/** * BlazeFace, FaceMesh & Iris model implementation * * Based on: * - [**MediaPipe BlazeFace**](https://drive.google.com/file/d/1f39lSzU5Oq-j_OXgS67KfN5wNsoeAZ4V/view) * - Facial Spacial Geometry: [**MediaPipe FaceMesh**](https://drive.google.com/file/d/1VFC_wIpw4O7xBOiTgUldl79d9LA-LsnA/view) * - Eye Iris Details: [**MediaPipe Iris**](https://drive.google.com/file/d/1bsWbokp9AklH2ANjCfmjqEzzxO1CNbMu/view) */ import { log, now } from '../util/util'; import { loadModel } from '../tfjs/load'; import * as tf from '../../dist/tfjs.esm.js'; import * as blazeface from './blazeface'; import * as util from './facemeshutil'; import * as coords from './facemeshcoords'; import * as iris from './iris'; import * as attention from './attention'; import { histogramEqualization } from '../image/enhance'; import { env } from '../util/env'; import type { GraphModel, Tensor } from '../tfjs/types'; import type { FaceResult, FaceLandmark, Point } from '../result'; import type { Config } from '../config'; type DetectBox = { startPoint: Point, endPoint: Point, landmarks: Array, confidence: number }; const cache = { boxes: [] as DetectBox[], skipped: Number.MAX_SAFE_INTEGER, timestamp: 0, }; let model: GraphModel | null = null; let inputSize = 0; export async function predict(input: Tensor, config: Config): Promise { // reset cached boxes const skipTime = (config.face.detector?.skipTime || 0) > (now() - cache.timestamp); const skipFrame = cache.skipped < (config.face.detector?.skipFrames || 0); if (!config.skipAllowed || !skipTime || !skipFrame || cache.boxes.length === 0) { cache.boxes = await blazeface.getBoxes(input, config); // get results from blazeface detector cache.timestamp = now(); cache.skipped = 0; } else { cache.skipped++; } const faces: Array = []; const newCache: Array = []; let id = 0; for (let i = 0; i < cache.boxes.length; i++) { const box = cache.boxes[i]; let angle = 0; let rotationMatrix; const face: FaceResult = { // init face result id: id++, mesh: [], meshRaw: [], box: [0, 0, 0, 0], boxRaw: [0, 0, 0, 0], score: 0, boxScore: 0, faceScore: 0, // contoursRaw: [], // contours: [], annotations: {} as Record, }; // optional rotation correction based on detector data only if mesh is disabled otherwise perform it later when we have more accurate mesh data. if no rotation correction this function performs crop [angle, rotationMatrix, face.tensor] = util.correctFaceRotation(config.face.detector?.rotation, box, input, config.face.mesh?.enabled ? inputSize : blazeface.size()); if (config?.filter?.equalization) { const equilized = await histogramEqualization(face.tensor as Tensor); tf.dispose(face.tensor); face.tensor = equilized; } face.boxScore = Math.round(100 * box.confidence) / 100; if (!config.face.mesh?.enabled) { // mesh not enabled, return resuts from detector only face.box = util.clampBox(box, input); face.boxRaw = util.getRawBox(box, input); face.score = face.boxScore; face.mesh = box.landmarks.map((pt) => [ ((box.startPoint[0] + box.endPoint[0])) / 2 + ((box.endPoint[0] + box.startPoint[0]) * pt[0] / blazeface.size()), ((box.startPoint[1] + box.endPoint[1])) / 2 + ((box.endPoint[1] + box.startPoint[1]) * pt[1] / blazeface.size()), ]); face.meshRaw = face.mesh.map((pt) => [pt[0] / (input.shape[2] || 0), pt[1] / (input.shape[1] || 0), (pt[2] || 0) / inputSize]); for (const key of Object.keys(coords.blazeFaceLandmarks)) { face.annotations[key] = [face.mesh[coords.blazeFaceLandmarks[key] as number]]; // add annotations } } else if (!model) { // mesh enabled, but not loaded if (config.debug) log('face mesh detection requested, but model is not loaded'); } else { // mesh enabled if (config.face.attention?.enabled && !env.kernels.includes('atan2')) { tf.dispose(face.tensor); return