGON_OFFSET_FILL),gl.disable(gl.SAMPLE_COVERAGE),gl.enable(gl.SCISSOR_TEST),gl.enable(gl.CULL_FACE),gl.cullFace(gl.BACK),contexts[webGLVersion])}function createCanvas(webGLVersion){if(typeof OffscreenCanvas!="undefined"&&webGLVersion===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function getWebGLRenderingContext(webGLVersion){if(webGLVersion!==1&&webGLVersion!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let canvas=createCanvas(webGLVersion);return canvas.addEventListener("webglcontextlost",ev=>{ev.preventDefault(),delete contexts[webGLVersion]},!1),webGLVersion===1?canvas.getContext("webgl",WEBGL_ATTRIBUTES)||canvas.getContext("experimental-webgl",WEBGL_ATTRIBUTES):canvas.getContext("webgl2",WEBGL_ATTRIBUTES)}var PackingScheme;(function(PackingScheme2){PackingScheme2[PackingScheme2.DENSE=0]="DENSE",PackingScheme2[PackingScheme2.SHARED_BATCH=1]="SHARED_BATCH"})(PackingScheme||(PackingScheme={}));var TextureUsage;(function(TextureUsage2){TextureUsage2[TextureUsage2.RENDER=0]="RENDER",TextureUsage2[TextureUsage2.UPLOAD=1]="UPLOAD",TextureUsage2[TextureUsage2.PIXELS=2]="PIXELS",TextureUsage2[TextureUsage2.DOWNLOAD=3]="DOWNLOAD"})(TextureUsage||(TextureUsage={}));var PhysicalTextureType;(function(PhysicalTextureType2){PhysicalTextureType2[PhysicalTextureType2.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",PhysicalTextureType2[PhysicalTextureType2.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",PhysicalTextureType2[PhysicalTextureType2.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",PhysicalTextureType2[PhysicalTextureType2.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",PhysicalTextureType2[PhysicalTextureType2.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(PhysicalTextureType||(PhysicalTextureType={}));function getUnpackedMatrixTextureShapeWidthHeight(rows,columns){return[columns,rows]}function getUnpackedArraySizeFromMatrixSize(matrixSize,channelsPerTexture){return matrixSize*channelsPerTexture}function getDenseTexShape(shape){let size=util_exports.sizeFromShape(shape),texelsNeeded=Math.ceil(size/4);return util_exports.sizeToSquarishShape(texelsNeeded)}function getPackedMatrixTextureShapeWidthHeight(rows,columns){return[Math.max(1,Math.ceil(columns/2)),Math.max(1,Math.ceil(rows/2))]}function getPackedRGBAArraySizeFromMatrixShape(rows,columns){let[w,h]=getPackedMatrixTextureShapeWidthHeight(rows,columns);return w*h*4}function getTextureConfig(gl,textureHalfFloatExtension){let glany=gl,internalFormatFloat,internalFormatHalfFloat,internalFormatPackedHalfFloat,internalFormatPackedFloat,textureFormatFloat,downloadTextureFormat,downloadUnpackNumChannels,defaultNumChannels,textureTypeHalfFloat,textureTypeFloat;return env().getNumber("WEBGL_VERSION")===2?(internalFormatFloat=glany.R32F,internalFormatHalfFloat=glany.R16F,internalFormatPackedHalfFloat=glany.RGBA16F,internalFormatPackedFloat=glany.RGBA32F,textureFormatFloat=glany.RED,downloadUnpackNumChannels=4,defaultNumChannels=1,textureTypeHalfFloat=glany.HALF_FLOAT,textureTypeFloat=glany.FLOAT):(internalFormatFloat=gl.RGBA,internalFormatHalfFloat=gl.RGBA,internalFormatPackedHalfFloat=gl.RGBA,internalFormatPackedFloat=glany.RGBA,textureFormatFloat=gl.RGBA,downloadUnpackNumChannels=4,defaultNumChannels=4,textureTypeHalfFloat=textureHalfFloatExtension!=null?textureHalfFloatExtension.HALF_FLOAT_OES:null,textureTypeFloat=gl.FLOAT),downloadTextureFormat=gl.RGBA,{internalFormatFloat,internalFormatHalfFloat,internalFormatPackedHalfFloat,internalFormatPackedFloat,textureFormatFloat,downloadTextureFormat,downloadUnpackNumChannels,defaultNumChannels,textureTypeHalfFloat,textureTypeFloat}}function callAndCheck(gl,func2){let returnValue=func2();return env().getBool("DEBUG")&&checkWebGLError(gl),returnValue}function checkWebGLError(gl){let error=gl.getError();if(error!==gl.NO_ERROR)throw new Error("WebGL Error: "+getWebGLErrorMessage(gl,error))}var MIN_FLOAT16=596e-10,MAX_FLOAT16=65504;function canBeRepresented(num){return!!(env().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||num===0||MIN_FLOAT16gl.getExtension(extensionName),'Extension "'+extensionName+'" not supported on this browser.')}function createVertexShader(gl,vertexShaderSource){let vertexShader=throwIfNull(gl,()=>gl.createShader(gl.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(callAndCheck(gl,()=>gl.shaderSource(vertexShader,vertexShaderSource)),callAndCheck(gl,()=>gl.compileShader(vertexShader)),gl.getShaderParameter(vertexShader,gl.COMPILE_STATUS)===!1)throw console.log(gl.getShaderInfoLog(vertexShader)),new Error("Failed to compile vertex shader.");return vertexShader}function createFragmentShader(gl,fragmentShaderSource){let fragmentShader=throwIfNull(gl,()=>gl.createShader(gl.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(callAndCheck(gl,()=>gl.shaderSource(fragmentShader,fragmentShaderSource)),callAndCheck(gl,()=>gl.compileShader(fragmentShader)),gl.getShaderParameter(fragmentShader,gl.COMPILE_STATUS)===!1)throw logShaderSourceAndInfoLog(fragmentShaderSource,gl.getShaderInfoLog(fragmentShader)),new Error("Failed to compile fragment shader.");return fragmentShader}var lineNumberRegex=/ERROR: [0-9]+:([0-9]+):/g;function logShaderSourceAndInfoLog(shaderSource,shaderInfoLog){let lineNumberRegexResult=lineNumberRegex.exec(shaderInfoLog);if(lineNumberRegexResult==null){console.log(`Couldn't parse line number in error: ${shaderInfoLog}`),console.log(shaderSource);return}let lineNumber=+lineNumberRegexResult[1],shaderLines=shaderSource.split(` `),pad11=shaderLines.length.toString().length+2,linesWithLineNumbers=shaderLines.map((line,lineNumber2)=>util_exports.rightPad((lineNumber2+1).toString(),pad11)+line),maxLineLength=0;for(let i=0;igl.createProgram(),"Unable to create WebGLProgram.")}function linkProgram(gl,program){if(callAndCheck(gl,()=>gl.linkProgram(program)),gl.getProgramParameter(program,gl.LINK_STATUS)===!1)throw console.log(gl.getProgramInfoLog(program)),new Error("Failed to link vertex and fragment shaders.")}function validateProgram(gl,program){if(callAndCheck(gl,()=>gl.validateProgram(program)),gl.getProgramParameter(program,gl.VALIDATE_STATUS)===!1)throw console.log(gl.getProgramInfoLog(program)),new Error("Shader program validation failed.")}function createStaticVertexBuffer(gl,data2){let buffer11=throwIfNull(gl,()=>gl.createBuffer(),"Unable to create WebGLBuffer");return callAndCheck(gl,()=>gl.bindBuffer(gl.ARRAY_BUFFER,buffer11)),callAndCheck(gl,()=>gl.bufferData(gl.ARRAY_BUFFER,data2,gl.STATIC_DRAW)),buffer11}function createStaticIndexBuffer(gl,data2){let buffer11=throwIfNull(gl,()=>gl.createBuffer(),"Unable to create WebGLBuffer");return callAndCheck(gl,()=>gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER,buffer11)),callAndCheck(gl,()=>gl.bufferData(gl.ELEMENT_ARRAY_BUFFER,data2,gl.STATIC_DRAW)),buffer11}function createTexture(gl){return throwIfNull(gl,()=>gl.createTexture(),"Unable to create WebGLTexture.")}function validateTextureSize(width,height){let maxTextureSize=env().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(width<=0||height<=0){let requested=`[${width}x${height}]`;throw new Error("Requested texture size "+requested+" is invalid.")}if(width>maxTextureSize||height>maxTextureSize){let requested=`[${width}x${height}]`,max10=`[${maxTextureSize}x${maxTextureSize}]`;throw new Error("Requested texture size "+requested+" greater than WebGL maximum on this browser / GPU "+max10+".")}}function createFramebuffer(gl){return throwIfNull(gl,()=>gl.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function bindVertexBufferToProgramAttribute(gl,program,attribute,buffer11,arrayEntriesPerItem,itemStrideInBytes,itemOffsetInBytes){let loc=gl.getAttribLocation(program,attribute);return loc===-1?!1:(callAndCheck(gl,()=>gl.bindBuffer(gl.ARRAY_BUFFER,buffer11)),callAndCheck(gl,()=>gl.vertexAttribPointer(loc,arrayEntriesPerItem,gl.FLOAT,!1,itemStrideInBytes,itemOffsetInBytes)),callAndCheck(gl,()=>gl.enableVertexAttribArray(loc)),!0)}function bindTextureUnit(gl,texture,textureUnit){validateTextureUnit(gl,textureUnit),callAndCheck(gl,()=>gl.activeTexture(gl.TEXTURE0+textureUnit)),callAndCheck(gl,()=>gl.bindTexture(gl.TEXTURE_2D,texture))}function getProgramUniformLocationOrThrow(gl,program,uniformName){return throwIfNull(gl,()=>gl.getUniformLocation(program,uniformName),'uniform "'+uniformName+'" not present in program.')}function getProgramUniformLocation(gl,program,uniformName){return gl.getUniformLocation(program,uniformName)}function bindTextureToProgramUniformSampler(gl,texture,uniformSamplerLocation,textureUnit){callAndCheck(gl,()=>bindTextureUnit(gl,texture,textureUnit)),callAndCheck(gl,()=>gl.uniform1i(uniformSamplerLocation,textureUnit))}function bindColorTextureToFramebuffer(gl,texture,framebuffer){callAndCheck(gl,()=>gl.bindFramebuffer(gl.FRAMEBUFFER,framebuffer)),callAndCheck(gl,()=>gl.framebufferTexture2D(gl.FRAMEBUFFER,gl.COLOR_ATTACHMENT0,gl.TEXTURE_2D,texture,0))}function unbindColorTextureFromFramebuffer(gl,framebuffer){callAndCheck(gl,()=>gl.bindFramebuffer(gl.FRAMEBUFFER,framebuffer)),callAndCheck(gl,()=>gl.framebufferTexture2D(gl.FRAMEBUFFER,gl.COLOR_ATTACHMENT0,gl.TEXTURE_2D,null,0))}function validateFramebuffer(gl){let status=gl.checkFramebufferStatus(gl.FRAMEBUFFER);if(status!==gl.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+getFramebufferErrorMessage(gl,status))}function getFramebufferErrorMessage(gl,status){switch(status){case gl.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case gl.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case gl.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case gl.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${status}`}}function throwIfNull(gl,returnTOrNull,failureMessage){let tOrNull=callAndCheck(gl,()=>returnTOrNull());if(tOrNull==null)throw new Error(failureMessage);return tOrNull}function validateTextureUnit(gl,textureUnit){let maxTextureUnit=gl.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,glTextureUnit=textureUnit+gl.TEXTURE0;if(glTextureUnitmaxTextureUnit){let textureUnitRange=`[gl.TEXTURE0, gl.TEXTURE${maxTextureUnit}]`;throw new Error(`textureUnit must be in ${textureUnitRange}.`)}}function getBatchDim(shape,dimsToSkip=2){return util_exports.sizeFromShape(shape.slice(0,shape.length-dimsToSkip))}function getRowsCols(shape){if(shape.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[shape.length>1?shape[shape.length-2]:1,shape[shape.length-1]]}function getShapeAs3D(shape){let shapeAs3D=[1,1,1],isScalar=shape.length===0||shape.length===1&&shape[0]===1;return isScalar||(shapeAs3D=[getBatchDim(shape),...getRowsCols(shape)]),shapeAs3D}function getTextureShapeFromLogicalShape(logShape,isPacked=!1){let maxTexSize=env().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(isPacked&&(maxTexSize=maxTexSize*2,logShape=logShape.map((d,i)=>i>=logShape.length-2?util_exports.nearestLargerEven(logShape[i]):logShape[i]),logShape.length===1&&(logShape=[2,logShape[0]])),logShape.length!==2){let squeezeResult=util_exports.squeezeShape(logShape);logShape=squeezeResult.newShape}let size=util_exports.sizeFromShape(logShape);if(logShape.length<=1&&size<=maxTexSize)return[1,size];if(logShape.length===2&&logShape[0]<=maxTexSize&&logShape[1]<=maxTexSize)return logShape;if(logShape.length===3&&logShape[0]*logShape[1]<=maxTexSize&&logShape[2]<=maxTexSize)return[logShape[0]*logShape[1],logShape[2]];if(logShape.length===3&&logShape[0]<=maxTexSize&&logShape[1]*logShape[2]<=maxTexSize)return[logShape[0],logShape[1]*logShape[2]];if(logShape.length===4&&logShape[0]*logShape[1]*logShape[2]<=maxTexSize&&logShape[3]<=maxTexSize)return[logShape[0]*logShape[1]*logShape[2],logShape[3]];if(logShape.length===4&&logShape[0]<=maxTexSize&&logShape[1]*logShape[2]*logShape[3]<=maxTexSize)return[logShape[0],logShape[1]*logShape[2]*logShape[3]];if(isPacked){let batchDim=getBatchDim(logShape),rows=2,cols=2;return logShape.length&&([rows,cols]=getRowsCols(logShape)),size=batchDim*(rows/2)*(cols/2),util_exports.sizeToSquarishShape(size).map(d=>d*2)}return util_exports.sizeToSquarishShape(size)}function isEven(n){return n%2===0}function isReshapeFree(shape1,shape2){if(shape1=shape1.slice(-2),shape2=shape2.slice(-2),util_exports.arraysEqual(shape1,shape2))return!0;if(!shape1.length||!shape2.length)return!0;if(shape1[0]===0||shape1[1]===0||shape2[0]===0||shape2[1]===0)return!0;if(shape1.length!==shape2.length){let shape1Cols=shape1.slice(-1)[0],shape2Cols=shape2.slice(-1)[0];if(shape1Cols===shape2Cols)return!0;if(isEven(shape1Cols)&&isEven(shape2Cols)&&(shape1[0]===1||shape2[0]===1))return!0}return shape1[1]===shape2[1]&&isEven(shape1[0])&&isEven(shape2[0])}var MAX_TEXTURE_SIZE,MAX_TEXTURES_IN_SHADER;function getWebGLMaxTextureSize(webGLVersion){if(MAX_TEXTURE_SIZE==null){let gl=getWebGLContext(webGLVersion);MAX_TEXTURE_SIZE=gl.getParameter(gl.MAX_TEXTURE_SIZE)}return MAX_TEXTURE_SIZE}function getMaxTexturesInShader(webGLVersion){if(MAX_TEXTURES_IN_SHADER==null){let gl=getWebGLContext(webGLVersion);MAX_TEXTURES_IN_SHADER=gl.getParameter(gl.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,MAX_TEXTURES_IN_SHADER)}function getWebGLDisjointQueryTimerVersion(webGLVersion){if(webGLVersion===0)return 0;let queryTimerVersion,gl=getWebGLContext(webGLVersion);return hasExtension(gl,"EXT_disjoint_timer_query_webgl2")&&webGLVersion===2?queryTimerVersion=2:hasExtension(gl,"EXT_disjoint_timer_query")?queryTimerVersion=1:queryTimerVersion=0,queryTimerVersion}function hasExtension(gl,extensionName){let ext=gl.getExtension(extensionName);return ext!=null}function isWebGLVersionEnabled(webGLVersion){try{let gl=getWebGLContext(webGLVersion);if(gl!=null)return!0}catch(e){return console.log("Error when getting WebGL context: ",e),!1}return!1}function isCapableOfRenderingToFloatTexture(webGLVersion){if(webGLVersion===0)return!1;let gl=getWebGLContext(webGLVersion);if(webGLVersion===1){if(!hasExtension(gl,"OES_texture_float"))return!1}else if(!hasExtension(gl,"EXT_color_buffer_float"))return!1;let isFrameBufferComplete=createFloatTextureAndBindToFramebuffer(gl);return isFrameBufferComplete}function isDownloadFloatTextureEnabled(webGLVersion){if(webGLVersion===0)return!1;let gl=getWebGLContext(webGLVersion);if(webGLVersion===1){if(!hasExtension(gl,"OES_texture_float"))return!1;if(!hasExtension(gl,"WEBGL_color_buffer_float"))return!1}else{if(hasExtension(gl,"EXT_color_buffer_float"))return createFloatTextureAndBindToFramebuffer(gl);let COLOR_BUFFER_HALF_FLOAT="EXT_color_buffer_half_float";if(hasExtension(gl,COLOR_BUFFER_HALF_FLOAT)){let textureHalfFloatExtension=gl.getExtension(COLOR_BUFFER_HALF_FLOAT);return createHalfFloatTextureAndBindToFramebuffer(gl,textureHalfFloatExtension)}return!1}let isFrameBufferComplete=createFloatTextureAndBindToFramebuffer(gl);return isFrameBufferComplete}function createFloatTextureAndBindToFramebuffer(gl){let texConfig=getTextureConfig(gl),texture=gl.createTexture();gl.bindTexture(gl.TEXTURE_2D,texture);let width=1,height=1;gl.texImage2D(gl.TEXTURE_2D,0,texConfig.internalFormatFloat,width,height,0,texConfig.textureFormatFloat,texConfig.textureTypeFloat,null);let frameBuffer=gl.createFramebuffer();gl.bindFramebuffer(gl.FRAMEBUFFER,frameBuffer),gl.framebufferTexture2D(gl.FRAMEBUFFER,gl.COLOR_ATTACHMENT0,gl.TEXTURE_2D,texture,0);let isFrameBufferComplete=gl.checkFramebufferStatus(gl.FRAMEBUFFER)===gl.FRAMEBUFFER_COMPLETE;return gl.bindTexture(gl.TEXTURE_2D,null),gl.bindFramebuffer(gl.FRAMEBUFFER,null),gl.deleteTexture(texture),gl.deleteFramebuffer(frameBuffer),isFrameBufferComplete}function createHalfFloatTextureAndBindToFramebuffer(gl,textureHalfFloatExtension){let texConfig=getTextureConfig(gl,textureHalfFloatExtension),texture=gl.createTexture();gl.bindTexture(gl.TEXTURE_2D,texture);let width=1,height=1;gl.texImage2D(gl.TEXTURE_2D,0,texConfig.internalFormatHalfFloat,width,height,0,texConfig.textureFormatFloat,texConfig.textureTypeHalfFloat,null);let frameBuffer=gl.createFramebuffer();gl.bindFramebuffer(gl.FRAMEBUFFER,frameBuffer),gl.framebufferTexture2D(gl.FRAMEBUFFER,gl.COLOR_ATTACHMENT0,gl.TEXTURE_2D,texture,0);let isFrameBufferComplete=gl.checkFramebufferStatus(gl.FRAMEBUFFER)===gl.FRAMEBUFFER_COMPLETE;return gl.bindTexture(gl.TEXTURE_2D,null),gl.bindFramebuffer(gl.FRAMEBUFFER,null),gl.deleteTexture(texture),gl.deleteFramebuffer(frameBuffer),isFrameBufferComplete}function isWebGLFenceEnabled(webGLVersion){if(webGLVersion!==2)return!1;let gl=getWebGLContext(webGLVersion),isEnabled=gl.fenceSync!=null;return isEnabled}function assertNotComplex2(tensor168,opName){Array.isArray(tensor168)||(tensor168=[tensor168]),tensor168.forEach(t=>{t!=null&&util_exports.assert(t.dtype!=="complex64",()=>`${opName} does not support complex64 tensors in the WebGL backend.`)})}var ENV3=env();ENV3.registerFlag("HAS_WEBGL",()=>ENV3.getNumber("WEBGL_VERSION")>0);ENV3.registerFlag("WEBGL_VERSION",()=>isWebGLVersionEnabled(2)?2:isWebGLVersionEnabled(1)?1:0);ENV3.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);ENV3.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>ENV3.get("WEBGL_VERSION")===2);ENV3.registerFlag("WEBGL_CPU_FORWARD",()=>!0);ENV3.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);ENV3.registerFlag("WEBGL_PACK",()=>ENV3.getBool("HAS_WEBGL"));ENV3.registerFlag("WEBGL_PACK_NORMALIZATION",()=>ENV3.getBool("WEBGL_PACK"));ENV3.registerFlag("WEBGL_PACK_CLIP",()=>ENV3.getBool("WEBGL_PACK"));ENV3.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);ENV3.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>ENV3.getBool("WEBGL_PACK"));ENV3.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>ENV3.getBool("WEBGL_PACK"));ENV3.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>ENV3.getBool("WEBGL_PACK"));ENV3.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>ENV3.getBool("WEBGL_PACK"));ENV3.registerFlag("WEBGL_PACK_REDUCE",()=>ENV3.getBool("WEBGL_PACK"));ENV3.registerFlag("WEBGL_LAZILY_UNPACK",()=>ENV3.getBool("WEBGL_PACK"));ENV3.registerFlag("WEBGL_CONV_IM2COL",()=>ENV3.getBool("WEBGL_PACK"));ENV3.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>getWebGLMaxTextureSize(ENV3.getNumber("WEBGL_VERSION")));ENV3.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>getMaxTexturesInShader(ENV3.getNumber("WEBGL_VERSION")));ENV3.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let webGLVersion=ENV3.getNumber("WEBGL_VERSION");return webGLVersion===0?0:getWebGLDisjointQueryTimerVersion(webGLVersion)});ENV3.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>ENV3.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!device_util_exports.isMobile());ENV3.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>isCapableOfRenderingToFloatTexture(ENV3.getNumber("WEBGL_VERSION")));ENV3.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>ENV3.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:ENV3.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));ENV3.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>isDownloadFloatTextureEnabled(ENV3.getNumber("WEBGL_VERSION")));ENV3.registerFlag("WEBGL_FENCE_API_ENABLED",()=>isWebGLFenceEnabled(ENV3.getNumber("WEBGL_VERSION")));ENV3.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>{let useUniforms=ENV3.getBool("WEBGL_RENDER_FLOAT32_ENABLED");return useUniforms?4:0});ENV3.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,threshold2=>{if(threshold2<0&&threshold2!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${threshold2}.`)});var{simpleAbsImpl:simpleAbsImplCPU,addImpl:addImplCPU,ceilImpl:ceilImplCPU,expImpl:expImplCPU,expm1Impl:expm1ImplCPU,floorImpl:floorImplCPU,logImpl:logImplCPU,maxImpl:maxImplCPU,multiplyImpl:multiplyImplCPU,rsqrtImpl:rsqrtImplCPU,sliceImpl:sliceImplCPU,subImpl:subImplCPU,transposeImpl:transposeImplCPU,uniqueImpl:uniqueImplCPU}=shared_exports,AddNProgram=class{constructor(outputShape,shapes){this.outputShape=[],this.outputShape=outputShape,this.variableNames=shapes.map((_,i)=>`T${i}`);let snippets=[];this.variableNames.forEach(variable3=>{snippets.push(`float v${variable3} = get${variable3}AtOutCoords();`)});let operation211=this.variableNames.map(variable3=>`v${variable3}`).join(" + ");this.userCode=` void main() { ${snippets.join(` `)} float result = ${operation211}; setOutput(result); } `}},AddNPackedProgram=class{constructor(outputShape,shapes){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=outputShape,this.variableNames=shapes.map((_,i)=>`T${i}`);let snippets=[];this.variableNames.forEach(variable3=>{snippets.push(`vec4 v${variable3} = get${variable3}AtOutCoords();`)});let operation211=this.variableNames.map(variable3=>`v${variable3}`).join(" + ");this.userCode=` void main() { ${snippets.join(` `)} vec4 result = ${operation211}; setOutput(result); } `}},ArgMinMaxProgram=class{constructor(reduceInfo,op2,firstPass){this.variableNames=["A"];let{windowSize,batchSize,outSize}=reduceInfo;firstPass||this.variableNames.push("bestIndicesA"),this.outputShape=[batchSize,outSize];let compOp=op2==="max"?">":"<",indexSnippet=firstPass?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=` void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = outIdx * ${windowSize}; int bestIndex = inOffset; float bestValue = getA(batch, bestIndex); for (int i = 0; i < ${windowSize}; i++) { int inIdx = ${indexSnippet}; float candidate = getA(batch, inIdx); if (candidate ${compOp} bestValue) { bestValue = candidate; bestIndex = inIdx; } } setOutput(float(bestIndex)); } `}};function getVecChannels(name,rank){return["x","y","z","w","u","v"].slice(0,rank).map(d=>`${name}.${d}`)}function getChannels(name,rank){return rank===1?[name]:getVecChannels(name,rank)}function getSourceCoords(rank,dims){if(rank===1)return"rc";let coords2="";for(let i=0;i 0.0 || val < 0.0) ? false : val != 0.0; } bvec4 isnan_custom(vec4 val) { return bvec4(isnan_custom(val.x), isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w)); } #define isnan(value) isnan_custom(value) `,defineSpecialInf="",defineRound=` #define round(value) newRound(value) int newRound(float value) { return int(floor(value + 0.5)); } ivec4 newRound(vec4 value) { return ivec4(floor(value + vec4(0.5))); } `):(version19="",attribute="attribute",varyingVs="varying",varyingFs="varying",texture2D="texture2D",output="gl_FragColor",defineOutput="",defineSpecialNaN=` #define isnan(value) isnan_custom(value) bool isnan_custom(float val) { return (val > 0. || val < 1. || val == 0.) ? false : true; } bvec4 isnan_custom(vec4 val) { return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w)); } `,defineSpecialInf=` uniform float INFINITY; bool isinf(float val) { return abs(val) == INFINITY; } bvec4 isinf(vec4 val) { return equal(abs(val), vec4(INFINITY)); } `,defineRound=` int round(float value) { return int(floor(value + 0.5)); } ivec4 round(vec4 value) { return ivec4(floor(value + vec4(0.5))); } `),{version:version19,attribute,varyingVs,varyingFs,texture2D,output,defineOutput,defineSpecialNaN,defineSpecialInf,defineRound}}function getLogicalCoordinatesFromFlatIndex(coords2,shape,index="index"){let strides=util_exports.computeStrides(shape);return strides.map((stride,i)=>{let line1=`int ${coords2[i]} = ${index} / ${stride}`,line2=i===strides.length-1?`int ${coords2[i+1]} = ${index} - ${coords2[i]} * ${stride}`:`index -= ${coords2[i]} * ${stride}`;return`${line1}; ${line2};`}).join("")}function getFlatIndexFrom3D(shape){let strides=util_exports.computeStrides(shape).map(d=>d.toString());return` int getFlatIndex(ivec3 coords) { return coords.x * ${strides[0]} + coords.y * ${strides[1]} + coords.z; } `}var ENCODE_FLOAT_SNIPPET=` const float FLOAT_MAX = 1.70141184e38; const float FLOAT_MIN = 1.17549435e-38; lowp vec4 encode_float(highp float v) { if (isnan(v)) { return vec4(255, 255, 255, 255); } highp float av = abs(v); if(av < FLOAT_MIN) { return vec4(0.0, 0.0, 0.0, 0.0); } else if(v > FLOAT_MAX) { return vec4(0.0, 0.0, 128.0, 127.0) / 255.0; } else if(v < -FLOAT_MAX) { return vec4(0.0, 0.0, 128.0, 255.0) / 255.0; } highp vec4 c = vec4(0,0,0,0); highp float e = floor(log2(av)); highp float m = exp2(fract(log2(av))) - 1.0; c[2] = floor(128.0 * m); m -= c[2] / 128.0; c[1] = floor(32768.0 * m); m -= c[1] / 32768.0; c[0] = floor(8388608.0 * m); highp float ebias = e + 127.0; c[3] = floor(ebias / 2.0); ebias -= c[3] * 2.0; c[2] += floor(ebias) * 128.0; c[3] += 128.0 * step(0.0, -v); return c / 255.0; } `,{getBroadcastDims:getBroadcastDims2}=backend_util_exports;function makeShader(inputsInfo,outputShape,userCode,usesPackedTextures){let prefixSnippets=[];inputsInfo.forEach(x=>{let size=util_exports.sizeFromShape(x.shapeInfo.logicalShape);x.shapeInfo.isUniform?prefixSnippets.push(`uniform float ${x.name}${size>1?`[${size}]`:""};`):(prefixSnippets.push(`uniform sampler2D ${x.name};`),prefixSnippets.push(`uniform int offset${x.name};`))});let inputPrefixSnippet=prefixSnippets.join(` `),inputSamplingSnippet=inputsInfo.map(x=>getInputSamplingSnippet(x,outputShape,usesPackedTextures)).join(` `),outTexShape=outputShape.texShape,glsl=getGlslDifferences(),floatTextureSampleSnippet=getFloatTextureSampleSnippet(glsl),outputSamplingSnippet,floatTextureSetOutputSnippet,shaderPrefix=getShaderPrefix(glsl);outputShape.isPacked?(outputSamplingSnippet=getPackedOutputSamplingSnippet(outputShape.logicalShape,outTexShape),floatTextureSetOutputSnippet=getFloatTextureSetRGBASnippet(glsl)):(outputSamplingSnippet=getOutputSamplingSnippet(outputShape.logicalShape,outTexShape),floatTextureSetOutputSnippet=getFloatTextureSetRSnippet(glsl)),usesPackedTextures&&(shaderPrefix+=SHADER_PACKED_PREFIX);let source=[shaderPrefix,floatTextureSampleSnippet,floatTextureSetOutputSnippet,inputPrefixSnippet,outputSamplingSnippet,inputSamplingSnippet,userCode].join(` `);return source}function getSamplerFromInInfo(inInfo){let shape=inInfo.shapeInfo.logicalShape;switch(shape.length){case 0:return getSamplerScalar(inInfo);case 1:return getSampler1D(inInfo);case 2:return getSampler2D(inInfo);case 3:return getSampler3D(inInfo);case 4:return getSampler4D(inInfo);case 5:return getSampler5D(inInfo);case 6:return getSampler6D(inInfo);default:throw new Error(`${shape.length}-D input sampling is not yet supported`)}}function getPackedSamplerFromInInfo(inInfo){let shape=inInfo.shapeInfo.logicalShape;switch(shape.length){case 0:return getPackedSamplerScalar(inInfo);case 1:return getPackedSampler1D(inInfo);case 2:return getPackedSampler2D(inInfo);case 3:return getPackedSampler3D(inInfo);default:return getPackedSamplerND(inInfo)}}function getInputSamplingSnippet(inInfo,outShapeInfo,usesPackedTextures=!1){let res="";usesPackedTextures?res+=getPackedSamplerFromInInfo(inInfo):res+=getSamplerFromInInfo(inInfo);let inShape=inInfo.shapeInfo.logicalShape,outShape=outShapeInfo.logicalShape;return inShape.length<=outShape.length&&(usesPackedTextures?res+=getPackedSamplerAtOutputCoords(inInfo,outShapeInfo):res+=getSamplerAtOutputCoords(inInfo,outShapeInfo)),res}function getPackedOutputSamplingSnippet(outShape,outTexShape){switch(outShape.length){case 0:return getOutputScalarCoords();case 1:return getOutputPacked1DCoords(outShape,outTexShape);case 2:return getOutputPacked2DCoords(outShape,outTexShape);case 3:return getOutputPacked3DCoords(outShape,outTexShape);default:return getOutputPackedNDCoords(outShape,outTexShape)}}function getOutputSamplingSnippet(outShape,outTexShape){switch(outShape.length){case 0:return getOutputScalarCoords();case 1:return getOutput1DCoords(outShape,outTexShape);case 2:return getOutput2DCoords(outShape,outTexShape);case 3:return getOutput3DCoords(outShape,outTexShape);case 4:return getOutput4DCoords(outShape,outTexShape);case 5:return getOutput5DCoords(outShape,outTexShape);case 6:return getOutput6DCoords(outShape,outTexShape);default:throw new Error(`${outShape.length}-D output sampling is not yet supported`)}}function getFloatTextureSampleSnippet(glsl){return` float sampleTexture(sampler2D textureSampler, vec2 uv) { return ${glsl.texture2D}(textureSampler, uv).r; } `}function getFloatTextureSetRSnippet(glsl){return` void setOutput(float val) { ${glsl.output} = vec4(val, 0, 0, 0); } `}function getFloatTextureSetRGBASnippet(glsl){return` void setOutput(vec4 val) { ${glsl.output} = val; } `}function getShaderPrefix(glsl){let SHADER_PREFIX=`${glsl.version} precision highp float; precision highp int; precision highp sampler2D; ${glsl.varyingFs} vec2 resultUV; ${glsl.defineOutput} const vec2 halfCR = vec2(0.5, 0.5); struct ivec5 { int x; int y; int z; int w; int u; }; struct ivec6 { int x; int y; int z; int w; int u; int v; }; uniform float NAN; ${glsl.defineSpecialNaN} ${glsl.defineSpecialInf} ${glsl.defineRound} int imod(int x, int y) { return x - y * (x / y); } int idiv(int a, int b, float sign) { int res = a / b; int mod = imod(a, b); if (sign < 0. && mod != 0) { res -= 1; } return res; } //Based on the work of Dave Hoskins //https://www.shadertoy.com/view/4djSRW #define HASHSCALE1 443.8975 float random(float seed){ vec2 p = resultUV * seed; vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1); p3 += dot(p3, p3.yzx + 19.19); return fract((p3.x + p3.y) * p3.z); } ${SAMPLE_1D_SNIPPET} ${SAMPLE_2D_SNIPPET} ${SAMPLE_3D_SNIPPET} `;return SHADER_PREFIX}var SAMPLE_1D_SNIPPET=` vec2 uvFromFlat(int texNumR, int texNumC, int index) { int texR = index / texNumC; int texC = index - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } vec2 packedUVfrom1D(int texNumR, int texNumC, int index) { int texelIndex = index / 2; int texR = texelIndex / texNumC; int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } `,SAMPLE_2D_SNIPPET=` vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR, int texNumC, int row, int col) { int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2); int texR = texelIndex / texNumC; int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } `,SAMPLE_3D_SNIPPET=` vec2 packedUVfrom3D(int texNumR, int texNumC, int texelsInBatch, int texelsInLogicalRow, int b, int row, int col) { int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2); int texR = index / texNumC; int texC = index - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } `,SHADER_PACKED_PREFIX=` float getChannel(vec4 frag, vec2 innerDims) { vec2 modCoord = mod(innerDims, 2.); return modCoord.x == 0. ? (modCoord.y == 0. ? frag.r : frag.g) : (modCoord.y == 0. ? frag.b : frag.a); } float getChannel(vec4 frag, int dim) { float modCoord = mod(float(dim), 2.); return modCoord == 0. ? frag.r : frag.g; } `;function getOutputScalarCoords(){return` int getOutputCoords() { return 0; } `}function getOutputPacked1DCoords(shape,texShape){let packedTexShape=[Math.ceil(texShape[0]/2),Math.ceil(texShape[1]/2)];return packedTexShape[0]===1?` int getOutputCoords() { return 2 * int(resultUV.x * ${packedTexShape[1]}.0); } `:packedTexShape[1]===1?` int getOutputCoords() { return 2 * int(resultUV.y * ${packedTexShape[0]}.0); } `:` int getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${packedTexShape[0]}, ${packedTexShape[1]})); return 2 * (resTexRC.x * ${packedTexShape[1]} + resTexRC.y); } `}function getOutput1DCoords(shape,texShape){return texShape[0]===1?` int getOutputCoords() { return int(resultUV.x * ${texShape[1]}.0); } `:texShape[1]===1?` int getOutputCoords() { return int(resultUV.y * ${texShape[0]}.0); } `:` int getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${texShape[0]}, ${texShape[1]})); return resTexRC.x * ${texShape[1]} + resTexRC.y; } `}function getOutputPacked3DCoords(shape,texShape){let packedTexShape=[Math.ceil(texShape[0]/2),Math.ceil(texShape[1]/2)],texelsInLogicalRow=Math.ceil(shape[2]/2),texelsInBatch=texelsInLogicalRow*Math.ceil(shape[1]/2);return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${packedTexShape[0]}, ${packedTexShape[1]})); int index = resTexRC.x * ${packedTexShape[1]} + resTexRC.y; int b = index / ${texelsInBatch}; index -= b * ${texelsInBatch}; int r = 2 * (index / ${texelsInLogicalRow}); int c = imod(index, ${texelsInLogicalRow}) * 2; return ivec3(b, r, c); } `}function getOutput3DCoords(shape,texShape){let coordsFromIndexSnippet=getLogicalCoordinatesFromFlatIndex(["r","c","d"],shape);return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${texShape[0]}, ${texShape[1]})); int index = resTexRC.x * ${texShape[1]} + resTexRC.y; ${coordsFromIndexSnippet} return ivec3(r, c, d); } `}function getOutputPackedNDCoords(shape,texShape){let packedTexShape=[Math.ceil(texShape[0]/2),Math.ceil(texShape[1]/2)],texelsInLogicalRow=Math.ceil(shape[shape.length-1]/2),texelsInBatch=texelsInLogicalRow*Math.ceil(shape[shape.length-2]/2),texelsInBatchN=texelsInBatch,batches="",coords2="b, r, c";for(let b=2;b=1?coordsSnippet="coords = 0;":coordsSnippet=broadcastDims.map(d=>`coords.${fields[d+rankDiff]} = 0;`).join(` `);let unpackedCoordsSnippet="";outRank<2&&inRank>0?unpackedCoordsSnippet="coords":unpackedCoordsSnippet=inputInfo.shapeInfo.logicalShape.map((s,i)=>`coords.${fields[i+rankDiff]}`).join(", ");let output="return outputValue;",inSize=util_exports.sizeFromShape(inputInfo.shapeInfo.logicalShape),isInputScalar=inSize===1,outSize=util_exports.sizeFromShape(outShapeInfo.logicalShape),isOutputScalar=outSize===1;if(inRank===1&&!isInputScalar&&!isOutputScalar)output=` return vec4(outputValue.xy, outputValue.xy); `;else if(isInputScalar&&!isOutputScalar)outRank===1?output=` return vec4(outputValue.x, outputValue.x, 0., 0.); `:output=` return vec4(outputValue.x); `;else if(broadcastDims.length){let rows=inRank-2,cols=inRank-1;broadcastDims.indexOf(rows)>-1&&broadcastDims.indexOf(cols)>-1?output="return vec4(outputValue.x);":broadcastDims.indexOf(rows)>-1?output="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":broadcastDims.indexOf(cols)>-1&&(output="return vec4(outputValue.xx, outputValue.zz);")}return` vec4 ${funcName}() { ${type} coords = getOutputCoords(); ${coordsSnippet} vec4 outputValue = get${texFuncSnippet}(${unpackedCoordsSnippet}); ${output} } `}function getSamplerAtOutputCoords(inputInfo,outShapeInfo){let texName=inputInfo.name,texFuncSnippet=texName.charAt(0).toUpperCase()+texName.slice(1),funcName="get"+texFuncSnippet+"AtOutCoords",outTexShape=outShapeInfo.texShape,inTexShape=inputInfo.shapeInfo.texShape,inRank=inputInfo.shapeInfo.logicalShape.length,outRank=outShapeInfo.logicalShape.length;if(!inputInfo.shapeInfo.isUniform&&inRank===outRank&&inputInfo.shapeInfo.flatOffset==null&&util_exports.arraysEqual(inTexShape,outTexShape))return` float ${funcName}() { return sampleTexture(${texName}, resultUV); } `;let type=getCoordsDataType(outRank),broadcastDims=getBroadcastDims2(inputInfo.shapeInfo.logicalShape,outShapeInfo.logicalShape),rankDiff=outRank-inRank,coordsSnippet,fields=["x","y","z","w","u","v"];inRank===0?coordsSnippet="":outRank<2&&broadcastDims.length>=1?coordsSnippet="coords = 0;":coordsSnippet=broadcastDims.map(d=>`coords.${fields[d+rankDiff]} = 0;`).join(` `);let unpackedCoordsSnippet="";return outRank<2&&inRank>0?unpackedCoordsSnippet="coords":unpackedCoordsSnippet=inputInfo.shapeInfo.logicalShape.map((s,i)=>`coords.${fields[i+rankDiff]}`).join(", "),` float ${funcName}() { ${type} coords = getOutputCoords(); ${coordsSnippet} return get${texFuncSnippet}(${unpackedCoordsSnippet}); } `}function getCoordsDataType(rank){if(rank<=1)return"int";if(rank===2)return"ivec2";if(rank===3)return"ivec3";if(rank===4)return"ivec4";if(rank===5)return"ivec5";if(rank===6)return"ivec6";throw Error(`GPU for rank ${rank} is not yet supported`)}function squeezeInputInfo(inInfo,squeezedShape){let newInputInfo=JSON.parse(JSON.stringify(inInfo));return newInputInfo.shapeInfo.logicalShape=squeezedShape,newInputInfo}function getSqueezedParams(params,keptDims){return keptDims.map(d=>params[d]).join(", ")}var ArgMinMaxPackedProgram=class{constructor(shape,windowSize,op2,firstPass){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,util_exports.assert(shape.length>2,()=>`Packed arg${op2.charAt(0).toUpperCase()+op2.slice(1)} supports only inputs with rank above 2.`);let inSize=shape[shape.length-1],outSize=Math.ceil(inSize/windowSize);this.outputShape=shape.slice(0,-1),outSize>1&&this.outputShape.push(outSize),firstPass||this.variableNames.push("bestIndicesA");let outShape=this.outputShape,rank=outShape.length,dtype=getCoordsDataType(rank),coords2=getChannels("coords",rank),sourceLocSetup,sourceRank;if(outSize===1){sourceRank=rank+1;let sourceLocDType=getCoordsDataType(sourceRank);sourceLocSetup=` ${sourceLocDType} sourceLocR = ${sourceLocDType}(${coords2.join()}, 0); ++${coords2[rank-1]}; ${sourceLocDType} sourceLocG = ${sourceLocDType}(${coords2.join()}, 0); ++${coords2[rank-2]}; ${sourceLocDType} sourceLocA = ${sourceLocDType}(${coords2.join()}, 0); --${coords2[rank-1]}; ${sourceLocDType} sourceLocB = ${sourceLocDType}(${coords2.join()}, 0); --${coords2[rank-2]};`}else sourceRank=rank,sourceLocSetup=` ${dtype} sourceLocR = coords; ++${coords2[rank-1]}; ${dtype} sourceLocG = coords; ++${coords2[rank-2]}; ${dtype} sourceLocA = coords; --${coords2[rank-1]}; ${dtype} sourceLocB = coords; --${coords2[rank-2]};`;let channels=["x","y","z","w","u","v"].slice(0,sourceRank),inChannel="."+channels[sourceRank-1],intChannels=channels.map(x=>"int "+x),srcRCoords=getChannels("sourceLocR",sourceRank-1).concat("inIdx.r"),srcGCoords=getChannels("sourceLocG",sourceRank-1).concat("inIdx.g"),srcBCoords=getChannels("sourceLocB",sourceRank-1).concat("inIdx.b"),srcACoords=getChannels("sourceLocA",sourceRank-1).concat("inIdx.a"),compOp=op2==="max"?"greaterThan":"lessThan",fetchCandidateIdx=firstPass?"":` inIdx = round(vec4(getBestIndicesAChannel(${srcRCoords.join()}), getBestIndicesAChannel(${srcGCoords.join()}), getBestIndicesAChannel(${srcBCoords.join()}), getBestIndicesAChannel(${srcACoords.join()})));`,fetchValue=`vec4( getAChannel(${srcRCoords.join()}), hasNextCol ? getAChannel(${srcGCoords.join()}) : 0., hasNextRow ? getAChannel(${srcBCoords.join()}) : 0., hasNextRow && hasNextCol ? getAChannel(${srcACoords.join()}) : 0.)`,getBestIndicesAChannelSnippet=firstPass?"":` float getBestIndicesAChannel(${intChannels.join()}) { return getChannel(getBestIndicesA(${channels.join()}), vec2(${channels.slice(-2).join()})); }`;this.userCode=` float getAChannel(${intChannels.join()}) { return getChannel(getA(${channels.join()}), vec2(${channels.slice(-2).join()})); } ${getBestIndicesAChannelSnippet} void main() { ${dtype} coords = getOutputCoords(); bool hasNextCol = ${coords2[rank-1]} < ${outShape[rank-1]-1}; bool hasNextRow = ${coords2[rank-2]} < ${outShape[rank-2]-1}; ${sourceLocSetup} ivec4 srcIdx = ivec4(sourceLocR${inChannel}, sourceLocG${inChannel}, sourceLocB${inChannel}, sourceLocA${inChannel}) * ${windowSize}; ivec4 inIdx = srcIdx; vec4 bestIndex = vec4(inIdx); vec4 bestValue = ${fetchValue}; for (int i = 0; i < ${windowSize}; i++) { inIdx = srcIdx; ${fetchCandidateIdx} vec4 candidate = ${fetchValue}; bvec4 nan = isnan(candidate); bvec4 replace = bvec4( vec4(${compOp}(candidate, bestValue)) * (vec4(1.0) - vec4(nan))); bestValue = vec4(replace.x ? candidate.x : bestValue.x, replace.y ? candidate.y : bestValue.y, replace.z ? candidate.z : bestValue.z, replace.w ? candidate.w : bestValue.w); bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace)); srcIdx++; } setOutput(bestIndex); } `}},AvgPool2DBackpropProgram=class{constructor(convInfo){this.variableNames=["dy"],this.outputShape=convInfo.inShape;let filterHeight=convInfo.filterHeight,filterWidth=convInfo.filterWidth,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,dilationHeight=convInfo.dilationHeight,dilationWidth=convInfo.dilationWidth,effectiveFilterHeight=convInfo.effectiveFilterHeight,effectiveFilterWidth=convInfo.effectiveFilterWidth,padTop=effectiveFilterHeight-1-convInfo.padInfo.top,padLeft=effectiveFilterWidth-1-convInfo.padInfo.left,avgMultiplier=1/(filterHeight*filterWidth);this.userCode=` const ivec2 pads = ivec2(${padTop}, ${padLeft}); const float avgMultiplier = float(${avgMultiplier}); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 dyRCCorner = coords.yz - pads; int dyRCorner = dyRCCorner.x; int dyCCorner = dyRCCorner.y; // Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${effectiveFilterHeight}; wR += ${dilationHeight}) { float dyR = float(dyRCorner + wR) / ${strideHeight}.0; if (dyR < 0.0 || dyR >= ${convInfo.