import Human from '../dist/human.esm.js'; const userConfig = { backend: 'wasm', async: false, warmup: 'none', debug: true, filter: false, videoOptimized: false, face: { enabled: true, detector: { rotation: true, return: true }, mesh: { enabled: true }, embedding: { enabled: true }, iris: { enabled: false }, age: { enabled: false }, gender: { enabled: false }, emotion: { enabled: false }, }, hand: { enabled: false }, gesture: { enabled: false }, body: { enabled: false }, }; const human = new Human(userConfig); // new instance of human // const samples = ['../assets/sample-me.jpg', '../assets/sample6.jpg', '../assets/sample1.jpg', '../assets/sample4.jpg', '../assets/sample5.jpg', '../assets/sample3.jpg', '../assets/sample2.jpg']; // const samples = ['../assets/sample-me.jpg', '../assets/sample6.jpg', '../assets/sample1.jpg', '../assets/sample4.jpg', '../assets/sample5.jpg', '../assets/sample3.jpg', '../assets/sample2.jpg', // '../private/me (1).jpg', '../private/me (2).jpg', '../private/me (3).jpg', '../private/me (4).jpg', '../private/me (5).jpg', '../private/me (6).jpg', '../private/me (7).jpg', '../private/me (8).jpg', // '../private/me (9).jpg', '../private/me (10).jpg', '../private/me (11).jpg', '../private/me (12).jpg', '../private/me (13).jpg']; const all = []; // array that will hold all detected faces function log(...msg) { const dt = new Date(); const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`; // eslint-disable-next-line no-console console.log(ts, ...msg); } async function analyze(face) { log('Face:', face); // if we have face image tensor, enhance it and display it if (face.tensor) { const enhanced = human.enhance(face); if (enhanced) { const c = document.getElementById('orig'); const squeeze = enhanced.squeeze(); human.tf.browser.toPixels(squeeze, c); enhanced.dispose(); squeeze.dispose(); } } // loop through all canvases that contain faces const canvases = document.getElementsByClassName('face'); for (const canvas of canvases) { // calculate simmilarity from selected face to current one in the loop const res = human.simmilarity(face.embedding, all[canvas.tag.sample][canvas.tag.face].embedding, 3); // draw the canvas and simmilarity score canvas.title = res; await human.tf.browser.toPixels(all[canvas.tag.sample][canvas.tag.face].tensor, canvas); const ctx = canvas.getContext('2d'); ctx.font = 'small-caps 1rem "Lato"'; ctx.fillStyle = 'rgba(0, 0, 0, 1)'; ctx.fillText(`${(100 * res).toFixed(1)}%`, 3, 19); ctx.fillStyle = 'rgba(255, 255, 255, 1)'; ctx.fillText(`${(100 * res).toFixed(1)}%`, 4, 20); } // sort all faces by simmilarity const sorted = document.getElementById('faces'); [...sorted.children] .sort((a, b) => parseFloat(b.title) - parseFloat(a.title)) .forEach((canvas) => sorted.appendChild(canvas)); } async function faces(index, res) { all[index] = res.face; for (const i in res.face) { // log(res.face[i]); const canvas = document.createElement('canvas'); canvas.tag = { sample: index, face: i }; canvas.width = 200; canvas.height = 200; canvas.className = 'face'; // mouse click on any face canvas triggers analysis canvas.addEventListener('click', (evt) => { log('Select:', 'Image:', evt.target.tag.sample, 'Face:', evt.target.tag.face); analyze(all[evt.target.tag.sample][evt.target.tag.face]); }); // if we actually got face image tensor, draw canvas with that face if (res.face[i].tensor) { human.tf.browser.toPixels(res.face[i].tensor, canvas); document.getElementById('faces').appendChild(canvas); } } } async function add(index, image) { log('Add image:', index + 1, image); return new Promise((resolve) => { const img = new Image(100, 100); img.onload = () => { // must wait until image is loaded human.detect(img).then((res) => faces(index, res)); // then wait until image is analyzed document.getElementById('images').appendChild(img); // and finally we can add it resolve(true); }; img.title = image; img.src = encodeURI(image); }); } async function main() { await human.load(); // enumerate all sample images in /assets let res = await fetch('/assets'); let dir = (res && res.ok) ? await res.json() : []; let images = dir.filter((img) => (img.endsWith('.jpg') && img.includes('sample'))); // enumerate additional private test images in /private, not includded in git repository res = await fetch('/private'); dir = (res && res.ok) ? await res.json() : []; images = images.concat(dir.filter((img) => (img.endsWith('.jpg')))); // download and analyze all images log('Enumerated:', images.length, 'images'); for (const i in images) await add(i, images[i]); log('Ready'); } window.onload = main;