/* Human library homepage: author: ' */ var T8=Object.create,Th=Object.defineProperty,E8=Object.getPrototypeOf,C8=Object.prototype.hasOwnProperty,R8=Object.getOwnPropertyNames,F8=Object.getOwnPropertyDescriptor;var mf=e=>Th(e,"__esModule",{value:!0});var Z2=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),wr=(e,t)=>{for(var n in t)Th(e,n,{get:t[n],enumerable:!0})},M8=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of R8(t))!C8.call(e,r)&&r!=="default"&&Th(e,r,{get:()=>t[r],enumerable:!(n=F8(t,r))||n.enumerable});return e},Eh=e=>M8(mf(Th(e!=null?T8(E8(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e);var Y2=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)},ye=(e,t,n)=>(Y2(e,t,"read from private field"),n?n.call(e):t.get(e)),Ta=(e,t,n,r)=>(Y2(e,t,"write to private field"),r?r.call(e,n):t.set(e,n),n);var U6=Z2(V6=>{mf(V6);wr(V6,{MediaPipeFaceMesh:()=>Py,load:()=>Mae});var Py=class{constructor(t,n,r,a){this.facePipeline=new zy(t,n,r),this.config=a}async estimateFaces(t,n){let r=await this.facePipeline.predict(t,n),a=[];for(let s of r||[]){if(s.isDisposedInternal)continue;let i=s.coords?s.coords.arraySync():[],o=i.map(h=>[h[0]/t.shape[2],h[1]/t.shape[1],h[2]/this.facePipeline.meshSize]),l={};if(i&&i.length>0)for(let h of Object.keys(Qr))l[h]=Qr[h].map(d=>i[d]);let u=s.box?[Math.max(0,s.box.startPoint[0]),Math.max(0,s.box.startPoint[1]),Math.min(t.shape[1],s.box.endPoint[0])-Math.max(0,s.box.startPoint[0]),Math.min(t.shape[2],s.box.endPoint[1])-Math.max(0,s.box.startPoint[1])]:0,c=s.box?[s.box.startPoint[0]/t.shape[2],s.box.startPoint[1]/t.shape[1],(s.box.endPoint[0]-s.box.startPoint[0])/t.shape[2],(s.box.endPoint[1]-s.box.startPoint[1])/t.shape[1]]:[];a.push({confidence:s.faceConfidence||s.boxConfidence||0,boxConfidence:s.boxConfidence,faceConfidence:s.faceConfidence,box:u,boxRaw:c,mesh:i,meshRaw:o,annotations:l,image:s.image?s.image.clone():null}),s.coords&&s.coords.dispose(),s.image&&s.image.dispose()}return a}},Wi=[null,null,null];async function Mae(e){Wi=await Promise.all([!Wi[0]&&e.face.enabled?D6(e):null,!Wi[1]&&e.face.mesh.enabled?Ft(e.face.mesh.modelPath,{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!Wi[2]&&e.face.iris.enabled?Ft(e.face.iris.modelPath,{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]);let t=new Py(Wi[0],Wi[1],Wi[2],e);return e.face.mesh.enabled&&e.debug&&Me(`load model: ${e.face.mesh.modelPath.match(/\/(.*)\./)[1]}`),e.face.iris.enabled&&e.debug&&Me(`load model: ${e.face.iris.modelPath.match(/\/(.*)\./)[1]}`),t}V6.triangulation=Li});var R0=Z2(o2=>{mf(o2);wr(o2,{NUM_KEYPOINTS:()=>Pae,connectedPartIndices:()=>Wae,partChannels:()=>Vae,partIds:()=>l2,partNames:()=>zae,poseChain:()=>Bae});var zae=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],Pae=o2.partNames.length,l2=o2.partNames.reduce((e,t,n)=>(e[t]=n,e),{}),Lae=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],Wae=Lae.map(([e,t])=>[l2[e],l2[t]]),Bae=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]],Vae=["left_face","right_face","right_upper_leg_front","right_lower_leg_back","right_upper_leg_back","left_lower_leg_front","left_upper_leg_front","left_upper_leg_back","left_lower_leg_back","right_feet","right_lower_leg_front","left_feet","torso_front","torso_back","right_upper_arm_front","right_upper_arm_back","right_lower_arm_back","left_lower_arm_front","left_upper_arm_front","left_upper_arm_back","left_lower_arm_back","right_hand","right_lower_arm_front","left_hand"]});function Me(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}function J2(){let e,t;if(typeof navigator!="undefined"){let n=navigator.userAgent.match(/\(([^()]+)\)/g);n&&n[0]&&(e=n[0].match(/\(([^()]+)\)/g)[0].replace(/\(|\)/g,""),t=navigator.userAgent.replace(n[0],""),e[1]&&(t=t.replace(n[1],"")),t=t.replace(/ /g," "))}else typeof process!="undefined"&&(e=`${process.platform} ${process.arch}`,t=`NodeJS ${process.version}`);return{platform:e,agent:t}}var Ch={};wr(Ch,{Abs:()=>so,Acos:()=>io,Acosh:()=>oo,AdadeltaOptimizer:()=>np,AdagradOptimizer:()=>rp,AdamOptimizer:()=>ap,AdamaxOptimizer:()=>sp,Add:()=>Ra,AddN:()=>fs,All:()=>Oh,Any:()=>zh,ArgMax:()=>ms,ArgMin:()=>yu,Asin:()=>lo,Asinh:()=>uo,Atan:()=>co,Atan2:()=>po,Atanh:()=>ho,AvgPool:()=>As,AvgPool3D:()=>xu,AvgPool3DGrad:()=>Lh,AvgPoolGrad:()=>Ph,BackendWasm:()=>B3,BatchMatMul:()=>gs,BatchToSpaceND:()=>wu,Bincount:()=>Wh,BroadcastTo:()=>m5,Callback:()=>Fv,CallbackList:()=>C7,Cast:()=>ys,Ceil:()=>xs,ClipByValue:()=>Fa,Complex:()=>Bh,ComplexAbs:()=>bu,Concat:()=>fo,Conv2D:()=>ws,Conv2DBackpropFilter:()=>Vh,Conv2DBackpropInput:()=>bs,Conv3D:()=>_u,Conv3DBackpropFilterV2:()=>Uh,Conv3DBackpropInputV2:()=>jh,Cos:()=>_s,Cosh:()=>mo,CropAndResize:()=>Ao,Cumsum:()=>vs,CustomCallback:()=>F7,DataStorage:()=>Fh,DenseBincount:()=>Hh,DepthToSpace:()=>go,DepthwiseConv2dNative:()=>ks,DepthwiseConv2dNativeBackpropFilter:()=>Gh,DepthwiseConv2dNativeBackpropInput:()=>qh,Diag:()=>Xh,Dilation2D:()=>vu,Dilation2DBackpropFilter:()=>Zh,Dilation2DBackpropInput:()=>Kh,ENV:()=>br,EarlyStopping:()=>$v,Elu:()=>yo,EluGrad:()=>Yh,Environment:()=>p5,Equal:()=>wo,Erf:()=>xo,Exp:()=>Ns,ExpandDims:()=>bo,Expm1:()=>_o,FFT:()=>Jh,Fill:()=>ku,FlipLeftRight:()=>vo,Floor:()=>Ss,FloorDiv:()=>Ts,FromPixels:()=>pd,FusedBatchNorm:()=>Es,FusedConv2D:()=>oi,FusedDepthwiseConv2D:()=>li,GPGPUContext:()=>_p,GatherNd:()=>Io,GatherV2:()=>ko,GraphModel:()=>c6,Greater:()=>No,GreaterEqual:()=>Cs,History:()=>R7,IFFT:()=>Qh,Identity:()=>Rs,Imag:()=>ed,InputSpec:()=>Qt,IsFinite:()=>So,IsInf:()=>To,IsNan:()=>Eo,KernelBackend:()=>mu,LRN:()=>Su,LRNGrad:()=>nd,LayerVariable:()=>I7,LayersModel:()=>Aa,LeakyRelu:()=>Fs,Less:()=>Co,LessEqual:()=>Ro,LinSpace:()=>td,Log:()=>Ms,Log1p:()=>Fo,LogSoftmax:()=>A5,LogicalAnd:()=>Mo,LogicalNot:()=>Iu,LogicalOr:()=>Nu,MathBackendCPU:()=>up,MathBackendWebGL:()=>Ll,Max:()=>$s,MaxPool:()=>Os,MaxPool3D:()=>Tu,MaxPool3DGrad:()=>ad,MaxPoolGrad:()=>rd,MaxPoolWithArgmax:()=>sd,Maximum:()=>Ds,Mean:()=>zs,Min:()=>Ps,Minimum:()=>Ls,MirrorPad:()=>Eu,Mod:()=>$o,MomentumOptimizer:()=>ip,Multinomial:()=>id,Multiply:()=>Ws,Neg:()=>Do,NonMaxSuppressionV3:()=>zo,NonMaxSuppressionV4:()=>Po,NonMaxSuppressionV5:()=>Lo,NotEqual:()=>Oo,OP_SCOPE_SUFFIX:()=>S5,OneHot:()=>Bs,OnesLike:()=>Wo,Optimizer:()=>da,Pack:()=>Bo,PadV2:()=>Vs,Pool:()=>$k,Pow:()=>Us,Prelu:()=>js,Prod:()=>Vo,RMSPropOptimizer:()=>op,RNN:()=>Yr,Range:()=>Cu,Rank:()=>Nf,Real:()=>od,RealDiv:()=>Is,Reciprocal:()=>Uo,Reduction:()=>An,Relu:()=>Hs,Relu6:()=>qs,Reshape:()=>jo,ResizeBilinear:()=>Gs,ResizeBilinearGrad:()=>ud,ResizeNearestNeighbor:()=>Ru,ResizeNearestNeighborGrad:()=>ld,Reverse:()=>Xs,RotateWithOffset:()=>al,Round:()=>Ks,Rsqrt:()=>Zs,SGDOptimizer:()=>cc,ScatterNd:()=>Ho,Select:()=>Go,Selu:()=>qo,Sequential:()=>Kl,Sigmoid:()=>Js,Sign:()=>Zo,Sin:()=>Ys,Sinh:()=>Ko,Slice:()=>Xo,Softmax:()=>ti,Softplus:()=>Yo,SpaceToBatchND:()=>Fu,SparseToDense:()=>cd,SplitV:()=>Jo,Sqrt:()=>Qs,Square:()=>Mu,SquaredDifference:()=>ni,Step:()=>$a,StridedSlice:()=>Qo,Sub:()=>ri,Sum:()=>ei,SymbolicTensor:()=>Cr,Tan:()=>el,Tanh:()=>ai,Tensor:()=>qe,TensorBuffer:()=>Bt,Tile:()=>Ma,TopK:()=>tl,Transform:()=>hd,Transpose:()=>si,Unique:()=>dd,Unpack:()=>nl,UnsortedSegmentSum:()=>$u,Variable:()=>Bu,ZerosLike:()=>rl,_FusedMatMul:()=>ii,abs:()=>Vt,acos:()=>Jf,acosh:()=>Qf,add:()=>ie,addN:()=>La,all:()=>Id,any:()=>Gu,argMax:()=>qu,argMin:()=>em,asin:()=>tm,asinh:()=>nm,atan:()=>rm,atan2:()=>am,atanh:()=>sm,avgPool:()=>Ku,avgPool3d:()=>lm,backend:()=>lx,backend_util:()=>R,basicLSTMCell:()=>dN,batchNorm:()=>mi,batchNorm2d:()=>dx,batchNorm3d:()=>px,batchNorm4d:()=>fx,batchToSpaceND:()=>Zu,bincount:()=>mx,booleanMaskAsync:()=>gE,broadcastTo:()=>Yu,browser:()=>dl,buffer:()=>Ue,callbacks:()=>zne,cast:()=>xe,ceil:()=>um,clipByValue:()=>Nn,clone:()=>Pr,complex:()=>Da,concat:()=>ot,concat1d:()=>Ax,concat2d:()=>gl,concat3d:()=>gx,concat4d:()=>yx,constraints:()=>J3,conv1d:()=>Sd,conv2d:()=>la,conv2dTranspose:()=>Td,conv3d:()=>hm,conv3dTranspose:()=>$N,copyRegisteredKernels:()=>zk,cos:()=>Ju,cosh:()=>Ed,cosineWindow:()=>Pm,cumsum:()=>Cd,customGrad:()=>Br,data:()=>h6,denseBincount:()=>wx,deprecationWarn:()=>Zf,depthToSpace:()=>dm,depthwiseConv2d:()=>yl,deregisterOp:()=>Lne,device_util:()=>Uu,diag:()=>VN,dilation2d:()=>pm,disableDeprecationWarnings:()=>NI,dispose:()=>Re,disposeVariables:()=>SI,div:()=>_e,divNoNan:()=>fm,dot:()=>bx,dropout:()=>Vx,elu:()=>xl,enableDebugMode:()=>II,enableProdMode:()=>kI,enclosingPowerOfTwo:()=>Ux,engine:()=>Lr,env:()=>J,equal:()=>Ba,erf:()=>mm,exp:()=>Jn,expandDims:()=>fn,expm1:()=>Am,eye:()=>gm,fft:()=>lc,fill:()=>Qu,findBackend:()=>Yf,findBackendFactory:()=>MI,floor:()=>wl,floorDiv:()=>kd,forceHalfFloat:()=>e_,fused:()=>Ha,gather:()=>Ai,gatherND:()=>Bx,gather_util:()=>Uf,getBackend:()=>RI,getGradient:()=>vf,getKernel:()=>fd,getKernelsForBackend:()=>il,gpgpu_util:()=>kb,grad:()=>gS,grads:()=>yS,greater:()=>ur,greaterEqual:()=>Ua,ifft:()=>Il,imag:()=>Rd,image:()=>Ke,inTopKAsync:()=>TE,initializers:()=>s7,input:()=>y7,io:()=>In,irfft:()=>qd,isFinite:()=>_x,isInf:()=>vx,isNaN:()=>kx,keep:()=>Zt,kernel_impls:()=>Hr,layers:()=>g7,leakyRelu:()=>ec,less:()=>Fd,lessEqual:()=>gi,linalg:()=>tw,linspace:()=>Ix,loadGraphModel:()=>Ft,loadLayersModel:()=>rne,localResponseNormalization:()=>ym,log:()=>On,log1p:()=>Md,logSigmoid:()=>Sx,logSoftmax:()=>Dd,logSumExp:()=>bm,logicalAnd:()=>cr,logicalNot:()=>tc,logicalOr:()=>Od,logicalXor:()=>Rx,losses:()=>HC,matMul:()=>Ye,math:()=>U5,max:()=>Qn,maxPool:()=>nc,maxPool3d:()=>_m,maxPoolWithArgmax:()=>Fx,maximum:()=>Vr,mean:()=>Tt,memory:()=>vd,metrics:()=>Ev,min:()=>_l,minimum:()=>vl,mirrorPad:()=>vm,mod:()=>km,model:()=>tne,models:()=>Cv,moments:()=>zd,movingAverage:()=>wE,mul:()=>O,multiRNNCell:()=>qS,multinomial:()=>Mx,neg:()=>St,nextFrame:()=>lp,norm:()=>Yd,notEqual:()=>xi,oneHot:()=>hl,ones:()=>Ur,onesLike:()=>zn,op:()=>D,outerProduct:()=>JS,pad:()=>ua,pad1d:()=>tT,pad2d:()=>rT,pad3d:()=>sT,pad4d:()=>oT,pool:()=>$x,pow:()=>ca,prelu:()=>ac,print:()=>z5,prod:()=>Pd,profile:()=>Yn,rand:()=>AT,randomGamma:()=>wT,randomNormal:()=>Dx,randomUniform:()=>kl,range:()=>Ld,ready:()=>CI,real:()=>sc,reciprocal:()=>Sm,registerBackend:()=>fl,registerCallbackConstructor:()=>ane,registerGradient:()=>g5,registerKernel:()=>ui,registerOp:()=>Pne,regularizers:()=>Rv,relu:()=>jr,relu6:()=>Wd,removeBackend:()=>FI,reshape:()=>H,reverse:()=>Pn,reverse1d:()=>ET,reverse2d:()=>RT,reverse3d:()=>MT,reverse4d:()=>DT,rfft:()=>uc,round:()=>Tm,rsqrt:()=>Bd,scalar:()=>Ne,scatterND:()=>Wx,scatter_util:()=>jf,selu:()=>Vd,separableConv2d:()=>Em,sequential:()=>nne,serialization:()=>ae,setBackend:()=>EI,setPlatform:()=>$I,setWasmPath:()=>JZ,setWasmPaths:()=>QZ,setWebGLContext:()=>yp,setdiff1dAsync:()=>Ox,shared:()=>Vm,sigmoid:()=>Dn,sign:()=>Cm,signal:()=>jC,sin:()=>Ud,sinh:()=>jd,slice:()=>$e,slice1d:()=>Hd,slice2d:()=>Rm,slice3d:()=>Gd,slice4d:()=>ic,slice_util:()=>pn,softmax:()=>oc,softplus:()=>bl,spaceToBatchND:()=>rc,sparseToDense:()=>zm,spectral:()=>UC,split:()=>jt,sqrt:()=>an,square:()=>ht,squaredDifference:()=>Xd,squeeze:()=>ja,stack:()=>mn,step:()=>Nl,stridedSlice:()=>Fm,sub:()=>be,sum:()=>Fe,sumOutType:()=>yd,tan:()=>Mm,tanh:()=>Al,tensor:()=>kr,tensor1d:()=>hn,tensor2d:()=>Tn,tensor3d:()=>bd,tensor4d:()=>oE,tensor5d:()=>lE,tensor6d:()=>uE,tensor_util:()=>_r,test_util:()=>sx,tidy:()=>L,tile:()=>Va,time:()=>TI,topk:()=>$m,train:()=>bi,transpose:()=>it,truncatedNormal:()=>Kd,unique:()=>Zd,unregisterGradient:()=>Ok,unregisterKernel:()=>Dk,unsortedSegmentSum:()=>Dm,unstack:()=>hr,upcastType:()=>lr,util:()=>v,valueAndGrad:()=>xS,valueAndGrads:()=>wS,variable:()=>zx,variableGrads:()=>Nx,version:()=>kae,version_converter:()=>Pre,version_core:()=>vI,version_cpu:()=>Rw,version_layers:()=>og,version_wasm:()=>U3,version_webgl:()=>Qb,webgl:()=>AL,webgl_util:()=>Jw,where:()=>Sn,whereAsync:()=>Om,zeros:()=>Ot,zerosLike:()=>Xe});var $8=Object.create,Rh=Object.defineProperty,D8=Object.getPrototypeOf,O8=Object.prototype.hasOwnProperty,z8=Object.getOwnPropertyNames,P8=Object.getOwnPropertyDescriptor,L8=e=>Rh(e,"__esModule",{value:!0}),It=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),We=(e,t)=>{for(var n in t)Rh(e,n,{get:t[n],enumerable:!0})},W8=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of z8(t))!O8.call(e,r)&&r!=="default"&&Rh(e,r,{get:()=>t[r],enumerable:!(n=P8(t,r))||n.enumerable});return e},no=e=>W8(L8(Rh(e!=null?$8(D8(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),B8=It(()=>{}),V8=It((e,t)=>{(function(n,r,a){function s(u){var c=this,h=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=h(" "),c.s1=h(" "),c.s2=h(" "),c.s0-=h(u),c.s0<0&&(c.s0+=1),c.s1-=h(u),c.s1<0&&(c.s1+=1),c.s2-=h(u),c.s2<0&&(c.s2+=1),h=null}function i(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function o(u,c){var h=new s(u),d=c&&c.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var u=4022871197,c=function(h){h=h.toString();for(var d=0;d>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),U8=It((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),j8=It((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var h=0;h>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),H8=It((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.x,d=u.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,u.i=d+1&7,f};function c(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p0;--p)h.next()}c(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.x&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),G8=It((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.w,d=u.X,p=u.i,f,m;return u.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,u.i=p,m+(h^h>>>16)|0};function c(h,d){var p,f,m,A,g,y=[],w=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,w=Math.max(w,d.length)),m=0,A=-32;A>>15,f^=f<<4,f^=f>>>13,A>=0&&(g=g+1640531527|0,p=y[A&127]^=f+g,m=p==0?m+1:0);for(m>=128&&(y[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=y[m+34&127],p=y[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,y[m]=f^p;h.w=g,h.X=y,h.i=m}c(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.X&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),q8=It((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.b,p=u.c,f=u.d,m=u.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,u.b=d=d<<20^d>>>12^p,u.c=p=p-f|0,u.d=f<<16^p>>>16^m,u.a=m-d|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Q2=It(()=>{}),X8=It((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",u=r.pow(s,i),c=r.pow(2,o),h=c*2,d=s-1,p;function f(_,x,N){var T=[];x=x==!0?{entropy:!0}:x||{};var E=y(g(x.entropy?[_,b(n)]:_==null?w():_,3),T),M=new m(T),z=function(){for(var B=M.g(i),V=u,U=0;B=h;)B/=2,V/=2,U>>>=1;return(B+U)/V};return z.int32=function(){return M.g(4)|0},z.quick=function(){return M.g(4)/4294967296},z.double=z,y(b(M.S),n),(x.pass||N||function(B,V,U,j){return j&&(j.S&&A(j,M),B.state=function(){return A(M,{})}),U?(r[l]=B,V):B})(z,E,"global"in x?x.global:this==r,x.state)}r["seed"+l]=f;function m(_){var x,N=_.length,T=this,E=0,M=T.i=T.j=0,z=T.S=[];for(N||(_=[N++]);E{var n=V8(),r=U8(),a=j8(),s=H8(),i=G8(),o=q8(),l=X8();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),fu=It(()=>{}),K8=It(()=>{}),Z8=It(()=>{}),Y8=It((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};function s(){return Q.buffer!=je&&nn(Q.buffer),wn}function i(){return Q.buffer!=je&&nn(Q.buffer),kt}function o(){return Q.buffer!=je&&nn(Q.buffer),bn}function l(){return Q.buffer!=je&&nn(Q.buffer),Xn}function u(){return Q.buffer!=je&&nn(Q.buffer),dn}var c=typeof a!="undefined"?a:{},h,d;c.ready=new Promise(function(I,S){h=I,d=S});var p={},f;for(f in c)c.hasOwnProperty(f)&&(p[f]=c[f]);var m=[],A="./this.program",g=function(I,S){throw S},y=!1,w=!1,b=!1,_=!1;y=typeof window=="object",w=typeof importScripts=="function",b=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",_=!y&&!b&&!w;var x=c.ENVIRONMENT_IS_PTHREAD||!1;x&&(je=c.buffer);var N="";function T(I){return c.locateFile?c.locateFile(I,N):N+I}var E,M,z,B,V,U;if(b){w?N=fu().dirname(N)+"/":N=__dirname+"/",E=function(I,S){return V||(V=require("fs")),U||(U=fu()),I=U.normalize(I),V.readFileSync(I,S?null:"utf8")},z=function(I){var S=E(I,!0);return S.buffer||(S=new Uint8Array(S)),me(S.buffer),S},process.argv.length>1&&(A=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(I){if(!(I instanceof pu))throw I}),process.on("unhandledRejection",ra),g=function(I){process.exit(I)},c.inspect=function(){return"[Emscripten Module object]"};var j;try{j=K8()}catch(I){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),I}global.Worker=j.Worker}else _?(typeof read!="undefined"&&(E=function(I){return read(I)}),z=function(I){var S;return typeof readbuffer=="function"?new Uint8Array(readbuffer(I)):(S=read(I,"binary"),me(typeof S=="object"),S)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(g=function(I){quit(I)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(y||w)&&(w?N=self.location.href:typeof document!="undefined"&&document.currentScript&&(N=document.currentScript.src),typeof r!="undefined"&&r&&(N=r),N.indexOf("blob:")!==0?N=N.substr(0,N.lastIndexOf("/")+1):N="",b?(E=function(I,S){return V||(V=require("fs")),U||(U=fu()),I=U.normalize(I),V.readFileSync(I,S?null:"utf8")},z=function(I){var S=E(I,!0);return S.buffer||(S=new Uint8Array(S)),me(S.buffer),S}):(E=function(I){var S=new XMLHttpRequest;return S.open("GET",I,!1),S.send(null),S.responseText},w&&(z=function(I){var S=new XMLHttpRequest;return S.open("GET",I,!1),S.responseType="arraybuffer",S.send(null),new Uint8Array(S.response)}),M=function(I,S,P){var q=new XMLHttpRequest;q.open("GET",I,!0),q.responseType="arraybuffer",q.onload=function(){if(q.status==200||q.status==0&&q.response){S(q.response);return}P()},q.onerror=P,q.send(null)}),B=function(I){document.title=I});b&&typeof performance=="undefined"&&(global.performance=Z8().performance);var X=c.print||console.log.bind(console),G=c.printErr||console.warn.bind(console);for(f in p)p.hasOwnProperty(f)&&(c[f]=p[f]);p=null,c.arguments&&(m=c.arguments),c.thisProgram&&(A=c.thisProgram),c.quit&&(g=c.quit);var ee=Atomics.load,Y=Atomics.store,se=Atomics.compareExchange,ne;c.wasmBinary&&(ne=c.wasmBinary);var le=c.noExitRuntime||!0;typeof WebAssembly!="object"&&ra("no native wasm support detected");var Q,pe,ue=!1,ge;function me(I,S){I||ra("Assertion failed: "+S)}function Se(I){var S=c["_"+I];return me(S,"Cannot call unknown function "+I+", make sure it is exported"),S}function Ee(I,S,P,q,fe){var ce={string:function(kn){var to=0;if(kn!=null&&kn!==0){var K2=(kn.length<<2)+1;to=Ji(K2),at(kn,to,K2)}return to},array:function(kn){var to=Ji(kn.length);return et(kn,to),to}};function de(kn){return S==="string"?ze(kn):S==="boolean"?Boolean(kn):kn}var ke=Se(I),st=[],Xt=0;if(q)for(var Lt=0;Lt=q);){var ce=I[S++];if(!ce)return fe;if(!(ce&128)){fe+=String.fromCharCode(ce);continue}var de=I[S++]&63;if((ce&224)==192){fe+=String.fromCharCode((ce&31)<<6|de);continue}var ke=I[S++]&63;if((ce&240)==224?ce=(ce&15)<<12|de<<6|ke:ce=(ce&7)<<18|de<<12|ke<<6|I[S++]&63,ce<65536)fe+=String.fromCharCode(ce);else{var st=ce-65536;fe+=String.fromCharCode(55296|st>>10,56320|st&1023)}}return fe}function ze(I,S){return I?Le(i(),I,S):""}function rt(I,S,P,q){if(!(q>0))return 0;for(var fe=P,ce=P+q-1,de=0;de=55296&&ke<=57343){var st=I.charCodeAt(++de);ke=65536+((ke&1023)<<10)|st&1023}if(ke<=127){if(P>=ce)break;S[P++]=ke}else if(ke<=2047){if(P+1>=ce)break;S[P++]=192|ke>>6,S[P++]=128|ke&63}else if(ke<=65535){if(P+2>=ce)break;S[P++]=224|ke>>12,S[P++]=128|ke>>6&63,S[P++]=128|ke&63}else{if(P+3>=ce)break;S[P++]=240|ke>>18,S[P++]=128|ke>>12&63,S[P++]=128|ke>>6&63,S[P++]=128|ke&63}}return S[P]=0,P-fe}function at(I,S,P){return rt(I,i(),S,P)}function ct(I){for(var S=0,P=0;P=55296&&q<=57343&&(q=65536+((q&1023)<<10)|I.charCodeAt(++P)&1023),q<=127?++S:q<=2047?S+=2:q<=65535?S+=3:S+=4}return S}function et(I,S){s().set(I,S)}function mt(I,S){return I%S>0&&(I+=S-I%S),I}var je,wn,kt,qn,tn,bn,Xn,$n,dn;function nn(I){je=I,c.HEAP8=wn=new Int8Array(I),c.HEAP16=qn=new Int16Array(I),c.HEAP32=bn=new Int32Array(I),c.HEAPU8=kt=new Uint8Array(I),c.HEAPU16=tn=new Uint16Array(I),c.HEAPU32=Xn=new Uint32Array(I),c.HEAPF32=$n=new Float32Array(I),c.HEAPF64=dn=new Float64Array(I)}var Dr=c.INITIAL_MEMORY||16777216;if(x)Q=c.wasmMemory,je=c.buffer;else if(c.wasmMemory)Q=c.wasmMemory;else if(Q=new WebAssembly.Memory({initial:Dr/65536,maximum:2147483648/65536,shared:!0}),!(Q.buffer instanceof SharedArrayBuffer))throw G("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),b&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Q&&(je=Q.buffer),Dr=je.byteLength,nn(je);var ar,sr=[],ba=[],ta=[],_a=[],ji=[],xr=!1,sh=!1;x||ba.push({func:function(){bh()}}),x&&(xr=!0);function Q0(){if(!x){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)lh(c.preRun.shift());Gi(sr)}}function ih(){xr=!0,Gi(ba)}function e1(){x||Gi(ta)}function oh(){x||(sh=!0)}function _n(){if(!x){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)t1(c.postRun.shift());Gi(ji)}}function lh(I){sr.unshift(I)}function t1(I){ji.unshift(I)}var na=0,va=null,us=null;function n1(I){me(!x,"addRunDependency cannot be used in a pthread worker"),na++,c.monitorRunDependencies&&c.monitorRunDependencies(na)}function r1(I){if(na--,c.monitorRunDependencies&&c.monitorRunDependencies(na),na==0&&(va!==null&&(clearInterval(va),va=null),us)){var S=us;us=null,S()}}c.preloadedImages={},c.preloadedAudios={};function ra(I){c.onAbort&&c.onAbort(I),x&&console.error("Pthread aborting at "+new Error().stack),I+="",G(I),ue=!0,ge=1,I="abort("+I+"). Build with -s ASSERTIONS=1 for more info.";var S=new WebAssembly.RuntimeError(I);throw d(S),S}function uh(I,S){return String.prototype.startsWith?I.startsWith(S):I.indexOf(S)===0}var Hi="data:application/octet-stream;base64,";function ch(I){return uh(I,Hi)}var a1="file://";function hh(I){return uh(I,a1)}var vn="tfjs-backend-wasm-threaded-simd.wasm";ch(vn)||(vn=T(vn));function s1(I){try{if(I==vn&&ne)return new Uint8Array(ne);if(z)return z(I);throw"both async and sync fetching of the wasm failed"}catch(S){ra(S)}}function dh(){if(!ne&&(y||w)){if(typeof fetch=="function"&&!hh(vn))return fetch(vn,{credentials:"same-origin"}).then(function(I){if(!I.ok)throw"failed to load wasm binary file at '"+vn+"'";return I.arrayBuffer()}).catch(function(){return s1(vn)});if(M)return new Promise(function(I,S){M(vn,function(P){I(new Uint8Array(P))},S)})}return Promise.resolve().then(function(){return s1(vn)})}function i1(){var I={a:Z1};function S(de,ke){var st=de.exports;if(c.asm=st,ar=c.asm.F,pe=ke,!x){var Xt=Te.unusedWorkers.length;Te.unusedWorkers.forEach(function(Lt){Te.loadWasmModuleToWorker(Lt,function(){--Xt||r1("wasm-instantiate")})})}}x||n1("wasm-instantiate");function P(de){S(de.instance,de.module)}function q(de){return dh().then(function(ke){return WebAssembly.instantiate(ke,I)}).then(de,function(ke){G("failed to asynchronously prepare wasm: "+ke),ra(ke)})}function fe(){return!ne&&typeof WebAssembly.instantiateStreaming=="function"&&!ch(vn)&&!hh(vn)&&typeof fetch=="function"?fetch(vn,{credentials:"same-origin"}).then(function(de){var ke=WebAssembly.instantiateStreaming(de,I);return ke.then(P,function(st){return G("wasm streaming compile failed: "+st),G("falling back to ArrayBuffer instantiation"),q(P)})}):q(P)}if(c.instantiateWasm)try{var ce=c.instantiateWasm(I,S);return ce}catch(de){return G("Module.instantiateWasm callback failed with error: "+de),!1}return fe().catch(d),{}}var ph={8991:function(I,S){setTimeout(function(){U2(I,S)},0)}};function o1(){Te.initRuntime()}function Gi(I){for(;I.length>0;){var S=I.shift();if(typeof S=="function"){S(c);continue}var P=S.func;typeof P=="number"?S.arg===void 0?ar.get(P)():ar.get(P)(S.arg):P(S.arg===void 0?null:S.arg)}}function qi(I,S){if(I<=0||I>s().length||I&!0||S<0)return-28;if(S==0)return 0;S>=2147483647&&(S=Infinity);var P=Atomics.load(o(),Qi>>2),q=0;if(P==I){var fe=Atomics.compareExchange(o(),Qi>>2,P,0);if(fe==P&&(--S,q=1,S<=0))return 1}var ce=Atomics.notify(o(),I>>2,S);if(ce>=0)return ce+q;throw"Atomics.notify returned an unexpected value "+ce}c._emscripten_futex_wake=qi;function l1(I){if(x)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in killThread!";o()[I+12>>2]=0;var S=Te.pthreads[I];S.worker.terminate(),Te.freeThreadData(S),Te.runningWorkers.splice(Te.runningWorkers.indexOf(S.worker),1),S.worker.pthread=void 0}function u1(I){if(x)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in cancelThread!";var S=Te.pthreads[I];S.worker.postMessage({cmd:"cancel"})}function c1(I){if(x)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in cleanupThread!";o()[I+12>>2]=0;var S=Te.pthreads[I];if(S){var P=S.worker;Te.returnWorkerToPool(P)}}var Te={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var I=8,S=0;S>2]=I;var P=I+152;o()[P>>2]=P;for(var q=hs(512),S=0;S<128;++S)l()[q/4+S]=0;Atomics.store(l(),I+100>>2,q),Atomics.store(l(),I+40>>2,I),Nh(I,!w,1),V2(I)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Te.threadExitHandlers.length>0;)Te.threadExitHandlers.pop()();x&&Zi()&&B2()},threadExit:function(I){var S=Zi();S&&(Atomics.store(l(),S+4>>2,I),Atomics.store(l(),S+0>>2,1),Atomics.store(l(),S+56>>2,1),Atomics.store(l(),S+60>>2,0),Te.runExitHandlers(),qi(S+0,2147483647),Nh(0,0,0),x&&postMessage({cmd:"exit"}))},threadCancel:function(){Te.runExitHandlers();var I=Zi();Atomics.store(l(),I+4>>2,-1),Atomics.store(l(),I+0>>2,1),qi(I+0,2147483647),Nh(0,0,0),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var I in Te.pthreads){var S=Te.pthreads[I];S&&S.worker&&Te.returnWorkerToPool(S.worker)}Te.pthreads={};for(var P=0;P>2];o()[I.threadInfoStruct+100>>2]=0,hu(S),hu(I.threadInfoStruct)}I.threadInfoStruct=0,I.allocatedOwnStack&&I.stackBase&&hu(I.stackBase),I.stackBase=0,I.worker&&(I.worker.pthread=null)}},returnWorkerToPool:function(I){Te.runWithoutMainThreadQueuedCalls(function(){delete Te.pthreads[I.pthread.threadInfoStruct],Te.unusedWorkers.push(I),Te.runningWorkers.splice(Te.runningWorkers.indexOf(I),1),Te.freeThreadData(I.pthread),I.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(I){o()[X2>>2]=0;try{I()}finally{o()[X2>>2]=1}},receiveObjectTransfer:function(I){},loadWasmModuleToWorker:function(I,S){I.onmessage=function(P){var q=P.data,fe=q.cmd;if(I.pthread&&(Te.currentProxiedOperationCallerThread=I.pthread.threadInfoStruct),q.targetThread&&q.targetThread!=Zi()){var ce=Te.pthreads[q.targetThread];ce?ce.worker.postMessage(P.data,q.transferList):console.error('Internal error! Worker sent a message "'+fe+'" to target pthread '+q.targetThread+", but that thread no longer exists!"),Te.currentProxiedOperationCallerThread=void 0;return}if(fe==="processQueuedMainThreadWork")df();else if(fe==="spawnThread")xh(P.data);else if(fe==="cleanupThread")c1(q.thread);else if(fe==="killThread")l1(q.thread);else if(fe==="cancelThread")u1(q.thread);else if(fe==="loaded")I.loaded=!0,S&&S(I),I.runPthread&&(I.runPthread(),delete I.runPthread);else if(fe==="print")X("Thread "+q.threadId+": "+q.text);else if(fe==="printErr")G("Thread "+q.threadId+": "+q.text);else if(fe==="alert")alert("Thread "+q.threadId+": "+q.text);else if(fe==="exit"){var de=I.pthread&&Atomics.load(l(),I.pthread.threadInfoStruct+64>>2);de&&Te.returnWorkerToPool(I)}else if(fe==="exitProcess")try{S8(q.returnCode)}catch(ke){if(ke instanceof pu)return;throw ke}else fe==="cancelDone"?Te.returnWorkerToPool(I):fe==="objectTransfer"?Te.receiveObjectTransfer(P.data):P.data.target==="setimmediate"?I.postMessage(P.data):G("worker sent an unknown command "+fe);Te.currentProxiedOperationCallerThread=void 0},I.onerror=function(P){G("pthread sent an error! "+P.filename+":"+P.lineno+": "+P.message)},b&&(I.on("message",function(P){I.onmessage({data:P})}),I.on("error",function(P){I.onerror(P)}),I.on("exit",function(P){})),I.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||r,wasmMemory:Q,wasmModule:pe})},allocateUnusedWorker:function(){var I=T("tfjs-backend-wasm-threaded-simd.worker.js");Te.unusedWorkers.push(new Worker(I))},getNewWorker:function(){return Te.unusedWorkers.length==0&&(Te.allocateUnusedWorker(),Te.loadWasmModuleToWorker(Te.unusedWorkers[0])),Te.unusedWorkers.length>0?Te.unusedWorkers.pop():null},busySpinWait:function(I){for(var S=performance.now()+I;performance.now()>2]=I,I}function g1(I,S){if(x)return ka(1,1,I,S)}function y1(I,S){if(I==S)postMessage({cmd:"processQueuedMainThreadWork"});else if(x)postMessage({targetThread:I,cmd:"processThreadQueue"});else{var P=Te.pthreads[I],q=P&&P.worker;if(!q)return;q.postMessage({cmd:"processThreadQueue"})}return 1}function x1(){ra()}function w1(I,S,P){var q=I1(S,P);return ph[I].apply(null,q)}function b1(I,S){}function _1(I,S,P){if(I<=0||I>s().length||I&!0)return-28;if(y){if(Atomics.load(o(),I>>2)!=S)return-6;for(var q=performance.now(),fe=q+P,ce=Atomics.exchange(o(),Qi>>2,I);;){if(q=performance.now(),q>fe)return ce=Atomics.exchange(o(),Qi>>2,0),-73;if(ce=Atomics.exchange(o(),Qi>>2,0),ce==0)break;if(df(),Atomics.load(o(),I>>2)!=S)return-6;ce=Atomics.exchange(o(),Qi>>2,I)}return 0}else{var de=Atomics.wait(o(),I>>2,S,P);if(de==="timed-out")return-73;if(de==="not-equal")return-6;if(de==="ok")return 0;throw"Atomics.wait returned an unexpected value "+de}}function v1(I,S,P){i().copyWithin(I,S,S+P)}function k1(){return b?require("os").cpus().length:navigator.hardwareConcurrency}function ka(I,S){for(var P=arguments.length-2,q=du(),fe=P,ce=Ji(fe*8),de=ce>>3,ke=0;ke>=2;P=i()[I++];){var q=P<105;q&&S&1&&S++,iu.push(q?u()[S++>>1]:o()[S]),++S}return iu}function N1(I,S,P){su.length=S;for(var q=P>>3,fe=0;fe>>16),nn(Q.buffer),1}catch(S){}}function E1(I){var S=S1();if(I<=S)return!1;var P=2147483648;if(I>P)return!1;for(var q=1;q<=4;q*=2){var fe=S*(1+.2/q);fe=Math.min(fe,I+100663296);var ce=Math.min(P,mt(Math.max(I,fe),65536)),de=T1(ce);if(de)return!0}return!1}var Ve={inEventHandler:0,removeAllEventListeners:function(){for(var I=Ve.eventHandlers.length-1;I>=0;--I)Ve._removeHandler(I);Ve.eventHandlers=[],Ve.deferredCalls=[]},registerRemoveEventListeners:function(){Ve.removeEventListenersRegistered||(_a.push(Ve.removeAllEventListeners),Ve.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(I,S,P){function q(de,ke){if(de.length!=ke.length)return!1;for(var st in de)if(de[st]!=ke[st])return!1;return!0}for(var fe in Ve.deferredCalls){var ce=Ve.deferredCalls[fe];if(ce.targetFunction==I&&q(ce.argsList,P))return}Ve.deferredCalls.push({targetFunction:I,precedence:S,argsList:P}),Ve.deferredCalls.sort(function(de,ke){return de.precedence>2]=P,o()[de+4>>2]=q,o()[de+8>>2]=fe,pf(0,I,637534208,S,q,de),Yi(ce)},getTargetThreadForEventCallback:function(I){switch(I){case 1:return 0;case 2:return Te.currentProxiedOperationCallerThread;default:return I}},getNodeNameForTarget:function(I){return I?I==window?"#window":I==screen?"#screen":I&&I.nodeName?I.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function C1(I){var S=ct(I)+1,P=hs(S);return at(I,P,S),P}function R1(I,S,P,q){var fe=du(),ce=Ji(12),de=0;S&&(de=C1(S)),o()[ce>>2]=de,o()[ce+4>>2]=P,o()[ce+8>>2]=q,pf(0,I,657457152,0,de,ce),Yi(fe)}function F1(I,S,P,q){S=S?ze(S):"",R1(I,S,P,q)}function M1(I){return I>2?ze(I):I}var $1=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function D1(I){I=M1(I);var S=$1[I]||(typeof document!="undefined"?document.querySelector(I):void 0);return S}function ou(I){return D1(I)}function fh(I,S,P){var q=ou(I);if(!q)return-4;if(q.canvasSharedPtr&&(o()[q.canvasSharedPtr>>2]=S,o()[q.canvasSharedPtr+4>>2]=P),q.offscreenCanvas||!q.controlTransferredOffscreen){q.offscreenCanvas&&(q=q.offscreenCanvas);var fe=!1;if(q.GLctxObject&&q.GLctxObject.GLctx){var ce=q.GLctxObject.GLctx.getParameter(2978);fe=ce[0]===0&&ce[1]===0&&ce[2]===q.width&&ce[3]===q.height}q.width=S,q.height=P,fe&&q.GLctxObject.GLctx.viewport(0,0,S,P)}else if(q.canvasSharedPtr){var de=o()[q.canvasSharedPtr+8>>2];return F1(de,I,S,P),1}else return-4;return 0}function mh(I,S,P){return x?ka(2,1,I,S,P):fh(I,S,P)}function O1(I,S,P){var q=ou(I);return q?fh(I,S,P):mh(I,S,P)}function z1(I){}function P1(I,S){}function L1(I){var S=I.getExtension("ANGLE_instanced_arrays");if(S)return I.vertexAttribDivisor=function(P,q){S.vertexAttribDivisorANGLE(P,q)},I.drawArraysInstanced=function(P,q,fe,ce){S.drawArraysInstancedANGLE(P,q,fe,ce)},I.drawElementsInstanced=function(P,q,fe,ce,de){S.drawElementsInstancedANGLE(P,q,fe,ce,de)},1}function W1(I){var S=I.getExtension("OES_vertex_array_object");if(S)return I.createVertexArray=function(){return S.createVertexArrayOES()},I.deleteVertexArray=function(P){S.deleteVertexArrayOES(P)},I.bindVertexArray=function(P){S.bindVertexArrayOES(P)},I.isVertexArray=function(P){return S.isVertexArrayOES(P)},1}function B1(I){var S=I.getExtension("WEBGL_draw_buffers");if(S)return I.drawBuffers=function(P,q){S.drawBuffersWEBGL(P,q)},1}function V1(I){return!!(I.multiDrawWebgl=I.getExtension("WEBGL_multi_draw"))}var nt={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(I){nt.lastError||(nt.lastError=I)},getNewId:function(I){for(var S=nt.counter++,P=I.length;P>2]:-1;fe+=ze(o()[P+ce*4>>2],de<0?void 0:de)}return fe},createContext:function(I,S){var P=I.getContext("webgl",S);if(!P)return 0;var q=nt.registerContext(P,S);return q},registerContext:function(I,S){var P=hs(8);o()[P+4>>2]=Zi();var q={handle:P,attributes:S,version:S.majorVersion,GLctx:I};return I.canvas&&(I.canvas.GLctxObject=q),nt.contexts[P]=q,(typeof S.enableExtensionsByDefault=="undefined"||S.enableExtensionsByDefault)&&nt.initExtensions(q),P},makeContextCurrent:function(I){return nt.currentContext=nt.contexts[I],c.ctx=Ia=nt.currentContext&&nt.currentContext.GLctx,!(I&&!Ia)},getContext:function(I){return nt.contexts[I]},deleteContext:function(I){nt.currentContext===nt.contexts[I]&&(nt.currentContext=null),typeof Ve=="object"&&Ve.removeAllHandlersOnTarget(nt.contexts[I].GLctx.canvas),nt.contexts[I]&&nt.contexts[I].GLctx.canvas&&(nt.contexts[I].GLctx.canvas.GLctxObject=void 0),hu(nt.contexts[I].handle),nt.contexts[I]=null},initExtensions:function(I){if(I||(I=nt.currentContext),!I.initExtensionsDone){I.initExtensionsDone=!0;var S=I.GLctx;L1(S),W1(S),B1(S),S.disjointTimerQueryExt=S.getExtension("EXT_disjoint_timer_query"),V1(S);var P=S.getSupportedExtensions()||[];P.forEach(function(q){q.indexOf("lose_context")<0&&q.indexOf("debug")<0&&S.getExtension(q)})}},populateUniformTable:function(I){for(var S=nt.programs[I],P=nt.programInfos[I]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},q=P.uniforms,fe=Ia.getProgramParameter(S,35718),ce=0;ce>2,q=o()[P+(24>>2)],fe={alpha:!!o()[P+(0>>2)],depth:!!o()[P+(4>>2)],stencil:!!o()[P+(8>>2)],antialias:!!o()[P+(12>>2)],premultipliedAlpha:!!o()[P+(16>>2)],preserveDrawingBuffer:!!o()[P+(20>>2)],powerPreference:U1[q],failIfMajorPerformanceCaveat:!!o()[P+(28>>2)],majorVersion:o()[P+(32>>2)],minorVersion:o()[P+(36>>2)],enableExtensionsByDefault:o()[P+(40>>2)],explicitSwapControl:o()[P+(44>>2)],proxyContextToMainThread:o()[P+(48>>2)],renderViaOffscreenBackBuffer:o()[P+(52>>2)]},ce=ou(I);if(!ce||fe.explicitSwapControl)return 0;var de=nt.createContext(ce,fe);return de}function H1(I,S){return j1(I,S)}var Xi={mappings:{},buffers:[null,[],[]],printChar:function(I,S){var P=Xi.buffers[I];S===0||S===10?((I===1?X:G)(Le(P,0)),P.length=0):P.push(S)},varargs:void 0,get:function(){Xi.varargs+=4;var I=o()[Xi.varargs-4>>2];return I},getStr:function(I){var S=ze(I);return S},get64:function(I,S){return I}};function Ah(I){return x?ka(3,1,I):0}function gh(I,S,P,q,fe){if(x)return ka(4,1,I,S,P,q,fe)}function yh(I,S,P,q){if(x)return ka(5,1,I,S,P,q);for(var fe=0,ce=0;ce>2],ke=o()[S+(ce*8+4)>>2],st=0;st>2]=fe,0}function G1(I){var S=Te.threadExitHandlers.pop();I&&S()}function q1(I,S){Te.threadExitHandlers.push(function(){ar.get(I)(S)})}function xh(I){if(x)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var S=Te.getNewWorker();if(S.pthread!==void 0)throw"Internal error!";if(!I.pthread_ptr)throw"Internal error, no pthread ptr!";Te.runningWorkers.push(S);for(var P=hs(128*4),q=0;q<128;++q)o()[P+q*4>>2]=0;var fe=I.stackBase+I.stackSize,ce=Te.pthreads[I.pthread_ptr]={worker:S,stackBase:I.stackBase,stackSize:I.stackSize,allocatedOwnStack:I.allocatedOwnStack,threadInfoStruct:I.pthread_ptr},de=ce.threadInfoStruct>>2;Atomics.store(l(),de+(64>>2),I.detached),Atomics.store(l(),de+(100>>2),P),Atomics.store(l(),de+(40>>2),ce.threadInfoStruct),Atomics.store(l(),de+(80>>2),I.stackSize),Atomics.store(l(),de+(76>>2),fe),Atomics.store(l(),de+(104>>2),I.stackSize),Atomics.store(l(),de+(104+8>>2),fe),Atomics.store(l(),de+(104+12>>2),I.detached);var ke=W2(),st=ke+40;Atomics.store(l(),de+(172>>2),st),S.pthread=ce;var Xt={cmd:"run",start_routine:I.startRoutine,arg:I.arg,threadInfoStruct:I.pthread_ptr,stackBase:I.stackBase,stackSize:I.stackSize};S.runPthread=function(){Xt.time=performance.now(),S.postMessage(Xt,I.transferList)},S.loaded&&(S.runPthread(),delete S.runPthread)}function X1(I,S,P,q){if(typeof SharedArrayBuffer=="undefined")return G("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!I)return G("pthread_create called with a null thread pointer!"),28;var fe=[],ce=0;if(x&&(fe.length===0||ce))return j2(687865856,I,S,P,q);if(ce)return ce;var de=0,ke=0,st=0;S&&S!=-1?(de=o()[S>>2],de+=81920,ke=o()[S+8>>2],st=o()[S+12>>2]!==0):de=2097152;var Xt=ke==0;Xt?ke=q2(16,de):(ke-=de,me(ke>0));for(var Lt=hs(228),Sa=0;Sa<228>>2;++Sa)l()[(Lt>>2)+Sa]=0;o()[I>>2]=Lt,o()[Lt+12>>2]=Lt;var eo=Lt+152;o()[eo>>2]=eo;var kn={stackBase:ke,stackSize:de,allocatedOwnStack:Xt,detached:st,startRoutine:P,pthread_ptr:Lt,arg:q,transferList:fe};return x?(kn.cmd="spawnThread",postMessage(kn,fe)):xh(kn),0}function wh(I){if(x)return ka(6,1,I);switch(I){case 30:return 16384;case 85:var S=2147483648;return S/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return A1(28),-1}x||Te.initMainThreadBlock();var Ia,K1=[null,g1,mh,Ah,gh,yh,wh],Z1={e:f1,r:m1,x:y1,b:x1,y:w1,j:b1,c:_1,d:qi,f:cs,p:v1,z:k1,u:N1,q:E1,v:O1,i:z1,t:P1,w:H1,m:Ah,n:gh,g:yh,o:o1,a:Q||c.wasmMemory,k:G1,l:q1,h:X1,s:wh},P2=i1(),bh=c.___wasm_call_ctors=function(){return(bh=c.___wasm_call_ctors=c.asm.A).apply(null,arguments)},Y1=c._init=function(){return(Y1=c._init=c.asm.B).apply(null,arguments)},J1=c._register_tensor=function(){return(J1=c._register_tensor=c.asm.C).apply(null,arguments)},Q1=c._dispose_data=function(){return(Q1=c._dispose_data=c.asm.D).apply(null,arguments)},ef=c._dispose=function(){return(ef=c._dispose=c.asm.E).apply(null,arguments)},tf=c._Abs=function(){return(tf=c._Abs=c.asm.G).apply(null,arguments)},nf=c._Add=function(){return(nf=c._Add=c.asm.H).apply(null,arguments)},rf=c._AddN=function(){return(rf=c._AddN=c.asm.I).apply(null,arguments)},af=c._ArgMax=function(){return(af=c._ArgMax=c.asm.J).apply(null,arguments)},sf=c._AvgPool=function(){return(sf=c._AvgPool=c.asm.K).apply(null,arguments)},of=c._BatchMatMul=function(){return(of=c._BatchMatMul=c.asm.L).apply(null,arguments)},lf=c._Ceil=function(){return(lf=c._Ceil=c.asm.M).apply(null,arguments)},uf=c._ClipByValue=function(){return(uf=c._ClipByValue=c.asm.N).apply(null,arguments)},cf=c._Conv2D=function(){return(cf=c._Conv2D=c.asm.O).apply(null,arguments)},_h=c._Conv2DBackpropInput=function(){return(_h=c._Conv2DBackpropInput=c.asm.P).apply(null,arguments)},vh=c._Cos=function(){return(vh=c._Cos=c.asm.Q).apply(null,arguments)},lu=c._CropAndResize=function(){return(lu=c._CropAndResize=c.asm.R).apply(null,arguments)},Ki=c._Cumsum=function(){return(Ki=c._Cumsum=c.asm.S).apply(null,arguments)},hf=c._DepthToSpace=function(){return(hf=c._DepthToSpace=c.asm.T).apply(null,arguments)},uu=c._DepthwiseConv2dNative=function(){return(uu=c._DepthwiseConv2dNative=c.asm.U).apply(null,arguments)},K=c._Equal=function(){return(K=c._Equal=c.asm.V).apply(null,arguments)},re=c._Exp=function(){return(re=c._Exp=c.asm.W).apply(null,arguments)},Ce=c._FlipLeftRight=function(){return(Ce=c._FlipLeftRight=c.asm.X).apply(null,arguments)},tt=c._Floor=function(){return(tt=c._Floor=c.asm.Y).apply(null,arguments)},Ct=c._FloorDiv=function(){return(Ct=c._FloorDiv=c.asm.Z).apply(null,arguments)},yt=c._FusedBatchNorm=function(){return(yt=c._FusedBatchNorm=c.asm._).apply(null,arguments)},Ge=c._FusedConv2D=function(){return(Ge=c._FusedConv2D=c.asm.$).apply(null,arguments)},Ze=c._FusedDepthwiseConv2D=function(){return(Ze=c._FusedDepthwiseConv2D=c.asm.aa).apply(null,arguments)},rn=c._Gather=function(){return(rn=c._Gather=c.asm.ba).apply(null,arguments)},aa=c._GatherNd=function(){return(aa=c._GatherNd=c.asm.ca).apply(null,arguments)},sa=c._Greater=function(){return(sa=c._Greater=c.asm.da).apply(null,arguments)},kh=c._GreaterEqual=function(){return(kh=c._GreaterEqual=c.asm.ea).apply(null,arguments)},cu=c._LeakyRelu=function(){return(cu=c._LeakyRelu=c.asm.fa).apply(null,arguments)},Kn=c._Less=function(){return(Kn=c._Less=c.asm.ga).apply(null,arguments)},Na=c._LessEqual=function(){return(Na=c._LessEqual=c.asm.ha).apply(null,arguments)},Ih=c._Log=function(){return(Ih=c._Log=c.asm.ia).apply(null,arguments)},O4=c._LogicalAnd=function(){return(O4=c._LogicalAnd=c.asm.ja).apply(null,arguments)},z4=c._Max=function(){return(z4=c._Max=c.asm.ka).apply(null,arguments)},P4=c._MaxPool=function(){return(P4=c._MaxPool=c.asm.la).apply(null,arguments)},L4=c._Maximum=function(){return(L4=c._Maximum=c.asm.ma).apply(null,arguments)},W4=c._Mean=function(){return(W4=c._Mean=c.asm.na).apply(null,arguments)},B4=c._Min=function(){return(B4=c._Min=c.asm.oa).apply(null,arguments)},V4=c._Minimum=function(){return(V4=c._Minimum=c.asm.pa).apply(null,arguments)},U4=c._Multiply=function(){return(U4=c._Multiply=c.asm.qa).apply(null,arguments)},j4=c._Neg=function(){return(j4=c._Neg=c.asm.ra).apply(null,arguments)},H4=c._NonMaxSuppressionV3=function(){return(H4=c._NonMaxSuppressionV3=c.asm.sa).apply(null,arguments)},G4=c._NonMaxSuppressionV4=function(){return(G4=c._NonMaxSuppressionV4=c.asm.ta).apply(null,arguments)},q4=c._NonMaxSuppressionV5=function(){return(q4=c._NonMaxSuppressionV5=c.asm.ua).apply(null,arguments)},X4=c._NotEqual=function(){return(X4=c._NotEqual=c.asm.va).apply(null,arguments)},K4=c._OneHot=function(){return(K4=c._OneHot=c.asm.wa).apply(null,arguments)},Z4=c._PadV2=function(){return(Z4=c._PadV2=c.asm.xa).apply(null,arguments)},Y4=c._Pow=function(){return(Y4=c._Pow=c.asm.ya).apply(null,arguments)},J4=c._Prelu=function(){return(J4=c._Prelu=c.asm.za).apply(null,arguments)},Q4=c._Prod=function(){return(Q4=c._Prod=c.asm.Aa).apply(null,arguments)},e8=c._RealDiv=function(){return(e8=c._RealDiv=c.asm.Ba).apply(null,arguments)},t8=c._Relu=function(){return(t8=c._Relu=c.asm.Ca).apply(null,arguments)},n8=c._Relu6=function(){return(n8=c._Relu6=c.asm.Da).apply(null,arguments)},r8=c._ResizeBilinear=function(){return(r8=c._ResizeBilinear=c.asm.Ea).apply(null,arguments)},a8=c._Reverse=function(){return(a8=c._Reverse=c.asm.Fa).apply(null,arguments)},s8=c._RotateWithOffset=function(){return(s8=c._RotateWithOffset=c.asm.Ga).apply(null,arguments)},i8=c._Round=function(){return(i8=c._Round=c.asm.Ha).apply(null,arguments)},o8=c._Rsqrt=function(){return(o8=c._Rsqrt=c.asm.Ia).apply(null,arguments)},l8=c._ScatterNd=function(){return(l8=c._ScatterNd=c.asm.Ja).apply(null,arguments)},u8=c._SelectV2=function(){return(u8=c._SelectV2=c.asm.Ka).apply(null,arguments)},c8=c._Sigmoid=function(){return(c8=c._Sigmoid=c.asm.La).apply(null,arguments)},h8=c._Sin=function(){return(h8=c._Sin=c.asm.Ma).apply(null,arguments)},d8=c._Softmax=function(){return(d8=c._Softmax=c.asm.Na).apply(null,arguments)},p8=c._Sqrt=function(){return(p8=c._Sqrt=c.asm.Oa).apply(null,arguments)},f8=c._Square=function(){return(f8=c._Square=c.asm.Pa).apply(null,arguments)},m8=c._SquaredDifference=function(){return(m8=c._SquaredDifference=c.asm.Qa).apply(null,arguments)},A8=c._Step=function(){return(A8=c._Step=c.asm.Ra).apply(null,arguments)},g8=c._StridedSlice=function(){return(g8=c._StridedSlice=c.asm.Sa).apply(null,arguments)},y8=c._Sub=function(){return(y8=c._Sub=c.asm.Ta).apply(null,arguments)},x8=c._Sum=function(){return(x8=c._Sum=c.asm.Ua).apply(null,arguments)},w8=c._Tanh=function(){return(w8=c._Tanh=c.asm.Va).apply(null,arguments)},b8=c._Tile=function(){return(b8=c._Tile=c.asm.Wa).apply(null,arguments)},_8=c._TopK=function(){return(_8=c._TopK=c.asm.Xa).apply(null,arguments)},v8=c._Transpose=function(){return(v8=c._Transpose=c.asm.Ya).apply(null,arguments)},k8=c.__FusedMatMul=function(){return(k8=c.__FusedMatMul=c.asm.Za).apply(null,arguments)},hs=c._malloc=function(){return(hs=c._malloc=c.asm._a).apply(null,arguments)},hu=c._free=function(){return(hu=c._free=c.asm.$a).apply(null,arguments)},L2=c.___errno_location=function(){return(L2=c.___errno_location=c.asm.ab).apply(null,arguments)},W2=c._emscripten_get_global_libc=function(){return(W2=c._emscripten_get_global_libc=c.asm.bb).apply(null,arguments)},Zi=c._pthread_self=function(){return(Zi=c._pthread_self=c.asm.cb).apply(null,arguments)},B2=c.___pthread_tsd_run_dtors=function(){return(B2=c.___pthread_tsd_run_dtors=c.asm.db).apply(null,arguments)},df=c._emscripten_main_thread_process_queued_calls=function(){return(df=c._emscripten_main_thread_process_queued_calls=c.asm.eb).apply(null,arguments)},I8=c._emscripten_current_thread_process_queued_calls=function(){return(I8=c._emscripten_current_thread_process_queued_calls=c.asm.fb).apply(null,arguments)},V2=c._emscripten_register_main_browser_thread_id=function(){return(V2=c._emscripten_register_main_browser_thread_id=c.asm.gb).apply(null,arguments)},U2=c.__emscripten_do_dispatch_to_thread=function(){return(U2=c.__emscripten_do_dispatch_to_thread=c.asm.hb).apply(null,arguments)},j2=c._emscripten_sync_run_in_main_thread_4=function(){return(j2=c._emscripten_sync_run_in_main_thread_4=c.asm.ib).apply(null,arguments)},H2=c._emscripten_run_in_main_runtime_thread_js=function(){return(H2=c._emscripten_run_in_main_runtime_thread_js=c.asm.jb).apply(null,arguments)},pf=c.__emscripten_call_on_thread=function(){return(pf=c.__emscripten_call_on_thread=c.asm.kb).apply(null,arguments)},N8=c._emscripten_tls_init=function(){return(N8=c._emscripten_tls_init=c.asm.lb).apply(null,arguments)},Nh=c.__emscripten_thread_init=function(){return(Nh=c.__emscripten_thread_init=c.asm.mb).apply(null,arguments)},du=c.stackSave=function(){return(du=c.stackSave=c.asm.nb).apply(null,arguments)},Yi=c.stackRestore=function(){return(Yi=c.stackRestore=c.asm.ob).apply(null,arguments)},Ji=c.stackAlloc=function(){return(Ji=c.stackAlloc=c.asm.pb).apply(null,arguments)},G2=c._emscripten_stack_set_limits=function(){return(G2=c._emscripten_stack_set_limits=c.asm.qb).apply(null,arguments)},q2=c._memalign=function(){return(q2=c._memalign=c.asm.rb).apply(null,arguments)},X2=c.__emscripten_allow_main_runtime_queued_calls=9880,Qi=c.__emscripten_main_thread_futex=11368;c.cwrap=Oe,c.PThread=Te,c.PThread=Te,c.wasmMemory=Q,c.ExitStatus=pu;var Sh;function pu(I){this.name="ExitStatus",this.message="Program terminated with exit("+I+")",this.status=I}us=function I(){Sh||ff(),Sh||(us=I)};function ff(I){if(I=I||m,na>0)return;if(x){h(c),postMessage({cmd:"loaded"});return}if(Q0(),na>0)return;function S(){Sh||(Sh=!0,c.calledRun=!0,!ue&&(ih(),e1(),h(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),_n()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),S()},1)):S()}c.run=ff;function S8(I,S){if(!