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${effectiveFilterWidth}; wC+= ${dilationWidth}) { float dyC = float(dyCCorner + wC) / ${strideWidth}.0; if (dyC < 0.0 || dyC >= ${convInfo.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(b, idyR, idyC, d); dotProd += dyValue * avgMultiplier; } } setOutput(dotProd); } `}},AvgPool3DBackpropProgram=class{constructor(convInfo){this.variableNames=["dy"],this.outputShape=convInfo.inShape;let filterDepth=convInfo.filterDepth,filterHeight=convInfo.filterHeight,filterWidth=convInfo.filterWidth,strideDepth=convInfo.strideDepth,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,dilationDepth=convInfo.dilationDepth,dilationHeight=convInfo.dilationHeight,dilationWidth=convInfo.dilationWidth,effectiveFilterDepth=convInfo.effectiveFilterDepth,effectiveFilterHeight=convInfo.effectiveFilterHeight,effectiveFilterWidth=convInfo.effectiveFilterWidth,padFront=effectiveFilterDepth-1-convInfo.padInfo.front,padTop=effectiveFilterHeight-1-convInfo.padInfo.top,padLeft=effectiveFilterWidth-1-convInfo.padInfo.left,avgMultiplier=1/(filterDepth*filterHeight*filterWidth);this.userCode=` const ivec3 pads = ivec3(${padFront}, ${padTop}, ${padLeft}); const float avgMultiplier = float(${avgMultiplier}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads; int dyDCorner = dyCorner.x; int dyRCorner = dyCorner.y; int dyCCorner = dyCorner.z; // Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get // dx(xD, xR, xC, ch). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wD = 0; wD < ${effectiveFilterDepth}; wD += ${dilationDepth}) { float dyD = float(dyDCorner + wD) / ${strideDepth}.0; if (dyD < 0.0 || dyD >= ${convInfo.outDepth}.0 || fract(dyD) > 0.0) { continue; } int idyD = int(dyD); for (int wR = 0; wR < ${effectiveFilterHeight}; wR += ${dilationHeight}) { float dyR = float(dyRCorner + wR) / ${strideHeight}.0; if (dyR < 0.0 || dyR >= ${convInfo.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${effectiveFilterWidth}; wC += ${dilationWidth}) { float dyC = float(dyCCorner + wC) / ${strideWidth}.0; if (dyC < 0.0 || dyC >= ${convInfo.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(batch, idyD, idyR, idyC, ch); dotProd += dyValue * avgMultiplier; } } } setOutput(dotProd); } `}},CHECK_NAN_SNIPPET=` if (isnan(a)) return a; if (isnan(b)) return b; `,INT_DIV=` float s = sign(a) * sign(b); int ia = round(a); int ib = round(b); if (ib != 0) { // Windows (D3D) wants guaranteed non-zero int division at compile-time. return float(idiv(ia, ib, s)); } else { return NAN; } `,POW=` if(a < 0.0 && floor(b) < b){ return NAN; } if (b == 0.0) { return 1.0; } return (round(mod(b, 2.0)) != 1) ? pow(abs(a), b) : sign(a) * pow(abs(a), b); `,EQUAL="return float(a == b);",LESS="return float(a < b);",LESS_EQUAL="return float(a <= b);",GREATER="return float(a > b);",GREATER_EQUAL="return float(a >= b);",LOGICAL_AND="return float(a >= 1.0 && b >= 1.0);",LOGICAL_OR="return float(a >= 1.0 || b >= 1.0);",MAX=CHECK_NAN_SNIPPET+` return max(a, b); `,MIN=CHECK_NAN_SNIPPET+` return min(a, b); `,MOD=`if (b == 0.0) return NAN; return mod(a, b);`,ELU_DER="return (b >= 1.0) ? a : a * (b + 1.0);",PRELU="return (a < 0.) ? b * a : a;",BinaryOpProgram=class{constructor(op2,aShape,bShape){this.variableNames=["A","B"],this.outputShape=backend_util_exports.assertAndGetBroadcastShape(aShape,bShape),this.userCode=` float binaryOperation(float a, float b) { ${op2} } void main() { float a = getAAtOutCoords(); float b = getBAtOutCoords(); setOutput(binaryOperation(a, b)); } `}},CHECK_NAN_SNIPPET2=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; `,INT_DIV2=` ivec4 ia = round(a); ivec4 ib = round(b); bvec4 cond = notEqual(ib, ivec4(0)); ivec4 result = ivec4(0); vec4 s = sign(a) * sign(b); // Windows (D3D) wants guaranteed non-zero int division at compile-time. if (cond[0]) { result[0] = idiv(ia[0], ib[0], s[0]); } if (cond[1]) { result[1] = idiv(ia[1], ib[1], s[1]); } if (cond[2]) { result[2] = idiv(ia[2], ib[2], s[2]); } if (cond[3]) { result[3] = idiv(ia[3], ib[3], s[3]); } return vec4(result); `,POW2=` // isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise. vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1))); vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1); vec4 result = multiplier * pow(abs(a), b); // Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS bvec4 isExpZero = equal(b, vec4(0.0)); result.r = isExpZero.r ? 1.0 : result.r; result.g = isExpZero.g ? 1.0 : result.g; result.b = isExpZero.b ? 1.0 : result.b; result.a = isExpZero.a ? 1.0 : result.a; vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b)); `+CHECK_NAN_SNIPPET2+` return result; `,PRELU2=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); `,ELU_DER2=` vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.))); return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0)))); `,EQUAL2=` return vec4(equal(a, b)); `,LESS2=` return vec4(lessThan(a, b)); `,LESS_EQUAL2=` return vec4(lessThanEqual(a, b)); `,GREATER2=` return vec4(greaterThan(a, b)); `,GREATER_EQUAL2=` return vec4(greaterThanEqual(a, b)); `,LOGICAL_AND2=` return vec4( vec4(greaterThanEqual(a, vec4(1.0))) * vec4(greaterThanEqual(b, vec4(1.0)))); `,LOGICAL_OR2=` return min( vec4(greaterThanEqual(a, vec4(1.0))) + vec4(greaterThanEqual(b, vec4(1.0))), vec4(1.0)); `,MAX2=` vec4 result = vec4(max(a, b)); vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0)); `+CHECK_NAN_SNIPPET2+` return result; `,MIN2=` vec4 result = vec4(min(a, b)); vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0)); `+CHECK_NAN_SNIPPET2+` return result; `,MOD2=` vec4 result = mod(a, b); vec4 isNaN = vec4(equal(b, vec4(0.0))); `+CHECK_NAN_SNIPPET2+` return result; `,BinaryOpPackedProgram=class{constructor(op2,aShape,bShape,checkOutOfBounds=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=backend_util_exports.assertAndGetBroadcastShape(aShape,bShape);let rank=this.outputShape.length,checkOutOfBoundsString="";if(checkOutOfBounds)if(rank===0||util_exports.sizeFromShape(this.outputShape)===1)checkOutOfBoundsString=` result.y = 0.; result.z = 0.; result.w = 0.; `;else{let dtype=getCoordsDataType(rank);if(checkOutOfBoundsString=` ${dtype} coords = getOutputCoords(); `,rank===1)checkOutOfBoundsString+=` result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y; result.z = 0.; result.w = 0.; `;else{let channels=getChannels("coords",rank);checkOutOfBoundsString+=` bool nextRowOutOfBounds = (${channels[rank-2]} + 1) >= ${this.outputShape[rank-2]}; bool nextColOutOfBounds = (${channels[rank-1]} + 1) >= ${this.outputShape[rank-1]}; result.y = nextColOutOfBounds ? 0. : result.y; result.z = nextRowOutOfBounds ? 0. : result.z; result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w; `}}this.userCode=` vec4 binaryOperation(vec4 a, vec4 b) { ${op2} } void main() { vec4 a = getAAtOutCoords(); vec4 b = getBAtOutCoords(); vec4 result = binaryOperation(a, b); ${checkOutOfBoundsString} setOutput(result); } `}},ClipProgram=class{constructor(aShape){this.variableNames=["A"],this.outputShape=aShape,this.userCode=` uniform float minVal; uniform float maxVal; void main() { float value = getAAtOutCoords(); if (isnan(value)) { setOutput(value); return; } setOutput(clamp(value, minVal, maxVal)); } `}getCustomSetupFunc(min8,max10){return(gpgpu,webGLProgram)=>{this.minLoc==null&&(this.minLoc=gpgpu.getUniformLocationNoThrow(webGLProgram,"minVal"),this.maxLoc=gpgpu.getUniformLocationNoThrow(webGLProgram,"maxVal")),gpgpu.gl.uniform1f(this.minLoc,min8),gpgpu.gl.uniform1f(this.maxLoc,max10)}}},ClipPackedProgram=class{constructor(aShape){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=aShape,this.userCode=` uniform float minVal; uniform float maxVal; void main() { vec4 value = getAAtOutCoords(); if (any(isnan(value))) { setOutput(value); return; } setOutput(clamp(value, vec4(minVal), vec4(maxVal))); } `}getCustomSetupFunc(min8,max10){return(gpgpu,webGLProgram)=>{this.minLoc==null&&(this.minLoc=gpgpu.getUniformLocationNoThrow(webGLProgram,"minVal"),this.maxLoc=gpgpu.getUniformLocationNoThrow(webGLProgram,"maxVal")),gpgpu.gl.uniform1f(this.minLoc,min8),gpgpu.gl.uniform1f(this.maxLoc,max10)}}},ComplexAbsProgram=class{constructor(shape){this.variableNames=["real","imag"],this.outputShape=shape,this.userCode=` void main() { float re = abs(getRealAtOutCoords()); float im = abs(getImagAtOutCoords()); float mx = max(re, im); // sadly the length function in glsl is not underflow-safe // (at least not on Intel GPUs). So the safe solution is // to ensure underflow-safety in all cases. setOutput( mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx)) ); } `}},Conv2DDerFilterProgram=class{constructor(convInfo){this.variableNames=["x","dy"],this.outputShape=convInfo.filterShape;let strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,padTop=convInfo.padInfo.top,padLeft=convInfo.padInfo.left,isChannelsLast=convInfo.dataFormat==="channelsLast";this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; int wC = coords.y; int d1 = coords.z; int d2 = coords.w; // Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int b = 0; b < ${convInfo.batchSize}; b++) { for (int yR = 0; yR < ${convInfo.outHeight}; yR++) { int xR = wR + yR * ${strideHeight} - ${padTop}; if (xR < 0 || xR >= ${convInfo.inHeight}) { continue; } for (int yC = 0; yC < ${convInfo.outWidth}; yC++) { int xC = wC + yC * ${strideWidth} - ${padLeft}; if (xC < 0 || xC >= ${convInfo.inWidth}) { continue; } if (${isChannelsLast}) { float dyValue = getDy(b, yR, yC, d2); float xValue = getX(b, xR, xC, d1); dotProd += (xValue * dyValue); } else { float dyValue = getDy(b, d2, yR, yC); float xValue = getX(b, d1, xR, xC); dotProd += (xValue * dyValue); } } } } setOutput(dotProd); } `}},Conv2DDerInputProgram=class{constructor(convInfo){this.variableNames=["dy","W"],this.outputShape=convInfo.inShape;let filterHeight=convInfo.filterHeight,filterWidth=convInfo.filterWidth,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,isChannelsLast=convInfo.dataFormat==="channelsLast",padTop=filterHeight-1-convInfo.padInfo.top,padLeft=filterWidth-1-convInfo.padInfo.left,rowDim=isChannelsLast?1:2,colDim=isChannelsLast?2:3,channelDim=isChannelsLast?3:1;this.userCode=` const ivec2 pads = ivec2(${padTop}, ${padLeft}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d1 = coords[${channelDim}]; ivec2 dyCorner = ivec2(coords[${rowDim}], coords[${colDim}]) - pads; int dyRCorner = dyCorner.x; int dyCCorner = dyCorner.y; // Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${filterHeight}; wR++) { float dyR = float(dyRCorner + wR) / ${strideHeight}.0; if (dyR < 0.0 || dyR >= ${convInfo.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); int wRPerm = ${filterHeight} - 1 - wR; for (int wC = 0; wC < ${filterWidth}; wC++) { float dyC = float(dyCCorner + wC) / ${strideWidth}.0; if (dyC < 0.0 || dyC >= ${convInfo.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); int wCPerm = ${filterWidth} - 1 - wC; for (int d2 = 0; d2 < ${convInfo.outChannels}; d2++) { if (${isChannelsLast}) { float xValue = getDy(batch, idyR, idyC, d2); float wValue = getW(wRPerm, wCPerm, d1, d2); dotProd += xValue * wValue; } else { float xValue = getDy(batch, d2, idyR, idyC); float wValue = getW(wRPerm, wCPerm, d1, d2); dotProd += xValue * wValue; } } } } setOutput(dotProd); } `}},Conv3DDerFilterProgram=class{constructor(convInfo){this.variableNames=["x","dy"],this.outputShape=convInfo.filterShape;let strideDepth=convInfo.strideDepth,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,padFront=convInfo.padInfo.front,padTop=convInfo.padInfo.top,padLeft=convInfo.padInfo.left;this.userCode=` void main() { ivec5 coords = getOutputCoords(); int wF = coords.x; int wR = coords.y; int wC = coords.z; int d1 = coords.w; int d2 = coords.u; float dotProd = 0.0; for (int b = 0; b < ${convInfo.batchSize}; b++) { for (int yF = 0; yF < ${convInfo.outDepth}; yF++) { int xF = wF + yF * ${strideDepth} - ${padFront}; if (xF < 0 || xF >= ${convInfo.inDepth}) { continue; } for (int yR = 0; yR < ${convInfo.outHeight}; yR++) { int xR = wR + yR * ${strideHeight} - ${padTop}; if (xR < 0 || xR >= ${convInfo.inHeight}) { continue; } for (int yC = 0; yC < ${convInfo.outWidth}; yC++) { int xC = wC + yC * ${strideWidth} - ${padLeft}; if (xC < 0 || xC >= ${convInfo.inWidth}) { continue; } float dyValue = getDy(b, yF, yR, yC, d2); float xValue = getX(b, xF, xR, xC, d1); dotProd += (xValue * dyValue); } } } } setOutput(dotProd); } `}},Conv3DDerInputProgram=class{constructor(convInfo){this.variableNames=["dy","W"],this.outputShape=convInfo.inShape;let filterDepth=convInfo.filterDepth,filterHeight=convInfo.filterHeight,filterWidth=convInfo.filterWidth,strideDepth=convInfo.strideDepth,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,padFront=filterDepth-1-convInfo.padInfo.front,padTop=filterHeight-1-convInfo.padInfo.top,padLeft=filterWidth-1-convInfo.padInfo.left;this.userCode=` const ivec3 pads = ivec3(${padFront}, ${padTop}, ${padLeft}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int d1 = coords.u; ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads; int dyFCorner = dyCorner.x; int dyRCorner = dyCorner.y; int dyCCorner = dyCorner.z; float dotProd = 0.0; for (int wF = 0; wF < ${filterDepth}; wF++) { float dyF = float(dyFCorner + wF) / ${strideDepth}.0; if (dyF < 0.0 || dyF >= ${convInfo.outDepth}.0 || fract(dyF) > 0.0) { continue; } int idyF = int(dyF); int wFPerm = ${filterDepth} - 1 - wF; for (int wR = 0; wR < ${filterHeight}; wR++) { float dyR = float(dyRCorner + wR) / ${strideHeight}.0; if (dyR < 0.0 || dyR >= ${convInfo.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); int wRPerm = ${filterHeight} - 1 - wR; for (int wC = 0; wC < ${filterWidth}; wC++) { float dyC = float(dyCCorner + wC) / ${strideWidth}.0; if (dyC < 0.0 || dyC >= ${convInfo.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); int wCPerm = ${filterWidth} - 1 - wC; for (int d2 = 0; d2 < ${convInfo.outChannels}; d2++) { float xValue = getDy(batch, idyF, idyR, idyC, d2); float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2); dotProd += xValue * wValue; } } } } setOutput(dotProd); } `}},DepthwiseConv2DDerFilterProgram=class{constructor(convInfo){this.variableNames=["x","dy"],this.outputShape=convInfo.filterShape;let strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,padTop=convInfo.padInfo.top,padLeft=convInfo.padInfo.left,channelMul=convInfo.outChannels/convInfo.inChannels;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; int wC = coords.y; int d1 = coords.z; int dm = coords.w; int d2 = d1 * ${channelMul} + dm; float dotProd = 0.0; // TO DO: Vec4 over the batch size for (int b = 0; b < ${convInfo.batchSize}; b++) { for (int yR = 0; yR < ${convInfo.outHeight}; yR++) { int xR = wR + yR * ${strideHeight} - ${padTop}; if (xR < 0 || xR >= ${convInfo.inHeight}) { continue; } for (int yC = 0; yC < ${convInfo.outWidth}; yC++) { int xC = wC + yC * ${strideWidth} - ${padLeft}; if (xC < 0 || xC >= ${convInfo.inWidth}) { continue; } float dyValue = getDy(b, yR, yC, d2); float xValue = getX(b, xR, xC, d1); dotProd += (xValue * dyValue); } } } setOutput(dotProd); } `}},DepthwiseConv2DDerInputProgram=class{constructor(convInfo){this.variableNames=["dy","W"],this.outputShape=convInfo.inShape;let filterHeight=convInfo.filterHeight,filterWidth=convInfo.filterWidth,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,padTop=filterHeight-1-convInfo.padInfo.top,padLeft=filterWidth-1-convInfo.padInfo.left,channelMul=convInfo.outChannels/convInfo.inChannels;this.userCode=` const ivec2 pads = ivec2(${padTop}, ${padLeft}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d1 = coords[3]; ivec2 dyCorner = coords.yz - pads; int dyRCorner = dyCorner.x; int dyCCorner = dyCorner.y; float dotProd = 0.0; for (int wR = 0; wR < ${filterHeight}; wR++) { float dyR = float(dyRCorner + wR) / ${strideHeight}.0; if (dyR < 0.0 || dyR >= ${convInfo.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); int wRPerm = ${filterHeight} - 1 - wR; for (int wC = 0; wC < ${filterWidth}; wC++) { float dyC = float(dyCCorner + wC) / ${strideWidth}.0; if (dyC < 0.0 || dyC >= ${convInfo.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); int wCPerm = ${filterWidth} - 1 - wC; // TO DO: Vec4 over the channelMul for (int dm = 0; dm < ${channelMul}; dm++) { int d2 = d1 * ${channelMul} + dm; float xValue = getDy(batch, idyR, idyC, d2); float wValue = getW(wRPerm, wCPerm, d1, dm); dotProd += xValue * wValue; } } } setOutput(dotProd); } `}},Conv2DProgram=class{constructor(convInfo,addBias=!1,activation2=null,hasPreluActivationWeights=!1){this.variableNames=["x","W"],this.outputShape=convInfo.outShape;let padTop=convInfo.padInfo.top,padLeft=convInfo.padInfo.left,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,dilationHeight=convInfo.dilationHeight,dilationWidth=convInfo.dilationWidth,filterHeight=convInfo.filterHeight,filterWidth=convInfo.filterWidth,inputDepthNearestVec4=Math.floor(convInfo.inChannels/4)*4,inputDepthVec4Remainder=convInfo.inChannels%4,isChannelsLast=convInfo.dataFormat==="channelsLast",rowDim=isChannelsLast?1:2,colDim=isChannelsLast?2:3,channelDim=isChannelsLast?3:1,activationSnippet="",applyActivationSnippet="";activation2&&(hasPreluActivationWeights?activationSnippet=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${activation2} }`:activationSnippet=` float activation(float x) { ${activation2} } `,applyActivationSnippet="result = activation(result);");let addBiasSnippet=addBias?"result += getBiasAtOutCoords();":"";addBias&&this.variableNames.push("bias"),hasPreluActivationWeights&&this.variableNames.push("preluActivationWeights"),this.userCode=` ${activationSnippet} const ivec2 strides = ivec2(${strideHeight}, ${strideWidth}); const ivec2 pads = ivec2(${padTop}, ${padLeft}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d2 = coords[${channelDim}]; ivec2 xRCCorner = ivec2(coords[${rowDim}], coords[${colDim}]) * strides - pads; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${filterHeight}; wR++) { int xR = xRCorner + wR * ${dilationHeight}; if (xR < 0 || xR >= ${convInfo.inHeight}) { continue; } for (int wC = 0; wC < ${filterWidth}; wC++) { int xC = xCCorner + wC * ${dilationWidth}; if (xC < 0 || xC >= ${convInfo.inWidth}) { continue; } for (int d1 = 0; d1 < ${inputDepthNearestVec4}; d1 += 4) { vec4 wValues = vec4( getW(wR, wC, d1, d2), getW(wR, wC, d1 + 1, d2), getW(wR, wC, d1 + 2, d2), getW(wR, wC, d1 + 3, d2) ); if (${isChannelsLast}) { vec4 xValues = vec4( getX(batch, xR, xC, d1), getX(batch, xR, xC, d1 + 1), getX(batch, xR, xC, d1 + 2), getX(batch, xR, xC, d1 + 3) ); dotProd += dot(xValues, wValues); } else { vec4 xValues = vec4( getX(batch, d1, xR, xC), getX(batch, d1 + 1, xR, xC), getX(batch, d1 + 2, xR, xC), getX(batch, d1 + 3, xR, xC) ); dotProd += dot(xValues, wValues); } } if (${inputDepthVec4Remainder===1}) { if (${isChannelsLast}) { dotProd += getX(batch, xR, xC, ${inputDepthNearestVec4}) * getW(wR, wC, ${inputDepthNearestVec4}, d2); } else { dotProd += getX(batch, ${inputDepthNearestVec4}, xR, xC) * getW(wR, wC, ${inputDepthNearestVec4}, d2); } } else if (${inputDepthVec4Remainder===2}) { vec2 wValues = vec2( getW(wR, wC, ${inputDepthNearestVec4}, d2), getW(wR, wC, ${inputDepthNearestVec4} + 1, d2) ); if (${isChannelsLast}) { vec2 xValues = vec2( getX(batch, xR, xC, ${inputDepthNearestVec4}), getX(batch, xR, xC, ${inputDepthNearestVec4} + 1) ); dotProd += dot(xValues, wValues); } else { vec2 xValues = vec2( getX(batch, ${inputDepthNearestVec4}, xR, xC), getX(batch, ${inputDepthNearestVec4} + 1, xR, xC) ); dotProd += dot(xValues, wValues); } } else if (${inputDepthVec4Remainder===3}) { vec3 wValues = vec3( getW(wR, wC, ${inputDepthNearestVec4}, d2), getW(wR, wC, ${inputDepthNearestVec4} + 1, d2), getW(wR, wC, ${inputDepthNearestVec4} + 2, d2) ); if (${isChannelsLast}) { vec3 xValues = vec3( getX(batch, xR, xC, ${inputDepthNearestVec4}), getX(batch, xR, xC, ${inputDepthNearestVec4} + 1), getX(batch, xR, xC, ${inputDepthNearestVec4} + 2) ); dotProd += dot(xValues, wValues); } else { vec3 xValues = vec3( getX(batch, ${inputDepthNearestVec4}, xR, xC), getX(batch, ${inputDepthNearestVec4} + 1, xR, xC), getX(batch, ${inputDepthNearestVec4} + 2, xR, xC) ); dotProd += dot(xValues, wValues); } } } } float result = dotProd; ${addBiasSnippet} ${applyActivationSnippet} setOutput(result); } `}},Conv3DProgram=class{constructor(convInfo){this.variableNames=["x","W"],this.outputShape=convInfo.outShape;let padFront=convInfo.padInfo.front,padTop=convInfo.padInfo.top,padLeft=convInfo.padInfo.left,strideDepth=convInfo.strideDepth,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,dilationDepth=convInfo.dilationDepth,dilationHeight=convInfo.dilationHeight,dilationWidth=convInfo.dilationWidth,filterDepth=convInfo.filterDepth,filterHeight=convInfo.filterHeight,filterWidth=convInfo.filterWidth,inputDepthNearestVec4=Math.floor(convInfo.inChannels/4)*4,inputDepthVec4Remainder=convInfo.inChannels%4;this.userCode=` const ivec3 strides = ivec3(${strideDepth}, ${strideHeight}, ${strideWidth}); const ivec3 pads = ivec3(${padFront}, ${padTop}, ${padLeft}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int d2 = coords.u; ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads; int xFCorner = xFRCCorner.x; int xRCorner = xFRCCorner.y; int xCCorner = xFRCCorner.z; // Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get // y(yF, yR, yC, d2). ? = to be determined. : = across all // values in that axis. float dotProd = 0.0; for (int wF = 0; wF < ${filterDepth}; wF++) { int xF = xFCorner + wF * ${dilationDepth}; if (xF < 0 || xF >= ${convInfo.inDepth}) { continue; } for (int wR = 0; wR < ${filterHeight}; wR++) { int xR = xRCorner + wR * ${dilationHeight}; if (xR < 0 || xR >= ${convInfo.inHeight}) { continue; } for (int wC = 0; wC < ${filterWidth}; wC++) { int xC = xCCorner + wC * ${dilationWidth}; if (xC < 0 || xC >= ${convInfo.inWidth}) { continue; } for (int d1 = 0; d1 < ${inputDepthNearestVec4}; d1 += 4) { vec4 xValues = vec4( getX(batch, xF, xR, xC, d1), getX(batch, xF, xR, xC, d1 + 1), getX(batch, xF, xR, xC, d1 + 2), getX(batch, xF, xR, xC, d1 + 3) ); vec4 wValues = vec4( getW(wF, wR, wC, d1, d2), getW(wF, wR, wC, d1 + 1, d2), getW(wF, wR, wC, d1 + 2, d2), getW(wF, wR, wC, d1 + 3, d2) ); dotProd += dot(xValues, wValues); } if (${inputDepthVec4Remainder===1}) { dotProd += getX(batch, xF, xR, xC, ${inputDepthNearestVec4}) * getW(wF, wR, wC, ${inputDepthNearestVec4}, d2); } else if (${inputDepthVec4Remainder===2}) { vec2 xValues = vec2( getX(batch, xF, xR, xC, ${inputDepthNearestVec4}), getX(batch, xF, xR, xC, ${inputDepthNearestVec4} + 1) ); vec2 wValues = vec2( getW(wF, wR, wC, ${inputDepthNearestVec4}, d2), getW(wF, wR, wC, ${inputDepthNearestVec4} + 1, d2) ); dotProd += dot(xValues, wValues); } else if (${inputDepthVec4Remainder===3}) { vec3 xValues = vec3( getX(batch, xF, xR, xC, ${inputDepthNearestVec4}), getX(batch, xF, xR, xC, ${inputDepthNearestVec4} + 1), getX(batch, xF, xR, xC, ${inputDepthNearestVec4} + 2) ); vec3 wValues = vec3( getW(wF, wR, wC, ${inputDepthNearestVec4}, d2), getW(wF, wR, wC, ${inputDepthNearestVec4} + 1, d2), getW(wF, wR, wC, ${inputDepthNearestVec4} + 2, d2) ); dotProd += dot(xValues, wValues); } } } } setOutput(dotProd); } `}},DepthwiseConv2DProgram=class{constructor(convInfo,addBias=!1,activation2=null,hasPreluActivation=!1){this.variableNames=["x","W"],this.outputShape=convInfo.outShape;let xNumRows=convInfo.inHeight,xNumCols=convInfo.inWidth,padTop=convInfo.padInfo.top,padLeft=convInfo.padInfo.left,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,dilationHeight=convInfo.dilationHeight,dilationWidth=convInfo.dilationWidth,filterHeight=convInfo.filterHeight,filterWidth=convInfo.filterWidth,channelMul=convInfo.outChannels/convInfo.inChannels,activationSnippet="",applyActivationSnippet="";activation2&&(hasPreluActivation?activationSnippet=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${activation2} }`:activationSnippet=` float activation(float x) { ${activation2} } `,applyActivationSnippet="result = activation(result);");let addBiasSnippet=addBias?"result += getBiasAtOutCoords();":"";addBias&&this.variableNames.push("bias"),hasPreluActivation&&this.variableNames.push("preluActivationWeights"),this.userCode=` ${activationSnippet} const ivec2 strides = ivec2(${strideHeight}, ${strideWidth}); const ivec2 pads = ivec2(${padTop}, ${padLeft}); void main() { ivec4 coords = getOutputCoords(); int batch = coords.x; ivec2 xRCCorner = coords.yz * strides - pads; int d2 = coords.w; int d1 = d2 / ${channelMul}; int q = d2 - d1 * ${channelMul}; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; // TO DO(dsmilkov): Flatten the two for loops and vec4 the operations. for (int wR = 0; wR < ${filterHeight}; wR++) { int xR = xRCorner + wR * ${dilationHeight}; if (xR < 0 || xR >= ${xNumRows}) { continue; } for (int wC = 0; wC < ${filterWidth}; wC++) { int xC = xCCorner + wC * ${dilationWidth}; if (xC < 0 || xC >= ${xNumCols}) { continue; } float xVal = getX(batch, xR, xC, d1); float wVal = getW(wR, wC, d1, q); dotProd += xVal * wVal; } } float result = dotProd; ${addBiasSnippet} ${applyActivationSnippet} setOutput(result); } `}},DepthwiseConvPacked2DProgram=class{constructor(convInfo,addBias=!1,activation2=null,hasPreluActivation=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=convInfo.outShape;let xNumRows=convInfo.inHeight,xNumCols=convInfo.inWidth,padTop=convInfo.padInfo.top,padLeft=convInfo.padInfo.left,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,dilationHeight=convInfo.dilationHeight,dilationWidth=convInfo.dilationWidth,filterHeight=convInfo.filterHeight,filterWidth=convInfo.filterWidth,texelsAcross=filterWidth,mainLoop="int xR; int xC; int xCOffset;";for(let r=0;r= 0 && xR < ${xNumRows} && xCOffset >= 0 && xCOffset < ${xNumCols}) { xTexelR${r}C${c} = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if(xCOffset + 1 >= ${xNumCols}) { xTexelR${r}C${c}.zw = vec2(0.); } } else { xTexelR${r}C${c} = vec4(0.); } xCOffset = xC + 1 - 2; if(xR >= 0 && xR < ${xNumRows} && xCOffset >= 0 && xCOffset < ${xNumCols}) { vec4 previous = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if(xCOffset + 1 >= ${xNumCols}) { previous.zw = vec2(0.); } xR${r}C${c} = vec4(previous.zw, xTexelR${r}C${c}.xy); } else { xR${r}C${c} = vec4(0, 0, xTexelR${r}C${c}.xy); } `:mainLoop+=` if(xR >= 0 && xR < ${xNumRows} && xC >= 0 && xC < ${xNumCols}) { xTexelR${r}C${c} = getX(batch, xR, xC, d1); } else { xTexelR${r}C${c} = vec4(0.); } xR${r}C${c} = xTexelR${r}C${c}; `,c+1= 0 && xR < ${xNumRows} && xCOffset >= 0 && xCOffset < ${xNumCols}) { xTexelR${r}C${c+2} = getX(batch, xR, xCOffset, d1); } `,dilationWidth>1&&(mainLoop+=` xCOffset -= 2; if(xR >= 0 && xR < ${xNumRows} && xCOffset >= 0 && xCOffset < ${xNumCols}) { xTexelR${r}C${c} = getX(batch, xR, xCOffset, d1); } else { xTexelR${r}C${c} = vec4(0.); } `),mainLoop+=` xR${r}C${c+1} = vec4( xTexelR${r}C${c}.zw, xTexelR${r}C${c+2}.xy); `):mainLoop+=` xCOffset = xC + ${nextTexelOffset}; if(xR >= 0 && xR < ${xNumRows} && xCOffset >= 0 && xCOffset < ${xNumCols}) { xTexelR${r}C${c+2} = getX(batch, xR, xCOffset, d1); } xR${r}C${c+1} = xTexelR${r}C${c+2}; `}}else c= 0 && xR < ${xNumRows}) { `,padLeft%2===1?(mainLoop+=` xCOffset = xC + 1 - ${strideWidth}; if(xCOffset >= 0 && xCOffset < ${xNumCols}) { xTexelR${r}C${c} = getX(batch, xR, xCOffset, d1); } else { xTexelR${r}C${c} = vec4(0.); } if(xC + 1 >= 0 && xC + 1 < ${xNumCols}) { xTexelR${r}C${c+2} = getX(batch, xR, xC + 1, d1); } else { xTexelR${r}C${c+2} = vec4(0.); } xR${r}C${c} = vec4( xTexelR${r}C${c}.zw, xTexelR${r}C${c+2}.zw); `,c+1= 0 && xCOffset < ${xNumCols}) { final = getX(batch, xR, xCOffset, d1); } xR${r}C${c+1} = vec4(xTexelR${r}C${c+2}.xy, final.xy); `)):(mainLoop+=` if(xC >= 0 && xC < ${xNumCols}) { xTexelR${r}C${c} = getX(batch, xR, xC, d1); } else { xTexelR${r}C${c} = vec4(0.); } xCOffset = xC + ${strideWidth}; if(xCOffset >= 0 && xCOffset < ${xNumCols}) { xTexelR${r}C${c+2} = getX(batch, xR, xCOffset, d1); } else { xTexelR${r}C${c+2} = vec4(0.); } xR${r}C${c} = vec4( xTexelR${r}C${c}.xy, xTexelR${r}C${c+2}.xy); `,c+11?[`${(imageHeight-1)/(cropHeight-1)}`,"(y2-y1) * height_ratio",`y1*${inputHeightFloat} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${inputHeightFloat}`],[widthRatio,widthScale,inX]=cropWidth>1?[`${(imageWidth-1)/(cropWidth-1)}`,"(x2-x1) * width_ratio",`x1*${inputWidthFloat} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${inputWidthFloat}`];this.userCode=` const float height_ratio = float(${heightRatio}); const float width_ratio = float(${widthRatio}); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int y = coords[1]; int x = coords[2]; int d = coords[3]; // get box vals float y1 = getBoxes(b,0); float x1 = getBoxes(b,1); float y2 = getBoxes(b,2); float x2 = getBoxes(b,3); // get image in batch index int bInd = round(getBoxInd(b)); if(bInd < 0 || bInd >= ${batch}) { return; } float height_scale = ${heightScale}; float width_scale = ${widthScale}; float in_y = ${inY}; if( in_y < 0.0 || in_y > ${inputHeightFloat} ) { setOutput(float(${extrapolationValue})); return; } float in_x = ${inX}; if( in_x < 0.0 || in_x > ${inputWidthFloat} ) { setOutput(float(${extrapolationValue})); return; } vec2 sourceFracIndexCR = vec2(in_x,in_y); if(${methodId} == 1) { // Compute the four integer indices. ivec2 sourceFloorCR = ivec2(sourceFracIndexCR); ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR)); float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d); float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d); float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d); float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d); vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR); float top = topLeft + (topRight - topLeft) * fracCR.x; float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x; float newValue = top + (bottom - top) * fracCR.y; setOutput(newValue); } else { // Compute the coordinators of nearest neighbor point. ivec2 sourceNearestCR = ivec2(floor( sourceFracIndexCR + vec2(0.5,0.5))); float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d); setOutput(newValue); } } `}},CumSumProgram=class{constructor(shape,exclusive,reverse12){this.variableNames=["x"],this.outputShape=shape;let rank=shape.length,val=exclusive?"0.0":`getX(${getCoords(rank,"coords")})`,length=shape[shape.length-1],condition="",idxString="";exclusive?(condition=reverse12?`end != ${length-1}`:"end != 0",idxString=reverse12?"end + 1":"end - 1"):(condition=reverse12?`end + pow2 < ${length}`:"end >= pow2",idxString=reverse12?"end + pow2":"end - pow2"),this.userCode=` uniform float index; void main() { ${getCoordsDataType(rank)} coords = getOutputCoords(); int end = ${getFinalCoord(rank,"coords")}; float val = ${val}; int pow2 = int(pow(2.0, index)); if (${condition}) { int idx = ${idxString}; ${getFinalCoord(rank,"coords")} = idx; val += getX(${getCoords(rank,"coords")}); } setOutput(val); } `}getCustomSetupFunc(index){return(gpgpu,webGLProgram)=>{this.index==null&&(this.index=gpgpu.getUniformLocation(webGLProgram,"index")),gpgpu.gl.uniform1f(this.index,index)}}};function getCoords(rank,name){if(rank===1)return`${name}`;if(rank===2)return`${name}.x, ${name}.y`;if(rank===3)return`${name}.x, ${name}.y, ${name}.z`;if(rank===4)return`${name}.x, ${name}.y, ${name}.z, ${name}.w`;throw Error(`Cumulative sum for rank ${rank} is not yet supported`)}function getFinalCoord(rank,name){if(rank===1)return`${name}`;if(rank===2)return`${name}.y`;if(rank===3)return`${name}.z`;if(rank===4)return`${name}.w`;throw Error(`Cumulative sum for rank ${rank} is not yet supported`)}var DecodeMatrixProgram=class{constructor(outputShape){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=PackingScheme.DENSE;let texShape=getDenseTexShape(outputShape),glsl=getGlslDifferences();this.outputShape=outputShape,this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { ${getLogicalCoordinatesFromFlatIndex(["r","c","d"],outputShape)} return ivec3(r, c, d); } void main() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${texShape[0]}, ${texShape[1]})); int index = 4 * (resTexRC.x * ${texShape[1]} + resTexRC.y); vec4 result = vec4(0.); for (int i=0; i<4; i++) { int flatIndex = index + i; ivec3 rc = outCoordsFromFlatIndex(flatIndex); result[i] = getA(rc.x, rc.y, rc.z); } ${glsl.output} = result; } `}},DecodeMatrixPackedProgram=class{constructor(outputShape){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=PackingScheme.DENSE;let texShape=getDenseTexShape(outputShape),glsl=getGlslDifferences();this.outputShape=outputShape,this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { ${getLogicalCoordinatesFromFlatIndex(["r","c","d"],outputShape)} return ivec3(r, c, d); } void main() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${texShape[0]}, ${texShape[1]})); int index = 4 * (resTexRC.x * ${texShape[1]} + resTexRC.y); vec4 result = vec4(0.); for (int i=0; i<4; i++) { int flatIndex = index + i; ivec3 rc = outCoordsFromFlatIndex(flatIndex); result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z)); } ${glsl.output} = result; } `}},DepthToSpaceProgram=class{constructor(outputShape,blockSize,dataFormat){this.variableNames=["x"],this.outputShape=[],this.outputShape=outputShape,this.blockSize=blockSize,this.dataFormat=dataFormat,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int h = ${this.getHeightCoordString()}; int w = ${this.getWidthCoordString()}; int d = ${this.getDepthCoordString()}; int in_h = h / ${blockSize}; int offset_h = imod(h, ${blockSize}); int in_w = w / ${blockSize}; int offset_w = imod(w, ${blockSize}); int offset_d = (offset_h * ${blockSize} + offset_w) * ${this.getOutputDepthSize()}; int in_d = d + offset_d; float result = ${this.getInputSamplingString()}; setOutput(result); } `}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}},DiagProgram=class{constructor(size){this.variableNames=["X"],this.outputShape=[size,size],this.userCode=` void main() { ivec2 coords = getOutputCoords(); float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0; setOutput(val); } `}},EncodeFloatProgram=class{constructor(outputShape){this.variableNames=["A"],this.outTexUsage=TextureUsage.DOWNLOAD;let glsl=getGlslDifferences();this.outputShape=outputShape,this.userCode=` ${ENCODE_FLOAT_SNIPPET} void main() { float x = getAAtOutCoords(); ${glsl.output} = encode_float(x); } `}},EncodeFloatPackedProgram=class{constructor(outputShape){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=TextureUsage.DOWNLOAD;let glsl=getGlslDifferences();this.outputShape=outputShape,this.userCode=` ${ENCODE_FLOAT_SNIPPET} void main() { ivec3 coords = getOutputCoords(); float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z)); ${glsl.output} = encode_float(x); } `}},EncodeMatrixProgram=class{constructor(outputShape,texShape,inputIsUnsignedByte=!1){this.variableNames=["A"];let glsl=getGlslDifferences(),[height,width]=texShape;this.outputShape=outputShape;let output="result";inputIsUnsignedByte&&(output="floor(result * 255. + 0.5)"),this.userCode=` ${getFlatIndexFrom3D(outputShape)} void main() { ivec3 coords = getOutputCoords(); int flatIndex = getFlatIndex(coords); int offset = imod(flatIndex, 4); flatIndex = idiv(flatIndex, 4, 1.); int r = flatIndex / ${width}; int c = imod(flatIndex, ${width}); vec2 uv = (vec2(c, r) + halfCR) / vec2(${width}.0, ${height}.0); vec4 values = ${glsl.texture2D}(A, uv); float result; if(offset == 0) { result = values[0]; } else if(offset == 1) { result = values[1]; } else if(offset == 2) { result = values[2]; } else { result = values[3]; } ${glsl.output} = vec4(${output}, 0., 0., 0.); } `}},EncodeMatrixPackedProgram=class{constructor(outputShape,texShape,inputIsUnsignedByte=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let glsl=getGlslDifferences(),[height,width]=texShape;this.outputShape=outputShape;let mainLoop="",output="result";inputIsUnsignedByte&&(output="floor(result * 255. + 0.5)");for(let row=0;row<=1;row++)for(let col=0;col<=1;col++){let channel=row*2+col;mainLoop+=` localCoords = coords; if(localCoords[2] + ${col} < ${outputShape[2]}) { localCoords[2] += ${col}; if(localCoords[1] + ${row} < ${outputShape[1]}) { localCoords[1] += ${row}; flatIndex = getFlatIndex(localCoords); offset = imod(flatIndex, 4); flatIndex = idiv(flatIndex, 4, 1.); r = flatIndex / ${width}; c = imod(flatIndex, ${width}); uv = (vec2(c, r) + halfCR) / vec2(${width}.0, ${height}.0); values = ${glsl.texture2D}(A, uv); if(offset == 0) { result[${channel}] = values[0]; } else if(offset == 1) { result[${channel}] = values[1]; } else if(offset == 2) { result[${channel}] = values[2]; } else { result[${channel}] = values[3]; } } } `}this.userCode=` ${getFlatIndexFrom3D(outputShape)} void main() { ivec3 coords = getOutputCoords(); vec4 result = vec4(0.); int flatIndex, r, c, offset; ivec3 localCoords; vec2 uv; vec4 values; ${mainLoop} ${glsl.output} = ${output}; } `}},FillProgram=class{constructor(shape,value){this.outputShape=[],this.variableNames=["x"],this.outputShape=shape,this.userCode=` uniform float value; void main() { // Input can be obtained from uniform value. setOutput(value); } `}getCustomSetupFunc(value){return(gpgpu,webGLProgram)=>{this.valueLoc==null&&(this.valueLoc=gpgpu.getUniformLocationNoThrow(webGLProgram,"value")),gpgpu.gl.uniform1f(this.valueLoc,value)}}},GatherProgram=class{constructor(aShape,indicesLength,axis){this.variableNames=["A","indices"];let outputShape=aShape.slice();outputShape[axis]=indicesLength,this.outputShape=outputShape,this.rank=outputShape.length;let dtype=getCoordsDataType(this.rank),sourceCoords=getSourceCoords2(aShape,axis);this.userCode=` void main() { ${dtype} resRC = getOutputCoords(); setOutput(getA(${sourceCoords})); } `}};function getSourceCoords2(aShape,axis){let rank=aShape.length;if(rank>4)throw Error(`Gather for rank ${rank} is not yet supported`);if(rank===1)return"int(getIndices(resRC))";let currentCoords=["resRC.x","resRC.y","resRC.z","resRC.w"],sourceCoords=[];for(let i=0;i1?"strides[j]":"strides";this.userCode=` ${stridesType} strides = ${stridesType}(${this.strides}); void main() { ${dtype} coords = getOutputCoords(); int flattenIndex = 0; for (int j = 0; j < ${this.sliceDim}; j++) { int index = round(getIndices(coords[0], j)); flattenIndex += index * ${strideString}; } setOutput(getX(flattenIndex, coords[1])); } `}};function createVertexShader2(gl){let glsl=getGlslDifferences(),vertexShaderSource=`${glsl.version} precision highp float; ${glsl.attribute} vec3 clipSpacePos; ${glsl.attribute} vec2 uv; ${glsl.varyingVs} vec2 resultUV; void main() { gl_Position = vec4(clipSpacePos, 1); resultUV = uv; }`;return createVertexShader(gl,vertexShaderSource)}function createVertexBuffer(gl){let vertexArray=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return createStaticVertexBuffer(gl,vertexArray)}function createIndexBuffer(gl){let triangleVertexIndices=new Uint16Array([0,1,2,2,1,3]);return createStaticIndexBuffer(gl,triangleVertexIndices)}function createAndConfigureTexture(gl,width,height,internalFormat,textureFormat,textureType){validateTextureSize(width,height);let texture=createTexture(gl),tex2d=gl.TEXTURE_2D;return callAndCheck(gl,()=>gl.bindTexture(tex2d,texture)),callAndCheck(gl,()=>gl.texParameteri(tex2d,gl.TEXTURE_WRAP_S,gl.CLAMP_TO_EDGE)),callAndCheck(gl,()=>gl.texParameteri(tex2d,gl.TEXTURE_WRAP_T,gl.CLAMP_TO_EDGE)),callAndCheck(gl,()=>gl.texParameteri(tex2d,gl.TEXTURE_MIN_FILTER,gl.NEAREST)),callAndCheck(gl,()=>gl.texParameteri(tex2d,gl.TEXTURE_MAG_FILTER,gl.NEAREST)),callAndCheck(gl,()=>gl.texImage2D(tex2d,0,internalFormat,width,height,0,textureFormat,textureType,null)),callAndCheck(gl,()=>gl.bindTexture(gl.TEXTURE_2D,null)),texture}function getInternalFormatForFloat32MatrixTexture(textureConfig){return textureConfig.internalFormatFloat}function createFloat32MatrixTexture(gl,rows,columns,textureConfig){let[width,height]=getUnpackedMatrixTextureShapeWidthHeight(rows,columns);return createAndConfigureTexture(gl,width,height,getInternalFormatForFloat32MatrixTexture(textureConfig),textureConfig.textureFormatFloat,gl.FLOAT)}function getInternalFormatForFloat16MatrixTexture(textureConfig){return textureConfig.internalFormatHalfFloat}function createFloat16MatrixTexture(gl,rows,columns,textureConfig){let[width,height]=getUnpackedMatrixTextureShapeWidthHeight(rows,columns);return createAndConfigureTexture(gl,width,height,getInternalFormatForFloat16MatrixTexture(textureConfig),textureConfig.textureFormatFloat,textureConfig.textureTypeHalfFloat)}function getInternalFormatForUnsignedBytesMatrixTexture(textureConfig){return textureConfig.downloadTextureFormat}function createUnsignedBytesMatrixTexture(gl,rows,columns,textureConfig){let[width,height]=getUnpackedMatrixTextureShapeWidthHeight(rows,columns);return createAndConfigureTexture(gl,width,height,getInternalFormatForUnsignedBytesMatrixTexture(textureConfig),gl.RGBA,gl.UNSIGNED_BYTE)}function getInternalFormatForPackedMatrixTexture(textureConfig){return textureConfig.internalFormatPackedFloat}function createPackedMatrixTexture(gl,rows,columns,textureConfig){let[width,height]=getPackedMatrixTextureShapeWidthHeight(rows,columns);return createAndConfigureTexture(gl,width,height,getInternalFormatForPackedMatrixTexture(textureConfig),gl.RGBA,gl.FLOAT)}function getInternalFormatForFloat16PackedMatrixTexture(textureConfig){return textureConfig.internalFormatPackedHalfFloat}function createFloat16PackedMatrixTexture(gl,rows,columns,textureConfig){let[width,height]=getPackedMatrixTextureShapeWidthHeight(rows,columns);return createAndConfigureTexture(gl,width,height,getInternalFormatForFloat16PackedMatrixTexture(textureConfig),gl.RGBA,textureConfig.textureTypeHalfFloat)}function bindVertexProgramAttributeStreams(gl,program,vertexBuffer){let posOffset=0,uvOffset=3*4,stride=3*4+2*4;callAndCheck(gl,()=>gl.bindBuffer(gl.ARRAY_BUFFER,vertexBuffer));let success=bindVertexBufferToProgramAttribute(gl,program,"clipSpacePos",vertexBuffer,3,stride,posOffset);return success&&bindVertexBufferToProgramAttribute(gl,program,"uv",vertexBuffer,2,stride,uvOffset)}function uploadDenseMatrixToTexture(gl,texture,width,height,data2,textureConfig){callAndCheck(gl,()=>gl.bindTexture(gl.TEXTURE_2D,texture));let dataForUpload,texelDataType,internalFormat;data2 instanceof Uint8Array?