/** * PoseNet module entry point */ import { log, join } from '../helpers'; import * as tf from '../../dist/tfjs.esm.js'; import * as poses from './poses'; import * as util from './utils'; import { Body } from '../result'; import { Tensor, GraphModel } from '../tfjs/types'; import { Config } from '../config'; let model: GraphModel; const poseNetOutputs = ['MobilenetV1/offset_2/BiasAdd'/* offsets */, 'MobilenetV1/heatmap_2/BiasAdd'/* heatmapScores */, 'MobilenetV1/displacement_fwd_2/BiasAdd'/* displacementFwd */, 'MobilenetV1/displacement_bwd_2/BiasAdd'/* displacementBwd */]; export async function predict(input: Tensor, config: Config): Promise { const res = tf.tidy(() => { if (!model.inputs[0].shape) return []; const resized = tf.image.resizeBilinear(input, [model.inputs[0].shape[2], model.inputs[0].shape[1]]); const normalized = resized.toFloat().div(127.5).sub(1.0); const results: Array = model.execute(normalized, poseNetOutputs) as Array; const results3d = results.map((y) => tf.squeeze(y, [0])); results3d[1] = results3d[1].sigmoid(); // apply sigmoid on scores return results3d; }); const buffers = await Promise.all(res.map((tensor) => tensor.buffer())); for (const t of res) t.dispose(); const decoded = await poses.decode(buffers[0], buffers[1], buffers[2], buffers[3], config.body.maxDetected, config.body.minConfidence); if (!model.inputs[0].shape) return []; const scaled = util.scalePoses(decoded, [input.shape[1], input.shape[2]], [model.inputs[0].shape[2], model.inputs[0].shape[1]]) as Body[]; return scaled; } export async function load(config: Config): Promise { if (!model) { // @ts-ignore type mismatch for GraphModel model = await tf.loadGraphModel(join(config.modelBasePath, config.body.modelPath)); if (!model || !model['modelUrl']) log('load model failed:', config.body.modelPath); else if (config.debug) log('load model:', model['modelUrl']); } else if (config.debug) log('cached model:', model['modelUrl']); return model; }