(S&&le&&I===0)){if(!S&&x)throw postMessage({cmd:"exitProcess",returnCode:I}),new pu(I);le||(Te.terminateAllThreads(),ge=I,oh(),c.onExit&&c.onExit(I),ue=!0),g(I,new pu(I))}}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();return x&&(le=!1,Te.initWorker()),ff(),a.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),J8=It((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};var s=typeof a!="undefined"?a:{},i,o;s.ready=new Promise(function(K,re){i=K,o=re});var l={},u;for(u in s)s.hasOwnProperty(u)&&(l[u]=s[u]);var c=[],h="./this.program",d=function(K,re){throw re},p=!1,f=!1,m=!1,A=!1;p=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",A=!p&&!m&&!f;var g="";function y(K){return s.locateFile?s.locateFile(K,g):g+K}var w,b,_,x,N,T;m?(f?g=fu().dirname(g)+"/":g=__dirname+"/",w=function(K,re){return N||(N=require("fs")),T||(T=fu()),K=T.normalize(K),N.readFileSync(K,re?null:"utf8")},_=function(K){var re=w(K,!0);return re.buffer||(re=new Uint8Array(re)),X(re.buffer),re},process.argv.length>1&&(h=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(K){if(!(K instanceof hf))throw K}),process.on("unhandledRejection",xr),d=function(K){process.exit(K)},s.inspect=function(){return"[Emscripten Module object]"}):A?(typeof read!="undefined"&&(w=function(K){return read(K)}),_=function(K){var re;return typeof readbuffer=="function"?new Uint8Array(readbuffer(K)):(re=read(K,"binary"),X(typeof re=="object"),re)},typeof scriptArgs!="undefined"?c=scriptArgs:typeof arguments!="undefined"&&(c=arguments),typeof quit=="function"&&(d=function(K){quit(K)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(p||f)&&(f?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),r&&(g=r),g.indexOf("blob:")!==0?g=g.substr(0,g.lastIndexOf("/")+1):g="",w=function(K){var re=new XMLHttpRequest;return re.open("GET",K,!1),re.send(null),re.responseText},f&&(_=function(K){var re=new XMLHttpRequest;return re.open("GET",K,!1),re.responseType="arraybuffer",re.send(null),new Uint8Array(re.response)}),b=function(K,re,Ce){var tt=new XMLHttpRequest;tt.open("GET",K,!0),tt.responseType="arraybuffer",tt.onload=function(){if(tt.status==200||tt.status==0&&tt.response){re(tt.response);return}Ce()},tt.onerror=Ce,tt.send(null)},x=function(K){document.title=K});var E=s.print||console.log.bind(console),M=s.printErr||console.warn.bind(console);for(u in l)l.hasOwnProperty(u)&&(s[u]=l[u]);l=null,s.arguments&&(c=s.arguments),s.thisProgram&&(h=s.thisProgram),s.quit&&(d=s.quit);var z;s.wasmBinary&&(z=s.wasmBinary);var B=s.noExitRuntime||!0;typeof WebAssembly!="object"&&xr("no native wasm support detected");var V,U=!1,j;function X(K,re){K||xr("Assertion failed: "+re)}function G(K){var re=s["_"+K];return X(re,"Cannot call unknown function "+K+", make sure it is exported"),re}function ee(K,re,Ce,tt,Ct){var yt={string:function(Kn){var Na=0;if(Kn!=null&&Kn!==0){var Ih=(Kn.length<<2)+1;Na=lu(Ih),pe(Kn,Na,Ih)}return Na},array:function(Kn){var Na=lu(Kn.length);return ue(Kn,Na),Na}};function Ge(Kn){return re==="string"?le(Kn):re==="boolean"?Boolean(Kn):Kn}var Ze=G(K),rn=[],aa=0;if(tt)for(var sa=0;sa=tt);)++Ct;if(Ct-re>16&&K.subarray&&se)return se.decode(K.subarray(re,Ct));for(var yt="";re>10,56320|aa&1023)}}return yt}function le(K,re){return K?ne(Ee,K,re):""}function Q(K,re,Ce,tt){if(!(tt>0))return 0;for(var Ct=Ce,yt=Ce+tt-1,Ge=0;Ge=55296&&Ze<=57343){var rn=K.charCodeAt(++Ge);Ze=65536+((Ze&1023)<<10)|rn&1023}if(Ze<=127){if(Ce>=yt)break;re[Ce++]=Ze}else if(Ze<=2047){if(Ce+1>=yt)break;re[Ce++]=192|Ze>>6,re[Ce++]=128|Ze&63}else if(Ze<=65535){if(Ce+2>=yt)break;re[Ce++]=224|Ze>>12,re[Ce++]=128|Ze>>6&63,re[Ce++]=128|Ze&63}else{if(Ce+3>=yt)break;re[Ce++]=240|Ze>>18,re[Ce++]=128|Ze>>12&63,re[Ce++]=128|Ze>>6&63,re[Ce++]=128|Ze&63}}return re[Ce]=0,Ce-Ct}function pe(K,re,Ce){return Q(K,Ee,re,Ce)}function ue(K,re){Se.set(K,re)}function ge(K,re){return K%re>0&&(K+=re-K%re),K}var me,Se,Ee,Oe,Le,ze,rt,at,ct;function et(K){me=K,s.HEAP8=Se=new Int8Array(K),s.HEAP16=Oe=new Int16Array(K),s.HEAP32=ze=new Int32Array(K),s.HEAPU8=Ee=new Uint8Array(K),s.HEAPU16=Le=new Uint16Array(K),s.HEAPU32=rt=new Uint32Array(K),s.HEAPF32=at=new Float32Array(K),s.HEAPF64=ct=new Float64Array(K)}var mt=s.INITIAL_MEMORY||16777216,je,wn=[],kt=[],qn=[],tn=[],bn=!1;kt.push({func:function(){dh()}});function Xn(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Dr(s.preRun.shift());va(wn)}function $n(){bn=!0,va(kt)}function dn(){va(qn)}function nn(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)ar(s.postRun.shift());va(tn)}function Dr(K){wn.unshift(K)}function ar(K){tn.unshift(K)}var sr=0,ba=null,ta=null;function _a(K){sr++,s.monitorRunDependencies&&s.monitorRunDependencies(sr)}function ji(K){if(sr--,s.monitorRunDependencies&&s.monitorRunDependencies(sr),sr==0&&(ba!==null&&(clearInterval(ba),ba=null),ta)){var re=ta;ta=null,re()}}s.preloadedImages={},s.preloadedAudios={};function xr(K){s.onAbort&&s.onAbort(K),K+="",M(K),U=!0,j=1,K="abort("+K+"). Build with -s ASSERTIONS=1 for more info.";var re=new WebAssembly.RuntimeError(K);throw o(re),re}function sh(K,re){return String.prototype.startsWith?K.startsWith(re):K.indexOf(re)===0}var Q0="data:application/octet-stream;base64,";function ih(K){return sh(K,Q0)}var e1="file://";function oh(K){return sh(K,e1)}var _n="tfjs-backend-wasm.wasm";ih(_n)||(_n=y(_n));function lh(K){try{if(K==_n&&z)return new Uint8Array(z);if(_)return _(K);throw"both async and sync fetching of the wasm failed"}catch(re){xr(re)}}function t1(){if(!z&&(p||f)){if(typeof fetch=="function"&&!oh(_n))return fetch(_n,{credentials:"same-origin"}).then(function(K){if(!K.ok)throw"failed to load wasm binary file at '"+_n+"'";return K.arrayBuffer()}).catch(function(){return lh(_n)});if(b)return new Promise(function(K,re){b(_n,function(Ce){K(new Uint8Array(Ce))},re)})}return Promise.resolve().then(function(){return lh(_n)})}function na(){var K={a:vn};function re(Ge,Ze){var rn=Ge.exports;s.asm=rn,V=s.asm.g,et(V.buffer),je=s.asm.m,ji("wasm-instantiate")}_a("wasm-instantiate");function Ce(Ge){re(Ge.instance)}function tt(Ge){return t1().then(function(Ze){return WebAssembly.instantiate(Ze,K)}).then(Ge,function(Ze){M("failed to asynchronously prepare wasm: "+Ze),xr(Ze)})}function Ct(){return!z&&typeof WebAssembly.instantiateStreaming=="function"&&!ih(_n)&&!oh(_n)&&typeof fetch=="function"?fetch(_n,{credentials:"same-origin"}).then(function(Ge){var Ze=WebAssembly.instantiateStreaming(Ge,K);return Ze.then(Ce,function(rn){return M("wasm streaming compile failed: "+rn),M("falling back to ArrayBuffer instantiation"),tt(Ce)})}):tt(Ce)}if(s.instantiateWasm)try{var yt=s.instantiateWasm(K,re);return yt}catch(Ge){return M("Module.instantiateWasm callback failed with error: "+Ge),!1}return Ct().catch(o),{}}function va(K){for(;K.length>0;){var re=K.shift();if(typeof re=="function"){re(s);continue}var Ce=re.func;typeof Ce=="number"?re.arg===void 0?je.get(Ce)():je.get(Ce)(re.arg):Ce(re.arg===void 0?null:re.arg)}}function us(){xr()}function n1(K,re,Ce){Ee.copyWithin(K,re,re+Ce)}function r1(){return Ee.length}function ra(K){try{return V.grow(K-me.byteLength+65535>>>16),et(V.buffer),1}catch(re){}}function uh(K){var re=r1(),Ce=2147483648;if(K>Ce)return!1;for(var tt=1;tt<=4;tt*=2){var Ct=re*(1+.2/tt);Ct=Math.min(Ct,K+100663296);var yt=Math.min(Ce,ge(Math.max(K,Ct),65536)),Ge=ra(yt);if(Ge)return!0}return!1}var Hi={mappings:{},buffers:[null,[],[]],printChar:function(K,re){var Ce=Hi.buffers[K];re===0||re===10?((K===1?E:M)(ne(Ce,0)),Ce.length=0):Ce.push(re)},varargs:void 0,get:function(){Hi.varargs+=4;var K=ze[Hi.varargs-4>>2];return K},getStr:function(K){var re=le(K);return re},get64:function(K,re){return K}};function ch(K){return 0}function a1(K,re,Ce,tt,Ct){}function hh(K,re,Ce,tt){for(var Ct=0,yt=0;yt>2],Ze=ze[re+(yt*8+4)>>2],rn=0;rn>2]=Ct,0}var vn={a:us,d:n1,e:uh,f:ch,c:a1,b:hh},s1=na(),dh=s.___wasm_call_ctors=function(){return(dh=s.___wasm_call_ctors=s.asm.h).apply(null,arguments)},i1=s._init=function(){return(i1=s._init=s.asm.i).apply(null,arguments)},ph=s._register_tensor=function(){return(ph=s._register_tensor=s.asm.j).apply(null,arguments)},o1=s._dispose_data=function(){return(o1=s._dispose_data=s.asm.k).apply(null,arguments)},Gi=s._dispose=function(){return(Gi=s._dispose=s.asm.l).apply(null,arguments)},qi=s._Abs=function(){return(qi=s._Abs=s.asm.n).apply(null,arguments)},l1=s._Add=function(){return(l1=s._Add=s.asm.o).apply(null,arguments)},u1=s._AddN=function(){return(u1=s._AddN=s.asm.p).apply(null,arguments)},c1=s._ArgMax=function(){return(c1=s._ArgMax=s.asm.q).apply(null,arguments)},Te=s._AvgPool=function(){return(Te=s._AvgPool=s.asm.r).apply(null,arguments)},h1=s._BatchMatMul=function(){return(h1=s._BatchMatMul=s.asm.s).apply(null,arguments)},d1=s._Ceil=function(){return(d1=s._Ceil=s.asm.t).apply(null,arguments)},p1=s._ClipByValue=function(){return(p1=s._ClipByValue=s.asm.u).apply(null,arguments)},f1=s._Conv2D=function(){return(f1=s._Conv2D=s.asm.v).apply(null,arguments)},m1=s._Conv2DBackpropInput=function(){return(m1=s._Conv2DBackpropInput=s.asm.w).apply(null,arguments)},cs=s._Cos=function(){return(cs=s._Cos=s.asm.x).apply(null,arguments)},A1=s._CropAndResize=function(){return(A1=s._CropAndResize=s.asm.y).apply(null,arguments)},g1=s._Cumsum=function(){return(g1=s._Cumsum=s.asm.z).apply(null,arguments)},y1=s._DepthToSpace=function(){return(y1=s._DepthToSpace=s.asm.A).apply(null,arguments)},x1=s._DepthwiseConv2dNative=function(){return(x1=s._DepthwiseConv2dNative=s.asm.B).apply(null,arguments)},w1=s._Equal=function(){return(w1=s._Equal=s.asm.C).apply(null,arguments)},b1=s._Exp=function(){return(b1=s._Exp=s.asm.D).apply(null,arguments)},_1=s._FlipLeftRight=function(){return(_1=s._FlipLeftRight=s.asm.E).apply(null,arguments)},v1=s._Floor=function(){return(v1=s._Floor=s.asm.F).apply(null,arguments)},k1=s._FloorDiv=function(){return(k1=s._FloorDiv=s.asm.G).apply(null,arguments)},ka=s._FusedBatchNorm=function(){return(ka=s._FusedBatchNorm=s.asm.H).apply(null,arguments)},su=s._FusedConv2D=function(){return(su=s._FusedConv2D=s.asm.I).apply(null,arguments)},iu=s._FusedDepthwiseConv2D=function(){return(iu=s._FusedDepthwiseConv2D=s.asm.J).apply(null,arguments)},I1=s._Gather=function(){return(I1=s._Gather=s.asm.K).apply(null,arguments)},N1=s._GatherNd=function(){return(N1=s._GatherNd=s.asm.L).apply(null,arguments)},S1=s._Greater=function(){return(S1=s._Greater=s.asm.M).apply(null,arguments)},T1=s._GreaterEqual=function(){return(T1=s._GreaterEqual=s.asm.N).apply(null,arguments)},E1=s._LeakyRelu=function(){return(E1=s._LeakyRelu=s.asm.O).apply(null,arguments)},Ve=s._Less=function(){return(Ve=s._Less=s.asm.P).apply(null,arguments)},C1=s._LessEqual=function(){return(C1=s._LessEqual=s.asm.Q).apply(null,arguments)},R1=s._Log=function(){return(R1=s._Log=s.asm.R).apply(null,arguments)},F1=s._LogicalAnd=function(){return(F1=s._LogicalAnd=s.asm.S).apply(null,arguments)},M1=s._Max=function(){return(M1=s._Max=s.asm.T).apply(null,arguments)},$1=s._MaxPool=function(){return($1=s._MaxPool=s.asm.U).apply(null,arguments)},D1=s._Maximum=function(){return(D1=s._Maximum=s.asm.V).apply(null,arguments)},ou=s._Mean=function(){return(ou=s._Mean=s.asm.W).apply(null,arguments)},fh=s._Min=function(){return(fh=s._Min=s.asm.X).apply(null,arguments)},mh=s._Minimum=function(){return(mh=s._Minimum=s.asm.Y).apply(null,arguments)},O1=s._Multiply=function(){return(O1=s._Multiply=s.asm.Z).apply(null,arguments)},z1=s._Neg=function(){return(z1=s._Neg=s.asm._).apply(null,arguments)},P1=s._NonMaxSuppressionV3=function(){return(P1=s._NonMaxSuppressionV3=s.asm.$).apply(null,arguments)},L1=s._NonMaxSuppressionV4=function(){return(L1=s._NonMaxSuppressionV4=s.asm.aa).apply(null,arguments)},W1=s._NonMaxSuppressionV5=function(){return(W1=s._NonMaxSuppressionV5=s.asm.ba).apply(null,arguments)},B1=s._NotEqual=function(){return(B1=s._NotEqual=s.asm.ca).apply(null,arguments)},V1=s._OneHot=function(){return(V1=s._OneHot=s.asm.da).apply(null,arguments)},nt=s._PadV2=function(){return(nt=s._PadV2=s.asm.ea).apply(null,arguments)},U1=s._Pow=function(){return(U1=s._Pow=s.asm.fa).apply(null,arguments)},j1=s._Prelu=function(){return(j1=s._Prelu=s.asm.ga).apply(null,arguments)},H1=s._Prod=function(){return(H1=s._Prod=s.asm.ha).apply(null,arguments)},Xi=s._RealDiv=function(){return(Xi=s._RealDiv=s.asm.ia).apply(null,arguments)},Ah=s._Relu=function(){return(Ah=s._Relu=s.asm.ja).apply(null,arguments)},gh=s._Relu6=function(){return(gh=s._Relu6=s.asm.ka).apply(null,arguments)},yh=s._ResizeBilinear=function(){return(yh=s._ResizeBilinear=s.asm.la).apply(null,arguments)},G1=s._Reverse=function(){return(G1=s._Reverse=s.asm.ma).apply(null,arguments)},q1=s._RotateWithOffset=function(){return(q1=s._RotateWithOffset=s.asm.na).apply(null,arguments)},xh=s._Round=function(){return(xh=s._Round=s.asm.oa).apply(null,arguments)},X1=s._Rsqrt=function(){return(X1=s._Rsqrt=s.asm.pa).apply(null,arguments)},wh=s._ScatterNd=function(){return(wh=s._ScatterNd=s.asm.qa).apply(null,arguments)},Ia=s._SelectV2=function(){return(Ia=s._SelectV2=s.asm.ra).apply(null,arguments)},K1=s._Sigmoid=function(){return(K1=s._Sigmoid=s.asm.sa).apply(null,arguments)},Z1=s._Sin=function(){return(Z1=s._Sin=s.asm.ta).apply(null,arguments)},P2=s._Softmax=function(){return(P2=s._Softmax=s.asm.ua).apply(null,arguments)},bh=s._Sqrt=function(){return(bh=s._Sqrt=s.asm.va).apply(null,arguments)},Y1=s._Square=function(){return(Y1=s._Square=s.asm.wa).apply(null,arguments)},J1=s._SquaredDifference=function(){return(J1=s._SquaredDifference=s.asm.xa).apply(null,arguments)},Q1=s._Step=function(){return(Q1=s._Step=s.asm.ya).apply(null,arguments)},ef=s._StridedSlice=function(){return(ef=s._StridedSlice=s.asm.za).apply(null,arguments)},tf=s._Sub=function(){return(tf=s._Sub=s.asm.Aa).apply(null,arguments)},nf=s._Sum=function(){return(nf=s._Sum=s.asm.Ba).apply(null,arguments)},rf=s._Tanh=function(){return(rf=s._Tanh=s.asm.Ca).apply(null,arguments)},af=s._Tile=function(){return(af=s._Tile=s.asm.Da).apply(null,arguments)},sf=s._TopK=function(){return(sf=s._TopK=s.asm.Ea).apply(null,arguments)},of=s._Transpose=function(){return(of=s._Transpose=s.asm.Fa).apply(null,arguments)},lf=s.__FusedMatMul=function(){return(lf=s.__FusedMatMul=s.asm.Ga).apply(null,arguments)},uf=s._malloc=function(){return(uf=s._malloc=s.asm.Ha).apply(null,arguments)},cf=s._free=function(){return(cf=s._free=s.asm.Ia).apply(null,arguments)},_h=s.stackSave=function(){return(_h=s.stackSave=s.asm.Ja).apply(null,arguments)},vh=s.stackRestore=function(){return(vh=s.stackRestore=s.asm.Ka).apply(null,arguments)},lu=s.stackAlloc=function(){return(lu=s.stackAlloc=s.asm.La).apply(null,arguments)};s.cwrap=Y;var Ki;function hf(K){this.name="ExitStatus",this.message="Program terminated with exit("+K+")",this.status=K}ta=function K(){Ki||uu(),Ki||(ta=K)};function uu(K){if(K=K||c,sr>0||(Xn(),sr>0))return;function re(){Ki||(Ki=!0,s.calledRun=!0,!U&&($n(),dn(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),nn()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),re()},1)):re()}if(s.run=uu,s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();return uu(),a.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),Q8=It((e,t)=>{(function(n,r,a){function s(u){var c=this,h=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=h(" "),c.s1=h(" "),c.s2=h(" "),c.s0-=h(u),c.s0<0&&(c.s0+=1),c.s1-=h(u),c.s1<0&&(c.s1+=1),c.s2-=h(u),c.s2<0&&(c.s2+=1),h=null}function i(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function o(u,c){var h=new s(u),d=c&&c.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var u=4022871197,c=function(h){h=String(h);for(var d=0;d>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),ek=It((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),tk=It((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var h=0;h>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),nk=It((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.x,d=u.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,u.i=d+1&7,f};function c(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p0;--p)h.next()}c(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.x&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),rk=It((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.w,d=u.X,p=u.i,f,m;return u.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,u.i=p,m+(h^h>>>16)|0};function c(h,d){var p,f,m,A,g,y=[],w=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,w=Math.max(w,d.length)),m=0,A=-32;A>>15,f^=f<<4,f^=f>>>13,A>=0&&(g=g+1640531527|0,p=y[A&127]^=f+g,m=p==0?m+1:0);for(m>=128&&(y[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=y[m+34&127],p=y[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,y[m]=f^p;h.w=g,h.X=y,h.i=m}c(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.X&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),ak=It((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.b,p=u.c,f=u.d,m=u.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,u.b=d=d<<20^d>>>12^p,u.c=p=p-f|0,u.d=f<<16^p>>>16^m,u.a=m-d|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var h=0;h>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),sk=It((e,t)=>{(function(n,r,a){var s=256,i=6,o=52,l="random",u=a.pow(s,i),c=a.pow(2,o),h=c*2,d=s-1,p;function f(_,x,N){var T=[];x=x==!0?{entropy:!0}:x||{};var E=y(g(x.entropy?[_,b(r)]:_==null?w():_,3),T),M=new m(T),z=function(){for(var B=M.g(i),V=u,U=0;B=h;)B/=2,V/=2,U>>>=1;return(B+U)/V};return z.int32=function(){return M.g(4)|0},z.quick=function(){return M.g(4)/4294967296},z.double=z,y(b(M.S),r),(x.pass||N||function(B,V,U,j){return j&&(j.S&&A(j,M),B.state=function(){return A(M,{})}),U?(a[l]=B,V):B})(z,E,"global"in x?x.global:this==a,x.state)}function m(_){var x,N=_.length,T=this,E=0,M=T.i=T.j=0,z=T.S=[];for(N||(_=[N++]);E{var n=Q8(),r=ek(),a=tk(),s=nk(),i=rk(),o=ak(),l=sk();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),ik=It(()=>{}),ok="3.3.0",lk="3.3.0",uk="3.3.0",ck="3.3.0",hk="3.3.0",dk=1e-7,pk=1e-4,Fh=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},mu=class{refCount(e){return ir("refCount")}incRef(e){return ir("incRef")}timerAvailable(){return!0}time(e){return ir("time")}read(e){return ir("read")}readSync(e){return ir("readSync")}numDataIds(){return ir("numDataIds")}disposeData(e,t){return ir("disposeData")}write(e,t,n){return ir("write")}move(e,t,n,r,a){return ir("move")}memory(){return ir("memory")}floatPrecision(){return ir("floatPrecision")}epsilon(){return this.floatPrecision()===32?dk:pk}dispose(){return ir("dispose")}};function ir(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function n5(e){let t=e.length,n=0,r=0;for(;t>0;)r=Math.random()*t|0,t--,n=e[t],e[t]=e[r],e[r]=n}function fk(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,r,a,s=0;for(;n>0;)s=Math.random()*n|0,n--,r=e[n],a=t[n],e[n]=e[s],t[n]=t[s],e[s]=r,t[s]=a}function Au(e,t,n){return Math.max(e,Math.min(t,n))}function mk(e){return e%2==0?e:e+1}function Ak(e){let t=0;for(let n=0;nn+` Shapes ${e} and ${t} must match`)}function ds(e){F(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function ps(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||cn(e)&&!n)for(let r=0;r0,n){return new Promise((r,a)=>{let s=0,i=()=>{if(e()){r();return}s++;let o=t(s);if(n!=null&&s>=n){a();return}setTimeout(i,o)};i()})}function kk(e,t){let n=1,r=-1;for(let s=0;s=0)n*=e[s];else if(e[s]===-1){if(r!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${r} and dim ${s}`);r=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(r===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let a=e.slice();return a[r]=t/n,a}function or(e,t){let n=t.length;return e=e==null?t.map((r,a)=>a):[].concat(e),F(e.every(r=>r>=-n&&r`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),F(e.every(r=>Kt(r)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(r=>r<0?n+r:r)}function r5(e,t){let n=[],r=[],a=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||a?null:or(t,e).sort(),i=0;for(let o=0;oo)&&e[o]===1&&(n.push(e[o]),r.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),r.push(o))}return{newShape:n,keptDims:r}}function a5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function s5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function i5(e,t){for(let n=0;nt+=n.length),t}function Ea(e){return typeof e=="string"||e instanceof String}function u5(e){return typeof e=="boolean"}function c5(e){return typeof e=="number"}function Mh(e){return Array.isArray(e)?Mh(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":c5(e)?"float32":Ea(e)?"string":u5(e)?"bool":"float32"}function Ca(e){return!!(e&&e.constructor&&e.call&&e.apply)}function $h(e,t){for(let n=t;n=0;--r)n[r]=n[r+1]*e[r+1];return n}function h5(e,t,n){let r=new Array;if(t.length===1){let a=t[0];for(let s=0;so*l);for(let o=0;or*a);if(n===0)return[];if(n!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}.`);return h5(0,e,t)}function gf(e,t){let n=Dh(e,t);for(let r=0;rr*a,1);if(t==null||t==="float32")return ao(e,new Float32Array(n));if(t==="int32")return ao(e,new Int32Array(n));if(t==="bool")return ao(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function yf(e){e.forEach(t=>{F(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function Sk(e,t,n){if(t===0)return 0;if(t===1)return e[0];let r=e[e.length-1];for(let a=0;a{let[n,r]=t.split(":");this.urlFlags[n]=Ck(n,r)})}};function Ek(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...r)=>(Rk(t,r[0],r[1]),r.join("="))),t}function Rk(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function Ck(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function J(){return br}var br=null;function Fk(e){br=e}var wf;function f5(){if(wf==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");wf=e}return wf}function Mk(){let e=f5();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function bf(e,t){let n=Mk();if(n.has(e))return n.get(e);{let r=t();return n.set(e,r),n.get(e)}}var so="Abs",io="Acos",oo="Acosh",Ra="Add",fs="AddN",Oh="All",zh="Any",ms="ArgMax",yu="ArgMin",lo="Asin",uo="Asinh",co="Atan",ho="Atanh",po="Atan2",As="AvgPool",Ph="AvgPoolGrad",xu="AvgPool3D",Lh="AvgPool3DGrad",gs="BatchMatMul",wu="BatchToSpaceND",Wh="Bincount",m5="BroadcastTo",ys="Cast",xs="Ceil",Fa="ClipByValue",Bh="Complex",bu="ComplexAbs",fo="Concat",ws="Conv2D",Vh="Conv2DBackpropFilter",bs="Conv2DBackpropInput",_u="Conv3D",Uh="Conv3DBackpropFilterV2",jh="Conv3DBackpropInputV2",_s="Cos",mo="Cosh",vs="Cumsum",Ao="CropAndResize",Hh="DenseBincount",go="DepthToSpace",ks="DepthwiseConv2dNative",Gh="DepthwiseConv2dNativeBackpropFilter",qh="DepthwiseConv2dNativeBackpropInput",Xh="Diag",vu="Dilation2D",Kh="Dilation2DBackpropInput",Zh="Dilation2DBackpropFilter",Is="RealDiv",yo="Elu",Yh="EluGrad",xo="Erf",wo="Equal",Ns="Exp",bo="ExpandDims",_o="Expm1",Jh="FFT",ku="Fill",vo="FlipLeftRight",Ss="Floor",Ts="FloorDiv",Es="FusedBatchNorm",ko="GatherV2",Io="GatherNd",No="Greater",Cs="GreaterEqual",Rs="Identity",Qh="IFFT",ed="Imag",So="IsFinite",To="IsInf",Eo="IsNan",Fs="LeakyRelu",Co="Less",Ro="LessEqual",td="LinSpace",Ms="Log",Fo="Log1p",Mo="LogicalAnd",Iu="LogicalNot",Nu="LogicalOr",A5="LogSoftmax",Su="LRN",nd="LRNGrad",$s="Max",Ds="Maximum",Os="MaxPool",rd="MaxPoolGrad",Tu="MaxPool3D",ad="MaxPool3DGrad",sd="MaxPoolWithArgmax",zs="Mean",Ps="Min",Ls="Minimum",Eu="MirrorPad",$o="Mod",id="Multinomial",Ws="Multiply",Do="Neg",Oo="NotEqual",zo="NonMaxSuppressionV3",Po="NonMaxSuppressionV4",Lo="NonMaxSuppressionV5",Wo="OnesLike",Bs="OneHot",Bo="Pack",Vs="PadV2",$k="Pool",Us="Pow",js="Prelu",Vo="Prod",Cu="Range",od="Real",Uo="Reciprocal",Hs="Relu",jo="Reshape",Ru="ResizeNearestNeighbor",ld="ResizeNearestNeighborGrad",Gs="ResizeBilinear",ud="ResizeBilinearGrad",qs="Relu6",Xs="Reverse",Ks="Round",Zs="Rsqrt",Ho="ScatterNd",Go="Select",qo="Selu",Xo="Slice",Ys="Sin",Ko="Sinh",Zo="Sign",Js="Sigmoid",Yo="Softplus",Qs="Sqrt",ei="Sum",Fu="SpaceToBatchND",Jo="SplitV",ti="Softmax",ni="SquaredDifference",Mu="Square",ri="Sub",cd="SparseToDense",Qo="StridedSlice",el="Tan",ai="Tanh",Ma="Tile",tl="TopK",hd="Transform",si="Transpose",dd="Unique",nl="Unpack",$u="UnsortedSegmentSum",rl="ZerosLike",$a="Step",pd="FromPixels",al="RotateWithOffset",ii="_FusedMatMul",oi="FusedConv2D",li="FusedDepthwiseConv2D",sl=bf("kernelRegistry",()=>new Map),Du=bf("gradRegistry",()=>new Map);function fd(e,t){let n=_f(e,t);return sl.get(n)}function vf(e){return Du.get(e)}function il(e){let t=sl.entries(),n=[];for(;;){let{done:r,value:a}=t.next();if(r)break;let[s,i]=a,[o]=s.split("_");o===e&&n.push(i)}return n}function ui(e){let{kernelName:t,backendName:n}=e,r=_f(t,n);sl.has(r)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),sl.set(r,e)}function g5(e){let{kernelName:t}=e;Du.has(t)&&J().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),Du.set(t,e)}function Dk(e,t){let n=_f(e,t);if(!sl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);sl.delete(n)}function Ok(e){if(!Du.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Du.delete(e)}function zk(e,t){il(e).forEach(n=>{let r=Object.assign({},n,{backendName:t});ui(r)})}function _f(e,t){return`${t}_${e}`}var v={};We(v,{arraysEqual:()=>ia,assert:()=>F,assertNonNegativeIntegerDimensions:()=>yf,assertNonNull:()=>ds,assertShapesMatch:()=>un,bytesFromStringArray:()=>l5,bytesPerElement:()=>Af,checkConversionForErrors:()=>i5,clamp:()=>Au,computeStrides:()=>ro,createScalarValue:()=>Pk,createShuffledIndices:()=>_k,decodeString:()=>Ad,distSquared:()=>yk,encodeString:()=>zu,fetch:()=>Lk,flatten:()=>ps,getArrayFromDType:()=>s5,getTypedArrayFromDType:()=>a5,hasEncodingLoss:()=>Ik,indexToLoc:()=>Tk,inferDtype:()=>Mh,inferFromImplicitShape:()=>kk,isBoolean:()=>u5,isFunction:()=>Ca,isInt:()=>Kt,isNumber:()=>c5,isPromise:()=>xf,isScalarShape:()=>xk,isString:()=>Ea,isTypedArray:()=>cn,isValidDtype:()=>o5,locToIndex:()=>Sk,makeOnesTypedArray:()=>gf,makeZerosNestedTypedArray:()=>Nk,makeZerosTypedArray:()=>Dh,nearestDivisor:()=>$h,nearestLargerEven:()=>mk,now:()=>Ou,parseAxisParam:()=>or,randUniform:()=>gk,repeatedTry:()=>vk,rightPad:()=>gu,shuffle:()=>n5,shuffleCombo:()=>fk,sizeFromShape:()=>Wt,sizeToSquarishShape:()=>bk,squeezeShape:()=>r5,sum:()=>Ak,tanh:()=>wk,toNestedArray:()=>ao,toTypedArray:()=>md});function Pk(e,t){return t==="string"?zu(e):md([e],t)}function Wk(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function md(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=ps(e)),J().getBool("DEBUG")&&i5(e,t),Wk(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let r=0;r{r=n()},s,i=Ou();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(a);else{a();for(let o of r)o.dataSync();s=Promise.resolve({kernelMs:Ou()-i})}if(J().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o{Bk(u,l.dtype,e)})}return{kernelName:e,outputs:r,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:r,inputs:a,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),r,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],a,o[2])})})}};function Bk(e,t,n){if(t!=="float32")return!1;for(let r=0;r0?f:""} `}}console.log(`%c${o} %c${i} %c${l}D ${c} %c${u} %c${h} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function jk(e,t,n){let r={},a={};for(let l=0;lr[m.id]=!0),p=!0,a[u.id]=!0;break}if(p)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],c=u.inputs;for(let h=0;h=0;a--){let s=t[a],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=s.inputs[l];if(!ia(u.shape,c.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=u;else{let h=e[c.id];e[c.id]=r(h,u),h.dispose()}}}}var y5=20,Pu=3,kf=7;function qk(e,t,n,r){let a=ro(t),s=Gk(e,t,n,a),i=t.length,o=gd(e,t,n,a,s),l=["Tensor"];return r&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(` `)),l.join(` `)}function Gk(e,t,n,r){let a=Wt(t),s=r[r.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?Wu(e):e;if(o>1)for(let u=0;uy5){let A=Pu*i,g=Array.from(e.slice(0,A)),y=Array.from(e.slice((o-Pu)*i,o*i));return n==="complex64"&&(g=Wu(g),y=Wu(y)),["["+g.map((w,b)=>Lu(w,a[b],n)).join(", ")+", ..., "+y.map((w,b)=>Lu(w,a[o-Pu+b],n)).join(", ")+"]"]}let m=n==="complex64"?Wu(e):Array.from(e);return["["+m.map((A,g)=>Lu(A,a[g],n)).join(", ")+"]"]}let u=t.slice(1),c=r.slice(1),h=r[0]*i,d=[];if(o>y5){for(let m=0;m`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||s5(t,this.size),this.strides=ro(e)}set(e,...t){t.length===0&&(t=[0]),F(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let a=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(a)}t++}let n=e[e.length-1];for(let r=0;rAd(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Or().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Ad(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Or().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Or().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return ol.print(this,e)}clone(){return this.throwIfDisposed(),ol.clone(this)}toString(e=!1){let t=this.dataSync();return qk(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),ol.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Or().makeVariable(this,e,t,n)}};Object.defineProperty(qe,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Z(){return bf("Tensor",()=>qe)}Z();var Bu=class extends qe{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!ia(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Or().disposeTensor(this),this.dataId=e.dataId,Or().incRef(this,null)}dispose(){Or().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Bu,Symbol.hasInstance,{value:e=>e instanceof qe&&e.assign!=null&&e.assign instanceof Function});var _r={};We(_r,{assertTypesMatch:()=>w5,getTensorsInContainer:()=>If,isTensorInList:()=>Jk,makeTypesMatch:()=>Nt});var Nf;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Nf||(Nf={}));var Sf;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Sf||(Sf={}));var Tf;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Tf||(Tf={}));var Ef;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Ef||(Ef={}));var Cf;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Cf||(Cf={}));var Qk={float32:Ef,int32:Sf,bool:Tf,complex64:Cf};function lr(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return Qk[e][t]}function yd(e){return lr(e,"int32")}function Nt(e,t){if(e.dtype===t.dtype)return[e,t];let n=lr(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function w5(e,t){F(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function Jk(e,t){return t.some(n=>n.id===e.id)}function If(e){let t=[],n=new Set;return b5(e,t,n),t}function b5(e,t,n){if(e==null)return;if(e instanceof qe){t.push(e);return}if(!e9(e))return;let r=e;for(let a in r){let s=r[a];n.has(s)||(n.add(s),b5(s,t,n))}}function e9(e){return Array.isArray(e)||typeof e=="object"}function Rf(e){return e.kernelName!=null}var _5=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Vu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new _5}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){il(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof mu)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,a=n.then(s=>r(rthis.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;tthis.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return Vu.nextTensorId++}nextVariableId(){return Vu.nextVariableId++}clone(e){let t=$.runKernel(Rs,{x:e}),n={x:e},r=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return $.runKernel(ys,o,l)}}),a=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,a,{}),t}runKernel(e,t,n){if(fd(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),a=0;n.forEach(o=>{a+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=r-t-a-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],r=this.isTapeOn(),a=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=Rf(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Rf(e)){let{kernelName:p,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let A=fd(p,this.backendName);F(A!=null,()=>`Cannot find registered kernel '${p}' for backend '${this.backendName}'`),i=()=>{let g=this.backend.numDataIds();o=A.kernelFunc({inputs:f,attrs:m,backend:this.backend});let y=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,g,y);let w=y.map(b=>{if(b.rank!=null)return b;let{dataId:_,shape:x,dtype:N}=b;return this.makeTensorFromDataId(_,x,N)});if(r){let b=this.getTensorsForGradient(p,f,w);n=this.saveTensorsForBackwardMode(b)}return w}}else{let{forwardFunc:p}=e,f=m=>{!r||(n=m.map(A=>this.keep(this.clone(A))))};i=()=>{let m=this.backend.numDataIds();o=this.tidy(()=>p(this.backend,f));let A=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,A),A}}let{inputs:u,attrs:c}=e,h=Rf(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),r&&this.addTapeNode(l,u,t,h,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-a,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(p=>u[p]!=null?u[p].shape:null),outputShapes:t.map(p=>p.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let r=vf(e);if(r!=null){let a=r.inputsToSave||[],s=r.outputsToSave||[],i;r.saveAllInputs?(F(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=a.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let a=e;n==="string"&&Ea(e[0])&&(a=e.map(o=>zu(o)));let s=r.write(a,t,n),i=new qe(t,n,s,this.nextTensorId());if(this.trackTensor(i,r),n==="string"){let o=this.state.tensorInfo.get(s),l=l5(a);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,r){n=n||"float32";let a=new qe(t,n,e,this.nextTensorId());return this.trackTensor(a,r),a}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let a=new Bu(e,t,n,this.nextTensorId());if(this.state.registeredVariables[a.name]!=null)throw new Error(`Variable with name ${a.name} was already registered`);return this.state.registeredVariables[a.name]=a,this.incRef(a,this.backend),a}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Af(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof Bu||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Af(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,a,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:a},o=vf(e);o!=null&&(r=o.gradFunc),r!=null&&(i.gradient=l=>(l=l.map((u,c)=>{if(u==null){let h=n[c],d=Dh(h.size,h.dtype);return this.makeTensor(d,h.shape,h.dtype)}return u}),r(l.length>1?l:l[0],a,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=If(e),n=new Set(t.map(a=>a.id));for(let a=0;a{!a.kept&&a.scopeId===r.id&&this.track(a)})}gradients(e,t,n,r=!1){if(F(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let a=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));F(a instanceof qe,()=>"The result y returned by f() must be a tensor.");let s=jk(this.state.activeTape,t,a);if(!r&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[a.id]=n==null?t9(a.shape):n,Hk(i,s,l=>this.tidy(l),n9);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:a,grads:o}})}customGrad(e){return F(Ca(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{F(t.every(i=>i instanceof qe),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};t.forEach((i,o)=>{r[o]=i});let a=(i,o)=>(n=e(...t,o),F(n.value instanceof qe,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),F(Ca(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),u=Array.isArray(l)?l:[l];F(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),F(u.every(h=>h instanceof qe),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return u.forEach((h,d)=>{c[d]=()=>h}),c};return this.runKernelFunc({forwardFunc:a,backwardsFunc:s,inputs:r})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Ou(),n=await this.backend.time(e);return n.wallMs=Ou()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new _5;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Vu.nextTensorId=0;Vu.nextVariableId=0;function t9(e){let t=gf(Wt(e),"float32");return $.makeTensor(t,e,"float32")}function v5(){let e=f5();if(e._tfengine==null){let t=new p5(e);e._tfengine=new Vu(t)}return Fk(e._tfengine.ENV),Kk(()=>e._tfengine),e._tfengine}var $=v5();function n9(e,t){let n={a:e,b:t};return $.runKernel(Ra,n)}var Uu={};We(Uu,{isBrowser:()=>k5,isMobile:()=>r9});function a9(){return typeof navigator!="undefined"&&navigator!=null}function r9(){if(a9()){let e=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(e)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(e.substr(0,4))}return!1}function k5(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var vr=J();vr.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});vr.registerFlag("IS_BROWSER",()=>k5());vr.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");vr.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));vr.registerFlag("PROD",()=>!1);vr.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>vr.getBool("DEBUG"));vr.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);vr.registerFlag("IS_TEST",()=>!1);vr.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);vr.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function zr(e,t){let n=e;if(cn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||cn(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&J().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&I5(e,r,[]),r}function I5(e,t,n){if(n=n||[],!Array.isArray(e)&&!cn(e)){F(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}F(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),F(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let a=0;a=0&&(a=r),N5(r,a,t,n),e==null||!cn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=zr(e,a);!cn(e)&&!Array.isArray(e)&&(e=[e]);let i=a!=="string"?md(e,a):ps(e,[],!0);return $.makeTensor(i,s,a)}function ju(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,s)=>C(a,`${t}[${s}]`,n,r))}var S5="__op";function D(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+S5;let a=(...s)=>{$.startScope(n);try{let i=r(...s);return xf(i)&&console.error("Cannot return a Promise inside of tidy."),$.endScope(i),i}catch(i){throw $.endScope(null),i}};return Object.defineProperty(a,"name",{value:n,configurable:!0}),a}function s9(e,t){let n=C(e,"real","complex"),r=C(t,"imag","complex");un(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let a={real:n,imag:r};return $.runKernel(Bh,a)}var Da=D({complex_:s9});function Oa(e,t,n,r){if(r==null&&(r=Mh(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!cn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){yf(t);let a=Wt(t),s=Wt(n);F(a===s,()=>`Based on the provided shape, [${t}], the tensor should have ${a} values but has ${s}`);for(let i=0;i`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!cn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?md(e,r):ps(e,[],!0),$.makeTensor(e,t,r)}function kr(e,t,n){let r=zr(e,n);return Oa(e,t,r,n)}var Ff={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},xd=4;async function o9(e,t){let n=[],r=[],a=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i{let d=await l.bytes(),p=d.reduce((A,g)=>A+g.length,0)+xd*d.length,f=new Uint8Array(p),m=0;for(let A=0;A{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let r=new Uint8Array(t),a=0;return n.forEach(s=>{r.set(new Uint8Array(s.buffer),a),a+=s.byteLength}),r.buffer}var Mf=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function E5(e){return Mf?Buffer.byteLength(e):new Blob([e]).size}function u9(e){if(Mf)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,a=t.length;r{t+=a.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(a=>{n.set(new Uint8Array(a),r),r+=a.byteLength}),n.buffer}function C5(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function Hu(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:E5(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:E5(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function h9(){let e=n=>{let r=n<<13,a=0;for(;(r&8388608)==0;)a-=8388608,r<<=1;return r&=~8388608,a+=947912704,r|a},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function d9(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function p9(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function l9(){let e=h9(),t=d9(),n=p9();return r=>{let a=new ArrayBuffer(4*r.length),s=new Uint32Array(a);for(let i=0;i>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(a)}}var Rt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Rt.instance==null&&(Rt.instance=new Rt),Rt.instance}static registerSaveRouter(e){Rt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Rt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Rt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Rt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?Rt.getInstance().loadRouters:Rt.getInstance().saveRouters).forEach(a=>{let s=a(e,n);s!==null&&r.push(s)}),r}},f9=e=>Rt.registerSaveRouter(e),m9=e=>Rt.registerLoadRouter(e),A9=e=>Rt.getSaveHandlers(e),g9=(e,t)=>Rt.getLoadHandlers(e,t),Df="tensorflowjs",Of=1,ci="models_store",za="model_info_store";function R5(){if(!J().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function zf(e){let t=e.result;t.createObjectStore(ci,{keyPath:"modelPath"}),t.createObjectStore(za,{keyPath:"modelPath"})}var hi=class{constructor(e){if(this.indexedDB=R5(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let a=this.indexedDB.open(Df,Of);a.onupgradeneeded=()=>zf(a),a.onsuccess=()=>{let s=a.result;if(t==null){let i=s.transaction(ci,"readonly"),o=i.objectStore(ci).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),r(o.error)),i.oncomplete=()=>s.close()}else{let i=Hu(t),o=s.transaction(za,"readwrite"),l=o.objectStore(za),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),c;u.onsuccess=()=>{c=s.transaction(ci,"readwrite");let h=c.objectStore(ci).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>n({modelArtifactsInfo:i}),h.onerror=d=>{l=o.objectStore(za);let p=l.delete(this.modelPath);p.onsuccess=()=>(s.close(),r(h.error)),p.onerror=f=>(s.close(),r(h.error))}},u.onerror=h=>(s.close(),r(u.error)),o.oncomplete=()=>{c==null?s.close():c.oncomplete=()=>s.close()}}},a.onerror=s=>r(a.error)})}};hi.URL_SCHEME="indexeddb://";var F5=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(hi.URL_SCHEME)?y9(e.slice(hi.URL_SCHEME.length)):null;Rt.registerSaveRouter(F5);Rt.registerLoadRouter(F5);function y9(e){return new hi(e)}function x9(e){return e.startsWith(hi.URL_SCHEME)?e.slice(hi.URL_SCHEME.length):e}var w9=class{constructor(){this.indexedDB=R5()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Df,Of);n.onupgradeneeded=()=>zf(n),n.onsuccess=()=>{let r=n.result,a=r.transaction(za,"readonly"),s=a.objectStore(za).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(r.close(),t(s.error)),a.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=x9(e),new Promise((t,n)=>{let r=this.indexedDB.open(Df,Of);r.onupgradeneeded=()=>zf(r),r.onsuccess=()=>{let a=r.result,s=a.transaction(za,"readwrite"),i=s.objectStore(za),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return a.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),c=()=>{l=a.transaction(ci,"readwrite");let h=l.objectStore(ci).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=d=>n(o.error)};u.onsuccess=c,u.onerror=h=>(c(),a.close(),n(o.error))}},o.onerror=u=>(a.close(),n(o.error)),s.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}},r.onerror=a=>n(r.error)})}},oa="/",ll="tensorflowjs_models",M5="info",b9="model_topology",_9="weight_specs",v9="weight_data",k9="model_metadata";function $5(e){return{info:[ll,e,M5].join(oa),topology:[ll,e,b9].join(oa),weightSpecs:[ll,e,_9].join(oa),weightData:[ll,e,v9].join(oa),modelMetadata:[ll,e,k9].join(oa)}}function I9(e){let t=e.split(oa);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(oa)}function N9(e){return e.startsWith(di.URL_SCHEME)?e.slice(di.URL_SCHEME.length):e}var di=class{constructor(e){if(!J().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=$5(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=Hu(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,u9(e.weightData));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:r}}catch(a){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let a=this.LS.getItem(this.keys.modelMetadata);if(a!=null){let i=JSON.parse(a);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=c9(s),t}};di.URL_SCHEME="localstorage://";var D5=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(di.URL_SCHEME)?S9(e.slice(di.URL_SCHEME.length)):null;Rt.registerSaveRouter(D5);Rt.registerLoadRouter(D5);function S9(e){return new di(e)}var T9=class{constructor(){F(J().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),F(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=ll+oa,n=oa+M5;for(let r=0;r"scheme must not be undefined or null."),e.endsWith(ul)&&(e=e.slice(0,e.indexOf(ul))),F(e.length>0,()=>"scheme must not be an empty string.");let n=Zn.getInstance();F(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function wd(e){if(e.indexOf(ul)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Zn.getSchemes().join(",")}`);return{scheme:e.split(ul)[0],path:e.split(ul)[1]}}async function O5(e,t,n=!1){F(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=Rt.getLoadHandlers(e);F(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),F(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let a=r[0],s=Rt.getSaveHandlers(t);F(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),F(s.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let i=s[0],o=wd(e).scheme,l=wd(e).path,u=o===wd(e).scheme,c=await a.load();n&&u&&await Zn.getManager(o).removeModel(l);let h=await i.save(c);return n&&!u&&await Zn.getManager(o).removeModel(l),h.modelArtifactsInfo}async function E9(){let e=Zn.getSchemes(),t={};for(let n of e){let r=await Zn.getManager(n).listModels();for(let a in r){let s=n+ul+a;t[s]=r[a]}}return t}async function C9(e){let t=wd(e);return Zn.getManager(t.scheme).removeModel(t.path)}async function R9(e,t){return O5(e,t,!1)}async function F9(e,t){return O5(e,t,!0)}var M9=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(J().get("IS_BROWSER")){J().setPlatform("browser",new M9);try{Zn.registerManager(di.URL_SCHEME,new T9)}catch(e){}try{Zn.registerManager(hi.URL_SCHEME,new w9)}catch(e){}}var $9={importFetch:()=>B8()},Pf,D9=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return J().global.fetch!=null?J().global.fetch(e,t):(Pf==null&&(Pf=$9.importFetch()),Pf(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};J().get("IS_NODE")&&J().setPlatform("node",new D9);function Ue(e,t="float32",n){return t=t||"float32",yf(e),new Bt(e,t,n)}function O9(e,t){let n=C(e,"x","cast");if(!o5(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},a={dtype:t};return $.runKernel(ys,r,a)}var xe=D({cast_:O9});function z9(e){let t={x:C(e,"x","clone","string_or_numeric")};return $.runKernel(Rs,t)}var Pr=D({clone_:z9});function z5(e,t=!1){console.log(e.toString(t))}v5();var P9={buffer:Ue,cast:xe,clone:Pr,print:z5};Zk(P9);var In={};We(In,{browserFiles:()=>L9,browserHTTPRequest:()=>B9,concatenateArrayBuffers:()=>$f,copyModel:()=>R9,decodeWeights:()=>T5,encodeWeights:()=>o9,fromMemory:()=>V9,getLoadHandlers:()=>g9,getModelArtifactsInfoForJSON:()=>Hu,getSaveHandlers:()=>A9,http:()=>Wf,isHTTPScheme:()=>Lf,listModels:()=>E9,loadWeights:()=>W9,moveModel:()=>F9,registerLoadRouter:()=>m9,registerSaveRouter:()=>f9,removeModel:()=>C9,weightsLoaderFactory:()=>P5,withSaveHandler:()=>U9});var j9="model",H9=".json",G9=".weights.bin";function L5(e){return new Promise(t=>setTimeout(t)).then(e)}var cl=class{constructor(e){if(!J().