(dataForUpload=new Uint8Array(width*height*4),texelDataType=gl.UNSIGNED_BYTE,internalFormat=gl.RGBA):(dataForUpload=new Float32Array(width*height*4),texelDataType=gl.FLOAT,internalFormat=textureConfig.internalFormatPackedFloat),dataForUpload.set(data2),callAndCheck(gl,()=>gl.texImage2D(gl.TEXTURE_2D,0,internalFormat,width,height,0,gl.RGBA,texelDataType,dataForUpload)),callAndCheck(gl,()=>gl.bindTexture(gl.TEXTURE_2D,null))}function uploadPixelDataToTexture(gl,texture,pixels){callAndCheck(gl,()=>gl.bindTexture(gl.TEXTURE_2D,texture)),pixels.data instanceof Uint8Array?callAndCheck(gl,()=>gl.texImage2D(gl.TEXTURE_2D,0,gl.RGBA,pixels.width,pixels.height,0,gl.RGBA,gl.UNSIGNED_BYTE,pixels.data)):callAndCheck(gl,()=>gl.texImage2D(gl.TEXTURE_2D,0,gl.RGBA,gl.RGBA,gl.UNSIGNED_BYTE,pixels)),callAndCheck(gl,()=>gl.bindTexture(gl.TEXTURE_2D,null))}function createBufferFromOutputTexture(gl2,rows,columns,textureConfig){let buffer11=gl2.createBuffer();callAndCheck(gl2,()=>gl2.bindBuffer(gl2.PIXEL_PACK_BUFFER,buffer11));let bytesPerFloat=4,valuesPerTexel=4,bufferSizeBytes=bytesPerFloat*valuesPerTexel*rows*columns;return callAndCheck(gl2,()=>gl2.bufferData(gl2.PIXEL_PACK_BUFFER,bufferSizeBytes,gl2.STREAM_READ)),callAndCheck(gl2,()=>gl2.readPixels(0,0,columns,rows,gl2.RGBA,gl2.FLOAT,0)),callAndCheck(gl2,()=>gl2.bindBuffer(gl2.PIXEL_PACK_BUFFER,null)),buffer11}function downloadFloat32MatrixFromBuffer(gl,buffer11,size){let gl2=gl,downloadTarget=new Float32Array(size);return gl2.bindBuffer(gl2.PIXEL_PACK_BUFFER,buffer11),gl2.getBufferSubData(gl2.PIXEL_PACK_BUFFER,0,downloadTarget),gl2.bindBuffer(gl2.PIXEL_PACK_BUFFER,null),downloadTarget}function downloadByteEncodedFloatMatrixFromOutputTexture(gl,rows,columns,textureConfig){let[w,h]=getUnpackedMatrixTextureShapeWidthHeight(rows,columns),numChannels=4,downloadTarget=new Uint8Array(getUnpackedArraySizeFromMatrixSize(rows*columns,numChannels));return callAndCheck(gl,()=>gl.readPixels(0,0,w,h,textureConfig.downloadTextureFormat,gl.UNSIGNED_BYTE,downloadTarget)),new Float32Array(downloadTarget.buffer)}function downloadPackedMatrixFromBuffer(gl,buffer11,batch,rows,cols,physicalRows,physicalCols,textureConfig){let gl2=gl,downloadTarget=new Float32Array(getPackedRGBAArraySizeFromMatrixShape(physicalRows,physicalCols));return gl2.bindBuffer(gl2.PIXEL_PACK_BUFFER,buffer11),gl2.getBufferSubData(gl2.PIXEL_PACK_BUFFER,0,downloadTarget),gl2.bindBuffer(gl2.PIXEL_PACK_BUFFER,null),downloadTarget}function downloadMatrixFromPackedOutputTexture(gl,physicalRows,physicalCols){let packedRGBA=new Float32Array(physicalRows*physicalCols*4);return callAndCheck(gl,()=>gl.readPixels(0,0,physicalCols,physicalRows,gl.RGBA,gl.FLOAT,packedRGBA)),packedRGBA}var GPGPUContext=class{constructor(gl){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let glVersion=env().getNumber("WEBGL_VERSION");gl!=null?(this.gl=gl,setWebGLContext(glVersion,gl)):this.gl=getWebGLContext(glVersion);let COLOR_BUFFER_FLOAT="WEBGL_color_buffer_float",COLOR_BUFFER_HALF_FLOAT="EXT_color_buffer_half_float";if(env().getNumber("WEBGL_VERSION")===1){let TEXTURE_FLOAT="OES_texture_float",TEXTURE_HALF_FLOAT="OES_texture_half_float";if(this.textureFloatExtension=getExtensionOrThrow(this.gl,TEXTURE_FLOAT),hasExtension(this.gl,TEXTURE_HALF_FLOAT))this.textureHalfFloatExtension=getExtensionOrThrow(this.gl,TEXTURE_HALF_FLOAT);else if(env().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(COLOR_BUFFER_FLOAT),hasExtension(this.gl,COLOR_BUFFER_HALF_FLOAT))this.colorBufferHalfFloatExtension=getExtensionOrThrow(this.gl,COLOR_BUFFER_HALF_FLOAT);else if(env().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(COLOR_BUFFER_FLOAT="EXT_color_buffer_float",hasExtension(this.gl,COLOR_BUFFER_FLOAT))this.colorBufferFloatExtension=this.gl.getExtension(COLOR_BUFFER_FLOAT);else if(hasExtension(this.gl,COLOR_BUFFER_HALF_FLOAT))this.colorBufferHalfFloatExtension=this.gl.getExtension(COLOR_BUFFER_HALF_FLOAT);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=createVertexBuffer(this.gl),this.indexBuffer=createIndexBuffer(this.gl),this.framebuffer=createFramebuffer(this.gl),this.textureConfig=getTextureConfig(this.gl,this.textureHalfFloatExtension)}get debug(){return env().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let gl=this.gl;callAndCheck(gl,()=>gl.finish()),callAndCheck(gl,()=>gl.bindFramebuffer(gl.FRAMEBUFFER,null)),callAndCheck(gl,()=>gl.deleteFramebuffer(this.framebuffer)),callAndCheck(gl,()=>gl.bindBuffer(gl.ARRAY_BUFFER,null)),callAndCheck(gl,()=>gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER,null)),callAndCheck(gl,()=>gl.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(rows,columns){return this.throwIfDisposed(),createFloat32MatrixTexture(this.gl,rows,columns,this.textureConfig)}createFloat16MatrixTexture(rows,columns){return this.throwIfDisposed(),createFloat16MatrixTexture(this.gl,rows,columns,this.textureConfig)}createUnsignedBytesMatrixTexture(rows,columns){return this.throwIfDisposed(),createUnsignedBytesMatrixTexture(this.gl,rows,columns,this.textureConfig)}uploadPixelDataToTexture(texture,pixels){this.throwIfDisposed(),uploadPixelDataToTexture(this.gl,texture,pixels)}uploadDenseMatrixToTexture(texture,width,height,data2){this.throwIfDisposed(),uploadDenseMatrixToTexture(this.gl,texture,width,height,data2,this.textureConfig)}createFloat16PackedMatrixTexture(rows,columns){return this.throwIfDisposed(),createFloat16PackedMatrixTexture(this.gl,rows,columns,this.textureConfig)}createPackedMatrixTexture(rows,columns){return this.throwIfDisposed(),createPackedMatrixTexture(this.gl,rows,columns,this.textureConfig)}deleteMatrixTexture(texture){this.throwIfDisposed(),this.outputTexture===texture&&(unbindColorTextureFromFramebuffer(this.gl,this.framebuffer),this.outputTexture=null),callAndCheck(this.gl,()=>this.gl.deleteTexture(texture))}downloadByteEncodedFloatMatrixFromOutputTexture(texture,rows,columns){return this.downloadMatrixDriver(texture,()=>downloadByteEncodedFloatMatrixFromOutputTexture(this.gl,rows,columns,this.textureConfig))}downloadPackedMatrixFromBuffer(buffer11,batch,rows,columns,physicalRows,physicalCols){return downloadPackedMatrixFromBuffer(this.gl,buffer11,batch,rows,columns,physicalRows,physicalCols,this.textureConfig)}downloadFloat32MatrixFromBuffer(buffer11,size){return downloadFloat32MatrixFromBuffer(this.gl,buffer11,size)}createBufferFromTexture(texture,rows,columns){this.bindTextureToFrameBuffer(texture);let result=createBufferFromOutputTexture(this.gl,rows,columns,this.textureConfig);return this.unbindTextureToFrameBuffer(),result}createAndWaitForFence(){let fenceContext=this.createFence(this.gl);return this.pollFence(fenceContext)}createFence(gl){let query,isFencePassed;if(env().getBool("WEBGL_FENCE_API_ENABLED")){let gl2=gl,sync=gl2.fenceSync(gl2.SYNC_GPU_COMMANDS_COMPLETE,0);gl.flush(),isFencePassed=()=>{let status=gl2.clientWaitSync(sync,0,0);return status===gl2.ALREADY_SIGNALED||status===gl2.CONDITION_SATISFIED},query=sync}else env().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(query=this.beginQuery(),this.endQuery(),isFencePassed=()=>this.isQueryAvailable(query,env().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):isFencePassed=()=>!0;return{query,isFencePassed}}downloadMatrixFromPackedTexture(texture,physicalRows,physicalCols){return this.downloadMatrixDriver(texture,()=>downloadMatrixFromPackedOutputTexture(this.gl,physicalRows,physicalCols))}createProgram(fragmentShaderSource){this.throwIfDisposed();let gl=this.gl,fragmentShader=createFragmentShader(gl,fragmentShaderSource),vertexShader=createVertexShader2(gl),program=createProgram(gl);return callAndCheck(gl,()=>gl.attachShader(program,vertexShader)),callAndCheck(gl,()=>gl.attachShader(program,fragmentShader)),linkProgram(gl,program),this.debug&&validateProgram(gl,program),this.vertexAttrsAreBound||(this.setProgram(program),this.vertexAttrsAreBound=bindVertexProgramAttributeStreams(gl,this.program,this.vertexBuffer)),program}deleteProgram(program){this.throwIfDisposed(),program===this.program&&(this.program=null),program!=null&&callAndCheck(this.gl,()=>this.gl.deleteProgram(program))}setProgram(program){this.throwIfDisposed(),this.program=program,this.program!=null&&this.debug&&validateProgram(this.gl,this.program),callAndCheck(this.gl,()=>this.gl.useProgram(program))}getUniformLocation(program,uniformName,shouldThrow=!0){return this.throwIfDisposed(),shouldThrow?getProgramUniformLocationOrThrow(this.gl,program,uniformName):getProgramUniformLocation(this.gl,program,uniformName)}getAttributeLocation(program,attribute){return this.throwIfDisposed(),callAndCheck(this.gl,()=>this.gl.getAttribLocation(program,attribute))}getUniformLocationNoThrow(program,uniformName){return this.throwIfDisposed(),this.gl.getUniformLocation(program,uniformName)}setInputMatrixTexture(inputMatrixTexture,uniformLocation,textureUnit){this.throwIfDisposed(),this.throwIfNoProgram(),bindTextureToProgramUniformSampler(this.gl,inputMatrixTexture,uniformLocation,textureUnit)}setOutputMatrixTexture(outputMatrixTexture,rows,columns){this.setOutputMatrixTextureDriver(outputMatrixTexture,columns,rows)}setOutputPackedMatrixTexture(outputPackedMatrixTexture,rows,columns){this.throwIfDisposed();let[width,height]=getPackedMatrixTextureShapeWidthHeight(rows,columns);this.setOutputMatrixTextureDriver(outputPackedMatrixTexture,width,height)}setOutputMatrixWriteRegion(startRow,numRows,startColumn,numColumns){this.setOutputMatrixWriteRegionDriver(startColumn,startRow,numColumns,numRows)}setOutputPackedMatrixWriteRegion(startRow,numRows,startColumn,numColumns){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&validateProgram(this.gl,this.program),validateFramebuffer(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let gl=this.gl;this.debug&&this.debugValidate(),callAndCheck(gl,()=>gl.drawElements(gl.TRIANGLES,6,gl.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),callAndCheck(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=getExtensionOrThrow(this.gl,env().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(env().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let gl2=this.gl,ext2=this.getQueryTimerExtensionWebGL2(),query2=gl2.createQuery();return gl2.beginQuery(ext2.TIME_ELAPSED_EXT,query2),query2}let ext=this.getQueryTimerExtensionWebGL1(),query=ext.createQueryEXT();return ext.beginQueryEXT(ext.TIME_ELAPSED_EXT,query),query}endQuery(){if(env().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let gl2=this.gl,ext2=this.getQueryTimerExtensionWebGL2();gl2.endQuery(ext2.TIME_ELAPSED_EXT);return}let ext=this.getQueryTimerExtensionWebGL1();ext.endQueryEXT(ext.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(query){return await util_exports.repeatedTry(()=>this.disposed||this.isQueryAvailable(query,env().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(query,env().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(query,queryTimerVersion){if(queryTimerVersion===0)return null;if(queryTimerVersion===2){let gl2=this.gl,timeElapsedNanos=gl2.getQueryParameter(query,gl2.QUERY_RESULT);return timeElapsedNanos/1e6}else{let ext=this.getQueryTimerExtensionWebGL1(),timeElapsedNanos=ext.getQueryObjectEXT(query,ext.QUERY_RESULT_EXT);return timeElapsedNanos/1e6}}isQueryAvailable(query,queryTimerVersion){if(queryTimerVersion===0)return!0;if(queryTimerVersion===2){let gl2=this.gl,ext=this.getQueryTimerExtensionWebGL2(),available=gl2.getQueryParameter(query,gl2.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(ext.GPU_DISJOINT_EXT)),available&&!this.disjoint}else{let ext=this.getQueryTimerExtensionWebGL1(),available=ext.getQueryObjectEXT(query,ext.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(ext.GPU_DISJOINT_EXT)),available&&!this.disjoint}}pollFence(fenceContext){return new Promise(resolve=>{this.addItemToPoll(()=>fenceContext.isFencePassed(),()=>resolve())})}pollItems(){let index=linearSearchLastTrue(this.itemsToPoll.map(x=>x.isDoneFn));for(let i=0;i<=index;++i){let{resolveFn}=this.itemsToPoll[i];resolveFn()}this.itemsToPoll=this.itemsToPoll.slice(index+1)}addItemToPoll(isDoneFn,resolveFn){if(this.itemsToPoll.push({isDoneFn,resolveFn}),this.itemsToPoll.length>1)return;util_exports.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(texture){this.throwIfDisposed(),bindColorTextureToFramebuffer(this.gl,texture,this.framebuffer),this.debug&&validateFramebuffer(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(bindColorTextureToFramebuffer(this.gl,this.outputTexture,this.framebuffer),this.debug&&validateFramebuffer(this.gl)):unbindColorTextureFromFramebuffer(this.gl,this.framebuffer)}downloadMatrixDriver(texture,downloadAndDecode){this.bindTextureToFrameBuffer(texture);let result=downloadAndDecode();return this.unbindTextureToFrameBuffer(),result}setOutputMatrixTextureDriver(outputMatrixTextureMaybePacked,width,height){this.throwIfDisposed();let gl=this.gl;bindColorTextureToFramebuffer(gl,outputMatrixTextureMaybePacked,this.framebuffer),this.debug&&validateFramebuffer(gl),this.outputTexture=outputMatrixTextureMaybePacked,callAndCheck(gl,()=>gl.viewport(0,0,width,height)),callAndCheck(gl,()=>gl.scissor(0,0,width,height))}setOutputMatrixWriteRegionDriver(x,y,width,height){this.throwIfDisposed(),callAndCheck(this.gl,()=>this.gl.scissor(x,y,width,height))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function linearSearchLastTrue(arr){let i=0;for(;i{let shapeInfo={logicalShape:input2.shape,texShape:input2.isUniform?null:input2.texData.texShape,isUniform:input2.isUniform,isPacked:input2.isUniform?!1:input2.texData.isPacked,flatOffset:null};return input2.texData!=null&&input2.texData.slice!=null&&input2.texData.slice.flatOffset>0&&(shapeInfo.flatOffset=input2.texData.slice.flatOffset),{name:program.variableNames[i],shapeInfo}}),inShapeInfos=inputInfos.map(x=>x.shapeInfo),outShapeInfo={logicalShape:output.shape,texShape:output.texData.texShape,isUniform:!1,isPacked:output.texData.isPacked,flatOffset:null},source=makeShader(inputInfos,outShapeInfo,userCode,program.packedInputs),webGLProgram=gpgpu.createProgram(source),infLoc=null,nanLoc=gpgpu.getUniformLocation(webGLProgram,"NAN",!1);env().getNumber("WEBGL_VERSION")===1&&(infLoc=gpgpu.getUniformLocation(webGLProgram,"INFINITY",!1));let uniformLocations={};for(let i=0;i{let shapeA=s.logicalShape,input2=inputs[i],shapeB=input2.shape;if(!util_exports.arraysEqual(shapeA,shapeB))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${shapeA} and ${shapeB} must match`);if(s.isUniform&&input2.isUniform)return;let texShapeA=s.texShape,texShapeB=input2.isUniform?null:input2.texData.texShape;if(!util_exports.arraysEqual(texShapeA,texShapeB))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${texShapeA} and ${texShapeB} must match`)})}function runProgram(gpgpu,binary,inputs,output,customSetup){validateBinaryAndProgram(binary.inShapeInfos,inputs),validateBinaryAndProgram([binary.outShapeInfo],[output]);let outTex=output.texData.texture,outTexShape=output.texData.texShape;output.texData.isPacked?gpgpu.setOutputPackedMatrixTexture(outTex,outTexShape[0],outTexShape[1]):gpgpu.setOutputMatrixTexture(outTex,outTexShape[0],outTexShape[1]),gpgpu.setProgram(binary.webGLProgram),env().getNumber("WEBGL_VERSION")===1&&binary.infLoc!==null&&gpgpu.gl.uniform1f(binary.infLoc,Infinity),binary.nanLoc!==null&&gpgpu.gl.uniform1f(binary.nanLoc,NaN),inputs.forEach((input2,i)=>{let varName=binary.program.variableNames[i],varLoc=binary.uniformLocations[varName],varOffsetLoc=binary.uniformLocations[`offset${varName}`];if(varLoc==null)return;if(input2.isUniform){if(util_exports.sizeFromShape(input2.shape)<2)gpgpu.gl.uniform1f(varLoc,input2.uniformValues[0]);else{let vals=input2.uniformValues;vals instanceof Float32Array||(vals=new Float32Array(vals)),gpgpu.gl.uniform1fv(varLoc,vals)}return}input2.texData.slice!=null&&varOffsetLoc!=null&&gpgpu.gl.uniform1i(varOffsetLoc,input2.texData.slice.flatOffset),gpgpu.setInputMatrixTexture(input2.texData.texture,varLoc,i)}),customSetup!=null&&customSetup(gpgpu,binary.webGLProgram),gpgpu.executeProgram()}function makeShaderKey(program,inputs,output){let keyInputs="";inputs.concat(output).forEach(x=>{let hasOffset=x.texData!=null&&x.texData.slice!=null&&x.texData.slice.flatOffset>0,texShape=x.isUniform?"uniform":x.texData.texShape;keyInputs+=`${x.shape}_${texShape}_${hasOffset}`});let keyUserCode=program.userCode,key=program.constructor.name;return key+="_"+keyInputs+"_"+keyUserCode,key}var Im2ColPackedProgram=class{constructor(outputShape,inputShape,convInfo){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=outputShape;let{filterWidth,inChannels,strideWidth,strideHeight,padInfo,outWidth,dilationWidth,dilationHeight,dataFormat}=convInfo,{left,top}=padInfo,itemsPerBlockRow=inChannels*filterWidth,glsl=getGlslDifferences(),isChannelsLast=dataFormat==="channelsLast",rowDim=isChannelsLast?0:1,colDim=isChannelsLast?1:2,unrolled="";for(let row=0;row<=1;row++)for(let col=0;col<=1;col++)unrolled+=` blockIndex = rc.y + ${col}; pos = rc.x + ${row}; if(blockIndex < ${outputShape[1]} && pos < ${outputShape[0]}) { offsetY = int(blockIndex / (${outWidth})) * ${strideHeight} - ${top}; d0 = offsetY + ${dilationHeight} * (pos / ${itemsPerBlockRow}); if(d0 < ${inputShape[rowDim]} && d0 >= 0) { offsetX = int(mod(float(blockIndex), ${outWidth}.) * ${strideWidth}. - ${left}.); d1 = offsetX + ${dilationWidth} * (int(mod(float(pos), ${itemsPerBlockRow}.) / ${inChannels}.)); if(d1 < ${inputShape[colDim]} && d1 >= 0) { ch = int(mod(float(pos), ${inChannels}.)); if (${isChannelsLast}) { innerDims = vec2(d1, ch); result[${row*2+col}] = getChannel( getA(d0, int(innerDims.x), int(innerDims.y)), innerDims); } else { innerDims = vec2(d0, d1); result[${row*2+col}] = getChannel( getA(ch, int(innerDims.x), int(innerDims.y)), innerDims); } } } } `;this.userCode=` void main() { ivec2 rc = getOutputCoords(); vec4 result = vec4(0); int blockIndex, pos, offsetY, d0, offsetX, d1, ch; vec2 innerDims; ${unrolled} ${glsl.output} = result; } `}},LRNProgram=class{constructor(xShape,radius,bias,alpha,beta){this.variableNames=["x"],this.outputShape=[];let rad=radius,maxD=xShape[3]-1;this.outputShape=xShape;let powOperator,basis=`float(${bias}) + float(${alpha}) * sum`;beta===.5?powOperator=`inversesqrt(${basis})`:beta===1?powOperator=`1.0/(${basis})`:powOperator=`exp(log(${basis}) * float(-${beta}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int r = coords[1]; int c = coords[2]; int d = coords[3]; float x = getX(b, r, c, d); float sum = 0.0; for (int j = -${rad}; j <= ${rad}; j++) { int idx = d + j; if (idx >= 0 && idx <= ${maxD}) { float z = getX(b, r, c, idx); sum += z * z; } } float val = x * ${powOperator}; setOutput(val); } `}},LRNGradProgram=class{constructor(inputShape,depthRadius,bias,alpha,beta){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=inputShape,this.depth=inputShape[3],this.depthRadius=depthRadius,this.bias=bias,this.alpha=alpha,this.beta=beta,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int r = coords[1]; int c = coords[2]; float result = 0.0; for (int d = 0; d < ${this.depth}; ++d) { int depthBegin = int(max(0.0, float(d - ${depthRadius}))); int depthEnd = int(min(float(${this.depth}), float(d + ${depthRadius} + 1))); const int MIN_DEPTH_BEGIN = 0; const int MAX_DEPTH_END = ${this.depth}; float norm = 0.0; for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) { if (k < depthBegin){ continue; } else if (k >= depthBegin && k < depthEnd) { norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k); } else { break; } } norm = float(${alpha}) * norm + float(${bias}); for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){ if (k < depthBegin){ continue; } else if (k >= depthBegin && k < depthEnd){ float dyi = -2.0 * float(${alpha}) * float(${beta}) * getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d) / norm; if (k == d) { dyi += pow(norm, -1.0 * ${beta}); } if (k == coords[3]) { dyi *= getDy(b, r, c, d); result += dyi; } } else { break; } } } setOutput(result); } `}},LRNPackedProgram=class{constructor(xShape,radius,bias,alpha,beta){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let rad=radius,maxD=xShape[3]-1;this.outputShape=xShape;let powOperator,basis=`float(${bias}) + float(${alpha}) * sum`;beta===.5?powOperator=`inversesqrt(${basis})`:beta===1?powOperator=`1.0/(${basis})`:powOperator=`exp(log(${basis}) * float(-${beta}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords.x; int r = coords.y; int c = coords.z; int d = coords.w; bool hasNextCol = d < ${this.outputShape[3]}; bool hasNextRow = c < ${this.outputShape[2]}; vec4 sum = vec4(0.); vec4 xFragAtOutputCoords = getX(b, r, c, d); vec4 xAtOutputCoords = vec4( getChannel(xFragAtOutputCoords, vec2(c, d)), hasNextCol ? getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0, hasNextRow ? getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0, (hasNextRow && hasNextCol) ? getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0 ); int firstChannel = d - ${rad}; vec2 cache = vec2(0.); if(firstChannel >= 0){ vec4 firstChannelFrag = getX(b, r, c, firstChannel); cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel)); if(hasNextRow){ cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel)); } } ivec2 depth = ivec2(d, d + 1); for (int j = - ${rad}; j <= ${rad}; j++) { ivec2 idx = depth + j; bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0)); bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${maxD})); bool depthInRange = aboveLowerBound.x && belowUpperBound.x; bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y; if(depthInRange || depthPlusOneInRange){ vec4 z = vec4(0.); vec4 xFragAtCurrentDepth; z.xz = cache.xy; if(depthPlusOneInRange && hasNextCol){ xFragAtCurrentDepth = idx.y != d ? getX(b, r, c, idx.y) : xFragAtOutputCoords; z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y)); if(hasNextRow){ z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y)); } } cache.xy = z.yw; sum += z * z; } } vec4 result = xAtOutputCoords * ${powOperator}; setOutput(result); } `}},MaxPool2DBackpropProgram=class{constructor(convInfo){this.variableNames=["dy","maxPos"],this.outputShape=convInfo.inShape;let strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,dilationHeight=convInfo.dilationHeight,effectiveFilterHeight=convInfo.effectiveFilterHeight,effectiveFilterWidth=convInfo.effectiveFilterWidth,padTop=effectiveFilterHeight-1-convInfo.padInfo.top,padLeft=effectiveFilterWidth-1-convInfo.padInfo.left,lastIndex=effectiveFilterHeight*effectiveFilterWidth-1;this.userCode=` const ivec2 pads = ivec2(${padTop}, ${padLeft}); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 dyRCCorner = coords.yz - pads; int dyRCorner = dyRCCorner.x; int dyCCorner = dyRCCorner.y; // Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${effectiveFilterHeight}; wR += ${dilationHeight}) { float dyR = float(dyRCorner + wR) / ${strideHeight}.0; if (dyR < 0.0 || dyR >= ${convInfo.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${effectiveFilterWidth}; wC++) { float dyC = float(dyCCorner + wC) / ${strideWidth}.0; if (dyC < 0.0 || dyC >= ${convInfo.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(b, idyR, idyC, d); int maxPosValue = ${lastIndex} - int(getMaxPos(b, idyR, idyC, d)); // Get the current value, check it against the value from the // position matrix. int curPosValue = wR * ${effectiveFilterWidth} + wC; float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0); dotProd += dyValue * mask; } } setOutput(dotProd); } `}},MaxPool3DBackpropProgram=class{constructor(convInfo){this.variableNames=["dy","maxPos"],this.outputShape=convInfo.inShape;let strideDepth=convInfo.strideDepth,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,dilationDepth=convInfo.dilationDepth,dilationHeight=convInfo.dilationHeight,dilationWidth=convInfo.dilationWidth,effectiveFilterDepth=convInfo.effectiveFilterDepth,effectiveFilterHeight=convInfo.effectiveFilterHeight,effectiveFilterWidth=convInfo.effectiveFilterWidth,padFront=effectiveFilterDepth-1-convInfo.padInfo.front,padTop=effectiveFilterHeight-1-convInfo.padInfo.top,padLeft=effectiveFilterWidth-1-convInfo.padInfo.left,lastIndex=effectiveFilterDepth*effectiveFilterHeight*effectiveFilterWidth-1;this.userCode=` const ivec3 pads = ivec3(${padFront}, ${padTop}, ${padLeft}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads; int dyDCorner = dyCorner.x; int dyRCorner = dyCorner.y; int dyCCorner = dyCorner.z; // Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get // dx(xD, xR, xC, ch). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wD = 0; wD < ${effectiveFilterDepth}; wD += ${dilationDepth}) { float dyD = float(dyDCorner + wD) / ${strideDepth}.0; if (dyD < 0.0 || dyD >= ${convInfo.outDepth}.0 || fract(dyD) > 0.0) { continue; } int idyD = int(dyD); for (int wR = 0; wR < ${effectiveFilterHeight}; wR += ${dilationHeight}) { float dyR = float(dyRCorner + wR) / ${strideHeight}.0; if (dyR < 0.0 || dyR >= ${convInfo.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${effectiveFilterWidth}; wC += ${dilationWidth}) { float dyC = float(dyCCorner + wC) / ${strideWidth}.0; if (dyC < 0.0 || dyC >= ${convInfo.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(batch, idyD, idyR, idyC, ch); int maxPosValue = ${lastIndex} - int(getMaxPos(batch, idyD, idyR, idyC, ch)); // Get the current value, check it against the value from the // position matrix. int curPosValue = wD * ${effectiveFilterHeight} * ${effectiveFilterWidth} + wR * ${effectiveFilterWidth} + wC; float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0); dotProd += dyValue * mask; } } } setOutput(dotProd); } `}},MatMulPackedProgram=class{constructor(aShape,bShape,outputShape,transposeA=!1,transposeB=!1,addBias=!1,activation2=null,hasPreluActivation=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=outputShape;let sharedDim=transposeA?aShape[1]:aShape[2],sharedDimensionPacked=Math.ceil(sharedDim/2),aSample=transposeA?"i * 2, rc.y":"rc.y, i * 2",bSample=transposeB?"rc.z, i * 2":"i * 2, rc.z",aSwizzle=transposeA?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],bSwizzle=transposeB?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],activationSnippet="",applyActivationSnippet="";activation2&&(hasPreluActivation?activationSnippet=`vec4 activation(vec4 a) { vec4 b = getPreluActivationWeightsAtOutCoords(); ${activation2} }`:activationSnippet=`vec4 activation(vec4 x) { ${activation2} }`,applyActivationSnippet="result = activation(result);");let addBiasSnippet=addBias?"result += getBiasAtOutCoords();":"";addBias&&this.variableNames.push("bias"),hasPreluActivation&&this.variableNames.push("preluActivationWeights");let batchASnippet="rc.x",batchBSnippet="rc.x";aShape[0]{this.seedLoc==null&&(this.seedLoc=gpgpu.getUniformLocation(webGLProgram,"seed")),gpgpu.gl.uniform1f(this.seedLoc,seed)}}},OneHotProgram=class{constructor(numIndices,depth,onValue,offValue){this.variableNames=["indices"],this.outputShape=[numIndices,depth],this.userCode=` void main() { ivec2 coords = getOutputCoords(); int index = round(getIndices(coords.x)); setOutput(mix(float(${offValue}), float(${onValue}), float(index == coords.y))); } `}},PackProgram=class{constructor(outputShape){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=outputShape;let rank=outputShape.length;if(rank===0)this.userCode=` void main() { setOutput(vec4(getA(), 0., 0., 0.)); } `;else{let channels=getChannels("rc",rank),dtype=getCoordsDataType(rank),outOfBoundsCondition=getOutOfBoundsCondition(rank,outputShape,channels),setup38=getSetup(rank,outputShape[outputShape.length-1],outputShape[outputShape.length-2],channels),output=getOutput(outputShape,channels);this.userCode=` void main() { ${dtype} rc = getOutputCoords(); if(${outOfBoundsCondition}) { setOutput(vec4(0)); } else { ${setup38} setOutput(vec4(${output})); } } `}}};function getSourceCoordsArr(rank,dims){let coords2=[];for(let row=0;row<=1;row++)for(let col=0;col<=1;col++){let coord=`${row===0?"r":"rp1"}, ${col===0?"c":"cp1"}`;for(let d=2;d ${shape[0]}`;let cond="";for(let i=rank-2;i= ${shape[i]}`,i= ${cols}; bool rEdge = rp1 >= ${rows}; `}function getOutput(shape,dims){let rank=shape.length,sourceCoords=getSourceCoordsArr(rank,dims);return rank===1?`getA(rc), rc + 1 >= ${shape[0]} ? 0. : getA(rc + 1), 0, 0`:`getA(${sourceCoords[0]}), cEdge ? 0. : getA(${sourceCoords[1]}), rEdge ? 0. : getA(${sourceCoords[2]}), rEdge || cEdge ? 0. : getA(${sourceCoords[3]})`}var PadProgram=class{constructor(xShape,paddings,constantValue){this.variableNames=["x"],this.outputShape=paddings.map((p2,i)=>p2[0]+xShape[i]+p2[1]);let rank=xShape.length,type=getCoordsDataType(rank),start=paddings.map(p2=>p2[0]).join(","),end=paddings.map((p2,i)=>p2[0]+xShape[i]).join(","),unpackedCoords=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,rank);if(rank===1){this.userCode=` int start = ${start}; int end = ${end}; void main() { int outC = getOutputCoords(); if (outC < start || outC >= end) { setOutput(float(${constantValue})); } else { setOutput(getX(outC - start)); } } `;return}this.userCode=` ${type} start = ${type}(${start}); ${type} end = ${type}(${end}); void main() { ${type} outC = getOutputCoords(); if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) { setOutput(float(${constantValue})); } else { ${type} coords = outC - start; setOutput(getX(${unpackedCoords})); } } `}},PadPackedProgram=class{constructor(xShape,paddings,constantValue){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=paddings.map((p2,i)=>p2[0]+xShape[i]+p2[1]);let rank=xShape.length,dtype=getCoordsDataType(rank),start=paddings.map(p2=>p2[0]).join(","),end=paddings.map((p2,i)=>p2[0]+xShape[i]).join(","),coords2=getChannels("rc",rank),source=getChannels("source",rank),cLimit=`${coords2[rank-1]} < ${this.outputShape[rank-1]}`,innerDims=rank===1?"source":`vec2(${source.slice(-2).join()})`,componentSetup=[`${dtype} rc = outputLoc;`,`${coords2[rank-1]} += 1; if(${cLimit}) { `,rank===1?"":`} rc = outputLoc; ${coords2[rank-2]} += 1; if(${coords2[rank-2]} < ${this.outputShape[rank-2]}) {`,rank===1?"":` ${coords2[rank-1]} += 1; if(${cLimit}) {`],paddingArea=rank===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",mainLoop="";for(let i=0,j=rank===1?2:4;i= ${convInfo.inHeight}) { continue; } for (int wC = 0; wC < ${effectiveFilterWidth}; wC += ${dilationWidth}) { int xC = xCCorner + wC; if (xC < 0 || xC >= ${convInfo.inWidth}) { continue; } float value = getX(batch, xR, xC, d); // If a min / max value has already been found, use it. If not, // use the current value. float currMinMaxValue = mix( value, minMaxValue, minMaxValueFound); if (value ${compareOp2} currMinMaxValue) { minMaxValue = value; minMaxValueFound = 1.0; minMaxPosition = ${flattenPositions?includeBatchInIndex?batchFlattenPositionStr:flattenPositionStr:`wR * ${effectiveFilterWidth} + wC`}; } } } setOutput(float(minMaxPosition)); } `;return}let compareOp="max",returnValue=`${poolType}(${poolType}(${poolType}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;poolType==="avg"&&(returnValue="avgValue / count");let filterWidthNearestVec4=Math.floor(filterWidth/4)*4,filterWidthVec4Remainder=filterWidth%4,updateSnippet=` if (${isAvgPool}) { avgValue += dot(values, ones); } else { minMaxValue = ${compareOp}(values, minMaxValue); } `;this.userCode=` const ivec2 strides = ivec2(${strideHeight}, ${strideWidth}); const ivec2 pads = ivec2(${padTop}, ${padLeft}); const float initializationValue = ${initializationValue}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float count = 0.0; float getValue(int batch, int xR, int xC, int d) { if (xC < 0 || xC >= ${convInfo.inWidth}) { return initializationValue; } count += 1.0; return getX(batch, xR, xC, d); } void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d = coords[3]; ivec2 xRCCorner = coords.yz * strides - pads; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // max/min x(?, ?, d) to get y(yR, yC, d). // ? = to be determined vec4 minMaxValue = vec4(${initializationValue}); float avgValue = 0.0; count = 0.0; for (int wR = 0; wR < ${effectiveFilterHeight}; wR += ${dilationHeight}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${convInfo.inHeight}) { continue; } for (int wC = 0; wC < ${filterWidthNearestVec4}; wC += 4) { int xC = xCCorner + wC * ${dilationWidth}; vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${dilationWidth}, d), getValue(batch, xR, xC + 2 * ${dilationWidth}, d), getValue(batch, xR, xC + 3 * ${dilationWidth}, d) ); ${updateSnippet} } int xC = xCCorner + ${filterWidthNearestVec4}; if (${filterWidthVec4Remainder===1}) { vec4 values = vec4( getValue(batch, xR, xC, d), initializationValue, initializationValue, initializationValue ); ${updateSnippet} } else if (${filterWidthVec4Remainder===2}) { vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${dilationWidth}, d), initializationValue, initializationValue ); ${updateSnippet} } else if (${filterWidthVec4Remainder===3}) { vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${dilationWidth}, d), getValue(batch, xR, xC + 2 * ${dilationWidth}, d), initializationValue ); ${updateSnippet} } } setOutput(${returnValue}); } `}},Pool3DProgram=class{constructor(convInfo,poolType,computePositions,flattenPositions=!1,includeBatchInIndex=!1){if(this.variableNames=["x"],poolType==="avg"&&computePositions)throw new Error("Cannot compute positions for average pool.");let filterWidth=convInfo.filterWidth,strideDepth=convInfo.strideDepth,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,dilationDepth=convInfo.dilationDepth,dilationHeight=convInfo.dilationHeight,dilationWidth=convInfo.dilationWidth,effectiveFilterDepth=convInfo.effectiveFilterDepth,effectiveFilterHeight=convInfo.effectiveFilterHeight,effectiveFilterWidth=convInfo.effectiveFilterWidth,padFront=convInfo.padInfo.front,padTop=convInfo.padInfo.top,padLeft=convInfo.padInfo.left;this.outputShape=convInfo.outShape;let isAvgPool=poolType==="avg",initializationValue="0.0";if(isAvgPool||(initializationValue="-1.0 / 1e-20"),computePositions){let compareOp2=">=";this.userCode=` const ivec3 strides = ivec3(${strideDepth}, ${strideHeight}, ${strideWidth}); const ivec3 pads = ivec3(${padFront}, ${padTop}, ${padLeft}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads; int xDCorner = xCorner.x; int xRCorner = xCorner.y; int xCCorner = xCorner.z; // max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch). // ? = to be determined float minMaxValue = 0.0; float minMaxValueFound = 0.0; int minMaxPosition = 0; for (int wD = 0; wD < ${effectiveFilterDepth}; wD += ${dilationDepth}) { int xD = xDCorner + wD; if (xD < 0 || xD >= ${convInfo.inDepth}) { continue; } for (int wR = 0; wR < ${effectiveFilterHeight}; wR += ${dilationHeight}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${convInfo.inHeight}) { continue; } for (int wC = 0; wC < ${effectiveFilterWidth}; wC += ${dilationWidth}) { int xC = xCCorner + wC; if (xC < 0 || xC >= ${convInfo.inWidth}) { continue; } float value = getX(batch, xD, xR, xC, ch); // If a min / max value has already been found, use it. If not, // use the current value. float currMinMaxValue = mix( value, minMaxValue, minMaxValueFound); if (value ${compareOp2} currMinMaxValue) { minMaxValue = value; minMaxValueFound = 1.0; minMaxPosition = ${flattenPositions?includeBatchInIndex?