import { log, join } from '../helpers'; import * as tf from '../../dist/tfjs.esm.js'; let model; let last = { gender: '' }; let skipped = Number.MAX_SAFE_INTEGER; let alternative = false; // tuning values const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale export async function load(config) { if (!model) { model = await tf.loadGraphModel(join(config.modelBasePath, config.face.gender.modelPath)); alternative = model.inputs[0].shape[3] === 1; if (!model || !model.modelUrl) log('load model failed:', config.face.gender.modelPath); else if (config.debug) log('load model:', model.modelUrl); } else if (config.debug) log('cached model:', model.modelUrl); return model; } export async function predict(image, config) { if (!model) return null; if ((skipped < config.face.gender.skipFrames) && config.videoOptimized && last.gender !== '') { skipped++; return last; } if (config.videoOptimized) skipped = 0; else skipped = Number.MAX_SAFE_INTEGER; return new Promise(async (resolve) => { const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false); let enhance; if (alternative) { enhance = tf.tidy(() => { const [red, green, blue] = tf.split(resize, 3, 3); const redNorm = tf.mul(red, rgb[0]); const greenNorm = tf.mul(green, rgb[1]); const blueNorm = tf.mul(blue, rgb[2]); const grayscale = tf.addN([redNorm, greenNorm, blueNorm]); const normalize = grayscale.sub(0.5).mul(2); // range grayscale:-1..1 return normalize; }); } else { enhance = tf.mul(resize, [255.0]); // range RGB:0..255 } tf.dispose(resize); let genderT; const obj = { gender: '', confidence: 0 }; if (config.face.gender.enabled) genderT = await model.predict(enhance); enhance.dispose(); if (genderT) { if (!Array.isArray(genderT)) { const data = genderT.dataSync(); if (alternative) { // returns two values 0..1, bigger one is prediction if (data[0] > config.face.gender.minConfidence || data[1] > config.face.gender.minConfidence) { obj.gender = data[0] > data[1] ? 'female' : 'male'; obj.confidence = data[0] > data[1] ? (Math.trunc(100 * data[0]) / 100) : (Math.trunc(100 * data[1]) / 100); } } else { // returns one value 0..1, .5 is prediction threshold const confidence = Math.trunc(200 * Math.abs((data[0] - 0.5))) / 100; if (confidence > config.face.gender.minConfidence) { obj.gender = data[0] <= 0.5 ? 'female' : 'male'; obj.confidence = Math.min(0.99, confidence); } } genderT.dispose(); } else { const gender = genderT[0].dataSync(); const confidence = Math.trunc(200 * Math.abs((gender[0] - 0.5))) / 100; if (confidence > config.face.gender.minConfidence) { obj.gender = gender[0] <= 0.5 ? 'female' : 'male'; obj.confidence = Math.min(0.99, confidence); } /* let age = genderT[1].argMax(1).dataSync()[0]; const all = genderT[1].dataSync(); age = Math.round(all[age - 1] > all[age + 1] ? 10 * age - 100 * all[age - 1] : 10 * age + 100 * all[age + 1]) / 10; const descriptor = genderT[1].dataSync(); */ genderT.forEach((t) => tf.dispose(t)); } } last = obj; resolve(obj); }); }