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(cl.URL_SCHEME)&&(e=e.slice(cl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=j9),this.modelTopologyFileName=e+H9,this.weightDataFileName=e+G9}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer);let a=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=a,await L5(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await L5(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Hu(e)}}}};cl.URL_SCHEME="downloads://";var q9=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,r)=>{let a=new FileReader;a.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){r(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){r(new Error(`weightManifest field is missing from file ${e.name}`));return}let u;try{u=this.checkManifestAndWeightFiles(l,t)}catch(p){r(p);return}let c=[],h=[],d=[];l.forEach(p=>{p.paths.forEach(f=>{h.push(f),d.push(null)}),c.push(...p.weights)}),l.forEach(p=>{p.paths.forEach(f=>{let m=new FileReader;m.onload=A=>{let g=A.target.result,y=h.indexOf(f);if(d[y]=g,d.indexOf(null)===-1){let w={modelTopology:o,weightSpecs:c,weightData:$f(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(w.signature=i.signature),i.userDefinedMetadata!=null&&(w.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(w.modelInitializer=i.modelInitializer),n(w)}},m.onerror=A=>r(`Failed to weights data from file of path '${f}'.`),m.readAsArrayBuffer(u[f])})})},a.onerror=s=>r(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),a.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],r=t.map(s=>C5(s.name)),a={};for(let s of e)s.paths.forEach(i=>{let o=C5(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),r.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);a[i]=t[r.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return a}},K9=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(cl.URL_SCHEME)?X9(e.slice(cl.URL_SCHEME.length)):null;Rt.registerSaveRouter(K9);function X9(e="model"){return new cl(e)}function L9(e){return new q9(e)}function W5(e,t,n,r){i(e),n=n==null?0:n,r=r==null?1:r,o(n,r);let a=0,s=l=>(l.then(u=>{let c=n+ ++a/e.length*(r-n);return t(c),u}),l);function i(l){F(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){F(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),F(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),F(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function B5(e,t){t==null&&(t={});let n=t.fetchFunc==null?J().platform.fetch:t.fetchFunc,r=e.map(u=>n(u,t.requestInit,{isBinary:!0})),a=0,s=.5,i=(t.onProgress==null?await Promise.all(r):await W5(r,t.onProgress,a,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await W5(i,t.onProgress,o,l)}async function W9(e,t="",n,r){return P5(a=>B5(a,{requestInit:r}))(e,t,n)}function P5(e){return async(t,n="",r)=>{let a=t.map(()=>!1),s={},i=r!=null?r.map(()=>!1):[],o=[];if(t.forEach((p,f)=>{let m=0;p.weights.forEach(A=>{let g="quantization"in A?A.quantization.dtype:A.dtype,y=Ff[g]*Wt(A.shape),w=()=>{a[f]=!0,s[f]==null&&(s[f]=[]),s[f].push({manifestEntry:A,groupOffset:m,sizeBytes:y})};r!=null?r.forEach((b,_)=>{b===A.name&&(w(),i[_]=!0)}):w(),o.push(A.name),m+=y})}),!i.every(p=>p)){let p=r.filter((f,m)=>!i[m]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}. Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=a.reduce((p,f,m)=>(f&&p.push(m),p),[]),u=[];l.forEach(p=>{t[p].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;u.push(m)})});let c=await e(u),h={},d=0;return l.forEach(p=>{let f=t[p].paths.length,m=0;for(let w=0;w{let b=A.slice(w.groupOffset,w.groupOffset+w.sizeBytes),_=T5(b,[w.manifestEntry]);for(let x in _)h[x]=_[x]}),d+=f}),h}}var Z9="application/octet-stream",Y9="application/json",Bf=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(F(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=J().platform.fetch,F(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&F(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(r)],{type:Y9}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:Z9}),"model.weights.bin");let a=await this.fetch(this.path,t);if(a.ok)return{modelArtifactsInfo:Hu(e),responses:[a]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${a.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(p){let f=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?f+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":f+=" Please make sure the server is serving valid JSON for this request.",new Error(f)}let n=t.modelTopology,r=t.weightsManifest,a=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let u,c;r!=null&&([u,c]=await this.loadWeights(r));let h={modelTopology:n,weightSpecs:u,weightData:c,generatedBy:a,convertedBy:s,format:i};o!=null&&(h.signature=o),l!=null&&(h.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(h.modelInitializer=d),h}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=J9(t),a=this.weightPathPrefix||n,s=[];for(let u of e)s.push(...u.weights);let i=[],o=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(c)):i.push(a+c+r);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await B5(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,$f(l)]}};Bf.URL_SCHEME_REGEX=/^https?:\/\//;function J9(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),a=n>t?e.substring(n):"";return[r+"/",a]}function Lf(e){return e.match(Bf.URL_SCHEME_REGEX)!=null}var V5=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>Lf(r)):n=Lf(e),n)return Wf(e,t)}return null};Rt.registerSaveRouter(V5);Rt.registerLoadRouter(V5);function Wf(e,t){return new Bf(e,t)}function B9(e,t){return Wf(e,t)}var Vf=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},Q9=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function V9(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Vf(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Vf({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Vf({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function U9(e){return new Q9(e)}var U5={};We(U5,{confusionMatrix:()=>eI});function tI(e,t,n=!1,r=!1){let a=C(e,"a","matMul"),s=C(t,"b","matMul");[a,s]=Nt(a,s);let i={a,b:s},o={transposeA:n,transposeB:r};return $.runKernel(gs,i,o)}var Ye=D({matMul_:tI});function nI(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:C(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:r};return $.runKernel(Bs,a,s)}var hl=D({oneHot_:nI});function rI(e,t){let n=C(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{F(s>=0&&s`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},a={perm:t};return $.runKernel(si,r,a)}var it=D({transpose_:rI});function aI(e,t,n){let r=C(e,"labels","confusionMatrix"),a=C(t,"predictions","confusionMatrix");F(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),F(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),F(a.rank===1,()=>`Expected the rank of predictions to be 1, but got ${a.rank}`),F(r.shape[0]===a.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${a.shape[0]}. Labels and predictions should have the same number of elements.`),F(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=hl(xe(r,"int32"),n),i=hl(xe(a,"int32"),n),o=it(s),l=Ye(o,i);return xe(l,"int32")}var eI=D({confusionMatrix_:aI}),dl={};We(dl,{fromPixels:()=>oI,fromPixelsAsync:()=>sI,toPixels:()=>iI});function bd(e,t,n){if(ds(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=zr(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Oa(e,t,r,n)}var pl;function j5(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,a=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)a=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(a){let d=2;if(a&&e.readyState element.")}if(fd(pd,$.backendName)!=null){let d={pixels:e},p={numChannels:t};return $.runKernel(pd,d,p)}let[l,u]=a?[e.videoWidth,e.videoHeight]:[e.width,e.height],c;i?c=e.getContext("2d").getImageData(0,0,l,u).data:r||n?c=e.data:(s||a||o)&&(pl==null&&(pl=document.createElement("canvas").getContext("2d")),pl.canvas.width=l,pl.canvas.height=u,pl.drawImage(e,0,0,l,u),c=pl.getImageData(0,0,l,u).data);let h;if(t===4)h=new Int32Array(c);else{let d=l*u;h=new Int32Array(d*t);for(let p=0;p4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(a*r*4);for(let u=0;u1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);s===1?(c[0]=p*o,c[1]=p*o,c[2]=p*o):c[d]=p*o}let h=u*4;l[h+0]=Math.round(c[0]),l[h+1]=Math.round(c[1]),l[h+2]=Math.round(c[2]),l[h+3]=Math.round(c[3])}if(t!=null){t.width=a,t.height=r;let u=t.getContext("2d"),c=new ImageData(l,a,r);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var oI=D({fromPixels_:j5}),Uf={};We(Uf,{prepareAndValidate:()=>H5});function H5(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(Wt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let a=t.shape,s=a[a.length-1],i=1;for(let h=0;hh/u),1].slice(0,s);return[l,i,u,c]}var jf={};We(jf,{calculateShapes:()=>G5,validateInput:()=>Gf,validateUpdateShape:()=>Hf});function Hf(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,a=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${a}.`;if(n.rank1?t.shape[r-1]:1,s=n.length,i=1;for(let h=a;hdI,computeFlatOffset:()=>fI,computeOutShape:()=>q5,getNormalizedAxes:()=>K5,isSliceContinous:()=>pI,maskToAxes:()=>_d,parseSliceParams:()=>tx,sliceInfo:()=>mI,startForAxis:()=>Q5,startIndicesWithElidedDims:()=>Z5,stopForAxis:()=>ex,stopIndicesWithElidedDims:()=>Y5,stridesForAxis:()=>J5,stridesWithElidedDims:()=>X5});function dI(e,t,n){let r=e.shape.length;F(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),F(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let a=0;a`Error in slice${r}D: begin[${a}] + size[${a}] (${t[a]+n[a]}) would overflow input.shape[${a}] (${e.shape[a]})`)}function _d(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function q5(e,t,n){let r=[];for(let a=0;a0){let p=t[0],f=n+1;c=Z5(i,p,f,r,e),h=Y5(o,p,f,a,e),d=X5(s,p,f,e)}else for(let p=0;p-1)s[o]=0;else{let l=nx(t,n,o),u=r[l];e&1<-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=nx(t,n,o),u=r[l];e&1<0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),i=Au(0,i,l-1),i}function ex(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),o>0?i=Au(0,i,l):i=Au(-1,i,l-1),i}function pI(e,t,n){let r=n.length;for(let a=0;a1){r=a;break}for(let a=r+1;a0||n[a]!==e[a])return!1;return!0}function fI(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r{F(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(a).fill(-1):typeof n=="number"?s=[n,...new Array(a-1).fill(-1)]:n.lengthi>=0?i:(F(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-r[o])),[r,s]}function mI(e,t,n,r,a,s,i,o,l){let u=t.slice(),c=n.slice(),h=r;r==null&&(h=new Array(u.length));let d=_d(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-u.length,f=_d(o),m=e.slice();f.forEach(x=>{u[x]=0,c[x]=1,m.splice(x,0,1)});let{begin:A,end:g,strides:y}=K5(m,d,p,u,c,h,a,s,i);u=A,c=g,h=y;let w=_d(l);w.forEach(x=>{c[x]=u[x]+1,h[x]=1});let b=q5(u,c,h),_=b.filter((x,N)=>w.indexOf(N)===-1);return{nonStrided:h.every(x=>x===1),$begin:u,$end:c,$strides:h,size:b,newShape:m,outShape:_}}var ae={};We(ae,{Serializable:()=>ax,SerializationMap:()=>pi,registerClass:()=>Pa});var ax=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},pi=class{constructor(){this.classNameMap={}}static getMap(){return pi.instance==null&&(pi.instance=new pi),pi.instance}static register(e){pi.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Pa(e){F(e.className!=null,()=>"Class being registered does not have the static className property defined."),F(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),F(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),pi.register(e)}var sx={};We(sx,{TEST_EPSILON_FLOAT16:()=>ix,encodeStrings:()=>ox,expectArrayBuffersEqual:()=>bI,expectArraysClose:()=>AI,expectArraysEqual:()=>yI,expectNumbersClose:()=>xI,expectPromiseToFail:()=>gI,expectValuesInRange:()=>wI,testEpsilon:()=>qf});var _I=.001,ix=.1;function AI(e,t,n){return n==null&&(n=qf()),Xf(e,t,(r,a)=>Kf(r,a,n))}function qf(){return $.backend.floatPrecision()===32?_I:ix}function Xf(e,t,n){let r=!0;if((cn(e)||cn(t))&&(r=!1),cn(e)&&cn(t)&&(r=!0),r){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=zr(e),o=zr(t);if(!ia(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let a=cn(e)?e:ps(e),s=cn(t)?t:ps(t);if(a.length!==s.length)throw new Error(`Arrays have different lengths actual: ${a.length} vs expected: ${s.length}. Actual: ${a}. Expected: ${s}.`);for(let i=0;it.fail(),()=>t())}function yI(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Ea(e)||Ea(e[0])||Ea(t)||Ea(t[0])?Xf(e,n,(r,a)=>r==a):Xf(e,t,(r,a)=>Kf(r,a,0))}function xI(e,t,n){if(n==null&&(n=qf()),!Kf(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function Kf(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function wI(e,t,n){for(let r=0;rn)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function bI(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function ox(e){for(let t=0;tt.dispose())}function Zt(e){return $.keep(e)}function TI(e){return $.time(e)}function EI(e){return $.setBackend(e)}function CI(){return $.ready()}function RI(){return $.backendName}function FI(e){$.removeBackend(e)}function Yf(e){return $.findBackend(e)}function MI(e){return $.findBackendFactory(e)}function fl(e,t,n=1){return $.registerBackend(e,t,n)}function lx(){return $.backend}function $I(e,t){J().setPlatform(e,t)}function DI(e,t){let n=C(e,"a","add"),r=C(t,"b","add");[n,r]=Nt(n,r);let a={a:n,b:r};return $.runKernel(Ra,a)}var ie=D({add_:DI});function OI(e,t){let n=C(e,"a","floorDiv"),r=C(t,"b","floorDiv");[n,r]=Nt(n,r);let a={a:n,b:r};return $.runKernel(Ts,a)}var kd=D({floorDiv_:OI});function zI(e,t){let n=C(e,"a","div"),r=C(t,"b","div");if([n,r]=Nt(n,r),n.dtype==="int32"&&r.dtype==="int32")return kd(n,r);let a={a:n,b:r},s={};return $.runKernel(Is,a,s)}var _e=D({div_:zI});function PI(e,t){let n=C(e,"a","mul"),r=C(t,"b","mul");[n,r]=Nt(n,r);let a={a:n,b:r};return $.runKernel(Ws,a)}var O=D({mul_:PI});function LI(e){let t=C(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return $.runKernel(bu,n)}else{let n={x:t};return $.runKernel(so,n)}}var Vt=D({abs_:LI});function WI(e){let t={x:C(e,"x","acos")};return $.runKernel(io,t)}var Jf=D({acos_:WI});function BI(e){let t={x:C(e,"x","acosh")};return $.runKernel(oo,t)}var Qf=D({acosh_:BI});function VI(e){F(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),F(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((a,s)=>C(a,`tensors${s}`,"addN")),n=t[0];t.forEach(a=>{if(a.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(a=>{if(!ia(a.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return $.runKernel(fs,r)}var La=D({addN_:VI});function UI(e,t=null,n=!1){let r={x:C(e,"x","all","bool")},a={axis:t,keepDims:n};return $.runKernel(Oh,r,a)}var Id=D({all_:UI});function jI(e,t=null,n=!1){let r={x:C(e,"x","any","bool")},a={axis:t,keepDims:n};return $.runKernel(zh,r,a)}var Gu=D({any_:jI});function HI(e,t=0){let n={x:C(e,"x","argMax")},r={axis:t};return $.runKernel(ms,n,r)}var qu=D({argMax_:HI});function GI(e,t=0){let n={x:C(e,"x","argMin")},r={axis:t};return $.runKernel(yu,n,r)}var em=D({argMin_:GI});function qI(e){let t={x:C(e,"x","asin")};return $.runKernel(lo,t)}var tm=D({asin_:qI});function XI(e){let t={x:C(e,"x","asinh")};return $.runKernel(uo,t)}var nm=D({asinh_:XI});function KI(e){let t={x:C(e,"x","atan")};return $.runKernel(co,t)}var rm=D({atan_:KI});function ZI(e,t){let n=C(e,"a","atan2"),r=C(t,"b","atan2");[n,r]=Nt(n,r);let a={a:n,b:r};return $.runKernel(po,a)}var am=D({atan2_:ZI});function YI(e){let t={x:C(e,"x","atanh")};return $.runKernel(ho,t)}var sm=D({atanh_:YI});function JI(e,t,n,r,a="NHWC",s){let i=e[3],o=[...t,i],l=ux(a);return Xu(e,o,n,s,r,null,null,l)}function cx(e,t,n,r,a,s,i="channelsLast"){let[o,l]=Nd(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Xu(e,u,n,r,a,s,!1,i)}function QI(e,t,n,r,a,s,i="NDHWC"){let[o,l,u]=im(t),c,h;if(i==="NDHWC")h="channelsLast",c=[o,l,u,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",c=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return hx(e,c,n,r,a,!1,h,s)}function Xu(e,t,n,r,a,s,i=!1,o="channelsLast"){let[l,u,c,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,h]=e;else if(o==="channelsFirst")[l,h,u,c]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,p,,f]=t,[m,A]=Nd(n),[g,y]=Nd(r),w=ml(d,g),b=ml(p,y),{padInfo:_,outHeight:x,outWidth:N}=eN(a,u,c,m,A,w,b,s,o),T=i?f*h:f,E;return o==="channelsFirst"?E=[l,T,x,N]:o==="channelsLast"&&(E=[l,x,N,T]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:c,inChannels:h,outHeight:x,outWidth:N,outChannels:T,padInfo:_,strideHeight:m,strideWidth:A,filterHeight:d,filterWidth:p,effectiveFilterHeight:w,effectiveFilterWidth:b,dilationHeight:g,dilationWidth:y,inShape:e,outShape:E,filterShape:t}}function hx(e,t,n,r,a,s=!1,i="channelsLast",o){let[l,u,c,h,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,h,d]=e;else if(i==="channelsFirst")[l,d,u,c,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,f,m,,A]=t,[g,y,w]=im(n),[b,_,x]=im(r),N=ml(p,b),T=ml(f,_),E=ml(m,x),{padInfo:M,outDepth:z,outHeight:B,outWidth:V}=tN(a,u,c,h,g,y,w,N,T,E,o),U=s?A*d:A,j;return i==="channelsFirst"?j=[l,U,z,B,V]:i==="channelsLast"&&(j=[l,z,B,V,U]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:c,inWidth:h,inChannels:d,outDepth:z,outHeight:B,outWidth:V,outChannels:U,padInfo:M,strideDepth:g,strideHeight:y,strideWidth:w,filterDepth:p,filterHeight:f,filterWidth:m,effectiveFilterDepth:N,effectiveFilterHeight:T,effectiveFilterWidth:E,dilationDepth:b,dilationHeight:_,dilationWidth:x,inShape:e,outShape:j,filterShape:t}}function nN(e,t,n,r,a){r==null&&(r=om(e,t,n));let s=e[0],i=e[1],o=fi((s-t+2*r)/n+1,a),l=fi((i-t+2*r)/n+1,a);return[o,l]}function rN(e,t,n,r,a,s){a==null&&(a=om(e,t,r));let i=e[0],o=e[1],l=e[2],u=fi((i-t+2*a)/r+1,s),c=fi((o-t+2*a)/r+1,s),h=fi((l-t+2*a)/r+1,s);return[u,c,h,n]}function om(e,t,n,r=1){let a=ml(t,r);return Math.floor((e[0]*(n-1)-n+a)/2)}function Nd(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function im(e){return typeof e=="number"?[e,e,e]:e}function ml(e,t){return t<=1?e:e+(e-1)*(t-1)}function eN(e,t,n,r,a,s,i,o,l){let u,c,h;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=nN([t,n],s,r,e,o);c=d[0],h=d[1]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/a);let d=Math.max(0,(c-1)*r+s-t),p=Math.max(0,(h-1)*a+i-n),f=Math.floor(d/2),m=d-f,A=Math.floor(p/2),g=p-A;u={top:f,bottom:m,left:A,right:g,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-s+1)/r),h=Math.ceil((n-i+1)/a);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];u={top:d,bottom:p,left:f,right:m,type:d===0&&p===0&&f===0&&m===0?"VALID":"EXPLICIT"},c=fi((t-s+d+p)/r+1,o),h=fi((n-i+f+m)/a+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:h}}function tN(e,t,n,r,a,s,i,o,l,u,c){let h,d,p,f;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let m=rN([t,n,r,1],o,1,a,e,c);d=m[0],p=m[1],f=m[2]}else if(e==="same"){d=Math.ceil(t/a),p=Math.ceil(n/s),f=Math.ceil(r/i);let m=(d-1)*a+o-t,A=(p-1)*s+l-n,g=(f-1)*i+u-r,y=Math.floor(m/2),w=m-y,b=Math.floor(A/2),_=A-b,x=Math.floor(g/2),N=g-x;h={top:b,bottom:_,left:x,right:N,front:y,back:w,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/a),p=Math.ceil((n-l+1)/s),f=Math.ceil((r-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:d,outHeight:p,outWidth:f}}function fi(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Wa(e){let[t,n,r]=Nd(e);return t===1&&n===1&&r===1}function Wr(e,t){return Wa(e)||Wa(t)}function ux(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function aN(e,t){let n={x:C(e,"x","reshape","string_or_numeric")},r={shape:t};return $.runKernel(jo,n,r)}var H=D({reshape_:aN});function sN(e,t,n,r,a){let s=C(e,"x","avgPool","float32"),i=1;F(Wr(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),a!=null&&F(Kt(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(As,u,c);return h=xe(h,s.dtype),l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Ku=D({avgPool_:sN});function iN(e,t,n,r,a,s="NDHWC"){let i=C(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&F(Kt(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(xu,u,c);return h=xe(h,o.dtype),l?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var lm=D({avgPool3d_:iN});function oN(e,t=0){F(e.length>=1,()=>"Pass at least one tensor to concat");let n=ju(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor with dtype ${s.dtype}. `)}),n.length===1)return Pr(n[0]);let r=n,a={axis:t};return $.runKernel(fo,r,a)}var ot=D({concat_:oN});function lN(e){let t={x:C(e,"x","sigmoid")};return $.runKernel(Js,t)}var Dn=D({sigmoid_:lN});function uN(e,t,n){let r=C(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let a={x:r},s={begin:t,size:n};return $.runKernel(Xo,a,s)}var $e=D({slice_:uN});function cN(e){let t={x:C(e,"x","tanh")};return $.runKernel(ai,t)}var Al=D({tanh_:cN});function hN(e,t,n,r,a,s){let i=C(e,"forgetBias","basicLSTMCell"),o=C(t,"lstmKernel","basicLSTMCell"),l=C(n,"lstmBias","basicLSTMCell"),u=C(r,"data","basicLSTMCell"),c=C(a,"c","basicLSTMCell"),h=C(s,"h","basicLSTMCell"),d=ot([u,h],1),p=Ye(d,o),f=ie(p,l),m=f.shape[0],A=f.shape[1]/4,g=[m,A],y=$e(f,[0,0],g),w=$e(f,[0,A],g),b=$e(f,[0,A*2],g),_=$e(f,[0,A*3],g),x=ie(O(Dn(y),Al(w)),O(c,Dn(ie(i,b)))),N=O(Al(x),Dn(_));return[x,N]}var dN=D({basicLSTMCell_:hN});function pN(e,t,n){let r=C(e,"x","batchToSpaceND"),a=t.reduce((o,l)=>o*l);F(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),F(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),F(r.shape[0]%a==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${a}`);let s={x:r},i={blockShape:t,crops:n};return $.runKernel(wu,s,i)}var Zu=D({batchToSpaceND_:pN});function fN(e){let t;return e.rank===0||e.rank===1?t=H(e,[1,1,1,e.size]):e.rank===2?t=H(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function mN(e,t,n,r,a,s){s==null&&(s=.001);let i=C(e,"x","batchNorm"),o=C(t,"mean","batchNorm"),l=C(n,"variance","batchNorm"),u;a!=null&&(u=C(a,"scale","batchNorm"));let c;r!=null&&(c=C(r,"offset","batchNorm")),F(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),F(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),F(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:fN(i),scale:u,offset:c,mean:o,variance:l},d={varianceEpsilon:s},p=$.runKernel(Es,h,d);return H(p,i.shape)}var mi=D({batchNorm_:mN});function AN(e,t,n,r,a,s){let i=C(e,"x","batchNorm"),o=C(t,"mean","batchNorm"),l=C(n,"variance","batchNorm"),u;a!=null&&(u=C(a,"scale","batchNorm"));let c;return r!=null&&(c=C(r,"offset","batchNorm")),F(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),F(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),F(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),mi(i,o,l,c,u,s)}var dx=D({batchNorm2d_:AN});function gN(e,t,n,r,a,s){let i=C(e,"x","batchNorm"),o=C(t,"mean","batchNorm"),l=C(n,"variance","batchNorm"),u;a!=null&&(u=C(a,"scale","batchNorm"));let c;return r!=null&&(c=C(r,"offset","batchNorm")),F(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),F(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),F(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),mi(i,o,l,c,u,s)}var px=D({batchNorm3d_:gN});function yN(e,t,n,r,a,s){let i=C(e,"x","batchNorm"),o=C(t,"mean","batchNorm"),l=C(n,"variance","batchNorm"),u;a!=null&&(u=C(a,"scale","batchNorm"));let c;return r!=null&&(c=C(r,"offset","batchNorm")),F(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),F(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),F(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),mi(i,o,l,c,u,s)}var fx=D({batchNorm4d_:yN});function xN(e,t,n){let r=C(e,"x","bincount"),a=C(t,"weights","bincount");F(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(a.size===r.size||a.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${a.shape}.`);let s={x:r,weights:a},i={size:n};return $.runKernel(Wh,s,i)}var mx=D({bincount_:xN});function wN(e,t){let n=C(e,"broadcastTo","x"),r=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.lengthn.rank){let l=n.shape.slice();for(;l.length=0;l--)if(a[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return Pr(n);let i={x:n},o={reps:s};return $.runKernel(Ma,i,o)}var Yu=D({broadcastTo_:wN});function bN(e){let t={x:C(e,"x","ceil")};return $.runKernel(xs,t)}var um=D({ceil_:bN});function _N(e,t,n){let r=C(e,"x","clipByValue");F(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let a={x:r},s={clipValueMin:t,clipValueMax:n};return $.runKernel(Fa,a,s)}var Nn=D({clipByValue_:_N});function vN(e){return ot(e,0)}var Ax=D({concat1d_:vN});function kN(e,t){return ot(e,t)}var gl=D({concat2d_:kN});function IN(e,t){return ot(e,t)}var gx=D({concat3d_:IN});function NN(e,t){return ot(e,t)}var yx=D({concat4d_:NN});function SN(e,t,n,r,a="NHWC",s=[1,1],i){let o=C(e,"x","conv2d"),l=C(t,"filter","conv2d"),u=o,c=!1;o.rank===3&&(c=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&F(Kt(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h=a==="NHWC"?u.shape[3]:u.shape[1];F(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),F(Wr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:u,filter:l},p={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},f=$.runKernel(ws,d,p);return c?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var la=D({conv2d_:SN});function TN(e,t,n,r,a="NWC",s=1,i){let o=C(e,"x","conv1d"),l=C(t,"filter","conv1d"),u=o,c=!1;o.rank===2&&(c=!0,u=H(o,[1,o.shape[0],o.shape[1]])),F(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),F(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&F(Kt(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),F(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),F(Wr(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),F(a==="NWC",()=>`Error in conv1d: got dataFormat of ${a} but only NWC is currently supported.`);let h=H(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=H(u,[u.shape[0],1,u.shape[1],u.shape[2]]),p=la(d,h,[1,n],r,"NHWC",[1,s],i);return c?H(p,[p.shape[2],p.shape[3]]):H(p,[p.shape[0],p.shape[2],p.shape[3]])}var Sd=D({conv1d_:TN});function EN(e,t,n,r,a,s="NHWC",i){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),F(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),F(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),F(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];F(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),F(h===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${n.shape[3]}.`),i!=null&&F(Kt(a),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let d={dy:l,filter:n},p={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,inputShape:o},f=$.runKernel(bs,d,p);return u?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var cm=D({conv2DBackpropInput_:EN});function CN(e,t,n,r,a,s){let i=C(e,"x","conv2dTranspose"),o=C(t,"filter","conv2dTranspose");return cm(n,i,o,r,a,"NHWC",s)}var Td=D({conv2dTranspose_:CN});function RN(e,t,n,r,a="NDHWC",s=[1,1,1]){let i=C(e,"x","conv3d"),o=C(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),F(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),F(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),F(Wr(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(a==="NDHWC",()=>`Error in conv3d: got dataFormat of ${a} but only NDHWC is currently supported.`);let c={x:l,filter:o},h={strides:n,pad:r,dataFormat:a,dilations:s},d=$.runKernel(_u,c,h);return u?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var hm=D({conv3d_:RN});function FN(e,t,n,r,a){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];F(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),F(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),F(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),F(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),F(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:i,filter:n},h={pad:a,strides:r,inputShape:s},d=$.runKernel(jh,c,h);return o?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var xx=D({conv3DBackpropInput_:FN});function MN(e,t,n,r,a){let s=C(e,"x","conv3dTranspose"),i=C(t,"filter","conv3dTranspose");return xx(n,s,i,r,a)}var $N=D({conv3dTranspose_:MN});function DN(e){let t={x:C(e,"x","cos")};return $.runKernel(_s,t)}var Ju=D({cos_:DN});function ON(e){let t={x:C(e,"x","cosh")};return $.runKernel(mo,t)}var Ed=D({cosh_:ON});function zN(e,t=0,n=!1,r=!1){let a={x:C(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:r};return $.runKernel(vs,a,s)}var Cd=D({cumsum_:zN});function PN(e,t,n,r=!1){let a=C(e,"x","denseBincount"),s=C(t,"weights","denseBincount");F(a.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${a.dtype}`),F(a.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${a.rank}.`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(s.size===a.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${a.shape}, weights shape: ${s.shape}.`);let i={x:a,weights:s},o={size:n,binaryOutput:r};return $.runKernel(Hh,i,o)}var wx=D({denseBincount_:PN});function LN(e,t,n="NHWC"){let r=C(e,"x","depthToSpace"),a=n==="NHWC"?r.shape[1]:r.shape[2],s=n==="NHWC"?r.shape[2]:r.shape[3],i=n==="NHWC"?r.shape[3]:r.shape[1];F(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${a} and ${t} for depthToSpace with input shape ${r.shape}`),F(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${s} and ${t} for depthToSpace with input shape ${r.shape}`),F(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${r.shape}`);let o={x:r},l={blockSize:t,dataFormat:n};return $.runKernel(go,o,l)}var dm=D({depthToSpace_:LN});function WN(e,t,n,r,a="NHWC",s=[1,1],i){let o=C(e,"x","depthwiseConv2d"),l=C(t,"filter","depthwiseConv2d"),u=o,c=!1;o.rank===3&&(c=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&F(Kt(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h={x:u,filter:l},d={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},p=$.runKernel(ks,h,d);return c?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var yl=D({depthwiseConv2d_:WN});function BN(e){let t={x:C(e,"x","diag")};return $.runKernel(Xh,t)}var VN=D({diag_:BN});function UN(e,t,n,r,a=[1,1],s="NHWC"){let i=C(e,"x","dilation2d"),o=C(t,"filter","dilation2d");F(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),F(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),F(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let c={x:l,filter:o},h={strides:n,pad:r,dilations:a},d=$.runKernel(vu,c,h);return u?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var pm=D({dilation2d_:UN});function jN(e,t){let n=e.length,r=[];for(let a=0;a1&&i===1&&r.unshift(s)}return r}function Ut(e,t){let n=[];for(let r=0;r1)&&n.unshift(s)}return n}function xt(e,t){let n=[],r=Math.max(e.length,t.length);for(let a=0;a"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&un(s.shape,l.shape,"Error in where: ");let u={condition:s,t:o,e:l};return $.runKernel(Go,u)}var Sn=D({where_:GN});function qN(e){let t={x:C(e,"x","zerosLike")};return $.runKernel(rl,t)}var Xe=D({zerosLike_:qN});function XN(e,t){let n=C(e,"a","div"),r=C(t,"b","div");[n,r]=Nt(n,r);let a=_e(n,r),s=Xe(a),i=Ba(r,s);return Sn(i,s,a)}var fm=D({divNoNan_:XN});function KN(e,t){let n=C(e,"t1","dot"),r=C(t,"t2","dot");F((n.rank===1||n.rank===2)&&(r.rank===1||r.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let a=n.rank===1?n.size:n.shape[1],s=r.rank===1?r.size:r.shape[0];if(F(a===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${a} and ${s}.`),n.rank===1&&r.rank===1){let i=H(n,[1,-1]),o=H(r,[-1,1]),l=Ye(i,o);return H(l,[])}else if(n.rank===1&&r.rank===2){let i=H(n,[1,-1]),o=H(r,[r.shape[0],r.shape[1]]),l=Ye(i,o);return H(l,[l.size])}else if(n.rank===2&&r.rank===1){let i=H(r,[-1,1]),o=Ye(n,i);return H(o,[o.size])}else{let i=H(r,[r.shape[0],r.shape[1]]);return Ye(n,i)}}var bx=D({dot_:KN});function ZN(e){let t={x:C(e,"x","elu")};return $.runKernel(yo,t)}var xl=D({elu_:ZN});function YN(e){let t=C(e,"x","erf");F(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=xe(t,"float32"));let n={x:t};return $.runKernel(xo,n)}var mm=D({erf_:YN});function JN(e){let t={x:C(e,"x","exp")};return $.runKernel(Ns,t)}var Jn=D({exp_:JN});function QN(e,t=0){let n=C(e,"x","expandDims","string_or_numeric");F(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},a={dim:t};return $.runKernel(bo,r,a)}var fn=D({expandDims_:QN});function eS(e){let t={x:C(e,"x","expm1")};return $.runKernel(_o,t)}var Am=D({expm1_:eS});function tS(e,t){let n=C(e,"x","tile","string_or_numeric");F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},a={reps:t};return $.runKernel(Ma,r,a)}var Va=D({tile_:tS});function nS(e,t,n,r="float32"){t==null&&(t=e);let a=Ue([e,t],r),s=e<=t?e:t;for(let o=0;o`Error in localResponseNormalization: x must be rank 3 or 4 but got rank ${s.rank}.`),F(Kt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=H(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:r,beta:a},c=$.runKernel(Su,l,u);return o?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var ym=D({localResponseNormalization_:fS});function mS(e){let t={x:C(e,"x","log")};return $.runKernel(Ms,t)}var On=D({log_:mS});function AS(e){let t={x:C(e,"x","log1p")};return $.runKernel(Fo,t)}var Md=D({log1p_:AS});function gS(e){return F(Ca(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=C(t,"x","tf.grad","string_or_numeric"),a=n!=null?C(n,"dy","tf.grad"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(r),[r],a);return a!=null&&un(s.shape,a.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),$d(i),i[0]})}}function yS(e){return F(Ca(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{F(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=ju(t,"args","tf.grads","string_or_numeric"),a=n!=null?C(n,"dy","tf.grads"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(...r),r,a);return a!=null&&un(s.shape,a.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),$d(i),i})}}function xS(e){return F(Ca(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{F(t instanceof qe,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),F(n==null||n instanceof qe,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:a}=$.gradients(()=>e(t),[t],n);return $d(r),{grad:r[0],value:a}}}function wS(e){return F(Ca(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{F(Array.isArray(t)&&t.every(a=>a instanceof qe),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),F(n==null||n instanceof qe,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=$.gradients(()=>e(...t),t,n);return n!=null&&un(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),$d(r.grads),r}}function Nx(e,t){F(Ca(e),()=>"The f passed in variableGrads(f) must be a function"),F(t==null||Array.isArray(t)&&t.every(u=>u instanceof Bu),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in $.registeredVariables)t.push($.registeredVariables[u])}let r=n?t.filter(u=>!u.trainable):null,a=t.length;t=t.filter(u=>u.trainable),F(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${a} variables is trainable.`);let s=!0,{value:i,grads:o}=$.gradients(e,t,null,s);F(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),F(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,c)=>{o[c]!=null&&(l[u.name]=o[c])}),r!=null&&r.forEach(u=>l[u.name]=null),{value:i,grads:l}}function Br(e){return $.customGrad(e)}function $d(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.`)}function bS(e){let t={x:C(e,"x","neg")};return $.runKernel(Do,t)}var St=D({neg_:bS});function _S(e){let t={x:C(e,"x","softplus")};return $.runKernel(Yo,t)}var bl=D({softplus_:_S});function vS(e){let t=C(e,"x","logSigmoid");return Br(n=>({value:St(bl(St(n))),gradFunc:r=>O(r,Dn(St(n)))}))(t)}var Sx=D({logSigmoid_:vS});function kS(e,t=null,n=!1){let r={x:C(e,"x","max")},a={reductionIndices:t,keepDims:n};return $.runKernel($s,r,a)}var Qn=D({max_:kS});function IS(e,t){let n=C(e,"a","sub"),r=C(t,"b","sub");[n,r]=Nt(n,r);let a={a:n,b:r};return $.runKernel(ri,a)}var be=D({sub_:IS});function NS(e,t=null,n=!1){let r=C(e,"x","sum");r.dtype==="bool"&&(r=xe(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(ei,a,s)}var Fe=D({sum_:NS});function SS(e,t=-1){let n=C(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Br((r,a)=>{let s=!0,i=Qn(r,t,!0),o=be(r,i),l=be(xe(o,"float32"),On(Fe(Jn(o),t,s)));return a([l]),{value:l,gradFunc:(u,c)=>{let[h]=c,d=!0,p=Jn(h);return be(u,O(Fe(u,t,d),p))}}})(n)}var Dd=D({logSoftmax_:SS});function xm(e,t){for(let n=0;ne[s]);return[n,a]}function yi(e,t){let n=t.map(r=>1);return Tx(e,n,t)}function TS(e,t,n){F(xm(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function Cx(e,t){if(xm(e,t))return null;let n=[];for(let r=0;rn.push(r)),n}function wm(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function ES(e,t){let n=[];for(let r=t-e;r`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),F(Wr(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&F(Kt(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(Os,u,c);return l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var nc=D({maxPool_:DS});function OS(e,t=[1,1,1],n,r,a,s="NDHWC"){let i=C(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&F(Kt(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(Tu,u,c);return l?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var _m=D({maxPool3d_:OS});function zS(e,t,n,r,a=!1){let s={x:C(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:a},o=$.runKernel(sd,s,i);return{result:o[0],indexes:o[1]}}var Fx=D({maxPoolWithArgmax_:zS});function PS(e,t){let n=C(e,"a","maximum"),r=C(t,"b","maximum");[n,r]=Nt(n,r),n.dtype==="bool"&&(n=xe(n,"int32"),r=xe(r,"int32")),xt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Ds,a)}var Vr=D({maximum_:PS});function LS(e,t=null,n=!1){let r={x:C(e,"x","mean")},a={axis:t,keepDims:n};return $.runKernel(zs,r,a)}var Tt=D({mean_:LS});function WS(e,t=null,n=!1){let r={x:C(e,"x","min")},a={axis:t,keepDims:n};return $.runKernel(Ps,r,a)}var _l=D({min_:WS});function BS(e,t){let n=C(e,"a","minimum"),r=C(t,"b","minimum");[n,r]=Nt(n,r),n.dtype==="bool"&&(n=xe(n,"int32"),r=xe(r,"int32")),xt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Ls,a)}var vl=D({minimum_:BS});function VS(e,t,n){F(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=C(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");F(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let a=n==="reflect"?1:0;for(let o=0;o"Invalid number of paddings. Must be length of 2 each."),F(t[o][0]>=0&&t[o][0]<=r.shape[o]-a&&t[o][1]>=0&&t[o][1]<=r.shape[o]-a,()=>`Padding in dimension ${o} cannot be greater than or equal to ${r.shape[o]-a} or less than 0 for input of shape ${r.shape}`);let s={paddings:t,mode:n},i={x:r};return $.runKernel(Eu,i,s)}var vm=D({mirrorPad_:VS});function US(e,t){let n=C(e,"a","mod"),r=C(t,"b","mod");[n,r]=Nt(n,r);let a={a:n,b:r};return $.runKernel($o,a)}var km=D({mod_:US});function jS(e){let t=C(e,"x","square"),n={};return $.runKernel("Square",{x:t},n)}var ht=D({square_:jS});function HS(e,t=null,n=!1){e=C(e,"x","moments");let r=or(t,e.shape),a=Tt(e,r,n),s=a.shape;n||(s=yi(a.shape,r));let i=ht(be(xe(e,"float32"),H(a,s))),o=Tt(i,r,n);return{mean:a,variance:o}}var zd=D({moments_:HS});function GS(e,t,n,r){let a=C(t,"data","multiRNNCell"),s=ju(n,"c","multiRNNCell"),i=ju(r,"h","multiRNNCell"),o=a,l=[];for(let h=0;h2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?H(a,[1,-1]):a},l={numSamples:t,seed:n,normalized:r},u=$.runKernel(id,o,l);return i===1?H(u,[u.size]):u}var Mx=D({multinomial_:XS});function KS(e,t){let n=C(e,"a","notEqual"),r=C(t,"b","notEqual");[n,r]=Nt(n,r),xt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Oo,a)}var xi=D({notEqual_:KS});function Ot(e,t="float32"){if(t==="complex64"){let r=Ot(e,"float32"),a=Ot(e,"float32");return Da(r,a)}let n=Dh(Wt(e),t);return $.makeTensor(n,e,t)}function Ur(e,t="float32"){if(t==="complex64"){let r=Ur(e,"float32"),a=Ot(e,"float32");return Da(r,a)}let n=gf(Wt(e),t);return $.makeTensor(n,e,t)}function ZS(e){let t={x:C(e,"x","onesLike")};return $.runKernel(Wo,t)}var zn=D({onesLike_:ZS});function YS(e,t){let n=C(e,"v1","outerProduct"),r=C(t,"v2","outerProduct");F(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let a=H(n,[-1,1]),s=H(r,[1,-1]);return Ye(a,s)}var JS=D({outerProduct_:YS});function QS(e,t,n=0){let r=C(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let a={paddings:t,constantValue:n},s={x:r};return $.runKernel(Vs,s,a)}var ua=D({pad_:QS});function eT(e,t,n=0){return F(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),ua(e,[t],n)}var tT=D({pad1d_:eT});function nT(e,t,n=0){return F(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ua(e,t,n)}var rT=D({pad2d_:nT});function aT(e,t,n=0){return F(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ua(e,t,n)}var sT=D({pad3d_:aT});function iT(e,t,n=0){return F(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ua(e,t,n)}var oT=D({pad4d_:iT});function lT(e,t,n){let r=C(e,"x","spaceToBatchND");F(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),F(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),F(r.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let a={x:r},s={blockShape:t,paddings:n};return $.runKernel(Fu,a,s)}var rc=D({spaceToBatchND_:lT});function hT(e,t,n,r,a,s){a==null&&(a=[1,1]),s==null&&(s=1),r===0&&(r="valid");let i=C(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]])),F(Wr(s,a),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${a}'`);let u=cx(o.shape,t,s,a,r),c=[u.dilationHeight,u.dilationWidth],h;r==="same"?h=cT([u.filterHeight,u.filterWidth],c):h=[[0,0],[0,0]];let d=c[0]===1&&c[1]===1,[p,f]=uT([u.inHeight,u.inWidth],c,h),m=d?r:"valid",A=d?o:rc(o,c,p),g=(n==="avg"?()=>Ku(A,t,s,m):()=>nc(A,t,s,m))(),y=d?g:Zu(g,c,f);return l?H(y,[y.shape[1],y.shape[2],y.shape[3]]):y}function uT(e,t,n){let r=n.map(c=>c[0]),a=n.map(c=>c[1]),s=e.concat(r,a),i=t.map((c,h)=>(c-s[h]%c)%c),o=a.map((c,h)=>c+i[h]),l=t.map((c,h)=>[r[h],o[h]]),u=t.map((c,h)=>[0,i[h]]);return[l,u]}function cT(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),r=n.map(s=>Math.floor(s/2)),a=n.map((s,i)=>s-r[i]);return n.map((s,i)=>[r[i],a[i]])}var $x=D({pool_:hT});function dT(e,t){let n=C(e,"base","pow"),r=C(t,"exp","pow");[n,r]=Nt(n,r);let a={a:n,b:r};return $.runKernel(Us,a)}var ca=D({pow_:dT});function pT(e,t){let n=C(e,"x","prelu"),r=C(t,"alpha","prelu"),a={x:n,alpha:r};return $.runKernel(js,a)}var ac=D({prelu_:pT});function fT(e,t=null,n=!1){let r=C(e,"x","prod");r.dtype==="bool"&&(r=xe(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(Vo,a,s)}var Pd=D({prod_:fT});function mT(e,t,n){let r=Wt(e),a=null;if(n==null||n==="float32")a=new Float32Array(r);else if(n==="int32")a=new Int32Array(r);else if(n==="bool")a=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let s=0;s=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*r*i,t=this.mean+this.stdDev*a*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},gT=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let a=r||Math.random();this.randu=Im.alea(a.toString()),this.randn=new Nm(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,a,s;for(;;){do r=this.randn.nextValue(),s=1+this.c*r;while(s<=0);if(s*=s*s,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),a=this.randu(),athis.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Im.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function xT(e,t,n=1,r="float32",a){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let s=new gT(t,n,r,a),i=Ue(e,r);for(let o=0;o`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Pn(t,0)}var ET=D({reverse1d_:TT});function CT(e,t){let n=C(e,"x","reverse");return F(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Pn(n,t)}var RT=D({reverse2d_:CT});function FT(e,t){let n=C(e,"x","reverse");return F(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Pn(n,t)}var MT=D({reverse3d_:FT});function $T(e,t){let n=C(e,"x","reverse");return F(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Pn(n,t)}var DT=D({reverse4d_:$T});function OT(e){let t={x:C(e,"x","round")};return $.runKernel(Ks,t)}var Tm=D({round_:OT});function zT(e){let t={x:C(e,"x","rsqrt")};return $.runKernel(Zs,t)}var Bd=D({rsqrt_:zT});function Ne(e,t){if((cn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&cn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Oa(e,[],[],t)}function PT(e){let t={x:C(e,"x","selu")};return $.runKernel(qo,t)}var Vd=D({selu_:PT});function LT(e,t,n,r,a,s=[1,1],i="NHWC"){let o=C(e,"x","separableConv2d"),l=C(t,"depthwiseFilter","separableConv2d"),u=C(n,"pointwiseFilter","separableConv2d"),c=o,h=!1;if(o.rank===3&&(h=!0,c=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");F(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),F(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),F(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let d=l.shape[2],p=l.shape[3];F(u.shape[2]===d*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*p}, but got ${u.shape[2]}.`);let f=yl(c,l,r,a,i,s),m=la(f,u,1,"valid",i);return h?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Em=D({separableConv2d_:LT});async function WT(e,t){let n=C(e,"x","setdiff1d"),r=C(t,"y","setdiff1d");F(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),F(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),F(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let a=await n.data(),s=await r.data(),i=new Set(s),o=0;for(let c=0;c`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),$e(r,[t],[n])}var Hd=D({slice1d_:jT});function HT(e,t,n){let r=C(e,"x","slice2d");return F(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),$e(r,t,n)}var Rm=D({slice2d_:HT});function GT(e,t,n){let r=C(e,"x","slice3d");return F(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),$e(r,t,n)}var Gd=D({slice3d_:GT});function qT(e,t,n){let r=C(e,"x","slice4d");return F(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),$e(r,t,n)}var ic=D({slice4d_:qT});function XT(e,t=-1){let n=C(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},a={dim:t};return $.runKernel(ti,r,a)}var oc=D({softmax_:XT});function KT(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(Jh,t)}var lc=D({fft_:KT});function ZT(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(Qh,t)}var Il=D({ifft_:ZT});function YT(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let a=H(e,[n,t]);r=Il(a)}else{let a=[n,2*(t-1)],s=H(sc(e),[n,t]),i=H(Rd(e),[n,t]),o=Pn($e(s,[0,1],[n,t-2]),1),l=O(Pn($e(i,[0,1],[n,t-2]),1),Ne(-1)),u=ot([s,o],1),c=ot([i,l],1),h=H(Da(u,c),[a[0],a[1]]);r=Il(h)}if(r=sc(r),e.rank===3&&e.shape[0]!==0){let a=r,s=e.shape[0];r=H(r,[s,r.shape[0]/s,r.shape[1]]),a.dispose()}return r}var qd=D({irfft_:YT});function JT(e,t,n=0){let r={x:C(e,"x","split")},a={numOrSizeSplits:t,axis:n};return $.runKernel(Jo,r,a)}var jt=D({split_:JT});function QT(e,t){F(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,a;if(t!