`(((batch * ${convInfo.inDepth} + xD) * ${convInfo.inHeight} + xR) * ${convInfo.inWidth} + xC) * ${convInfo.inChannels} + ch`:`((xD * ${convInfo.inHeight} + xR) * ${convInfo.inWidth} + xC) * ${convInfo.inChannels} + ch`:`wD * ${effectiveFilterHeight} * ${effectiveFilterWidth} + wR * ${effectiveFilterWidth} + wC`}; } } } } setOutput(float(minMaxPosition)); } `;return}let compareOp="max",returnValue=`${poolType}(${poolType}(${poolType}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;poolType==="avg"&&(returnValue="avgValue / count");let filterWidthNearestVec4=Math.floor(filterWidth/4)*4,filterWidthVec4Remainder=filterWidth%4,updateSnippet=` if (${isAvgPool}) { avgValue += dot(values, ones); } else { minMaxValue = ${compareOp}(values, minMaxValue); } `;this.userCode=` const ivec3 strides = ivec3(${strideDepth}, ${strideHeight}, ${strideWidth}); const ivec3 pads = ivec3(${padFront}, ${padTop}, ${padLeft}); const float initializationValue = ${initializationValue}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float count = 0.0; float getValue(int batch, int xD, int xR, int xC, int ch) { if (xC < 0 || xC >= ${convInfo.inWidth}) { return initializationValue; } count += 1.0; return getX(batch, xD, xR, xC, ch); } void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads; int xDCorner = xCorner.x; int xRCorner = xCorner.y; int xCCorner = xCorner.z; // max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch). // ? = to be determined vec4 minMaxValue = vec4(${initializationValue}); float avgValue = 0.0; count = 0.0; for (int wD = 0; wD < ${effectiveFilterDepth}; wD += ${dilationDepth}) { int xD = xDCorner + wD; if (xD < 0 || xD >= ${convInfo.inDepth}) { continue; } for (int wR = 0; wR < ${effectiveFilterHeight}; wR += ${dilationHeight}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${convInfo.inHeight}) { continue; } for (int wC = 0; wC < ${filterWidthNearestVec4}; wC += 4) { int xC = xCCorner + wC * ${dilationWidth}; vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${dilationWidth}, ch), getValue(batch, xD, xR, xC + 2 * ${dilationWidth}, ch), getValue(batch, xD, xR, xC + 3 * ${dilationWidth}, ch) ); ${updateSnippet} } int xC = xCCorner + ${filterWidthNearestVec4}; if (${filterWidthVec4Remainder===1}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), initializationValue, initializationValue, initializationValue ); ${updateSnippet} } else if (${filterWidthVec4Remainder===2}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${dilationWidth}, ch), initializationValue, initializationValue ); ${updateSnippet} } else if (${filterWidthVec4Remainder===3}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${dilationWidth}, ch), getValue(batch, xD, xR, xC + 2 * ${dilationWidth}, ch), initializationValue ); ${updateSnippet} } } setOutput(${returnValue}); } } `}},ReduceProgram=class{constructor(reduceInfo,reduceType){this.variableNames=["x"];let{windowSize,batchSize,inSize,outSize}=reduceInfo;this.outputShape=[batchSize,outSize];let initializationValue="0.0",compareOp="";reduceType==="prod"?initializationValue="1.0":reduceType==="min"?(initializationValue="1.0 / 1e-20",compareOp="min"):reduceType==="max"&&(initializationValue="-1.0 / 1e-20",compareOp="max");let returnValue=`${reduceType}(${reduceType}(${reduceType}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;reduceType==="sum"?returnValue="sumValue":reduceType==="prod"?returnValue="prodValue":reduceType==="all"?returnValue="allValue":reduceType==="any"&&(returnValue="anyValue");let windowSizeNearestVec4=Math.floor(windowSize/4)*4,windowSizeVec4Remainder=windowSize%4,updateSnippet=` if (${reduceType==="sum"}) { sumValue += dot(values, ones); } else if (${reduceType==="prod"}) { vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]); prodValue *= tmp[0] * tmp[1]; } else { minMaxValue = ${compareOp}(values, minMaxValue); } `,vecType="vec4";reduceType==="all"?(initializationValue="1.0",updateSnippet=` bool reducedAllValue = all(values); float floatedReducedAllValue = float(reducedAllValue); allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0); `,vecType="bvec4"):reduceType==="any"&&(initializationValue="0.0",updateSnippet=` bool reducedAnyValue = any(values); float floatedReducedAnyValue = float(reducedAnyValue); anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0); `,vecType="bvec4");let checkOutOfBounds="";inSize%windowSize>0&&(checkOutOfBounds=` if (inIdx < 0 || inIdx >= ${inSize}) { return initializationValue; } `),this.userCode=` const float initializationValue = ${initializationValue}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float getValue(int batch, int inIdx) { ${checkOutOfBounds} return getX(batch, inIdx); } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = outIdx * ${windowSize}; vec4 minMaxValue = vec4(${initializationValue}); float prodValue = 1.0; float sumValue = 0.0; float allValue = 1.0; float anyValue = 0.0; for (int i = 0; i < ${windowSizeNearestVec4}; i += 4) { int inIdx = inOffset + i; ${vecType} values = ${vecType}( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), getValue(batch, inIdx + 3) ); ${updateSnippet} } int inIdx = inOffset + ${windowSizeNearestVec4}; if (${windowSizeVec4Remainder===1}) { ${vecType} values = ${vecType}( getValue(batch, inIdx), initializationValue, initializationValue, initializationValue ); ${updateSnippet} } else if (${windowSizeVec4Remainder===2}) { ${vecType} values = ${vecType}( getValue(batch, inIdx), getValue(batch, inIdx + 1), initializationValue, initializationValue ); ${updateSnippet} } else if (${windowSizeVec4Remainder===3}) { ${vecType} values = ${vecType}( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), initializationValue ); ${updateSnippet} } setOutput(${returnValue}); } `}},ReshapePackedProgram=class{constructor(outputShape,inputShape){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=outputShape;let mainLoop="";for(let i=0;i<4;i++){let thisRC="thisRC = rc;";i%2===1&&(thisRC+="thisRC.z += 1;"),i>1&&(thisRC+="thisRC.y += 1;"),mainLoop+=` ${thisRC} ${i>0?"if(thisRC.y < rows && thisRC.z < cols){":""} int flatIndex = getFlatIndex(thisRC); ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex); vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z)); result[${i}] = getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims); ${i>0?"}":""} `}this.userCode=` ${getReshapedInputCoords(inputShape)} ${getFlatIndexFrom3D(outputShape)} void main() { ivec3 rc = getOutputCoords(); vec4 result = vec4(0.); ivec3 thisRC; int rows = ${outputShape[1]}; int cols = ${outputShape[2]}; ${mainLoop} setOutput(result); } `}};function getReshapedInputCoords(shape){let coordsFromIndexSnippet=getLogicalCoordinatesFromFlatIndex(["r","c","d"],shape);return` ivec3 inputCoordsFromReshapedOutCoords(int index) { ${coordsFromIndexSnippet} return ivec3(r, c, d); } `}var ResizeBilinearBackpropProgram=class{constructor(dy,x,alignCorners){this.variableNames=["dy"],this.outputShape=[],this.outputShape=x.shape;let[,xHeight,xWidth]=x.shape,[,yHeight,yWidth]=dy.shape,effectiveXSize=[alignCorners&&yHeight>1?xHeight-1:xHeight,alignCorners&&yWidth>1?xWidth-1:xWidth],effectiveYSize=[alignCorners&&yHeight>1?yHeight-1:yHeight,alignCorners&&yWidth>1?yWidth-1:yWidth],heightScale=effectiveXSize[0]/effectiveYSize[0],widthScale=effectiveXSize[1]/effectiveYSize[1],invHeightScale=1/heightScale,invWidthScale=1/widthScale,winHeight=Math.ceil(invHeightScale)*2+2,winWidth=Math.ceil(invWidthScale)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; int r = coords[1]; int c = coords[2]; float accumulator = 0.0; const float heightScale = float(${heightScale}); const float widthScale = float(${widthScale}); const float invHeightScale = float(${invHeightScale}); const float invWidthScale = float(${invWidthScale}); const int winHeight = int(${winHeight}); const int winWidth = int(${winWidth}); // Compute bounds for where in dy we will look float startRLerp = floor(float(r) * invHeightScale); int startDyR = int(startRLerp - float(winHeight / 2)); float startCLerp = floor(float(c) * invWidthScale); int startDyC = int(startCLerp - float(winWidth / 2)); // Loop over dy for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) { int dyR = dyROffset + startDyR; // Guard against the window exceeding the bounds of dy if (dyR < 0 || dyR >= ${yHeight}) { continue; } for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) { int dyC = dyCOffset + startDyC; // Guard against the window exceeding the bounds of dy if (dyC < 0 || dyC >= ${yWidth}) { continue; } float dxR = float(dyR) * heightScale; int topDxRIndex = int(floor(dxR)); int bottomDxRIndex = int(min(ceil(dxR), ${xHeight-1}.0)); float dxRLerp = dxR - float(topDxRIndex); float inverseDxRLerp = 1.0 - dxRLerp; float dxC = float(dyC) * widthScale; int leftDxCIndex = int(floor(dxC)); int rightDxCIndex = int(min(ceil(dxC), ${xWidth-1}.0)); float dxCLerp = dxC - float(leftDxCIndex); float inverseDxCLerp = 1.0 - dxCLerp; if (r == topDxRIndex && c == leftDxCIndex) { // topLeft accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp; } if (r == topDxRIndex && c == rightDxCIndex) { // topRight accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp; } if (r == bottomDxRIndex && c == leftDxCIndex) { // bottomLeft accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp; } if (r == bottomDxRIndex && c == rightDxCIndex) { // bottomRight accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp; } } } // End loop over dy setOutput(accumulator); } `}},ResizeBilinearProgram=class{constructor(inputShape,newHeight,newWidth,alignCorners){this.variableNames=["A"],this.outputShape=[];let[batch,oldHeight,oldWidth,depth]=inputShape;this.outputShape=[batch,newHeight,newWidth,depth];let effectiveInSize=[alignCorners&&newHeight>1?oldHeight-1:oldHeight,alignCorners&&newWidth>1?oldWidth-1:oldWidth],effectiveOutSize=[alignCorners&&newHeight>1?newHeight-1:newHeight,alignCorners&&newWidth>1?newWidth-1:newWidth];this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${effectiveInSize[0]/effectiveOutSize[0]}, ${effectiveInSize[1]/effectiveOutSize[1]}); const vec2 inputShapeRC = vec2(${oldHeight}.0, ${oldWidth}.0); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 yRC = coords.yz; // Fractional source index. vec2 sourceFracIndexRC = vec2(yRC) * effectiveInputOverOutputRatioRC; // Compute the four integer indices. ivec2 sourceFloorRC = ivec2(sourceFracIndexRC); ivec2 sourceCeilRC = ivec2( min(inputShapeRC - 1.0, ceil(sourceFracIndexRC))); float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d); float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d); float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d); float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d); vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC); float top = topLeft + (topRight - topLeft) * fracRC.y; float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y; float newValue = top + (bottom - top) * fracRC.x; setOutput(newValue); } `}},ResizeBilinearPackedProgram=class{constructor(inputShape,newHeight,newWidth,alignCorners){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[batch,oldHeight,oldWidth,depth]=inputShape;this.outputShape=[batch,newHeight,newWidth,depth];let effectiveInSize=[alignCorners&&newHeight>1?oldHeight-1:oldHeight,alignCorners&&newWidth>1?oldWidth-1:oldWidth],effectiveOutSize=[alignCorners&&newHeight>1?newHeight-1:newHeight,alignCorners&&newWidth>1?newWidth-1:newWidth];this.userCode=` const vec3 effectiveInputOverOutputRatioRC = vec3( ${effectiveInSize[0]/effectiveOutSize[0]}, ${effectiveInSize[1]/effectiveOutSize[1]}, ${effectiveInSize[1]/effectiveOutSize[1]}); const vec3 inputShapeRC = vec3(${oldHeight}.0, ${oldWidth}.0, ${oldWidth}.0); float getAValue(int b, int r, int c, int d) { return getChannel(getA(b, r, c, d), vec2(c, d)); } void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; // Calculate values for next column in yRC.z. ivec3 yRC = coords.yzz + ivec3(0, 0, 1); // Fractional source index. vec3 sourceFracIndexRC = vec3(yRC) * effectiveInputOverOutputRatioRC; // Compute the four integer indices. ivec3 sourceFloorRC = ivec3(sourceFracIndexRC); ivec3 sourceCeilRC = ivec3( min(inputShapeRC - 1.0, ceil(sourceFracIndexRC))); // Should we calculate next column and row elements in 2x2 packed cell. bool hasNextCol = d < ${depth-1}; bool hasNextRow = coords.z < ${newWidth-1}; // In parallel, construct four corners for all four components in // packed 2x2 cell. vec4 topLeft = vec4( getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d), hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0); vec4 bottomLeft = vec4( getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d), hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0); vec4 topRight = vec4( getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d), hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0); vec4 bottomRight = vec4( getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d), hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0); vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC); vec4 top = mix(topLeft, topRight, fracRC.yyzz); vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz); vec4 newValue = mix(top, bottom, fracRC.x); setOutput(newValue); } `}},ResizeNearestNeigborBackpropProgram=class{constructor(dy,x,alignCorners){this.variableNames=["dy"],this.outputShape=[],this.outputShape=x.shape;let[,xHeight,xWidth]=x.shape,[,yHeight,yWidth]=dy.shape,effectiveXSize=[alignCorners&&yHeight>1?xHeight-1:xHeight,alignCorners&&yWidth>1?xWidth-1:xWidth],effectiveYSize=[alignCorners&&yHeight>1?yHeight-1:yHeight,alignCorners&&yWidth>1?yWidth-1:yWidth],heightScale=effectiveXSize[0]/effectiveYSize[0],widthScale=effectiveXSize[1]/effectiveYSize[1],invHeightScale=1/heightScale,invWidthScale=1/widthScale,winHeight=Math.ceil(invHeightScale)*2+2,winWidth=Math.ceil(invWidthScale)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; int r = coords[1]; int c = coords[2]; float accumulator = 0.0; const float heightScale = float(${heightScale}); const float widthScale = float(${widthScale}); const float invHeightScale = float(${invHeightScale}); const float invWidthScale = float(${invWidthScale}); const int winHeight = int(${winHeight}); const int winWidth = int(${winWidth}); // Compute bounds for where in dy we will look float startRLerp = floor(float(r) * invHeightScale); int startDyR = int(floor(startRLerp - float(winHeight / 2))); float startCLerp = floor(float(c) * invWidthScale); int startDyC = int(floor(startCLerp - float(winWidth / 2))); // Loop over dy for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) { int dyR = dyROffset + startDyR; // Guard against the window exceeding the bounds of dy if (dyR < 0 || dyR >= ${yHeight}) { continue; } for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) { int dyC = dyCOffset + startDyC; // Guard against the window exceeding the bounds of dy if (dyC < 0 || dyC >= ${yWidth}) { continue; } float sourceFracRow = float(${effectiveXSize[0]}) * (float(dyR) / float(${effectiveYSize[0]})); float sourceFracCol = float(${effectiveXSize[1]}) * (float(dyC) / float(${effectiveYSize[1]})); int sourceNearestRow = int(min( float(int(${xHeight}) - 1), ${alignCorners} ? float(round(sourceFracRow)) : float(floor(sourceFracRow)))); int sourceNearestCol = int(min( float(int(${xWidth}) - 1), ${alignCorners} ? float(round(sourceFracCol)) : float(floor(sourceFracCol)))); if (r == sourceNearestRow && c == sourceNearestCol) { accumulator += getDy(b, dyR, dyC, d); } } } // End loop over dy setOutput(accumulator); } `}},ResizeNearestNeighborProgram=class{constructor(inputShape,newHeight,newWidth,alignCorners){this.variableNames=["A"],this.outputShape=[];let[batch,oldHeight,oldWidth,depth]=inputShape;this.outputShape=[batch,newHeight,newWidth,depth];let effectiveInSize=[alignCorners&&newHeight>1?oldHeight-1:oldHeight,alignCorners&&newWidth>1?oldWidth-1:oldWidth],effectiveOutSize=[alignCorners&&newHeight>1?newHeight-1:newHeight,alignCorners&&newWidth>1?newWidth-1:newWidth],roundBase=alignCorners?"0.5":"0.0";this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${effectiveInSize[0]/effectiveOutSize[0]}, ${effectiveInSize[1]/effectiveOutSize[1]}); const vec2 inputShapeRC = vec2(${oldHeight}.0, ${oldWidth}.0); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 yRC = coords.yz; // Fractional source index. vec2 sourceFracIndexRC = vec2(yRC) * effectiveInputOverOutputRatioRC; // Compute the coordinators of nearest neighbor point. ivec2 sourceNearestRC = ivec2( min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${roundBase}))); float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d); setOutput(newValue); } `}},ReverseProgram=class{constructor(xShape,axis){this.variableNames=["x"];let rank=xShape.length;if(rank>4)throw new Error(`WebGL backend: Reverse of rank-${rank} tensor is not yet supported`);if(this.outputShape=xShape,rank===1){this.userCode=` void main() { int coord = getOutputCoords(); setOutput(getX(${xShape[0]} - coord - 1)); } `;return}let getInCoord=i=>axis.indexOf(i)!==-1&&xShape[i]!==1?`${xShape[i]} - coords[${i}] - 1`:`coords[${i}]`,inCoords=xShape.map((_,i)=>getInCoord(i)).join(","),type=getCoordsDataType(rank);this.userCode=` void main() { ${type} coords = getOutputCoords(); setOutput(getX(${inCoords})); } `}},ReversePackedProgram=class{constructor(xShape,axis){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let rank=xShape.length;if(rank>4)throw new Error(`WebGL backend: Reverse of rank-${rank} tensor is not yet supported`);this.outputShape=xShape;let channels=getChannels("rc",rank),nextColumn=`${channels[rank-1]} + 1 < ${this.outputShape[rank-1]}`,nextRow=`${channels[rank-2]} + 1 < ${this.outputShape[rank-2]}`,type=getCoordsDataType(rank);rank===1?this.userCode=` void main(){ int rc = getOutputCoords(); vec4 result = vec4(0.); result.r = getChannel(getX(${xShape[0]} - rc - 1), ${xShape[0]} - rc - 1); if(${nextColumn}){ result.g = getChannel(getX(${xShape[0]} - (rc + 1) - 1), ${xShape[0]} - (rc + 1) - 1); } setOutput(result); } `:this.userCode=` void main() { ${type} rc = getOutputCoords(); vec4 result = vec4(0.); result.r = ${getR(channels.slice())}; if(${nextColumn}){ result.g = ${getG(channels.slice())}; } if(${nextRow}) { result.b = ${getB(channels.slice())}; if(${nextColumn}) { result.a = ${getA(channels.slice())}; } } setOutput(result); } `;function getR(channels2){return getChannel(channels2)}function getG(channels2){return channels2[rank-1]="("+channels2[rank-1]+" + 1)",getChannel(channels2)}function getB(channels2){return channels2[rank-2]="("+channels2[rank-2]+" + 1)",getChannel(channels2)}function getA(channels2){return channels2[rank-1]="("+channels2[rank-1]+" + 1)",channels2[rank-2]="("+channels2[rank-2]+" + 1)",getChannel(channels2)}function getChannel(channels2){let inCoordsArray=xShape.map((_,i)=>getInCoord(i,channels2)),inCoords=inCoordsArray.join(","),innerDims=inCoordsArray.slice(-2).join(",");return`getChannel(getX(${inCoords}), vec2(${innerDims}))`}function getInCoord(i,channels1){return axis.indexOf(i)!==-1&&xShape[i]!==1?`${xShape[i]} - ${channels1[i]} - 1`:`${channels1[i]}`}}},ScatterProgram=class{constructor(updateSize,sliceDim,indicesRank,updatesRank,strides,shape,summingDupeIndex=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=shape;let stridesType=getCoordsDataType(strides.length),dtype=getCoordsDataType(shape.length),indicesString="";indicesRank===1?indicesString="i":indicesRank===2&&(indicesString="i, j");let indicesSnippet=`getIndices(${indicesString})`,updatesString="";updatesRank===1?updatesString="i":updatesRank===2&&(updatesString="i, coords[1]");let updatesSnippet=`getUpdates(${updatesString})`,strideString=sliceDim>1?"strides[j]":"strides";this.userCode=` ${stridesType} strides = ${stridesType}(${strides}); void main() { ${dtype} coords = getOutputCoords(); float sum = 0.0; bool found = false; for (int i = 0; i < ${updateSize}; i++) { int flattenedIndex = 0; for (int j = 0; j < ${sliceDim}; j++) { int index = round(${indicesSnippet}); flattenedIndex += index * ${strideString}; } if (flattenedIndex == coords[0]) { sum += ${updatesSnippet}; found = true; } } setOutput(mix(getDefaultValue(), sum, float(found))); } `}},SegmentOpProgram=class{constructor(segOpInfo,segOpType){this.variableNames=["x","segmentIds"];let windowSize=segOpInfo.windowSize,batchSize=segOpInfo.batchSize,inSize=segOpInfo.inSize,numSegments=segOpInfo.numSegments,outSize=numSegments*Math.ceil(inSize/windowSize);this.outputShape=[batchSize,outSize];let initializationValue="0.0",returnValue="sumValue",windowSizeNearestVec4=Math.floor(windowSize/4)*4,windowSizeVec4Remainder=windowSize%4,updateSnippet=` sumValue += dot(values, segFilter); `,checkValueOutOfBounds="";inSize%windowSize>0&&(checkValueOutOfBounds=` if (inIdx < 0 || inIdx >= ${inSize}) { return initializationValue; } `);let checkSegmentIdOutOfBounds="";inSize%windowSize>0&&(checkSegmentIdOutOfBounds=` if (inIdx < 0 || inIdx >= ${inSize}) { return -1.0; } `),this.userCode=` const float initializationValue = ${initializationValue}; float getValue(int batch, int inIdx) { ${checkValueOutOfBounds} return getX(batch, inIdx); } float getSegmentIdAtIndex(int inIdx) { ${checkSegmentIdOutOfBounds} return getSegmentIds(inIdx); } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = int(floor(float(outIdx) / float( ${numSegments})) * float(${windowSize})); int currentSeg = int(mod(float(outIdx), float(${numSegments}))); float sumValue = 0.0; for (int i = 0; i < ${windowSizeNearestVec4}; i += 4) { int inIdx = inOffset + i; vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), getValue(batch, inIdx + 3) ); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0 ); ${updateSnippet} } int inIdx = inOffset + ${windowSizeNearestVec4}; if (${windowSizeVec4Remainder===1}) { vec4 values = vec4( getValue(batch, inIdx), initializationValue, initializationValue, initializationValue ); int inIdxSeg = int(getSegmentIdAtIndex(inIdx)); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, 0, 0, 0 ); ${updateSnippet} } else if (${windowSizeVec4Remainder===2}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), initializationValue, initializationValue ); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0, 0, 0 ); ${updateSnippet} } else if (${windowSizeVec4Remainder===3}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), initializationValue ); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0, 0 ); ${updateSnippet} } setOutput(${returnValue}); } `}},SelectProgram=class{constructor(cRank,shape,rank){this.variableNames=["c","a","b"],this.outputShape=shape;let cCoords,abCoords;if(rank>4)throw Error(`Where for rank ${rank} is not yet supported`);if(rank===1)abCoords="resRC",cCoords="resRC";else{let currentCoords=["resRC.x","resRC.y","resRC.z","resRC.w"],cCoordVars=[],abCoordVars=[];for(let i=0;i= 1.0) { setOutput(getA(${abCoords})); } else { setOutput(getB(${abCoords})); } } `}},SliceProgram=class{constructor(destSize){this.variableNames=["source"],this.outputShape=destSize,this.rank=destSize.length;let dtype=getCoordsDataType(this.rank),uniformPart=`uniform int start[${this.rank}];`,sourceCoords=getCoords2(this.rank),body3,coordSum=destSize.map((_,i)=>`sourceLoc.${coords[i]} = start[${i}] + coords.${coords[i]};`);body3=` ${dtype} sourceLoc; ${dtype} coords = getOutputCoords(); ${coordSum.join(` `)} `,this.userCode=` ${uniformPart} void main() { ${body3} setOutput(getSource(${sourceCoords})); } `}getCustomSetupFunc(start){if(start.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${start.length})`);return(gpgpu,webGLProgram)=>{if(this.startLoc==null&&(this.startLoc=gpgpu.getUniformLocationNoThrow(webGLProgram,"start"),this.startLoc==null))return;gpgpu.gl.uniform1iv(this.startLoc,start)}}},coords=["x","y","z","w","u","v"];function getCoords2(rank){if(rank===1)return"sourceLoc";if(rank<=6)return coords.slice(0,rank).map(x=>"sourceLoc."+x).join(",");throw Error(`Slicing for rank ${rank} is not yet supported`)}var SlicePackedProgram=class{constructor(destSize){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=destSize,this.rank=destSize.length;let dtype=getCoordsDataType(this.rank),coords2=getChannels("coords",this.rank),sourceLoc=getChannels("sourceLoc",this.rank),innerDims=this.rank===1?"sourceLoc":`vec2(${sourceLoc.slice(-2).join()})`,getChannel=`getChannel(getSource(${sourceLoc.join()}), ${innerDims})`,upperRow=` result.x = ${getChannel}; if (++${coords2[this.rank-1]} < ${destSize[this.rank-1]}) { ++${sourceLoc[this.rank-1]}; result.y = ${getChannel}; --${sourceLoc[this.rank-1]}; } `,lowerRow=this.rank===1?"":` --${coords2[this.rank-1]}; if (++${coords2[this.rank-2]} < ${destSize[this.rank-2]}) { ++${sourceLoc[this.rank-2]}; result.z = ${getChannel}; if (++${coords2[this.rank-1]} < ${destSize[this.rank-1]}) { ++${sourceLoc[this.rank-1]}; result.w = ${getChannel}; } } `,sourceLocSetup=this.rank<=4?`sourceLoc = coords + ${dtype}(${destSize.map((_,i)=>`start[${i}]`).join()});`:destSize.map((_,i)=>`${sourceLoc[i]} = ${coords2[i]} + start[${i}];`).join(` `);this.userCode=` uniform int start[${this.rank}]; void main() { ${dtype} coords = getOutputCoords(); ${dtype} sourceLoc; ${sourceLocSetup} vec4 result = vec4(0.); ${upperRow} ${lowerRow} setOutput(result); } `}getCustomSetupFunc(start){if(start.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${start.length})`);return(gpgpu,webGLProgram)=>{if(this.startLoc==null&&(this.startLoc=gpgpu.getUniformLocationNoThrow(webGLProgram,"start"),this.startLoc==null))return;gpgpu.gl.uniform1iv(this.startLoc,start)}}},StridedSliceProgram=class{constructor(begin,strides,size){this.variableNames=["x"],this.outputShape=size;let rank=size.length,inputDtype=getCoordsDataType(size.length),dtype=getCoordsDataType(size.length),newCoords="";if(rank===1)newCoords="coords * strides + begin";else{let outputAxis=0;newCoords=size.map((_,i)=>(outputAxis++,size.length===1?`coords * strides[${i}] + begin[${i}]`:`coords[${outputAxis-1}] * strides[${i}] + begin[${i}]`)).join(",")}this.userCode=` ${inputDtype} begin = ${inputDtype}(${begin}); ${inputDtype} strides = ${inputDtype}(${strides}); void main() { ${dtype} coords = getOutputCoords(); setOutput(getX(${newCoords})); } `}},TextureManager=class{constructor(gpgpu){this.gpgpu=gpgpu,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(shapeRC,usage,isPacked){let physicalTexType=getPhysicalFromLogicalTextureType(usage,isPacked),shapeKey=getKeyFromTextureShape(shapeRC,physicalTexType,isPacked);shapeKey in this.freeTextures||(this.freeTextures[shapeKey]=[]),shapeKey in this.usedTextures||(this.usedTextures[shapeKey]=[]);let texBytes=computeBytes(shapeRC,physicalTexType,this.gpgpu.gl,this.gpgpu.textureConfig,isPacked);if(this.freeTextures[shapeKey].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=texBytes,this.log();let newTexture2=this.freeTextures[shapeKey].shift();return this.usedTextures[shapeKey].push(newTexture2),newTexture2}let newTexture;return physicalTexType===PhysicalTextureType.PACKED_2X2_FLOAT32?newTexture=this.gpgpu.createPackedMatrixTexture(shapeRC[0],shapeRC[1]):physicalTexType===PhysicalTextureType.PACKED_2X2_FLOAT16?newTexture=this.gpgpu.createFloat16PackedMatrixTexture(shapeRC[0],shapeRC[1]):physicalTexType===PhysicalTextureType.UNPACKED_FLOAT32?newTexture=this.gpgpu.createFloat32MatrixTexture(shapeRC[0],shapeRC[1]):physicalTexType===PhysicalTextureType.UNPACKED_FLOAT16?newTexture=this.gpgpu.createFloat16MatrixTexture(shapeRC[0],shapeRC[1]):physicalTexType===PhysicalTextureType.PACKED_4X1_UNSIGNED_BYTE&&(newTexture=this.gpgpu.createUnsignedBytesMatrixTexture(shapeRC[0],shapeRC[1])),this.usedTextures[shapeKey].push(newTexture),this.numUsedTextures++,this._numBytesAllocated+=texBytes,this.log(),newTexture}releaseTexture(texture,shape,logicalTexType,isPacked){if(this.freeTextures==null)return;let physicalTexType=getPhysicalFromLogicalTextureType(logicalTexType,isPacked),shapeKey=getKeyFromTextureShape(shape,physicalTexType,isPacked);shapeKey in this.freeTextures||(this.freeTextures[shapeKey]=[]);let texBytes=computeBytes(shape,physicalTexType,this.gpgpu.gl,this.gpgpu.textureConfig,isPacked),deleteTexThreshold=env().get("WEBGL_DELETE_TEXTURE_THRESHOLD");deleteTexThreshold!==-1&&this._numBytesAllocated>deleteTexThreshold?(this.gpgpu.deleteMatrixTexture(texture),this._numBytesAllocated-=texBytes):(this.freeTextures[shapeKey].push(texture),this.numFreeTextures++,this._numBytesFree+=texBytes),this.numUsedTextures--;let texList=this.usedTextures[shapeKey],texIndex=texList.indexOf(texture);if(texIndex<0)throw new Error("Cannot release a texture that was never provided by this texture manager");texList.splice(texIndex,1),this.log()}log(){if(!this.logEnabled)return;let total=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${total})`);let freeRatio=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*freeRatio)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures==null)return;for(let texShape in this.freeTextures)this.freeTextures[texShape].forEach(tex=>{this.gpgpu.deleteMatrixTexture(tex)});for(let texShape in this.usedTextures)this.usedTextures[texShape].forEach(tex=>{this.gpgpu.deleteMatrixTexture(tex)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}};function numBytesForInternalFormat(gl,internalFormat){let glany=gl;if(internalFormat===glany.R32F)return 4;if(internalFormat===glany.R16F)return 2;if(internalFormat===glany.RGBA32F)return 16;if(internalFormat===gl.RGBA)return 16;if(internalFormat===glany.RGBA16F)return 8;throw new Error(`Unknown internal format ${internalFormat}`)}function computeBytes(shape,physicalTexType,gl,textureConfig,isPacked){let internalFormat=internalFormatForPhysicalTexType(physicalTexType,textureConfig),numElements;if(isPacked){let[packedWidth,packedHeight]=getPackedMatrixTextureShapeWidthHeight(shape[0],shape[1]);numElements=packedWidth*packedHeight}else{let[width,height]=getUnpackedMatrixTextureShapeWidthHeight(shape[0],shape[1]);numElements=width*height}let bytesPerElement2=numBytesForInternalFormat(gl,internalFormat);return numElements*bytesPerElement2}function internalFormatForPhysicalTexType(physicalTexType,textureConfig){switch(physicalTexType){case PhysicalTextureType.PACKED_2X2_FLOAT32:return getInternalFormatForPackedMatrixTexture(textureConfig);case PhysicalTextureType.PACKED_2X2_FLOAT16:return getInternalFormatForFloat16PackedMatrixTexture(textureConfig);case PhysicalTextureType.UNPACKED_FLOAT32:return getInternalFormatForFloat32MatrixTexture(textureConfig);case PhysicalTextureType.UNPACKED_FLOAT16:return getInternalFormatForFloat16MatrixTexture(textureConfig);case PhysicalTextureType.PACKED_4X1_UNSIGNED_BYTE:return getInternalFormatForUnsignedBytesMatrixTexture(textureConfig);default:throw new Error(`Unknown physical texture type ${physicalTexType}`)}}function getPhysicalTextureForRendering(isPacked){return env().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?isPacked?PhysicalTextureType.PACKED_2X2_FLOAT32:PhysicalTextureType.UNPACKED_FLOAT32:isPacked?PhysicalTextureType.PACKED_2X2_FLOAT16:PhysicalTextureType.UNPACKED_FLOAT16}function getPhysicalFromLogicalTextureType(logicalTexType,isPacked){if(logicalTexType===TextureUsage.UPLOAD)return PhysicalTextureType.PACKED_2X2_FLOAT32;if(logicalTexType===TextureUsage.RENDER||logicalTexType==null)return getPhysicalTextureForRendering(isPacked);if(logicalTexType===TextureUsage.DOWNLOAD||logicalTexType===TextureUsage.PIXELS)return PhysicalTextureType.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${logicalTexType}`)}function getKeyFromTextureShape(shapeRowsCol,physicalTexType,isPacked){return`${shapeRowsCol[0]}_${shapeRowsCol[1]}_${physicalTexType}_${isPacked}`}var TileProgram=class{constructor(aShape,reps){this.variableNames=["A"];let outputShape=new Array(aShape.length);for(let i=0;i5)throw Error(`Tile for rank ${rank} is not yet supported`);if(rank===1)return`imod(resRC, ${aShape[0]})`;let currentCoords=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],sourceCoords=[];for(let i=0;i= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0); `;function STEP(alpha=0){return CHECK_NAN_SNIPPET3+` return x > 0.0 ? 1.0 : float(${alpha}); `}var NEG="return -x;",CEIL="return ceil(x);",FLOOR="return floor(x);",SIGN=` if (isnan(x)) { return 0.0; } return sign(x); `,IS_NAN="return float(isnan(x));",IS_INF="return float(isinf(x));",IS_FINITE="return float(!isnan(x) && !isinf(x));",ROUND=` // OpenGL ES does not support round function. // The algorithm is based on banker's rounding. float base = floor(x); if ((x - base) < 0.5) { return floor(x); } else if ((x - base) > 0.5) { return ceil(x); } else { if (mod(base, 2.0) == 0.0) { return base; } else { return base + 1.0; } } `,EXP="return exp(x);",EXPM1="return exp(x) - 1.0;",LOG=`if (x < 0.0) return NAN; return log(x);`,LOG1P="return log(1.0 + x);",SQRT="return sqrt(x);",RSQRT="return inversesqrt(x);",SIGMOID="return 1.0 / (1.0 + exp(-1.0 * x));",SOFTPLUS=` float epsilon = 1.1920928955078125e-7; float threshold = log(epsilon) + 2.0; bool too_large = x > -threshold; bool too_small = x < threshold; float result; float exp_x = exp(x); if (too_large){ result = x; } else if (too_small){ result = exp_x; } else{ result = log(exp_x + 1.0); } return result; `,ASIN=CHECK_NAN_SNIPPET3+` if (abs(x) > 1.) { return NAN; } return asin(x); `,ACOS=CHECK_NAN_SNIPPET3+` if (abs(x) > 1.) { return NAN; } return acos(x); `,ATAN=CHECK_NAN_SNIPPET3+` return atan(x); `,SINH=` float e2x = exp(x); return (e2x - 1.0 / e2x) / 2.0; `,COSH=` float e2x = exp(-x); return (e2x + 1.0 / e2x) / 2.0; `,TANH=` float e2x = exp(-2.0 * abs(x)); return sign(x) * (1.0 - e2x) / (1.0 + e2x); `,ASINH=CHECK_NAN_SNIPPET3+"return log(x + sqrt(x * x + 1.0));",ACOSH=CHECK_NAN_SNIPPET3+` if (x < 1.0) return NAN; return log(x + sqrt(x * x - 1.0));`,ATANH=CHECK_NAN_SNIPPET3+` if ((x < -1.0) || (x > 1.0)) return NAN; return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,ERF=` // Error function is calculated approximately with elementary function. // See "Handbook of Mathematical Functions with Formulas, // Graphs, and Mathematical Tables", Abramowitz and Stegun. float p = ${backend_util_exports.ERF_P}; float a1 = ${backend_util_exports.ERF_A1}; float a2 = ${backend_util_exports.ERF_A2}; float a3 = ${backend_util_exports.ERF_A3}; float a4 = ${backend_util_exports.ERF_A4}; float a5 = ${backend_util_exports.ERF_A5}; float sign = sign(x); x = abs(x); float t = 1.0 / (1.0 + p * x); return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x)); `,RECIPROCAL="return 1.0 / x;",LOGICAL_NOT="return float(!(x >= 1.0));",CLONE="return x;",LINEAR2="return x;",LOG2=` vec4 result = log(x); vec4 isNaN = vec4(lessThan(x, vec4(0.0))); result.r = isNaN.r == 1.0 ? NAN : result.r; result.g = isNaN.g == 1.0 ? NAN : result.g; result.b = isNaN.b == 1.0 ? NAN : result.b; result.a = isNaN.a == 1.0 ? NAN : result.a; return result; `,RELU2=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,RELU62=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,ELU3=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0); result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0); result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; `,UnaryOpPackedProgram=class{constructor(aShape,opSnippet){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=aShape,this.userCode=` vec4 unaryOperation(vec4 x) { ${opSnippet} } void main() { vec4 x = getAAtOutCoords(); vec4 y = unaryOperation(x); setOutput(y); } `}},UnpackProgram=class{constructor(outputShape){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=outputShape;let rank=outputShape.length,channels=getChannels("rc",rank),dtype=getCoordsDataType(rank),sourceCoords=getSourceCoords(rank,channels),innerDims=channels.slice(-2),coords2=rank<=1?"rc":`vec2(${innerDims.join(",")})`;this.userCode=` void main() { ${dtype} rc = getOutputCoords(); vec4 packedInput = getA(${sourceCoords}); setOutput(getChannel(packedInput, ${coords2})); } `}},{segment_util:segment_util2}=backend_util_exports,split11=kernel_impls_exports.split,tile10=kernel_impls_exports.tile,topkImpl3=kernel_impls_exports.topkImpl,whereImpl3=kernel_impls_exports.whereImpl,EPSILON_FLOAT322=1e-7,EPSILON_FLOAT162=1e-4,binaryCaches={};function getBinaryCache(webGLVersion){return webGLVersion in binaryCaches||(binaryCaches[webGLVersion]={}),binaryCaches[webGLVersion]}function mapActivationToShaderProgram(activation2,packed=!1){if(activation2==="linear")return packed?LINEAR2:LINEAR;if(activation2==="relu")return packed?RELU2:RELU;if(activation2==="elu")return packed?ELU3:ELU2;if(activation2==="relu6")return packed?RELU62:RELU6;if(activation2==="prelu")return packed?PRELU2:PRELU;throw new Error(`Activation ${activation2} has not been implemented for the WebGL backend.`)}var CPU_HANDOFF_SIZE_THRESHOLD=128,BEFORE_PAGING_CONSTANT=600;function numMBBeforeWarning(){return env().global.screen==null?1024:env().global.screen.height*env().global.screen.width*window.devicePixelRatio*BEFORE_PAGING_CONSTANT/1024/1024}var MATMUL_SHARED_DIM_THRESHOLD=1e3,MathBackendWebGL=class extends KernelBackend{constructor(gpgpu){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!env().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(gpgpu==null){let gl=getWebGLContext(env().getNumber("WEBGL_VERSION"));this.binaryCache=getBinaryCache(env().getNumber("WEBGL_VERSION")),this.gpgpu=new GPGPUContext(gl),this.canvas=gl.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=gpgpu,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=gpgpu.gl.canvas;this.textureManager=new TextureManager(this.gpgpu),this.numMBBeforeWarning=numMBBeforeWarning(),this.texData=new DataStorage(this,engine15())}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(values,shape,dtype){if((env().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||env().getBool("DEBUG"))&&this.checkNumericalProblems(values),dtype==="complex64"&&values!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let dataId={};return this.texData.set(dataId,{shape,dtype,values,usage:TextureUsage.UPLOAD,refCount:1,complexParentRefCount:0}),dataId}incRef(dataId){let texData=this.texData.get(dataId);texData.refCount++}decRef(dataId){if(this.texData.has(dataId)){let texData=this.texData.get(dataId);texData.refCount--}}move(dataId,values,shape,dtype){if(env().getBool("DEBUG")&&this.checkNumericalProblems(values),dtype==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(dataId,{shape,dtype,values,usage:TextureUsage.UPLOAD,refCount:1,complexParentRefCount:0})}disposeIntermediateTensorInfo(tensorInfo){let dataId=tensorInfo.dataId;if(this.texData.has(dataId)){let textureData=this.texData.get(dataId);textureData.refCount--,textureData.refCount<1&&this.disposeData(dataId)}}readSync(dataId){let texData=this.texData.get(dataId),{values,dtype,complexTensorInfos,slice:slice21,shape,isPacked}=texData;if(slice21!=null){let program;isPacked?program=new UnaryOpPackedProgram(shape,CLONE):program=new UnaryOpProgram(shape,CLONE);let res=this.runWebGLProgram(program,[{dataId,shape,dtype}],dtype),data2=this.readSync(res.dataId);return this.disposeIntermediateTensorInfo(res),data2}if(values!=null)return this.convertAndCacheOnCPU(dataId);if(dtype==="string")return values;let shouldTimeProgram=this.activeTimers!=null,start;shouldTimeProgram&&(start=util_exports.now());let result;if(dtype==="complex64"){let realValues=this.readSync(complexTensorInfos.real.dataId),imagValues=this.readSync(complexTensorInfos.imag.dataId);result=backend_util_exports.mergeRealAndImagArrays(realValues,imagValues)}else result=this.getValuesFromTexture(dataId);return shouldTimeProgram&&(this.downloadWaitMs+=util_exports.now()-start),this.convertAndCacheOnCPU(dataId,result)}async read(dataId){if(this.pendingRead.has(dataId)){let subscribers2=this.pendingRead.get(dataId);return new Promise(resolve=>subscribers2.push(resolve))}let texData=this.texData.get(dataId),{values,shape,slice:slice21,dtype,complexTensorInfos,isPacked}=texData;if(slice21!=null){let program;isPacked?program=new UnaryOpPackedProgram(shape,CLONE):program=new UnaryOpProgram(shape,CLONE);let res=this.runWebGLProgram(program,[{dataId,shape,dtype}],dtype),data2=this.read(res.dataId);return this.disposeIntermediateTensorInfo(res),data2}if(values!=null)return this.convertAndCacheOnCPU(dataId);if(!env().