/** * Emotion model implementation * * [**Oarriaga**](https://github.com/oarriaga/face_classification) */ import { log, join, now } from '../util/util'; import type { Config } from '../config'; import type { GraphModel, Tensor } from '../tfjs/types'; import * as tf from '../../dist/tfjs.esm.js'; import { env } from '../util/env'; const annotations = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']; let model: GraphModel | null; const last: Array> = []; let lastCount = 0; let lastTime = 0; let skipped = Number.MAX_SAFE_INTEGER; // tuning values const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale export async function load(config: Config): Promise { if (env.initial) model = null; if (!model) { model = await tf.loadGraphModel(join(config.modelBasePath, config.face.emotion?.modelPath || '')) as unknown as GraphModel; if (!model || !model['modelUrl']) log('load model failed:', config.face.emotion?.modelPath); else if (config.debug) log('load model:', model['modelUrl']); } else if (config.debug) log('cached model:', model['modelUrl']); return model; } export async function predict(image: Tensor, config: Config, idx, count): Promise> { if (!model) return []; const skipFrame = skipped < (config.face.emotion?.skipFrames || 0); const skipTime = (config.face.emotion?.skipTime || 0) > (now() - lastTime); if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && last[idx] && (last[idx].length > 0)) { skipped++; return last[idx]; } skipped = 0; return new Promise(async (resolve) => { const obj: Array<{ score: number, emotion: string }> = []; if (config.face.emotion?.enabled) { const t: Record = {}; const inputSize = model?.inputs[0].shape ? model.inputs[0].shape[2] : 0; t.resize = tf.image.resizeBilinear(image, [inputSize, inputSize], false); // const box = [[0.15, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right // const resize = tf.image.cropAndResize(image, box, [0], [inputSize, inputSize]); [t.red, t.green, t.blue] = tf.split(t.resize, 3, 3); // weighted rgb to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html t.redNorm = tf.mul(t.red, rgb[0]); t.greenNorm = tf.mul(t.green, rgb[1]); t.blueNorm = tf.mul(t.blue, rgb[2]); t.grayscale = tf.addN([t.redNorm, t.greenNorm, t.blueNorm]); t.grayscaleSub = tf.sub(t.grayscale, 0.5); t.grayscaleMul = tf.mul(t.grayscaleSub, 2); t.emotion = model?.execute(t.grayscaleMul) as Tensor; // result is already in range 0..1, no need for additional activation lastTime = now(); const data = await t.emotion.data(); for (let i = 0; i < data.length; i++) { if (data[i] > (config.face.emotion?.minConfidence || 0)) obj.push({ score: Math.min(0.99, Math.trunc(100 * data[i]) / 100), emotion: annotations[i] }); } obj.sort((a, b) => b.score - a.score); Object.keys(t).forEach((tensor) => tf.dispose(t[tensor])); } last[idx] = obj; lastCount = count; resolve(obj); }); }