=null&&t0),m=e.shape.map(A=>A);m[e.shape.length-1]=t,a=$e(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,a=ot([e,Ot(f)],e.shape.length-1),n=t}else a=e;let s=Xe(a),i=H(Da(a,s),[r,n]),o=lc(i),l=Math.floor(n/2)+1,u=sc(o),c=Rd(o),h=jt(u,[l,n-l],u.shape.length-1),d=jt(c,[l,n-l],c.shape.length-1),p=a.shape.slice();return p[a.shape.length-1]=l,H(Da(h[0],d[0]),p)}var uc=D({rfft_:QT});function eE(e){let t={x:C(e,"x","sqrt")};return $.runKernel(Qs,t)}var an=D({sqrt_:eE});function tE(e,t){let n=C(e,"a","squaredDifference"),r=C(t,"b","squaredDifference");[n,r]=Nt(n,r),xt(n.shape,r.shape);let a={a:n,b:r},s={};return $.runKernel(ni,a,s)}var Xd=D({squaredDifference_:tE});function nE(e,t){let n=C(e,"x","squeeze");return H(n,r5(n.shape,t).newShape)}var ja=D({squeeze_:nE});function rE(e,t=0){let n=ju(e,"tensors","stack","string_or_numeric");F(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&F(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,a={axis:t};return $.runKernel(Bo,r,a)}var mn=D({stack_:rE});function aE(e,t=0){let n={x:C(e,"x","step")},r={alpha:t};return $.runKernel($a,n,r)}var Nl=D({step_:aE});function sE(e,t,n,r,a=0,s=0,i=0,o=0,l=0){let u={x:C(e,"x","stridedSlice")},c={begin:t,end:n,strides:r,beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return $.runKernel(Qo,u,c)}var Fm=D({stridedSlice_:sE});function iE(e){let t={x:C(e,"x","tan")};return $.runKernel(el,t)}var Mm=D({tan_:iE});function hn(e,t){ds(e);let n=zr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Oa(e,null,n,t)}function Tn(e,t,n){if(ds(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=zr(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Oa(e,t,r,n)}function oE(e,t,n){if(ds(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=zr(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Oa(e,t,r,n)}function lE(e,t,n){if(ds(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=zr(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Oa(e,t,r,n)}function uE(e,t,n){if(ds(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=zr(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,Oa(e,t,r,n)}function cE(e,t=1,n=!0){let r=C(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let a=r.shape[r.shape.length-1];if(t>a)throw new Error(`'k' passed to topk() must be <= the last dimension (${a}) but got ${t}`);let s={x:r},i={k:t,sorted:n},[o,l]=$.runKernel(tl,s,i);return{values:o,indices:l}}var $m=D({topk_:cE});function hE(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Nm(t,n,r,!0,a),i=Ue(e,r);for(let o=0;o0,()=>"The input tensor must be at least 1D");let r={x:n},a={axis:t},[s,i]=$.runKernel(dd,r,a);return{values:s,indices:i}}var Zd=D({unique_:dE});function pE(e,t,n){let r=C(e,"x","unsortedSegmentSum"),a=C(t,"segmentIds","unsortedSegmentSum","int32");F(Kt(n),()=>"numSegments must be of dtype int");let s={x:r,segmentIds:a},i={numSegments:n};return $.runKernel($u,s,i)}var Dm=D({unsortedSegmentSum_:pE});function fE(e,t=0){let n=C(e,"x","unstack","string_or_numeric");F(t>=-n.shape.length&&t`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},a={axis:t};return $.runKernel(nl,r,a)}var hr=D({unstack_:fE});function zx(e,t=!0,n,r){return $.makeVariable(e,t,n,r)}function Px(e,t){let n=[];for(let s=0;s0,()=>"mask cannot be scalar"),un(o.slice(s,s+i),a.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=s;m"Shape mismatch in v and x");let l=Ne(1),u=be(l,o),c=O(be(i,s),u);if(a){F(r!=null,()=>"When using zeroDebias: true, step is required.");let h=C(r,"step","movingAverage");c=_e(c,be(l,ca(o,h)))}return ie(s,c)}var wE=D({movingAverage_:xE});function bE(e,t,n){let r=C(e,"indices","scatterND","int32"),a=C(t,"updates","scatterND");Gf(a,r,n);let s={indices:r,updates:a},i={shape:n};return $.runKernel(Ho,s,i)}var Wx=D({scatterND_:bE});function _E(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let a=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===a))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${a}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function vE(e,t,n,r=0){let a=C(e,"sparseIndices","sparseToDense","int32"),s=C(t,"sparseValues","sparseToDense"),i=C(r,"defaultValue","sparseToDense",s.dtype);_E(a,s,n,i);let o={sparseIndices:a,sparseValues:s,defaultValue:i},l={outputShape:n};return $.runKernel(cd,o,l)}var zm=D({sparseToDense_:vE});function kE(e,t){let n=C(t,"indices","gatherND","int32"),r={params:C(e,"x","gatherND"),indices:n};return $.runKernel(Io,r)}var Bx=D({gatherND_:kE});function IE(e,t){if(t==null)return e.shape.slice();if(ia(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r`x has to be a floating point tensor since it's going to be scaled, but got a ${a.dtype} tensor instead.`),F(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof qe?a.clone():a;let s=IE(a,n),i=1-t,o=_e(wl(ie(kl(s,0,1,"float32",r),i)),i);return O(a,o)}var Vx=D({dropout_:NE});function Ux(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Pm(e,t,n){let r=1-e%2,a=new Float32Array(e);for(let s=0;s1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),F(r.rank-1===a.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${a.rank}`),un(r.shape.slice(0,r.shape.length-1),a.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=r.shape[r.shape.length-1];F(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await r.data(),o=await a.data(),[l,u]=[i.length/s,s],c=a5("bool",l);for(let h=0;hA.value-m.value),c[h]=0;for(let m=0;mEE,depthwiseConv2d:()=>CE,matMul:()=>RE});function FE(e,t,n,r,a,s="NHWC",i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]])),F(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),F(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),F(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],c=s==="NHWC"?l.shape[3]:l.shape[1];F(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),F(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),i!=null&&F(Kt(a),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let h={x:o,dy:l},d={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,filterShape:n};return $.runKernel(Vh,h,d)}var Lm=D({conv2DBackpropFilter_:FE});function Jd(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return O(e,Nl(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Qd(e,t){let n=t,r=Ut(e.shape,t.shape);return r.length>0&&(n=Fe(n,r)),H(n,e.shape)}function ep(e,t,n,r){if(t==="linear")return e;if(t==="relu")return jr(e);if(t==="elu")return xl(e);if(t==="relu6")return Wd(e);if(t==="prelu")return ac(e,n);if(t==="leakyrelu")return ec(e,r);throw new Error(`Unknown fused activation ${t}.`)}var tp=(e,t)=>!(e>0)||t==="linear";function ME({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",tp($.state.gradientDepth,l)===!1){let _=la(e,t,n,r,a,s,i);return o!=null&&(_=ie(_,o)),ep(_,l,u,c)}let h=C(e,"x","conv2d"),d=C(t,"filter","conv2d"),p=h,f=!1;h.rank===3&&(f=!0,p=H(h,[1,h.shape[0],h.shape[1],h.shape[2]])),F(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),F(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&F(Kt(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),F(p.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${d.shape[2]}.`),F(Wr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(a==="NHWC",()=>`Error in conv2d: got dataFormat of ${a} but only NHWC is currently supported.`);let m=Xu(p.shape,d.shape,n,s,r,i),A;o!=null&&(A=C(o,"bias","fused conv2d"),[A]=Nt(A,h),xt(m.outShape,A.shape));let g;u!=null&&(g=C(u,"prelu weights","fused conv2d"));let y=(_,x)=>{let[N,T,E,M]=x,z=Jd(_,E,l);F(Wa(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let B=cm(T.shape,z,N,n,r),V=Lm(T,z,N.shape,n,r),U=[B,V];if(M!=null){let j=Qd(M,z);U.push(j)}return U},w={x:p,filter:d,bias:A,preluActivationWeights:g},b={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:c};return o==null?Br((_,x,N)=>{let T=$.runKernel(oi,w,b);return N([x,_,T]),f&&(T=H(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:y}})(p,d):Br((_,x,N,T)=>{let E=$.runKernel(oi,w,b);return T([x,_,E,N]),f&&(E=H(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:y}})(p,d,A)}var EE=D({fusedConv2d_:ME});function $E(e,t,n,r,a,s=[1,1],i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},c={strides:r,pad:a,dimRoundingMode:i,dilations:s,filterShape:n};return $.runKernel(Gh,u,c)}var jx=D({depthwiseConv2dNativeBackpropFilter_:$E});function DE(e,t,n,r,a,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},c={strides:r,pad:a,dimRoundingMode:i,dilations:s,inputShape:e},h=$.runKernel(qh,u,c);return l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Hx=D({depthwiseConv2dNativeBackpropInput_:DE});function OE({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(tp($.state.gradientDepth,l)===!1){let _=yl(e,t,n,r,a,s,i);return o!=null&&(_=ie(_,o)),ep(_,l,u,c)}let h=C(e,"x","depthwiseConv2d"),d=C(t,"filter","depthwiseConv2d"),p=h,f=!1;h.rank===3&&(f=!0,p=H(h,[1,h.shape[0],h.shape[1],h.shape[2]])),F(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),F(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),F(p.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),F(Wr(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&F(Kt(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${r}.`);let m=Xu(p.shape,d.shape,n,s,r,i,!0),A;o!=null&&(A=C(o,"bias","fused conv2d"),[A]=Nt(A,h),xt(m.outShape,A.shape));let g;u!=null&&(g=C(u,"prelu weights","fused depthwiseConv2d"));let y=(_,x)=>{F(Wa(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[N,T,E,M]=x,z=Jd(_,E,l),B=Hx(T.shape,z,N,n,r,s,i),V=jx(T,z,N.shape,n,r,s,i);if(M!=null){let U=Qd(A,z);return[B,V,U]}return[B,V]},w={x:p,filter:d,bias:A,preluActivationWeights:g},b={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:c};return o==null?Br((_,x,N)=>{let T=$.runKernel(li,w,b);return N([x,_,T]),f&&(T=H(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:y}})(p,d):Br((_,x,N,T)=>{let E=$.runKernel(li,w,b);return T([x,_,E,N]),f&&(E=H(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:y}})(p,d,A)}var CE=D({fusedDepthwiseConv2d_:OE});function zE({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:a,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(tp($.state.gradientDepth,s)===!1){let M=Ye(e,t,n,r);return a!=null&&(M=ie(M,a)),ep(M,s,i,o)}let l=C(e,"a","fused matMul"),u=C(t,"b","fused matMul");[l,u]=Nt(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],h=r?u.shape[u.rank-1]:u.shape[u.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=r?u.shape[u.rank-2]:u.shape[u.rank-1],f=l.shape.slice(0,-2),m=u.shape.slice(0,-2),A=Wt(f),g=Wt(m);F(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),F(ia(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),F(c===h,()=>`Error in fused matMul: inner shapes (${c}) and (${h}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${r} must match.`);let y=l.shape.slice(0,-2).concat([d,p]),w=n?H(l,[A,c,d]):H(l,[A,d,c]),b=r?H(u,[g,p,h]):H(u,[g,h,p]),_;a!=null&&(_=C(a,"bias","fused matMul"),[_]=Nt(_,l),xt(y,_.shape));let x;i!=null&&(x=C(i,"prelu weights","fused matMul"));let N=(M,z)=>{let[B,V,U,j]=z,X=Jd(H(M,U.shape),U,s),G,ee;if(!n&&!r?(G=Ye(X,V,!1,!0),ee=Ye(B,X,!0,!1)):!n&&r?(G=Ye(X,V,!1,!1),ee=Ye(X,B,!0,!1)):n&&!r?(G=Ye(V,X,!1,!0),ee=Ye(B,X,!1,!1)):(G=Ye(V,X,!0,!0),ee=Ye(X,B,!0,!0)),a!=null){let Y=Qd(j,X);return[G,ee,Y]}else return[G,ee]},T={a:w,b,bias:_,preluActivationWeights:x},E={transposeA:n,transposeB:r,activation:s,leakyreluAlpha:o};return a==null?Br((M,z,B)=>{let V=$.runKernel(ii,T,E);return B([M,z,V]),{value:H(V,y),gradFunc:N}})(w,b):Br((M,z,B,V)=>{let U=$.runKernel(ii,T,E);return V([M,z,U,B]),{value:H(U,y),gradFunc:N}})(w,b,_)}var RE=D({fusedMatMul_:zE});function PE(e){return Pm(e,.54,.46)}var LE=D({hammingWindow_:PE});function WE(e){return Pm(e,.5,.5)}var Gx=D({hannWindow_:WE});function BE(e,t,n,r=!1,a=0){let s=0,i=[];for(;s+t<=e.size;)i.push($e(e,s,t)),s+=n;if(r)for(;s`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),F(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),F(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),F(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),F(a==="bilinear"||a==="nearest",()=>`method must be bilinear or nearest, but was ${a}`);let c={image:i,boxes:o,boxInd:l},h={method:a,extrapolationValue:s,cropSize:r};return $.runKernel(Ao,c,h)}var HE=D({cropAndResize_:jE});function GE(e){let t=C(e,"image","flipLeftRight","float32");F(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return $.runKernel(vo,n,{})}var qE=D({flipLeftRight_:GE});function XE(e,t,n=0,r=.5){let a=C(e,"image","rotateWithOffset","float32");F(a.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${a.rank}.`);let s={image:a},i={radians:t,fillValue:n,center:r};return $.runKernel(al,s,i)}var KE=D({rotateWithOffset_:XE});function Sl(e,t,n,r,a,s){r==null&&(r=.5),a==null&&(a=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),F(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),F(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),F(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),F(t.rank===1,()=>"scores must be a 1D tensor"),F(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),F(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s}}function ZE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=C(e,"boxes","nonMaxSuppression"),i=C(t,"scores","nonMaxSuppression"),o=Sl(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:r,scoreThreshold:a};return $.runKernel(zo,{boxes:s,scores:i},l)}var YE=D({nonMaxSuppression_:ZE});function QE(e,t,n){let r=JE(e,t,n),a=r<0?-(r+1):r;e.splice(a,0,t)}function JE(e,t,n){return tC(e,t,n||eC)}function eC(e,t){return e>t?1:e>>1);let o=n(t,e[s]);o>0?r=s+1:(a=s,i=!o)}return i?r:-r-1}function Xx(e,t,n,r,a){return Wm(e,t,n,r,a,0)}function Kx(e,t,n,r,a,s){return Wm(e,t,n,r,a,0,!1,s,!0)}function Zx(e,t,n,r,a,s){return Wm(e,t,n,r,a,s,!0)}function Wm(e,t,n,r,a,s,i=!1,o=!1,l=!1){let u=[];for(let A=0;Aa&&u.push({score:t[A],boxIndex:A,suppressBeginIndex:0});u.sort(Yx);let c=s>0?-.5/s:0,h=[],d=[];for(;h.length0;){let A=u.pop(),{score:g,boxIndex:y,suppressBeginIndex:w}=A;if(g=w;--_){let x=nC(e,y,h[_]);if(x>=r){b=!0;break}if(A.score=A.score*rC(r,c,x),A.score<=a)break}A.suppressBeginIndex=h.length,b||(A.score===g?(h.push(y),d.push(A.score)):A.score>a&&QE(u,A,Yx))}let p=h.length,f=n-p;o&&f>0&&(h.push(...new Array(f).fill(0)),d.push(...new Array(f).fill(0)));let m={selectedIndices:h};return i&&(m.selectedScores=d),l&&(m.validOutputs=p),m}function nC(e,t,n){let r=e.subarray(t*4,t*4+4),a=e.subarray(n*4,n*4+4),s=Math.min(r[0],r[2]),i=Math.min(r[1],r[3]),o=Math.max(r[0],r[2]),l=Math.max(r[1],r[3]),u=Math.min(a[0],a[2]),c=Math.min(a[1],a[3]),h=Math.max(a[0],a[2]),d=Math.max(a[1],a[3]),p=(o-s)*(l-i),f=(h-u)*(d-c);if(p<=0||f<=0)return 0;let m=Math.max(s,u),A=Math.max(i,c),g=Math.min(o,h),y=Math.min(l,d),w=Math.max(g-m,0)*Math.max(y-A,0);return w/(p+f-w)}function rC(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function Yx(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function aC(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=C(e,"boxes","nonMaxSuppressionAsync"),i=C(t,"scores","nonMaxSuppressionAsync"),o=Sl(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],c=l[1],{selectedIndices:h}=Xx(u,c,n,r,a);return s!==e&&s.dispose(),i!==t&&i.dispose(),hn(h,"int32")}var sC=aC;function iC(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=C(e,"boxes","nonMaxSuppression"),o=C(t,"scores","nonMaxSuppression"),l=Sl(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},c={maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s},h=$.runKernel(Lo,u,c);return{selectedIndices:h[0],selectedScores:h[1]}}var oC=D({nonMaxSuppressionWithScore_:iC});async function lC(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=C(e,"boxes","nonMaxSuppressionAsync"),o=C(t,"scores","nonMaxSuppressionAsync"),l=Sl(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),c=u[0],h=u[1],{selectedIndices:d,selectedScores:p}=Zx(c,h,n,r,a,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:hn(d,"int32"),selectedScores:hn(p)}}var uC=lC;function cC(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=C(e,"boxes","nonMaxSuppression"),o=C(t,"scores","nonMaxSuppression"),l=Sl(i,o,n,r,a,null),u=l.maxOutputSize,c=l.iouThreshold,h=l.scoreThreshold,d={boxes:i,scores:o},p={maxOutputSize:u,iouThreshold:c,scoreThreshold:h,padToMaxOutputSize:s},f=$.runKernel(Po,d,p);return{selectedIndices:f[0],validOutputs:f[1]}}var hC=D({nonMaxSuppressionPadded_:cC});async function dC(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=C(e,"boxes","nonMaxSuppressionAsync"),o=C(t,"scores","nonMaxSuppressionAsync"),l=Sl(i,o,n,r,a,null),u=l.maxOutputSize,c=l.iouThreshold,h=l.scoreThreshold,[d,p]=await Promise.all([i.data(),o.data()]),{selectedIndices:f,validOutputs:m}=Kx(d,p,u,c,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:hn(f,"int32"),validOutputs:Ne(m,"int32")}}var pC=dC;function fC(e,t,n=!1,r=!1){let a=C(e,"images","resizeBilinear");F(a.rank===3||a.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${a.rank}.`),F(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),F(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=H(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},u=$.runKernel(Gs,o,l);return i?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Jx=D({resizeBilinear_:fC});function mC(e,t,n=!1,r=!1){let a=C(e,"images","resizeNearestNeighbor");F(a.rank===3||a.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${a.rank}.`),F(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),F(a.dtype==="float32"||a.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),F(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=H(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},u=$.runKernel(Ru,o,l);return i?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Qx=D({resizeNearestNeighbor_:mC});function AC(e,t,n="nearest",r="constant",a=0,s){let i=C(e,"image","transform","float32"),o=C(t,"transforms","transform","float32");F(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),F(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},u={interpolation:n,fillMode:r,fillValue:a,outputShape:s};return $.runKernel(hd,l,u)}var gC=D({transform_:AC});function yC(e,t,n){F(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),F(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=C(e,"a","bandPart");F(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let a=r.shape,[s,i]=r.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=H(Ld(0,s,1,"int32"),[-1,1]),l=Ld(0,i,1,"int32"),u=be(o,l),c=cr(gi(u,Ne(+t,"int32")),Ua(u,Ne(-n,"int32"))),h=Ot([s,i],r.dtype);return H(mn(hr(H(r,[-1,s,i])).map(d=>Sn(c,d,h))),a)}var xC=D({bandPart_:yC});function wC(e){let t;if(Array.isArray(e)){t=!1,F(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let a=e[0].shape[0];for(let s=1;s`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${a})`)}else t=!0,e=jt(e,e.shape[0],0).map(a=>ja(a,[0]));F(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let a=0;a{let s=r[a];if(a>0)for(let i=0;i=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return ew(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),r=hr(H(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),a=[],s=[];r.forEach(l=>{let[u,c]=ew(l,t);a.push(u),s.push(c)});let i=H(mn(a,0),e.shape),o=H(mn(s,0),e.shape);return[i,o]}}function ew(e,t=!1){return $.tidy(()=>{F(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],a=gm(n),s=Pr(e),i=Tn([[1]],[1,1]),o=Pr(i),l=n>=r?r:n;for(let u=0;u{let p=$e(s,[u,u],[n-u,1]),f=Yd(p),m=$e(s,[u,u],[1,1]),A=Sn(ur(m,0),Tn([[-1]]),Tn([[1]])),g=be(m,O(A,f)),y=_e(p,g);y.shape[0]===1?o=Pr(i):o=ot([i,$e(y,[1,0],[y.shape[0]-1,y.shape[1]])],0);let w=St(_e(Ye(A,g),f)),b=$e(s,[u,0],[n-u,r]),_=O(w,o),x=it(o);if(u===0)s=be(b,Ye(_,Ye(x,b)));else{let E=be(b,Ye(_,Ye(x,b)));s=ot([$e(s,[0,0],[u,r]),E],0)}let N=it(_),T=$e(a,[0,u],[n,a.shape[1]-u]);if(u===0)a=be(T,Ye(Ye(T,o),N));else{let E=be(T,Ye(Ye(T,o),N));a=ot([$e(a,[0,0],[n,u]),E],1)}return[o,s,a]}),Re([c,h,d])}return!t&&n>r&&(a=$e(a,[0,0],[n,r]),s=$e(s,[0,0],[r,r])),[a,s]})}var vC=D({qr_:_C}),An;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(An||(An={}));function kC(e,t,n=An.SUM_BY_NONZERO_WEIGHTS){let r=C(e,"losses","computeWeightedLoss"),a=null;t!=null&&(a=C(t,"weights","computeWeightedLoss"));let s=a==null?r:O(r,a);if(n===An.NONE)return s;if(n===An.SUM)return Fe(s);if(n===An.MEAN){if(a==null)return Tt(s);{let i=r.size/a.size,o=_e(Fe(s),Fe(a));return i>1?_e(o,Ne(i)):o}}if(n===An.SUM_BY_NONZERO_WEIGHTS){if(a==null)return _e(Fe(s),Ne(r.size));{let i=O(a,Ur(r.shape)),o=xe(Fe(xi(i,Ne(0))),"float32");return _e(Fe(s),o)}}throw Error(`Unknown reduction: ${n}`)}var ha=D({computeWeightedLoss_:kC});function IC(e,t,n,r=An.SUM_BY_NONZERO_WEIGHTS){let a=C(e,"labels","absoluteDifference"),s=C(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=C(n,"weights","absoluteDifference")),un(a.shape,s.shape,"Error in absoluteDifference: ");let o=Vt(be(a,s));return ha(o,i,r)}var NC=D({absoluteDifference_:IC});function SC(e,t,n,r,a=An.SUM_BY_NONZERO_WEIGHTS){let s=C(e,"labels","cosineDistance"),i=C(t,"predictions","cosineDistance"),o=null;r!=null&&(o=C(r,"weights","cosineDistance")),un(s.shape,i.shape,"Error in cosineDistance: ");let l=Ne(1),u=be(l,Fe(O(s,i),n,!0));return ha(u,o,a)}var TC=D({cosineDistance_:SC});function EC(e,t,n,r=An.SUM_BY_NONZERO_WEIGHTS){let a=C(e,"labels","hingeLoss"),s=C(t,"predictions","hingeLoss"),i=null;n!=null&&(i=C(n,"weights","hingeLoss")),un(a.shape,s.shape,"Error in hingeLoss: ");let o=Ne(1);a=be(O(Ne(2),a),o);let l=jr(be(o,O(a,s)));return ha(l,i,r)}var CC=D({hingeLoss_:EC});function RC(e,t,n,r=1,a=An.SUM_BY_NONZERO_WEIGHTS){let s=C(e,"labels","huberLoss"),i=C(t,"predictions","huberLoss"),o=null;n!=null&&(o=C(n,"weights","huberLoss")),un(s.shape,i.shape,"Error in huberLoss: ");let l=Ne(r),u=Vt(be(i,s)),c=vl(u,l),h=be(u,c),d=ie(O(Ne(.5),ht(c)),O(l,h));return ha(d,o,a)}var FC=D({huberLoss_:RC});function MC(e,t,n,r=1e-7,a=An.SUM_BY_NONZERO_WEIGHTS){let s=C(e,"labels","logLoss"),i=C(t,"predictions","logLoss"),o=null;n!=null&&(o=C(n,"weights","logLoss")),un(s.shape,i.shape,"Error in logLoss: ");let l=Ne(1),u=Ne(r),c=St(O(s,On(ie(i,u)))),h=O(be(l,s),On(ie(be(l,i),u))),d=be(c,h);return ha(d,o,a)}var $C=D({logLoss_:MC});function DC(e,t,n,r=An.SUM_BY_NONZERO_WEIGHTS){let a=C(e,"labels","meanSquaredError"),s=C(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=C(n,"weights","meanSquaredError")),un(a.shape,s.shape,"Error in meanSquaredError: ");let o=Xd(a,s);return ha(o,i,r)}var OC=D({meanSquaredError_:DC});function zC(e,t){let n=C(e,"labels","sigmoidCrossEntropyWithLogits"),r=C(t,"logits","sigmoidCrossEntropyWithLogits");un(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let a=jr(r),s=O(r,n),i=Md(Jn(St(Vt(r))));return ie(be(a,s),i)}function PC(e,t,n,r=0,a=An.SUM_BY_NONZERO_WEIGHTS){let s=C(e,"multiClassLabels","sigmoidCrossEntropy"),i=C(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=C(n,"weights","sigmoidCrossEntropy")),un(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),r>0){let u=Ne(r),c=Ne(1),h=Ne(.5);s=ie(O(s,be(c,u)),O(h,u))}let l=zC(s,i);return ha(l,o,a)}var LC=D({sigmoidCrossEntropy_:PC});function WC(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Br((r,a,s)=>{let i=bm(a,[n],!0),o=be(xe(a,"float32"),i);s([r,o]);let l=St(O(o,r));return{value:Fe(l,[n]),gradFunc:(u,c)=>{let[h,d]=c,p=yi(u.shape,[n]);return[O(H(u,p),be(xe(h,"float32"),Jn(d))),O(H(u,p),be(Jn(d),xe(h,"float32")))]}}})(e,t)}function BC(e,t,n,r=0,a=An.SUM_BY_NONZERO_WEIGHTS){let s=C(e,"onehotLabels","softmaxCrossEntropy"),i=C(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=C(n,"weights","softmaxCrossEntropy")),un(s.shape,i.shape,"Error in softmaxCrossEntropy: "),r>0){let u=Ne(r),c=Ne(1),h=Ne(s.shape[1]);s=ie(O(s,be(c,u)),_e(u,h))}let l=WC(s,i);return ha(l,o,a)}var VC=D({softmaxCrossEntropy_:BC}),UC={fft:lc,ifft:Il,rfft:uc,irfft:qd},jC={hammingWindow:LE,hannWindow:Gx,frame:qx,stft:UE},Ke={flipLeftRight:qE,resizeNearestNeighbor:Qx,resizeBilinear:Jx,rotateWithOffset:KE,cropAndResize:HE,nonMaxSuppression:YE,nonMaxSuppressionAsync:sC,nonMaxSuppressionWithScore:oC,nonMaxSuppressionWithScoreAsync:uC,nonMaxSuppressionPadded:hC,nonMaxSuppressionPaddedAsync:pC,transform:gC},tw={bandPart:xC,gramSchmidt:bC,qr:vC},HC={absoluteDifference:NC,computeWeightedLoss:ha,cosineDistance:TC,hingeLoss:CC,huberLoss:FC,logLoss:$C,meanSquaredError:OC,sigmoidCrossEntropy:LC,softmaxCrossEntropy:VC},da=class extends ax{minimize(e,t=!1,n){let{value:r,grads:a}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:a[i.name]}));this.applyGradients(s)}else this.applyGradients(a);return Re(a),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Nx(e,t)}dispose(){this.iterations_!=null&&Re(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Ne(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(da,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var np=class extends da{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:L(()=>Xe(r).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:L(()=>Xe(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;L(()=>{let l=ie(O(i,this.rho),O(ht(s),1-this.rho)),u=O(_e(an(ie(o,this.epsilon)),an(ie(i,this.epsilon))),s),c=ie(O(o,this.rho),O(ht(u),1-this.rho));i.assign(l),o.assign(c);let h=ie(O(u,-this.learningRate),r);r.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Re(this.accumulatedGrads.map(e=>e.variable)),Re(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};np.className="Adadelta";Pa(np);var rp=class extends da{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:L(()=>Qu(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let s=this.accumulatedGrads[n].variable;L(()=>{let i=ie(s,ht(a));s.assign(i);let o=ie(O(_e(a,an(ie(i,$.backend.epsilon()))),-this.learningRate),r);r.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Re(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};rp.className="Adagrad";Pa(rp);var ap=class extends da{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],L(()=>{this.accBeta1=Ne(t).variable(),this.accBeta2=Ne(n).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);L(()=>{let n=be(1,this.accBeta1),r=be(1,this.accBeta2);t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:L(()=>Xe(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${a}/v`,variable:L(()=>Xe(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,c=this.accumulatedSecondMoment[s].variable,h=ie(O(u,this.beta1),O(l,1-this.beta1)),d=ie(O(c,this.beta2),O(ht(l),1-this.beta2)),p=_e(h,n),f=_e(d,r);u.assign(h),c.assign(d);let m=ie(O(_e(p,ie(an(f),this.epsilon)),-this.learningRate),i);i.assign(m)}),this.accBeta1.assign(O(this.accBeta1,this.beta1)),this.accBeta2.assign(O(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Re(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Re(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),L(()=>{this.accBeta1.assign(ca(this.beta1,this.iterations_+1)),this.accBeta2.assign(ca(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};ap.className="Adam";Pa(ap);var sp=class extends da{constructor(e,t,n,r=null,a=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=a,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],L(()=>{this.iteration=Ne(0).variable(),this.accBeta1=Ne(t).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);L(()=>{let n=be(1,this.accBeta1),r=_e(-this.learningRate,ie(O(this.iteration,this.decay),1));t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:Xe(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${a}/v`,variable:Xe(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,c=this.accumulatedWeightedInfNorm[s].variable,h=ie(O(u,this.beta1),O(l,1-this.beta1)),d=O(c,this.beta2),p=Vt(l),f=Vr(d,p);u.assign(h),c.assign(f);let m=ie(O(_e(r,n),_e(h,ie(f,this.epsilon))),i);i.assign(m)}),this.iteration.assign(ie(this.iteration,1)),this.accBeta1.assign(O(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Re(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Re(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};sp.className="Adamax";Pa(sp);var cc=class extends da{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let a=$.registeredVariables[t];L(()=>{let s=ie(O(this.c,r),a);a.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Zt(Ne(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};cc.className="SGD";Pa(cc);var ip=class extends cc{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Ne(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:L(()=>Xe(r).variable(i))}}let a=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&L(()=>{let i,o=ie(O(this.m,a),s);this.useNesterov?i=ie(O(this.c,ie(s,O(o,this.m))),r):i=ie(O(this.c,o),r),a.assign(o),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Re(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};ip.className="Momentum";Pa(ip);var op=class extends da{constructor(e,t=.9,n=0,r=null,a=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=a,r==null&&(this.epsilon=$.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:L(()=>Xe(r).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:L(()=>Xe(r).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:L(()=>Xe(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;L(()=>{let l=ie(O(i,this.decay),O(ht(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,c=ie(O(u,this.decay),O(s,1-this.decay)),h=_e(O(s,this.learningRate),an(be(l,ie(ht(c),this.epsilon)))),d=ie(O(o,this.momentum),h);i.assign(l),u.assign(c),o.assign(d);let p=be(r,d);r.assign(p)}else{let u=ie(O(i,this.decay),O(ht(s),1-this.decay)),c=ie(O(o,this.momentum),_e(O(s,this.learningRate),an(ie(u,this.epsilon))));i.assign(u),o.assign(c);let h=be(r,c);r.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Re(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Re(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Re(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};op.className="RMSProp";Pa(op);var wi=class{static sgd(e){return new cc(e)}static momentum(e,t,n=!1){return new ip(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,a=!1){return new op(e,t,n,r,a)}static adam(e=.001,t=.9,n=.999,r=null){return new ap(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new np(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,a=0){return new sp(e,t,n,r,a)}static adagrad(e,t=.1){return new rp(e,t)}},bi={sgd:wi.sgd,momentum:wi.momentum,adadelta:wi.adadelta,adagrad:wi.adagrad,rmsprop:wi.rmsprop,adamax:wi.adamax,adam:wi.adam},GC=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function lp(){return new Promise(e=>GC(()=>e()))}var R={};We(R,{ERF_A1:()=>rR,ERF_A2:()=>aR,ERF_A3:()=>sR,ERF_A4:()=>iR,ERF_A5:()=>oR,ERF_P:()=>nR,PARALLELIZE_THRESHOLD:()=>Bm,SELU_SCALE:()=>rw,SELU_SCALEALPHA:()=>nw,applyActivation:()=>ep,assertAndGetBroadcastShape:()=>xt,assertAxesAreInnerMostDims:()=>TS,assertParamsConsistent:()=>qC,assignToTypedArray:()=>mR,axesAreInnerMostDims:()=>xm,calculateShapes:()=>G5,combineLocations:()=>Tx,complexWithEvenIndex:()=>dR,complexWithOddIndex:()=>pR,computeConv2DInfo:()=>Xu,computeConv3DInfo:()=>hx,computeDefaultPad:()=>om,computeDilation2DInfo:()=>JI,computeOptimalWindowSize:()=>KC,computeOutAndReduceShapes:()=>Ex,computeOutShape:()=>XC,computePool2DInfo:()=>cx,computePool3DInfo:()=>QI,convertConv2DDataFormat:()=>ux,eitherStridesOrDilationsAreOne:()=>Wr,expandShapeToKeepDim:()=>yi,exponent:()=>gR,exponents:()=>AR,fromStringArrayToUint8:()=>wR,fromUint8ToStringArray:()=>xR,getAxesPermutation:()=>Cx,getBroadcastDims:()=>jN,getComplexWithIndex:()=>fR,getFusedBiasGradient:()=>Qd,getFusedDyActivation:()=>Jd,getImageCenter:()=>ZC,getInnerMostAxes:()=>ES,getPermuted:()=>JC,getReductionAxes:()=>Ut,getReshaped:()=>YC,getReshapedPermuted:()=>QC,getSliceBeginCoords:()=>eR,getSliceSize:()=>tR,getUndoAxesPermutation:()=>wm,log:()=>uR,mergeRealAndImagArrays:()=>cR,prepareAndValidate:()=>H5,prepareSplitSize:()=>yR,segment_util:()=>aw,shouldFuse:()=>tp,slice_util:()=>pn,splitRealAndImagArrays:()=>hR,tupleValuesAreOne:()=>Wa,upcastType:()=>lr,validateInput:()=>Gf,validateUpdateShape:()=>Hf,warn:()=>lR});function qC(e,t){let n=e[0].length;e.forEach((a,s)=>{F(a.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),F(t>=0&&t`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((a,s)=>{for(let i=0;i`Error in concat${n}D: Shape of tensors[${s}] (${a}) does not match the shape of the rest (${r}) along the non-concatenated axis ${s}.`)})}function XC(e,t){let n=e[0].slice();for(let r=1;r=t*2+1||i%2==1?s.push(i):a.push(i);r.push(...a),r.push(0),r.push(...s)}return r}function QC(e,t,n,r=!0){let a=[];r?a.push(e[0]/n):a.push(e[0]*n);for(let s=1;s"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let a=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);F(a<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}F(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var aw={};We(aw,{collectGatherOpShapeInfo:()=>vR,computeOutShape:()=>_R,segOpComputeOptimalWindowSize:()=>bR});function bR(e,t){let n=!1,r;for(e<=Bm?(r=e,n=!0):r=$h(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=$h(e,r+1);return r}function _R(e,t,n){let r=[],a=e.length;for(let s=0;sa))throw new Error(`Expect batchDims in the range of [-${a}, ${a}], but got ${r}`);if(r<0&&(r+=a),r>s)throw new Error(`batchDims (${r}) must be less than rank(x) ( ${s}).`);if(nAd(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function wR(e){return e.map(t=>zu(t))}var Hr={};We(Hr,{nonMaxSuppressionV3Impl:()=>Xx,nonMaxSuppressionV4Impl:()=>Kx,nonMaxSuppressionV5Impl:()=>Zx,whereImpl:()=>Px});function Ie(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var kR=Hr.whereImpl,up=class extends mu{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Fh(this,Lr())}nextDataId(){return up.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,J().get("IS_NODE")&&R.warn(` ============================ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details. ============================`));let r={id:this.nextDataId()};return this.data.set(r,{values:e,dtype:n,refCount:1}),r}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let a=n.map(s=>v.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r,a){this.data.set(e,{values:t,dtype:r,refCount:a})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),a=this.readSync(n.imag.dataId);return R.mergeRealAndImagArrays(r,a)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>v.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ue(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return Lr().makeTensorFromDataId(r,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Ie([e],"where");let t=this.readSync(e.dataId);return kR(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};up.nextDataId=0;var Vm={};We(Vm,{addImpl:()=>iw,bincountImpl:()=>Um,bincountReduceImpl:()=>ow,ceilImpl:()=>lw,concatImpl:()=>jm,expImpl:()=>uw,expm1Impl:()=>cw,floorImpl:()=>hw,gatherV2Impl:()=>dw,greaterImpl:()=>pw,lessImpl:()=>fw,linSpaceImpl:()=>mw,logImpl:()=>Aw,maxImpl:()=>gw,maximumImpl:()=>yw,minimumImpl:()=>xw,multiplyImpl:()=>Hm,negImpl:()=>ww,notEqualImpl:()=>bw,prodImpl:()=>_w,rangeImpl:()=>qm,rsqrtImpl:()=>vw,simpleAbsImpl:()=>sw,sliceImpl:()=>cp,squaredDifferenceImpl:()=>kw,stridedSliceImpl:()=>Iw,subImpl:()=>Nw,tileImpl:()=>Sw,topKImpl:()=>Tw,transposeImpl:()=>Gm,uniqueImpl:()=>Ew});function sw(e){let t=new Float32Array(e.length);for(let n=0;n{let{x:t}=e.inputs,n=e.backend;Ie(t,"abs");let r=new Float32Array(v.sizeFromShape(t.shape)),a=n.data.get(t.dataId).values;return r=sw(a),n.makeOutput(r,t.shape,"float32")},NR={kernelName:so,backendName:"cpu",kernelFunc:IR};function zt(e){return(t,n,r,a,s)=>{let i=R.assertAndGetBroadcastShape(t,n),o=i.length,l=v.computeStrides(i),u=v.sizeFromShape(i),c=v.getTypedArrayFromDType(s,u),h=t.length,d=n.length,p=v.computeStrides(t),f=v.computeStrides(n),m=R.getBroadcastDims(t,i),A=R.getBroadcastDims(n,i);if(m.length+A.length===0)for(let g=0;gw[N]=0);let b=v.locToIndex(w,h,p),_=y.slice(-d);A.forEach(N=>_[N]=0);let x=v.locToIndex(_,d,f);c[g]=e(r[b],a[x])}return[c,i]}}function Ln(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,o=n.makeTensorInfo(r.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",s),imag:n.makeTensorInfo(a.shape,"float32",i)},o}var SR={kernelName:Bh,backendName:"cpu",kernelFunc:Ln};function hp(e,t,n="float32"){if(n==="complex64"){let a=hp(e,t,"float32"),s=hp(e,t,"float32");return Ln({inputs:{real:a,imag:s},backend:e})}let r=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function Gr(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var TR={kernelName:Rs,backendName:"cpu",kernelFunc:Gr};function _i(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.real,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var ER={kernelName:od,backendName:"cpu",kernelFunc:_i};function Ga(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Gr({inputs:{x:a},backend:n});let i=hp(n,a.shape,a.dtype),o=Ga({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Ln({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=_i({inputs:{input:a},backend:n}),o=Ga({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(a.dtype,s)){let i=Gr({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(a.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(a.shape,"int32",o)}if(s==="bool"){let i=n.data.get(a.dataId).values,o=v.toTypedArray([0],a.dtype),[l,u]=zt((c,h)=>c!==h?1:0)(a.shape,[],i,o,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var CR={kernelName:ys,backendName:"cpu",kernelFunc:Ga};function Yt(e,t,n,r){return n==null?({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;Ie([i,o],e);let u=l.data.get(i.dataId).values,c=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,u,c,h);return l.makeTensorInfo(p,h,d)}:({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=Ga({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),h=c.complexTensorInfos.real,d=c.complexTensorInfos.imag,p=l.data.get(h.dataId).values,f=l.data.get(d.dataId).values,m=Ga({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(m.dataId),g=A.complexTensorInfos.real,y=A.complexTensorInfos.imag,w=l.data.get(g.dataId).values,b=l.data.get(y.dataId).values,[_,x,N]=n(i.shape,o.shape,p,f,w,b),T=l.makeTensorInfo(N,"float32",_),E=l.makeTensorInfo(N,"float32",x),M=Ln({inputs:{real:T,imag:E},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(T),l.disposeIntermediateTensorInfo(E),M}else{let u=l.data.get(i.dataId).values,c=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,u,c,h);return l.makeTensorInfo(p,h,d)}}}function Xm(e){return(t,n,r,a,s,i)=>{let o=R.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(o),u=o.length,c=v.computeStrides(o),h=v.getTypedArrayFromDType("float32",l),d=v.getTypedArrayFromDType("float32",l),p=R.getBroadcastDims(t,o),f=R.getBroadcastDims(n,o),m=R.mergeRealAndImagArrays(r,a),A=R.mergeRealAndImagArrays(s,i),g=t.length,y=v.computeStrides(t),w=n.length,b=v.computeStrides(n);if(p.length+f.length===0)for(let _=0;_N[B]=0);let T=v.locToIndex(N,g,y),E=x.slice(-w);f.forEach(B=>E[B]=0);let M=v.locToIndex(E,w,b),z=e(m[T*2],m[T*2+1],A[M*2],A[M*2+1]);h[_]=z.real,d[_]=z.imag}return[h,d,o]}}var iw=zt((e,t)=>e+t),RR=Xm((e,t,n,r)=>({real:e+n,imag:t+r})),hc=Yt(Ra,iw,RR),FR={kernelName:Ra,backendName:"cpu",kernelFunc:hc};function Um(e,t,n,r,a){let s=v.sizeFromShape(r),i=v.makeZerosTypedArray(a,n);for(let o=0;o=a||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function ow(e,t,n,r=!1){let a=e.shape[0],s=e.shape[1],i=Ue([a,n],t.dtype);for(let o=0;o=n||(r?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function Tl(e){return(t,n,r)=>{let a=v.getTypedArrayFromDType(n,t.length);for(let s=0;s{let{x:i}=r;if(Ie(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=v.sizeFromShape(i.shape),c=n||i.dtype,h=v.getArrayFromDType(c,u);for(let d=0;d{let{x:i}=r;if(Ie(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=n||i.dtype,c=t(l,u,a);return o.makeTensorInfo(i.shape,u,c)}}var lw=Tl(e=>Math.ceil(e)),MR=El(xs,lw),$R={kernelName:xs,backendName:"cpu",kernelFunc:MR};function jm(e,t,n,r){let a=v.getArrayFromDType(n,v.sizeFromShape(t));if(r&&n!=="string"){let s=0;e.forEach(i=>{let o=v.sizeFromShape(i.shape);a.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?R.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;uMath.exp(e)),Cw=El(Ns,uw),DR={kernelName:Ns,backendName:"cpu",kernelFunc:Cw},cw=Tl(e=>Math.expm1(e)),OR=El(_o,cw),zR={kernelName:_o,backendName:"cpu",kernelFunc:OR},hw=Tl(e=>Math.floor(e)),PR=El(Ss,hw),LR={kernelName:Ss,backendName:"cpu",kernelFunc:PR};function dw(e,t,n){let r=Ue(n,e.dtype);for(let a=0;ae>t?1:0),WR=Yt(No,pw,null,"bool"),BR={kernelName:No,backendName:"cpu",kernelFunc:WR},fw=zt((e,t)=>eMath.log(e)),jR=El(Ms,Aw),HR={kernelName:Ms,backendName:"cpu",kernelFunc:jR};function gw(e,t,n,r){let a=v.getTypedArrayFromDType(r,v.sizeFromShape(n));for(let s=0;so&&(o=u)}a[s]=o}return a}var yw=zt((e,t)=>Math.max(e,t)),GR=Yt(Ds,yw),qR={kernelName:Ds,backendName:"cpu",kernelFunc:GR},xw=zt((e,t)=>Math.min(e,t)),XR=Yt(Ls,xw),KR={kernelName:Ls,backendName:"cpu",kernelFunc:XR},Hm=zt((e,t)=>e*t),ZR=Xm((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),Km=Yt(Ws,Hm,ZR),YR={kernelName:Ws,backendName:"cpu",kernelFunc:Km};function ww(e,t,n){let r=v.createScalarValue(-1,n);return Hm([],t,r,e,n)}function JR(e){let{inputs:t,backend:n}=e,{x:r}=t;Ie(r,"neg");let a=n.data.get(r.dataId).values,[s,i]=ww(a,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,s)}var QR={kernelName:Do,backendName:"cpu",kernelFunc:JR},bw=zt((e,t)=>e!==t?1:0),eF=Yt(Oo,bw,null,"bool"),tF={kernelName:Oo,backendName:"cpu",kernelFunc:eF};function Gm(e,t,n,r,a){let s=t.length,i=v.sizeFromShape(t),o=v.computeStrides(t),l=v.computeStrides(a),u=v.getTypedArrayFromDType(n,v.sizeFromShape(a));for(let c=0;cn.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(g,A,f)}var aF={kernelName:Vo,backendName:"cpu",kernelFunc:rF};function qm(e,t,n,r){let a=e===t,s=e1;if(a||s||i)return v.makeZerosTypedArray(0,r);let o=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(o,r);t1/Math.sqrt(e)),sF=El(Zs,vw),iF={kernelName:Zs,backendName:"cpu",kernelFunc:sF};function cp(e,t,n,r,a){let s=pn.isSliceContinous(r,t,n),i=v.sizeFromShape(n),o=v.computeStrides(r);if(s){let h=pn.computeFlatOffset(t,o);return a==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=a==="string"?R.fromUint8ToStringArray(e):e,u=Ue(r,a,l),c=Ue(n,a);for(let h=0;hf+t[m]);c.set(u.get(...p),...d)}return a==="string"?R.fromStringArrayToUint8(c.values):c.values}function vi(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r;Ie(a,"slice");let[o,l]=pn.parseSliceParams(a,s,i);pn.assertParamsValid(a,o,l);let u=n.data.get(a.dataId).values,c=cp(u,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,c)}var oF={kernelName:Xo,backendName:"cpu",kernelFunc:vi},kw=zt((e,t)=>{let n=e-t;return n*n}),lF=Yt(ni,kw),uF={kernelName:ni,backendName:"cpu",kernelFunc:lF};function Iw(e,t,n,r){let a=Ue(e,t.dtype);for(let s=0;se-t),cF=Xm((e,t,n,r)=>({real:e-n,imag:t-r})),Zm=Yt(ri,Nw,cF),hF={kernelName:ri,backendName:"cpu",kernelFunc:Zm};function Sw(e,t){let n=new Array(e.rank);for(let a=0;aw.value-y.value);let m=h*r,A=l.subarray(m,m+r),g=u.subarray(m,m+r);for(let y=0;y{for(let A=0;Anew up,1);var Fw=lt(yo,e=>e>=0?e:Math.exp(e)-1),dF={kernelName:yo,backendName:"cpu",kernelFunc:Fw};function Mw(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r;Ie([a],"leakyRelu");let i=v.sizeFromShape(a.shape),o=n.data.get(a.dataId).values,l=v.getTypedArrayFromDType("float32",i);for(let u=0;ue<0?t*e:e);function $w(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t;Ie([r,a],"prelu");let s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,[o,l]=fF(r.shape,a.shape,s,i,r.dtype);return n.makeTensorInfo(l,r.dtype,o)}var mF={kernelName:js,backendName:"cpu",kernelFunc:$w},Dw=lt(Hs,e=>Math.max(0,e)),AF={kernelName:Hs,backendName:"cpu",kernelFunc:Dw},Ow=lt(qs,e=>Math.min(Math.max(0,e),6)),gF={kernelName:qs,backendName:"cpu",kernelFunc:Ow};function Ym(e,t,n,r,a){if(n==="linear")return Gr({inputs:{x:t},backend:e});if(n==="relu")return Dw({inputs:{x:t},backend:e});if(n==="elu")return Fw({inputs:{x:t},backend:e});if(n==="relu6")return Ow({inputs:{x:t},backend:e});if(n==="prelu")return $w({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return Mw({inputs:{x:t},backend:e,attrs:{alpha:a}});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function wt(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=v.sizeFromShape(a.shape),o=v.inferFromImplicitShape(s,i),l=v.sizeFromShape(o);v.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${a.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(a.dataId);let u=n.data.get(a.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,h=u.complexTensorInfos.imag;c.shape=o,h.shape=o}return{dataId:a.dataId,shape:o,dtype:a.dtype}}var yF={kernelName:jo,backendName:"cpu",kernelFunc:wt};function zw(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;Ie([a,s],"matMul");let l=a.shape.length,u=s.shape.length,c=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[u-2]:s.shape[u-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),A=v.sizeFromShape(f),g=v.sizeFromShape(m),y=A===g||A===1||g===1;v.assert(l>=2&&u>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let w=(A>g?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);v.assert(c===h,()=>`Error in matMul: inner shapes (${c}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let b=i?[A,c,d]:[A,d,c],_=o?[g,p,h]:[g,h,p],x=wt({inputs:{x:a},backend:n,attrs:{shape:b}}),N=wt({inputs:{x:s},backend:n,attrs:{shape:_}}),T=i?x.shape[1]:x.shape[2],E=i?x.shape[2]:x.shape[1],M=o?N.shape[1]:N.shape[2],z=Math.max(A,g),B=n.data.get(x.dataId).values,V=n.data.get(N.dataId).values,U=v.computeStrides(x.shape),j=v.computeStrides(N.shape),[X,G,ee]=i?[U[0],1,U[1]]:[U[0],U[1],1],[Y,se,ne]=o?[1,j[1],j[0]]:[j[1],1,j[0]],le=E*M,Q=Ue([z,E,M],x.dtype),pe=Q.values,ue=n.blockSize;for(let ge=0;geMath.acos(e)),vF={kernelName:io,backendName:"cpu",kernelFunc:_F},kF=lt(oo,e=>Math.acosh(e)),IF={kernelName:oo,backendName:"cpu",kernelFunc:kF};function NF(e){let{inputs:t,backend:n}=e,r=t;Ie(t,"addN");let a=r.map(o=>n.data.get(o.dataId).values),s=Ue(r[0].shape,r[0].dtype),i=s.values;for(let o=0;oy&&(y=_,w=b)}p[A]=w}return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(c,"int32",p)}var MF={kernelName:ms,backendName:"cpu",kernelFunc:FF};function $F(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;Ie(a,"argMin");let i=v.parseAxisParam(s,a.shape),o=R.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=dr({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=R.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],R.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[c,h]=R.computeOutAndReduceShapes(l.shape,i),d=v.sizeFromShape(c),p=v.makeZerosTypedArray(d,"int32"),f=v.sizeFromShape(h),m=n.data.get(l.dataId).values;for(let A=0;An.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(c,"int32",p)}var DF={kernelName:yu,backendName:"cpu",kernelFunc:$F},OF=lt(lo,e=>Math.asin(e)),zF={kernelName:lo,backendName:"cpu",kernelFunc:OF},PF=lt(uo,e=>Math.asinh(e)),LF={kernelName:uo,backendName:"cpu",kernelFunc:PF},WF=lt(co,e=>Math.atan(e)),BF={kernelName:co,backendName:"cpu",kernelFunc:WF},VF=zt((e,t)=>Math.atan2(e,t)),UF=Yt(po,VF),jF={kernelName:po,backendName:"cpu",kernelFunc:UF},HF=lt(ho,e=>Math.atanh(e)),GF={kernelName:ho,backendName:"cpu",kernelFunc:HF};function Jm(e,t,n,r,a,s){let i=a.strideHeight,o=a.strideWidth,l=a.dilationHeight,u=a.dilationWidth,c=a.effectiveFilterHeight,h=a.effectiveFilterWidth,d=a.padInfo.top,p=a.padInfo.left,f=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=Ue(a.outShape,n),A=m.values,g=a.outShape[1]*a.outShape[2]*a.outShape[3],y=a.outShape[2]*a.outShape[3],w=a.outShape[3];for(let b=0;bG?G=ue:s==="avg"&&(ee+=ue,Y++)}if(isNaN(G))break}let se=B+V*w+N;A[se]=s==="avg"?ee/Y:G}}}return m}function Pw(e,t,n,r,a=!1,s=!1){let i=Ue(r.outShape,"int32"),o=r.strideHeight,l=r.strideWidth,u=r.dilationHeight,c=r.dilationWidth,h=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,f=r.padInfo.left,m=Ue(t,n,e);for(let A=0;AM&&(M=X,a?z=s?