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&env().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let buffer11=null,tmpDownloadTarget;if(dtype!=="complex64"&&env().get("WEBGL_BUFFER_SUPPORTED")){tmpDownloadTarget=this.decode(dataId);let tmpData=this.texData.get(tmpDownloadTarget.dataId);buffer11=this.gpgpu.createBufferFromTexture(tmpData.texture,...getDenseTexShape(shape))}this.pendingRead.set(dataId,[]),dtype!=="complex64"&&await this.gpgpu.createAndWaitForFence();let vals;if(dtype==="complex64"){let ps=await Promise.all([this.read(complexTensorInfos.real.dataId),this.read(complexTensorInfos.imag.dataId)]),realValues=ps[0],imagValues=ps[1];vals=backend_util_exports.mergeRealAndImagArrays(realValues,imagValues)}else if(buffer11==null)vals=this.getValuesFromTexture(dataId);else{let size=util_exports.sizeFromShape(shape);vals=this.gpgpu.downloadFloat32MatrixFromBuffer(buffer11,size)}tmpDownloadTarget!=null&&this.disposeIntermediateTensorInfo(tmpDownloadTarget);let dTypeVals=this.convertAndCacheOnCPU(dataId,vals),subscribers=this.pendingRead.get(dataId);return this.pendingRead.delete(dataId),subscribers.forEach(resolve=>resolve(dTypeVals)),this.pendingDisposal.has(dataId)&&(this.pendingDisposal.delete(dataId),this.disposeData(dataId),this.pendingDeletes--),dTypeVals}checkNumericalProblems(values){if(values==null)return;for(let i=0;id.query)).filter(d=>d!=null),flattenedActiveTimerNames=util_exports.flatten(this.activeTimers.map(d=>d.name)).filter(d=>d!=null);this.activeTimers=oldActiveTimers,outerMostTime&&(this.programTimersStack=null);let res={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(env().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let kernelMs=await Promise.all(flattenedActiveTimerQueries);res.kernelMs=util_exports.sum(kernelMs),res.getExtraProfileInfo=()=>kernelMs.map((d,i)=>({name:flattenedActiveTimerNames[i],ms:d})).map(d=>`${d.name}: ${d.ms}`).join(", ")}else res.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,res}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return env().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:util_exports.now(),endMs:null}}endTimer(query){return env().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),query):(query.endMs=util_exports.now(),query)}async getQueryTime(query){if(env().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(query);let timerQuery=query;return timerQuery.endMs-timerQuery.startMs}disposeData(dataId){if(this.pendingDisposal.has(dataId))return;if(this.pendingRead.has(dataId)){this.pendingDisposal.add(dataId),this.pendingDeletes++;return}if(!this.texData.has(dataId))return;if(this.texData.get(dataId).complexParentRefCount>0){this.texData.get(dataId).refCount--;return}this.releaseGPUData(dataId);let{complexTensorInfos}=this.texData.get(dataId);complexTensorInfos!=null&&(this.texData.get(complexTensorInfos.real.dataId).complexParentRefCount--,this.disposeIntermediateTensorInfo(complexTensorInfos.real),this.texData.get(complexTensorInfos.imag.dataId).complexParentRefCount--,this.disposeIntermediateTensorInfo(complexTensorInfos.imag)),this.texData.delete(dataId)}releaseGPUData(dataId){let{texture,dtype,texShape,usage,isPacked,slice:slice21}=this.texData.get(dataId),key=slice21&&slice21.origDataId||dataId,refCount=this.dataRefCount.get(key);refCount>1?this.dataRefCount.set(key,refCount-1):(this.dataRefCount.delete(key),texture!=null&&(this.numBytesInGPU-=this.computeBytes(texShape,dtype),this.textureManager.releaseTexture(texture,texShape,usage,isPacked)));let texData=this.texData.get(dataId);texData.texture=null,texData.texShape=null,texData.isPacked=!1,texData.slice=null}getTexture(dataId){return this.uploadToGPU(dataId),this.texData.get(dataId).texture}getDataInfo(dataId){return this.texData.get(dataId)}getCPUBackend(){return env().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=engine15().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(inputs,sizeThreshold=CPU_HANDOFF_SIZE_THRESHOLD){let cpuBackend=this.getCPUBackend();return!this.warnedAboutCPUBackend&&cpuBackend==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),cpuBackend!=null&&inputs.every(input2=>this.texData.get(input2.dataId).texture==null&&util_exports.sizeFromShape(input2.shape)this.cpuBackend.stridedSlice(x,begin,end,strides));if(cpuRes)return cpuRes;let outShape=slice_util_exports.computeOutShape(begin,end,strides);if(outShape.some(axis=>axis===0))return tensor4([],outShape);let program=new StridedSliceProgram(begin,strides,outShape);return this.compileAndRun(program,[x])}reverse(x,axis){let program=env().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new ReversePackedProgram(x.shape,axis):new ReverseProgram(x.shape,axis);return this.compileAndRun(program,[x])}neg(x){let cpuRes=this.tryRunOnCpuOrThrow([x],()=>this.cpuBackend.neg(x));if(cpuRes)return cpuRes;if(env().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(x,NEG,x.dtype);let program=new UnaryOpProgram(x.shape,NEG);return this.compileAndRun(program,[x])}batchMatMul(a,b,transposeA,transposeB){let outerShapeA=transposeA?a.shape[2]:a.shape[1],outerShapeB=transposeB?b.shape[1]:b.shape[2],sharedDim=transposeA?a.shape[1]:a.shape[2],batch=Math.max(a.shape[0],b.shape[0]);if((outerShapeA===1||outerShapeB===1)&&sharedDim>MATMUL_SHARED_DIM_THRESHOLD){transposeA&&(a=transpose(a,[0,2,1])),transposeB&&(b=transpose(b,[0,2,1]));let a3D=outerShapeB===1?a:a.as3D(batch,sharedDim,1),axis=outerShapeB===1?2:1,b3D=outerShapeB===1?b.as3D(batch,1,sharedDim):b,product=mul(a3D,b3D);return product.sum(axis,!0)}let dtype=upcastType(a.dtype,b.dtype),program=new MatMulPackedProgram(a.shape,b.shape,[batch,outerShapeA,outerShapeB],transposeA,transposeB);return this.compileAndRun(program,[a,b],dtype)}fusedBatchMatMul({a,b,transposeA,transposeB,bias,activation:activation2,preluActivationWeights}){let outerShapeA=transposeA?a.shape[2]:a.shape[1],outerShapeB=transposeB?b.shape[1]:b.shape[2],batch=Math.max(a.shape[0],b.shape[0]),dtype=upcastType(a.dtype,b.dtype),hasBias=bias!=null,hasPreluActivationWeights=preluActivationWeights!=null,fusedActivation=activation2?mapActivationToShaderProgram(activation2,!0):null,program=new MatMulPackedProgram(a.shape,b.shape,[batch,outerShapeA,outerShapeB],transposeA,transposeB,hasBias,fusedActivation,hasPreluActivationWeights),inputs=[a,b];return bias&&inputs.push(bias),preluActivationWeights&&inputs.push(preluActivationWeights),this.compileAndRun(program,inputs,dtype)}localResponseNormalization4D(x,radius,bias,alpha,beta){let program=env().getBool("WEBGL_PACK_NORMALIZATION")?new LRNPackedProgram(x.shape,radius,bias,alpha,beta):new LRNProgram(x.shape,radius,bias,alpha,beta);return this.compileAndRun(program,[x])}LRNGrad(dy,inputImage,outputImage,depthRadius,bias,alpha,beta){let program=new LRNGradProgram(inputImage.shape,depthRadius,bias,alpha,beta);return this.compileAndRun(program,[inputImage,outputImage,dy])}tile(x,reps){if(x.dtype==="string"){let data2=this.readSync(x.dataId),decodedData=data2.map(d=>util_exports.decodeString(d)),buf=buffer(x.shape,x.dtype,decodedData);return tile10(buf,reps)}let program=new TileProgram(x.shape,reps);return this.compileAndRun(program,[x])}pad(x,paddings,constantValue){let program=env().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new PadPackedProgram(x.shape,paddings,constantValue):new PadProgram(x.shape,paddings,constantValue);return this.compileAndRun(program,[x])}gather(x,indices,axis){let cpuRes=this.tryRunOnCpuOrThrow([x,indices],()=>this.cpuBackend.gather(x,indices,axis));if(cpuRes)return cpuRes;let program=new GatherProgram(x.shape,indices.size,axis);return this.compileAndRun(program,[x,indices])}batchToSpaceND(x,blockShape,crops){util_exports.assert(x.rank<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let prod5=blockShape.reduce((a,b)=>a*b),reshaped=backend_util_exports.getReshaped(x.shape,blockShape,prod5),permuted=backend_util_exports.getPermuted(reshaped.length,blockShape.length),reshapedPermuted=backend_util_exports.getReshapedPermuted(x.shape,blockShape,prod5),sliceBeginCoords=backend_util_exports.getSliceBeginCoords(crops,blockShape.length),sliceSize=backend_util_exports.getSliceSize(reshapedPermuted,crops,blockShape.length);return transpose(x.reshape(reshaped),permuted).reshape(reshapedPermuted).slice(sliceBeginCoords,sliceSize)}spaceToBatchND(x,blockShape,paddings){util_exports.assert(x.rank<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let prod5=blockShape.reduce((a,b)=>a*b),completePaddings=[[0,0]];completePaddings.push(...paddings);for(let i=1+blockShape.length;ithis.cpuBackend.prod(x,axes));if(cpuRes)return cpuRes;let[outShape,reduceShape]=backend_util_exports.computeOutAndReduceShapes(x.shape,axes),inSize=util_exports.sizeFromShape(reduceShape),a2D=x.as2D(-1,inSize),outputDType=sumOutType(x.dtype);return this.reduce(a2D,"prod",outputDType).reshape(outShape)}unsortedSegmentSum(x,segmentIds,numSegments){let axis=0,permutation=backend_util_exports.getAxesPermutation([axis],x.rank),permutedX=x;permutation!=null&&(permutedX=transpose(x,permutation),axis=backend_util_exports.getInnerMostAxes(1,x.rank)[0]);let outShape=segment_util2.computeOutShape(permutedX.shape,axis,numSegments),inSize=util_exports.sizeFromShape([permutedX.shape[axis]]),a2D=permutedX.as2D(-1,inSize),outputDType=sumOutType(x.dtype),result=this.segOpCompute(a2D,"unsortedSegmentSum",segmentIds,outputDType,numSegments).reshape(outShape);return permutation!=null&&(result=transpose(result,backend_util_exports.getUndoAxesPermutation(permutation))),result}segOpCompute(x,segOpType,segmentIds,dtype,numSegments){let batchSize=x.shape[0],inSize=x.shape[1],windowSize=segment_util2.segOpComputeOptimalWindowSize(inSize,numSegments),segOpInfo={windowSize,inSize,batchSize,numSegments},program=new SegmentOpProgram(segOpInfo,segOpType),output=this.compileAndRun(program,[x,segmentIds],dtype);return output.shape[1]===numSegments?output:(segmentIds=range(0,numSegments).tile([inSize/windowSize]),this.segOpCompute(output,segOpType,segmentIds,dtype,numSegments))}argMinMaxReduce(x,axis,reduceType){let axes=[axis];if(backend_util_exports.assertAxesAreInnerMostDims("arg"+reduceType.charAt(0).toUpperCase()+reduceType.slice(1),axes,x.rank),!env().getBool("WEBGL_PACK_REDUCE")||x.rank<=2){let[outShape,reduceShape]=backend_util_exports.computeOutAndReduceShapes(x.shape,axes),inSize=util_exports.sizeFromShape(reduceShape),a2D=x.as2D(-1,inSize);return this.argReduce(a2D,reduceType).reshape(outShape)}return this.argReducePacked(x,reduceType)}argMin(x,axis){return this.argMinMaxReduce(x,axis,"min")}argMax(x,axis){return this.argMinMaxReduce(x,axis,"max")}cumsum(x,axis,exclusive,reverse12){if(axis!==x.rank-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${x.rank-1} but got axis=${axis}`);let size=x.shape[axis],result=x;for(let i=0;i<=Math.ceil(Math.log2(size))-1;i++){let program=new CumSumProgram(x.shape,!1,reverse12),customSetup=program.getCustomSetupFunc(i),prevResult=result;result=this.compileAndRun(program,[result],result.dtype,customSetup),prevResult.dispose()}if(exclusive){let program=new CumSumProgram(x.shape,exclusive,reverse12),prevResult=result;result=this.compileAndRun(program,[result]),prevResult.dispose()}return result}equal(a,b){if(env().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(a,b,EQUAL2,"bool");let program=new BinaryOpProgram(EQUAL,a.shape,b.shape);return this.compileAndRun(program,[a,b],"bool")}less(a,b){let cpuRes=this.tryRunOnCpuOrThrow([a,b],()=>this.cpuBackend.less(a,b));if(cpuRes)return cpuRes;if(env().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(a,b,LESS2,"bool");let program=new BinaryOpProgram(LESS,a.shape,b.shape);return this.compileAndRun(program,[a,b],"bool")}lessEqual(a,b){if(env().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(a,b,LESS_EQUAL2,"bool");let program=new BinaryOpProgram(LESS_EQUAL,a.shape,b.shape);return this.compileAndRun(program,[a,b],"bool")}greater(a,b){let cpuRes=this.tryRunOnCpuOrThrow([a,b],()=>this.cpuBackend.greater(a,b));if(cpuRes)return cpuRes;if(env().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(a,b,GREATER2,"bool");let program=new BinaryOpProgram(GREATER,a.shape,b.shape);return this.compileAndRun(program,[a,b],"bool")}greaterEqual(a,b){if(env().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(a,b,GREATER_EQUAL2,"bool");let program=new BinaryOpProgram(GREATER_EQUAL,a.shape,b.shape);return this.compileAndRun(program,[a,b],"bool")}logicalNot(x){let program=new UnaryOpProgram(x.shape,LOGICAL_NOT);return this.compileAndRun(program,[x])}logicalAnd(a,b){if(env().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(a,b,LOGICAL_AND2,"bool");let program=new BinaryOpProgram(LOGICAL_AND,a.shape,b.shape);return this.compileAndRun(program,[a,b],"bool")}logicalOr(a,b){if(env().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(a,b,LOGICAL_OR2,"bool");let program=new BinaryOpProgram(LOGICAL_OR,a.shape,b.shape);return this.compileAndRun(program,[a,b],"bool")}select(condition,a,b){let program=new SelectProgram(condition.rank,a.shape,a.rank);return this.compileAndRun(program,[condition,a,b],upcastType(a.dtype,b.dtype))}where(condition){backend_util_exports.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let condVals=condition.dataSync();return whereImpl3(condition.shape,condVals)}topk(x,k,sorted){let xVals=x.dataSync();return topkImpl3(xVals,x.shape,x.dtype,k,sorted)}min(x,axes){backend_util_exports.assertAxesAreInnerMostDims("min",axes,x.rank);let[outShape,reduceShape]=backend_util_exports.computeOutAndReduceShapes(x.shape,axes),inSize=util_exports.sizeFromShape(reduceShape),a2D=x.as2D(-1,inSize);return this.reduce(a2D,"min",a2D.dtype).reshape(outShape)}minimum(a,b){let cpuRes=this.tryRunOnCpuOrThrow([a,b],()=>this.cpuBackend.minimum(a,b));if(cpuRes)return cpuRes;let program=env().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new BinaryOpPackedProgram(MIN2,a.shape,b.shape):new BinaryOpProgram(MIN,a.shape,b.shape);return this.compileAndRun(program,[a,b])}mod(a,b){let program=env().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new BinaryOpPackedProgram(MOD2,a.shape,b.shape):new BinaryOpProgram(MOD,a.shape,b.shape);return this.compileAndRun(program,[a,b])}maximum(a,b){let cpuRes=this.tryRunOnCpuOrThrow([a,b],()=>this.cpuBackend.maximum(a,b));if(cpuRes)return cpuRes;let program=env().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new BinaryOpPackedProgram(MAX2,a.shape,b.shape):new BinaryOpProgram(MAX,a.shape,b.shape);return this.compileAndRun(program,[a,b])}all(x,axes){backend_util_exports.assertAxesAreInnerMostDims("all",axes,x.rank);let[outShape,reduceShape]=backend_util_exports.computeOutAndReduceShapes(x.shape,axes),inSize=util_exports.sizeFromShape(reduceShape),a2D=x.as2D(-1,inSize);return this.reduce(a2D,"all",a2D.dtype).reshape(outShape)}any(x,axes){backend_util_exports.assertAxesAreInnerMostDims("any",axes,x.rank);let[outShape,reduceShape]=backend_util_exports.computeOutAndReduceShapes(x.shape,axes),inSize=util_exports.sizeFromShape(reduceShape),a2D=x.as2D(-1,inSize);return this.reduce(a2D,"any",a2D.dtype).reshape(outShape)}floorDiv(a,b){let op2=INT_DIV,outputDtype="int32";if(env().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(a,b,INT_DIV2,outputDtype);let program=new BinaryOpProgram(op2,a.shape,b.shape);return this.compileAndRun(program,[a,b],outputDtype)}packedUnaryOp(x,op2,dtype){let program=new UnaryOpPackedProgram(x.shape,op2);return this.compileAndRun(program,[x],dtype)}packedBinaryOp(a,b,op2,dtype,checkOutOfBounds=!1){let program=new BinaryOpPackedProgram(op2,a.shape,b.shape,checkOutOfBounds);return this.compileAndRun(program,[a,b],dtype)}makeComplexComponentTensorInfo(complexTensor,complexPart){return{dataId:complexPart.dataId,dtype:complexPart.dtype,shape:complexTensor.shape}}addN(tensors){if(tensors.length===1)return tensors[0];if(tensors.length>env().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let midIndex=Math.floor(tensors.length/2),leftSide=this.addN(tensors.slice(0,midIndex)),rightSide=this.addN(tensors.slice(midIndex));return this.addN([leftSide,rightSide])}let dtype=tensors.map(t=>t.dtype).reduce((d1,d2)=>upcastType(d1,d2)),shapes=tensors.map(t=>t.shape),usePackedOp=env().getBool("WEBGL_PACK"),program=usePackedOp?new AddNPackedProgram(tensors[0].shape,shapes):new AddNProgram(tensors[0].shape,shapes);return this.compileAndRun(program,tensors,dtype)}pow(a,b){let usePackedOp=env().getBool("WEBGL_PACK_BINARY_OPERATIONS"),program=usePackedOp?new BinaryOpPackedProgram(POW2,a.shape,b.shape):new BinaryOpProgram(POW,a.shape,b.shape),dtype=upcastType(a.dtype,b.dtype);return this.compileAndRun(program,[a,b],dtype)}ceil(x){if(this.shouldExecuteOnCPU([x])){let outValues=ceilImplCPU(this.texData.get(x.dataId).values,x.dtype);return this.makeOutput(x.shape,x.dtype,outValues)}if(env().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(x,CEIL,x.dtype);let program=new UnaryOpProgram(x.shape,CEIL);return this.compileAndRun(program,[x])}floor(x){if(this.shouldExecuteOnCPU([x])){let outValues=floorImplCPU(this.texData.get(x.dataId).values,x.dtype);return this.makeOutput(x.shape,x.dtype,outValues)}if(env().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(x,FLOOR,x.dtype);let program=new UnaryOpProgram(x.shape,FLOOR);return this.compileAndRun(program,[x])}sign(x){let program=new UnaryOpProgram(x.shape,SIGN);return this.compileAndRun(program,[x])}isNaN(x){let program=new UnaryOpProgram(x.shape,IS_NAN);return this.compileAndRun(program,[x],"bool")}isInf(x){let program=new UnaryOpProgram(x.shape,IS_INF);return this.compileAndRun(program,[x],"bool")}isFinite(x){let program=new UnaryOpProgram(x.shape,IS_FINITE);return this.compileAndRun(program,[x],"bool")}round(x){let program=new UnaryOpProgram(x.shape,ROUND);return this.compileAndRun(program,[x])}exp(x){if(this.shouldExecuteOnCPU([x])){let outValues=expImplCPU(this.texData.get(x.dataId).values,x.dtype);return this.makeOutput(x.shape,x.dtype,outValues)}if(env().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(x,EXP,x.dtype);let program=new UnaryOpProgram(x.shape,EXP);return this.compileAndRun(program,[x])}expm1(x){if(this.shouldExecuteOnCPU([x])){let outValues=expm1ImplCPU(this.texData.get(x.dataId).values,x.dtype);return this.makeOutput(x.shape,x.dtype,outValues)}if(env().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(x,EXPM1,x.dtype);let program=new UnaryOpProgram(x.shape,EXPM1);return this.compileAndRun(program,[x])}softmax(logits,dim){let axes=util_exports.parseAxisParam([dim],logits.shape),maxLogit=max(logits,axes),expandedShape=backend_util_exports.expandShapeToKeepDim(maxLogit.shape,axes),a=sub(logits,maxLogit.reshape(expandedShape)),b=this.exp(a),sumExp=this.sum(b,axes).reshape(expandedShape);return div(b,sumExp)}log(x){if(this.shouldExecuteOnCPU([x])){let outValues=logImplCPU(this.texData.get(x.dataId).values,x.dtype);return this.makeOutput(x.shape,x.dtype,outValues)}if(env().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(x,LOG2,x.dtype);let program=new UnaryOpProgram(x.shape,LOG);return this.compileAndRun(program,[x])}log1p(x){let program=new UnaryOpProgram(x.shape,LOG1P);return this.compileAndRun(program,[x])}sqrt(x){let program=new UnaryOpProgram(x.shape,SQRT);return this.compileAndRun(program,[x])}rsqrt(x){if(this.shouldExecuteOnCPU([x])){let outValues=rsqrtImplCPU(this.texData.get(x.dataId).values,x.dtype);return this.makeOutput(x.shape,x.dtype,outValues)}let program=new UnaryOpProgram(x.shape,RSQRT);return this.compileAndRun(program,[x])}reciprocal(x){let program=new UnaryOpProgram(x.shape,RECIPROCAL);return this.compileAndRun(program,[x])}relu(x){let program;return env().getBool("WEBGL_PACK")?program=new UnaryOpPackedProgram(x.shape,RELU2):program=new UnaryOpProgram(x.shape,RELU),this.compileAndRun(program,[x])}relu6(x){let program;return env().getBool("WEBGL_PACK")?program=new UnaryOpPackedProgram(x.shape,RELU62):program=new UnaryOpProgram(x.shape,RELU6),this.compileAndRun(program,[x])}prelu(x,alpha){let program=env().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new BinaryOpPackedProgram(PRELU2,x.shape,alpha.shape):new BinaryOpProgram(PRELU,x.shape,alpha.shape);return this.compileAndRun(program,[x,alpha])}elu(x){if(env().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(x,ELU3,x.dtype);let program=new UnaryOpProgram(x.shape,ELU2);return this.compileAndRun(program,[x])}eluDer(dy,y){let program=env().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new BinaryOpPackedProgram(ELU_DER2,dy.shape,y.shape):new BinaryOpProgram(ELU_DER,dy.shape,y.shape);return this.compileAndRun(program,[dy,y])}selu(x){let program=new UnaryOpProgram(x.shape,SELU);return this.compileAndRun(program,[x])}clip(x,min8,max10){let program;env().getBool("WEBGL_PACK_CLIP")?program=new ClipPackedProgram(x.shape):program=new ClipProgram(x.shape);let customSetup=program.getCustomSetupFunc(min8,max10);return this.compileAndRun(program,[x],null,customSetup)}abs(x){if(this.shouldExecuteOnCPU([x])&&x.dtype!=="complex64"){let outValues=simpleAbsImplCPU(this.texData.get(x.dataId).values);return this.makeOutput(x.shape,x.dtype,outValues)}if(env().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(x,ABS,x.dtype);let program=new UnaryOpProgram(x.shape,ABS);return this.compileAndRun(program,[x])}complexAbs(x){let xData=this.texData.get(x.dataId),program=new ComplexAbsProgram(x.shape),inputs=[this.makeComplexComponentTensorInfo(x,xData.complexTensorInfos.real),this.makeComplexComponentTensorInfo(x,xData.complexTensorInfos.imag)];return this.compileAndRun(program,inputs)}sigmoid(x){let program=new UnaryOpProgram(x.shape,SIGMOID);return this.compileAndRun(program,[x])}softplus(x){let program=new UnaryOpProgram(x.shape,SOFTPLUS);return this.compileAndRun(program,[x])}asin(x){let program=new UnaryOpProgram(x.shape,ASIN);return this.compileAndRun(program,[x])}acos(x){let program=new UnaryOpProgram(x.shape,ACOS);return this.compileAndRun(program,[x])}atan(x){let program=new UnaryOpProgram(x.shape,ATAN);return this.compileAndRun(program,[x])}sinh(x){let program=new UnaryOpProgram(x.shape,SINH);return this.compileAndRun(program,[x])}cosh(x){let program=new UnaryOpProgram(x.shape,COSH);return this.compileAndRun(program,[x])}tanh(x){let program=new UnaryOpProgram(x.shape,TANH);return this.compileAndRun(program,[x])}asinh(x){let program=new UnaryOpProgram(x.shape,ASINH);return this.compileAndRun(program,[x])}acosh(x){let program=new UnaryOpProgram(x.shape,ACOSH);return this.compileAndRun(program,[x])}atanh(x){let program=new UnaryOpProgram(x.shape,ATANH);return this.compileAndRun(program,[x])}erf(x){let program=new UnaryOpProgram(x.shape,ERF);return this.compileAndRun(program,[x])}step(x,alpha){let program=new UnaryOpProgram(x.shape,STEP(alpha));return this.compileAndRun(program,[x])}conv2dByMatMul(x,filter,convInfo,bias,activation2,preluActivationWeights){let xShape=x.shape,xTexData=this.texData.get(x.dataId),sharedMatMulDim=convInfo.inChannels,outerShapeX=xShape[0]*xShape[1]*xShape[2],outerShapeFilter=convInfo.outChannels,isChannelsLast=convInfo.dataFormat==="channelsLast",transposeA=!1,transposeB=!1,batchMatMulWillBeUnpacked=(outerShapeX===1||outerShapeFilter===1)&&sharedMatMulDim>MATMUL_SHARED_DIM_THRESHOLD,reshapeWillBeExpensive=xShape[2]%2!==0&&!!xTexData.isPacked;if(batchMatMulWillBeUnpacked||!env().getBool("WEBGL_LAZILY_UNPACK")||!env().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!reshapeWillBeExpensive){let targetShape2=isChannelsLast?xShape[0]*xShape[1]*xShape[2]:xShape[0]*xShape[2]*xShape[3],xReshaped2=reshape(x,[1,targetShape2,convInfo.inChannels]),filterReshaped2=reshape(filter,[1,convInfo.inChannels,convInfo.outChannels]),result=this.fusedBatchMatMul({a:xReshaped2,b:filterReshaped2,transposeA,transposeB,bias,activation:activation2,preluActivationWeights});return reshape(result,convInfo.outShape)}let targetShape=isChannelsLast?xShape[0]*xShape[1]*(xShape[2]+1):xShape[0]*xShape[2]*(xShape[3]+1),xReshaped={dataId:x.dataId,shape:[1,targetShape,convInfo.inChannels],dtype:x.dtype},originalXTexDataShape=xTexData.shape;xTexData.shape=xTexData.shape.slice(),xTexData.shape[xTexData.shape.length-2]++,util_exports.assert(isReshapeFree(xTexData.shape,xReshaped.shape),()=>`packed reshape ${xTexData.shape} to ${xReshaped.shape} isn't free`);let filterReshaped=reshape(filter,[1,convInfo.inChannels,convInfo.outChannels]),pointwiseConv=this.fusedBatchMatMul({a:xReshaped,b:filterReshaped,transposeA,transposeB,bias,activation:activation2,preluActivationWeights}),pointwiseConvTexData=this.texData.get(pointwiseConv.dataId);return util_exports.assert(pointwiseConvTexData.isPacked,()=>"batchMatMul result is expected to be packed"),xTexData.shape=originalXTexDataShape,pointwiseConvTexData.shape=convInfo.outShape,engine15().makeTensorFromDataId(pointwiseConv.dataId,convInfo.outShape,pointwiseConv.dtype)}conv2dWithIm2Row(x,filter,convInfo,bias,activation2,preluActivationWeights){let{filterWidth,filterHeight,inChannels,outWidth,outHeight,dataFormat}=convInfo,isChannelsLast=dataFormat==="channelsLast",sharedDim=filterWidth*filterHeight*inChannels,numCols=outHeight*outWidth,x2ColShape=[sharedDim,numCols],transposeA=!0,transposeB=!1,xSqueezed=x.squeeze([0]),w2Row=filter.reshape([1,sharedDim,-1]),im2ColProgram=new Im2ColPackedProgram(x2ColShape,xSqueezed.shape,convInfo),im2Col=this.compileAndRun(im2ColProgram,[xSqueezed]).reshape([1,x2ColShape[0],x2ColShape[1]]),hasBias=bias!=null,hasPreluActivationWeights=preluActivationWeights!=null,fusedActivation=activation2?mapActivationToShaderProgram(activation2,!0):null,matmulProgram=new MatMulPackedProgram(im2Col.shape,w2Row.shape,[1,numCols,convInfo.outChannels],transposeA,transposeB,hasBias,fusedActivation,hasPreluActivationWeights),inputs=[im2Col,w2Row];bias&&inputs.push(bias),hasPreluActivationWeights&&inputs.push(preluActivationWeights);let product=this.compileAndRun(matmulProgram,inputs);return isChannelsLast?product.reshape([1,outHeight,outWidth,convInfo.outChannels]):product.reshape([1,convInfo.outChannels,outHeight,outWidth])}fusedConv2d({input:input2,filter,convInfo,bias,activation:activation2,preluActivationWeights}){if(convInfo.filterHeight===1&&convInfo.filterWidth===1&&convInfo.dilationHeight===1&&convInfo.dilationWidth===1&&convInfo.strideHeight===1&&convInfo.strideWidth===1&&(convInfo.padInfo.type==="SAME"||convInfo.padInfo.type==="VALID"))return this.conv2dByMatMul(input2,filter,convInfo,bias,activation2,preluActivationWeights);if(env().getBool("WEBGL_CONV_IM2COL")&&input2.shape[0]===1)return this.conv2dWithIm2Row(input2,filter,convInfo,bias,activation2,preluActivationWeights);let hasBias=bias!=null,hasPreluActivationWeights=preluActivationWeights!=null,fusedActivation=activation2?mapActivationToShaderProgram(activation2,!1):null,program=new Conv2DProgram(convInfo,hasBias,fusedActivation,hasPreluActivationWeights),inputs=[input2,filter];return bias&&inputs.push(bias),preluActivationWeights&&inputs.push(preluActivationWeights),this.compileAndRun(program,inputs)}conv2d(x,filter,convInfo){if(convInfo.filterHeight===1&&convInfo.filterWidth===1&&convInfo.dilationHeight===1&&convInfo.dilationWidth===1&&convInfo.strideHeight===1&&convInfo.strideWidth===1&&(convInfo.padInfo.type==="SAME"||convInfo.padInfo.type==="VALID"))return this.conv2dByMatMul(x,filter,convInfo);if(env().getBool("WEBGL_CONV_IM2COL")&&x.shape[0]===1)return this.conv2dWithIm2Row(x,filter,convInfo);let program=new Conv2DProgram(convInfo);return this.compileAndRun(program,[x,filter])}conv2dDerInput(dy,filter,convInfo){let program=new Conv2DDerInputProgram(convInfo);return this.compileAndRun(program,[dy,filter])}conv2dDerFilter(x,dy,convInfo){let program=new Conv2DDerFilterProgram(convInfo);return this.compileAndRun(program,[x,dy])}fusedDepthwiseConv2D({input:input2,filter,convInfo,bias,activation:activation2,preluActivationWeights}){let shouldPackDepthwiseConv=env().getBool("WEBGL_PACK_DEPTHWISECONV")&&convInfo.strideWidth<=2&&convInfo.outChannels/convInfo.inChannels===1,fusedActivation=activation2?mapActivationToShaderProgram(activation2,shouldPackDepthwiseConv):null,inputs=[input2,filter],hasBias=bias!=null,hasPreluActivationWeights=preluActivationWeights!=null;hasBias&&inputs.push(bias),hasPreluActivationWeights&&inputs.push(preluActivationWeights);let program;return shouldPackDepthwiseConv?(program=new DepthwiseConvPacked2DProgram(convInfo,hasBias,fusedActivation,hasPreluActivationWeights),this.compileAndRun(program,inputs)):(program=new DepthwiseConv2DProgram(convInfo,hasBias,fusedActivation,hasPreluActivationWeights),this.compileAndRun(program,inputs))}depthwiseConv2D(x,filter,convInfo){let program;return env().getBool("WEBGL_PACK_DEPTHWISECONV")&&convInfo.strideWidth<=2&&convInfo.outChannels/convInfo.inChannels===1?(program=new DepthwiseConvPacked2DProgram(convInfo),this.compileAndRun(program,[x,filter])):(program=new DepthwiseConv2DProgram(convInfo),this.compileAndRun(program,[x,filter]))}depthwiseConv2DDerInput(dy,filter,convInfo){let program=new DepthwiseConv2DDerInputProgram(convInfo);return this.compileAndRun(program,[dy,filter])}depthwiseConv2DDerFilter(x,dy,convInfo){let program=new DepthwiseConv2DDerFilterProgram(convInfo);return this.compileAndRun(program,[x,dy])}conv3d(x,filter,convInfo){let program=new Conv3DProgram(convInfo);return this.compileAndRun(program,[x,filter])}conv3dDerInput(dy,filter,convInfo){let program=new Conv3DDerInputProgram(convInfo);return this.compileAndRun(program,[dy,filter])}conv3dDerFilter(x,dy,convInfo){let program=new Conv3DDerFilterProgram(convInfo);return this.compileAndRun(program,[x,dy])}unstack(x,axis){let num=x.shape[axis],outShape=new Array(x.rank-1),outIndex=0;for(let i=0;i1,()=>`blockSize should be > 1 for depthToSpace, but was: ${blockSize}`);let batchSize=x.shape[0],inputHeight=dataFormat==="NHWC"?x.shape[1]:x.shape[2],inputWidth=dataFormat==="NHWC"?x.shape[2]:x.shape[3],inputDepth=dataFormat==="NHWC"?x.shape[3]:x.shape[1],outputHeight=inputHeight*blockSize,outputWidth=inputWidth*blockSize,outputDepth=inputDepth/(blockSize*blockSize),outputShape=dataFormat==="NHWC"?[batchSize,outputHeight,outputWidth,outputDepth]:[batchSize,outputDepth,outputHeight,outputWidth],program=new DepthToSpaceProgram(outputShape,blockSize,dataFormat);return this.compileAndRun(program,[x])}split(x,sizeSplits,axis){return split11(x,sizeSplits,axis)}scatterND(indices,updates,shape){let{sliceRank,numUpdates,sliceSize,strides,outputSize}=backend_util_exports.calculateShapes(updates,indices,shape),flattenShape=[outputSize/sliceSize,sliceSize],flattenIndices=indices.reshape([numUpdates,sliceRank]),flattenX=updates.reshape([numUpdates,sliceSize]);if(outputSize===0)return backend_util_exports.reshapeTensor(tensor4([]),shape);let defaultValue=scalar(0),program=new ScatterProgram(numUpdates,sliceRank,flattenIndices.rank,flattenX.rank,strides,flattenShape),res=this.compileAndRun(program,[flattenX,flattenIndices,defaultValue]);return res.reshape(shape)}sparseToDense(sparseIndices,sparseValues,outputShape,defaultValue){let{sliceRank,numUpdates,strides,outputSize}=backend_util_exports.calculateShapes(sparseValues,sparseIndices,outputShape),sumDupeIndices=!1,program=new ScatterProgram(numUpdates,sliceRank,sparseIndices.rank,sparseValues.rank,strides,[outputSize,1],sumDupeIndices),res=this.compileAndRun(program,[sparseValues,sparseIndices,defaultValue]);return res.reshape(outputShape)}gatherND(x,indices){let indicesShape=indices.shape,sliceRank=indicesShape[indicesShape.length-1],[resultShape,numSlices,sliceSize,strides]=backend_util_exports.prepareAndValidate(x,indices),flattenIndices=indices.reshape([numSlices,sliceRank]),flattenX=x.reshape([x.size/sliceSize,sliceSize]),program=new GatherNDProgram(sliceRank,strides,[numSlices,sliceSize]),res=this.compileAndRun(program,[flattenX,flattenIndices]);return res.reshape(resultShape)}fill(shape,value,dtype){if(dtype=dtype||util_exports.inferDtype(value),dtype==="string"){let values=util_exports.getArrayFromDType(dtype,util_exports.sizeFromShape(shape));return values.fill(value),engine15().makeTensor(values,shape,dtype,this)}else{let program=new FillProgram(shape,value),customSetup=program.getCustomSetupFunc(value);return this.compileAndRun(program,[],dtype,customSetup)}}onesLike(x){if(x.dtype==="string")throw new Error("onesLike is not supported under string dtype");return this.fill(x.shape,1,x.dtype)}zerosLike(x){return this.fill(x.shape,x.dtype==="string"?"":0,x.dtype)}linspace(start,stop,num){return backend_util_exports.linspaceImpl(start,stop,num)}makeTensorInfo(shape,dtype,values){let dataId=this.write(values,shape,dtype);return this.texData.get(dataId).usage=null,{dataId,shape,dtype}}makeOutput(shape,dtype,values){let{dataId}=this.makeTensorInfo(shape,dtype,values);return engine15().makeTensorFromDataId(dataId,shape,dtype,this)}unpackTensor(input2){let program=new UnpackProgram(input2.shape);return this.runWebGLProgram(program,[input2],input2.dtype)}packTensor(input2){let program=new PackProgram(input2.shape),preventEagerUnpackingOutput=!0;return this.runWebGLProgram(program,[input2],input2.dtype,null,preventEagerUnpackingOutput)}packedReshape(input2,afterShape){let input3DShape=[getBatchDim(input2.shape),...getRowsCols(input2.shape)],input3D={dtype:input2.dtype,shape:input3DShape,dataId:input2.dataId},afterShapeAs3D=[getBatchDim(afterShape),...getRowsCols(afterShape)],program=new ReshapePackedProgram(afterShapeAs3D,input3DShape),preventEagerUnpackingOfOutput=!0,output=this.runWebGLProgram(program,[input3D],input2.dtype,null,preventEagerUnpackingOfOutput);return{dataId:output.dataId,shape:afterShape,dtype:output.dtype}}decode(dataId){let texData=this.texData.get(dataId),{isPacked,shape,dtype}=texData,shapeAs3D=getShapeAs3D(shape),program;isPacked?program=new DecodeMatrixPackedProgram(shapeAs3D):program=new DecodeMatrixProgram(shapeAs3D);let preventEagerUnpackingOfOutput=!0,out=this.runWebGLProgram(program,[{shape:shapeAs3D,dtype,dataId}],dtype,null,preventEagerUnpackingOfOutput);return{dtype,shape,dataId:out.dataId}}runWebGLProgram(program,inputs,outputDtype,customSetup,preventEagerUnpackingOfOutput=!1){let output=this.makeTensorInfo(program.outputShape,outputDtype),outData=this.texData.get(output.dataId);if(program.packedOutput&&(outData.isPacked=!0),program.outPackingScheme===PackingScheme.DENSE){let texelShape=getDenseTexShape(program.outputShape);outData.texShape=texelShape.map(d=>d*2)}if(program.outTexUsage!=null&&(outData.usage=program.outTexUsage),util_exports.sizeFromShape(output.shape)===0)return outData.values=util_exports.getTypedArrayFromDType(output.dtype,0),output;let dataToDispose=[],inputsData=inputs.map(input2=>{if(input2.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let texData=this.texData.get(input2.dataId);if(texData.texture==null){if(!program.packedInputs&&util_exports.sizeFromShape(input2.shape)<=env().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:input2.shape,texData:null,isUniform:!0,uniformValues:texData.values};program.packedInputs&&(texData.isPacked=!0,texData.shape=input2.shape)}else if(!!texData.isPacked!==!!program.packedInputs)input2=texData.isPacked?this.unpackTensor(input2):this.packTensor(input2),dataToDispose.push(input2),texData=this.texData.get(input2.dataId);else if(texData.isPacked&&!isReshapeFree(texData.shape,input2.shape)){let savedInput=input2,targetShape=input2.shape;input2.shape=texData.shape,input2=this.packedReshape(input2,targetShape),dataToDispose.push(input2),texData=this.texData.get(input2.dataId),savedInput.shape=targetShape}return this.uploadToGPU(input2.dataId),{shape:input2.shape,texData,isUniform:!1}});this.uploadToGPU(output.dataId);let outputData={shape:output.shape,texData:outData,isUniform:!1},key=makeShaderKey(program,inputsData,outputData),binary=this.getAndSaveBinary(key,()=>compileProgram(this.gpgpu,program,inputsData,outputData)),shouldTimeProgram=this.activeTimers!=null,query;if(shouldTimeProgram&&(query=this.startTimer()),runProgram(this.gpgpu,binary,inputsData,outputData,customSetup),dataToDispose.forEach(info=>this.disposeIntermediateTensorInfo(info)),shouldTimeProgram&&(query=this.endTimer(query),this.activeTimers.push({name:program.constructor.name,query:this.getQueryTime(query)})),!env().getBool("WEBGL_LAZILY_UNPACK")&&outData.isPacked&&preventEagerUnpackingOfOutput===!1){let unpacked=this.unpackTensor(output);return this.disposeIntermediateTensorInfo(output),unpacked}return output}compileAndRun(program,inputs,outputDtype,customSetup,preventEagerUnpackingOfOutput=!1){outputDtype=outputDtype||inputs[0].dtype;let outInfo=this.runWebGLProgram(program,inputs,outputDtype,customSetup,preventEagerUnpackingOfOutput);return engine15().makeTensorFromDataId(outInfo.dataId,outInfo.shape,outInfo.dtype)}getAndSaveBinary(key,getBinary){return key in this.binaryCache||(this.binaryCache[key]=getBinary()),this.binaryCache[key]}getTextureManager(){return this.textureManager}dispose(){if(this.disposed)return;if(!env().getBool("IS_TEST")){let allKeys=Object.keys(this.binaryCache);allKeys.forEach(key=>{this.gpgpu.deleteProgram(this.binaryCache[key].webGLProgram),delete this.binaryCache[key]})}this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=tidy(()=>{if(!env().get("WEBGL_RENDER_FLOAT32_ENABLED")){let debugFlag=env().getBool("DEBUG");env().set("DEBUG",!1);let underflowCheckValue=this.abs(scalar(1e-8)).dataSync()[0];if(env().set("DEBUG",debugFlag),underflowCheckValue>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?EPSILON_FLOAT322:EPSILON_FLOAT162}uploadToGPU(dataId){let texData=this.texData.get(dataId),{shape,dtype,values,texture,usage,isPacked}=texData;if(texture!=null)return;let shouldTimeProgram=this.activeTimers!=null,start;shouldTimeProgram&&(start=util_exports.now());let texShape=texData.texShape;if(texShape==null&&(texShape=getTextureShapeFromLogicalShape(shape,isPacked),texData.texShape=texShape),values!=null){let shapeAs3D=getShapeAs3D(shape),program,width=texShape[1],height=texShape[0],isByteArray=values instanceof Uint8Array;isPacked?([width,height]=getPackedMatrixTextureShapeWidthHeight(texShape[0],texShape[1]),program=new EncodeMatrixPackedProgram(shapeAs3D,[height,width],isByteArray)):program=new EncodeMatrixProgram(shapeAs3D,[height,width],isByteArray);let tempDenseInputHandle=this.makeTensorInfo([height,width],dtype);isByteArray?this.texData.get(tempDenseInputHandle.dataId).usage=TextureUsage.PIXELS:this.texData.get(tempDenseInputHandle.dataId).usage=TextureUsage.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(tempDenseInputHandle.dataId),width,height,values);let preventEagerUnpacking=!0,encodedOutputTarget=this.runWebGLProgram(program,[tempDenseInputHandle],dtype,null,preventEagerUnpacking),outputTexData=this.texData.get(encodedOutputTarget.dataId);texData.texture=outputTexData.texture,texData.texShape=outputTexData.texShape,texData.isPacked=outputTexData.isPacked,texData.usage=outputTexData.usage,this.disposeIntermediateTensorInfo(tempDenseInputHandle),this.texData.delete(encodedOutputTarget.dataId),texData.values=null,shouldTimeProgram&&(this.uploadWaitMs+=util_exports.now()-start)}else{let newTexture=this.acquireTexture(texShape,usage,dtype,isPacked);texData.texture=newTexture}}convertAndCacheOnCPU(dataId,float32Values){let texData=this.texData.get(dataId),{dtype}=texData;return this.releaseGPUData(dataId),float32Values!