faces; } const results = model.execute(face.tensor as Tensor) as Array; const confidenceT = results.find((t) => t.shape[t.shape.length - 1] === 1) as Tensor; const faceConfidence = await confidenceT.data(); face.faceScore = Math.round(100 * faceConfidence[0]) / 100; if (face.faceScore < (config.face.detector?.minConfidence || 1)) { // low confidence in detected mesh box.confidence = face.faceScore; // reset confidence of cached box if (config.face.mesh?.keepInvalid) { face.box = util.clampBox(box, input); face.boxRaw = util.getRawBox(box, input); face.score = face.boxScore; face.mesh = box.landmarks.map((pt) => [ ((box.startPoint[0] + box.endPoint[0])) / 2 + ((box.endPoint[0] + box.startPoint[0]) * pt[0] / blazeface.size()), ((box.startPoint[1] + box.endPoint[1])) / 2 + ((box.endPoint[1] + box.startPoint[1]) * pt[1] / blazeface.size()), ]); face.meshRaw = face.mesh.map((pt) => [pt[0] / (input.shape[2] || 1), pt[1] / (input.shape[1] || 1), (pt[2] || 0) / inputSize]); for (const key of Object.keys(coords.blazeFaceLandmarks)) { face.annotations[key] = [face.mesh[coords.blazeFaceLandmarks[key] as number]]; // add annotations } } } else { const meshT = results.find((t) => t.shape[t.shape.length - 1] === 1404) as Tensor; const coordsReshaped = tf.reshape(meshT, [-1, 3]); let rawCoords = await coordsReshaped.array(); tf.dispose(coordsReshaped); if (config.face.attention?.enabled) { rawCoords = await attention.augment(rawCoords, results); // augment iris results using attention model results } else if (config.face.iris?.enabled) { rawCoords = await iris.augmentIris(rawCoords, face.tensor, config, inputSize); // run iris model and augment results } face.mesh = util.transformRawCoords(rawCoords, box, angle, rotationMatrix, inputSize); // get processed mesh face.meshRaw = face.mesh.map((pt) => [pt[0] / (input.shape[2] || 0), pt[1] / (input.shape[1] || 0), (pt[2] || 0) / inputSize]); for (const key of Object.keys(coords.meshAnnotations)) face.annotations[key] = coords.meshAnnotations[key].map((index) => face.mesh[index]); // add annotations face.score = face.faceScore; const calculatedBox = { ...util.calculateFaceBox(face.mesh, box), confidence: box.confidence, landmarks: box.landmarks }; face.box = util.clampBox(calculatedBox, input); face.boxRaw = util.getRawBox(calculatedBox, input); /* const contoursT = results.find((t) => t.shape[t.shape.length - 1] === 266) as Tensor; const contoursData = contoursT && await contoursT.data(); // 133 x 2d points face.contoursRaw = []; for (let j = 0; j < contoursData.length / 2; j++) face.contoursRaw.push([contoursData[2 * j + 0] / inputSize, contoursData[2 * j + 1] / inputSize]); face.contours = face.contoursRaw.map((c) => [Math.trunc((input.shape[2] || 1) * c[0]), Math.trunc((input.shape[1] || 1) * c[1])]); */ newCache.push(calculatedBox); } tf.dispose(results); } if (face.score > (config.face.detector?.minConfidence || 1)) faces.push(face); else tf.dispose(face.tensor); } cache.boxes = newCache; // reset cache return faces; } export async function load(config: Config): Promise { if (env.initial) model = null; // @ts-ignore private property if (config?.face?.attention?.enabled && model?.signature) { // @ts-ignore private property if (Object.keys(model?.signature?.outputs || {}).length < 6) model = null; } if (!model) { if (config.face.attention?.enabled) model = await loadModel(config.face.attention?.modelPath); else model = await loadModel(config.face.mesh?.modelPath); } else if (config.debug) { log('cached model:', model['modelUrl']); } inputSize = model.inputs[0].shape ? model.inputs[0].shape[2] : 0; return model; } export const triangulation = coords.TRI468; export const uvmap = coords.UV468;