((A*r.inHeight+B)*r.inWidth+U)*r.inChannels+g:(B*r.inWidth+U)*r.inChannels+g:z=V*d+j)}}i.set(z,A,y,x,g)}}return i}function Lw(e,t,n,r,a,s){let i=a.strideDepth,o=a.strideHeight,l=a.strideWidth,u=a.dilationDepth,c=a.dilationHeight,h=a.dilationWidth,d=a.effectiveFilterDepth,p=a.effectiveFilterHeight,f=a.effectiveFilterWidth,m=a.padInfo.front,A=a.padInfo.top,g=a.padInfo.left,y=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,w=Ue(a.outShape,n),b=w.values,_=a.outShape[1]*a.outShape[2]*a.outShape[3]*a.outShape[4],x=a.outShape[2]*a.outShape[3]*a.outShape[4],N=a.outShape[3]*a.outShape[4],T=a.outShape[4];for(let E=0;ESe?Se=je:s==="avg"&&(Ee+=je,Oe++),isNaN(Se))break}if(isNaN(Se))break}if(isNaN(Se))break}let Le=me+B;b[Le]=s==="avg"?Ee/Oe:Se}}}}return w}function qF(e,t){let n=Ue(t.outShape,"int32"),r=t.strideDepth,a=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,c=t.effectiveFilterHeight,h=t.effectiveFilterWidth,d=t.padInfo.front,p=t.padInfo.top,f=t.padInfo.left;for(let m=0;m=V&&(V=ne,U=X*c*h+ee*c+se)}}}n.set(U,m,g,_,E,A)}}}return n}function XF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;Ie(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;v.assert(R.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=R.computePool2DInfo(a.shape,s,i,u,o,l),h;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))h=Gr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=v.computeStrides(a.shape),f=Jm(d,a.shape,a.dtype,p,c,"avg");h=n.makeTensorInfo(c.outShape,a.dtype,f.values)}return h}var KF={kernelName:As,backendName:"cpu",kernelFunc:XF};function ZF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=r;Ie(a,"avgPool3d");let c=R.computePool3DInfo(a.shape,s,i,1,o,l,u),h=n.data.get(a.dataId).values,d=Lw(h,a.shape,a.dtype,v.computeStrides(a.shape),c,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var YF={kernelName:xu,backendName:"cpu",kernelFunc:ZF};function JF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=r;Ie([a,s],"avgPool3DGrad");let c=R.computePool3DInfo(s.shape,i,o,1,l,u),h=c.strideDepth,d=c.strideHeight,p=c.strideWidth,f=c.filterDepth,m=c.filterHeight,A=c.filterWidth,g=c.dilationDepth,y=c.dilationHeight,w=c.dilationWidth,b=c.effectiveFilterDepth,_=c.effectiveFilterHeight,x=c.effectiveFilterWidth,N=b-1-c.padInfo.front,T=x-1-c.padInfo.left,E=_-1-c.padInfo.top,M=Ue(s.shape,"float32"),z=1/(f*m*A),B=n.bufferSync(a);for(let V=0;V=c.outDepth||Math.floor(Q)!==Q))for(let pe=0;pe<_;pe+=y){let ue=(Y+pe)/d;if(!(ue<0||ue>=c.outHeight||Math.floor(ue)!==ue))for(let ge=0;ge=c.outWidth||Math.floor(me)!==me||(ne+=B.get(V,Q,ue,me,U))}}}M.set(ne*z,V,j,X,G,U)}return n.makeTensorInfo(M.shape,M.dtype,M.values)}var QF={kernelName:Lh,backendName:"cpu",kernelFunc:JF};function eM(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;Ie([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=r,c=R.computePool2DInfo(i.shape,o,l,1,u),h=c.strideHeight,d=c.strideWidth,p=c.filterHeight,f=c.filterWidth,m=c.dilationHeight,A=c.dilationWidth,g=c.effectiveFilterHeight,y=c.effectiveFilterWidth,w=y-1-c.padInfo.left,b=g-1-c.padInfo.top,_=Ue(i.shape,"float32"),x=1/(p*f),N=n.data.get(a.dataId).values,T=Ue(a.shape,"float32",N);for(let E=0;E=c.outHeight||Math.floor(G)!==G))for(let ee=0;ee=c.outWidth||Math.floor(Y)!==Y||(j+=T.get(E,G,Y,M))}}_.set(j*x,E,z,B,M)}return n.makeTensorInfo(_.shape,_.dtype,_.values)}var tM={kernelName:Ph,backendName:"cpu",kernelFunc:eM};function nM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,scale:s,offset:i,mean:o,variance:l}=t;v.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Ie([a,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=r;u==null&&(u=.001);let c=n.data.get(a.dataId).values,h=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,p=s?n.data.get(s.dataId).values:new Float32Array([1]),f=i?n.data.get(i.dataId).values:new Float32Array([0]),m=new Float32Array(c.length),A=f.length,g=p.length,y=d.length,w=h.length,b=0,_=0,x=0,N=0;for(let T=0;T=A&&(b=0),_>=w&&(_=0),x>=g&&(x=0),N>=y&&(N=0);return n.makeTensorInfo(a.shape,a.dtype,m)}var rM={kernelName:Es,backendName:"cpu",kernelFunc:nM};function aM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;Ie([a],"batchToSpaceND");let o=s.reduce((g,y)=>g*y),l=R.getReshaped(a.shape,s,o),u=R.getPermuted(l.length,s.length),c=R.getReshapedPermuted(a.shape,s,o),h=R.getSliceBeginCoords(i,s.length),d=R.getSliceSize(c,i,s.length),p=wt({inputs:{x:a},backend:n,attrs:{shape:l}}),f=dr({inputs:{x:p},backend:n,attrs:{perm:u}}),m=wt({inputs:{x:f},backend:n,attrs:{shape:c}}),A=vi({inputs:{x:m},backend:n,attrs:{begin:h,size:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var sM={kernelName:wu,backendName:"cpu",kernelFunc:aM};function iM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.data.get(a.dataId).values,l=n.data.get(s.dataId).values,u=Um(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var oM={kernelName:Wh,backendName:"cpu",kernelFunc:iM},lM=lt(Fa,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(v.sizeFromShape(t.shape)),a=n.data.get(t.dataId),s=a.complexTensorInfos.real,i=a.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;um.shape),s);if(v.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(m=>v.sizeFromShape(m.shape)>0);if(o.length===1)return Gr({inputs:{x:o[0]},backend:n});let l=o.map(m=>m.shape);if(R.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let m=o.map(b=>_i({inputs:{input:b},backend:n})),A=o.map(b=>Cl({inputs:{input:b},backend:n})),g=Rl({inputs:m,backend:n,attrs:{axis:s}}),y=Rl({inputs:A,backend:n,attrs:{axis:s}}),w=Ln({inputs:{real:g,imag:y},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),A.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(y),w}let u=o.map(m=>{let A=v.sizeFromShape(m.shape.slice(s));return wt({inputs:{x:m},backend:n,attrs:{shape:[-1,A]}})}),c=u.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));i=R.computeOutShape(u.map(m=>m.shape),1);let h=u[0].shape[0]===1,d=jm(c,i,t[0].dtype,h),p=R.computeOutShape(o.map(m=>m.shape),s),f=n.makeTensorInfo(p,t[0].dtype,d);return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var pM={kernelName:fo,backendName:"cpu",kernelFunc:Rl};function Ww(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:c}=r;Ie([a,s],"conv2d");let h=R.convertConv2DDataFormat(l),d=R.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!1,h),p=d.filterHeight,f=d.filterWidth,m=d.dilationHeight,A=d.dilationWidth,g=d.padInfo.left,y=d.padInfo.top,w=d.dataFormat==="channelsLast",b=new Bt(d.outShape,a.dtype),_=v.computeStrides(a.shape),x=v.computeStrides(s.shape),N=_[0],T=w?_[1]:_[2],E=w?_[2]:1,M=w?1:_[1],z=b.strides[0],B=w?b.strides[1]:b.strides[2],V=w?b.strides[2]:1,U=w?1:b.strides[1],j=n.data.get(a.dataId).values,X=n.data.get(s.dataId).values,G=b.values;for(let ee=0;ee=d.inHeight)continue;let ge=pe*x[0],me=Y+ue*T;for(let Se=0;Se=d.inWidth)continue;let rt=ge+Le*x[1],at=me+ze*E,ct=rt;for(let et=0;et=u.inDepth)continue;let ee=X*E[0],Y=z+G*T[1];for(let se=0;se=u.inHeight)continue;let ue=ee+Q*E[1],ge=Y+pe*T[2];for(let me=0;me=u.inWidth)continue;let ze=ue+Oe*E[2],rt=ge+Le*u.inChannels,at=ze;for(let ct=0;ctMath.cos(e)),NM={kernelName:_s,backendName:"cpu",kernelFunc:IM},SM=lt(mo,e=>Math.cosh(e)),TM={kernelName:mo,backendName:"cpu",kernelFunc:SM};function EM(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=r,[c,h,d,p]=a.shape,f=s.shape[0],[m,A]=o,g=Ue([f,m,A,p],"float32"),y=n.data.get(s.dataId).values,w=n.data.get(i.dataId).values,b=n.data.get(a.dataId).values,_=v.computeStrides(a.shape),x=v.computeStrides(g.shape);for(let N=0;N=c)continue;let U=m>1?(z-E)*(h-1)/(m-1):0,j=A>1?(B-M)*(d-1)/(A-1):0;for(let X=0;X1?E*(h-1)+X*U:.5*(E+z)*(h-1);if(G<0||G>h-1){for(let ee=0;ee1?M*(d-1)+ne*j:.5*(M+B)*(d-1);if(le<0||le>d-1){for(let ge=0;ge1?M*(d-1)+ee*j:.5*(M+B)*(d-1);if(Y<0||Y>d-1){for(let le=0;leg+f-y-1:(g,y)=>g+y;for(let g=0;g`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),v.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=a.shape[1],u=a.shape[2],c=a.shape[3],h=l*s,d=u*s,p=c/(s*s),f=n.data.get(a.dataId).values,m=new Float32Array(o*h*d*p),A=0;for(let g=0;g`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let p=R.computeConv2DInfo(a.shape,s.shape,i,d,o,u,!0),{filterHeight:f,filterWidth:m,dilationHeight:A,dilationWidth:g,padInfo:y}=p,w=y.left,b=y.top,_=p.outChannels/p.inChannels,x=new Bt(p.outShape,a.dtype),N=n.data.get(a.dataId).values,T=n.data.get(s.dataId).values,E=x.values;for(let M=0;M=p.inHeight)continue;let ee=X*h[0],Y=z+G*c[1];for(let se=0;se=p.inWidth)continue;let ue=ee+Q*h[1],ge=Y+pe*p.inChannels,me=ne,Se=ue;for(let Ee=0;Ee{let{x:r,filter:a}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(r.dataId).values,c=r.shape.length,h=l.data.get(a.dataId).values,d=a.shape.length,{batchSize:p,inHeight:f,inWidth:m,inChannels:A,outHeight:g,outWidth:y,padInfo:w,strideHeight:b,strideWidth:_,filterHeight:x,filterWidth:N,dilationHeight:T,dilationWidth:E,outShape:M}=R.computeDilation2DInfo(r.shape,a.shape,s,i,"NHWC",o),z=v.sizeFromShape(M),B=M.length,V=v.getArrayFromDType(r.dtype,z);for(let U=0;U=0&&Q=0&&uese&&(se=Se)}}}let ne=v.locToIndex([U,j,G,Y],B,v.computeStrides(M));V[ne]=se}}}return{dataId:l.write(v.toTypedArray(V,r.dtype),M,r.dtype),shape:M,dtype:r.dtype}}},HM={kernelName:Zh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,c=v.toNestedArray(r.shape,u.data.get(r.dataId).values),h=v.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:f,inChannels:m,outHeight:A,outWidth:g,padInfo:y,strideHeight:w,strideWidth:b,filterHeight:_,filterWidth:x,dilationHeight:N,dilationWidth:T,outShape:E}=R.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);v.assert(s.rank===E.length,()=>`Error in ${Zh}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let M=v.toNestedArray(E,u.data.get(s.dataId).values),z=v.makeZerosNestedTypedArray(a.shape,a.dtype);for(let B=0;B=0&&le=0&&peee&&(ee=ue,Y=ne,se=Q)}}}z[Y][se][G]+=M[B][V][j][G]}}}return{dataId:u.write(v.toTypedArray(z,r.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},GM={kernelName:Kh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,c=v.toNestedArray(r.shape,u.data.get(r.dataId).values),h=v.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:f,inChannels:m,outHeight:A,outWidth:g,padInfo:y,strideHeight:w,strideWidth:b,filterHeight:_,filterWidth:x,dilationHeight:N,dilationWidth:T,outShape:E}=R.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);v.assert(s.rank===E.length,()=>`Error in ${Kh}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let M=v.toNestedArray(E,u.data.get(s.dataId).values),z=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let B=0;B=0&&le=0&&peee&&(ee=ue,Y=le,se=pe)}}}z[B][Y][se][G]+=M[B][V][j][G]}}}return{dataId:u.write(v.toTypedArray(z,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function qM(e){let{inputs:t,backend:n}=e,{dy:r,y:a}=t;Ie([r,a],"eluGrad");let s=new Float32Array(v.sizeFromShape(a.shape)),i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values;for(let l=0;l=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(a.shape,"float32",s)}var XM={kernelName:Yh,backendName:"cpu",kernelFunc:qM},KM=zt((e,t)=>e===t?1:0),Vw=Yt(wo,KM,null,"bool"),ZM={kernelName:wo,backendName:"cpu",kernelFunc:Vw},YM=R.ERF_P,JM=R.ERF_A1,QM=R.ERF_A2,e$=R.ERF_A3,t$=R.ERF_A4,n$=R.ERF_A5,r$=lt(xo,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+YM*n);return t*(1-((((n$*r+t$)*r+e$)*r+QM)*r+JM)*r*Math.exp(-n*n))}),a$={kernelName:xo,backendName:"cpu",kernelFunc:r$};function dp(e){let{inputs:t,backend:n,attrs:r}=e,{input:a}=t,{dim:s}=r,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),wt({inputs:{x:a},backend:n,attrs:{shape:o}})}var s$={kernelName:bo,backendName:"cpu",kernelFunc:dp},i$=zt((e,t)=>e/t),Qm=Yt(Is,i$),eA={kernelName:Is,backendName:"cpu",kernelFunc:Qm};function Uw(e,t,n){let r=e.shape,a=r[0],s=r[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[a,s],c=v.sizeFromShape(u),h=v.getTypedArrayFromDType("float32",c),d=v.getTypedArrayFromDType("float32",c);for(let A=0;A{let{image:r}=e,a=n,s=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(r.shape)),[i,o,l,u]=r.shape,c=a.data.get(r.dataId).values;for(let h=0;h=0&&wMath.floor(e/t)),A$=Yt(Ts,m$,null,"int32"),g$={kernelName:Ts,backendName:"cpu",kernelFunc:A$};function y$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=Ww({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d}});if(i){let A=m;m=hc({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=m;m=Ym(n,m,p,o,f),n.disposeIntermediateTensorInfo(A)}return m}var x$={kernelName:oi,backendName:"cpu",kernelFunc:y$};function w$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=Bw({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d}});if(i){let A=m;m=hc({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=m;m=Ym(n,m,p,o,f),n.disposeIntermediateTensorInfo(A)}return m}var b$={kernelName:li,backendName:"cpu",kernelFunc:w$};function _$(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=v.sizeFromShape(r.shape),i=a.shape,o=i[i.length-1],[l,u,c,h]=R.prepareAndValidate(r,a);if(u===0)return n.makeTensorInfo(l,r.dtype,[]);let d=Ue([u,c],r.dtype),p=n.data.get(a.dataId).values,f=n.data.get(r.dataId).values;for(let m=0;m=s/c)throw new Error(`Invalid indices: ${A} does not index into ${r.shape}`);for(let y=0;ye>=t?1:0),S$=Yt(Cs,N$,null,"bool"),T$={kernelName:Cs,backendName:"cpu",kernelFunc:S$};function E$(e){let{inputs:t,backend:n}=e,{input:r}=t,a=v.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=wt({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=Uw(o,!0,n),u=wt({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var C$={kernelName:Qh,backendName:"cpu",kernelFunc:E$},R$=lt(So,e=>Number.isFinite(e)?1:0,"bool"),F$={kernelName:So,backendName:"cpu",kernelFunc:R$},M$=lt(To,e=>Math.abs(e)===Infinity?1:0,"bool"),$$={kernelName:To,backendName:"cpu",kernelFunc:M$},D$=lt(Eo,e=>Number.isNaN(e)?1:0,"bool"),O$={kernelName:Eo,backendName:"cpu",kernelFunc:D$},z$=zt((e,t)=>e<=t?1:0),P$=Yt(Ro,z$,null,"bool"),L$={kernelName:Ro,backendName:"cpu",kernelFunc:P$};function W$(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=mw(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var B$={kernelName:td,backendName:"cpu",kernelFunc:W$},V$=lt(Fo,e=>Math.log1p(e)),U$={kernelName:Fo,backendName:"cpu",kernelFunc:V$},j$=zt((e,t)=>e&&t),H$=Yt(Mo,j$,null,"bool"),G$={kernelName:Mo,backendName:"cpu",kernelFunc:H$},q$=lt(Iu,e=>e?0:1,"bool"),X$={kernelName:Iu,backendName:"cpu",kernelFunc:q$},K$=zt((e,t)=>e||t),Z$=Yt(Nu,K$,null,"bool"),Y$={kernelName:Nu,backendName:"cpu",kernelFunc:Z$};function J$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r;Ie(a,"LRN");let u=a.shape[3],c=u-1,h=n.data.get(a.dataId).values,d=v.sizeFromShape(a.shape),p=new Float32Array(d);function f(m){let A=m%u,g=m-A+Math.max(0,A-s),y=m-A+Math.min(A+s,c),w=0;for(;g<=y;g++){let b=h[g];w+=b*b}return w}for(let m=0;m`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=R.computePool2DInfo(a.shape,s,i,u,o,l),h;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))h=Gr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=v.computeStrides(a.shape),f=Jm(d,a.shape,a.dtype,p,c,"max");h=n.makeTensorInfo(c.outShape,a.dtype,f.values)}return h}var aD={kernelName:Os,backendName:"cpu",kernelFunc:rD};function sD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=r;Ie(a,"maxPool3d");let c=R.computePool3DInfo(a.shape,s,i,1,o,l,u),h=n.data.get(a.dataId).values,d=Lw(h,a.shape,a.dtype,v.computeStrides(a.shape),c,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var iD={kernelName:Tu,backendName:"cpu",kernelFunc:sD};function oD(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=r;Ie([a,s],"maxPool3DGrad");let c=R.computePool3DInfo(s.shape,i,o,1,l,u),h=n.bufferSync(s),d=qF(h,c),p=c.strideDepth,f=c.strideHeight,m=c.strideWidth,A=c.dilationDepth,g=c.dilationHeight,y=c.dilationWidth,w=c.effectiveFilterDepth,b=c.effectiveFilterHeight,_=c.effectiveFilterWidth,x=w-1-c.padInfo.front,N=_-1-c.padInfo.left,T=b-1-c.padInfo.top,E=Ue(s.shape,"float32"),M=n.bufferSync(a);for(let z=0;z=c.outDepth||Math.floor(ne)!==ne))for(let le=0;le=c.outHeight||Math.floor(Q)!==Q))for(let pe=0;pe<_;pe+=y){let ue=(ee+pe)/m;if(ue<0||ue>=c.outWidth||Math.floor(ue)!==ue)continue;let ge=w*b*_-1-d.get(z,ne,Q,ue,B),me=se*b*_+le*_+pe,Se=ge===me?1:0;Se!==0&&(Y+=M.get(z,ne,Q,ue,B)*Se)}}}E.set(Y,z,V,U,j,B)}return n.makeTensorInfo(E.shape,E.dtype,E.values)}var lD={kernelName:ad,backendName:"cpu",kernelFunc:oD};function uD(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;Ie([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:h}=r,d=R.computePool2DInfo(o.shape,l,u,1,c,h),p=n.data.get(o.dataId).values,f=Ue(d.outShape,o.dtype,Pw(p,o.shape,o.dtype,d).values),m=d.strideHeight,A=d.strideWidth,g=d.dilationHeight,y=d.dilationWidth,w=d.effectiveFilterHeight,b=d.effectiveFilterWidth,_=b-1-d.padInfo.left,x=w-1-d.padInfo.top,N=Ue(o.shape,"float32"),T=n.data.get(a.dataId).values,E=Ue(a.shape,"float32",T);for(let M=0;M=d.outHeight||Math.floor(ee)!==ee))for(let Y=0;Y=d.outWidth||Math.floor(se)!==se)continue;let ne=w*b-1-f.get(M,ee,se,z),le=G*b+Y,Q=ne===le?1:0;Q!==0&&(X+=E.get(M,ee,se,z)*Q)}}N.set(X,M,B,V,z)}return n.makeTensorInfo(N.shape,N.dtype,N.values)}var cD={kernelName:rd,backendName:"cpu",kernelFunc:uD};function hD(e,t,n,r,a){let s=v.computeStrides(t),i=Jm(e,t,n,s,a,"max"),o=Pw(e,t,n,a,!0,r);return[i.values,o.values]}var dD={kernelName:sd,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;Ie(r,"MaxPoolWithArgmax");let u=l.data.get(r.dataId).values,c=R.computePool2DInfo(r.shape,a,s,[1,1],i),[h,d]=hD(u,r.shape,r.dtype,o,c),p=l.write(h,c.outShape,r.dtype),f=l.write(d,c.outShape,r.dtype);return[{dataId:p,shape:c.outShape,dtype:r.dtype},{dataId:f,shape:c.outShape,dtype:"int32"}]}};function pp(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;Ie(a,"sum");let o;a.dtype==="bool"?o=Ga({inputs:{x:a},backend:n,attrs:{dtype:"int32"}}):o=Gr({inputs:{x:a},backend:n});let l=o.shape.length,u=v.parseAxisParam(s,o.shape),c=R.getAxesPermutation(u,l),h=u,d=o;c!=null&&(d=dr({inputs:{x:o},backend:n,attrs:{perm:c}}),h=R.getInnerMostAxes(h.length,l)),R.assertAxesAreInnerMostDims("sum",h,d.shape.length);let[p,f]=R.computeOutAndReduceShapes(d.shape,h),m=R.upcastType(d.dtype,"int32"),A=hp(n,p,m),g=v.sizeFromShape(f),y=n.data.get(A.dataId).values,w=n.data.get(d.dataId).values;for(let b=0;bn.disposeIntermediateTensorInfo(m)),f}var mD={kernelName:zs,backendName:"cpu",kernelFunc:fD};function AD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;Ie(a,"min");let o=v.parseAxisParam(s,a.shape),l=o,u=R.getAxesPermutation(l,a.shape.length),c=a;u!=null&&(c=dr({inputs:{x:a},backend:n,attrs:{perm:u}}),l=R.getInnerMostAxes(l.length,a.shape.length)),R.assertAxesAreInnerMostDims("min",l,c.shape.length);let[h,d]=R.computeOutAndReduceShapes(c.shape,l),p=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(h),c.dtype),m=n.data.get(c.dataId).values;for(let g=0;gy[0]+a.shape[w]+y[1]),l=s.map(y=>y[0]),u=s.map((y,w)=>y[0]+a.shape[w]),c=i==="reflect"?0:1,h=n.data.get(a.dataId).values,d=a.shape.length,p=v.computeStrides(a.shape),f=v.sizeFromShape(o),m=o.length,A=v.computeStrides(o),g=v.getTypedArrayFromDType(a.dtype,f);for(let y=0;y=u[_]&&(w[_]=(u[_]-1)*2-w[_]+c);w=w.map((_,x)=>_-l[x]);let b=v.locToIndex(w,d,p);g[y]=h[b]}return{dataId:n.write(g,o,a.dtype),shape:o,dtype:a.dtype}}var xD={kernelName:Eu,backendName:"cpu",kernelFunc:yD},wD=zt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),bD=Yt($o,wD),_D={kernelName:$o,backendName:"cpu",kernelFunc:bD},vD=no(e5());function Hw(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=a.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=v.parseAxisParam([o],a.shape),u=jw({inputs:{x:a},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),c=R.expandShapeToKeepDim(u.shape,l),h=wt({inputs:{x:u},backend:n,attrs:{shape:c}}),d=Zm({inputs:{a,b:h},backend:n}),p=Cw({inputs:{x:d},backend:n}),f=pp({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),m=wt({inputs:{x:f},backend:n,attrs:{shape:c}}),A=Qm({inputs:{a:p,b:m},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var kD={kernelName:ti,backendName:"cpu",kernelFunc:Hw};function ID(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r;Ie(a,"multinomial");let l=o?a:Hw({inputs:{logits:a},backend:n,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],h=n.data.get(l.dataId).values,d=[u,s],p=v.makeZerosTypedArray(v.sizeFromShape(d),"int32");for(let f=0;f=0&&c[h]{v.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(c=>{let h=dp({inputs:{input:c},backend:n,attrs:{dim:a}});return o.push(h),h}),u=Rl({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var WD={kernelName:Bo,backendName:"cpu",kernelFunc:qw};function BD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r;Ie(a,"pad");let o=s.map((g,y)=>g[0]+a.shape[y]+g[1]),l=s.map(g=>g[0]),u=n.data.get(a.dataId).values,c=v.sizeFromShape(a.shape),h=a.shape.length,d=v.computeStrides(a.shape),p=v.sizeFromShape(o),f=o.length,m=v.computeStrides(o),A=v.getTypedArrayFromDType(a.dtype,p);i!==0&&A.fill(i);for(let g=0;gb+l[_]),w=v.locToIndex(y,f,m);A[w]=u[g]}return{dataId:n.write(A,o,a.dtype),shape:o,dtype:a.dtype}}var Xw={kernelName:Vs,backendName:"cpu",kernelFunc:BD},VD=zt((e,t)=>Math.pow(e,t)),UD=Yt(Us,VD),jD={kernelName:Us,backendName:"cpu",kernelFunc:UD};function HD(e){let{backend:t,attrs:n}=e,{start:r,stop:a,dtype:s,step:i}=n,o=qm(r,a,i,s);return t.makeTensorInfo([o.length],s,o)}var GD={kernelName:Cu,backendName:"cpu",kernelFunc:HD},qD=lt(Uo,e=>1/e),XD={kernelName:Uo,backendName:"cpu",kernelFunc:qD};function KD(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;Ie(a,"resizeBilinear");let l=v.computeStrides(a.shape),[u,c]=o,[h,d,p,f]=a.shape,m=n.data.get(a.dataId).values,A=new Float32Array(v.sizeFromShape([h,u,c,f])),g=[s&&u>1?d-1:d,s&&c>1?p-1:p],y=[s&&u>1?u-1:u,s&&c>1?c-1:c],w=0,b=g[0]/y[0],_=g[1]/y[1];for(let x=0;x1?u-1:u,i&&p>1?c-1:c],A=[i&&d>1?d-1:d,i&&p>1?p-1:p],g=m[0]/A[0],y=m[1]/A[1],w=n.data.get(s.dataId).values,b=0;for(let _=0;_1?d-1:d,s&&c>1?p-1:p],y=[s&&u>1?u-1:u,s&&c>1?c-1:c],w=g[0]/y[0],b=g[1]/y[1],_=0;for(let x=0;x1?c-1:c,i&&f>1?h-1:h],y=[i&&p>1?p-1:p,i&&f>1?f-1:f],w=g[0]/y[0],b=g[1]/y[1],_=1/w,x=1/b,N=Math.ceil(_)*2+2,T=Math.ceil(x)*2+2;for(let E=0;E=p)continue;let Q=M+le*l[1],pe=le*w,ue=Math.min(c-1,i?Math.round(pe):Math.floor(pe));if(z===ue)for(let ge=0;ge=f)continue;let Se=Q+me*l[2],Ee=me*b,Oe=Math.min(h-1,i?Math.round(Ee):Math.floor(Ee));j===Oe&&(se+=A[Se+Y])}}m[X+Y]=se}}}}return n.makeTensorInfo(a.shape,a.dtype,m)}var nO={kernelName:ld,backendName:"cpu",kernelFunc:tO};function rO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r;Ie(a,"reverse");let i=a.shape.length,o=v.parseAxisParam(s,a.shape);if(i===0)return Gr({inputs:{x:a},backend:n});let l=new Bt(a.shape,a.dtype),u=n.bufferSync(a);for(let c=0;cd[p]=a.shape[p]-1-d[p]),l.set(u.get(...d),...h)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var aO={kernelName:Xs,backendName:"cpu",kernelFunc:rO},sO={kernelName:al,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(r.shape)),[u,c,h,d]=r.shape,[p,f]=R.getImageCenter(i,c,h),m=255,A=Math.sin(a),g=Math.cos(a),y=o.data.get(r.dataId).values;for(let w=0;w=0&&V=0&&U{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),oO={kernelName:Ks,backendName:"cpu",kernelFunc:iO};function Kw(e,t,n,r,a,s,i,o,l,u){let c=[r/a,a],h=e.values,d=t.values;if(r===0)return Ue(n,t.dtype);let p=Ue(c,t.dtype);p.values.fill(l);for(let f=0;f=r/a)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let g=0;g1||a.shape.length===1?1:v.sizeFromShape(a.shape.slice(1));for(let f=0;fe>=0?pO*e:dO*(Math.exp(e)-1)),mO={kernelName:qo,backendName:"cpu",kernelFunc:fO},AO=lt(Js,e=>1/(1+Math.exp(-e))),gO={kernelName:Js,backendName:"cpu",kernelFunc:AO},yO=lt(Zo,e=>e<0?-1:e>0?1:0),xO={kernelName:Zo,backendName:"cpu",kernelFunc:yO},wO=lt(Ys,e=>Math.sin(e)),bO={kernelName:Ys,backendName:"cpu",kernelFunc:wO},_O=lt(Ko,e=>Math.sinh(e)),vO={kernelName:Ko,backendName:"cpu",kernelFunc:_O},kO=11920928955078125e-23,Zw=Math.log(kO)+2,IO=lt(Yo,e=>{let t=e>-Zw,n=e{let d=[...c];d[o]=h;let p=vi({inputs:{x:a},backend:n,attrs:{begin:u,size:d}});return u[o]+=h,p})}var FO={kernelName:Jo,backendName:"cpu",kernelFunc:RO},MO=lt(Qs,e=>Math.sqrt(e)),$O={kernelName:Qs,backendName:"cpu",kernelFunc:MO},DO={kernelName:Mu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;Ie(n,"square");let a=r.data.get(n.dataId).values,s=new Float32Array(a.length);for(let i=0;i{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),zO={kernelName:$a,backendName:"cpu",kernelFunc:OO};function PO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:h,shrinkAxisMask:d}=r;Ie(a,"stridedSlice");let{nonStrided:p,$begin:f,$strides:m,size:A,newShape:g,outShape:y}=pn.sliceInfo(a.shape,s,i,o,l,u,c,h,d),w=wt({inputs:{x:a},backend:n,attrs:{shape:g}}),b;if(p){let x=vi({inputs:{x:w},backend:n,attrs:{begin:f,size:A}});b=wt({inputs:{x},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(x)}else if(y.some(x=>x===0))b=n.makeTensorInfo(y,a.dtype,[]);else{let x=n.bufferSync(w),N=Iw(y,x,m,f);b=n.makeTensorInfo(N.shape,N.dtype,N.values)}let _=wt({inputs:{x:b},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(w),n.disposeIntermediateTensorInfo(b),_}var LO={kernelName:Qo,backendName:"cpu",kernelFunc:PO},WO=lt(el,e=>Math.tan(e)),BO={kernelName:el,backendName:"cpu",kernelFunc:WO},VO=lt(ai,e=>Math.tanh(e)),UO={kernelName:ai,backendName:"cpu",kernelFunc:VO};function jO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;Ie(a,"tile");let i=Sw(n.bufferSync(a),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var HO={kernelName:Ma,backendName:"cpu",kernelFunc:jO};function GO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r;Ie(a,"topk");let o=n.data.get(a.dataId).values,[l,u]=Tw(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var qO={kernelName:tl,backendName:"cpu",kernelFunc:GO};function ZO(e){let{inputs:t,attrs:n,backend:r}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[c,h,d,p]=a.shape,[f,m]=u!=null?u:[h,d],A=[c,f,m,p],g=v.computeStrides(a.shape),y=g[0],w=g[1],b=g[2],_=v.getTypedArrayFromDType(a.dtype,v.sizeFromShape(A));_.fill(l);let x=r.data.get(a.dataId).values,N=r.data.get(s.dataId).values;for(let T=0;Tt-1)if(t<=1)n=0;else{let r=2*t;n-=r*Math.trunc(n/r),n>=t&&(n=r-n-1)}return v.clamp(0,n,t-1)}function QO(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let r=t-1;n+=t*(Math.trunc(-n/r)+1)}else if(n>t-1)if(t<=1)n=0;else{let r=t-1;n-=t*Math.trunc(n/r)}return v.clamp(0,n,t-1)}function ez(e,t){return e}function tz(e,t){return v.clamp(0,e,t-1)}function dc(e,t,n,r,a,s,i,o,l,u,c){let h=i*r+o*a+l*s+u;return 0<=o&&on.disposeIntermediateTensorInfo(f)),p}var oz={kernelName:$u,backendName:"cpu",kernelFunc:iz},lz=[bF,NR,vF,IF,FR,SF,EF,RF,MF,DF,zF,LF,BF,jF,GF,KF,YF,QF,tM,xF,rM,sM,oM,CR,$R,uM,SR,hM,pM,AM,yM,fM,_M,kM,wM,NM,TM,CM,FM,$M,OM,zM,LM,BM,UM,jM,GM,HM,eA,dF,XM,ZM,a$,DR,s$,zR,h$,p$,f$,LR,g$,x$,b$,v$,I$,BR,T$,TR,C$,dM,F$,$$,O$,pF,UR,L$,B$,HR,U$,G$,X$,Y$,Q$,tD,qR,aD,iD,lD,cD,dD,nD,mD,gD,KR,xD,_D,ND,YR,QR,ED,FD,DD,tF,zD,LD,WD,Xw,jD,mF,aF,GD,ER,XD,AF,gF,yF,ZD,JD,eO,nO,aO,sO,oO,iF,uO,hO,mO,gO,xO,bO,vO,oF,kD,NO,TO,CO,FO,$O,DO,uF,zO,LO,hF,pD,BO,UO,HO,qO,nF,YO,rz,sz,oz,PD];for(let e of lz)ui(e);var Jw={};We(Jw,{assertNotComplex:()=>Fl,bindCanvasToFramebuffer:()=>hz,bindColorTextureToFramebuffer:()=>Ap,bindTextureToProgramUniformSampler:()=>pb,bindTextureUnit:()=>cb,bindVertexBufferToProgramAttribute:()=>rA,callAndCheck:()=>ve,canBeRepresented:()=>Qw,createFragmentShader:()=>nb,createFramebuffer:()=>ub,createProgram:()=>rb,createStaticIndexBuffer:()=>ib,createStaticVertexBuffer:()=>sb,createTexture:()=>ob,createVertexShader:()=>tb,getBatchDim:()=>ki,getExtensionOrThrow:()=>pc,getFramebufferErrorMessage:()=>fb,getMaxTexturesInShader:()=>gb,getNumChannels:()=>uz,getProgramUniformLocation:()=>db,getProgramUniformLocationOrThrow:()=>hb,getRowsCols:()=>Ii,getShapeAs3D:()=>gp,getTextureShapeFromLogicalShape:()=>mb,getWebGLDisjointQueryTimerVersion:()=>yb,getWebGLErrorMessage:()=>eb,getWebGLMaxTextureSize:()=>Ab,hasExtension:()=>er,isCapableOfRenderingToFloatTexture:()=>xb,isDownloadFloatTextureEnabled:()=>wb,isReshapeFree:()=>mc,isWebGLFenceEnabled:()=>bb,isWebGLVersionEnabled:()=>sA,linkProgram:()=>ab,resetMaxTextureSize:()=>dz,resetMaxTexturesInShader:()=>pz,unbindColorTextureFromFramebuffer:()=>aA,unbindTextureUnit:()=>cz,validateFramebuffer:()=>fc,validateProgram:()=>mp,validateTextureSize:()=>lb});var Ni={},iA={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function yp(e,t){Ni[e]=t}function qr(e){if(!(e in Ni)){let n=fz(e);if(n!==null)Ni[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Ni[e];return t.isContextLost()?(delete Ni[e],qr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Ni[e])}function mz(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function fz(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=mz(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Ni[e]},!1),e===1?t.getContext("webgl",iA)||t.getContext("experimental-webgl",iA):t.getContext("webgl2",iA)}var Ac;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Ac||(Ac={}));var tr;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(tr||(tr={}));var sn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(sn||(sn={}));function gc(e,t){return[t,e]}function Az(e,t){return e*t}function yc(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function Ml(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function gz(e,t){let[n,r]=Ml(e,t);return n*r*4}function oA(e,t){let n=e,r,a,s,i,o,l,u,c,h,d;return J().getNumber("WEBGL_VERSION")===2?(r=n.R32F,a=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,c=1,h=n.HALF_FLOAT,d=n.FLOAT):(r=e.RGBA,a=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,c=4,h=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:r,internalFormatHalfFloat:a,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:h,textureTypeFloat:d}}function ve(e,t){let n=t();return J().getBool("DEBUG")&&yz(e),n}function yz(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+eb(e,t))}var xz=596e-10,wz=65504;function Qw(e){return!!(J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||xze.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function tb(e,t){let n=pa(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(ve(e,()=>e.shaderSource(n,t)),ve(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function nb(e,t){let n=pa(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(ve(e,()=>e.shaderSource(n,t)),ve(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw bz(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var _z=/ERROR: [0-9]+:([0-9]+):/g;function bz(e,t){let n=_z.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],a=e.split(` `),s=a.length.toString().length+2,i=a.map((h,d)=>v.rightPad((d+1).toString(),s)+h),o=0;for(let h=0;he.createProgram(),"Unable to create WebGLProgram.")}function ab(e,t){if(ve(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function mp(e,t){if(ve(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function sb(e,t){let n=pa(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ve(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),ve(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function ib(e,t){let n=pa(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ve(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),ve(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function uz(){return J().getNumber("WEBGL_VERSION")===2?1:4}function ob(e){return pa(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function lb(e,t){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,a=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+a+".")}}function ub(e){return pa(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function rA(e,t,n,r,a,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(ve(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),ve(e,()=>e.vertexAttribPointer(o,a,e.FLOAT,!1,s,i)),ve(e,()=>e.enableVertexAttribArray(o)),!0)}function cb(e,t,n){_b(e,n),ve(e,()=>e.activeTexture(e.TEXTURE0+n)),ve(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function cz(e,t){_b(e,t),ve(e,()=>e.activeTexture(e.TEXTURE0+t)),ve(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function hb(e,t,n){return pa(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function db(e,t,n){return e.getUniformLocation(t,n)}function pb(e,t,n,r){ve(e,()=>cb(e,t,r)),ve(e,()=>e.uniform1i(n,r))}function hz(e){ve(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ve(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),ve(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function Ap(e,t,n){ve(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),ve(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function aA(e,t){ve(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),ve(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function fc(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+fb(e,t))}function fb(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function pa(e,t,n){let r=ve(e,()=>t());if(r==null)throw new Error(n);return r}function _b(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(rn){let a=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${a}.`)}}function ki(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function Ii(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function gp(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[ki(e),...Ii(e)]),t}function mb(e,t=!1){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((a,s)=>s>=e.length-2?v.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let r=v.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let a=ki(e),s=2,i=2;return e.length&&([s,i]=Ii(e)),r=a*(s/2)*(i/2),v.sizeToSquarishShape(r).map(o=>o*2)}return v.sizeToSquarishShape(r)}function xp(e){return e%2==0}function mc(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||xp(n)&&xp(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&xp(e[0])&&xp(t[0])}var wp,bp;function Ab(e){if(wp==null){let t=qr(e);wp=t.getParameter(t.MAX_TEXTURE_SIZE)}return wp}function dz(){wp=null}function pz(){bp=null}function gb(e){if(bp==null){let t=qr(e);bp=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,bp)}function yb(e){if(e===0)return 0;let t,n=qr(e);return er(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:er(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function er(e,t){return e.getExtension(t)!=null}function sA(e){try{if(qr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function xb(e){if(e===0)return!1;let t=qr(e);if(e===1){if(!er(t,"OES_texture_float"))return!1}else if(!er(t,"EXT_color_buffer_float"))return!1;return lA(t)}function wb(e){if(e===0)return!1;let t=qr(e);if(e===1){if(!er(t,"OES_texture_float")||!er(t,"WEBGL_color_buffer_float"))return!1}else{if(er(t,"EXT_color_buffer_float"))return lA(t);let n="EXT_color_buffer_half_float";if(er(t,n)){let r=t.getExtension(n);return vz(t,r)}return!1}return lA(t)}function lA(e){let t=oA(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,a,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function vz(e,t){let n=oA(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let a=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,a,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(i),o}function bb(e){return e!==2?!1:qr(e).fenceSync!=null}function Fl(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var De=J();De.registerFlag("HAS_WEBGL",()=>De.getNumber("WEBGL_VERSION")>0);De.registerFlag("WEBGL_VERSION",()=>sA(2)?2:sA(1)?1:0);De.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);De.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>De.get("WEBGL_VERSION")===2);De.registerFlag("WEBGL_CPU_FORWARD",()=>!0);De.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);De.registerFlag("WEBGL_PACK",()=>De.getBool("HAS_WEBGL"));De.registerFlag("WEBGL_PACK_NORMALIZATION",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_CLIP",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);De.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_REDUCE",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_LAZILY_UNPACK",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_CONV_IM2COL",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>Ab(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>gb(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=De.getNumber("WEBGL_VERSION");return e===0?0:yb(e)});De.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>De.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Uu.isMobile());De.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>xb(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>De.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:De.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));De.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>wb(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_FENCE_API_ENABLED",()=>bb(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>De.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);De.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});De.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Uu.isMobile()&&De.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});function gn(){let e,t,n,r,a,s,i,o,l,u;return J().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",a="texture",s="outputColor",i="out vec4 outputColor;",o=` bool isnan_custom(float val) { return (val > 0.0 || val < 0.0) ? false : val != 0.0; } bvec4 isnan_custom(vec4 val) { return bvec4(isnan_custom(val.x), isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w)); } #define isnan(value) isnan_custom(value) `,l="",u=` #define round(value) newRound(value) int newRound(float value) { return int(floor(value + 0.5)); } ivec4 newRound(vec4 value) { return ivec4(floor(value + vec4(0.5))); } `):(e="",t="attribute",n="varying",r="varying",a="texture2D",s="gl_FragColor",i="",o=` #define isnan(value) isnan_custom(value) bool isnan_custom(float val) { return (val > 0. || val < 1. || val == 0.) ? false : true; } bvec4 isnan_custom(vec4 val) { return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w)); } `,l=` uniform float INFINITY; bool isinf(float val) { return abs(val) == INFINITY; } bvec4 isinf(vec4 val) { return equal(abs(val), vec4(INFINITY)); } `,u=` int round(float value) { return int(floor(value + 0.5)); } ivec4 round(vec4 value) { return ivec4(floor(value + vec4(0.5))); } `),{version:e,attribute:t,varyingVs:n,varyingFs:r,texture2D:a,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function Si(e,t,n="index"){let r=v.computeStrides(t);return r.map((a,s)=>{let i=`int ${e[s]} = ${n} / ${a}`,o=s===r.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${a}`:`index -= ${e[s]} * ${a}`;return`${i}; ${o};`}).join("")}function uA(e){let t=v.computeStrides(e).map(n=>n.toString());return` int getFlatIndex(ivec3 coords) { return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z; } `}var vb=` const float FLOAT_MAX = 1.70141184e38; const float FLOAT_MIN = 1.17549435e-38; lowp vec4 encode_float(highp float v) { if (isnan(v)) { return vec4(255, 255, 255, 255); } highp float av = abs(v); if(av < FLOAT_MIN) { return vec4(0.0, 0.0, 0.0, 0.0); } else if(v > FLOAT_MAX) { return vec4(0.0, 0.0, 128.0, 127.0) / 255.0; } else if(v < -FLOAT_MAX) { return vec4(0.0, 0.0, 128.0, 255.0) / 255.0; } highp vec4 c = vec4(0,0,0,0); highp float e = floor(log2(av)); highp float m = exp2(fract(log2(av))) - 1.0; c[2] = floor(128.0 * m); m -= c[2] / 128.0; c[1] = floor(32768.0 * m); m -= c[1] / 32768.0; c[0] = floor(8388608.0 * m); highp float ebias = e + 127.0; c[3] = floor(ebias / 2.0); ebias -= c[3] * 2.0; c[2] += floor(ebias) * 128.0; c[3] += 128.0 * step(0.0, -v); return c / 255.0; } `,kz=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Ac.DENSE;let t=yc(e),n=gn();this.outputShape=e,this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { ${Si(["r","c","d"],e)} return ivec3(r, c, d); } void main() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y); vec4 result = vec4(0.); for (int i=0; i<4; i++) { int flatIndex = index + i; ivec3 rc = outCoordsFromFlatIndex(flatIndex); result[i] = getA(rc.x, rc.y, rc.z); } ${n.output} = result; } `}},Iz=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Ac.DENSE;let t=yc(e),n=gn();this.outputShape=e,this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { ${Si(["r","c","d"],e)} return ivec3(r, c, d); } void main() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y); vec4 result = vec4(0.); for (int i=0; i<4; i++) { int flatIndex = index + i; ivec3 rc = outCoordsFromFlatIndex(flatIndex); result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z)); } ${n.output} = result; } `}},Nz=class{constructor(e){this.variableNames=["A"],this.outTexUsage=tr.DOWNLOAD;let t=gn();this.outputShape=e,this.userCode=` ${vb} void main() { float x = getAAtOutCoords(); ${t.output} = encode_float(x); } `}},Sz=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=tr.DOWNLOAD;let t=gn();this.outputShape=e,this.userCode=` ${vb} void main() { ivec3 coords = getOutputCoords(); float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z)); ${t.output} = encode_float(x); } `}},Tz=class{constructor(e,t,n=!1){this.variableNames=["A"];let r=gn(),[a,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=` ${uA(e)} void main() { ivec3 coords = getOutputCoords(); int flatIndex = getFlatIndex(coords); int offset = imod(flatIndex, 4); flatIndex = idiv(flatIndex, 4, 1.); int r = flatIndex / ${s}; int c = imod(flatIndex, ${s}); vec2 uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${a}.0); vec4 values = ${r.texture2D}(A, uv); float result; if(offset == 0) { result = values[0]; } else if(offset == 1) { result = values[1]; } else if(offset == 2) { result = values[2]; } else { result = values[3]; } ${r.output} = vec4(${i}, 0., 0., 0.); } `}},Ez=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let r=gn(),[a,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let u=0;u<=1;u++){let c=l*2+u;i+=` localCoords = coords; if(localCoords[2] + ${u} < ${e[2]}) { localCoords[2] += ${u}; if(localCoords[1] + ${l} < ${e[1]}) { localCoords[1] += ${l}; flatIndex = getFlatIndex(localCoords); offset = imod(flatIndex, 4); flatIndex = idiv(flatIndex, 4, 1.); r = flatIndex / ${s}; c = imod(flatIndex, ${s}); uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${a}.0); values = ${r.texture2D}(A, uv); if(offset == 0) { result[${c}] = values[0]; } else if(offset == 1) { result[${c}] = values[1]; } else if(offset == 2) { result[${c}] = values[2]; } else { result[${c}] = values[3]; } } } `}this.userCode=` ${uA(e)} void main() { ivec3 coords = getOutputCoords(); vec4 result = vec4(0.); int flatIndex, r, c, offset; ivec3 localCoords; vec2 uv; vec4 values; ${i} ${r.output} = ${o}; } `}},kb={};We(kb,{bindVertexProgramAttributeStreams:()=>Mb,createBufferFromOutputTexture:()=>Ob,createFloat16MatrixTexture:()=>Eb,createFloat16PackedMatrixTexture:()=>Fb,createFloat32MatrixTexture:()=>Tb,createIndexBuffer:()=>Sb,createPackedMatrixTexture:()=>Rb,createUnsignedBytesMatrixTexture:()=>Cb,createVertexBuffer:()=>Nb,createVertexShader:()=>Ib,downloadByteEncodedFloatMatrixFromOutputTexture:()=>Pb,downloadFloat32MatrixFromBuffer:()=>zb,downloadMatrixFromPackedOutputTexture:()=>Wb,downloadPackedMatrixFromBuffer:()=>Lb,getInternalFormatForFloat16MatrixTexture:()=>hA,getInternalFormatForFloat16PackedMatrixTexture:()=>fA,getInternalFormatForFloat32MatrixTexture:()=>cA,getInternalFormatForPackedMatrixTexture:()=>pA,getInternalFormatForUnsignedBytesMatrixTexture:()=>dA,uploadDenseMatrixToTexture:()=>$b,uploadPixelDataToTexture:()=>Db});function Ib(e){let t=gn(),n=`${t.version} precision highp float; ${t.attribute} vec3 clipSpacePos; ${t.attribute} vec2 uv; ${t.varyingVs} vec2 resultUV; void main() { gl_Position = vec4(clipSpacePos, 1); resultUV = uv; }`;return tb(e,n)}function Nb(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return sb(e,t)}function Sb(e){let t=new Uint16Array([0,1,2,2,1,3]);return ib(e,t)}function xc(e,t,n,r,a,s){lb(t,n);let i=ob(e),o=e.TEXTURE_2D;return ve(e,()=>e.bindTexture(o,i)),ve(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),ve(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),ve(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),ve(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),ve(e,()=>e.texImage2D(o,0,r,t,n,0,a,s,null)),ve(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function cA(e){return e.internalFormatFloat}function Tb(e,t,n,r){let[a,s]=gc(t,n);return xc(e,a,s,cA(r),r.textureFormatFloat,e.FLOAT)}function hA(e){return e.internalFormatHalfFloat}function Eb(e,t,n,r){let[a,s]=gc(t,n);return xc(e,a,s,hA(r),r.textureFormatFloat,r.textureTypeHalfFloat)}function dA(e){return e.downloadTextureFormat}function Cb(e,t,n,r){let[a,s]=gc(t,n);return xc(e,a,s,dA(r),e.RGBA,e.UNSIGNED_BYTE)}function pA(e){return e.internalFormatPackedFloat}function Rb(e,t,n,r){let[a,s]=Ml(t,n);return xc(e,a,s,pA(r),e.RGBA,e.FLOAT)}function fA(e){return e.internalFormatPackedHalfFloat}function Fb(e,t,n,r){let[a,s]=Ml(t,n);return xc(e,a,s,fA(r),e.RGBA,r.textureTypeHalfFloat)}function Mb(e,t,n){let r=0,a=3*4,s=3*4+2*4;return ve(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),rA(e,t,"clipSpacePos",n,3,s,r)&&rA(e,t,"uv",n,2,s,a)}function $b(e,t,n,r,a,s){ve(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;a instanceof Uint8Array?(i=new Uint8Array(n*r*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*r*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(a),ve(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,r,0,e.RGBA,o,i)),ve(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Db(e,t,n){ve(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?ve(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):ve(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),ve(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Ob(e,t,n,r){let a=e.createBuffer();ve(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,a));let s=4*4*t*n;return ve(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),ve(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),ve(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),a}function zb(e,t,n){let r=e,a=new Float32Array(n);return r.bindBuffer(r.PIXEL_PACK_BUFFER,t),r.getBufferSubData(r.PIXEL_PACK_BUFFER,0,a),r.bindBuffer(r.PIXEL_PACK_BUFFER,null),a}function Pb(e,t,n,r){let[a,s]=gc(t,n),i=4,o=new Uint8Array(Az(t*n,i));return ve(e,()=>e.readPixels(0,0,a,s,r.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function Lb(e,t,n,r,a,s,i,o){let l=e,u=new Float32Array(gz(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function Wb(e,t,n){let r=new Float32Array(t*n*4);return ve(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,r)),r}var _p=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=J().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,yp(t,e)):this.gl=qr(t);let n="WEBGL_color_buffer_float",r="EXT_color_buffer_half_float";if(J().getNumber("WEBGL_VERSION")===1){let a="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=pc(this.gl,a),er(this.gl,s))this.textureHalfFloatExtension=pc(this.gl,s);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),er(this.gl,r))this.colorBufferHalfFloatExtension=pc(this.gl,r);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",er(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(er(this.gl,r))this.colorBufferHalfFloatExtension=this.gl.getExtension(r);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=Nb(this.gl),this.indexBuffer=Sb(this.gl),this.framebuffer=ub(this.gl),this.textureConfig=oA(this.gl,this.textureHalfFloatExtension)}get debug(){return J().