=null&&(texData.values=float32ToTypedArray(float32Values,dtype)),texData.values}acquireTexture(texShape,texType,dtype,isPacked){if(this.numBytesInGPU+=this.computeBytes(texShape,dtype),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let mb=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${mb} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(texShape,texType,isPacked)}computeBytes(shape,dtype){return shape[0]*shape[1]*util_exports.bytesPerElement(dtype)}tryRunOnCpuOrThrow(inputs,fn){if(this.shouldExecuteOnCPU(inputs))try{return fn()}catch(e){if(env().getBool("IS_TEST"))throw new Error("CPU forwarding failed")}return null}};function float32ToTypedArray(a,dtype){if(dtype==="float32"||dtype==="complex64")return a;if(dtype==="int32"||dtype==="bool"){let result=dtype==="int32"?new Int32Array(a.length):new Uint8Array(a.length);for(let i=0;inew MathBackendWebGL,2);function identity3(args){let{inputs,backend:backend3}=args,{x}=inputs;return backend3.incRef(x.dataId),{dataId:x.dataId,shape:x.shape,dtype:x.dtype}}var identityConfig2={kernelName:Identity,backendName:"webgl",kernelFunc:identity3};function complex10(args){let{inputs,backend:backend3}=args,{real:real8,imag:imag8}=inputs,complexInfo=backend3.makeTensorInfo(real8.shape,"complex64"),complex11=backend3.texData.get(complexInfo.dataId),realTensorInfo=identity3({inputs:{x:real8},backend:backend3}),realData=backend3.texData.get(realTensorInfo.dataId);realData.complexParentRefCount++;let imagTensorInfo=identity3({inputs:{x:imag8},backend:backend3}),imagData=backend3.texData.get(imagTensorInfo.dataId);return imagData.complexParentRefCount++,complex11.complexTensorInfos={real:realTensorInfo,imag:imagTensorInfo},complexInfo}var complexConfig2={kernelName:Complex,backendName:"webgl",kernelFunc:complex10},CHECK_NAN_SNIPPET_UNARY="if (isnan(x)) return x;",CHECK_NAN_SNIPPET_BINARY=` if (isnan(a)) return a; if (isnan(b)) return b; `,CHECK_NAN_SNIPPET_BINARY_PACKED=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; `;function unaryKernelFunc2(opSnippet){return({inputs,backend:backend3})=>{let{x}=inputs,webglBackend=backend3,program=new UnaryOpProgram(x.shape,opSnippet);return webglBackend.runWebGLProgram(program,[x],x.dtype)}}function binaryKernelFunc2({opSnippet,packedOpSnippet,checkOutOfBounds=!1,supportsComplex=!1,cpuKernelImpl,dtype}){return({inputs,backend:backend3})=>{let{a,b}=inputs,webglBackend=backend3;if(supportsComplex&&a.dtype==="complex64"){let aData=webglBackend.texData.get(a.dataId),bData=webglBackend.texData.get(b.dataId),[real8,imag8]=[[aData.complexTensorInfos.real,bData.complexTensorInfos.real],[aData.complexTensorInfos.imag,bData.complexTensorInfos.imag]].map(complexParts=>{let[aPart,bPart]=complexParts,aHandle={dataId:aPart.dataId,dtype:aPart.dtype,shape:a.shape},bHandle={dataId:bPart.dataId,dtype:bPart.dtype,shape:b.shape},program2=new BinaryOpProgram(opSnippet,a.shape,b.shape);return webglBackend.runWebGLProgram(program2,[aHandle,bHandle],upcastType(aPart.dtype,bPart.dtype))}),complexOutput=complex10({inputs:{real:real8,imag:imag8},backend:webglBackend});return webglBackend.disposeIntermediateTensorInfo(real8),webglBackend.disposeIntermediateTensorInfo(imag8),complexOutput}let $dtype=dtype||upcastType(a.dtype,b.dtype);if(webglBackend.shouldExecuteOnCPU([a,b])&&cpuKernelImpl!=null){let aData=webglBackend.texData.get(a.dataId),bData=webglBackend.texData.get(b.dataId),[outValues,outShape]=cpuKernelImpl(a.shape,b.shape,aData.values,bData.values,$dtype),out=webglBackend.makeTensorInfo(outShape,$dtype),outData=webglBackend.texData.get(out.dataId);return outData.values=outValues,out}let shouldUsePackedProgram=env().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&packedOpSnippet!=null,program;return shouldUsePackedProgram?program=new BinaryOpPackedProgram(packedOpSnippet,a.shape,b.shape,checkOutOfBounds):program=new BinaryOpProgram(opSnippet,a.shape,b.shape),webglBackend.runWebGLProgram(program,[a,b],$dtype)}}var ADD="return a + b;",addKernelFunc=binaryKernelFunc2({opSnippet:ADD,packedOpSnippet:ADD,supportsComplex:!0,cpuKernelImpl:addImplCPU}),addConfig2={kernelName:Add,backendName:"webgl",kernelFunc:addKernelFunc},ATAN2=CHECK_NAN_SNIPPET_BINARY+` return atan(a, b); `,ATAN2_PACKED=` vec4 result = atan(a, b); vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0)); `+CHECK_NAN_SNIPPET_BINARY_PACKED+` return result; `,atan25=binaryKernelFunc2({opSnippet:ATAN2,packedOpSnippet:ATAN2_PACKED}),atan2Config={kernelName:Atan2,backendName:"webgl",kernelFunc:atan25};function avgPool3(args){let{inputs,backend:backend3,attrs}=args,{x}=inputs;assertNotComplex2(x,"avgPool");let{filterSize,strides,pad:pad11,dimRoundingMode}=attrs,dilations=1;util_exports.assert(backend_util_exports.eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);let convInfo=backend_util_exports.computePool2DInfo(x.shape,filterSize,strides,dilations,pad11,dimRoundingMode);if(convInfo.filterWidth===1&&convInfo.filterHeight===1&&util_exports.arraysEqual(convInfo.inShape,convInfo.outShape))return identity3({inputs:{x},backend:backend3});let avgPoolProgram=new Pool2DProgram(convInfo,"avg",!1);return backend3.runWebGLProgram(avgPoolProgram,[x],"float32")}var avgPoolConfig2={kernelName:AvgPool,backendName:"webgl",kernelFunc:avgPool3};function avgPoolBackprop3(args){let{inputs,backend:backend3,attrs}=args,{dy,input:input2}=inputs,x=input2;assertNotComplex2([dy,input2],"avgPoolBackprop");let{filterSize,strides,pad:pad11}=attrs,convInfo=backend_util_exports.computePool2DInfo(x.shape,filterSize,strides,1,pad11),avgPoolBackpropProgram=new AvgPool2DBackpropProgram(convInfo);return backend3.runWebGLProgram(avgPoolBackpropProgram,[dy],x.dtype)}var avgPoolBackpropConfig2={kernelName:AvgPoolBackprop,backendName:"webgl",kernelFunc:avgPoolBackprop3},BatchNormProgram=class{constructor(xShape,meanShape,varianceShape,offsetShape,scaleShape,varianceEpsilon){this.outputShape=[],this.variableNames=["x","mean","variance"],backend_util_exports.assertAndGetBroadcastShape(xShape,meanShape),backend_util_exports.assertAndGetBroadcastShape(xShape,varianceShape);let offsetSnippet="0.0";offsetShape!=null&&(backend_util_exports.assertAndGetBroadcastShape(xShape,offsetShape),this.variableNames.push("offset"),offsetSnippet="getOffsetAtOutCoords()");let scaleSnippet="1.0";scaleShape!=null&&(backend_util_exports.assertAndGetBroadcastShape(xShape,scaleShape),this.variableNames.push("scale"),scaleSnippet="getScaleAtOutCoords()"),this.outputShape=xShape,this.userCode=` void main() { float x = getXAtOutCoords(); float mean = getMeanAtOutCoords(); float variance = getVarianceAtOutCoords(); float offset = ${offsetSnippet}; float scale = ${scaleSnippet}; float inv = scale * inversesqrt(variance + float(${varianceEpsilon})); setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1))); } `}},BatchNormPackedProgram=class{constructor(xShape,meanShape,varianceShape,offsetShape,scaleShape,varianceEpsilon){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],backend_util_exports.assertAndGetBroadcastShape(xShape,meanShape),backend_util_exports.assertAndGetBroadcastShape(xShape,varianceShape);let offsetSnippet="vec4(0.0)";offsetShape!=null&&(backend_util_exports.assertAndGetBroadcastShape(xShape,offsetShape),this.variableNames.push("offset"),offsetSnippet="getOffsetAtOutCoords()");let scaleSnippet="vec4(1.0)";scaleShape!=null&&(backend_util_exports.assertAndGetBroadcastShape(xShape,scaleShape),this.variableNames.push("scale"),scaleSnippet="getScaleAtOutCoords()"),this.outputShape=xShape,this.userCode=` void main() { vec4 offset = ${offsetSnippet}; vec4 scale = ${scaleSnippet}; vec4 x = getXAtOutCoords(); vec4 mean = getMeanAtOutCoords(); vec4 variance = getVarianceAtOutCoords(); vec4 inv = scale * inversesqrt(variance + vec4(${varianceEpsilon})); setOutput((x - mean) * inv + offset); } `}},batchNorm3=({inputs,backend:backend3,attrs})=>{let{x,mean:mean7,variance,offset,scale:scale2}=inputs;util_exports.assert(mean7.shape.length===variance.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),util_exports.assert(offset==null||mean7.shape.length===offset.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),util_exports.assert(scale2==null||mean7.shape.length===scale2.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon}=attrs;varianceEpsilon==null&&(varianceEpsilon=.001);let finalInputs=[x,mean7,variance],offsetShape=null;offset!=null&&(offsetShape=offset.shape,finalInputs.push(offset));let scaleShape=null;scale2!=null&&(scaleShape=scale2.shape,finalInputs.push(scale2));let program=env().getBool("WEBGL_PACK_NORMALIZATION")?new BatchNormPackedProgram(x.shape,mean7.shape,variance.shape,offsetShape,scaleShape,varianceEpsilon):new BatchNormProgram(x.shape,mean7.shape,variance.shape,offsetShape,scaleShape,varianceEpsilon),output=backend3.runWebGLProgram(program,finalInputs,finalInputs[0].dtype);return output},batchNormConfig2={kernelName:FusedBatchNorm,backendName:"webgl",kernelFunc:batchNorm3},NOT_EQUAL="return float(a != b);",notEqual3=binaryKernelFunc2({opSnippet:NOT_EQUAL,dtype:"bool"}),notEqualConfig2={kernelName:NotEqual,backendName:"webgl",kernelFunc:notEqual3};function real7(args){let{inputs,backend:backend3}=args,{input:input2}=inputs,inputData=backend3.texData.get(input2.dataId);return identity3({inputs:{x:inputData.complexTensorInfos.real},backend:backend3})}var realConfig2={kernelName:Real,backendName:"webgl",kernelFunc:real7},TO_INT="return float(int(x));";function int(input2,backend3){let program=new UnaryOpProgram(input2.shape,TO_INT),output=backend3.runWebGLProgram(program,[input2],"int32");return{dataId:output.dataId,shape:output.shape,dtype:output.dtype}}function cast50(args){let{inputs,backend:backend3,attrs}=args,{x}=inputs,{dtype}=attrs;if(dtype==="complex64"){if(x.dtype==="complex64")return identity3({inputs:{x},backend:backend3});let zerosTensor=zeros(x.shape),floatX=cast50({inputs:{x},backend:backend3,attrs:{dtype:"float32"}}),result=complex10({inputs:{real:floatX,imag:zerosTensor},backend:backend3});return zerosTensor.dispose(),backend3.disposeIntermediateTensorInfo(floatX),result}if(x.dtype==="complex64"){let realPart=real7({inputs:{input:x},backend:backend3}),result=cast50({inputs:{x:realPart},backend:backend3,attrs:{dtype}});return backend3.disposeIntermediateTensorInfo(realPart),result}if(!util_exports.hasEncodingLoss(x.dtype,dtype)){let result=identity3({inputs:{x},backend:backend3});return{dataId:result.dataId,shape:result.shape,dtype}}if(dtype==="int32")return int(x,backend3);if(dtype==="bool"){let zerosTensorInfo=backend3.makeTensorInfo([],"bool",util_exports.getTypedArrayFromDType("bool",1)),binaryInputs={a:x,b:zerosTensorInfo},result=notEqual3({inputs:binaryInputs,backend:backend3});return backend3.disposeIntermediateTensorInfo(zerosTensorInfo),result}throw new Error(`Error in Cast: failed to cast ${x.dtype} to ${dtype}`)}var castConfig2={kernelName:Cast,backendName:"webgl",kernelFunc:cast50},ConcatProgram=class{constructor(shapes){this.outputShape=[],this.outputShape=backend_util_exports.computeOutShape(shapes,1),this.variableNames=shapes.map((_,i)=>`T${i}`);let offsets=new Array(shapes.length-1);offsets[0]=shapes[0][1];for(let i=1;i`T${i}`);let offsets=new Array(shapes.length-1);offsets[0]=shapes[0][axis];for(let i=1;i= ${offsets[i-1]}) { return getChannel( getT${i}(${shiftedChannels(channels,channel,shift2)}), vec2(${shiftedChannels(lastChannels,channel,shift2)})); }`}let lastIndex=offsets.length,shift=offsets[offsets.length-1];getValueSnippet+=` return getChannel( getT${lastIndex}(${shiftedChannels(channels,channel,shift)}), vec2(${shiftedChannels(lastChannels,channel,shift)}));`,this.userCode=` float getValue(${channels.map(x=>"int "+x)}) { ${getValueSnippet} } void main() { ${dtype} coords = getOutputCoords(); vec4 result = vec4(getValue(${coords2}), 0., 0., 0.); ${coords2[rank-1]} = ${coords2[rank-1]} + 1; if (${coords2[rank-1]} < ${shape[rank-1]}) { result.g = getValue(${coords2}); } ${coords2[rank-2]} = ${coords2[rank-2]} + 1; if (${coords2[rank-2]} < ${shape[rank-2]}) { result.a = getValue(${coords2}); } ${coords2[rank-1]} = ${coords2[rank-1]} - 1; if (${coords2[rank-2]} < ${shape[rank-2]} && ${coords2[rank-1]} < ${shape[rank-1]}) { result.b = getValue(${coords2}); } setOutput(result); } `}};function shiftedChannels(channels,channel,shift){let channelIdx=channels.indexOf(channel),res=channels.map((c,idx)=>idx===channelIdx?`${c} - ${shift}`:c);return res.join()}function imag7(args){let{inputs,backend:backend3}=args,{input:input2}=inputs,inputData=backend3.texData.get(input2.dataId);return identity3({inputs:{x:inputData.complexTensorInfos.imag},backend:backend3})}var imagConfig2={kernelName:Imag,backendName:"webgl",kernelFunc:imag7};function packedReshape(input2,afterShape,backend3){let input3DShape=[getBatchDim(input2.shape),...getRowsCols(input2.shape)],input3D={dtype:input2.dtype,shape:input3DShape,dataId:input2.dataId},afterShapeAs3D=[getBatchDim(afterShape),...getRowsCols(afterShape)],program=new ReshapePackedProgram(afterShapeAs3D,input3DShape),preventEagerUnpackingOfOutput=!0,output=backend3.runWebGLProgram(program,[input3D],input2.dtype,null,preventEagerUnpackingOfOutput);return{dataId:output.dataId,shape:afterShape,dtype:output.dtype}}function reshape90(args){let{inputs,backend:backend3,attrs}=args,{x}=inputs,{shape}=attrs,webglBackend=backend3,xSize=util_exports.sizeFromShape(x.shape),$shape=util_exports.inferFromImplicitShape(shape,xSize),$xSize=util_exports.sizeFromShape($shape);util_exports.assert(xSize===$xSize,()=>`The new shape (${$shape}) has ${$xSize} elements and the old shape (${x.shape}) has ${xSize} elements. The new shape and old shape must have the same number of elements.`);let xTexData=webglBackend.texData.get(x.dataId);return xTexData.isPacked&&!isReshapeFree(x.shape,$shape)&&!(xTexData.texture!==null&&isReshapeFree(xTexData.shape,$shape))?packedReshape(x,$shape,webglBackend):(webglBackend.incRef(x.dataId),{dataId:x.dataId,shape:$shape,dtype:x.dtype})}var reshapeConfig2={kernelName:Reshape,backendName:"webgl",kernelFunc:reshape90};function concatImpl(inputs,axis,backend3){let dtype=inputs[0].dtype;if(dtype==="complex64"){let reals=inputs.map(t=>real7({inputs:{input:t},backend:backend3})),imags=inputs.map(t=>imag7({inputs:{input:t},backend:backend3})),realConcated=concatImpl(reals,axis,backend3),imagConcated=concatImpl(imags,axis,backend3),result2=complex10({inputs:{real:realConcated,imag:imagConcated},backend:backend3});return reals.forEach(r=>backend3.disposeIntermediateTensorInfo(r)),imags.forEach(i=>backend3.disposeIntermediateTensorInfo(i)),backend3.disposeIntermediateTensorInfo(realConcated),backend3.disposeIntermediateTensorInfo(imagConcated),result2}if(inputs.length>env().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let midIndex=Math.floor(inputs.length/2),leftSide=concatImpl(inputs.slice(0,midIndex),axis,backend3),rightSide=concatImpl(inputs.slice(midIndex),axis,backend3),result2=concatImpl([leftSide,rightSide],axis,backend3);return backend3.disposeIntermediateTensorInfo(leftSide),backend3.disposeIntermediateTensorInfo(rightSide),result2}if(env().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&inputs[0].shape.length>1){let program2=new ConcatPackedProgram(inputs.map(t=>t.shape),axis);return backend3.runWebGLProgram(program2,inputs,dtype)}let outShape=backend_util_exports.computeOutShape(inputs.map(t=>t.shape),axis),tensors2D=inputs.map(x=>reshape90({inputs:{x},attrs:{shape:[-1,util_exports.sizeFromShape(x.shape.slice(axis))]},backend:backend3})),program=new ConcatProgram(tensors2D.map(t=>t.shape)),result=backend3.runWebGLProgram(program,tensors2D,dtype);tensors2D.forEach(r=>backend3.disposeIntermediateTensorInfo(r));let reshapedResult=reshape90({inputs:{x:result},attrs:{shape:outShape},backend:backend3});return backend3.disposeIntermediateTensorInfo(result),reshapedResult}function concat18(args){let{inputs,backend:backend3,attrs}=args,{axis}=attrs,$axis=util_exports.parseAxisParam(axis,inputs[0].shape)[0],outShape=backend_util_exports.computeOutShape(inputs.map(t=>t.shape),$axis);if(util_exports.sizeFromShape(outShape)===0)return backend3.makeTensorInfo(outShape,inputs[0].dtype,[]);let $inputs=inputs.filter(t=>util_exports.sizeFromShape(t.shape)>0);if($inputs.length===1)return $inputs[0];let shapes=$inputs.map(t=>t.shape);return backend_util_exports.assertParamsConsistent(shapes,$axis),concatImpl($inputs,$axis,backend3)}var concatConfig2={kernelName:Concat,backendName:"webgl",kernelFunc:concat18},COS=CHECK_NAN_SNIPPET_UNARY+` return cos(x); `,cos7=unaryKernelFunc2(COS),cosConfig2={kernelName:Cos,backendName:"webgl",kernelFunc:cos7},DIV=` if (a == b) { return 1.0; }; return a / b;`,DIV_PACKED=` // vec4 one = vec4(equal(a, b)); // return one + (vec4(1.0) - one) * a / b; vec4 result = a / b; if(a.x == b.x) { result.x = 1.; } if(a.y == b.y) { result.y = 1.; } if(a.z == b.z) { result.z = 1.; } if(a.w == b.w) { result.w = 1.; } return result; `,div36=binaryKernelFunc2({opSnippet:DIV,packedOpSnippet:DIV_PACKED,checkOutOfBounds:!0}),divConfig2={kernelName:Div,backendName:"webgl",kernelFunc:div36},FFTProgram=class{constructor(component,inputShape,inverse){this.variableNames=["real","imag"];let innerDim=inputShape[1];this.outputShape=inputShape;let exponentMultiplierSnippet=inverse?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,resultDenominator=inverse?`${innerDim}.0`:"1.0",opString;if(component==="real")opString="return real * expR - imag * expI;";else if(component==="imag")opString="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${component}.`);this.userCode=` const float exponentMultiplier = ${exponentMultiplierSnippet}; float unaryOpComplex(float real, float expR, float imag, float expI) { ${opString} } float mulMatDFT(int batch, int index) { float indexRatio = float(index) / float(${innerDim}); float exponentMultiplierTimesIndexRatio = exponentMultiplier * indexRatio; float result = 0.0; for (int i = 0; i < ${innerDim}; i++) { // x = (-2|2 * PI / N) * index * i; float x = exponentMultiplierTimesIndexRatio * float(i); float expR = cos(x); float expI = sin(x); float real = getReal(batch, i); float imag = getImag(batch, i); result += unaryOpComplex(real, expR, imag, expI) / ${resultDenominator}; } return result; } void main() { ivec2 coords = getOutputCoords(); setOutput(mulMatDFT(coords[0], coords[1])); } `}};function fftImpl2(x,inverse,backend3){let xData=backend3.texData.get(x.dataId),inputSize=util_exports.sizeFromShape(x.shape),innerDimensionSize=x.shape[x.shape.length-1],batch=inputSize/innerDimensionSize,input2D=reshape90({inputs:{x},backend:backend3,attrs:{shape:[batch,innerDimensionSize]}}),xShape=input2D.shape,realProgram=new FFTProgram("real",xShape,inverse),imagProgram=new FFTProgram("imag",xShape,inverse),inputs=[{dataId:xData.complexTensorInfos.real.dataId,dtype:xData.complexTensorInfos.real.dtype,shape:xShape},{dataId:xData.complexTensorInfos.imag.dataId,dtype:xData.complexTensorInfos.imag.dtype,shape:xShape}],realPart=backend3.runWebGLProgram(realProgram,inputs,"float32"),imagPart=backend3.runWebGLProgram(imagProgram,inputs,"float32"),complexOutput=complex10({inputs:{real:realPart,imag:imagPart},backend:backend3});backend3.disposeIntermediateTensorInfo(realPart),backend3.disposeIntermediateTensorInfo(imagPart);let complexOutputReshaped=reshape90({inputs:{x:complexOutput},backend:backend3,attrs:{shape:x.shape}});return backend3.disposeIntermediateTensorInfo(complexOutputReshaped),complexOutputReshaped}function fft7(args){let{inputs,backend:backend3}=args,{input:input2}=inputs;return fftImpl2(input2,!1,backend3)}var fftConfig2={kernelName:FFT,backendName:"webgl",kernelFunc:fft7},FlipLeftRightProgram=class{constructor(imageShape){this.variableNames=["Image"],this.outputShape=[];let imageWidth=imageShape[2];this.outputShape=imageShape,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int x = coords[2]; int coordX = ${imageWidth} - x; float outputValue; if(coordX >= 0 && coordX < ${imageWidth}) { outputValue = getImage(coords[0], coords[1], coordX, coords[3]); } else { outputValue = getImage(coords[0], coords[1], coords[2], coords[3]); } setOutput(outputValue); } `}},flipLeftRightConfig2={kernelName:FlipLeftRight,backendName:"webgl",kernelFunc:({inputs,backend:backend3})=>{let{image:image3}=inputs,webglBackend=backend3,program=new FlipLeftRightProgram(image3.shape),output=webglBackend.runWebGLProgram(program,[image3],image3.dtype);return output}},FromPixelsProgram=class{constructor(outputShape){this.variableNames=["A"];let glsl=getGlslDifferences(),[height,width]=outputShape;this.outputShape=outputShape,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; int texC = coords[1]; int depth = coords[2]; vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${width}.0, ${height}.0); vec4 values = ${glsl.texture2D}(A, uv); float value; if (depth == 0) { value = values.r; } else if (depth == 1) { value = values.g; } else if (depth == 2) { value = values.b; } else if (depth == 3) { value = values.a; } setOutput(floor(value * 255.0 + 0.5)); } `}},FromPixelsPackedProgram=class{constructor(outputShape){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let glsl=getGlslDifferences(),[height,width]=outputShape;this.outputShape=outputShape,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; int texC = coords[1]; int depth = coords[2]; vec4 result = vec4(0.); for(int row=0; row<=1; row++) { for(int col=0; col<=1; col++) { texC = coords[1] + row; depth = coords[2] + col; vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${width}.0, ${height}.0); vec4 values = ${glsl.texture2D}(A, uv); float value; if (depth == 0) { value = values.r; } else if (depth == 1) { value = values.g; } else if (depth == 2) { value = values.b; } else if (depth == 3) { value = values.a; } result[row * 2 + col] = floor(value * 255.0 + 0.5); } } ${glsl.output} = result; } `}},fromPixelsConfig={kernelName:FromPixels,backendName:"webgl",kernelFunc:fromPixels2},fromPixels2DContext2;function fromPixels2(args){let{inputs,backend:backend3,attrs}=args,{pixels}=inputs,{numChannels}=attrs,isVideo=typeof HTMLVideoElement!="undefined"&&pixels instanceof HTMLVideoElement,isImage=typeof HTMLImageElement!="undefined"&&pixels instanceof HTMLImageElement,[width,height]=isVideo?[pixels.videoWidth,pixels.videoHeight]:[pixels.width,pixels.height],texShape=[height,width],outShape=[height,width,numChannels];(isImage||isVideo)&&(fromPixels2DContext2==null&&(fromPixels2DContext2=document.createElement("canvas").getContext("2d")),fromPixels2DContext2.canvas.width=width,fromPixels2DContext2.canvas.height=height,fromPixels2DContext2.drawImage(pixels,0,0,width,height),pixels=fromPixels2DContext2.canvas);let tempPixelHandle=backend3.makeTensorInfo(texShape,"int32");backend3.texData.get(tempPixelHandle.dataId).usage=TextureUsage.PIXELS,backend3.gpgpu.uploadPixelDataToTexture(backend3.getTexture(tempPixelHandle.dataId),pixels);let program=env().getBool("WEBGL_PACK")?new FromPixelsPackedProgram(outShape):new FromPixelsProgram(outShape),res=backend3.runWebGLProgram(program,[tempPixelHandle],"int32");return backend3.disposeData(tempPixelHandle.dataId),res}function ifft7(args){let{inputs,backend:backend3}=args,{input:input2}=inputs;return fftImpl2(input2,!0,backend3)}var ifftConfig2={kernelName:IFFT,backendName:"webgl",kernelFunc:ifft7},MeanProgram=class{constructor(reduceInfo,divisor){this.variableNames=["x"];let{windowSize,batchSize,inSize,outSize}=reduceInfo;this.outputShape=[batchSize,outSize];let windowSizeNearestVec4=Math.floor(windowSize/4)*4,windowSizeVec4Remainder=windowSize%4,updateSnippet="sumValue += dot(values, ones);";if(divisor!=null){let denominator=1/divisor;updateSnippet=`sumValue += dot(values * ${util_exports.isInt(denominator)?denominator.toPrecision(2):denominator}, ones);`}let checkOutOfBounds="";inSize%windowSize>0&&(checkOutOfBounds=` if (inIdx < 0 || inIdx >= ${inSize}) { return 0.0; } `),this.userCode=` const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float getValue(int batch, int inIdx) { ${checkOutOfBounds} return getX(batch, inIdx); } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = outIdx * ${windowSize}; float sumValue = 0.0; for (int i = 0; i < ${windowSizeNearestVec4}; i += 4) { int inIdx = inOffset + i; vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), getValue(batch, inIdx + 3) ); ${updateSnippet} } int inIdx = inOffset + ${windowSizeNearestVec4}; if (${windowSizeVec4Remainder===1}) { vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0); ${updateSnippet} } else if (${windowSizeVec4Remainder===2}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), 0.0, 0.0); ${updateSnippet} } else if (${windowSizeVec4Remainder===3}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), 0.0); ${updateSnippet} } setOutput(sumValue); } `}};function getReductionStages(inShape){let stages=[];for(;stages.length===0||stages[stages.length-1].outSize!==1;){let outSize=stages.length?stages[stages.length-1].outSize:inShape[1],windowSize=backend_util_exports.computeOptimalWindowSize(outSize);stages.push({inSize:outSize,windowSize,outSize:Math.ceil(outSize/windowSize)})}return stages}function reduce(x,dtype,reductionType,backend3){let reductionStages=getReductionStages(x.shape),result=x;for(let i=0;i6)throw Error(`Transpose for rank ${rank} is not yet supported`);let originalOrder=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],switchedCoords=new Array(rank);for(let i=0;i6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let dtype=getCoordsDataType(this.rank),outputOrder=getVecChannels("rc",this.rank),switchedOrder=new Array(this.rank);for(let i=0;i{let{x}=inputs,{reductionIndices,keepDims}=attrs,webglBackend=backend3,xRank=x.shape.length,origAxes=util_exports.parseAxisParam(reductionIndices,x.shape),axes=origAxes,permutedAxes=backend_util_exports.getAxesPermutation(axes,xRank),maxInputIsTransposed=permutedAxes!=null,shouldExecuteOnCPU=webglBackend.shouldExecuteOnCPU([x]),maxInput=x;if(maxInputIsTransposed){if(shouldExecuteOnCPU){let xTexData=webglBackend.texData.get(maxInput.dataId),values=xTexData.values,newShape=new Array(xRank);for(let i=0;i`Error in maxPool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);let convInfo=backend_util_exports.computePool2DInfo(x.shape,filterSize,strides,dilations,pad11,dimRoundingMode);if(convInfo.filterWidth===1&&convInfo.filterHeight===1&&util_exports.arraysEqual(convInfo.inShape,convInfo.outShape))return identity3({inputs:{x},backend:backend3});let maxPoolProgram=new Pool2DProgram(convInfo,"max",!1);return backend3.runWebGLProgram(maxPoolProgram,[x],x.dtype)}var maxPoolConfig2={kernelName:MaxPool,backendName:"webgl",kernelFunc:maxPool3};function maxPoolBackprop3(args){let{inputs,backend:backend3,attrs}=args,{dy,input:input2,output}=inputs,x=input2;assertNotComplex2([input2,output],"maxPoolBackprop");let{filterSize,strides,pad:pad11,dimRoundingMode}=attrs,convInfo=backend_util_exports.computePool2DInfo(x.shape,filterSize,strides,1,pad11,dimRoundingMode),getPositions=!0,maxPoolPositionsProgram=new Pool2DProgram(convInfo,"max",getPositions),maxPoolPositions2=backend3.runWebGLProgram(maxPoolPositionsProgram,[x],x.dtype),maxPoolBackPropProgram=new MaxPool2DBackpropProgram(convInfo),result=backend3.runWebGLProgram(maxPoolBackPropProgram,[dy,maxPoolPositions2],x.dtype);return backend3.disposeIntermediateTensorInfo(maxPoolPositions2),result}var maxPoolBackpropConfig2={kernelName:MaxPoolBackprop,backendName:"webgl",kernelFunc:maxPoolBackprop3};function maxPoolWithArgmaxImpl2(x,includeBatchInIndex,convInfo,backend3){let program=new Pool2DProgram(convInfo,"max",!1),poolOutput=backend3.runWebGLProgram(program,[x],"float32");program=new Pool2DProgram(convInfo,"max",!0,!0,includeBatchInIndex);let indexOutput=backend3.runWebGLProgram(program,[x],"float32");return[poolOutput,indexOutput]}var maxPoolWithArgmaxConfig2={kernelName:MaxPoolWithArgmax,backendName:"webgl",kernelFunc:({inputs,attrs,backend:backend3})=>{let{x}=inputs,{filterSize,strides,pad:pad11,includeBatchInIndex}=attrs,webglBackend=backend3;util_exports.assert(x.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${x.shape.length}.`);let dilations=[1,1];util_exports.assert(backend_util_exports.eitherStridesOrDilationsAreOne(strides,dilations),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${strides} and dilations '${dilations}'`);let convInfo=backend_util_exports.computePool2DInfo(x.shape,filterSize,strides,dilations,pad11),[result,indexes]=maxPoolWithArgmaxImpl2(x,includeBatchInIndex,convInfo,webglBackend);return[result,indexes]}};function meanImpl(x,reduceShape,outShape,backend3){let inSize=util_exports.sizeFromShape(reduceShape),xSize=util_exports.sizeFromShape(x.shape),batchSize=xSize/inSize,reshapedInput=reshape90({inputs:{x},attrs:{shape:[batchSize,inSize]},backend:backend3}),reduced=reduce(reshapedInput,"float32","mean",backend3),reshapedOutput=reshape90({inputs:{x:reduced},attrs:{shape:outShape},backend:backend3});return backend3.disposeIntermediateTensorInfo(reshapedInput),backend3.disposeIntermediateTensorInfo(reduced),reshapedOutput}var meanConfig={kernelName:Mean,backendName:"webgl",kernelFunc:({inputs,attrs,backend:backend3})=>{let{x}=inputs,{keepDims,axis}=attrs,webglBackend=backend3,xRank=x.shape.length,origAxes=util_exports.parseAxisParam(axis,x.shape),axes=origAxes,permutedAxes=backend_util_exports.getAxesPermutation(axes,xRank),meanInputIsTransposed=permutedAxes!=null,shouldExecuteOnCPU=webglBackend.shouldExecuteOnCPU([x]),intermediates=[],meanInput=x;if(meanInputIsTransposed){if(shouldExecuteOnCPU){let xTexData=webglBackend.texData.get(meanInput.dataId),values=xTexData.values,newShape=new Array(xRank);for(let i=0;ip2[0]+xShape[i]+p2[1]);let rank=xShape.length,dtype=getCoordsDataType(rank),start=paddings.map(p2=>p2[0]).join(","),end=paddings.map((p2,i)=>p2[0]+xShape[i]).join(","),unpackedCoords=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,rank),offset=mode==="reflect"?0:1;if(rank===1){this.userCode=` int start = ${start}; int end = ${end}; void main() { int outC = getOutputCoords(); if (outC < start) { outC = start * 2 - outC - ${offset}; } else if(outC >= end) { outC = (end - 1) * 2 - outC + ${offset}; } setOutput(getX(outC - start)); } `;return}this.userCode=` ${dtype} start = ${dtype}(${start}); ${dtype} end = ${dtype}(${end}); void main() { ${dtype} outC = getOutputCoords(); for (int i = 0; i < ${rank}; i++) { if (outC[i] < start[i]) { outC[i] = start[i] * 2 - outC[i] - ${offset}; } else if(outC[i] >= end[i]) { outC[i] = (end[i] - 1) * 2 - outC[i] + ${offset}; } } ${dtype} coords = outC - start; setOutput(getX(${unpackedCoords})); } `}},MirrorPadPackedProgram=class{constructor(xShape,paddings,mode){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=paddings.map((p2,i)=>p2[0]+xShape[i]+p2[1]);let rank=xShape.length,dtype=getCoordsDataType(rank),start=paddings.map(p2=>p2[0]).join(","),end=paddings.map((p2,i)=>p2[0]+xShape[i]).join(","),coords2=getChannels("rc",rank),source=getChannels("source",rank),cLimit=`${coords2[rank-1]} < ${this.outputShape[rank-1]}`,innerDims=rank===1?"source":`vec2(${source.slice(-2).join()})`,offset=mode==="reflect"?0:1,mainLoop="";if(rank===1){let padSetup=` ${dtype} source = rc; if (source < start) { source = start * 2 - source - ${offset}; } else if (source >= end) { source = (end - 1) * 2 - source + ${offset}; } source -= start; `;mainLoop=` ${dtype} rc = outputLoc; ${padSetup} result[0] = getChannel(getX(${source.join()}), ${innerDims}); ${coords2[rank-1]} += 1; if(${cLimit}) { ${padSetup} result[1] = getChannel(getX(${source.join()}), ${innerDims}); } `}else{let padSetup=` ${dtype} source = rc; ${dtype} lt = ${dtype}(lessThan(source, start)); ${dtype} gte = ${dtype}(greaterThanEqual(source, end)); ${dtype} orig = 1 - (lt + gte); source = orig * source + lt * (start * 2 - source - ${offset}) + gte * ((end - 1) * 2 - source + ${offset}); source -= start; `;mainLoop=` ${dtype} rc = outputLoc; ${padSetup} result[0] = getChannel(getX(${source.join()}), ${innerDims}); ${coords2[rank-1]} += 1; if(${cLimit}) { ${padSetup} result[1] = getChannel(getX(${source.join()}), ${innerDims}); } rc = outputLoc; ${coords2[rank-2]} += 1; if(${coords2[rank-2]} < ${this.outputShape[rank-2]}) { ${padSetup} result[2] = getChannel(getX(${source.join()}), ${innerDims}); ${coords2[rank-1]} += 1; if(${cLimit}) { ${padSetup} result[3] = getChannel(getX(${source.join()}), ${innerDims}); } } `}this.userCode=` const ${dtype} start = ${dtype}(${start}); const ${dtype} end = ${dtype}(${end}); void main() { ${dtype} outputLoc = getOutputCoords(); vec4 result = vec4(0.); ${mainLoop} setOutput(result); } `}},mirrorPadKernelFunc=({inputs,backend:backend3,attrs})=>{let{x}=inputs,{paddings,mode}=attrs,program=env().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new MirrorPadPackedProgram(x.shape,paddings,mode):new MirrorPadProgram(x.shape,paddings,mode),output=backend3.runWebGLProgram(program,[x],x.dtype);return output},mirrorPadConfig2={kernelName:MirrorPad,backendName:"webgl",kernelFunc:mirrorPadKernelFunc},COMPLEX_MULTIPLY={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},BinaryOpComplexProgram=class{constructor(op2,aShape,bShape){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=backend_util_exports.assertAndGetBroadcastShape(aShape,bShape),this.userCode=` float binaryOpComplex( float areal, float aimag, float breal, float bimag) { ${op2} } void main() { float areal = getARealAtOutCoords(); float aimag = getAImagAtOutCoords(); float breal = getBRealAtOutCoords(); float bimag = getBImagAtOutCoords(); setOutput(binaryOpComplex(areal, aimag, breal, bimag)); } `}},MUL="return a * b;";function multiply3(args){let{inputs,backend:backend3}=args,{a,b}=inputs,dtype=backend_util_exports.upcastType(a.dtype,b.dtype);if(a.dtype==="complex64"){let aData=backend3.texData.get(a.dataId),bData=backend3.texData.get(b.dataId),realProgram=new BinaryOpComplexProgram(COMPLEX_MULTIPLY.REAL,a.shape,b.shape),imagProgram=new BinaryOpComplexProgram(COMPLEX_MULTIPLY.IMAG,a.shape,b.shape),inputs2=[{dataId:aData.complexTensorInfos.real.dataId,dtype:aData.complexTensorInfos.real.dtype,shape:a.shape},{dataId:aData.complexTensorInfos.imag.dataId,dtype:aData.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:bData.complexTensorInfos.real.dataId,dtype:bData.complexTensorInfos.real.dtype,shape:b.shape},{dataId:bData.complexTensorInfos.imag.dataId,dtype:bData.complexTensorInfos.imag.dtype,shape:b.shape}],realPart=backend3.runWebGLProgram(realProgram,inputs2,"float32"),imagPart=backend3.runWebGLProgram(imagProgram,inputs2,"float32"),complexOutput=complex10({inputs:{real:realPart,imag:imagPart},backend:backend3});return backend3.disposeIntermediateTensorInfo(realPart),backend3.disposeIntermediateTensorInfo(imagPart),complexOutput}if(backend3.shouldExecuteOnCPU([a,b])){let aData=backend3.texData.get(a.dataId),bData=backend3.texData.get(b.dataId),[outValues,outShape]=multiplyImplCPU(a.shape,b.shape,aData.values,bData.values,dtype),out=backend3.makeTensorInfo(outShape,dtype),outData=backend3.texData.get(out.dataId);return outData.values=outValues,out}let program;return env().getBool("WEBGL_PACK_BINARY_OPERATIONS")?program=new BinaryOpPackedProgram(MUL,a.shape,b.shape):program=new BinaryOpProgram(MUL,a.shape,b.shape),backend3.runWebGLProgram(program,[a,b],dtype)}var multiplyConfig2={kernelName:Multiply,backendName:"webgl",kernelFunc:multiply3},nonMaxSuppressionV3Config={kernelName:NonMaxSuppressionV3,backendName:"webgl",kernelFunc:({inputs,backend:backend3,attrs})=>{backend_util_exports.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{boxes,scores}=inputs,{maxOutputSize,iouThreshold,scoreThreshold}=attrs,gpuBackend=backend3,boxesVals=gpuBackend.readSync(boxes.dataId),scoresVals=gpuBackend.readSync(scores.dataId),maxOutputSizeVal=maxOutputSize,iouThresholdVal=iouThreshold,scoreThresholdVal=scoreThreshold;return kernel_impls_exports.nonMaxSuppressionV3Impl(boxesVals,scoresVals,maxOutputSizeVal,iouThresholdVal,scoreThresholdVal)}},nonMaxSuppressionV4Impl3=kernel_impls_exports.nonMaxSuppressionV4Impl,nonMaxSuppressionV4Config2={kernelName:NonMaxSuppressionV4,backendName:"webgl",kernelFunc:({inputs,backend:backend3,attrs})=>{backend_util_exports.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{boxes,scores}=inputs,{maxOutputSize,iouThreshold,scoreThreshold,padToMaxOutputSize}=attrs,gpuBackend=backend3,boxesVals=gpuBackend.readSync(boxes.dataId),scoresVals=gpuBackend.readSync(scores.dataId),{selectedIndices,validOutputs}=nonMaxSuppressionV4Impl3(boxesVals,scoresVals,maxOutputSize,iouThreshold,scoreThreshold,padToMaxOutputSize);return[selectedIndices,validOutputs]}},nonMaxSuppressionV5Impl3=kernel_impls_exports.nonMaxSuppressionV5Impl,nonMaxSuppressionV5Config2={kernelName:NonMaxSuppressionV5,backendName:"webgl",kernelFunc:({inputs,backend:backend3,attrs})=>{backend_util_exports.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{boxes,scores}=inputs,{maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma}=attrs,gpuBackend=backend3,boxesVals=gpuBackend.readSync(boxes.dataId),scoresVals=gpuBackend.readSync(scores.dataId),maxOutputSizeVal=maxOutputSize,iouThresholdVal=iouThreshold,scoreThresholdVal=scoreThreshold,softNmsSigmaVal=softNmsSigma,{selectedIndices,selectedScores}=nonMaxSuppressionV5Impl3(boxesVals,scoresVals,maxOutputSizeVal,iouThresholdVal,scoreThresholdVal,softNmsSigmaVal);return[selectedIndices,selectedScores]}},RotateProgram=class{constructor(imageShape,radians,fillValue,center){this.variableNames=["Image"],this.outputShape=[];let imageHeight=imageShape[1],imageWidth=imageShape[2],sinFactor=Math.sin(radians).toFixed(3),cosFactor=Math.cos(radians).toFixed(3);this.outputShape=imageShape;let[centerX,centerY]=backend_util_exports.getImageCenter(center,imageHeight,imageWidth),centerXString=centerX.toFixed(3),centerYString=centerY.toFixed(3),fillSnippet="";typeof fillValue=="number"?fillSnippet=`float outputValue = ${fillValue.toFixed(2)};`:fillSnippet=` vec3 fill = vec3(${fillValue.join(",")}); float outputValue = fill[coords[3]];`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int x = coords[2]; int y = coords[1]; float coordXFloat = (float(x) - ${centerXString}) * ${cosFactor} - (float(y) - ${centerYString}) * ${sinFactor}; float coordYFloat = (float(x) - ${centerXString}) * ${sinFactor} + (float(y) - ${centerYString}) * ${cosFactor}; int coordX = int(round(coordXFloat + ${centerXString})); int coordY = int(round(coordYFloat + ${centerYString})); ${fillSnippet} if(coordX >= 0 && coordX < ${imageWidth} && coordY >= 0 && coordY < ${imageHeight}) { outputValue = getImage(coords[0], coordY, coordX, coords[3]); } setOutput(outputValue); } `}},rotateWithOffsetConfig2={kernelName:RotateWithOffset,backendName:"webgl",kernelFunc:({inputs,attrs,backend:backend3})=>{let{image:image3}=inputs,{radians,fillValue,center}=attrs,webglBackend=backend3,program=new RotateProgram(image3.shape,radians,fillValue,center),output=webglBackend.runWebGLProgram(program,[image3],image3.dtype);return output}},SIN=CHECK_NAN_SNIPPET_UNARY+` return sin(x); `,sin6=unaryKernelFunc2(SIN),sinConfig2={kernelName:Sin,backendName:"webgl",kernelFunc:sin6},SQUARE="return x * x;",square25=unaryKernelFunc2(SQUARE),squareConfig2={kernelName:Square,backendName:"webgl",kernelFunc:square25},SQUARED_DIFFERENCE="return (a - b) * (a - b);",squaredDifference3=binaryKernelFunc2({opSnippet:SQUARED_DIFFERENCE,packedOpSnippet:SQUARED_DIFFERENCE}),squaredDifferenceConfig2={kernelName:SquaredDifference,backendName:"webgl",kernelFunc:squaredDifference3},SUB="return a - b;",subKernelFunc=binaryKernelFunc2({opSnippet:SUB,packedOpSnippet:SUB,supportsComplex:!0,cpuKernelImpl:subImplCPU}),subConfig2={kernelName:Sub,backendName:"webgl",kernelFunc:subKernelFunc},TAN="return tan(x);",tan5=unaryKernelFunc2(TAN),tanConfig2={kernelName:Tan,backendName:"webgl",kernelFunc:tan5},transposeConfig2={kernelName:Transpose,backendName:"webgl",kernelFunc:({inputs,attrs,backend:backend3})=>{let{x}=inputs,{perm}=attrs,webglBackend=backend3,xRank=x.shape.length,newShape=new Array(xRank);for(let i=0;iwasmFunc8(aId,aShapeBytes,a.shape.length,bId,bShapeBytes,b.shape.length,CppDType[a.dtype],outId);if(supportsFullBroadcast17&&a.dtype==="float32")return kernelFunc4(),out;let aBroadcastDims=backend_util_exports.getBroadcastDims(a.shape,newShape),bBroadcastDims=backend_util_exports.getBroadcastDims(b.shape,newShape),loopsOverAllOfA=aBroadcastDims.every((v,i)=>v===i),loopsOverAllOfB=bBroadcastDims.every((v,i)=>v===i);if(loopsOverAllOfA&&loopsOverAllOfB)return kernelFunc4(),out;throw new Error(`Broadcasting along outer dims is not yet supported for ${a.dtype} ${kernelName}.