/** * Human demo for browsers * @default Human Library * @summary * @author * @copyright * @license MIT */ import { Human } from '../../dist/human.esm.js'; // equivalent of @vladmandic/Human const humanConfig = { // user configuration for human, used to fine-tune behavior // backend: 'webgpu' as 'webgpu, // async: true, modelBasePath: '../../models', filter: { enabled: true, equalization: false }, face: { enabled: true, detector: { rotation: false }, mesh: { enabled: true }, iris: { enabled: true }, description: { enabled: true }, emotion: { enabled: true } }, body: { enabled: true }, hand: { enabled: true }, object: { enabled: false }, gesture: { enabled: true }, }; const human = new Human(humanConfig); // create instance of human with overrides from user configuration human.env['perfadd'] = false; // is performance data showing instant or total values human.draw.options.font = 'small-caps 18px "Lato"'; // set font used to draw labels when using draw methods human.draw.options.lineHeight = 20; const dom = { // grab instances of dom objects so we dont have to look them up later video: document.getElementById('video') as HTMLVideoElement, canvas: document.getElementById('canvas') as HTMLCanvasElement, log: document.getElementById('log') as HTMLPreElement, fps: document.getElementById('status') as HTMLPreElement, perf: document.getElementById('performance') as HTMLDivElement, }; const timestamp = { detect: 0, draw: 0, tensors: 0 }; // holds information used to calculate performance and possible memory leaks const fps = { detect: 0, draw: 0 }; // holds calculated fps information for both detect and screen refresh const log = (...msg) => { // helper method to output messages dom.log.innerText += msg.join(' ') + '\n'; // eslint-disable-next-line no-console console.log(...msg); }; const status = (msg) => dom.fps.innerText = msg; // print status element const perf = (msg) => dom.perf.innerText = 'tensors:' + human.tf.memory().numTensors + ' | performance: ' + JSON.stringify(msg).replace(/"|{|}/g, '').replace(/,/g, ' | '); // print performance element async function webCam() { // initialize webcam status('starting webcam...'); // @ts-ignore resizeMode is not yet defined in tslib const options: MediaStreamConstraints = { audio: false, video: { facingMode: 'user', resizeMode: 'none', width: { ideal: document.body.clientWidth } } }; const stream: MediaStream = await navigator.mediaDevices.getUserMedia(options); const ready = new Promise((resolve) => { dom.video.onloadeddata = () => resolve(true); }); dom.video.srcObject = stream; dom.video.play(); await ready; dom.canvas.width = dom.video.videoWidth; dom.canvas.height = dom.video.videoHeight; const track: MediaStreamTrack = stream.getVideoTracks()[0]; const capabilities: MediaTrackCapabilities | string = track.getCapabilities ? track.getCapabilities() : ''; const settings: MediaTrackSettings | string = track.getSettings ? track.getSettings() : ''; const constraints: MediaTrackConstraints | string = track.getConstraints ? track.getConstraints() : ''; log('video:', dom.video.videoWidth, dom.video.videoHeight, track.label, { stream, track, settings, constraints, capabilities }); dom.canvas.onclick = () => { // pause when clicked on screen and resume on next click if (dom.video.paused) dom.video.play(); else dom.video.pause(); }; } async function detectionLoop() { // main detection loop if (!dom.video.paused) { // console.log('profiling data:', await human.profile(dom.video)); await human.detect(dom.video); // actual detection; were not capturing output in a local variable as it can also be reached via human.result const tensors = human.tf.memory().numTensors; // check current tensor usage for memory leaks if (tensors - timestamp.tensors !== 0) log('allocated tensors:', tensors - timestamp.tensors); // printed on start and each time there is a tensor leak timestamp.tensors = tensors; } const now = human.now(); fps.detect = 1000 / (now - timestamp.detect); timestamp.detect = now; requestAnimationFrame(detectionLoop); // start new frame immediately } async function drawLoop() { // main screen refresh loop if (!dom.video.paused) { const interpolated = await human.next(human.result); // smoothen result using last-known results await human.draw.canvas(dom.video, dom.canvas); // draw canvas to screen await human.draw.all(dom.canvas, interpolated); // draw labels, boxes, lines, etc. perf(interpolated.performance); // write performance data } const now = human.now(); fps.draw = 1000 / (now - timestamp.draw); timestamp.draw = now; status(dom.video.paused ? 'paused' : `fps: ${fps.detect.toFixed(1).padStart(5, ' ')} detect | ${fps.draw.toFixed(1).padStart(5, ' ')} draw`); // write status // requestAnimationFrame(drawLoop); // refresh at screen refresh rate setTimeout(drawLoop, 30); // use to slow down refresh from max refresh rate to target of 30 fps } async function main() { // main entry point log('human version:', human.version, '| tfjs version:', human.tf.version['tfjs-core']); log('platform:', human.env.platform, '| agent:', human.env.agent); status('loading...'); await human.load(); // preload all models log('backend:', human.tf.getBackend(), '| available:', human.env.backends); log('loaded models:' + Object.values(human.models).filter((model) => model !== null).length); status('initializing...'); await human.warmup(); // warmup function to initialize backend for future faster detection await webCam(); // start webcam await detectionLoop(); // start detection loop await drawLoop(); // start draw loop } window.onload = main;