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;ve(e,()=>e.finish()),ve(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ve(e,()=>e.deleteFramebuffer(this.framebuffer)),ve(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),ve(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),ve(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),Tb(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),Eb(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),Cb(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),Db(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,r){this.throwIfDisposed(),$b(this.gl,e,t,n,r,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),Fb(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),Rb(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(aA(this.gl,this.framebuffer),this.outputTexture=null),ve(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>Pb(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,r,a,s){return Lb(this.gl,e,t,n,r,a,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return zb(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let r=Ob(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),r}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(J().getBool("WEBGL_FENCE_API_ENABLED")){let r=e,a=r.fenceSync(r.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=r.clientWaitSync(a,0,0);return s===r.ALREADY_SIGNALED||s===r.CONDITION_SATISFIED},t=a}else J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>Wb(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=nb(t,e),r=Ib(t),a=rb(t);return ve(t,()=>t.attachShader(a,r)),ve(t,()=>t.attachShader(a,n)),ab(t,a),this.debug&&mp(t,a),this.vertexAttrsAreBound||(this.setProgram(a),this.vertexAttrsAreBound=Mb(t,this.program,this.vertexBuffer)),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&ve(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&mp(this.gl,this.program),ve(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?hb(this.gl,e,t):db(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),ve(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),pb(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[r,a]=Ml(t,n);this.setOutputMatrixTextureDriver(e,r,a)}setOutputMatrixWriteRegion(e,t,n,r){this.setOutputMatrixWriteRegionDriver(n,e,r,t)}setOutputPackedMatrixWriteRegion(e,t,n,r){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&mp(this.gl,this.program),fc(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),ve(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),ve(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=pc(this.gl,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.createQuery();return n.beginQuery(r.TIME_ELAPSED_EXT,a),a}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),a&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),r=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),r&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=Cz(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Ap(this.gl,e,this.framebuffer),this.debug&&fc(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Ap(this.gl,this.outputTexture,this.framebuffer),this.debug&&fc(this.gl)):aA(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let r=this.gl;Ap(r,e,this.framebuffer),this.debug&&fc(r),this.outputTexture=e,ve(r,()=>r.viewport(0,0,t,n)),ve(r,()=>r.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,r){this.throwIfDisposed(),ve(this.gl,()=>this.gl.scissor(e,t,n,r))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function Cz(e){let t=0;for(;t{let f=v.sizeFromShape(p.shapeInfo.logicalShape);p.shapeInfo.isUniform?a.push(`uniform float ${p.name}${f>1?`[${f}]`:""};`):(a.push(`uniform sampler2D ${p.name};`),a.push(`uniform int offset${p.name};`))});let s=a.join(` `),i=e.map(p=>Rz(p,t,r)).join(` `),o=t.texShape,l=gn(),u=$z(l),c,h,d=zz(l);return t.isPacked?(c=Fz(t.logicalShape,o),h=Oz(l)):(c=Mz(t.logicalShape,o),h=Dz(l)),r&&(d+=Pz),[d,u,h,s,c,i,n].join(` `)}function $l(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return Wz(e);case 1:return Bz(e);case 2:return Vz(e);case 3:return Uz(e);case 4:return jz(e);case 5:return Hz(e);case 6:return Gz(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function Vb(e){switch(e.shapeInfo.logicalShape.length){case 0:return qz(e);case 1:return Xz(e);case 2:return Kz(e);case 3:return Zz(e);default:return Yz(e)}}function Rz(e,t,n=!1){let r="";n?r+=Vb(e):r+=$l(e);let a=e.shapeInfo.logicalShape,s=t.logicalShape;return a.length<=s.length&&(n?r+=Jz(e,t):r+=Qz(e,t)),r}function Fz(e,t){switch(e.length){case 0:return Ub();case 1:return eP(e,t);case 2:return rP(e,t);case 3:return tP(e,t);default:return nP(e,t)}}function Mz(e,t){switch(e.length){case 0:return Ub();case 1:return aP(e,t);case 2:return uP(e,t);case 3:return sP(e,t);case 4:return iP(e,t);case 5:return oP(e,t);case 6:return lP(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function $z(e){return` float sampleTexture(sampler2D textureSampler, vec2 uv) { return ${e.texture2D}(textureSampler, uv).r; } `}function Dz(e){return` void setOutput(float val) { ${e.output} = vec4(val, 0, 0, 0); } `}function Oz(e){return` void setOutput(vec4 val) { ${e.output} = val; } `}function zz(e){return`${e.version} precision highp float; precision highp int; precision highp sampler2D; ${e.varyingFs} vec2 resultUV; ${e.defineOutput} const vec2 halfCR = vec2(0.5, 0.5); struct ivec5 { int x; int y; int z; int w; int u; }; struct ivec6 { int x; int y; int z; int w; int u; int v; }; uniform float NAN; ${e.defineSpecialNaN} ${e.defineSpecialInf} ${e.defineRound} int imod(int x, int y) { return x - y * (x / y); } int idiv(int a, int b, float sign) { int res = a / b; int mod = imod(a, b); if (sign < 0. && mod != 0) { res -= 1; } return res; } //Based on the work of Dave Hoskins //https://www.shadertoy.com/view/4djSRW #define HASHSCALE1 443.8975 float random(float seed){ vec2 p = resultUV * seed; vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1); p3 += dot(p3, p3.yzx + 19.19); return fract((p3.x + p3.y) * p3.z); } ${cP} ${hP} ${dP} `}var cP=` vec2 uvFromFlat(int texNumR, int texNumC, int index) { int texR = index / texNumC; int texC = index - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } vec2 packedUVfrom1D(int texNumR, int texNumC, int index) { int texelIndex = index / 2; int texR = texelIndex / texNumC; int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } `,hP=` vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR, int texNumC, int row, int col) { int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2); int texR = texelIndex / texNumC; int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } `,dP=` vec2 packedUVfrom3D(int texNumR, int texNumC, int texelsInBatch, int texelsInLogicalRow, int b, int row, int col) { int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2); int texR = index / texNumC; int texC = index - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } `,Pz=` float getChannel(vec4 frag, vec2 innerDims) { vec2 modCoord = mod(innerDims, 2.); return modCoord.x == 0. ? (modCoord.y == 0. ? frag.r : frag.g) : (modCoord.y == 0. ? frag.b : frag.a); } float getChannel(vec4 frag, int dim) { float modCoord = mod(float(dim), 2.); return modCoord == 0. ? frag.r : frag.g; } `;function Ub(){return` int getOutputCoords() { return 0; } `}function eP(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?` int getOutputCoords() { return 2 * int(resultUV.x * ${n[1]}.0); } `:n[1]===1?` int getOutputCoords() { return 2 * int(resultUV.y * ${n[0]}.0); } `:` int getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]})); return 2 * (resTexRC.x * ${n[1]} + resTexRC.y); } `}function aP(e,t){return t[0]===1?` int getOutputCoords() { return int(resultUV.x * ${t[1]}.0); } `:t[1]===1?` int getOutputCoords() { return int(resultUV.y * ${t[0]}.0); } `:` int getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); return resTexRC.x * ${t[1]} + resTexRC.y; } `}function tP(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]})); int index = resTexRC.x * ${n[1]} + resTexRC.y; int b = index / ${a}; index -= b * ${a}; int r = 2 * (index / ${r}); int c = imod(index, ${r}) * 2; return ivec3(b, r, c); } `}function sP(e,t){let n=Si(["r","c","d"],e);return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); int index = resTexRC.x * ${t[1]} + resTexRC.y; ${n} return ivec3(r, c, d); } `}function nP(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),s=a,i="",o="b, r, c";for(let l=2;l=1?c="coords = 0;":c=o.map(A=>`coords.${h[A+u]} = 0;`).join(` `);let d="";i<2&&s>0?d="coords":d=e.shapeInfo.logicalShape.map((A,g)=>`coords.${h[g+u]}`).join(", ");let p="return outputValue;",f=v.sizeFromShape(e.shapeInfo.logicalShape)===1,m=v.sizeFromShape(t.logicalShape)===1;if(s===1&&!f&&!m)p=` return vec4(outputValue.xy, outputValue.xy); `;else if(f&&!m)i===1?p=` return vec4(outputValue.x, outputValue.x, 0., 0.); `:p=` return vec4(outputValue.x); `;else if(o.length){let A=s-2,g=s-1;o.indexOf(A)>-1&&o.indexOf(g)>-1?p="return vec4(outputValue.x);":o.indexOf(A)>-1?p="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(g)>-1&&(p="return vec4(outputValue.xx, outputValue.zz);")}return` vec4 ${a}() { ${l} coords = getOutputCoords(); ${c} vec4 outputValue = get${r}(${d}); ${p} } `}function Qz(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(i,s))return` float ${a}() { return sampleTexture(${n}, resultUV); } `;let u=dt(l),c=Bb(e.shapeInfo.logicalShape,t.logicalShape),h=l-o,d,p=["x","y","z","w","u","v"];o===0?d="":l<2&&c.length>=1?d="coords = 0;":d=c.map(m=>`coords.${p[m+h]} = 0;`).join(` `);let f="";return l<2&&o>0?f="coords":f=e.shapeInfo.logicalShape.map((m,A)=>`coords.${p[A+h]}`).join(", "),` float ${a}() { ${u} coords = getOutputCoords(); ${d} return get${r}(${f}); } `}function dt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function Ol(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function zl(e,t){return t.map(n=>e[n]).join(", ")}function pP(e,t,n,r){let a=t.userCode,s=n.map((p,f)=>{let m={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(m.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[f],shapeInfo:m}}),i=s.map(p=>p.shapeInfo),o={logicalShape:r.shape,texShape:r.texData.texShape,isUniform:!1,isPacked:r.texData.isPacked,flatOffset:null},l=Lz(s,o,a,t.packedInputs),u=e.createProgram(l),c=null,h=e.getUniformLocation(u,"NAN",!1);J().getNumber("WEBGL_VERSION")===1&&(c=e.getUniformLocation(u,"INFINITY",!1));let d={};for(let p=0;p{let a=n.logicalShape,s=t[r],i=s.shape;if(!v.arraysEqual(a,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${a} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!v.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function fP(e,t,n,r,a){jb(t.inShapeInfos,n),jb([t.outShapeInfo],[r]);let s=r.texData.texture,i=r.texData.texShape;r.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),J().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let u=t.program.variableNames[l],c=t.uniformLocations[u],h=t.uniformLocations[`offset${u}`];if(c!=null){if(o.isUniform){if(v.sizeFromShape(o.shape)<2)e.gl.uniform1f(c,o.uniformValues[0]);else{let d=o.uniformValues;d instanceof Float32Array||(d=new Float32Array(d)),e.gl.uniform1fv(c,d)}return}o.texData.slice!=null&&h!=null&&e.gl.uniform1i(h,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,c,l)}}),a!=null&&a(e,t.webGLProgram),e.executeProgram()}function mP(e,t,n){let r="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;r+=`${i.shape}_${l}_${o}`});let a=e.userCode,s=e.constructor.name;return s+="_"+r+"_"+a,s}var{addImpl:AP,bincountImpl:Hb,bincountReduceImpl:gP,ceilImpl:yP,concatImpl:xP,expImpl:wP,expm1Impl:bP,floorImpl:_P,gatherV2Impl:vP,greaterImpl:kP,lessImpl:IP,linSpaceImpl:NP,logImpl:SP,maxImpl:TP,maximumImpl:EP,minimumImpl:CP,multiplyImpl:RP,negImpl:FP,prodImpl:MP,rangeImpl:$P,rsqrtImpl:DP,simpleAbsImpl:Gb,sliceImpl:OP,stridedSliceImpl:zP,subImpl:PP,tileImpl:LP,topKImpl:WP,transposeImpl:mA,uniqueImpl:BP}=Vm;function qb(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function yn(e,t){return t===1?[e]:qb(e,t)}function VP(e,t){if(e===1)return"rc";let n="";for(let r=0;r ${t[0]}`;let r="";for(let a=e-2;a= ${t[a]}`,a= ${t}; bool rEdge = rp1 >= ${n}; `}function HP(e,t){let n=e.length,r=qP(n,t);return n===1?`getA(rc), rc + 1 >= ${e[0]} ? 0. : getA(rc + 1), 0, 0`:`getA(${r[0]}), cEdge ? 0. : getA(${r[1]}), rEdge ? 0. : getA(${r[2]}), rEdge || cEdge ? 0. : getA(${r[3]})`}var Xb=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let r=0;r<4;r++){let a="thisRC = rc;";r%2==1&&(a+="thisRC.z += 1;"),r>1&&(a+="thisRC.y += 1;"),n+=` ${a} ${r>0?"if(thisRC.y < rows && thisRC.z < cols){":""} int flatIndex = getFlatIndex(thisRC); ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex); vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z)); result[${r}] = getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims); ${r>0?"}":""} `}this.userCode=` ${XP(t)} ${uA(e)} void main() { ivec3 rc = getOutputCoords(); vec4 result = vec4(0.); ivec3 thisRC; int rows = ${e[1]}; int cols = ${e[2]}; ${n} setOutput(result); } `}};function XP(e){return` ivec3 inputCoordsFromReshapedOutCoords(int index) { ${Si(["r","c","d"],e)} return ivec3(r, c, d); } `}var KP=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let r=Zb(t,n),a=Yb(e,r,n);a in this.freeTextures||(this.freeTextures[a]=[]),a in this.usedTextures||(this.usedTextures[a]=[]);let s=Kb(e,r,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[a].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[a].shift();return this.usedTextures[a].push(o),o}let i;return r===sn.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):r===sn.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):r===sn.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):r===sn.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):r===sn.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[a].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,r){if(this.freeTextures==null)return;let a=Zb(n,r),s=Yb(t,a,r);s in this.freeTextures||(this.freeTextures[s]=[]);let i=Kb(t,a,this.gpgpu.gl,this.gpgpu.textureConfig,r),o=J().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function ZP(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function Kb(e,t,n,r,a){let s=YP(t,r),i;if(a){let[l,u]=Ml(e[0],e[1]);i=l*u}else{let[l,u]=gc(e[0],e[1]);i=l*u}let o=ZP(n,s);return i*o}function YP(e,t){switch(e){case sn.PACKED_2X2_FLOAT32:return pA(t);case sn.PACKED_2X2_FLOAT16:return fA(t);case sn.UNPACKED_FLOAT32:return cA(t);case sn.UNPACKED_FLOAT16:return hA(t);case sn.PACKED_4X1_UNSIGNED_BYTE:return dA(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function JP(e){return J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?sn.PACKED_2X2_FLOAT32:sn.UNPACKED_FLOAT32:e?sn.PACKED_2X2_FLOAT16:sn.UNPACKED_FLOAT16}function Zb(e,t){if(e===tr.UPLOAD)return sn.PACKED_2X2_FLOAT32;if(e===tr.RENDER||e==null)return JP(t);if(e===tr.DOWNLOAD||e===tr.PIXELS)return sn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function Yb(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var qa=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=` float unaryOperation(float x) { ${t} } void main() { float x = getAAtOutCoords(); float y = unaryOperation(x); setOutput(y); } `}},Ir="if (isnan(x)) return x;",QP="return x;",Jb="return abs(x);",eL="return (x >= 0.0) ? x : (exp(x) - 1.0);",tL=Ir+` return (x < 0.0) ? 0.0 : x; `,nL=Ir+` return (x < 0.0) ? 0.0 : min(6.0, x); `,vp="return x;",rL="return x;",aL=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0); result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0); result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; `,sL=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,iL=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,Pl=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=` vec4 unaryOperation(vec4 x) { ${t} } void main() { vec4 x = getAAtOutCoords(); vec4 y = unaryOperation(x); setOutput(y); } `}},oL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=yn("rc",t),r=dt(t),a=VP(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=` void main() { ${r} rc = getOutputCoords(); vec4 packedInput = getA(${a}); setOutput(getChannel(packedInput, ${i})); } `}},lL=Hr.whereImpl,uL=1e-7,cL=1e-4,AA={};function hL(e){return e in AA||(AA[e]={}),AA[e]}var dL=128,pL=600;function fL(){return J().global.screen==null?1024:J().global.screen.height*J().global.screen.width*window.devicePixelRatio*pL/1024/1024}var Ll=class extends mu{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!J().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=qr(J().getNumber("WEBGL_VERSION"));this.binaryCache=hL(J().getNumber("WEBGL_VERSION")),this.gpgpu=new _p(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new KP(this.gpgpu),this.numMBBeforeWarning=fL(),this.texData=new Fh(this,Lr())}nextDataId(){return Ll.nextDataId++}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,n){if((J().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||J().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let r={id:this.nextDataId()};return this.texData.set(r,{shape:t,dtype:n,values:e,usage:tr.UPLOAD,refCount:1}),r}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,r,a){if(J().getBool("DEBUG")&&this.checkNumericalProblems(t),r==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:r,values:t,usage:tr.UPLOAD,refCount:a})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:r,complexTensorInfos:a,slice:s,shape:i,isPacked:o}=t;if(s!=null){let h;o?h=new Pl(i,vp):h=new qa(i,vp);let d=this.runWebGLProgram(h,[{dataId:e,shape:i,dtype:r}],r),p=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),p}if(n!=null)return this.convertAndCacheOnCPU(e);if(r==="string")return n;let l=this.activeTimers!=null,u;l&&(u=v.now());let c;if(r==="complex64"){let h=this.readSync(a.real.dataId),d=this.readSync(a.imag.dataId);c=R.mergeRealAndImagArrays(h,d)}else c=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-u),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let p=this.pendingRead.get(e);return new Promise(f=>p.push(f))}let t=this.texData.get(e),{values:n,shape:r,slice:a,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(a!=null){let p;o?p=new Pl(r,vp):p=new qa(r,vp);let f=this.runWebGLProgram(p,[{dataId:e,shape:r,dtype:s}],s),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(!J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&J().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&J().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let p=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(p.texture,...yc(r))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(s==="complex64"){let p=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),f=p[0],m=p[1];c=R.mergeRealAndImagArrays(f,m)}else if(l==null)c=this.getValuesFromTexture(e);else{let p=v.sizeFromShape(r);c=this.gpgpu.downloadFloat32MatrixFromBuffer(l,p)}u!=null&&this.disposeIntermediateTensorInfo(u);let h=this.convertAndCacheOnCPU(e,c),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(p=>p(h)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Lr().removeDataId(e,this),this.pendingDeletes--),h}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>v.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ue(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t0}async time(e){let t=this.activeTimers,n=[],r=!1;this.programTimersStack==null?(this.programTimersStack=n,r=!0):this.activeTimers.push(n),this.activeTimers=n,e();let a=v.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=v.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,r&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(a);i.kernelMs=v.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:r,usage:a,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(r,n),this.textureManager.releaseTexture(t,r,a,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return J().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=Lr().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=dL){let n=this.getCPUBackend();return!J().getBool("IS_TEST")&&!this.warnedAboutCPUBackend&&n==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),n!=null&&e.every(r=>this.texData.get(r.dataId).texture==null&&v.sizeFromShape(r.shape)0&&v.isString(n[0])){let a=n.map(s=>v.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return this.texData.get(r).usage=null,{dataId:r,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:r}=this.makeTensorInfo(e,t,n);return Lr().makeTensorFromDataId(r,e,t,this)}unpackTensor(e){let t=new oL(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new GP(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[ki(e.shape),...Ii(e.shape)],r={dtype:e.dtype,shape:n,dataId:e.dataId},a=[ki(t),...Ii(t)],s=new Xb(a,n),i=!0,o=this.runWebGLProgram(s,[r],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:r,dtype:a}=t,s=gp(r),i;n?i=new Iz(s):i=new kz(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:a,dataId:e}],a,null,o);return{dtype:a,shape:r,dataId:l.dataId}}runWebGLProgram(e,t,n,r,a=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===Ac.DENSE){let m=yc(e.outputShape);i.texShape=m.map(A=>A*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),v.sizeFromShape(s.shape)===0)return i.values=v.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let A=this.texData.get(m.dataId);if(A.texture==null){if(!e.packedInputs&&v.sizeFromShape(m.shape)<=J().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:A.values};e.packedInputs&&(A.isPacked=!0,A.shape=m.shape)}else if(!!A.isPacked!=!!e.packedInputs)m=A.isPacked?this.unpackTensor(m):this.packTensor(m),o.push(m),A=this.texData.get(m.dataId);else if(A.isPacked&&!mc(A.shape,m.shape)){let g=m,y=m.shape;m.shape=A.shape,m=this.packedReshape(m,y),o.push(m),A=this.texData.get(m.dataId),g.shape=y}return this.uploadToGPU(m.dataId),{shape:m.shape,texData:A,isUniform:!1}});this.uploadToGPU(s.dataId);let u={shape:s.shape,texData:i,isUniform:!1},c=mP(e,l,u),h=this.getAndSaveBinary(c,()=>pP(this.gpgpu,e,l,u)),d=this.activeTimers!=null,p;d&&(p=this.startTimer()),fP(this.gpgpu,h,l,u,r),o.forEach(m=>this.disposeIntermediateTensorInfo(m)),d&&(p=this.endTimer(p),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(p)}));let f=J().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let m=v.now();m-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=m)}if(!J().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&a===!1){let m=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),m}return s}compileAndRun(e,t,n,r,a=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,r,a)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(J().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=L(()=>{if(!J().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=J().getBool("DEBUG");J().set("DEBUG",!1);let t=this.abs(Ne(1e-8)).dataSync()[0];if(J().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?uL:cL}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:r,values:a,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=v.now());let c=t.texShape;if(c==null&&(c=mb(n,o),t.texShape=c),a!=null){let h=gp(n),d,p=c[1],f=c[0],m=a instanceof Uint8Array;o?([p,f]=Ml(c[0],c[1]),d=new Ez(h,[f,p],m)):d=new Tz(h,[f,p],m);let A=this.makeTensorInfo([f,p],r);m?this.texData.get(A.dataId).usage=tr.PIXELS:this.texData.get(A.dataId).usage=tr.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),p,f,a);let g=!0,y=this.runWebGLProgram(d,[A],r,null,g),w=this.texData.get(y.dataId);t.texture=w.texture,t.texShape=w.texShape,t.isPacked=w.isPacked,t.usage=w.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(y.dataId),t.values=null,l&&(this.uploadWaitMs+=v.now()-u)}else{let h=this.acquireTexture(c,i,r,o);t.texture=h}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:r}=n;return this.releaseGPUData(e),t!=null&&(n.values=mL(t,r)),n.values}acquireTexture(e,t,n,r){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let a=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${a} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,r)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}};Ll.nextDataId=0;function mL(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let r=0;rnew Ll,2);var AL={forceHalfFloat:e_},t_=` if (isnan(a)) return a; if (isnan(b)) return b; `,Wl=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=R.assertAndGetBroadcastShape(t,n),this.userCode=` float binaryOperation(float a, float b) { ${e} } void main() { float a = getAAtOutCoords(); float b = getBAtOutCoords(); setOutput(binaryOperation(a, b)); } `}},kp=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; `,wc=class{constructor(e,t,n,r=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=R.assertAndGetBroadcastShape(t,n);let a=this.outputShape.length,s="";if(r)if(a===0||v.sizeFromShape(this.outputShape)===1)s=` result.y = 0.; result.z = 0.; result.w = 0.; `;else if(s=` ${dt(a)} coords = getOutputCoords(); `,a===1)s+=` result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y; result.z = 0.; result.w = 0.; `;else{let i=yn("coords",a);s+=` bool nextRowOutOfBounds = (${i[a-2]} + 1) >= ${this.outputShape[a-2]}; bool nextColOutOfBounds = (${i[a-1]} + 1) >= ${this.outputShape[a-1]}; result.y = nextColOutOfBounds ? 0. : result.y; result.z = nextRowOutOfBounds ? 0. : result.z; result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w; `}this.userCode=` vec4 binaryOperation(vec4 a, vec4 b) { ${e} } void main() { vec4 a = getAAtOutCoords(); vec4 b = getBAtOutCoords(); vec4 result = binaryOperation(a, b); ${s} setOutput(result); } `}};function Wn(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var gL={kernelName:Rs,backendName:"webgl",kernelFunc:Wn};function Xa(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.makeTensorInfo(r.shape,"complex64"),i=n.texData.get(s.dataId),o=Wn({inputs:{x:r},backend:n}),l=Wn({inputs:{x:a},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var yL={kernelName:Bh,backendName:"webgl",kernelFunc:Xa},n_="return (a < 0.) ? b * a : a;",r_=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); `;function xL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r,i=n.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),o=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new wc(r_,a.shape,i.shape):new Wl(n_,a.shape,i.shape),l=n.runWebGLProgram(o,[a,i],a.dtype);return n.disposeIntermediateTensorInfo(i),l}var wL={kernelName:Fs,backendName:"webgl",kernelFunc:xL},a_="return (a < 0.) ? b * a : a;",s_=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); `;function bL(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new wc(s_,r.shape,a.shape):new Wl(a_,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)}var _L={kernelName:js,backendName:"webgl",kernelFunc:bL},i_="if (isnan(x)) return x;",vL=` if (isnan(a)) return a; if (isnan(b)) return b; `,kL=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; `;function Qe({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:r}){return({inputs:a,backend:s})=>{let{x:i}=a,o=s,l=r||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let h=o.texData.get(i.dataId),d=n(h.values,l);return o.makeTensorInfo(i.shape,l,d)}let u=J().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return u?c=new Pl(i.shape,t):c=new qa(i.shape,e),o.runWebGLProgram(c,[i],l)}}function on({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:r=!1,cpuKernelImpl:a,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,c=o;if(r&&l.dtype==="complex64"){let f=c.texData.get(l.dataId),m=c.texData.get(u.dataId),[A,g]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(w=>{let[b,_]=w,x={dataId:b.dataId,dtype:b.dtype,shape:l.shape},N={dataId:_.dataId,dtype:_.dtype,shape:u.shape},T=new Wl(e,l.shape,u.shape);return c.runWebGLProgram(T,[x,N],lr(b.dtype,_.dtype))}),y=Xa({inputs:{real:A,imag:g},backend:c});return c.disposeIntermediateTensorInfo(A),c.disposeIntermediateTensorInfo(g),y}let h=s||lr(l.dtype,u.dtype);if(c.shouldExecuteOnCPU([l,u])&&a!=null){let f=c.texData.get(l.dataId),m=c.texData.get(u.dataId),[A,g]=a(l.shape,u.shape,f.values,m.values,h),y=c.makeTensorInfo(g,h),w=c.texData.get(y.dataId);return w.values=A,y}let d=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,p;return d?p=new wc(t,l.shape,u.shape,n):p=new Wl(e,l.shape,u.shape),c.runWebGLProgram(p,[l,u],h)}}function Ip(e,t=!1){if(e==="linear")return t?rL:QP;if(e==="relu")return t?sL:tL;if(e==="elu")return t?aL:eL;if(e==="relu6")return t?iL:nL;if(e==="prelu")return t?s_:a_;if(e==="leakyrelu")return t?r_:n_;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var o_=class{constructor(e,t,n,r=!1,a=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let u=r?e[1]:e[2],c=Math.ceil(u/2),h=r?"i * 2, rc.y":"rc.y, i * 2",d=a?"rc.z, i * 2":"i * 2, rc.z",p=r?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=a?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",A="";i&&(o?m=`vec4 activation(vec4 a) { vec4 b = getPreluActivationWeightsAtOutCoords(); ${i} }`:l?m=`vec4 activation(vec4 a) { vec4 b = getLeakyreluAlphaAtOutCoords(); ${i} }`:m=`vec4 activation(vec4 x) { ${i} }`,A="result = activation(result);");let g=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let y="rc.x",w="rc.x";e[0]`The new shape (${l}) has ${u} elements and the old shape (${a.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let c=i.texData.get(a.dataId);return c.isPacked&&!mc(a.shape,l)&&!(c.texture!==null&&mc(c.shape,l))?NL(a,l,i):(i.incRef(a.dataId),{dataId:a.dataId,shape:l,dtype:a.dtype})}var SL={kernelName:jo,backendName:"webgl",kernelFunc:we},d_=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let c=1/t;l=`sumValue += dot(values * ${v.isInt(c)?c.toPrecision(2):c}, ones);`}let u="";a%n>0&&(u=` if (inIdx < 0 || inIdx >= ${a}) { return 0.0; } `),this.userCode=` const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float getValue(int batch, int inIdx) { ${u} return getX(batch, inIdx); } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = outIdx * ${n}; float sumValue = 0.0; for (int i = 0; i < ${i}; i += 4) { int inIdx = inOffset + i; vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), getValue(batch, inIdx + 3) ); ${l} } int inIdx = inOffset + ${i}; if (${o===1}) { vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0); ${l} } else if (${o===2}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), 0.0, 0.0); ${l} } else if (${o===3}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), 0.0); ${l} } setOutput(sumValue); } `}},TL=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,c=n%4,h=` if (${t==="sum"}) { sumValue += dot(values, ones); } else if (${t==="prod"}) { vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]); prodValue *= tmp[0] * tmp[1]; } else { minMaxValue = ${o}(values, minMaxValue); } `,d="vec4";t==="all"?(i="1.0",h=` bool reducedAllValue = all(values); float floatedReducedAllValue = float(reducedAllValue); allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0); `,d="bvec4"):t==="any"&&(i="0.0",h=` bool reducedAnyValue = any(values); float floatedReducedAnyValue = float(reducedAnyValue); anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0); `,d="bvec4");let p="";a%n>0&&(p=` if (inIdx < 0 || inIdx >= ${a}) { return initializationValue; } `),this.userCode=` const float initializationValue = ${i}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float getValue(int batch, int inIdx) { ${p} return getX(batch, inIdx); } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = outIdx * ${n}; vec4 minMaxValue = vec4(${i}); float prodValue = 1.0; float sumValue = 0.0; float allValue = 1.0; float anyValue = 0.0; for (int i = 0; i < ${u}; i += 4) { int inIdx = inOffset + i; ${d} values = ${d}( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), getValue(batch, inIdx + 3) ); ${h} } int inIdx = inOffset + ${u}; if (${c===1}) { ${d} values = ${d}( getValue(batch, inIdx), initializationValue, initializationValue, initializationValue ); ${h} } else if (${c===2}) { ${d} values = ${d}( getValue(batch, inIdx), getValue(batch, inIdx + 1), initializationValue, initializationValue ); ${h} } else if (${c===3}) { ${d} values = ${d}( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), initializationValue ); ${h} } setOutput(${l}); } `}};function EL(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],r=R.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:r,outSize:Math.ceil(n/r)})}return t}function Ei(e,t,n,r){let a=EL(e.shape),s=e;for(let i=0;i6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],r=new Array(t);for(let a=0;a6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let r=dt(this.rank),a=qb("rc",this.rank),s=new Array(this.rank);for(let u=0;u=2&&c>=2&&w,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${A}).`);let b=(g>y?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([p,f]);v.assert(h===d,()=>`Error in matMul: inner shapes (${h}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${r} must match.`);let _=n?[g,h,p]:[g,p,h],x=r?[y,f,d]:[y,d,f],N=we({inputs:{x:e},backend:a,attrs:{shape:_}}),T=we({inputs:{x:t},backend:a,attrs:{shape:x}}),E=[N,T],M=Math.max(g,y),z=n?N.shape[1]:N.shape[2],B=s!=null,V=i!=null,U=l==="leakyrelu",j=l!=null?Ip(l,!0):null,X=B||V||U||j!=null,G;if((p===1||f===1)&&z>p_&&X===!1){let Y=N,se=T;n&&(Y=En({inputs:{x:N},backend:a,attrs:{perm:[0,2,1]}}),E.push(Y)),r&&(se=En({inputs:{x:T},backend:a,attrs:{perm:[0,2,1]}}),E.push(se));let ne=f!==1,le=f===1,Q=Y;ne&&(Q=we({inputs:{x:Y},backend:a,attrs:{shape:[M,z,1]}}),E.push(Q));let pe=f===1?2:1,ue=se;le&&(ue=we({inputs:{x:se},backend:a,attrs:{shape:[M,1,z]}}),E.push(ue));let ge=h_({inputs:{a:Q,b:ue},backend:a});G=gA({inputs:{x:ge},backend:a,attrs:{axis:pe,keepDims:!0}}),E.push(ge)}else{let Y=lr(e.dtype,t.dtype),se=new o_(_,x,[M,p,f],n,r,B,j,V,U),ne=[N,T];if(s!=null&&ne.push(s),V&&ne.push(i),U){let le=a.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));ne.push(le),E.push(le)}G=a.runWebGLProgram(se,ne,Y)}let ee=we({inputs:{x:G},backend:a,attrs:{shape:b}});E.push(G);for(let Y of E)a.disposeIntermediateTensorInfo(Y);return ee}function OL(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:h}=r;return Sp({a,b:s,transposeA:l,transposeB:u,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:c})}var zL={kernelName:ii,backendName:"webgl",kernelFunc:OL},f_="return abs(x);";function PL(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])&&r.dtype!=="complex64"){let s=n.texData.get(r.dataId),i=Gb(s.values);return n.makeTensorInfo(r.shape,r.dtype,i)}let a;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new Pl(r.shape,f_):a=new qa(r.shape,f_),n.runWebGLProgram(a,[r],r.dtype)}var LL={kernelName:so,backendName:"webgl",kernelFunc:PL},WL=Ir+` if (abs(x) > 1.) { return NAN; } return acos(x); `,BL=Qe({opSnippet:WL}),VL={kernelName:io,backendName:"webgl",kernelFunc:BL},UL=Ir+` if (x < 1.0) return NAN; return log(x + sqrt(x * x - 1.0));`,jL=Qe({opSnippet:UL}),HL={kernelName:oo,backendName:"webgl",kernelFunc:jL},m_="return a + b;",GL=on({opSnippet:m_,packedOpSnippet:m_,supportsComplex:!0,cpuKernelImpl:AP}),qL={kernelName:Ra,backendName:"webgl",kernelFunc:GL},XL=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`float v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=` void main() { ${n.join(` `)} float result = ${r}; setOutput(result); } `}},KL=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`vec4 v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=` void main() { ${n.join(` `)} vec4 result = ${r}; setOutput(result); } `}};function Tp(e){let{inputs:t,backend:n}=e,r=t;if(r.length===1)return Wn({inputs:{x:r[0]},backend:n});if(r.length>J().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(r.length/2),l=Tp({inputs:r.slice(0,o),backend:n}),u=Tp({inputs:r.slice(o),backend:n});return Tp({inputs:[l,u],backend:n})}let a=r.map(o=>o.dtype).reduce((o,l)=>lr(o,l)),s=r.map(o=>o.shape),i=J().getBool("WEBGL_PACK")?new KL(r[0].shape,s):new XL(r[0].shape,s);return n.runWebGLProgram(i,r,a)}var ZL={kernelName:fs,backendName:"webgl",kernelFunc:Tp};function YL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,c=R.getAxesPermutation(u,o),h=a;c!=null&&(h=En({inputs:{x:a},backend:n,attrs:{perm:c}}),u=R.getInnerMostAxes(u.length,o)),R.assertAxesAreInnerMostDims("all",u,o);let[d,p]=R.computeOutAndReduceShapes(h.shape,u),f=v.sizeFromShape(p),m=we({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=Ei(m,m.dtype,"all",n),g;if(i){let y=R.expandShapeToKeepDim(d,l);g=we({inputs:{x:A},backend:n,attrs:{shape:y}})}else g=we({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(h),g}var JL={kernelName:Oh,backendName:"webgl",kernelFunc:YL};function QL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,c=R.getAxesPermutation(u,o),h=a;c!=null&&(h=En({inputs:{x:a},backend:n,attrs:{perm:c}}),u=R.getInnerMostAxes(u.length,o)),R.assertAxesAreInnerMostDims("any",u,o);let[d,p]=R.computeOutAndReduceShapes(h.shape,u),f=v.sizeFromShape(p),m=we({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=Ei(m,m.dtype,"any",n),g;if(i){let y=R.expandShapeToKeepDim(d,l);g=we({inputs:{x:A},backend:n,attrs:{shape:y}})}else g=we({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(h),g}var eW={kernelName:zh,backendName:"webgl",kernelFunc:QL},tW=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:r,batchSize:a,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[a,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=` void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = outIdx * ${r}; int bestIndex = inOffset; float bestValue = getA(batch, bestIndex); for (int i = 0; i < ${r}; i++) { int inIdx = ${o}; float candidate = getA(batch, inIdx); if (candidate ${i} bestValue) { bestValue = candidate; bestIndex = inIdx; } } setOutput(float(bestIndex)); } `}},nW=class{constructor(e,t,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let a=e[e.length-1],s=Math.ceil(a/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),r||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=dt(o),u=yn("coords",o),c,h;if(s===1){h=o+1;let N=dt(h);c=` ${N} sourceLocR = ${N}(${u.join()}, 0); ++${u[o-1]}; ${N} sourceLocG = ${N}(${u.join()}, 0); ++${u[o-2]}; ${N} sourceLocA = ${N}(${u.join()}, 0); --${u[o-1]}; ${N} sourceLocB = ${N}(${u.join()}, 0); --${u[o-2]};`}else h=o,c=` ${l} sourceLocR = coords; ++${u[o-1]}; ${l} sourceLocG = coords; ++${u[o-2]}; ${l} sourceLocA = coords; --${u[o-1]}; ${l} sourceLocB = coords; --${u[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,h),p="."+d[h-1],f=d.map(N=>"int "+N),m=yn("sourceLocR",h-1).concat("inIdx.r"),A=yn("sourceLocG",h-1).concat("inIdx.g"),g=yn("sourceLocB",h-1).concat("inIdx.b"),y=yn("sourceLocA",h-1).concat("inIdx.a"),w=n==="max"?"greaterThan":"lessThan",b=r?"":` inIdx = round(vec4(getBestIndicesAChannel(${m.join()}), getBestIndicesAChannel(${A.join()}), getBestIndicesAChannel(${g.join()}), getBestIndicesAChannel(${y.join()})));`,_=`vec4( getAChannel(${m.join()}), hasNextCol ? getAChannel(${A.join()}) : 0., hasNextRow ? getAChannel(${g.join()}) : 0., hasNextRow && hasNextCol ? getAChannel(${y.join()}) : 0.)`,x=r?"":` float getBestIndicesAChannel(${f.join()}) { return getChannel(getBestIndicesA(${d.join()}), vec2(${d.slice(-2).join()})); }`;this.userCode=` float getAChannel(${f.join()}) { return getChannel(getA(${d.join()}), vec2(${d.slice(-2).join()})); } ${x} void main() { ${l} coords = getOutputCoords(); bool hasNextCol = ${u[o-1]} < ${i[o-1]-1}; bool hasNextRow = ${u[o-2]} < ${i[o-2]-1}; ${c} ivec4 srcIdx = ivec4(sourceLocR${p}, sourceLocG${p}, sourceLocB${p}, sourceLocA${p}) * ${t}; ivec4 inIdx = srcIdx; vec4 bestIndex = vec4(inIdx); vec4 bestValue = ${_}; for (int i = 0; i < ${t}; i++) { inIdx = srcIdx; ${b} vec4 candidate = ${_}; bvec4 nan = isnan(candidate); bvec4 replace = bvec4( vec4(${w}(candidate, bestValue)) * (vec4(1.0) - vec4(nan))); bestValue = vec4(replace.x ? candidate.x : bestValue.x, replace.y ? candidate.y : bestValue.y, replace.z ? candidate.z : bestValue.z, replace.w ? candidate.w : bestValue.w); bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace)); srcIdx++; } setOutput(bestIndex); } `}};function A_(e,t,n,r=null){let a=t.shape[0],s=t.shape[1];r!=null&&(a=r.shape[0],s=r.shape[1]);let i=R.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:a,outSize:Math.ceil(s/i)},l=new tW(o,n,r==null),u=[t];r!=null&&u.push(r);let c=e.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let h=A_(e,t,n,c);return e.disposeIntermediateTensorInfo(c),h}function g_(e,t,n,r=null){let a=r!=null?r.shape:t.shape,s=a[a.length-1],i=R.computeOptimalWindowSize(s),o=new nW(a,i,n,r==null),l=r==null?[t]:[t,r],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let c=g_(e,t,n,u);return e.disposeIntermediateTensorInfo(u),c}return u}function y_(e,t,n,r){let a=[n];if(R.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),a,t.shape.length),!J().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=R.computeOutAndReduceShapes(t.shape,a),l=v.sizeFromShape(o),u=we({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(u);let c=A_(e,u,r);s.push(c);let h=we({inputs:{x:c},backend:e,attrs:{shape:i}});return s.forEach(d=>e.disposeIntermediateTensorInfo(d)),h}return g_(e,t,r)}function rW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=v.parseAxisParam(s,a.shape),o=R.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=En({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=R.getInnerMostAxes(i.length,l.shape.length)),R.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let c=y_(n,l,i[0],"max");return u.forEach(h=>n.disposeIntermediateTensorInfo(h)),c}var aW={kernelName:ms,backendName:"webgl",kernelFunc:rW};function sW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=v.parseAxisParam(s,a.shape),o=R.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=En({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=R.getInnerMostAxes(i.length,l.shape.length)),R.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let c=y_(n,l,i[0],"min");return u.forEach(h=>n.disposeIntermediateTensorInfo(h)),c}var iW={kernelName:yu,backendName:"webgl",kernelFunc:sW},oW=Ir+` if (abs(x) > 1.) { return NAN; } return asin(x); `,lW=Qe({opSnippet:oW}),uW={kernelName:lo,backendName:"webgl",kernelFunc:lW},cW=Ir+"return log(x + sqrt(x * x + 1.0));",hW=Qe({opSnippet:cW}),dW={kernelName:uo,backendName:"webgl",kernelFunc:hW},pW=Ir+` return atan(x); `,fW=Qe({opSnippet:pW}),mW={kernelName:co,backendName:"webgl",kernelFunc:fW},AW=vL+` return atan(a, b); `,gW=` vec4 result = atan(a, b); vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0)); `+kL+` return result; `,yW=on({opSnippet:AW,packedOpSnippet:gW}),xW={kernelName:po,backendName:"webgl",kernelFunc:yW},wW=Ir+` if ((x < -1.0) || (x > 1.0)) return NAN; return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,bW=Qe({opSnippet:wW}),_W={kernelName:ho,backendName:"webgl",kernelFunc:bW},bc=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterHeight,h=e.effectiveFilterWidth,d=e.padInfo.top,p=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,A=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,g="0.0";if(f||(g="-1.0 / 1e-20"),n){let N=">=";this.userCode=` const ivec2 strides = ivec2(${i}, ${o}); const ivec2 pads = ivec2(${d}, ${p}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d = coords[3]; ivec2 xRCCorner = coords.yz * strides - pads; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // max/min x(?, ?, d) to get y(yR, yC, d). // ? = to be determined float minMaxValue = 0.0; float minMaxValueFound = 0.0; int minMaxPosition = 0; float avgValue = 0.0; for (int wR = 0; wR < ${c}; wR += ${l}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${h}; wC += ${u}) { int xC = xCCorner + wC; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float value = getX(batch, xR, xC, d); // If a min / max value has already been found, use it. If not, // use the current value. float currMinMaxValue = mix( value, minMaxValue, minMaxValueFound); if (value ${N} currMinMaxValue) { minMaxValue = value; minMaxValueFound = 1.0; minMaxPosition = ${r?a?m:A:`wR * ${h} + wC`}; } } } setOutput(float(minMaxPosition)); } `;return}let y="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let b=Math.floor(s/4)*4,_=s%4,x=` if (${f}) { avgValue += dot(values, ones); } else { minMaxValue = ${y}(values, minMaxValue); } `;this.userCode=` const ivec2 strides = ivec2(${i}, ${o}); const ivec2 pads = ivec2(${d}, ${p}); const float initializationValue = ${g}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float count = 0.0; float getValue(int batch, int xR, int xC, int d) { if (xC < 0 || xC >= ${e.inWidth}) { return initializationValue; } count += 1.0; return getX(batch, xR, xC, d); } void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d = coords[3]; ivec2 xRCCorner = coords.yz * strides - pads; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // max/min x(?, ?, d) to get y(yR, yC, d). // ? = to be determined vec4 minMaxValue = vec4(${g}); float avgValue = 0.0; count = 0.0; for (int wR = 0; wR < ${c}; wR += ${l}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${b}; wC += 4) { int xC = xCCorner + wC * ${u}; vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${u}, d), getValue(batch, xR, xC + 2 * ${u}, d), getValue(batch, xR, xC + 3 * ${u}, d) ); ${x} } int xC = xCCorner + ${b}; if (${_===1}) { vec4 values = vec4( getValue(batch, xR, xC, d), initializationValue, initializationValue, initializationValue ); ${x} } else if (${_===2}) { vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${u}, d), initializationValue, initializationValue ); ${x} } else if (${_===3}) { vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${u}, d), getValue(batch, xR, xC + 2 * ${u}, d), initializationValue ); ${x} } } setOutput(${w}); } `}},yA=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,c=e.dilationHeight,h=e.dilationWidth,d=e.effectiveFilterDepth,p=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,A=e.padInfo.top,g=e.padInfo.left;this.outputShape=e.outShape;let y=t==="avg",w="0.0";if(y||(w="-1.0 / 1e-20"),n){let E=">=";this.userCode=` const ivec3 strides = ivec3(${i}, ${o}, ${l}); const ivec3 pads = ivec3(${m}, ${A}, ${g}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads; int xDCorner = xCorner.x; int xRCorner = xCorner.y; int xCCorner = xCorner.z; // max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch). // ? = to be determined float minMaxValue = 0.0; float minMaxValueFound = 0.0; int minMaxPosition = 0; for (int wD = 0; wD < ${d}; wD += ${u}) { int xD = xDCorner + wD; if (xD < 0 || xD >= ${e.inDepth}) { continue; } for (int wR = 0; wR < ${p}; wR += ${c}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${f}; wC += ${h}) { int xC = xCCorner + wC; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float value = getX(batch, xD, xR, xC, ch); // If a min / max value has already been found, use it. If not, // use the current value. float currMinMaxValue = mix( value, minMaxValue, minMaxValueFound); if (value ${E} currMinMaxValue) { minMaxValue = value; minMaxValueFound = 1.0; minMaxPosition = ${r?a?