`)}return{kernelName,backendName:"wasm",setupFunc:setupFunc2,kernelFunc:kernelFunc3}}var supportsFullBroadcast=!0,addConfig3=createBinaryKernelConfig(Add,supportsFullBroadcast),wasmFunc;function setupFunc(backend3){wasmFunc=backend3.wasm.cwrap(AddN,null,["array","number","number","number"])}function addn(args){let{inputs,backend:backend3}=args,out=backend3.makeOutput(inputs[0].shape,inputs[0].dtype);if(util_exports.sizeFromShape(out.shape)===0)return out;let inputIds=inputs.map(x=>backend3.dataIdMap.get(x.dataId).id),inputIdsBytes=new Uint8Array(new Int32Array(inputIds).buffer),outId=backend3.dataIdMap.get(out.dataId).id;return wasmFunc(inputIdsBytes,inputIds.length,CppDType[out.dtype],outId),out}var addNConfig={kernelName:AddN,backendName:"wasm",setupFunc,kernelFunc:addn};function identity4(args){let{inputs:{x},backend:backend3}=args,out=backend3.makeOutput(x.shape,x.dtype),inVals=backend3.typedArrayFromHeap(x),outVals=backend3.typedArrayFromHeap(out);return outVals.set(inVals),out}var identityConfig3={kernelName:Identity,backendName:"wasm",kernelFunc:identity4},wasmTranspose;function setup2(backend3){wasmTranspose=backend3.wasm.cwrap(Transpose,null,["number","array","number","number","number","array","number"])}function transpose19(args){let{inputs,backend:backend3,attrs}=args,[reducedShape,perm]=removeOneSizeDims(inputs.x.shape,attrs.perm),permIsNoOp=!0;for(let i=0;i=i&&(minValIdx===-1||newPerm[minValIdx]>newPerm[j])&&(minValIdx=j);newPerm[minValIdx]=i}return[newShape,newPerm]}var transposeConfig3={kernelName:Transpose,backendName:"wasm",kernelFunc:transpose19,setupFunc:setup2};function permuteAxesAndTranspose(x,axis,backend3){let xShape=x.shape,xRank=x.shape.length,originalAxes=util_exports.parseAxisParam(axis,xShape),axes=originalAxes,permutedAxes=backend_util_exports.getAxesPermutation(axes,xRank),xTransposed=null,inputWasTransposed=!1;if(permutedAxes!=null){let newShape=new Array(xRank);for(let i=0;i`new shape: ${$shape}, old shape: ${x.shape}. New shape and old shape must have the same number of elements.`),{dataId:x.dataId,shape:$shape,dtype:x.dtype}}var reshapeConfig3={kernelName:Reshape,backendName:"wasm",kernelFunc:reshape91},wasmBatchMatMul;function setup5(backend3){wasmBatchMatMul=backend3.wasm.cwrap(BatchMatMul,null,["number","array","number","number","array","number","number","number","number"])}function batchMatMul2(args){let{inputs,backend:backend3,attrs}=args,{a,b}=inputs,{transposeA,transposeB}=attrs;if(a.dtype!=="float32"||b.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let aRank=a.shape.length,bRank=b.shape.length,innerShapeA=transposeA?a.shape[aRank-2]:a.shape[aRank-1],innerShapeB=transposeB?b.shape[bRank-1]:b.shape[bRank-2],outerShapeA=transposeA?a.shape[aRank-1]:a.shape[aRank-2],outerShapeB=transposeB?b.shape[bRank-2]:b.shape[bRank-1],outerDimsA=a.shape.slice(0,-2),outerDimsB=b.shape.slice(0,-2),batchDimA=util_exports.sizeFromShape(outerDimsA),batchDimB=util_exports.sizeFromShape(outerDimsB),batchDimsCompatible=batchDimA===batchDimB||batchDimA===1||batchDimB===1;util_exports.assert(aRank>=2&&bRank>=2&&batchDimsCompatible,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${outerDimsA}) and (${outerDimsB}).`);let outShapeOuterDims=batchDimA>batchDimB?a.shape.slice(0,-2):b.shape.slice(0,-2),outShape=outShapeOuterDims.concat([outerShapeA,outerShapeB]);util_exports.assert(innerShapeA===innerShapeB,()=>`Error in matMul: inner shapes (${innerShapeA}) and (${innerShapeB}) of Tensors with shapes ${a.shape} and ${b.shape} and transposeA=${transposeA} and transposeB=${transposeB} must match.`);let a3dShape=transposeA?[batchDimA,innerShapeA,outerShapeA]:[batchDimA,outerShapeA,innerShapeA],b3dShape=transposeB?[batchDimB,outerShapeB,innerShapeB]:[batchDimB,innerShapeB,outerShapeB],a3d=reshape91({inputs:{x:a},backend:backend3,attrs:{shape:a3dShape}}),b3d=reshape91({inputs:{x:b},backend:backend3,attrs:{shape:b3dShape}}),a3dId=backend3.dataIdMap.get(a3d.dataId).id,b3dId=backend3.dataIdMap.get(b3d.dataId).id,leftDim=transposeA?a3d.shape[2]:a3d.shape[1],rightDim=transposeB?b3d.shape[1]:b3d.shape[2],batchDim=Math.max(batchDimA,batchDimB),out=backend3.makeOutput([batchDim,leftDim,rightDim],a3d.dtype),outId=backend3.dataIdMap.get(out.dataId).id,aShapeBytes=new Uint8Array(new Int32Array(a3d.shape).buffer),bShapeBytes=new Uint8Array(new Int32Array(b3d.shape).buffer);return wasmBatchMatMul(a3dId,aShapeBytes,a3d.shape.length,b3dId,bShapeBytes,b3d.shape.length,transposeA,transposeB,outId),out.shape=outShape,out}var batchMatMulConfig2={kernelName:BatchMatMul,backendName:"wasm",setupFunc:setup5,kernelFunc:batchMatMul2};function cast51(args){let{inputs:{x},attrs:{dtype},backend:backend3}=args,out=backend3.makeOutput(x.shape,dtype),inVals=backend3.typedArrayFromHeap(x),outVals=backend3.typedArrayFromHeap(out);return outVals.set(inVals),out}var castConfig3={kernelName:Cast,backendName:"wasm",kernelFunc:cast51},wasmClip;function setup6(backend3){wasmClip=backend3.wasm.cwrap(ClipByValue,null,["number","number","number","number"])}function clip2(args){let{inputs,backend:backend3,attrs}=args,{x}=inputs,{clipValueMin,clipValueMax}=attrs,xId=backend3.dataIdMap.get(x.dataId).id,out=backend3.makeOutput(x.shape,x.dtype),outId=backend3.dataIdMap.get(out.dataId).id;return wasmClip(xId,clipValueMin,clipValueMax,outId),out}var clipByValueConfig={kernelName:ClipByValue,backendName:"wasm",setupFunc:setup6,kernelFunc:clip2};function concat19(args){let{inputs,backend:backend3}=args,axis=util_exports.parseAxisParam(args.attrs.axis,inputs[0].shape)[0],outShape=backend_util_exports.computeOutShape(inputs.map(t=>t.shape),axis),out=backend3.makeOutput(outShape,inputs[0].dtype);if(util_exports.sizeFromShape(outShape)===0)return out;let $inputs=inputs.filter(t=>util_exports.sizeFromShape(t.shape)>0);if($inputs.length===1)return $inputs[0];let shapes=$inputs.map(t=>t.shape);backend_util_exports.assertParamsConsistent(shapes,axis);let batchDim=util_exports.sizeFromShape($inputs[0].shape.slice(0,axis)),sumInnerDims=0,innerDims=$inputs.map(input2=>{let innerDim=util_exports.sizeFromShape(input2.shape.slice(axis));return sumInnerDims+=innerDim,innerDim}),inVals=$inputs.map(input2=>backend3.typedArrayFromHeap(input2)),outVals=backend3.typedArrayFromHeap(out);for(let b=0;b`cumsum does not support ${x.dtype} tensors in the WASM backend`);let permutation=backend_util_exports.getAxesPermutation([axis],xRank),permutedX=x;permutation!==null&&(permutedX=transpose19({inputs:{x},attrs:{perm:permutation},backend:backend3}));let permutedAxis=backend_util_exports.getInnerMostAxes(1,xRank)[0];backend_util_exports.assertAxesAreInnerMostDims("cumsum",[permutedAxis],xRank);let permutedOut=backend3.makeOutput(permutedX.shape,permutedX.dtype),finalDim=permutedX.shape[permutedAxis],permutedXId=backend3.dataIdMap.get(permutedX.dataId).id,permutedOutId=backend3.dataIdMap.get(permutedOut.dataId).id;wasmCumsum(permutedXId,exclusive?1:0,reverse12?1:0,finalDim,permutedOutId,CppDType[x.dtype]);let out=permutedOut;if(permutation!==null){let undoPermutation=backend_util_exports.getUndoAxesPermutation(permutation);out=transpose19({inputs:{x:permutedOut},attrs:{perm:undoPermutation},backend:backend3}),backend3.disposeData(permutedX.dataId),backend3.disposeData(permutedOut.dataId)}return out}var cumsumConfig={kernelName:Cumsum,backendName:"wasm",setupFunc:setup10,kernelFunc:cumsum6},wasmDepthToSpace;function setup11(backend3){wasmDepthToSpace=backend3.wasm.cwrap(DepthToSpace,null,["number","number","number","array","number","array","array","number","number"])}function depthToSpace2(args){let{backend:backend3,inputs,attrs}=args,{x}=inputs,{blockSize,dataFormat}=attrs;util_exports.assert(blockSize>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${blockSize}`);let batchSize=x.shape[0],inputHeight=dataFormat==="NHWC"?x.shape[1]:x.shape[2],inputWidth=dataFormat==="NHWC"?x.shape[2]:x.shape[3],inputDepth=dataFormat==="NHWC"?x.shape[3]:x.shape[1],outputHeight=inputHeight*blockSize,outputWidth=inputWidth*blockSize,outputDepth=inputDepth/(blockSize*blockSize),outputShape=dataFormat==="NHWC"?[batchSize,outputHeight,outputWidth,outputDepth]:[batchSize,outputDepth,outputHeight,outputWidth],out=backend3.makeOutput(outputShape,"float32"),xData=backend3.dataIdMap.get(x.dataId),xId=xData.id,xStridesBytes=new Uint8Array(new Int32Array(util_exports.computeStrides(x.shape)).buffer),outputShapeBytes=new Uint8Array(new Int32Array(outputShape).buffer),outStridesBytes=new Uint8Array(new Int32Array(util_exports.computeStrides(outputShape)).buffer),outId=backend3.dataIdMap.get(out.dataId).id,channelsLast=dataFormat==="NHWC"?1:0;return wasmDepthToSpace(xId,blockSize,channelsLast,xStridesBytes,x.shape.length-1,outputShapeBytes,outStridesBytes,outputShape.length,outId),out}var depthToSpaceConfig={kernelName:DepthToSpace,backendName:"wasm",setupFunc:setup11,kernelFunc:depthToSpace2},wasmDepthwiseConv2d;function setup12(backend3){wasmDepthwiseConv2d=backend3.wasm.cwrap(DepthwiseConv2dNative,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function depthwiseConv2d5(args){let{inputs,attrs,backend:backend3}=args,{x,filter}=inputs,xId=backend3.dataIdMap.get(x.dataId).id,filterId=backend3.dataIdMap.get(filter.dataId).id,{strides,dilations,pad:pad11,dimRoundingMode}=attrs,$dilations=dilations==null?[1,1]:dilations,convInfo=backend_util_exports.computeConv2DInfo(x.shape,filter.shape,strides,$dilations,pad11,dimRoundingMode,!0),filterHeight=convInfo.filterHeight,filterWidth=convInfo.filterWidth,padTop=convInfo.padInfo.top,padRight=convInfo.padInfo.right,padBottom=convInfo.padInfo.bottom,padLeft=convInfo.padInfo.left,dilationHeight=convInfo.dilationHeight,dilationWidth=convInfo.dilationWidth,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,inputChannels=convInfo.inChannels,outputChannels=convInfo.outChannels,isSamePad=convInfo.padInfo.type==="SAME"?1:0;if(convInfo.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${convInfo.dataFormat}'. Please use 'channelsLast'.`);let out=backend3.makeOutput(convInfo.outShape,"float32"),outId=backend3.dataIdMap.get(out.dataId).id;return wasmDepthwiseConv2d(xId,x.shape[0],x.shape[1],x.shape[2],filterId,filterHeight,filterWidth,padTop,padRight,padBottom,padLeft,isSamePad,dilationHeight,dilationWidth,strideHeight,strideWidth,inputChannels,outputChannels,outId),out}var depthwiseConv2dNativeConfig2={kernelName:DepthwiseConv2dNative,backendName:"wasm",setupFunc:setup12,kernelFunc:depthwiseConv2d5},supportsFullBroadcast2=!0,divConfig3=createBinaryKernelConfig(Div,supportsFullBroadcast2),supportsFullBroadcast3=!1,equalConfig=createBinaryKernelConfig(Equal,supportsFullBroadcast3,"bool"),expConfig2=createUnaryKernelConfig(Exp);function fill6(args){let{attrs:{shape,value,dtype},backend:backend3}=args,out=backend3.makeOutput(shape,dtype),outVals=backend3.typedArrayFromHeap(out);return outVals.fill(value),out}var fillConfig2={kernelName:Fill,backendName:"wasm",kernelFunc:fill6},wasmFlipLeftRight;function setup13(backend3){wasmFlipLeftRight=backend3.wasm.cwrap(FlipLeftRight,null,["number","number","number","number","number","number"])}function flipLeftRight2(args){let{inputs,backend:backend3}=args,{image:image3}=inputs,out=backend3.makeOutput(image3.shape,image3.dtype),imageId=backend3.dataIdMap.get(image3.dataId).id,outId=backend3.dataIdMap.get(out.dataId).id,[batch,imageHeight,imageWidth,numChannels]=image3.shape;return wasmFlipLeftRight(imageId,batch,imageHeight,imageWidth,numChannels,outId),out}var flipLeftRightConfig3={kernelName:FlipLeftRight,backendName:"wasm",kernelFunc:flipLeftRight2,setupFunc:setup13},supportsFullBroadcast4=!1,floorDivConfig=createBinaryKernelConfig(FloorDiv,supportsFullBroadcast4),wasmBatchNorm;function setup14(backend3){wasmBatchNorm=backend3.wasm.cwrap(FusedBatchNorm,null,["number","number","number","number","number","number","number"])}function fusedBatchNorm(args){let{backend:backend3,inputs,attrs}=args,{varianceEpsilon}=attrs,{x,mean:mean7,variance,offset,scale:scale2}=inputs,xId=backend3.dataIdMap.get(x.dataId).id,meanId=backend3.dataIdMap.get(mean7.dataId).id,varianceId=backend3.dataIdMap.get(variance.dataId).id,offsetId=offset!=null?backend3.dataIdMap.get(offset.dataId).id:0,scaleId=scale2!=null?backend3.dataIdMap.get(scale2.dataId).id:0,out=backend3.makeOutput(x.shape,x.dtype);if(util_exports.sizeFromShape(x.shape)===0)return out;let outId=backend3.dataIdMap.get(out.dataId).id;return wasmBatchNorm(xId,meanId,varianceId,offsetId,scaleId,varianceEpsilon,outId),out}var fusedBatchNormConfig={kernelName:FusedBatchNorm,backendName:"wasm",setupFunc:setup14,kernelFunc:fusedBatchNorm},wasmFusedConv2d;function setup15(backend3){wasmFusedConv2d=backend3.wasm.cwrap(FusedConv2D,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function fusedConv2d(args){let{inputs,attrs,backend:backend3}=args,{x,filter,bias,preluActivationWeights}=inputs,{strides,pad:pad11,dilations,dataFormat,dimRoundingMode,activation:activation2}=attrs,convInfo=backend_util_exports.computeConv2DInfo(x.shape,filter.shape,strides,dilations,pad11,dimRoundingMode),fusedActivation=FusableActivation[activation2];if(fusedActivation==null)throw new Error(`${activation2} activation not yet supported for FusedConv2D in the wasm backend.`);let xId=backend3.dataIdMap.get(x.dataId).id,filterId=backend3.dataIdMap.get(filter.dataId).id,outputChannels=convInfo.outChannels,biasId=0;if(bias!=null){let biasData=backend3.dataIdMap.get(bias.dataId);if(biasData.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${biasData.shape.length}.`);if(biasData.shape[0]!==outputChannels)throw new Error(`FusedConv2D bias shape (${biasData.shape}) does not match the number of output channels (${outputChannels})`);biasId=biasData.id}let filterHeight=convInfo.filterHeight,filterWidth=convInfo.filterWidth,padTop=convInfo.padInfo.top,padRight=convInfo.padInfo.right,padBottom=convInfo.padInfo.bottom,padLeft=convInfo.padInfo.left,dilationHeight=convInfo.dilationHeight,dilationWidth=convInfo.dilationWidth,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,inputChannels=convInfo.inChannels,isSamePad=convInfo.padInfo.type==="SAME"?1:0,batchSize=convInfo.batchSize,inHeight=convInfo.inHeight,inWidth=convInfo.inWidth;if(dataFormat!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${dataFormat}'. Please use 'NHWC'.`);let out=backend3.makeOutput(convInfo.outShape,"float32"),outId=backend3.dataIdMap.get(out.dataId).id,preluActivationWeightsId=preluActivationWeights==null?0:backend3.dataIdMap.get(preluActivationWeights.dataId).id;return wasmFusedConv2d(xId,batchSize,inHeight,inWidth,filterId,filterHeight,filterWidth,biasId,padTop,padRight,padBottom,padLeft,isSamePad,dilationHeight,dilationWidth,strideHeight,strideWidth,inputChannels,outputChannels,fusedActivation,preluActivationWeightsId,outId),out}var fusedConv2DConfig2={kernelName:FusedConv2D,backendName:"wasm",setupFunc:setup15,kernelFunc:fusedConv2d},wasmFusedDepthwiseConv2d;function setup16(backend3){wasmFusedDepthwiseConv2d=backend3.wasm.cwrap(FusedDepthwiseConv2D,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function fusedDepthwiseConv2d(args){let{inputs,attrs,backend:backend3}=args,{x,filter,bias,preluActivationWeights}=inputs,{strides,pad:pad11,dilations,dataFormat,dimRoundingMode,activation:activation2}=attrs,convInfo=backend_util_exports.computeConv2DInfo(x.shape,filter.shape,strides,dilations,pad11,dimRoundingMode,!0),fusedActivation=FusableActivation[activation2];if(fusedActivation==null)throw new Error(`${activation2} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let xId=backend3.dataIdMap.get(x.dataId).id,filterId=backend3.dataIdMap.get(filter.dataId).id,outputChannels=convInfo.outChannels,biasId=0;if(bias!=null){let biasData=backend3.dataIdMap.get(bias.dataId);if(biasData.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${biasData.shape.length}.`);if(biasData.shape[0]!==outputChannels)throw new Error(`FusedDepthwiseConv2D bias shape (${biasData.shape}) does not match the number of output channels (${outputChannels})`);biasId=biasData.id}let filterHeight=convInfo.filterHeight,filterWidth=convInfo.filterWidth,padTop=convInfo.padInfo.top,padRight=convInfo.padInfo.right,padBottom=convInfo.padInfo.bottom,padLeft=convInfo.padInfo.left,dilationHeight=convInfo.dilationHeight,dilationWidth=convInfo.dilationWidth,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,inputChannels=convInfo.inChannels,isSamePad=convInfo.padInfo.type==="SAME"?1:0,batchSize=convInfo.batchSize,inHeight=convInfo.inHeight,inWidth=convInfo.inWidth;if(dataFormat!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${dataFormat}'. Please use 'NHWC'.`);let out=backend3.makeOutput(convInfo.outShape,"float32"),outId=backend3.dataIdMap.get(out.dataId).id,preluActivationWeightsId=preluActivationWeights==null?0:backend3.dataIdMap.get(preluActivationWeights.dataId).id;return wasmFusedDepthwiseConv2d(xId,batchSize,inHeight,inWidth,filterId,filterHeight,filterWidth,biasId,padTop,padRight,padBottom,padLeft,isSamePad,dilationHeight,dilationWidth,strideHeight,strideWidth,inputChannels,outputChannels,fusedActivation,preluActivationWeightsId,outId),out}var fusedDepthwiseConv2DConfig2={kernelName:FusedDepthwiseConv2D,backendName:"wasm",setupFunc:setup16,kernelFunc:fusedDepthwiseConv2d},wasmGatherNd;function setup17(backend3){wasmGatherNd=backend3.wasm.cwrap(GatherNd,null,["number","number","number","number","number","number","array","number"])}function gatherNd(args){let{backend:backend3,inputs}=args,{params,indices}=inputs,[resultShape,numSlices,sliceSize,strides]=gather_nd_util_exports.prepareAndValidate(params,indices),out=backend3.makeOutput(resultShape,params.dtype);if(numSlices===0)return out;let indicesShape=indices.shape,sliceRank=indicesShape[indicesShape.length-1],xData=backend3.dataIdMap.get(params.dataId),xId=xData.id,indicesData=backend3.dataIdMap.get(indices.dataId),indicesId=indicesData.id,stridesBytes=new Uint8Array(new Int32Array(strides).buffer),outId=backend3.dataIdMap.get(out.dataId).id;return wasmGatherNd(xId,CppDType[params.dtype],indicesId,numSlices,sliceRank,sliceSize,stridesBytes,outId),out}var gatherNdConfig={kernelName:GatherNd,backendName:"wasm",setupFunc:setup17,kernelFunc:gatherNd},wasmGather;function setup18(backend3){wasmGather=backend3.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function gatherV2(args){let{backend:backend3,inputs,attrs}=args,{x,indices}=inputs,{axis}=attrs,newShape=x.shape.slice();newShape[axis]=util_exports.sizeFromShape(indices.shape);let stridesSize=x.shape.length-1,out=backend3.makeOutput(newShape,x.dtype);if(util_exports.sizeFromShape(x.shape)===0)return out;let xData=backend3.dataIdMap.get(x.dataId),xId=xData.id,indicesData=backend3.dataIdMap.get(indices.dataId),indicesId=indicesData.id,outId=backend3.dataIdMap.get(out.dataId).id,xStridesBytes=new Uint8Array(new Int32Array(util_exports.computeStrides(x.shape)).buffer),outStridesBytes=new Uint8Array(new Int32Array(util_exports.computeStrides(newShape)).buffer);wasmGather(xId,CppDType[x.dtype],xStridesBytes,stridesSize,indicesId,axis,outStridesBytes,outId);let parsedAxis=util_exports.parseAxisParam(axis,x.shape)[0],shapeInfo=backend_util_exports.segment_util.collectGatherOpShapeInfo(x,indices,parsedAxis);return out.shape=shapeInfo.outputShape,out}var gatherV2Config={kernelName:GatherV2,backendName:"wasm",setupFunc:setup18,kernelFunc:gatherV2},supportsFullBroadcast5=!1,greaterConfig=createBinaryKernelConfig(Greater,supportsFullBroadcast5,"bool"),supportsFullBroadcast6=!1,greaterEqualConfig=createBinaryKernelConfig(GreaterEqual,supportsFullBroadcast6,"bool"),supportsFullBroadcast7=!1,lessConfig=createBinaryKernelConfig(Less,supportsFullBroadcast7,"bool"),supportsFullBroadcast8=!1,lessEqualConfig=createBinaryKernelConfig(LessEqual,supportsFullBroadcast8,"bool"),logConfig2=createUnaryKernelConfig(Log),supportsFullBroadcast9=!1,logicalAndConfig=createBinaryKernelConfig(LogicalAnd,supportsFullBroadcast9,"bool"),wasmMax;function setup19(backend3){wasmMax=backend3.wasm.cwrap(Max,null,["number, number, number"])}function max9(args){let{backend:backend3,inputs,attrs}=args,{reductionIndices:axis,keepDims}=attrs,{x}=inputs,xId=backend3.dataIdMap.get(x.dataId).id,inputId=xId,input2=x,{transposed,axes,originalAxes,inputWasTransposed}=permuteAxesAndTranspose(x,axis,backend3);if(inputWasTransposed){let transposedId=backend3.dataIdMap.get(transposed.dataId).id;input2=transposed,inputId=transposedId}let inputRank=input2.shape.length;backend_util_exports.assertAxesAreInnerMostDims("max",axes,inputRank);let[outShape,reduceShape]=backend_util_exports.computeOutAndReduceShapes(input2.shape,axes),reduceSize=util_exports.sizeFromShape(reduceShape),out=backend3.makeOutput(outShape,x.dtype);if(util_exports.sizeFromShape(input2.shape)!==0){let outId=backend3.dataIdMap.get(out.dataId).id;wasmMax(inputId,reduceSize,outId)}if(inputWasTransposed&&backend3.disposeData(transposed.dataId),keepDims){let newShape=backend_util_exports.expandShapeToKeepDim(out.shape,originalAxes);out.shape=newShape}return out}var maxConfig3={kernelName:Max,backendName:"wasm",setupFunc:setup19,kernelFunc:max9},supportsFullBroadcast10=!1,maximumConfig=createBinaryKernelConfig(Maximum,supportsFullBroadcast10),wasmMaxPool;function setup20(backend3){wasmMaxPool=backend3.wasm.cwrap(MaxPool,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function maxPool4(args){let{inputs,attrs,backend:backend3}=args,x=inputs.x,xId=backend3.dataIdMap.get(x.dataId).id,{filterSize,strides,pad:pad11,dimRoundingMode}=attrs,convInfo=backend_util_exports.computePool2DInfo(x.shape,filterSize,strides,1,pad11,dimRoundingMode),filterHeight=convInfo.filterHeight,filterWidth=convInfo.filterWidth,padTop=convInfo.padInfo.top,padRight=convInfo.padInfo.right,padBottom=convInfo.padInfo.bottom,padLeft=convInfo.padInfo.left,dilationHeight=convInfo.dilationHeight,dilationWidth=convInfo.dilationWidth,strideHeight=convInfo.strideHeight,strideWidth=convInfo.strideWidth,inputChannels=convInfo.inChannels,outputChannels=convInfo.outChannels;if(convInfo.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${convInfo.dataFormat}'. Please use 'channelsLast'.`);let out=backend3.makeOutput(convInfo.outShape,"float32"),outId=backend3.dataIdMap.get(out.dataId).id;return wasmMaxPool(xId,x.shape[0],x.shape[1],x.shape[2],filterHeight,filterWidth,padTop,padRight,padBottom,padLeft,dilationHeight,dilationWidth,strideHeight,strideWidth,inputChannels,outputChannels,outId),out}var maxPoolConfig3={kernelName:MaxPool,backendName:"wasm",setupFunc:setup20,kernelFunc:maxPool4},wasmMin;function setup21(backend3){wasmMin=backend3.wasm.cwrap(Min,null,["number, number, number"])}function min7(args){let{backend:backend3,inputs,attrs}=args,{axis,keepDims}=attrs,{x}=inputs,xId=backend3.dataIdMap.get(x.dataId).id,inputId=xId,input2=x,{transposed,axes,originalAxes,inputWasTransposed}=permuteAxesAndTranspose(x,axis,backend3);if(inputWasTransposed){let transposedId=backend3.dataIdMap.get(transposed.dataId).id;transposedId!==xId&&(input2=transposed,inputId=transposedId)}let inputRank=input2.shape.length;backend_util_exports.assertAxesAreInnerMostDims("min",axes,inputRank);let[outShape,reduceShape]=backend_util_exports.computeOutAndReduceShapes(input2.shape,axes),reduceSize=util_exports.sizeFromShape(reduceShape),out=backend3.makeOutput(outShape,input2.dtype);if(util_exports.sizeFromShape(input2.shape)!==0){let outId=backend3.dataIdMap.get(out.dataId).id;wasmMin(inputId,reduceSize,outId)}if(inputWasTransposed&&backend3.disposeData(transposed.dataId),keepDims){let newShape=backend_util_exports.expandShapeToKeepDim(out.shape,originalAxes);out.shape=newShape}return out}var minConfig={kernelName:Min,backendName:"wasm",setupFunc:setup21,kernelFunc:min7},supportsFullBroadcast11=!1,minimumConfig=createBinaryKernelConfig(Minimum,supportsFullBroadcast11),supportsFullBroadcast12=!0,multiplyConfig3=createBinaryKernelConfig(Multiply,supportsFullBroadcast12),negateConfig=createUnaryKernelConfig(Negate);function parseResultStruct(backend3,resOffset){let result=new Int32Array(backend3.wasm.HEAPU8.buffer,resOffset,4),pSelectedIndices=result[0],selectedSize=result[1],pSelectedScores=result[2],pValidOutputs=result[3];return backend3.wasm._free(resOffset),{pSelectedIndices,selectedSize,pSelectedScores,pValidOutputs}}var wasmFunc3;function setup22(backend3){wasmFunc3=backend3.wasm.cwrap(NonMaxSuppressionV3,"number",["number","number","number","number","number"])}function kernelFunc(args){let{backend:backend3,inputs,attrs}=args,{iouThreshold,maxOutputSize,scoreThreshold}=attrs,{boxes,scores}=inputs,boxesId=backend3.dataIdMap.get(boxes.dataId).id,scoresId=backend3.dataIdMap.get(scores.dataId).id,resOffset=wasmFunc3(boxesId,scoresId,maxOutputSize,iouThreshold,scoreThreshold),{pSelectedIndices,selectedSize,pSelectedScores,pValidOutputs}=parseResultStruct(backend3,resOffset);backend3.wasm._free(pSelectedScores),backend3.wasm._free(pValidOutputs);let selectedIndicesTensor=backend3.makeOutput([selectedSize],"int32",pSelectedIndices);return selectedIndicesTensor}var nonMaxSuppressionV3Config2={kernelName:NonMaxSuppressionV3,backendName:"wasm",setupFunc:setup22,kernelFunc},wasmFunc4;function setup23(backend3){wasmFunc4=backend3.wasm.cwrap(NonMaxSuppressionV4,"number",["number","number","number","number","number","bool"])}function nonMaxSuppressionV4(args){let{backend:backend3,inputs,attrs}=args,{iouThreshold,maxOutputSize,scoreThreshold,padToMaxOutputSize}=attrs,{boxes,scores}=inputs,boxesId=backend3.dataIdMap.get(boxes.dataId).id,scoresId=backend3.dataIdMap.get(scores.dataId).id,resOffset=wasmFunc4(boxesId,scoresId,maxOutputSize,iouThreshold,scoreThreshold,padToMaxOutputSize),{pSelectedIndices,selectedSize,pSelectedScores,pValidOutputs}=parseResultStruct(backend3,resOffset);backend3.wasm._free(pSelectedScores);let selectedIndicesTensor=backend3.makeOutput([selectedSize],"int32",pSelectedIndices),validOutputsTensor=backend3.makeOutput([],"int32",pValidOutputs);return[selectedIndicesTensor,validOutputsTensor]}var nonMaxSuppressionV4Config3={kernelName:NonMaxSuppressionV4,backendName:"wasm",setupFunc:setup23,kernelFunc:nonMaxSuppressionV4},wasmFunc5;function setup24(backend3){wasmFunc5=backend3.wasm.cwrap(NonMaxSuppressionV5,"number",["number","number","number","number","number","number"])}function kernelFunc2(args){let{backend:backend3,inputs,attrs}=args,{iouThreshold,maxOutputSize,scoreThreshold,softNmsSigma}=attrs,{boxes,scores}=inputs,boxesId=backend3.dataIdMap.get(boxes.dataId).id,scoresId=backend3.dataIdMap.get(scores.dataId).id,resOffset=wasmFunc5(boxesId,scoresId,maxOutputSize,iouThreshold,scoreThreshold,softNmsSigma),{pSelectedIndices,selectedSize,pSelectedScores,pValidOutputs}=parseResultStruct(backend3,resOffset);backend3.wasm._free(pValidOutputs);let selectedIndicesTensor=backend3.makeOutput([selectedSize],"int32",pSelectedIndices),selectedScoresTensor=backend3.makeOutput([selectedSize],"float32",pSelectedScores);return[selectedIndicesTensor,selectedScoresTensor]}var nonMaxSuppressionV5Config3={kernelName:NonMaxSuppressionV5,backendName:"wasm",setupFunc:setup24,kernelFunc:kernelFunc2},supportsFullBroadcast13=!1,notEqualConfig3=createBinaryKernelConfig(NotEqual,supportsFullBroadcast13,"bool"),wasmOneHot;function setup25(backend3){wasmOneHot=backend3.wasm.cwrap(OneHot,null,["number","number","number","number","number"])}function oneHot2(args){let{inputs,backend:backend3,attrs}=args,{indices}=inputs,{depth,onValue,offValue}=attrs,out=backend3.makeOutput([...indices.shape,depth],"int32"),outId=backend3.dataIdMap.get(out.dataId).id,indicesData=backend3.dataIdMap.get(indices.dataId),indicesId=indicesData.id;return wasmOneHot(indicesId,depth,onValue,offValue,outId),out}var oneHotConfig={kernelName:OneHot,backendName:"wasm",setupFunc:setup25,kernelFunc:oneHot2};function onesLike2(args){let{inputs:{x},backend:backend3}=args,out=backend3.makeOutput(x.shape,x.dtype),outVals=backend3.typedArrayFromHeap(out);return outVals.fill(1),out}var onesLikeConfig={kernelName:OnesLike,backendName:"wasm",kernelFunc:onesLike2},wasmPadV2;function setup26(backend3){wasmPadV2=backend3.wasm.cwrap(PadV2,null,["number","array","number","number","array","array","number","number"])}function pad10(args){let{inputs:{x},backend:backend3,attrs:{paddings,constantValue}}=args,outShape=paddings.map((p2,i)=>p2[0]+x.shape[i]+p2[1]),xId=backend3.dataIdMap.get(x.dataId).id,out=backend3.makeOutput(outShape,x.dtype),outId=backend3.dataIdMap.get(out.dataId).id,xShapeBytes=new Uint8Array(new Int32Array(x.shape).buffer),prePaddingsFlat=paddings.map(padTuple=>padTuple[0]),postPaddingsFlat=paddings.map(padTuple=>padTuple[1]),prePaddingsBytes=new Uint8Array(new Int32Array(prePaddingsFlat).buffer),postPaddingsBytes=new Uint8Array(new Int32Array(postPaddingsFlat).buffer);return wasmPadV2(xId,xShapeBytes,x.shape.length,CppDType[x.dtype],prePaddingsBytes,postPaddingsBytes,constantValue,outId),out}var padV2Config2={kernelName:PadV2,backendName:"wasm",kernelFunc:pad10,setupFunc:setup26},supportsFullBroadcast14=!1,powConfig=createBinaryKernelConfig(Pow,supportsFullBroadcast14),wasmPrelu;function setup27(backend3){wasmPrelu=backend3.wasm.cwrap(Prelu,null,["number","number","number"])}function prelu8(args){let{inputs,backend:backend3}=args,{x,alpha}=inputs,xId=backend3.dataIdMap.get(x.dataId).id,weightsId=backend3.dataIdMap.get(alpha.dataId).id,out=backend3.makeOutput(x.shape,"float32"),outId=backend3.dataIdMap.get(out.dataId).id;return wasmPrelu(xId,weightsId,outId),out}var preluConfig2={kernelName:Prelu,backendName:"wasm",setupFunc:setup27,kernelFunc:prelu8},reluConfig2=createUnaryKernelConfig(Relu),relu6Config2=createUnaryKernelConfig(Relu6),wasmResizeBilinear;function setup28(backend3){wasmResizeBilinear=backend3.wasm.cwrap(ResizeBilinear,null,["number","number","number","number","number","number","number","number","number"])}function resizeBilinear2(args){let{backend:backend3,inputs,attrs}=args,{images}=inputs,{alignCorners,size}=attrs,[newHeight,newWidth]=size,[batch,oldHeight,oldWidth,numChannels]=images.shape,outShape=[batch,newHeight,newWidth,numChannels],xData=backend3.dataIdMap.get(images.dataId),castedData;xData.dtype!=="float32"&&(castedData=cast51({backend:backend3,inputs:{x:images},attrs:{dtype:"float32"}}),xData=backend3.dataIdMap.get(castedData.dataId));let xId=xData.id,out=backend3.makeOutput(outShape,"float32");if(util_exports.sizeFromShape(images.shape)===0)return out;let outId=backend3.dataIdMap.get(out.dataId).id;return wasmResizeBilinear(xId,batch,oldHeight,oldWidth,numChannels,newHeight,newWidth,alignCorners?1:0,outId),castedData!=null&&backend3.disposeData(castedData.dataId),out}var resizeBilinearConfig={kernelName:ResizeBilinear,backendName:"wasm",setupFunc:setup28,kernelFunc:resizeBilinear2},wasmReverse;function setup29(backend3){wasmReverse=backend3.wasm.cwrap(Reverse,null,["number","array","number","array","number","number"])}function reverse11(args){let{inputs,backend:backend3,attrs}=args,{x}=inputs,{dims}=attrs,axes=util_exports.parseAxisParam(dims,x.shape);if(x.shape.length===0)return identity4({inputs:{x},backend:backend3});let out=backend3.makeOutput(x.shape,x.dtype),xId=backend3.dataIdMap.get(x.dataId).id,outId=backend3.dataIdMap.get(out.dataId).id,axesBytes=new Uint8Array(new Int32Array(axes).buffer),outShapeBytes=new Uint8Array(new Int32Array(x.shape).buffer);return wasmReverse(xId,axesBytes,axes.length,outShapeBytes,x.shape.length,outId),reshape91({inputs:{x:out},attrs:{shape:x.shape},backend:backend3})}var reverseConfig={kernelName:Reverse,backendName:"wasm",kernelFunc:reverse11,setupFunc:setup29},wasmRotate;function setup30(backend3){wasmRotate=backend3.wasm.cwrap(RotateWithOffset,null,["number","number","number","number","number","number","number","number","array","number","number"])}function rotateWithOffset2(args){let{inputs,backend:backend3,attrs}=args,{image:image3}=inputs,{radians,fillValue,center}=attrs,out=backend3.makeOutput(image3.shape,image3.dtype),imageId=backend3.dataIdMap.get(image3.dataId).id,outId=backend3.dataIdMap.get(out.dataId).id,[batch,imageHeight,imageWidth,numChannels]=image3.shape,[centerX,centerY]=backend_util_exports.getImageCenter(center,imageHeight,imageWidth),fillIsBlack=fillValue===0,fullOpacityValue=255,fillValues2=typeof fillValue=="number"?[fillValue,fillValue,fillValue,fillIsBlack?0:fullOpacityValue]:[...fillValue,fullOpacityValue],fillBytes=new Uint8Array(new Int32Array(fillValues2).buffer);return wasmRotate(imageId,batch,imageHeight,imageWidth,numChannels,radians,centerX,centerY,fillBytes,fillValues2.length,outId),out}var rotateWithOffsetConfig3={kernelName:RotateWithOffset,backendName:"wasm",kernelFunc:rotateWithOffset2,setupFunc:setup30},rsqrtConfig2=createUnaryKernelConfig(Rsqrt),wasmScatterNd;function setup31(backend3){wasmScatterNd=backend3.wasm.cwrap(ScatterNd,null,["number","number","number","number","number","number","array","number","number"])}function scatterNd(args){let{backend:backend3,inputs,attrs}=args,{indices,updates}=inputs,{shape}=attrs,out=backend3.makeOutput(shape,updates.dtype);if(util_exports.sizeFromShape(shape)===0)return out;let{sliceRank,numUpdates,sliceSize,strides,outputSize}=scatter_nd_util_exports.calculateShapes(updates,indices,shape),indicesData=backend3.dataIdMap.get(indices.dataId),indicesId=indicesData.id,updatesData=backend3.dataIdMap.get(updates.dataId),updatesId=updatesData.id,stridesBytes=new Uint8Array(new Int32Array(strides).buffer),outId=backend3.dataIdMap.get(out.dataId).id;return wasmScatterNd(indicesId,updatesId,CppDType[updates.dtype],sliceRank,numUpdates,sliceSize,stridesBytes,outputSize,outId),out}var scatterNdConfig={kernelName:ScatterNd,backendName:"wasm",setupFunc:setup31,kernelFunc:scatterNd},wasmSelect;function setup32(backend3){wasmSelect=backend3.wasm.cwrap(SelectV2,null,["number","number","number","number","number"])}function select(args){let{inputs,backend:backend3}=args,{condition,t,e}=inputs,conditionId=backend3.dataIdMap.get(condition.dataId).id,tId=backend3.dataIdMap.get(t.dataId).id,eId=backend3.dataIdMap.get(e.dataId).id,out=backend3.makeOutput(t.shape,t.dtype),outId=backend3.dataIdMap.get(out.dataId).id,cRank=condition.shape.length,tRank=t.shape.length,offset=cRank===0||cRank>1||tRank===1?1:util_exports.sizeFromShape(t.shape.slice(1));return wasmSelect(conditionId,tId,eId,offset,outId),out}var selectV2Config={kernelName:SelectV2,backendName:"wasm",kernelFunc:select,setupFunc:setup32},wasmFunc6;function setup33(backend3){wasmFunc6=backend3.wasm.cwrap(Sigmoid,null,["number","number"])}function sigmoid8(args){let{backend:backend3,inputs:{x}}=args,xId=backend3.dataIdMap.get(x.dataId).id,out=backend3.makeOutput(x.shape,x.dtype),outId=backend3.dataIdMap.get(out.dataId).id;return util_exports.sizeFromShape(out.shape)===0||wasmFunc6(xId,outId),out}var sigmoidConfig2={kernelName:"Sigmoid",backendName:"wasm",setupFunc:setup33,kernelFunc:sigmoid8},sinConfig3=createUnaryKernelConfig(Sin);function slice20(args){let{inputs:{x},attrs:{begin,size},backend:backend3}=args,[begin_,size_]=slice_util_exports.parseSliceParams(x,begin,size),isContinous=slice_util_exports.isSliceContinous(x.shape,begin_,size_),xVals=backend3.typedArrayFromHeap(x),out=backend3.makeOutput(size_,x.dtype),outVals=backend3.typedArrayFromHeap(out),xStrides=util_exports.computeStrides(x.shape);if(isContinous){let flatOffset=slice_util_exports.computeFlatOffset(begin_,xStrides);return outVals.set(xVals.subarray(flatOffset,flatOffset+util_exports.sizeFromShape(size_))),out}let rank=x.shape.length;return rank===2?slice2d3(xVals,xStrides[0],outVals,begin_,size_):rank===3?slice3d3(xVals,xStrides[0],xStrides[1],outVals,begin_,size_):rank===4?slice4d3(xVals,xStrides[0],xStrides[1],xStrides[2],outVals,begin_,size_):genericSliceSlow(xVals,x,outVals,begin_,size_),out}function slice2d3(xVals,xStride,outVals,begin,size){let outOffset=0,beginI=begin[0],beginJ=begin[1],endI=beginI+size[0];for(let i=beginI;iidx+begin[j]);outVals[i]=xBuf.get(...xLoc)}}var sliceConfig2={kernelName:Slice,backendName:"wasm",kernelFunc:slice20},wasmFunc7;function setup34(backend3){wasmFunc7=backend3.wasm.cwrap(Softmax,null,["number","number","number","number"])}function softmax5(args){let{backend:backend3,inputs:{logits},attrs:{dim}}=args,xId=backend3.dataIdMap.get(logits.dataId).id,out=backend3.makeOutput(logits.shape,logits.dtype),outId=backend3.dataIdMap.get(out.dataId).id,channels=logits.shape[dim],batch=util_exports.sizeFromShape(logits.shape)/channels;return util_exports.sizeFromShape(out.shape)===0||wasmFunc7(xId,outId,channels,batch),out}var softmaxConfig={kernelName:Softmax,backendName:"wasm",setupFunc:setup34,kernelFunc:softmax5};function split12(args){let{inputs,attrs,backend:backend3}=args,{x}=inputs,{numOrSizeSplits,axis}=attrs,$axis=util_exports.parseAxisParam(axis,x.shape)[0],splitSizes=backend_util_exports.prepareSplitSize(x,numOrSizeSplits,axis),begin=new Array(x.shape.length).fill(0),size=x.shape.slice();return splitSizes.map(s=>{let xSliceSize=[...size];xSliceSize[$axis]=s;let xSlice=slice20({inputs:{x},attrs:{begin,size:xSliceSize},backend:backend3});return begin[$axis]+=s,xSlice})}var splitVConfig={kernelName:SplitV,backendName:"wasm",kernelFunc:split12},sqrtConfig2=createUnaryKernelConfig(Sqrt),squareConfig3=createUnaryKernelConfig(Square),supportsFullBroadcast15=!0,squaredDifferenceConfig3=createBinaryKernelConfig(SquaredDifference,supportsFullBroadcast15),wasmStridedSlice;function setup35(backend3){wasmStridedSlice=backend3.wasm.cwrap(StridedSlice,null,["number","array","number","array","array","array","array","array","number","number"])}function stridedSlice2(args){let{backend:backend3,inputs,attrs}=args,{x}=inputs,{begin,end,strides}=attrs;strides==null&&(strides=new Array(begin.length));let{beginMask,endMask,ellipsisMask,newAxisMask,shrinkAxisMask}=attrs,ellipsisAxes=backend_util_exports.slice_util.maskToAxes(ellipsisMask);if(ellipsisAxes.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(ellipsisMask!==0&&newAxisMask!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(ellipsisMask!==0&&shrinkAxisMask!