import { log } from '../log'; import * as tf from '../../dist/tfjs.esm.js'; import * as profile from '../profile'; let model; let last = { gender: '' }; let skipped = Number.MAX_SAFE_INTEGER; let alternative = false; // tuning values const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale export async function load(config) { if (!model) { model = await tf.loadGraphModel(config.face.gender.modelPath); alternative = model.inputs[0].shape[3] === 1; if (config.debug) log(`load model: ${config.face.gender.modelPath.match(/\/(.*)\./)[1]}`); } return model; } export async function predict(image, config) { if (!model) return null; if ((skipped < config.face.gender.skipFrames) && config.videoOptimized && last.gender !== '') { skipped++; return last; } if (config.videoOptimized) skipped = 0; else skipped = Number.MAX_SAFE_INTEGER; return new Promise(async (resolve) => { const resize = tf.image.resizeBilinear(image, [config.face.gender.inputSize, config.face.gender.inputSize], false); let enhance; if (alternative) { enhance = tf.tidy(() => { const [red, green, blue] = tf.split(resize, 3, 3); const redNorm = tf.mul(red, rgb[0]); const greenNorm = tf.mul(green, rgb[1]); const blueNorm = tf.mul(blue, rgb[2]); const grayscale = tf.addN([redNorm, greenNorm, blueNorm]); return grayscale.sub(0.5).mul(2); }); } else { enhance = tf.mul(resize, [255.0]); } tf.dispose(resize); let genderT; const obj = { gender: '', confidence: 0 }; if (!config.profile) { if (config.face.gender.enabled) genderT = await model.predict(enhance); } else { const profileGender = config.face.gender.enabled ? await tf.profile(() => model.predict(enhance)) : {}; genderT = profileGender.result.clone(); profileGender.result.dispose(); profile.run('gender', profileGender); } enhance.dispose(); if (genderT) { const data = genderT.dataSync(); if (alternative) { // returns two values 0..1, bigger one is prediction const confidence = Math.trunc(100 * Math.abs(data[0] - data[1])) / 100; if (confidence > config.face.gender.minConfidence) { obj.gender = data[0] > data[1] ? 'female' : 'male'; obj.confidence = confidence; } } else { // returns one value 0..1, .5 is prediction threshold const confidence = Math.trunc(200 * Math.abs((data[0] - 0.5))) / 100; if (confidence > config.face.gender.minConfidence) { obj.gender = data[0] <= 0.5 ? 'female' : 'male'; obj.confidence = Math.min(0.99, confidence); } } } genderT.dispose(); last = obj; resolve(obj); }); }