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${p} * ${f} + wR * ${f} + wC`}; } } } } setOutput(float(minMaxPosition)); } `;return}let b="max",_=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(_="avgValue / count");let x=Math.floor(s/4)*4,N=s%4,T=` if (${y}) { avgValue += dot(values, ones); } else { minMaxValue = ${b}(values, minMaxValue); } `;this.userCode=` const ivec3 strides = ivec3(${i}, ${o}, ${l}); const ivec3 pads = ivec3(${m}, ${A}, ${g}); const float initializationValue = ${w}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float count = 0.0; float getValue(int batch, int xD, int xR, int xC, int ch) { if (xC < 0 || xC >= ${e.inWidth}) { return initializationValue; } count += 1.0; return getX(batch, xD, xR, xC, ch); } void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads; int xDCorner = xCorner.x; int xRCorner = xCorner.y; int xCCorner = xCorner.z; // max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch). // ? = to be determined vec4 minMaxValue = vec4(${w}); float avgValue = 0.0; count = 0.0; for (int wD = 0; wD < ${d}; wD += ${u}) { int xD = xDCorner + wD; if (xD < 0 || xD >= ${e.inDepth}) { continue; } for (int wR = 0; wR < ${p}; wR += ${c}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${x}; wC += 4) { int xC = xCCorner + wC * ${h}; vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${h}, ch), getValue(batch, xD, xR, xC + 2 * ${h}, ch), getValue(batch, xD, xR, xC + 3 * ${h}, ch) ); ${T} } int xC = xCCorner + ${x}; if (${N===1}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), initializationValue, initializationValue, initializationValue ); ${T} } else if (${N===2}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${h}, ch), initializationValue, initializationValue ); ${T} } else if (${N===3}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${h}, ch), getValue(batch, xD, xR, xC + 2 * ${h}, ch), initializationValue ); ${T} } } setOutput(${_}); } } `}};function vW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;Fl(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;v.assert(R.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=R.computePool2DInfo(a.shape,s,i,u,o,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return Wn({inputs:{x:a},backend:n});let h=new bc(c,"avg",!1);return n.runWebGLProgram(h,[a],"float32")}var kW={kernelName:As,backendName:"webgl",kernelFunc:vW};function IW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=r,c=[1,1,1],h=R.computePool3DInfo(a.shape,s,i,c,o,l,u),d=new yA(h,"avg",!1);return n.runWebGLProgram(d,[a],"float32")}var NW={kernelName:xu,backendName:"webgl",kernelFunc:IW},SW=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,c=l-1-e.padInfo.left,h=1/(t*n);this.userCode=` const ivec2 pads = ivec2(${u}, ${c}); const float avgMultiplier = float(${h}); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 dyRCCorner = coords.yz - pads; int dyRCorner = dyRCCorner.x; int dyCCorner = dyRCCorner.y; // Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${o}; wR += ${s}) { float dyR = float(dyRCorner + wR) / ${r}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${l}; wC+= ${i}) { float dyC = float(dyCCorner + wC) / ${a}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(b, idyR, idyC, d); dotProd += dyValue * avgMultiplier; } } setOutput(dotProd); } `}},TW=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=c-1-e.padInfo.front,f=h-1-e.padInfo.top,m=d-1-e.padInfo.left,A=1/(t*n*r);this.userCode=` const ivec3 pads = ivec3(${p}, ${f}, ${m}); const float avgMultiplier = float(${A}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads; int dyDCorner = dyCorner.x; int dyRCorner = dyCorner.y; int dyCCorner = dyCorner.z; // Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get // dx(xD, xR, xC, ch). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wD = 0; wD < ${c}; wD += ${o}) { float dyD = float(dyDCorner + wD) / ${a}.0; if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) { continue; } int idyD = int(dyD); for (int wR = 0; wR < ${h}; wR += ${l}) { float dyR = float(dyRCorner + wR) / ${s}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${d}; wC += ${u}) { float dyC = float(dyCCorner + wC) / ${i}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(batch, idyD, idyR, idyC, ch); dotProd += dyValue * avgMultiplier; } } } setOutput(dotProd); } `}};function EW(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:c}=r,h=[1,1,1],d=R.computePool3DInfo(i.shape,o,l,h,u,c),p=new TW(d);return n.runWebGLProgram(p,[a],i.dtype)}var CW={kernelName:Lh,backendName:"webgl",kernelFunc:EW};function RW(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;Fl([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=r,c=R.computePool2DInfo(i.shape,o,l,1,u),h=new SW(c);return n.runWebGLProgram(h,[a],i.dtype)}var FW={kernelName:Ph,backendName:"webgl",kernelFunc:RW};function MW(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;return Sp({a,b:s,transposeA:i,transposeB:o,backend:n})}var $W={kernelName:gs,backendName:"webgl",kernelFunc:MW},DW=class{constructor(e,t,n,r,a,s){this.outputShape=[],this.variableNames=["x","mean","variance"],R.assertAndGetBroadcastShape(e,t),R.assertAndGetBroadcastShape(e,n);let i="0.0";r!=null&&(R.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";a!=null&&(R.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` void main() { float x = getXAtOutCoords(); float mean = getMeanAtOutCoords(); float variance = getVarianceAtOutCoords(); float offset = ${i}; float scale = ${o}; float inv = scale * inversesqrt(variance + float(${s})); setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1))); } `}},OW=class{constructor(e,t,n,r,a,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],R.assertAndGetBroadcastShape(e,t),R.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";r!=null&&(R.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";a!=null&&(R.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` void main() { vec4 offset = ${i}; vec4 scale = ${o}; vec4 x = getXAtOutCoords(); vec4 mean = getMeanAtOutCoords(); vec4 variance = getVarianceAtOutCoords(); vec4 inv = scale * inversesqrt(variance + vec4(${s})); setOutput((x - mean) * inv + offset); } `}},zW=({inputs:e,backend:t,attrs:n})=>{let{x:r,mean:a,variance:s,offset:i,scale:o}=e;v.assert(a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(o==null||a.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[r,a,s],c=null;i!=null&&(c=i.shape,u.push(i));let h=null;o!=null&&(h=o.shape,u.push(o));let d=J().getBool("WEBGL_PACK_NORMALIZATION")?new OW(r.shape,a.shape,s.shape,c,h,l):new DW(r.shape,a.shape,s.shape,c,h,l);return t.runWebGLProgram(d,u,u[0].dtype)},PW={kernelName:Es,backendName:"webgl",kernelFunc:zW},WW=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=dt(this.rank),n=`uniform int start[${this.rank}];`,r=LW(this.rank),a,s=e.map((i,o)=>`sourceLoc.${xA[o]} = start[${o}] + coords.${xA[o]};`);a=` ${t} sourceLoc; ${t} coords = getOutputCoords(); ${s.join(` `)} `,this.userCode=` ${n} void main() { ${a} setOutput(getSource(${r})); } `}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},xA=["x","y","z","w","u","v"];function LW(e){if(e===1)return"sourceLoc";if(e<=6)return xA.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var BW=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=dt(this.rank),n=yn("coords",this.rank),r=yn("sourceLoc",this.rank),a=this.rank===1?"sourceLoc":`vec2(${r.slice(-2).join()})`,s=`getChannel(getSource(${r.join()}), ${a})`,i=` result.x = ${s}; if (++${n[this.rank-1]} < ${e[this.rank-1]}) { ++${r[this.rank-1]}; result.y = ${s}; --${r[this.rank-1]}; } `,o=this.rank===1?"":` --${n[this.rank-1]}; if (++${n[this.rank-2]} < ${e[this.rank-2]}) { ++${r[this.rank-2]}; result.z = ${s}; if (++${n[this.rank-1]} < ${e[this.rank-1]}) { ++${r[this.rank-1]}; result.w = ${s}; } } `,l=this.rank<=4?`sourceLoc = coords + ${t}(${e.map((u,c)=>`start[${c}]`).join()});`:e.map((u,c)=>`${r[c]} = ${n[c]} + start[${c}];`).join(` `);this.userCode=` uniform int start[${this.rank}]; void main() { ${t} coords = getOutputCoords(); ${t} sourceLoc; ${l} vec4 result = vec4(0.); ${i} ${o} setOutput(result); } `}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function VW(e,t,n,r){let a=r.texData.get(e.dataId),s=r.makeTensorInfo(n,e.dtype),i=r.texData.get(s.dataId);Object.assign(i,a),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=pn.computeFlatOffset(t,v.computeStrides(e.shape));a.slice&&(o+=a.slice.flatOffset),i.slice={flatOffset:o,origDataId:a.slice&&a.slice.origDataId||e.dataId};let l=r.dataRefCount.get(i.slice.origDataId)||1;return r.dataRefCount.set(i.slice.origDataId,l+1),s}function _c(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r,[o,l]=pn.parseSliceParams(a,s,i);if(pn.assertParamsValid(a,o,l),v.sizeFromShape(l)===0)return n.makeTensorInfo(l,a.dtype,[]);if(n.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=n.texData.get(a.dataId),d=OP(h.values,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,d)}let{isPacked:u}=n.texData.get(a.dataId),c=pn.isSliceContinous(a.shape,o,l);if(u||!c){let h=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new BW(l):new WW(l),d=h.getCustomSetupFunc(o);return n.runWebGLProgram(h,[a],a.dtype,d)}return n.uploadToGPU(a.dataId),VW(a,o,l,n)}var UW={kernelName:Xo,backendName:"webgl",kernelFunc:_c},jW=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;v.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,w)=>y*w),l=R.getReshaped(a.shape,s,o),u=R.getPermuted(l.length,s.length),c=R.getReshapedPermuted(a.shape,s,o),h=R.getSliceBeginCoords(i,s.length),d=R.getSliceSize(c,i,s.length),p=[],f=we({inputs:{x:a},backend:n,attrs:{shape:l}}),m=En({inputs:{x:f},backend:n,attrs:{perm:u}}),A=we({inputs:{x:m},backend:n,attrs:{shape:c}}),g=_c({inputs:{x:A},backend:n,attrs:{begin:h,size:d}});return p.push(f),p.push(m),p.push(A),p.forEach(y=>n.disposeIntermediateTensorInfo(y)),g},HW={kernelName:wu,backendName:"webgl",kernelFunc:jW};function GW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.readSync(a.dataId),l=n.readSync(s.dataId),u=Hb(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var qW={kernelName:Wh,backendName:"webgl",kernelFunc:GW},XW="return float(a != b);",x_=on({opSnippet:XW,dtype:"bool"}),KW={kernelName:Oo,backendName:"webgl",kernelFunc:x_};function vc(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Wn({inputs:{x:a.complexTensorInfos.real},backend:n})}var ZW={kernelName:od,backendName:"webgl",kernelFunc:vc},YW="return float(int(x));";function JW(e,t){let n=new qa(e.shape,YW),r=t.runWebGLProgram(n,[e],"int32");return{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function wA(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Wn({inputs:{x:a},backend:n});let i=Ot(a.shape),o=wA({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Xa({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=vc({inputs:{input:a},backend:n}),o=wA({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(a.dtype,s)){let i=Wn({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return JW(a,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),o=x_({inputs:{a,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var QW={kernelName:ys,backendName:"webgl",kernelFunc:wA},w_="return ceil(x);",eB=Qe({opSnippet:w_,packedOpSnippet:w_,cpuKernelImpl:yP}),tB={kernelName:xs,backendName:"webgl",kernelFunc:eB},nB=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=` uniform float minVal; uniform float maxVal; void main() { float value = getAAtOutCoords(); if (isnan(value)) { setOutput(value); return; } setOutput(clamp(value, minVal, maxVal)); } `}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},rB=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=` uniform float minVal; uniform float maxVal; void main() { vec4 value = getAAtOutCoords(); if (any(isnan(value))) { setOutput(value); return; } setOutput(clamp(value, vec4(minVal), vec4(maxVal))); } `}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function aB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o;J().getBool("WEBGL_PACK_CLIP")?o=new rB(a.shape):o=new nB(a.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[a],a.dtype,l)}var sB={kernelName:Fa,backendName:"webgl",kernelFunc:aB},iB=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=` void main() { float re = abs(getRealAtOutCoords()); float im = abs(getImagAtOutCoords()); float mx = max(re, im); // sadly the length function in glsl is not underflow-safe // (at least not on Intel GPUs). So the safe solution is // to ensure underflow-safety in all cases. setOutput( mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx)) ); } `}};function b_(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function oB(e){let{inputs:t,backend:n}=e,{x:r}=t,a=n.texData.get(r.dataId),s=new iB(r.shape),i=[b_(r,a.complexTensorInfos.real),b_(r,a.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var lB={kernelName:bu,backendName:"webgl",kernelFunc:oB},uB=class{constructor(e){this.outputShape=[],this.outputShape=R.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s`T${m}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let f=1;f= ${o[f-1]}) { return getChannel( getT${f}(${Ep(i,l,m)}), vec2(${Ep(u,l,m)})); }`}let d=o.length,p=o[o.length-1];h+=` return getChannel( getT${d}(${Ep(i,l,p)}), vec2(${Ep(u,l,p)}));`,this.userCode=` float getValue(${i.map(f=>"int "+f)}) { ${h} } void main() { ${a} coords = getOutputCoords(); vec4 result = vec4(getValue(${s}), 0., 0., 0.); ${s[r-1]} = ${s[r-1]} + 1; if (${s[r-1]} < ${n[r-1]}) { result.g = getValue(${s}); } ${s[r-2]} = ${s[r-2]} + 1; if (${s[r-2]} < ${n[r-2]}) { result.a = getValue(${s}); } ${s[r-1]} = ${s[r-1]} - 1; if (${s[r-2]} < ${n[r-2]} && ${s[r-1]} < ${n[r-1]}) { result.b = getValue(${s}); } setOutput(result); } `}};function Ep(e,t,n){let r=e.indexOf(t);return e.map((a,s)=>s===r?`${a} - ${n}`:a).join()}function Cp(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Wn({inputs:{x:a.complexTensorInfos.imag},backend:n})}var hB={kernelName:ed,backendName:"webgl",kernelFunc:Cp};function Bl(e,t,n){let r=e[0].dtype;if(r==="complex64"){let u=e.map(f=>vc({inputs:{input:f},backend:n})),c=e.map(f=>Cp({inputs:{input:f},backend:n})),h=Bl(u,t,n),d=Bl(c,t,n),p=Xa({inputs:{real:h,imag:d},backend:n});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),c.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),p}if(r==="string"){let{tensors2D:u,outShape:c}=__(e,t,n),h=u.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),d=u[0].shape[0]===1,p=xP(h,c,r,d),f=R.computeOutShape(e.map(A=>A.shape),t),m=n.makeTensorInfo(f,r,p);return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),m}if(e.length>J().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),c=Bl(e.slice(0,u),t,n),h=Bl(e.slice(u),t,n),d=Bl([c,h],t,n);return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),d}if(J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new cB(e.map(c=>c.shape),t);return n.runWebGLProgram(u,e,r)}let{tensors2D:a,outShape:s}=__(e,t,n),i=new uB(a.map(u=>u.shape)),o=n.runWebGLProgram(i,a,r);a.forEach(u=>n.disposeIntermediateTensorInfo(u));let l=we({inputs:{x:o},attrs:{shape:s},backend:n});return n.disposeIntermediateTensorInfo(o),l}function __(e,t,n){let r=R.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>we({inputs:{x:a},attrs:{shape:[-1,v.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:r}}function v_(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=v.parseAxisParam(a,t[0].shape)[0],i=R.computeOutShape(t.map(u=>u.shape),s);if(v.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>v.sizeFromShape(u.shape)>0);if(o.length===1)return Wn({inputs:{x:o[0]},backend:n});let l=o.map(u=>u.shape);return R.assertParamsConsistent(l,s),Bl(o,s,n)}var dB={kernelName:fo,backendName:"webgl",kernelFunc:v_},k_=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",A=m?1:2,g=m?2:3,y=m?3:1,w="",b="";n&&(r?w=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${n} }`:a?w=`float activation(float a) { float b = getLeakyreluAlphaAtOutCoords(); ${n} }`:w=` float activation(float x) { ${n} } `,b="result = activation(result);");let _=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=` ${w} const ivec2 strides = ivec2(${o}, ${l}); const ivec2 pads = ivec2(${s}, ${i}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d2 = coords[${y}]; ivec2 xRCCorner = ivec2(coords[${A}], coords[${g}]) * strides - pads; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${h}; wR++) { int xR = xRCorner + wR * ${u}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${d}; wC++) { int xC = xCCorner + wC * ${c}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } for (int d1 = 0; d1 < ${p}; d1 += 4) { vec4 wValues = vec4( getW(wR, wC, d1, d2), getW(wR, wC, d1 + 1, d2), getW(wR, wC, d1 + 2, d2), getW(wR, wC, d1 + 3, d2) ); if (${m}) { vec4 xValues = vec4( getX(batch, xR, xC, d1), getX(batch, xR, xC, d1 + 1), getX(batch, xR, xC, d1 + 2), getX(batch, xR, xC, d1 + 3) ); dotProd += dot(xValues, wValues); } else { vec4 xValues = vec4( getX(batch, d1, xR, xC), getX(batch, d1 + 1, xR, xC), getX(batch, d1 + 2, xR, xC), getX(batch, d1 + 3, xR, xC) ); dotProd += dot(xValues, wValues); } } if (${f===1}) { if (${m}) { dotProd += getX(batch, xR, xC, ${p}) * getW(wR, wC, ${p}, d2); } else { dotProd += getX(batch, ${p}, xR, xC) * getW(wR, wC, ${p}, d2); } } else if (${f===2}) { vec2 wValues = vec2( getW(wR, wC, ${p}, d2), getW(wR, wC, ${p} + 1, d2) ); if (${m}) { vec2 xValues = vec2( getX(batch, xR, xC, ${p}), getX(batch, xR, xC, ${p} + 1) ); dotProd += dot(xValues, wValues); } else { vec2 xValues = vec2( getX(batch, ${p}, xR, xC), getX(batch, ${p} + 1, xR, xC) ); dotProd += dot(xValues, wValues); } } else if (${f===3}) { vec3 wValues = vec3( getW(wR, wC, ${p}, d2), getW(wR, wC, ${p} + 1, d2), getW(wR, wC, ${p} + 2, d2) ); if (${m}) { vec3 xValues = vec3( getX(batch, xR, xC, ${p}), getX(batch, xR, xC, ${p} + 1), getX(batch, xR, xC, ${p} + 2) ); dotProd += dot(xValues, wValues); } else { vec3 xValues = vec3( getX(batch, ${p}, xR, xC), getX(batch, ${p} + 1, xR, xC), getX(batch, ${p} + 2, xR, xC) ); dotProd += dot(xValues, wValues); } } } } float result = dotProd; ${_} ${b} setOutput(result); } `}},pB=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,r=e.padInfo.left,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.filterDepth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=` const ivec3 strides = ivec3(${a}, ${s}, ${i}); const ivec3 pads = ivec3(${t}, ${n}, ${r}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int d2 = coords.u; ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads; int xFCorner = xFRCCorner.x; int xRCorner = xFRCCorner.y; int xCCorner = xFRCCorner.z; // Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get // y(yF, yR, yC, d2). ? = to be determined. : = across all // values in that axis. float dotProd = 0.0; for (int wF = 0; wF < ${c}; wF++) { int xF = xFCorner + wF * ${o}; if (xF < 0 || xF >= ${e.inDepth}) { continue; } for (int wR = 0; wR < ${h}; wR++) { int xR = xRCorner + wR * ${l}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${d}; wC++) { int xC = xCCorner + wC * ${u}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } for (int d1 = 0; d1 < ${p}; d1 += 4) { vec4 xValues = vec4( getX(batch, xF, xR, xC, d1), getX(batch, xF, xR, xC, d1 + 1), getX(batch, xF, xR, xC, d1 + 2), getX(batch, xF, xR, xC, d1 + 3) ); vec4 wValues = vec4( getW(wF, wR, wC, d1, d2), getW(wF, wR, wC, d1 + 1, d2), getW(wF, wR, wC, d1 + 2, d2), getW(wF, wR, wC, d1 + 3, d2) ); dotProd += dot(xValues, wValues); } if (${f===1}) { dotProd += getX(batch, xF, xR, xC, ${p}) * getW(wF, wR, wC, ${p}, d2); } else if (${f===2}) { vec2 xValues = vec2( getX(batch, xF, xR, xC, ${p}), getX(batch, xF, xR, xC, ${p} + 1) ); vec2 wValues = vec2( getW(wF, wR, wC, ${p}, d2), getW(wF, wR, wC, ${p} + 1, d2) ); dotProd += dot(xValues, wValues); } else if (${f===3}) { vec3 xValues = vec3( getX(batch, xF, xR, xC, ${p}), getX(batch, xF, xR, xC, ${p} + 1), getX(batch, xF, xR, xC, ${p} + 2) ); vec3 wValues = vec3( getW(wF, wR, wC, ${p}, d2), getW(wF, wR, wC, ${p} + 1, d2), getW(wF, wR, wC, ${p} + 2, d2) ); dotProd += dot(xValues, wValues); } } } } setOutput(dotProd); } `}},fB=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:r,inChannels:a,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:u,dilationHeight:c,dataFormat:h}=n,{left:d,top:p}=o,f=a*r,m=gn(),A=h==="channelsLast",g=A?0:1,y=A?1:2,w="";for(let b=0;b<=1;b++)for(let _=0;_<=1;_++)w+=` blockIndex = rc.y + ${_}; pos = rc.x + ${b}; if(blockIndex < ${e[1]} && pos < ${e[0]}) { offsetY = int(blockIndex / (${l})) * ${i} - ${p}; d0 = offsetY + ${c} * (pos / ${f}); if(d0 < ${t[g]} && d0 >= 0) { offsetX = int(mod(float(blockIndex), ${l}.) * ${s}. - ${d}.); d1 = offsetX + ${u} * (int(mod(float(pos), ${f}.) / ${a}.)); if(d1 < ${t[y]} && d1 >= 0) { ch = int(mod(float(pos), ${a}.)); if (${A}) { innerDims = vec2(d1, ch); result[${b*2+_}] = getChannel( getA(d0, int(innerDims.x), int(innerDims.y)), innerDims); } else { innerDims = vec2(d0, d1); result[${b*2+_}] = getChannel( getA(ch, int(innerDims.x), int(innerDims.y)), innerDims); } } } } `;this.userCode=` void main() { ivec2 rc = getOutputCoords(); vec4 result = vec4(0); int blockIndex, pos, offsetY, d0, offsetX, d1, ch; vec2 innerDims; ${w} ${m.output} = result; } `}};function I_({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=r.texData.get(e.dataId),c=n.inChannels,h=l[0]*l[1]*l[2],d=n.outChannels,p=n.dataFormat==="channelsLast",f=!1,m=!1,A,g=[],y=(h===1||d===1)&&c>p_,w=l[2]%2!=0&&!!u.isPacked;if(y||!J().getBool("WEBGL_LAZILY_UNPACK")||!J().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!w){let b=p?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],_=we({inputs:{x:e},backend:r,attrs:{shape:[1,b,n.inChannels]}}),x=we({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}}),N=Sp({a:_,b:x,transposeA:f,transposeB:m,backend:r,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});A=we({inputs:{x:N},backend:r,attrs:{shape:n.outShape}}),g.push(_),g.push(x),g.push(N)}else{let b=p?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),_={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},x=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,v.assert(mc(u.shape,_.shape),()=>`packed reshape ${u.shape} to ${_.shape} isn't free`);let N=we({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}});g.push(N);let T=Sp({a:_,b:N,backend:r,transposeA:f,transposeB:m,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),E=r.texData.get(T.dataId);v.assert(E.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=x,E.shape=n.outShape,A=Wn({inputs:{x:T},backend:r}),A.shape=n.outShape,g.push(T)}for(let b of g)r.disposeIntermediateTensorInfo(b);return A}function N_({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:h,outHeight:d,dataFormat:p}=n,f=p==="channelsLast",m=l*u*c,A=d*h,g=[m,A],y=!0,w=!1,b=[],_=we({inputs:{x:e},backend:r,attrs:{shape:e.shape.slice(1)}}),x=we({inputs:{x:t},backend:r,attrs:{shape:[1,m,v.sizeFromShape(t.shape)/m]}});b.push(_),b.push(x);let N=new fB(g,_.shape,n),T=r.runWebGLProgram(N,[_],"float32"),E=we({inputs:{x:T},backend:r,attrs:{shape:[1,g[0],g[1]]}});b.push(T),b.push(E);let M=a!=null,z=s!=null,B=o==="leakyrelu",V=o?Ip(o,!0):null,U=new o_(E.shape,x.shape,[1,A,n.outChannels],y,w,M,V,z,B),j=[E,x];if(a&&j.push(a),z&&j.push(s),B){let Y=r.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));j.push(Y),b.push(Y)}let X=r.runWebGLProgram(U,j,"float32"),G=f?[1,d,h,n.outChannels]:[1,n.outChannels,d,h],ee=we({inputs:{x:X},backend:r,attrs:{shape:G}});b.push(X);for(let Y of b)r.disposeIntermediateTensorInfo(Y);return ee}function mB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:c}=r,h=R.convertConv2DDataFormat(l),d=R.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!1,h),p;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))p=I_({x:a,filter:s,convInfo:d,backend:n});else if(J().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)p=N_({x:a,filter:s,convInfo:d,backend:n});else{let m=new k_(d);p=n.runWebGLProgram(m,[a,s],"float32")}let f=we({inputs:{x:p},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(p),f}var AB={kernelName:ws,backendName:"webgl",kernelFunc:mB},gB=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; int wC = coords.y; int d1 = coords.z; int d2 = coords.w; // Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int b = 0; b < ${e.batchSize}; b++) { for (int yR = 0; yR < ${e.outHeight}; yR++) { int xR = wR + yR * ${t} - ${r}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int yC = 0; yC < ${e.outWidth}; yC++) { int xC = wC + yC * ${n} - ${a}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } if (${s}) { float dyValue = getDy(b, yR, yC, d2); float xValue = getX(b, xR, xC, d1); dotProd += (xValue * dyValue); } else { float dyValue = getDy(b, d2, yR, yC); float xValue = getX(b, d1, xR, xC); dotProd += (xValue * dyValue); } } } } setOutput(dotProd); } `}},yB=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,u=s?2:3,c=s?3:1;this.userCode=` const ivec2 pads = ivec2(${i}, ${o}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d1 = coords[${c}]; ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads; int dyRCorner = dyCorner.x; int dyCCorner = dyCorner.y; // Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${t}; wR++) { float dyR = float(dyRCorner + wR) / ${r}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); int wRPerm = ${t} - 1 - wR; for (int wC = 0; wC < ${n}; wC++) { float dyC = float(dyCCorner + wC) / ${a}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); int wCPerm = ${n} - 1 - wC; for (int d2 = 0; d2 < ${e.outChannels}; d2++) { if (${s}) { float xValue = getDy(batch, idyR, idyC, d2); float wValue = getW(wRPerm, wCPerm, d1, d2); dotProd += xValue * wValue; } else { float xValue = getDy(batch, d2, idyR, idyC); float wValue = getW(wRPerm, wCPerm, d1, d2); dotProd += xValue * wValue; } } } } setOutput(dotProd); } `}},xB=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=` void main() { ivec5 coords = getOutputCoords(); int wF = coords.x; int wR = coords.y; int wC = coords.z; int d1 = coords.w; int d2 = coords.u; float dotProd = 0.0; for (int b = 0; b < ${e.batchSize}; b++) { for (int yF = 0; yF < ${e.outDepth}; yF++) { int xF = wF + yF * ${t} - ${a}; if (xF < 0 || xF >= ${e.inDepth}) { continue; } for (int yR = 0; yR < ${e.outHeight}; yR++) { int xR = wR + yR * ${n} - ${s}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int yC = 0; yC < ${e.outWidth}; yC++) { int xC = wC + yC * ${r} - ${i}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float dyValue = getDy(b, yF, yR, yC, d2); float xValue = getX(b, xF, xR, xC, d1); dotProd += (xValue * dyValue); } } } } setOutput(dotProd); } `}},wB=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=r-1-e.padInfo.left;this.userCode=` const ivec3 pads = ivec3(${o}, ${l}, ${u}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int d1 = coords.u; ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads; int dyFCorner = dyCorner.x; int dyRCorner = dyCorner.y; int dyCCorner = dyCorner.z; float dotProd = 0.0; for (int wF = 0; wF < ${t}; wF++) { float dyF = float(dyFCorner + wF) / ${a}.0; if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) { continue; } int idyF = int(dyF); int wFPerm = ${t} - 1 - wF; for (int wR = 0; wR < ${n}; wR++) { float dyR = float(dyRCorner + wR) / ${s}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); int wRPerm = ${n} - 1 - wR; for (int wC = 0; wC < ${r}; wC++) { float dyC = float(dyCCorner + wC) / ${i}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); int wCPerm = ${r} - 1 - wC; for (int d2 = 0; d2 < ${e.outChannels}; d2++) { float xValue = getDy(batch, idyF, idyR, idyC, d2); float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2); dotProd += xValue * wValue; } } } } setOutput(dotProd); } `}};function bB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:c}=r,h=R.convertConv2DDataFormat(l),d=R.computeConv2DInfo(a.shape,c,i,1,o,u,!1,h),p=new gB(d);return n.runWebGLProgram(p,[a,s],"float32")}var _B={kernelName:Vh,backendName:"webgl",kernelFunc:bB};function vB(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:c}=r,h=R.convertConv2DDataFormat(u),d=R.computeConv2DInfo(i,s.shape,o,1,l,c,!1,h),p=new yB(d);return n.runWebGLProgram(p,[a,s],"float32")}var kB={kernelName:bs,backendName:"webgl",kernelFunc:vB};function IB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,u=R.computeConv3DInfo(a.shape,s.shape,i,l,o),c=new pB(u);return n.runWebGLProgram(c,[a,s],"float32")}var NB={kernelName:_u,backendName:"webgl",kernelFunc:IB};function SB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r,u=R.computeConv3DInfo(a.shape,l,i,1,o),c=new xB(u);return n.runWebGLProgram(c,[a,s],"float32")}var TB={kernelName:Uh,backendName:"webgl",kernelFunc:SB};function EB(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r,u=R.computeConv3DInfo(l,s.shape,o,1,i),c=new wB(u);return n.runWebGLProgram(c,[a,s],"float32")}var CB={kernelName:jh,backendName:"webgl",kernelFunc:EB},RB=i_+` return cos(x); `,FB=Qe({opSnippet:RB}),MB={kernelName:_s,backendName:"webgl",kernelFunc:FB},$B=` float e2x = exp(-x); return (e2x + 1.0 / e2x) / 2.0; `,DB=Qe({opSnippet:$B}),OB={kernelName:mo,backendName:"webgl",kernelFunc:DB},zB=class{constructor(e,t,n,r,a){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[c,h]=n;this.outputShape=[u,c,h,l];let d=r==="bilinear"?1:0,[p,f]=[`${i-1}.0`,`${o-1}.0`],[m,A,g]=c>1?[`${(i-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${p} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${p}`],[y,w,b]=h>1?[`${(o-1)/(h-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=` const float height_ratio = float(${m}); const float width_ratio = float(${y}); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int y = coords[1]; int x = coords[2]; int d = coords[3]; // get box vals float y1 = getBoxes(b,0); float x1 = getBoxes(b,1); float y2 = getBoxes(b,2); float x2 = getBoxes(b,3); // get image in batch index int bInd = round(getBoxInd(b)); if(bInd < 0 || bInd >= ${s}) { return; } float height_scale = ${A}; float width_scale = ${w}; float in_y = ${g}; if( in_y < 0.0 || in_y > ${p} ) { setOutput(float(${a})); return; } float in_x = ${b}; if( in_x < 0.0 || in_x > ${f} ) { setOutput(float(${a})); return; } vec2 sourceFracIndexCR = vec2(in_x,in_y); if(${d} == 1) { // Compute the four integer indices. ivec2 sourceFloorCR = ivec2(sourceFracIndexCR); ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR)); float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d); float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d); float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d); float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d); vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR); float top = topLeft + (topRight - topLeft) * fracCR.x; float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x; float newValue = top + (bottom - top) * fracCR.y; setOutput(newValue); } else { // Compute the coordinators of nearest neighbor point. ivec2 sourceNearestCR = ivec2(floor( sourceFracIndexCR + vec2(0.5,0.5))); float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d); setOutput(newValue); } } `}},PB=e=>{let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=r,c=new zB(a.shape,s.shape,o,l,u);return n.runWebGLProgram(c,[a,s,i],"float32")},LB={kernelName:Ao,backendName:"webgl",kernelFunc:PB},E_=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let r=e.length,a=t?"0.0":`getX(${S_(r,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=` uniform float index; void main() { ${dt(r)} coords = getOutputCoords(); int end = ${T_(r,"coords")}; float val = ${a}; int pow2 = int(pow(2.0, index)); if (${i}) { int idx = ${o}; ${T_(r,"coords")} = idx; val += getX(${S_(r,"coords")}); } setOutput(val); } `}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function S_(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function T_(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function WB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length,u=R.getAxesPermutation([s],l),c=a;u!=null&&(c=En({inputs:{x:a},backend:n,attrs:{perm:u}}));let h=R.getInnerMostAxes(1,l)[0];if(h!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${a.shape.length-1} but got axis=${s}`);let d=c.shape[h],p=Wn({inputs:{x:c},backend:n});for(let f=0;f<=Math.ceil(Math.log2(d))-1;f++){let m=new E_(c.shape,!1,o),A=m.getCustomSetupFunc(f),g=p;p=n.runWebGLProgram(m,[p],p.dtype,A),n.disposeIntermediateTensorInfo(g)}if(i){let f=new E_(c.shape,i,o),m=p;p=n.runWebGLProgram(f,[p],p.dtype),n.disposeIntermediateTensorInfo(m)}if(u!=null){let f=R.getUndoAxesPermutation(u),m=En({inputs:{x:p},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),m}return p}var BB={kernelName:vs,backendName:"webgl",kernelFunc:WB};function VB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.readSync(a.dataId),u=n.readSync(s.dataId),c=Hb(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}else if(a.shape.length===2){let l=n.bufferSync(a),u=n.bufferSync(s),c=gP(l,u,i,o);return n.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var UB={kernelName:Hh,backendName:"webgl",kernelFunc:VB},jB=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int h = ${this.getHeightCoordString()}; int w = ${this.getWidthCoordString()}; int d = ${this.getDepthCoordString()}; int in_h = h / ${t}; int offset_h = imod(h, ${t}); int in_w = w / ${t}; int offset_w = imod(w, ${t}); int offset_d = (offset_h * ${t} + offset_w) * ${this.getOutputDepthSize()}; int in_d = d + offset_d; float result = ${this.getInputSamplingString()}; setOutput(result); } `}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function HB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;v.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],c=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=u*s,p=c/(s*s),f=i==="NHWC"?[o,h,d,p]:[o,p,h,d],m=new jB(f,s,i);return n.runWebGLProgram(m,[a],a.dtype)}var GB={kernelName:go,backendName:"webgl",kernelFunc:HB},C_=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,u=e.strideHeight,c=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,f=e.filterWidth,m=e.outChannels/e.inChannels,A="",g="";n&&(r?A=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${n} }`:a?A=`float activation(float a) { float b = getLeakyreluAlphaAtOutCoords(); ${n} }`:A=` float activation(float x) { ${n} } `,g="result = activation(result);");let y=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=` ${A} const ivec2 strides = ivec2(${u}, ${c}); const ivec2 pads = ivec2(${o}, ${l}); void main() { ivec4 coords = getOutputCoords(); int batch = coords.x; ivec2 xRCCorner = coords.yz * strides - pads; int d2 = coords.w; int d1 = d2 / ${m}; int q = d2 - d1 * ${m}; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; // TO DO(dsmilkov): Flatten the two for loops and vec4 the operations. for (int wR = 0; wR < ${p}; wR++) { int xR = xRCorner + wR * ${h}; if (xR < 0 || xR >= ${s}) { continue; } for (int wC = 0; wC < ${f}; wC++) { int xC = xCCorner + wC * ${d}; if (xC < 0 || xC >= ${i}) { continue; } float xVal = getX(batch, xR, xC, d1); float wVal = getW(wR, wC, d1, q); dotProd += xVal * wVal; } } float result = dotProd; ${y} ${g} setOutput(result); } `}},R_=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,u=e.strideHeight,c=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,f=e.filterWidth,m=f,A="int xR; int xC; int xCOffset;";for(let b=0;b= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) { xTexelR${b}C${x} = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if(xCOffset + 1 >= ${i}) { xTexelR${b}C${x}.zw = vec2(0.); } } else { xTexelR${b}C${x} = vec4(0.); } xCOffset = xC + 1 - 2; if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) { vec4 previous = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if(xCOffset + 1 >= ${i}) { previous.zw = vec2(0.); } xR${b}C${x} = vec4(previous.zw, xTexelR${b}C${x}.xy); } else { xR${b}C${x} = vec4(0, 0, xTexelR${b}C${x}.xy); } `:A+=` if(xR >= 0 && xR < ${s} && xC >= 0 && xC < ${i}) { xTexelR${b}C${x} = getX(batch, xR, xC, d1); } else { xTexelR${b}C${x} = vec4(0.); } xR${b}C${x} = xTexelR${b}C${x}; `,x+1= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) { xTexelR${b}C${x+2} = getX(batch, xR, xCOffset, d1); } `,d>1&&(A+=` xCOffset -= 2; if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) { xTexelR${b}C${x} = getX(batch, xR, xCOffset, d1); } else { xTexelR${b}C${x} = vec4(0.); } `),A+=` xR${b}C${x+1} = vec4( xTexelR${b}C${x}.zw, xTexelR${b}C${x+2}.xy); `):A+=` xCOffset = xC + ${N}; if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) { xTexelR${b}C${x+2} = getX(batch, xR, xCOffset, d1); } xR${b}C${x+1} = xTexelR${b}C${x+2}; `}}else x= 0 && xR < ${s}) { `,l%2==1?(A+=` xCOffset = xC + 1 - ${c}; if(xCOffset >= 0 && xCOffset < ${i}) { xTexelR${b}C${x} = getX(batch, xR, xCOffset, d1); } else { xTexelR${b}C${x} = vec4(0.); } if(xC + 1 >= 0 && xC + 1 < ${i}) { xTexelR${b}C${x+2} = getX(batch, xR, xC + 1, d1); } else { xTexelR${b}C${x+2} = vec4(0.); } xR${b}C${x} = vec4( xTexelR${b}C${x}.zw, xTexelR${b}C${x+2}.zw); `,x+1= 0 && xCOffset < ${i}) { final = getX(batch, xR, xCOffset, d1); } xR${b}C${x+1} = vec4(xTexelR${b}C${x+2}.xy, final.xy); `)):(A+=` if(xC >= 0 && xC < ${i}) { xTexelR${b}C${x} = getX(batch, xR, xC, d1); } else { xTexelR${b}C${x} = vec4(0.); } xCOffset = xC + ${c}; if(xCOffset >= 0 && xCOffset < ${i}) { xTexelR${b}C${x+2} = getX(batch, xR, xCOffset, d1); } else { xTexelR${b}C${x+2} = vec4(0.); } xR${b}C${x} = vec4( xTexelR${b}C${x}.xy, xTexelR${b}C${x+2}.xy); `,x+1`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let h=R.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!0),d;return J().getBool("WEBGL_PACK_DEPTHWISECONV")&&h.strideWidth<=2&&h.outChannels/h.inChannels==1?d=new R_(h):d=new C_(h),n.runWebGLProgram(d,[a,s],"float32")}var XB={kernelName:ks,backendName:"webgl",kernelFunc:qB},KB=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; int wC = coords.y; int d1 = coords.z; int dm = coords.w; int d2 = d1 * ${s} + dm; float dotProd = 0.0; // TO DO: Vec4 over the batch size for (int b = 0; b < ${e.batchSize}; b++) { for (int yR = 0; yR < ${e.outHeight}; yR++) { int xR = wR + yR * ${t} - ${r}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int yC = 0; yC < ${e.outWidth}; yC++) { int xC = wC + yC * ${n} - ${a}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float dyValue = getDy(b, yR, yC, d2); float xValue = getX(b, xR, xC, d1); dotProd += (xValue * dyValue); } } } setOutput(dotProd); } `}},ZB=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=` const ivec2 pads = ivec2(${s}, ${i}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d1 = coords[3]; ivec2 dyCorner = coords.yz - pads; int dyRCorner = dyCorner.x; int dyCCorner = dyCorner.y; float dotProd = 0.0; for (int wR = 0; wR < ${t}; wR++) { float dyR = float(dyRCorner + wR) / ${r}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); int wRPerm = ${t} - 1 - wR; for (int wC = 0; wC < ${n}; wC++) { float dyC = float(dyCCorner + wC) / ${a}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); int wCPerm = ${n} - 1 - wC; // TO DO: Vec4 over the channelMul for (int dm = 0; dm < ${o}; dm++) { int d2 = d1 * ${o} + dm; float xValue = getDy(batch, idyR, idyC, d2); float wValue = getW(wRPerm, wCPerm, d1, dm); dotProd += xValue * wValue; } } } setOutput(dotProd); } `}};function YB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:c}=r,h=R.computeConv2DInfo(a.shape,c,i,o,l,u,!0),d=new KB(h);return n.runWebGLProgram(d,[a,s],"float32")}var JB={kernelName:Gh,backendName:"webgl",kernelFunc:YB};function QB(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:c}=r,h=R.computeConv2DInfo(c,s.shape,i,o,l,u,!0),d=new ZB(h);return n.runWebGLProgram(d,[a,s],"float32")}var eV={kernelName:qh,backendName:"webgl",kernelFunc:QB},tV=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=` void main() { ivec2 coords = getOutputCoords(); float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0; setOutput(val); } `}};function nV(e){let{inputs:t,backend:n}=e,{x:r}=t,a=[...r.shape,...r.shape],s=v.sizeFromShape(r.shape),i=we({inputs:{x:r},backend:n,attrs:{shape:[s]}}),o=new tV(s),l=n.runWebGLProgram(o,[i],i.dtype),u=we({inputs:{x:l},backend:n,attrs:{shape:a}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var rV={kernelName:Xh,backendName:"webgl",kernelFunc:nV},aV=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:r,strideHeight:a,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:c,left:h}=r;this.userCode=` const ivec2 strides = ivec2(${a}, ${s}); const ivec2 pads = ivec2(${c}, ${h}); const float neg_infinity = -3.4e38; void main() { ivec4 coords = getOutputCoords(); int batch = coords.x; int d1 = coords.w; ivec2 outTopLeftCorner = coords.yz * strides - pads; int hBeg = outTopLeftCorner.x; int wBeg = outTopLeftCorner.y; float curVal = neg_infinity; for (int h = 0; h < ${i}; h++) { int hIn = hBeg + h * ${l}; if (hIn >= 0 && hIn < ${t}) { for (int w = 0; w < ${o}; w++) { int wIn = wBeg + w * ${u}; if (wIn >= 0 && wIn < ${n}) { float xVal = getX(batch, hIn, wIn, d1); float wVal = getW(h, w, d1); float val = xVal + wVal; if (val > curVal) { curVal = val; } } } } } float result = curVal; setOutput(result); } `}};function sV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,u=R.computeDilation2DInfo(a.shape,s.shape,i,o,"NHWC",l),c,h=new aV(u);c=n.runWebGLProgram(h,[a,s],"float32");let d=we({inputs:{x:c},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(c),d}var iV={kernelName:vu,backendName:"webgl",kernelFunc:sV},oV="return (x >= 0.0) ? x : (exp(x) - 1.0);",lV=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0); result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0); result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; `,uV=Qe({opSnippet:oV,packedOpSnippet:lV}),cV={kernelName:yo,backendName:"webgl",kernelFunc:uV},hV="return (b >= 1.0) ? a : a * (b + 1.0);",dV=` vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.))); return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0)))); `,pV=e=>{let{inputs:t,backend:n}=e,{dy:r,y:a}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new wc(dV,r.shape,a.shape):new Wl(hV,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)},fV={kernelName:Yh,backendName:"webgl",kernelFunc:pV},mV=` return vec4(equal(a, b)); `,AV="return float(a == b);",gV=on({opSnippet:AV,packedOpSnippet:mV,dtype:"bool"}),yV={kernelName:wo,backendName:"webgl",kernelFunc:gV},xV=` // Error function is calculated approximately with elementary function. // See "Handbook of Mathematical Functions with Formulas, // Graphs, and Mathematical Tables", Abramowitz and Stegun. float p = ${R.ERF_P}; float a1 = ${R.ERF_A1}; float a2 = ${R.ERF_A2}; float a3 = ${R.ERF_A3}; float a4 = ${R.ERF_A4}; float a5 = ${R.ERF_A5}; float sign = sign(x); x = abs(x); float t = 1.0 / (1.0 + p * x); return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x)); `,wV=Qe({opSnippet:xV}),bV={kernelName:xo,backendName:"webgl",kernelFunc:wV},F_="return exp(x);",M_=Qe({opSnippet:F_,packedOpSnippet:F_,cpuKernelImpl:wP}),_V={kernelName:Ns,backendName:"webgl",kernelFunc:M_};function bA(e){let{inputs:t,attrs:n,backend:r}=e,{dim:a}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(v.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),we({inputs:{x:s},backend:r,attrs:{shape:o}})}var vV={kernelName:bo,backendName:"webgl",kernelFunc:bA},$_="return exp(x) - 1.0;",kV=Qe({opSnippet:$_,packedOpSnippet:$_,cpuKernelImpl:bP}),IV={kernelName:_o,backendName:"webgl",kernelFunc:kV},D_=class{constructor(e,t,n){this.variableNames=["real","imag"];let r=t[1];this.outputShape=t;let a=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${r}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=` const float exponentMultiplier = ${a}; float unaryOpComplex(float real, float expR, float imag, float expI) { ${i} } float mulMatDFT(int batch, int index) { float indexRatio = float(index) / float(${r}); float exponentMultiplierTimesIndexRatio = exponentMultiplier * indexRatio; float result = 0.0; for (int i = 0; i < ${r}; i++) { // x = (-2|2 * PI / N) * index * i; float x = exponentMultiplierTimesIndexRatio * float(i); float expR = cos(x); float expI = sin(x); float real = getReal(batch, i); float imag = getImag(batch, i); result += unaryOpComplex(real, expR, imag, expI) / ${s}; } return result; } void main() { ivec2 coords = getOutputCoords(); setOutput(mulMatDFT(coords[0], coords[1])); } `}};function O_(e,t,n){let r=n.texData.get(e.dataId),a=v.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=a/s,o=we({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,u=new D_("real",l,t),c=new D_("imag",l,t),h=[{dataId:r.complexTensorInfos.real.dataId,dtype:r.complexTensorInfos.real.dtype,shape:l},{dataId:r.complexTensorInfos.imag.dataId,dtype:r.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(u,h,"float32"),p=n.runWebGLProgram(c,h,"float32"),f=Xa({inputs:{real:d,imag:p},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p);let m=we({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(f),m}function NV(e){let{inputs:t,backend:n}=e,{input:r}=t;return O_(r,!1,n)}var SV={kernelName:Jh,backendName:"webgl",kernelFunc:NV},TV=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=` uniform float value; void main() { // Input can be obtained from uniform value. setOutput(value); } `}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function _A(e){let{backend:t,attrs:n}=e,{shape:r,value:a}=n,{dtype:s}=n;if(s=s||v.inferDtype(a),s==="string"){let i=v.getArrayFromDType(s,v.sizeFromShape(r));return i.fill(a),t.makeTensorInfo(r,s,i)}else{let i=new TV(r,a),o=i.getCustomSetupFunc(a);return t.runWebGLProgram(i,[],s,o)}}var EV={kernelName:ku,backendName:"webgl",kernelFunc:_A},CV=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int x = coords[2]; int coordX = ${t} - x; float outputValue; if(coordX >= 0 && coordX < ${t}) { outputValue = getImage(coords[0], coords[1], coordX, coords[3]); } else { outputValue = getImage(coords[0], coords[1], coords[2], coords[3]); } setOutput(outputValue); } `}},RV={kernelName:vo,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,r=t,a=new CV(n.shape);return r.runWebGLProgram(a,[n],n.dtype)}},z_="return floor(x);",FV=Qe({opSnippet:z_,packedOpSnippet:z_,cpuKernelImpl:_P}),MV={kernelName:Ss,backendName:"webgl",kernelFunc:FV},$V=` float s = sign(a) * sign(b); int ia = round(a); int ib = round(b); if (ib != 0) { // Windows (D3D) wants guaranteed non-zero int division at compile-time. return float(idiv(ia, ib, s)); } else { return NAN; } `,DV=` ivec4 ia = round(a); ivec4 ib = round(b); bvec4 cond = notEqual(ib, ivec4(0)); ivec4 result = ivec4(0); vec4 s = sign(a) * sign(b); // Windows (D3D) wants guaranteed non-zero int division at compile-time. if (cond[0]) { result[0] = idiv(ia[0], ib[0], s[0]); } if (cond[1]) { result[1] = idiv(ia[1], ib[1], s[1]); } if (cond[2]) { result[2] = idiv(ia[2], ib[2], s[2]); } if (cond[3]) { result[3] = idiv(ia[3], ib[3], s[3]); } return vec4(result); `,OV=on({opSnippet:$V,packedOpSnippet:DV,dtype:"int32"}),zV={kernelName:Ts,backendName:"webgl",kernelFunc:OV},PV=class{constructor(e){this.variableNames=["A"];let t=gn(),[n,r]=e;this.outputShape=e,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; int texC = coords[1]; int depth = coords[2]; vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${r}.0, ${n}.0); vec4 values = ${t.texture2D}(A, uv); float value; if (depth == 0) { value = values.r; } else if (depth == 1) { value = values.g; } else if (depth == 2) { value = values.b; } else if (depth == 3) { value = values.a; } setOutput(floor(value * 255.0 + 0.5)); } `}},LV=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=gn(),[n,r]=e;this.outputShape=e,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; int texC = coords[1]; int depth = coords[2]; vec4 result = vec4(0.); for(int row=0; row<=1; row++) { for(int col=0; col<=1; col++) { texC = coords[1] + row; depth = coords[2] + col; vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${r}.0, ${n}.0); vec4 values = ${t.texture2D}(A, uv); float value; if (depth == 0) { value = values.r; } else if (depth == 1) { value = values.g; } else if (depth == 2) { value = values.b; } else if (depth == 3) { value = values.a; } result[row * 2 + col] = floor(value * 255.0 + 0.5); } } ${t.output} = result; } `}},BV={kernelName:pd,backendName:"webgl",kernelFunc:WV},Vl;function WV(e){let{inputs:t,backend:n,attrs:r}=e,{pixels:a}=t,{numChannels:s}=r,i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,[l,u]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],c=[u,l],h=[u,l,s];(o||i)&&(Vl==null&&(Vl=document.createElement("canvas").getContext("2d")),Vl.canvas.width=l,Vl.canvas.height=u,Vl.drawImage(a,0,0,l,u),a=Vl.canvas);let d=n.makeTensorInfo(c,"int32");n.texData.get(d.dataId).usage=tr.