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let numInterpolatedAxes=x.shape.length-begin.length,expandAxes=backend_util_exports.slice_util.maskToAxes(newAxisMask),newShape=x.shape.slice();expandAxes.forEach(axis=>{begin[axis]=0,end[axis]=1,newShape.splice(axis,0,1)});let xReshaped=reshape91({inputs:{x},attrs:{shape:newShape},backend:backend3}),{begin:normalizedBegin,end:normalizedEnd,strides:normalizedStrides}=backend_util_exports.slice_util.getNormalizedAxes(xReshaped.shape,ellipsisAxes,numInterpolatedAxes,begin,end,strides,beginMask,endMask,ellipsisMask);begin=normalizedBegin,end=normalizedEnd,strides=normalizedStrides;let shrinkAxes=backend_util_exports.slice_util.maskToAxes(shrinkAxisMask);shrinkAxes.forEach(axis=>{end[axis]=begin[axis]+1,strides[axis]=1});let size=backend_util_exports.slice_util.computeOutShape(begin,end,strides),outShape=size.filter((_,axis)=>shrinkAxes.indexOf(axis)===-1),nonStrided=strides.every(v=>v===1);if(nonStrided){let xSliced=slice20({inputs:{x},attrs:{begin,size},backend:backend3});return reshape91({inputs:{x:xSliced},attrs:{shape:outShape},backend:backend3})}let out=backend3.makeOutput(outShape,"float32");if(!outShape.some(axis=>axis===0)){let xId=backend3.dataIdMap.get(xReshaped.dataId).id,xStridesBytes=new Uint8Array(new Int32Array(util_exports.computeStrides(xReshaped.shape)).buffer),beginBytes=new Uint8Array(new Int32Array(begin).buffer),endBytes=new Uint8Array(new Int32Array(end).buffer),stridesBytes=new Uint8Array(new Int32Array(strides).buffer),outputShapeBytes=new Uint8Array(new Int32Array(outShape).buffer),outStridesBytes=new Uint8Array(new Int32Array(util_exports.computeStrides(outShape)).buffer),outId=backend3.dataIdMap.get(out.dataId).id;wasmStridedSlice(xId,xStridesBytes,xReshaped.shape.length,beginBytes,endBytes,stridesBytes,outputShapeBytes,outStridesBytes,outShape.length,outId)}return reshape91({inputs:{x:out},attrs:{shape:outShape},backend:backend3})}var stridedSliceConfig={kernelName:StridedSlice,backendName:"wasm",setupFunc:setup35,kernelFunc:stridedSlice2},supportsFullBroadcast16=!0,subConfig3=createBinaryKernelConfig(Sub,supportsFullBroadcast16),wasmSum;function setup36(backend3){wasmSum=backend3.wasm.cwrap(Sum,null,["number, number, number"])}function sum28(args){let{backend:backend3,inputs,attrs}=args,{axis,keepDims}=attrs,{x}=inputs,xId=backend3.dataIdMap.get(x.dataId).id,inputId=xId,input2=x,{transposed,axes,originalAxes,inputWasTransposed}=permuteAxesAndTranspose(x,axis,backend3),reductionAxes=axes;if(inputWasTransposed){let transposedId=backend3.dataIdMap.get(transposed.dataId).id;transposedId!==xId&&(input2=transposed,inputId=transposedId,reductionAxes=backend_util_exports.getInnerMostAxes(reductionAxes.length,input2.shape.length))}backend_util_exports.assertAxesAreInnerMostDims("sum",reductionAxes,input2.shape.length);let[outShape,reduceShape]=backend_util_exports.computeOutAndReduceShapes(input2.shape,reductionAxes),reduceSize=util_exports.sizeFromShape(reduceShape),out=backend3.makeOutput(outShape,input2.dtype);if(util_exports.sizeFromShape(input2.shape)!==0){let outId=backend3.dataIdMap.get(out.dataId).id;wasmSum(inputId,reduceSize,outId)}if(inputWasTransposed&&backend3.disposeData(transposed.dataId),keepDims){let newShape=backend_util_exports.expandShapeToKeepDim(out.shape,originalAxes);out.shape=newShape}return out}var sumConfig={kernelName:Sum,backendName:"wasm",setupFunc:setup36,kernelFunc:sum28},tanhConfig2=createUnaryKernelConfig(Tanh),wasmTile;function setup37(backend3){wasmTile=backend3.wasm.cwrap(Tile,null,["number","array","number","array","number","number"])}function tile11(args){let{inputs,backend:backend3,attrs}=args,{x}=inputs,xId=backend3.dataIdMap.get(x.dataId).id,{reps}=attrs,newShape=new Array(x.shape.length);for(let i=0;i({dataId,dtype,shape:outShape}))}var unpackConfig={kernelName:Unpack,backendName:"wasm",kernelFunc:unpack};function zerosLike2(args){let{inputs:{x},backend:backend3}=args,out=backend3.makeOutput(x.shape,x.dtype),outVals=backend3.typedArrayFromHeap(out);return outVals.fill(0),out}var zerosLikeConfig={kernelName:ZerosLike,backendName:"wasm",kernelFunc:zerosLike2},kernelConfigs3=[absConfig2,addConfig3,addNConfig,argMaxConfig,avgPoolConfig3,batchMatMulConfig2,castConfig3,clipByValueConfig,concatConfig3,conv2DConfig2,conv2DBackpropInputConfig2,cosConfig3,cropAndResizeConfig,cumsumConfig,depthToSpaceConfig,depthwiseConv2dNativeConfig2,divConfig3,equalConfig,expConfig2,fillConfig2,flipLeftRightConfig3,floorDivConfig,fusedMatMulConfig,fusedBatchNormConfig,fusedConv2DConfig2,fusedDepthwiseConv2DConfig2,gatherNdConfig,gatherV2Config,greaterConfig,greaterEqualConfig,identityConfig3,lessConfig,lessEqualConfig,logConfig2,logicalAndConfig,maxConfig3,maximumConfig,maxPoolConfig3,minConfig,minimumConfig,multiplyConfig3,negateConfig,nonMaxSuppressionV3Config2,nonMaxSuppressionV4Config3,nonMaxSuppressionV5Config3,notEqualConfig3,oneHotConfig,onesLikeConfig,padV2Config2,powConfig,preluConfig2,reluConfig2,relu6Config2,reshapeConfig3,resizeBilinearConfig,reverseConfig,rotateWithOffsetConfig3,rsqrtConfig2,scatterNdConfig,selectV2Config,sigmoidConfig2,sinConfig3,sliceConfig2,softmaxConfig,splitVConfig,sqrtConfig2,squareConfig3,squaredDifferenceConfig3,stridedSliceConfig,subConfig3,sumConfig,tanhConfig2,tileConfig,transposeConfig3,unpackConfig,zerosLikeConfig];for(let kernelConfig of kernelConfigs3)registerKernel(kernelConfig);var ENV4=env();ENV4.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));ENV4.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(ENV4.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var tfjs_backend_wasm_threaded_simd=__toModule2(require_tfjs_backend_wasm_threaded_simd()),wasmWorkerContents='var threadInfoStruct=0;var selfThreadId=0;var parentThreadId=0;var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:selfThreadId})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["DYNAMIC_BASE"]=e.data.DYNAMIC_BASE;Module["DYNAMICTOP_PTR"]=e.data.DYNAMICTOP_PTR;Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}Module=WasmBackendModuleThreadedSimd(Module);postMessage({"cmd":"loaded"})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;threadInfoStruct=e.data.threadInfoStruct;Module["__register_pthread_ptr"](threadInfoStruct,0,0);selfThreadId=e.data.selfThreadId;parentThreadId=e.data.parentThreadId;var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["dynCall_ii"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){Atomics.store(Module["HEAPU32"],threadInfoStruct+4>>2,ex instanceof Module["ExitStatus"]?ex.status:-2);Atomics.store(Module["HEAPU32"],threadInfoStruct+0>>2,1);Module["_emscripten_futex_wake"](threadInfoStruct+0,2147483647);if(!(ex instanceof Module["ExitStatus"]))throw ex}}}else if(e.data.cmd==="cancel"){if(threadInfoStruct){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(threadInfoStruct){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',tfjs_backend_wasm=__toModule2(require_tfjs_backend_wasm()),WASM_PRIORITY=2,BackendWasm=class extends KernelBackend{constructor(wasm){super();this.wasm=wasm,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new DataStorage(this,engine15())}write(values,shape,dtype){let dataId={};return this.move(dataId,values,shape,dtype),dataId}numDataIds(){return this.dataIdMap.numDataIds()}async time(f){let start=util_exports.now();f();let kernelMs=util_exports.now()-start;return{kernelMs}}move(dataId,values,shape,dtype){let id=this.dataIdNextNumber++;if(dtype==="string"){let stringBytes=values;this.dataIdMap.set(dataId,{id,stringBytes,shape,dtype,memoryOffset:null});return}let size=util_exports.sizeFromShape(shape),numBytes=size*util_exports.bytesPerElement(dtype),memoryOffset=this.wasm._malloc(numBytes);this.dataIdMap.set(dataId,{id,memoryOffset,shape,dtype}),this.wasm.tfjs.registerTensor(id,size,memoryOffset),values!=null&&this.wasm.HEAPU8.set(new Uint8Array(values.buffer,values.byteOffset,numBytes),memoryOffset)}async read(dataId){return this.readSync(dataId)}readSync(dataId){let{memoryOffset,dtype,shape,stringBytes}=this.dataIdMap.get(dataId);if(dtype==="string")return stringBytes;let bytes=this.wasm.HEAPU8.slice(memoryOffset,memoryOffset+util_exports.sizeFromShape(shape)*util_exports.bytesPerElement(dtype));return typedArrayFromBuffer(bytes.buffer,dtype)}disposeData(dataId){let data2=this.dataIdMap.get(dataId);this.wasm._free(data2.memoryOffset),this.wasm.tfjs.disposeData(data2.id),this.dataIdMap.delete(dataId)}floatPrecision(){return 32}getMemoryOffset(dataId){return this.dataIdMap.get(dataId).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(shape,dtype,memoryOffset){let dataId;if(memoryOffset==null)dataId=this.write(null,shape,dtype);else{dataId={};let id=this.dataIdNextNumber++;this.dataIdMap.set(dataId,{id,memoryOffset,shape,dtype});let size=util_exports.sizeFromShape(shape);this.wasm.tfjs.registerTensor(id,size,memoryOffset)}return{dataId,shape,dtype}}typedArrayFromHeap({shape,dtype,dataId}){let buffer11=this.wasm.HEAPU8.buffer,{memoryOffset}=this.dataIdMap.get(dataId),size=util_exports.sizeFromShape(shape);switch(dtype){case"float32":return new Float32Array(buffer11,memoryOffset,size);case"int32":return new Int32Array(buffer11,memoryOffset,size);case"bool":return new Uint8Array(buffer11,memoryOffset,size);default:throw new Error(`Unknown dtype ${dtype}`)}}};registerBackend("wasm",async()=>{let{wasm}=await init();return new BackendWasm(wasm)},WASM_PRIORITY);function createInstantiateWasmFunc(path){return(imports,callback)=>(util_exports.fetch(path,{credentials:"same-origin"}).then(response=>{response.ok||imports.env.a(`failed to load wasm binary file at '${path}'`),response.arrayBuffer().then(binary=>{WebAssembly.instantiate(binary,imports).then(output=>{callback(output.instance)})})}),{})}function getPathToWasmBinary(simdSupported,threadsSupported,wasmModuleFolder){if(wasmPath!=null)return wasmPath;let path="tfjs-backend-wasm.wasm";return simdSupported&&threadsSupported?path="tfjs-backend-wasm-threaded-simd.wasm":simdSupported&&(path="tfjs-backend-wasm-simd.wasm"),wasmFileMap!=null&&wasmFileMap[path]!=null?wasmFileMap[path]:wasmModuleFolder+path}async function init(){let[simdSupported,threadsSupported]=await Promise.all([env().getAsync("WASM_HAS_SIMD_SUPPORT"),env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((resolve,reject)=>{let factoryConfig={};factoryConfig.locateFile=(path,prefix)=>{if(path.endsWith(".worker.js")){let response=wasmWorkerContents,blob=new Blob([response],{type:"application/javascript"});return URL.createObjectURL(blob)}return path.endsWith(".wasm")?getPathToWasmBinary(simdSupported,threadsSupported,wasmPathPrefix!=null?wasmPathPrefix:prefix):prefix+path},customFetch&&(factoryConfig.instantiateWasm=createInstantiateWasmFunc(getPathToWasmBinary(simdSupported,threadsSupported,wasmPathPrefix!=null?wasmPathPrefix:"")));let wasm;threadsSupported&&simdSupported&&wasmPath==null?(wasm=tfjs_backend_wasm_threaded_simd.default(factoryConfig),wasm.mainScriptUrlOrBlob=new Blob(["var _scriptDir = undefined; var WasmBackendModuleThreadedSimd = "+tfjs_backend_wasm_threaded_simd.default.toString()],{type:"text/javascript"})):wasm=tfjs_backend_wasm.default(factoryConfig);let voidReturnType=null;wasm.tfjs={init:wasm.cwrap("init",null,[]),registerTensor:wasm.cwrap("register_tensor",null,["number","number","number"]),disposeData:wasm.cwrap("dispose_data",voidReturnType,["number"]),dispose:wasm.cwrap("dispose",voidReturnType,[])};let initialized=!1;wasm.onRuntimeInitialized=()=>{initialized=!0,initAborted=!1,resolve({wasm})},wasm.onAbort=()=>{if(initialized)return;if(initAborted)return;initAborted=!0;let rejectMsg="Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers";reject({message:rejectMsg})}})}function typedArrayFromBuffer(buffer11,dtype){switch(dtype){case"float32":return new Float32Array(buffer11);case"int32":return new Int32Array(buffer11);case"bool":return new Uint8Array(buffer11);default:throw new Error(`Unknown dtype ${dtype}`)}}var wasmBinaryNames=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],wasmPath=null,wasmPathPrefix=null,wasmFileMap={},initAborted=!1,customFetch=!1;function setWasmPath(path,usePlatformFetch=!1){if(deprecationWarn("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),initAborted)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");wasmPath=path,customFetch=usePlatformFetch}function setWasmPaths(prefixOrFileMap,usePlatformFetch=!1){if(initAborted)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof prefixOrFileMap=="string")wasmPathPrefix=prefixOrFileMap;else{wasmFileMap=prefixOrFileMap;let missingPaths=wasmBinaryNames.filter(name=>wasmFileMap[name]==null);if(missingPaths.length>0)throw new Error(`There were no entries found for the following binaries: ${missingPaths.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}customFetch=usePlatformFetch}var version17="2.7.0";var facemesh=__toModule(require_facemesh()),age=__toModule(require_age()),gender=__toModule(require_gender()),emotion=__toModule(require_emotion()),embedding2=__toModule(require_embedding()),posenet=__toModule(require_posenet());function getBoxSize(box){return[Math.abs(box.endPoint[0]-box.startPoint[0]),Math.abs(box.endPoint[1]-box.startPoint[1])]}function getBoxCenter(box){return[box.startPoint[0]+(box.endPoint[0]-box.startPoint[0])/2,box.startPoint[1]+(box.endPoint[1]-box.startPoint[1])/2]}function cutBoxFromImageAndResize(box,image3,cropSize){let h=image3.shape[1],w=image3.shape[2],boxes=[[box.startPoint[1]/h,box.startPoint[0]/w,box.endPoint[1]/h,box.endPoint[0]/w]];return image.cropAndResize(image3,boxes,[0],cropSize)}function scaleBoxCoordinates(box,factor){let startPoint=[box.startPoint[0]*factor[0],box.startPoint[1]*factor[1]],endPoint=[box.endPoint[0]*factor[0],box.endPoint[1]*factor[1]],palmLandmarks=box.palmLandmarks.map(coord=>{let scaledCoord=[coord[0]*factor[0],coord[1]*factor[1]];return scaledCoord});return{startPoint,endPoint,palmLandmarks,confidence:box.confidence}}function enlargeBox(box,factor=1.5){let center=getBoxCenter(box),size=getBoxSize(box),newHalfSize=[factor*size[0]/2,factor*size[1]/2],startPoint=[center[0]-newHalfSize[0],center[1]-newHalfSize[1]],endPoint=[center[0]+newHalfSize[0],center[1]+newHalfSize[1]];return{startPoint,endPoint,palmLandmarks:box.palmLandmarks}}function squarifyBox(box){let centers=getBoxCenter(box),size=getBoxSize(box),maxEdge=Math.max(...size),halfSize=maxEdge/2,startPoint=[centers[0]-halfSize,centers[1]-halfSize],endPoint=[centers[0]+halfSize,centers[1]+halfSize];return{startPoint,endPoint,palmLandmarks:box.palmLandmarks}}function normalizeRadians(angle){return angle-2*Math.PI*Math.floor((angle+Math.PI)/(2*Math.PI))}function computeRotation(point1,point2){let radians=Math.PI/2-Math.atan2(-(point2[1]-point1[1]),point2[0]-point1[0]);return normalizeRadians(radians)}var buildTranslationMatrix=(x,y)=>[[1,0,x],[0,1,y],[0,0,1]];function dot2(v1,v2){let product=0;for(let i=0;iconfig_default});var config_default={backend:"webgl",wasmPath:"../assets/",async:!0,profile:!1,deallocate:!1,scoped:!1,videoOptimized:!0,warmup:"full",filter:{enabled:!0,width:0,height:0,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"../models/blazeface-back.json",inputSize:256,rotation:!1,maxFaces:10,skipFrames:11,minConfidence:.5,iouThreshold:.2,scoreThreshold:.5},mesh:{enabled:!0,modelPath:"../models/facemesh.json",inputSize:192},iris:{enabled:!0,modelPath:"../models/iris.json",inputSize:64},age:{enabled:!0,modelPath:"../models/age-ssrnet-imdb.json",inputSize:64,skipFrames:31},gender:{enabled:!0,minConfidence:.1,modelPath:"../models/gender-ssrnet-imdb.json",inputSize:64,skipFrames:41},emotion:{enabled:!0,inputSize:64,minConfidence:.2,skipFrames:21,modelPath:"../models/emotion-large.json"},embedding:{enabled:!1,inputSize:112,modelPath:"../models/mobilefacenet.json"}},body:{enabled:!0,modelPath:"../models/posenet.json",inputSize:257,maxDetections:10,scoreThreshold:.5,nmsRadius:20},hand:{enabled:!0,rotation:!1,inputSize:256,skipFrames:12,minConfidence:.1,iouThreshold:.1,scoreThreshold:.5,maxHands:1,landmarks:!0,detector:{modelPath:"../models/handdetect.json"},skeleton:{modelPath:"../models/handskeleton.json"}}},face=`data:image/jpeg;base64, /9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1 tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/ AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z 5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9 zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6 8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6 GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4 HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD 1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX +BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3 GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0 nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8 87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681 ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF 63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2 ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4 /wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5 rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru /DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1 jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk 4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6 wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP 1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1 H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ 1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe 5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69 MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn 0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb 0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz 9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu 6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd 9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8 VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+ 5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh 05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ 5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8 1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4 B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA 3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn 3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx 1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6 f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup 6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM 350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0 /AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt 4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1 8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3 ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,body=`data:image/jpeg;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj +s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp +alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2 ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67 d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/ Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+ r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc 0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w +PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4 Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6 rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ 9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/ /OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6 jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN +SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX 12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf 0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4 ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6 tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+ fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9 lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV 5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/ +bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0 77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8 5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8 to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/ w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS 34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn 26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf 3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q 6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN 3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8 2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc 1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK 0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9 dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218 8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1 axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/ tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1 izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2 crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4 OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2 r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz +THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095 YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE 9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8 mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6 Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3 6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1 Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0 5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1 mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO 1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7 ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T +PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+ O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1 +UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY 36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY 3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr 1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z 1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+ n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O 8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0 Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8 8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1 lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+ oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm 9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2 +To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37 O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1 L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4 izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt 1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12 CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh 5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3 6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9 XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr 79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223 2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p 7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7 x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz 5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2 IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1 vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0 ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm 6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22 gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX 6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn 1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u 7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O 8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx 5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm 2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9 RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8 cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF 0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK 66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9 XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK 7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI 3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m 1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9 8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8 elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL +Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl 5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q 7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv 6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa 0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/ AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5 6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX 0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK 3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0 vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2 O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz 0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O 1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi 0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY 5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L /tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3 Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ 3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI 6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/ AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ 92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp +0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0 vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP 8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3 7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P 0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG 0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv 9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1 rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+ x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4 5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2 H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF +NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN 3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi /j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00 +FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2 M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp 5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL /Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3 GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4 qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2 rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc 3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3 Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h 2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7 cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7 mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu 9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1 8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5 PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX 6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2 JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI 6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5 K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7 Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ 2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4 eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7 piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61 rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2 f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2 SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/ 2Q==`;var version3="0.9.14",now2=()=>typeof performance!="undefined"?performance.now():parseInt(Number(process.hrtime.bigint())/1e3/1e3);function mergeDeep(...objects){let isObject=obj=>obj&&typeof obj=="object";return objects.reduce((prev,obj)=>(Object.keys(obj||{}).forEach(key=>{let pVal=prev[key],oVal=obj[key];Array.isArray(pVal)&&Array.isArray(oVal)?prev[key]=pVal.concat(...oVal):isObject(pVal)&&isObject(oVal)?prev[key]=mergeDeep(pVal,oVal):prev[key]=oVal}),prev),{})}var Human=class{constructor(userConfig={}){this.tf=tfjs_esm_exports,this.version=version3,this.config=mergeDeep(config_default,userConfig),this.fx=null,this.state="idle",this.numTensors=0,this.analyzeMemoryLeaks=!1,this.checkSanity=!1,this.firstRun=!0,this.perf={},this.models={facemesh:null,posenet:null,handpose:null,iris:null,age:null,gender:null,emotion:null},this.facemesh=facemesh,this.age=age,this.gender=gender,this.emotion=emotion,this.body=posenet,this.hand=handpose}profile(){return this.config.profile?profile2.data:{}}analyze(...msg){if(!this.analyzeMemoryLeaks)return;let current=engine15().state.numTensors,previous=this.numTensors;this.numTensors=current;let leaked=current-previous;leaked!==0&&log(...msg,leaked)}sanity(input2){if(!this.checkSanity)return null;if(!input2)return"input is not defined";if(ENV.flags.IS_NODE&&!(input2 instanceof Tensor))return"input must be a tensor";try{getBackend()}catch(e){return"backend not loaded"}return null}simmilarity(embedding1,embedding22){return this.config.face.embedding.enabled?embedding2.simmilarity(embedding1,embedding22):0}async load(userConfig){this.state="load";let timeStamp=now2();userConfig&&(this.config=mergeDeep(this.config,userConfig)),this.firstRun&&(log(`version: ${this.version} TensorFlow/JS version: ${version}`),await this.checkBackend(!0),ENV.flags.IS_BROWSER&&(log("configuration:",this.config),log("tf flags:",ENV.flags)),this.firstRun=!1),this.config.async?[this.models.facemesh,this.models.age,this.models.gender,this.models.emotion,this.models.embedding,this.models.posenet,this.models.handpose]=await Promise.all([this.models.facemesh||(this.config.face.enabled?facemesh.load(this.config):null),this.models.age||(this.config.face.enabled&&this.config.face.age.enabled?age.load(this.config):null),this.models.gender||(this.config.face.enabled&&this.config.face.gender.enabled?gender.load(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?emotion.load(this.config):null),this.models.embedding||(this.config.face.enabled&&this.config.face.embedding.enabled?embedding2.load(this.config):null),this.models.posenet||(this.config.body.enabled?posenet.load(this.config):null),this.models.handpose||(this.config.hand.enabled?handpose.load(this.config):null)]):(this.config.face.enabled&&!this.models.facemesh&&(this.models.facemesh=await facemesh.load(this.config)),this.config.face.enabled&&this.config.face.age.enabled&&!this.models.age&&(this.models.age=await age.load(this.config)),this.config.face.enabled&&this.config.face.gender.enabled&&!this.models.gender&&(this.models.gender=await gender.load(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await emotion.load(this.config)),this.config.face.enabled&&this.config.face.embedding.enabled&&!this.models.embedding&&(this.models.embedding=await embedding2.load(this.config)),this.config.body.enabled&&!this.models.posenet&&(this.models.posenet=await posenet.load(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await handpose.load(this.config)));let current=Math.trunc(now2()-timeStamp);current>(this.perf.load||0)&&(this.perf.load=current)}async checkBackend(force){if(this.config.backend&&this.config.backend!==""&&force||getBackend()!==this.config.backend){let timeStamp=now2();if(this.state="backend",log("setting backend:",this.config.backend),this.config.backend==="wasm"){log("settings wasm path:",this.config.wasmPath),setWasmPaths(this.config.wasmPath);let simd=await env().getAsync("WASM_HAS_SIMD_SUPPORT");simd||log("warning: wasm simd support is not enabled")}if(await setBackend(this.config.backend),enableProdMode(),getBackend()==="webgl"){this.config.deallocate&&(log("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",this.config.deallocate),ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",this.config.deallocate?0:-1)),ENV.set("WEBGL_FORCE_F16_TEXTURES",!0),ENV.set("WEBGL_PACK_DEPTHWISECONV",!0);let gl=await backend2().getGPGPUContext().gl;log(`gl version:${gl.getParameter(gl.VERSION)} renderer:${gl.getParameter(gl.RENDERER)}`)}await ready(),this.perf.backend=Math.trunc(now2()-timeStamp)}}async detectFace(input2){let timeStamp,ageRes,genderRes,emotionRes,embeddingRes,faceRes=[];this.state="run:face",timeStamp=now2();let faces=await this.models.facemesh.estimateFaces(input2,this.config);this.perf.face=Math.trunc(now2()-timeStamp);for(let face3 of faces){if(this.analyze("Get Face"),!face3.image||face3.image.isDisposedInternal){log("Face object is disposed:",face3.image);continue}this.analyze("Start Age:"),this.config.async?ageRes=this.config.face.age.enabled?age.predict(face3.image,this.config):{}:(this.state="run:age",timeStamp=now2(),ageRes=this.config.face.age.enabled?await age.predict(face3.image,this.config):{},this.perf.age=Math.trunc(now2()-timeStamp)),this.analyze("Start Gender:"),this.config.async?genderRes=this.config.face.gender.enabled?gender.predict(face3.image,this.config):{}:(this.state="run:gender",timeStamp=now2(),genderRes=this.config.face.gender.enabled?await gender.predict(face3.image,this.config):{},this.perf.gender=Math.trunc(now2()-timeStamp)),this.analyze("Start Emotion:"),this.config.async?emotionRes=this.config.face.emotion.enabled?emotion.predict(face3.image,this.config):{}:(this.state="run:emotion",timeStamp=now2(),emotionRes=this.config.face.emotion.enabled?await emotion.predict(face3.image,this.config):{},this.perf.emotion=Math.trunc(now2()-timeStamp)),this.analyze("End Emotion:"),this.analyze("Start Embedding:"),this.config.async?embeddingRes=this.config.face.embedding.enabled?embedding2.predict(face3.image,this.config):{}:(this.state="run:embedding",timeStamp=now2(),embeddingRes=this.config.face.embedding.enabled?await embedding2.predict(face3.image,this.config):{},this.perf.embedding=Math.trunc(now2()-timeStamp)),this.analyze("End Emotion:"),this.config.async&&([ageRes,genderRes,emotionRes,embeddingRes]=await Promise.all([ageRes,genderRes,emotionRes,embeddingRes])),this.analyze("Finish Face:"),face3.image.dispose();let irisSize=face3.annotations.leftEyeIris&&face3.annotations.rightEyeIris?11.7*Math.max(Math.abs(face3.annotations.leftEyeIris[3][0]-face3.annotations.leftEyeIris[1][0]),Math.abs(face3.annotations.rightEyeIris[4][1]-face3.annotations.rightEyeIris[2][1])):0;faceRes.push({confidence:face3.confidence,box:face3.box,mesh:face3.mesh,annotations:face3.annotations,age:ageRes.age,gender:genderRes.gender,genderConfidence:genderRes.confidence,emotion:emotionRes,embedding:embeddingRes,iris:irisSize!==0?Math.trunc(irisSize)/100:0}),this.analyze("End Face")}return this.analyze("End FaceMesh:"),this.config.async&&(this.perf.face&&delete this.perf.face,this.perf.age&&delete this.perf.age,this.perf.gender&&delete this.perf.gender,this.perf.emotion&&delete this.perf.emotion),faceRes}async image(input2,userConfig={}){this.state="image",this.config=mergeDeep(this.config,userConfig);let process3=image2.process(input2,this.config);return process3.tensor.dispose(),process3.canvas}async detect(input2,userConfig={}){return new Promise(async resolve=>{this.state="config";let timeStamp;this.config=mergeDeep(this.config,userConfig),this.state="check";let error=this.sanity(input2);error&&(log(error,input2),resolve({error}));let poseRes,handRes,faceRes,timeStart=now2();await this.checkBackend(),await this.load(),this.config.scoped&&engine15().startScope(),this.analyze("Start Scope:"),timeStamp=now2();let process3=image2.process(input2,this.config);if(!process3||!process3.tensor){log("could not convert input to tensor"),resolve({error:"could not convert input to tensor"});return}this.perf.image=Math.trunc(now2()-timeStamp),this.analyze("Get Image:"),this.config.async?(faceRes=this.config.face.enabled?this.detectFace(process3.tensor):[],this.perf.face&&delete this.perf.face):(this.state="run:face",timeStamp=now2(),faceRes=this.config.face.enabled?await this.detectFace(process3.tensor):[],this.perf.face=Math.trunc(now2()-timeStamp)),this.analyze("Start Body:"),this.config.async?(poseRes=this.config.body.enabled?this.models.posenet.estimatePoses(process3.tensor,this.config):[],this.perf.body&&delete this.perf.body):(this.state="run:body",timeStamp=now2(),poseRes=this.config.body.enabled?await this.models.posenet.estimatePoses(process3.tensor,this.config):[],this.perf.body=Math.trunc(now2()-timeStamp)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(handRes=this.config.hand.enabled?this.models.handpose.estimateHands(process3.tensor,this.config):[],this.perf.hand&&delete this.perf.hand):(this.state="run:hand",timeStamp=now2(),handRes=this.config.hand.enabled?await this.models.handpose.estimateHands(process3.tensor,this.config):[],this.perf.hand=Math.trunc(now2()-timeStamp)),this.config.async&&([faceRes,poseRes,handRes]=await Promise.all([faceRes,poseRes,handRes])),process3.tensor.dispose(),this.config.scoped&&engine15().endScope(),this.analyze("End Scope:");let gestureRes=[];this.config.gesture.enabled&&(timeStamp=now2(),gestureRes=[...gesture.face(faceRes),...gesture.body(poseRes),...gesture.hand(handRes)],this.config.async?this.perf.gesture&&delete this.perf.gesture:this.perf.gesture=Math.trunc(now2()-timeStamp)),this.perf.total=Math.trunc(now2()-timeStart),this.state="idle",resolve({face:faceRes,body:poseRes,hand:handRes,gesture:gestureRes,performance:this.perf,canvas:process3.canvas})})}async warmup(userConfig){return userConfig&&(this.config=mergeDeep(this.config,userConfig)),new Promise(resolve=>{let video=this.config.videoOptimized;this.config.videoOptimized=!1;let src,size;switch(this.config.warmup){case"face":size=256,src=face;break;case"full":size=1200,src=body;break;default:size=0,src=null}let img=new Image(size,size);img.onload=()=>{let canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(size,size):document.createElement("canvas");canvas.width=size,canvas.height=size;let ctx=canvas.getContext("2d");ctx.drawImage(img,0,0);let data2=ctx.getImageData(0,0,size,size),t0=now2();this.detect(data2,config_exports).then(warmup=>{let t1=now2();log("Warmup",this.config.warmup,t1-t0,warmup),this.config.videoOptimized=video,resolve(warmup)})},src?img.src=src:resolve(null)})}};export{Human as default}; /** * @license * Copyright 2017 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2018 Google LLC * * Use of this source code is governed by an MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT. * ============================================================================= */ /** * @license * Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * ============================================================================= */ /** * @license * Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2019 Google LLC * * Use of this source code is governed by an MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT. * ============================================================================= */ /** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * ============================================================================= */ /** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2020 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2020 Google LLC * * Use of this source code is governed by an MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT. * ============================================================================= */ /** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the License); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** @license See the LICENSE file. */ //# sourceMappingURL=human.esm.js.map