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(d.dataId),a);let p=J().getBool("WEBGL_PACK")?new LV(h):new PV(h),f=n.runWebGLProgram(p,[d],"int32");return n.disposeData(d.dataId),f}function VV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=R.convertConv2DDataFormat(c),A=R.computeConv2DInfo(a.shape,s.shape,l,h,u,d,!1,m),g,y=[];if(A.filterHeight===1&&A.filterWidth===1&&A.dilationHeight===1&&A.dilationWidth===1&&A.strideHeight===1&&A.strideWidth===1&&(A.padInfo.type==="SAME"||A.padInfo.type==="VALID"))g=I_({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:f});else if(J().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)g=N_({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:f});else{let b=i!=null,_=o!=null,x=p==="leakyrelu",N=p?Ip(p,!1):null,T=new k_(A,b,N,_,x),E=[a,s];if(i&&E.push(i),o&&E.push(o),x){let M=n.makeTensorInfo([],"float32",v.createScalarValue(f,"float32"));E.push(M),y.push(M)}g=n.runWebGLProgram(T,E,"float32")}let w=we({inputs:{x:g},backend:n,attrs:{shape:A.outShape}});return y.push(g),y.forEach(b=>n.disposeIntermediateTensorInfo(b)),w}var UV={kernelName:oi,backendName:"webgl",kernelFunc:VV};function jV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:h,activation:d,leakyreluAlpha:p}=r,f=[],m=c;m==null&&(m=[1,1]),v.assert(R.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let A=R.computeConv2DInfo(a.shape,s.shape,l,m,u,h,!0),g=J().getBool("WEBGL_PACK_DEPTHWISECONV")&&A.strideWidth<=2&&A.outChannels/A.inChannels==1,y=d?Ip(d,g):null,w=[a,s],b=i!=null,_=o!=null,x=d==="leakyrelu";if(b&&w.push(i),_&&w.push(o),x){let E=n.makeTensorInfo([],"float32",v.createScalarValue(p,"float32"));w.push(E),f.push(E)}let N;g?N=new R_(A,b,y,_,x):N=new C_(A,b,y,_,x);let T=n.runWebGLProgram(N,w,"float32");return f.forEach(E=>n.disposeIntermediateTensorInfo(E)),T}var HV={kernelName:li,backendName:"webgl",kernelFunc:jV},GV=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let r=dt(t.length),a=dt(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=` ${r} strides = ${r}(${this.strides}); void main() { ${a} coords = getOutputCoords(); int flattenIndex = 0; for (int j = 0; j < ${this.sliceDim}; j++) { int index = round(getIndices(coords[0], j)); flattenIndex += index * ${s}; } setOutput(getX(flattenIndex, coords[1])); } `}};function qV(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=a.shape,i=s[s.length-1],[o,l,u,c]=R.prepareAndValidate(r,a),h=we({inputs:{x:a},backend:n,attrs:{shape:[l,i]}}),d=we({inputs:{x:r},backend:n,attrs:{shape:[v.sizeFromShape(r.shape)/u,u]}}),p=new GV(i,c,[l,u]),f=n.runWebGLProgram(p,[d,h],d.dtype),m=we({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(f),m}var XV={kernelName:Io,backendName:"webgl",kernelFunc:qV},ZV=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=dt(this.rank),r=KV(e,2);this.userCode=` void main() { ${n} resRC = getOutputCoords(); setOutput(getA(${r})); } `}};function KV(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let a=0;an.disposeIntermediateTensorInfo(_)),n.makeTensorInfo(u.outputShape,b.dtype,b.values)}let m=new ZV(d.shape,f),A=n.runWebGLProgram(m,[d,p],d.dtype);h.push(A);let g=we({inputs:{x:A},backend:n,attrs:{shape:u.outputShape}});return h.forEach(y=>n.disposeIntermediateTensorInfo(y)),g}var JV={kernelName:ko,backendName:"webgl",kernelFunc:YV},QV="return float(a > b);",eU=` return vec4(greaterThan(a, b)); `,tU=on({opSnippet:QV,packedOpSnippet:eU,cpuKernelImpl:kP,dtype:"bool"}),nU={kernelName:No,backendName:"webgl",kernelFunc:tU},rU="return float(a >= b);",aU=` return vec4(greaterThanEqual(a, b)); `,sU=on({opSnippet:rU,packedOpSnippet:aU,dtype:"bool"}),iU={kernelName:Cs,backendName:"webgl",kernelFunc:sU};function oU(e){let{inputs:t,backend:n}=e,{input:r}=t;return O_(r,!0,n)}var lU={kernelName:Qh,backendName:"webgl",kernelFunc:oU},uU="return float(!isnan(x) && !isinf(x));",cU=Qe({opSnippet:uU,dtype:"bool"}),hU={kernelName:So,backendName:"webgl",kernelFunc:cU},dU="return float(isinf(x));",pU=Qe({opSnippet:dU,dtype:"bool"}),fU={kernelName:To,backendName:"webgl",kernelFunc:pU},mU="return float(isnan(x));",AU=Qe({opSnippet:mU,dtype:"bool"}),gU={kernelName:Eo,backendName:"webgl",kernelFunc:AU},yU="return float(a < b);",xU=` return vec4(lessThan(a, b)); `,wU=on({opSnippet:yU,packedOpSnippet:xU,cpuKernelImpl:IP,dtype:"bool"}),bU={kernelName:Co,backendName:"webgl",kernelFunc:wU},_U="return float(a <= b);",vU=` return vec4(lessThanEqual(a, b)); `,kU=on({opSnippet:_U,packedOpSnippet:vU,dtype:"bool"}),IU={kernelName:Ro,backendName:"webgl",kernelFunc:kU};function NU(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=NP(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var SU={kernelName:td,backendName:"webgl",kernelFunc:NU},TU=`if (x < 0.0) return NAN; return log(x);`,EU=` vec4 result = log(x); vec4 isNaN = vec4(lessThan(x, vec4(0.0))); result.r = isNaN.r == 1.0 ? NAN : result.r; result.g = isNaN.g == 1.0 ? NAN : result.g; result.b = isNaN.b == 1.0 ? NAN : result.b; result.a = isNaN.a == 1.0 ? NAN : result.a; return result; `,CU=Qe({opSnippet:TU,packedOpSnippet:EU,cpuKernelImpl:SP}),RU={kernelName:Ms,backendName:"webgl",kernelFunc:CU},FU="return log(1.0 + x);",MU=Qe({opSnippet:FU}),$U={kernelName:Fo,backendName:"webgl",kernelFunc:MU},DU="return float(a >= 1.0 && b >= 1.0);",OU=` return vec4( vec4(greaterThanEqual(a, vec4(1.0))) * vec4(greaterThanEqual(b, vec4(1.0)))); `,zU=on({opSnippet:DU,packedOpSnippet:OU,dtype:"bool"}),PU={kernelName:Mo,backendName:"webgl",kernelFunc:zU},LU="return float(!(x >= 1.0));",WU=Qe({opSnippet:LU}),BU={kernelName:Iu,backendName:"webgl",kernelFunc:WU},VU="return float(a >= 1.0 || b >= 1.0);",UU=` return min( vec4(greaterThanEqual(a, vec4(1.0))) + vec4(greaterThanEqual(b, vec4(1.0))), vec4(1.0)); `,jU=on({opSnippet:VU,packedOpSnippet:UU,dtype:"bool"}),HU={kernelName:Nu,backendName:"webgl",kernelFunc:jU},GU=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int r = coords[1]; int c = coords[2]; int d = coords[3]; float x = getX(b, r, c, d); float sum = 0.0; for (int j = -${s}; j <= ${s}; j++) { int idx = d + j; if (idx >= 0 && idx <= ${i}) { float z = getX(b, r, c, idx); sum += z * z; } } float val = x * ${o}; setOutput(val); } `}},qU=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords.x; int r = coords.y; int c = coords.z; int d = coords.w; bool hasNextCol = d < ${this.outputShape[3]}; bool hasNextRow = c < ${this.outputShape[2]}; vec4 sum = vec4(0.); vec4 xFragAtOutputCoords = getX(b, r, c, d); vec4 xAtOutputCoords = vec4( getChannel(xFragAtOutputCoords, vec2(c, d)), hasNextCol ? getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0, hasNextRow ? getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0, (hasNextRow && hasNextCol) ? getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0 ); int firstChannel = d - ${s}; vec2 cache = vec2(0.); if(firstChannel >= 0){ vec4 firstChannelFrag = getX(b, r, c, firstChannel); cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel)); if(hasNextRow){ cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel)); } } ivec2 depth = ivec2(d, d + 1); for (int j = - ${s}; j <= ${s}; j++) { ivec2 idx = depth + j; bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0)); bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i})); bool depthInRange = aboveLowerBound.x && belowUpperBound.x; bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y; if(depthInRange || depthPlusOneInRange){ vec4 z = vec4(0.); vec4 xFragAtCurrentDepth; z.xz = cache.xy; if(depthPlusOneInRange && hasNextCol){ xFragAtCurrentDepth = idx.y != d ? getX(b, r, c, idx.y) : xFragAtOutputCoords; z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y)); if(hasNextRow){ z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y)); } } cache.xy = z.yw; sum += z * z; } } vec4 result = xAtOutputCoords * ${o}; setOutput(result); } `}},XU=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r,u=J().getBool("WEBGL_PACK_NORMALIZATION")?new qU(a.shape,s,i,o,l):new GU(a.shape,s,i,o,l);return n.runWebGLProgram(u,[a],a.dtype)},KU={kernelName:Su,backendName:"webgl",kernelFunc:XU},ZU=class{constructor(e,t,n,r,a){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=r,this.beta=a,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int r = coords[1]; int c = coords[2]; float result = 0.0; for (int d = 0; d < ${this.depth}; ++d) { int depthBegin = int(max(0.0, float(d - ${t}))); int depthEnd = int(min(float(${this.depth}), float(d + ${t} + 1))); const int MIN_DEPTH_BEGIN = 0; const int MAX_DEPTH_END = ${this.depth}; float norm = 0.0; for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) { if (k < depthBegin){ continue; } else if (k >= depthBegin && k < depthEnd) { norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k); } else { break; } } norm = float(${r}) * norm + float(${n}); for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){ if (k < depthBegin){ continue; } else if (k >= depthBegin && k < depthEnd){ float dyi = -2.0 * float(${r}) * float(${a}) * getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d) / norm; if (k == d) { dyi += pow(norm, -1.0 * ${a}); } if (k == coords[3]) { dyi *= getDy(b, r, c, d); result += dyi; } } else { break; } } } setOutput(result); } `}},YU=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:c}=r,h=new ZU(a.shape,o,l,u,c);return n.runWebGLProgram(h,[a,s,i],a.dtype)},JU={kernelName:nd,backendName:"webgl",kernelFunc:YU};function QU(e,t,n,r){let a=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/a,i=we({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=Ei(i,e.dtype,"max",r),l=we({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}function P_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,c=R.getAxesPermutation(u,o),h=c!=null,d=n.shouldExecuteOnCPU([a]),p=a;if(h){if(d){let y=n.texData.get(p.dataId).values,w=new Array(o);for(let x=0;x`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=R.computePool2DInfo(a.shape,s,i,u,o,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return Wn({inputs:{x:a},backend:n});let h=new bc(c,"max",!1);return n.runWebGLProgram(h,[a],a.dtype)}var ij={kernelName:Os,backendName:"webgl",kernelFunc:sj};function oj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=r,c=[1,1,1],h=R.computePool3DInfo(a.shape,s,i,c,o,u,l),d=new yA(h,"max",!1);return n.runWebGLProgram(d,[a],a.dtype)}var lj={kernelName:Tu,backendName:"webgl",kernelFunc:oj},uj=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,r=e.dilationHeight,a=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=a-1-e.padInfo.top,o=s-1-e.padInfo.left,l=a*s-1;this.userCode=` const ivec2 pads = ivec2(${i}, ${o}); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 dyRCCorner = coords.yz - pads; int dyRCorner = dyRCCorner.x; int dyCCorner = dyRCCorner.y; // Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${a}; wR += ${r}) { float dyR = float(dyRCorner + wR) / ${t}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${s}; wC++) { float dyC = float(dyCCorner + wC) / ${n}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(b, idyR, idyC, d); int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d)); // Get the current value, check it against the value from the // position matrix. int curPosValue = wR * ${s} + wC; float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0); dotProd += dyValue * mask; } } setOutput(dotProd); } `}},cj=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=o-1-e.padInfo.front,h=l-1-e.padInfo.top,d=u-1-e.padInfo.left,p=o*l*u-1;this.userCode=` const ivec3 pads = ivec3(${c}, ${h}, ${d}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads; int dyDCorner = dyCorner.x; int dyRCorner = dyCorner.y; int dyCCorner = dyCorner.z; // Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get // dx(xD, xR, xC, ch). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wD = 0; wD < ${o}; wD += ${a}) { float dyD = float(dyDCorner + wD) / ${t}.0; if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) { continue; } int idyD = int(dyD); for (int wR = 0; wR < ${l}; wR += ${s}) { float dyR = float(dyRCorner + wR) / ${n}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${u}; wC += ${i}) { float dyC = float(dyCCorner + wC) / ${r}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(batch, idyD, idyR, idyC, ch); int maxPosValue = ${p} - int(getMaxPos(batch, idyD, idyR, idyC, ch)); // Get the current value, check it against the value from the // position matrix. int curPosValue = wD * ${l} * ${u} + wR * ${u} + wC; float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0); dotProd += dyValue * mask; } } } setOutput(dotProd); } `}};function hj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:c}=r,h=[1,1,1],d=R.computePool3DInfo(i.shape,o,l,h,u,c),p=new yA(d,"max",!0),f=n.runWebGLProgram(p,[i],i.dtype),m=new cj(d),A=n.runWebGLProgram(m,[a,f],i.dtype);return n.disposeIntermediateTensorInfo(f),A}var dj={kernelName:ad,backendName:"webgl",kernelFunc:hj};function pj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;Fl([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:h}=r,d=R.computePool2DInfo(o.shape,l,u,1,c,h),p=!0,f=new bc(d,"max",p),m=n.runWebGLProgram(f,[o],o.dtype),A=new uj(d),g=n.runWebGLProgram(A,[a,m],o.dtype);return n.disposeIntermediateTensorInfo(m),g}var fj={kernelName:rd,backendName:"webgl",kernelFunc:pj};function mj(e,t,n,r){let a=new bc(n,"max",!1),s=r.runWebGLProgram(a,[e],"float32");a=new bc(n,"max",!0,!0,t);let i=r.runWebGLProgram(a,[e],"float32");return[s,i]}var Aj={kernelName:sd,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;v.assert(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let u=[1,1];v.assert(R.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let c=R.computePool2DInfo(r.shape,a,s,u,i),[h,d]=mj(r,o,c,l);return[h,d]}};function gj(e,t,n,r){let a=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/a,i=we({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=Ei(i,"float32","mean",r),l=we({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}var yj={kernelName:zs,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{keepDims:a,axis:s}=t,i=n,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,c=R.getAxesPermutation(u,o),h=c!=null,d=i.shouldExecuteOnCPU([r]),p=[],f=r;if(h){if(d){let w=i.texData.get(f.dataId).values,b=new Array(o);for(let N=0;Nu[0]+e[c]+u[1]);let r=e.length,a=dt(r),s=t.map(u=>u[0]).join(","),i=t.map((u,c)=>u[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r),l=n==="reflect"?0:1;if(r===1){this.userCode=` int start = ${s}; int end = ${i}; void main() { int outC = getOutputCoords(); if (outC < start) { outC = start * 2 - outC - ${l}; } else if(outC >= end) { outC = (end - 1) * 2 - outC + ${l}; } setOutput(getX(outC - start)); } `;return}this.userCode=` ${a} start = ${a}(${s}); ${a} end = ${a}(${i}); void main() { ${a} outC = getOutputCoords(); for (int i = 0; i < ${r}; i++) { if (outC[i] < start[i]) { outC[i] = start[i] * 2 - outC[i] - ${l}; } else if(outC[i] >= end[i]) { outC[i] = (end[i] - 1) * 2 - outC[i] + ${l}; } } ${a} coords = outC - start; setOutput(getX(${o})); } `}},Nj=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((p,f)=>p[0]+e[f]+p[1]);let r=e.length,a=dt(r),s=t.map(p=>p[0]).join(","),i=t.map((p,f)=>p[0]+e[f]).join(","),o=yn("rc",r),l=yn("source",r),u=`${o[r-1]} < ${this.outputShape[r-1]}`,c=r===1?"source":`vec2(${l.slice(-2).join()})`,h=n==="reflect"?0:1,d="";if(r===1){let p=` ${a} source = rc; if (source < start) { source = start * 2 - source - ${h}; } else if (source >= end) { source = (end - 1) * 2 - source + ${h}; } source -= start; `;d=` ${a} rc = outputLoc; ${p} result[0] = getChannel(getX(${l.join()}), ${c}); ${o[r-1]} += 1; if(${u}) { ${p} result[1] = getChannel(getX(${l.join()}), ${c}); } `}else{let p=` ${a} source = rc; ${a} lt = ${a}(lessThan(source, start)); ${a} gte = ${a}(greaterThanEqual(source, end)); ${a} orig = 1 - (lt + gte); source = orig * source + lt * (start * 2 - source - ${h}) + gte * ((end - 1) * 2 - source + ${h}); source -= start; `;d=` ${a} rc = outputLoc; ${p} result[0] = getChannel(getX(${l.join()}), ${c}); ${o[r-1]} += 1; if(${u}) { ${p} result[1] = getChannel(getX(${l.join()}), ${c}); } rc = outputLoc; ${o[r-2]} += 1; if(${o[r-2]} < ${this.outputShape[r-2]}) { ${p} result[2] = getChannel(getX(${l.join()}), ${c}); ${o[r-1]} += 1; if(${u}) { ${p} result[3] = getChannel(getX(${l.join()}), ${c}); } } `}this.userCode=` const ${a} start = ${a}(${s}); const ${a} end = ${a}(${i}); void main() { ${a} outputLoc = getOutputCoords(); vec4 result = vec4(0.); ${d} setOutput(result); } `}},Sj=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{paddings:a,mode:s}=n,i=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Nj(r.shape,a,s):new Ij(r.shape,a,s);return t.runWebGLProgram(i,[r],r.dtype)},Tj={kernelName:Eu,backendName:"webgl",kernelFunc:Sj},Ej=`if (b == 0.0) return NAN; return mod(a, b);`,Cj=` vec4 result = mod(a, b); vec4 isNaN = vec4(equal(b, vec4(0.0))); `+kp+` return result; `,Rj=on({opSnippet:Ej,packedOpSnippet:Cj}),Fj={kernelName:$o,backendName:"webgl",kernelFunc:Rj},Mj=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=` uniform float seed; void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; float r = random(seed); float cdf = 0.0; for (int i = 0; i < ${t-1}; i++) { cdf += getProbs(batch, i); if (r < cdf) { setOutput(float(i)); return; } } // If no other event happened, last event happened. setOutput(float(${t-1})); } `}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},$j=` if (a == b) { return 1.0; }; return a / b;`,Dj=` // vec4 one = vec4(equal(a, b)); // return one + (vec4(1.0) - one) * a / b; vec4 result = a / b; if(a.x == b.x) { result.x = 1.; } if(a.y == b.y) { result.y = 1.; } if(a.z == b.z) { result.z = 1.; } if(a.w == b.w) { result.w = 1.; } return result; `,L_=on({opSnippet:$j,packedOpSnippet:Dj,checkOutOfBounds:!0}),Oj={kernelName:Is,backendName:"webgl",kernelFunc:L_},W_="return a - b;",B_=on({opSnippet:W_,packedOpSnippet:W_,supportsComplex:!0,cpuKernelImpl:PP}),zj={kernelName:ri,backendName:"webgl",kernelFunc:B_};function V_(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=v.parseAxisParam([s],a.shape),o=P_({inputs:{x:a},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=R.expandShapeToKeepDim(o.shape,i),u=we({inputs:{x:o},backend:n,attrs:{shape:l}}),c=B_({inputs:{a,b:u},backend:n}),h=M_({inputs:{x:c},backend:n}),d=gA({inputs:{x:h},backend:n,attrs:{axis:i,keepDims:!1}}),p=we({inputs:{x:d},backend:n,attrs:{shape:l}}),f=L_({inputs:{a:h,b:p},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),f}var Pj={kernelName:ti,backendName:"webgl",kernelFunc:V_};function Lj(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r,l=o?a:V_({inputs:{logits:a},backend:n,attrs:{dim:a.shape.length-1}}),u=l.shape[0],c=l.shape[1],h=new Mj(u,c,s),d=h.getCustomSetupFunc(i),p=n.runWebGLProgram(h,[l],"int32",d);return o||n.disposeIntermediateTensorInfo(l),p}var Wj={kernelName:id,backendName:"webgl",kernelFunc:Lj},U_="return -x;";function Bj(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])){let s=n.texData.get(r.dataId),[i,o]=FP(s.values,r.shape,r.dtype);return n.makeTensorInfo(o,r.dtype,i)}let a;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new Pl(r.shape,U_):a=new qa(r.shape,U_),n.runWebGLProgram(a,[r],r.dtype)}var Vj={kernelName:Do,backendName:"webgl",kernelFunc:Bj},Uj=Hr.nonMaxSuppressionV3Impl;function jj(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r,u=n.readSync(a.dataId),c=n.readSync(s.dataId),{selectedIndices:h}=Uj(u,c,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var Hj={kernelName:zo,backendName:"webgl",kernelFunc:jj},Gj=Hr.nonMaxSuppressionV4Impl;function qj(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=r,c=n.readSync(a.dataId),h=n.readSync(s.dataId),{selectedIndices:d,validOutputs:p}=Gj(c,h,i,o,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var Xj={kernelName:Po,backendName:"webgl",kernelFunc:qj},Kj=Hr.nonMaxSuppressionV5Impl;function Zj(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=r,c=n.readSync(a.dataId),h=n.readSync(s.dataId),d=i,p=o,f=l,m=u,{selectedIndices:A,selectedScores:g}=Kj(c,h,d,p,f,m);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([g.length],"float32",new Float32Array(g))]}var Yj={kernelName:Lo,backendName:"webgl",kernelFunc:Zj},Jj=class{constructor(e,t,n,r){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=` void main() { ivec2 coords = getOutputCoords(); int index = round(getIndices(coords.x)); setOutput(mix(float(${r}), float(${n}), float(index == coords.y))); } `}},Qj=e=>{let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=v.sizeFromShape(a.shape),u=new Jj(l,s,i,o),c=we({inputs:{x:a},backend:n,attrs:{shape:[l]}}),h=n.runWebGLProgram(u,[c],a.dtype);n.disposeIntermediateTensorInfo(c);let d=[...a.shape,s],p=we({inputs:{x:h},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(h),p},eH={kernelName:Bs,backendName:"webgl",kernelFunc:Qj};function Rp(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="complex64"){let a=vc({inputs:{input:r},backend:n}),s=Rp({inputs:{x:a},backend:n}),i=Cp({inputs:{input:r},backend:n}),o=Rp({inputs:{x:i},backend:n}),l=Xa({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return _A({attrs:{shape:r.shape,dtype:r.dtype,value:r.dtype==="string"?"":0},backend:n})}var tH={kernelName:rl,backendName:"webgl",kernelFunc:Rp};function j_(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(r.dtype==="complex64"){let a=vc({inputs:{input:r},backend:n}),s=j_({inputs:{x:a},backend:n}),i=Cp({inputs:{input:r},backend:n}),o=Rp({inputs:{x:i},backend:n}),l=Xa({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return _A({attrs:{shape:r.shape,dtype:r.dtype,value:1},backend:n})}var nH={kernelName:Wo,backendName:"webgl",kernelFunc:j_};function rH(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return bA({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(c=>{let h=bA({inputs:{input:c},backend:n,attrs:{dim:a}});return o.push(h),h}),u=v_({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var aH={kernelName:Bo,backendName:"webgl",kernelFunc:rH},sH=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let r=e.length,a=dt(r),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r);if(r===1){this.userCode=` int start = ${s}; int end = ${i}; uniform float value; void main() { int outC = getOutputCoords(); if (outC < start || outC >= end) { setOutput(value); } else { setOutput(getX(outC - start)); } } `;return}this.userCode=` ${a} start = ${a}(${s}); ${a} end = ${a}(${i}); uniform float value; void main() { ${a} outC = getOutputCoords(); if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) { setOutput(value); } else { ${a} coords = outC - start; setOutput(getX(${o})); } } `}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},iH=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let r=e.length,a=dt(r),s=t.map(f=>f[0]).join(","),i=t.map((f,m)=>f[0]+e[m]).join(","),o=yn("rc",r),l=yn("source",r),u=`${o[r-1]} < ${this.outputShape[r-1]}`,c=r===1?"source":`vec2(${l.slice(-2).join()})`,h=[`${a} rc = outputLoc;`,`${o[r-1]} += 1; if(${u}) { `,r===1?"":`} rc = outputLoc; ${o[r-2]} += 1; if(${o[r-2]} < ${this.outputShape[r-2]}) {`,r===1?"":` ${o[r-1]} += 1; if(${u}) {`],d=r===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",p="";for(let f=0,m=r===1?2:4;f{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},H_=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r,o=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new iH(a.shape,s,i):new sH(a.shape,s,i),l=o.getCustomSetupFunc(i);return n.runWebGLProgram(o,[a],a.dtype,l)},oH={kernelName:Vs,backendName:"webgl",kernelFunc:H_},lH=` if(a < 0.0 && floor(b) < b){ return NAN; } if (b == 0.0) { return 1.0; } return (round(mod(b, 2.0)) != 1) ? pow(abs(a), b) : sign(a) * pow(abs(a), b); `,uH=` // isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise. vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1))); vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1); vec4 result = multiplier * pow(abs(a), b); // Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS bvec4 isExpZero = equal(b, vec4(0.0)); result.r = isExpZero.r ? 1.0 : result.r; result.g = isExpZero.g ? 1.0 : result.g; result.b = isExpZero.b ? 1.0 : result.b; result.a = isExpZero.a ? 1.0 : result.a; vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b)); `+kp+` return result; `,cH=on({opSnippet:lH,packedOpSnippet:uH}),hH={kernelName:Us,backendName:"webgl",kernelFunc:cH};function dH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=[],u=v.parseAxisParam(s,a.shape),c=u,h=R.getAxesPermutation(c,o),d=a;h!=null&&(d=En({inputs:{x:a},backend:n,attrs:{perm:h}}),c=R.getInnerMostAxes(c.length,o),l.push(d)),R.assertAxesAreInnerMostDims("prod",c,o);let p;if(n.shouldExecuteOnCPU([d])){let f=n.texData.get(d.dataId).values,{outVals:m,outShape:A,outDtype:g}=MP(d.shape,d.dtype,f,c);p=n.makeTensorInfo(A,g,m)}else{let[f,m]=R.computeOutAndReduceShapes(d.shape,c),A=v.sizeFromShape(m),g=we({inputs:{x:d},backend:n,attrs:{shape:[-1,A]}}),y=yd(a.dtype),w=Ei(g,y,"prod",n);p=we({inputs:{x:w},backend:n,attrs:{shape:f}}),l.push(g),l.push(w)}if(i){l.push(p);let f=R.expandShapeToKeepDim(p.shape,u);p=we({inputs:{x:p},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),p}var pH={kernelName:Vo,backendName:"webgl",kernelFunc:dH},G_=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=$P(r,a,s,i);return t.makeTensorInfo([o.length],i,o)},fH={kernelName:Cu,backendName:"webgl",kernelFunc:G_},mH="return 1.0 / x;",AH=Qe({opSnippet:mH}),gH={kernelName:Uo,backendName:"webgl",kernelFunc:AH},yH=Ir+` return (x < 0.0) ? 0.0 : x; `,xH=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,wH=Qe({opSnippet:yH,packedOpSnippet:xH}),bH={kernelName:Hs,backendName:"webgl",kernelFunc:wH},_H=Ir+` return (x < 0.0) ? 0.0 : min(6.0, x); `,vH=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,kH=Qe({opSnippet:_H,packedOpSnippet:vH}),IH={kernelName:qs,backendName:"webgl",kernelFunc:kH},NH=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[r&&t>1?i-1:i,r&&n>1?o-1:o],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${u[0]/c[0]}, ${u[1]/c[1]}); const vec2 inputShapeRC = vec2(${i}.0, ${o}.0); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 yRC = coords.yz; // Fractional source index. vec2 sourceFracIndexRC = ${h}; // Compute the four integer indices. ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0))); ivec2 sourceCeilRC = ivec2( min(inputShapeRC - 1.0, ceil(sourceFracIndexRC))); float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d); float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d); float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d); float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d); vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC); float top = topLeft + (topRight - topLeft) * fracRC.y; float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y; float newValue = top + (bottom - top) * fracRC.x; setOutput(newValue); } `}},SH=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[r&&t>1?i-1:i,r&&n>1?o-1:o],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec3 effectiveInputOverOutputRatioRC = vec3( ${u[0]/c[0]}, ${u[1]/c[1]}, ${u[1]/c[1]}); const vec3 inputShapeRC = vec3(${i}.0, ${o}.0, ${o}.0); float getAValue(int b, int r, int c, int d) { return getChannel(getA(b, r, c, d), vec2(c, d)); } void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; // Calculate values for next column in yRC.z. ivec3 yRC = coords.yzz + ivec3(0, 0, 1); // Fractional source index. vec3 sourceFracIndexRC = ${h}; // Compute the four integer indices. ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0))); ivec3 sourceCeilRC = ivec3( min(inputShapeRC - 1.0, ceil(sourceFracIndexRC))); // Should we calculate next column and row elements in 2x2 packed cell. bool hasNextCol = d < ${l-1}; bool hasNextRow = coords.z < ${n-1}; // In parallel, construct four corners for all four components in // packed 2x2 cell. vec4 topLeft = vec4( getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d), hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0); vec4 bottomLeft = vec4( getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d), hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0); vec4 topRight = vec4( getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d), hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0); vec4 bottomRight = vec4( getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d), hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0); vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC); vec4 top = mix(topLeft, topRight, fracRC.yyzz); vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz); vec4 newValue = mix(top, bottom, fracRC.x); setOutput(newValue); } `}};function TH(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,u]=o,c=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new SH(a.shape,l,u,s,i):new NH(a.shape,l,u,s,i);return n.runWebGLProgram(c,[a],"float32")}var EH={kernelName:Gs,backendName:"webgl",kernelFunc:TH},CH=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],c=o[1]/l[1],h=1/u,d=1/c,p=Math.ceil(h)*2+2,f=Math.ceil(d)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; int r = coords[1]; int c = coords[2]; float accumulator = 0.0; const float heightScale = float(${u}); const float widthScale = float(${c}); const float invHeightScale = float(${h}); const float invWidthScale = float(${d}); const int winHeight = int(${p}); const int winWidth = int(${f}); // Compute bounds for where in dy we will look float startRLerp = floor(float(r) * invHeightScale); int startDyR = int(startRLerp - float(winHeight / 2)); float startCLerp = floor(float(c) * invWidthScale); int startDyC = int(startCLerp - float(winWidth / 2)); // Loop over dy for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) { int dyR = dyROffset + startDyR; // Guard against the window exceeding the bounds of dy if (dyR < 0 || dyR >= ${s}) { continue; } for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) { int dyC = dyCOffset + startDyC; // Guard against the window exceeding the bounds of dy if (dyC < 0 || dyC >= ${i}) { continue; } float dxR = float(dyR) * heightScale; int topDxRIndex = int(floor(dxR)); int bottomDxRIndex = int(min(ceil(dxR), ${r-1}.0)); float dxRLerp = dxR - float(topDxRIndex); float inverseDxRLerp = 1.0 - dxRLerp; float dxC = float(dyC) * widthScale; int leftDxCIndex = int(floor(dxC)); int rightDxCIndex = int(min(ceil(dxC), ${a-1}.0)); float dxCLerp = dxC - float(leftDxCIndex); float inverseDxCLerp = 1.0 - dxCLerp; if (r == topDxRIndex && c == leftDxCIndex) { // topLeft accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp; } if (r == topDxRIndex && c == rightDxCIndex) { // topRight accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp; } if (r == bottomDxRIndex && c == leftDxCIndex) { // bottomLeft accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp; } if (r == bottomDxRIndex && c == rightDxCIndex) { // bottomRight accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp; } } } // End loop over dy setOutput(accumulator); } `}};function RH(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new CH(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var FH={kernelName:ud,backendName:"webgl",kernelFunc:RH},MH=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[r&&t>1?i-1:i,r&&n>1?o-1:o],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],h=r?"0.5":"0.0",d;a?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${u[0]/c[0]}, ${u[1]/c[1]}); const vec2 inputShapeRC = vec2(${i}.0, ${o}.0); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 yRC = coords.yz; // Fractional source index. vec2 sourceFracIndexRC = ${d}; // Compute the coordinators of nearest neighbor point. ivec2 sourceNearestRC = ivec2( min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${h}))); float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d); setOutput(newValue); } `}};function $H(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,u]=o,c=new MH(a.shape,l,u,s,i);return n.runWebGLProgram(c,[a],a.dtype)}var DH={kernelName:Ru,backendName:"webgl",kernelFunc:$H},OH=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],c=o[1]/l[1],h=1/u,d=1/c,p=Math.ceil(h)*2+2,f=Math.ceil(d)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; int r = coords[1]; int c = coords[2]; float accumulator = 0.0; const float heightScale = float(${u}); const float widthScale = float(${c}); const float invHeightScale = float(${h}); const float invWidthScale = float(${d}); const int winHeight = int(${p}); const int winWidth = int(${f}); // Compute bounds for where in dy we will look float startRLerp = floor(float(r) * invHeightScale); int startDyR = int(floor(startRLerp - float(winHeight / 2))); float startCLerp = floor(float(c) * invWidthScale); int startDyC = int(floor(startCLerp - float(winWidth / 2))); // Loop over dy for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) { int dyR = dyROffset + startDyR; // Guard against the window exceeding the bounds of dy if (dyR < 0 || dyR >= ${s}) { continue; } for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) { int dyC = dyCOffset + startDyC; // Guard against the window exceeding the bounds of dy if (dyC < 0 || dyC >= ${i}) { continue; } float sourceFracRow = float(${o[0]}) * (float(dyR) / float(${l[0]})); float sourceFracCol = float(${o[1]}) * (float(dyC) / float(${l[1]})); int sourceNearestRow = int(min( float(int(${r}) - 1), ${n} ? float(round(sourceFracRow)) : float(floor(sourceFracRow)))); int sourceNearestCol = int(min( float(int(${a}) - 1), ${n} ? float(round(sourceFracCol)) : float(floor(sourceFracCol)))); if (r == sourceNearestRow && c == sourceNearestCol) { accumulator += getDy(b, dyR, dyC, d); } } } // End loop over dy setOutput(accumulator); } `}};function zH(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new OH(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var PH={kernelName:ld,backendName:"webgl",kernelFunc:zH},LH=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=` void main() { int coord = getOutputCoords(); setOutput(getX(${e[0]} - coord - 1)); } `;return}let r=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,a=e.map((i,o)=>r(o)).join(","),s=dt(n);this.userCode=` void main() { ${s} coords = getOutputCoords(); setOutput(getX(${a})); } `}},WH=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let r=yn("rc",n),a=`${r[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${r[n-2]} + 1 < ${this.outputShape[n-2]}`,i=dt(n);n===1?this.userCode=` void main(){ int rc = getOutputCoords(); vec4 result = vec4(0.); result.r = getChannel(getX(${e[0]} - rc - 1), ${e[0]} - rc - 1); if(${a}){ result.g = getChannel(getX(${e[0]} - (rc + 1) - 1), ${e[0]} - (rc + 1) - 1); } setOutput(result); } `:this.userCode=` void main() { ${i} rc = getOutputCoords(); vec4 result = vec4(0.); result.r = ${o(r.slice())}; if(${a}){ result.g = ${l(r.slice())}; } if(${s}) { result.b = ${u(r.slice())}; if(${a}) { result.a = ${c(r.slice())}; } } setOutput(result); } `;function o(p){return h(p)}function l(p){return p[n-1]="("+p[n-1]+" + 1)",h(p)}function u(p){return p[n-2]="("+p[n-2]+" + 1)",h(p)}function c(p){return p[n-1]="("+p[n-1]+" + 1)",p[n-2]="("+p[n-2]+" + 1)",h(p)}function h(p){let f=e.map((g,y)=>d(y,p)),m=f.join(","),A=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${A}))`}function d(p,f){return t.indexOf(p)!==-1&&e[p]!==1?`${e[p]} - ${f[p]} - 1`:`${f[p]}`}}};function BH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=a.shape.length,o=v.parseAxisParam(s,a.shape);if(i===0)return Wn({inputs:{x:a},backend:n});let l=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new WH(a.shape,o):new LH(a.shape,o);return n.runWebGLProgram(l,[a],a.dtype)}var VH={kernelName:Xs,backendName:"webgl",kernelFunc:BH},UH=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let n=e[1],r=e[2];this.outputShape=e;let a="";typeof t=="number"?a=`float outputValue = ${t.toFixed(2)};`:a=` vec3 fill = vec3(${t.join(",")}); float outputValue = fill[coords[3]];`,this.userCode=` uniform vec4 params; void main() { ivec4 coords = getOutputCoords(); int x = coords[2]; int y = coords[1]; float coordXFloat = (float(x) - params[0]) * params[3] - (float(y) - params[1]) * params[2]; float coordYFloat = (float(x) - params[0]) * params[2] + (float(y) - params[1]) * params[3]; int coordX = int(round(coordXFloat + params[0])); int coordY = int(round(coordYFloat + params[1])); ${a} if(coordX >= 0 && coordX < ${r} && coordY >= 0 && coordY < ${n}) { outputValue = getImage(coords[0], coordY, coordX, coords[3]); } setOutput(outputValue); } `}getCustomSetupFunc(e,t,n,r){return(a,s)=>{this.paramsLoc==null&&(this.paramsLoc=a.getUniformLocationNoThrow(s,"params")),a.gl.uniform4f(this.paramsLoc,e,t,n,r)}}},jH={kernelName:al,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=new UH(r.shape,s),[u,c]=R.getImageCenter(i,r.shape[1],r.shape[2]),h=l.getCustomSetupFunc(u,c,Math.sin(a),Math.cos(a));return o.runWebGLProgram(l,[r],r.dtype,h)}},HH=` // OpenGL ES does not support round function. // The algorithm is based on banker's rounding. float base = floor(x); if ((x - base) < 0.5) { return floor(x); } else if ((x - base) > 0.5) { return ceil(x); } else { if (mod(base, 2.0) == 0.0) { return base; } else { return base + 1.0; } } `,GH=Qe({opSnippet:HH}),qH={kernelName:Ks,backendName:"webgl",kernelFunc:GH},XH="return inversesqrt(x);",KH=Qe({opSnippet:XH,cpuKernelImpl:DP}),ZH={kernelName:Zs,backendName:"webgl",kernelFunc:KH},q_=class{constructor(e,t,n,r,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=dt(a.length),l=dt(s.length),u="";n===1?u="i":n===2&&(u="i, j");let c=`getIndices(${u})`,h="";r===1?h="i":r===2&&(h="i, coords[1]");let d=`getUpdates(${h})`,p=t>1?"strides[j]":"strides";this.userCode=` ${o} strides = ${o}(${a}); void main() { ${l} coords = getOutputCoords(); float sum = 0.0; bool found = false; for (int i = 0; i < ${e}; i++) { int flattenedIndex = 0; for (int j = 0; j < ${t}; j++) { int index = round(${c}); flattenedIndex += index * ${p}; } if (flattenedIndex == coords[0]) { sum += ${d}; found = true; } } setOutput(mix(getDefaultValue(), sum, float(found))); } `}};function YH(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a,updates:s}=t,{shape:i}=r,{sliceRank:o,numUpdates:l,sliceSize:u,strides:c,outputSize:h}=R.calculateShapes(s,a,i),d=[h/u,u];if(h===0)return n.makeTensorInfo(i,a.dtype);let p=we({inputs:{x:a},backend:n,attrs:{shape:[l,o]}}),f=we({inputs:{x:s},backend:n,attrs:{shape:[l,u]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),A=new q_(l,o,p.shape.length,f.shape.length,c,d),g=n.runWebGLProgram(A,[f,p,m],f.dtype),y=we({inputs:{x:g},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(m),y}var JH={kernelName:Ho,backendName:"webgl",kernelFunc:YH},QH=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let r,a;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)a="resRC",r="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u= 1.0) { setOutput(getA(${a})); } else { setOutput(getB(${a})); } } `}};function eG(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=new QH(r.shape.length,a.shape,a.shape.length);return n.runWebGLProgram(i,[r,a,s],lr(a.dtype,s.dtype))}var tG={kernelName:Go,backendName:"webgl",kernelFunc:eG},nG=` // Stable and Attracting Fixed Point (0, 1) for Normalized Weights. // see: https://arxiv.org/abs/1706.02515 float scaleAlpha = ${R.SELU_SCALEALPHA}; float scale = ${R.SELU_SCALE}; return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0); `,rG=Qe({opSnippet:nG}),aG={kernelName:qo,backendName:"webgl",kernelFunc:rG},sG="return 1.0 / (1.0 + exp(-1.0 * x));",iG=Qe({opSnippet:sG}),oG={kernelName:Js,backendName:"webgl",kernelFunc:iG},lG=` if (isnan(x)) { return 0.0; } return sign(x); `,uG=Qe({opSnippet:lG}),cG={kernelName:Zo,backendName:"webgl",kernelFunc:uG},hG=i_+` return sin(x); `,dG=Qe({opSnippet:hG}),pG={kernelName:Ys,backendName:"webgl",kernelFunc:dG},fG=` float e2x = exp(x); return (e2x - 1.0 / e2x) / 2.0; `,mG=Qe({opSnippet:fG}),AG={kernelName:Ko,backendName:"webgl",kernelFunc:mG},gG=` float epsilon = 1.1920928955078125e-7; float threshold = log(epsilon) + 2.0; bool too_large = x > -threshold; bool too_small = x < threshold; float result; float exp_x = exp(x); if (too_large){ result = x; } else if (too_small){ result = exp_x; } else{ result = log(exp_x + 1.0); } return result; `,yG=Qe({opSnippet:gG}),xG={kernelName:Yo,backendName:"webgl",kernelFunc:yG},wG=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;v.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((g,y)=>g*y),l=[[0,0]];l.push(...i);for(let g=1+s.length;gn.disposeIntermediateTensorInfo(g)),A},bG={kernelName:Fu,backendName:"webgl",kernelFunc:wG};function _G(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:u,strides:c,outputSize:h}=R.calculateShapes(s,a,o),d=!1,p=new q_(u,l,a.shape.length,s.shape.length,c,[h,1],d),f=n.runWebGLProgram(p,[s,a,i],s.dtype),m=we({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(f),m}var vG={kernelName:cd,backendName:"webgl",kernelFunc:_G};function kG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=v.parseAxisParam(i,a.shape)[0],l=R.prepareSplitSize(a,s,o),u=a.shape.length,c=new Array(u).fill(0),h=a.shape.slice();return l.map(d=>{let p=[...h];p[o]=d;let f=_c({inputs:{x:a},backend:n,attrs:{begin:c,size:p}});return c[o]+=d,f})}var IG={kernelName:Jo,backendName:"webgl",kernelFunc:kG},NG="return sqrt(x);",SG=Qe({opSnippet:NG}),TG={kernelName:Qs,backendName:"webgl",kernelFunc:SG},EG="return x * x;",CG=Qe({opSnippet:EG}),RG={kernelName:Mu,backendName:"webgl",kernelFunc:CG},X_="return (a - b) * (a - b);",FG=on({opSnippet:X_,packedOpSnippet:X_}),MG={kernelName:ni,backendName:"webgl",kernelFunc:FG};function $G({inputs:e,attrs:t,backend:n}){let{x:r}=e,a=Ir+` return x > 0.0 ? 1.0 : float(${t.alpha}); `,s=new qa(r.shape,a);return n.runWebGLProgram(s,[r],r.dtype)}var DG={kernelName:$a,backendName:"webgl",kernelFunc:$G},OG=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let r=n.length,a=dt(n.length),s=dt(n.length),i="";if(r===1)i="coords * strides + begin";else{let o=0;i=n.map((l,u)=>(o++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=` ${a} begin = ${a}(${e}); ${a} strides = ${a}(${t}); void main() { ${s} coords = getOutputCoords(); setOutput(getX(${i})); } `}};function zG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:h,shrinkAxisMask:d}=r,{nonStrided:p,$begin:f,$strides:m,size:A,newShape:g,outShape:y}=pn.sliceInfo(a.shape,s,i,o,l,u,c,h,d),w=we({inputs:{x:a},backend:n,attrs:{shape:g}}),b;if(p){let x=_c({inputs:{x:w},backend:n,attrs:{begin:f,size:A}});b=we({inputs:{x},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(x)}else if(y.some(x=>x===0))b=n.makeTensorInfo(y,a.dtype,[]);else if(n.shouldExecuteOnCPU([w])){let x=n.texData.get(w.dataId).values,N=Ue(w.shape,w.dtype,x),T=zP(y,N,m,f);b=n.makeTensorInfo(y,w.dtype,T.values)}else{let x=new OG(f,m,y);b=n.runWebGLProgram(x,[w],w.dtype)}let _=we({inputs:{x:b},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(w),n.disposeIntermediateTensorInfo(b),_}var PG={kernelName:Qo,backendName:"webgl",kernelFunc:zG},LG="return tan(x);",WG=Qe({opSnippet:LG}),BG={kernelName:el,backendName:"webgl",kernelFunc:WG},VG=` float e2x = exp(-2.0 * abs(x)); return sign(x) * (1.0 - e2x) / (1.0 + e2x); `,UG=Qe({opSnippet:VG}),jG={kernelName:ai,backendName:"webgl",kernelFunc:UG},GG=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],r=[];for(let a=0;av.decodeString(c)),l=Ue(a.shape,a.dtype,o),u=LP(l,s);return n.makeTensorInfo(u.shape,u.dtype,u.values)}let i=new GG(a.shape,s);return n.runWebGLProgram(i,[a],a.dtype)}var qG={kernelName:Ma,backendName:"webgl",kernelFunc:K_};function XG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r,o=n.readSync(a.dataId),[l,u]=WP(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var KG={kernelName:tl,backendName:"webgl",kernelFunc:XG},ZG=class{constructor(e,t,n,r,a,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(r){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=` float mapCoord(float outCoord, float len) { float inCoord = outCoord; if(${o} == 2) { if (inCoord < 0.0) { if (len <= 1.0) { inCoord = 0.0; } else { float sz2 = 2.0 * len; if (inCoord < sz2) { inCoord = sz2 * float(int(float(-inCoord / sz2))) + inCoord; } inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0; } } else if (inCoord > len - 1.0) { if (len <= 1.0) { inCoord = 0.0; } else { float sz2 = 2.0 * len; inCoord -= sz2 * float(int(float(inCoord / sz2))); if (inCoord >= len) { inCoord = sz2 - inCoord - 1.0; } } } return clamp(inCoord, 0.0, len - 1.0); } else if (${o} == 3) { if (inCoord < 0.0) { if (len <= 1.0) { inCoord = 0.0; } else { float sz = len - 1.0; inCoord += len * (float(int(float(-inCoord / sz))) + 1.0); } } else if (inCoord > len - 1.0) { if (len <= 1.0) { inCoord = 0.0; } else { float sz = len - 1.0; inCoord -= len * float(int(float(inCoord / sz))); } } return clamp(inCoord, 0.0, len - 1.0); } else if (${o} == 4) { return clamp(outCoord, 0.0, len - 1.0); } else { return outCoord; } } float readWithFillValue(int batch, int coordY, int coordX, int channel) { float outputValue; if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) { outputValue = getImage(batch, coordY, coordX, channel); } else { outputValue = float(${a}); } return outputValue; } void main() { ivec4 coords = getOutputCoords(); float outputValue; int batch = coords[0]; int x = coords[2]; int y = coords[1]; int channel = coords[3]; float xf = float(x); float yf = float(y); float a1 = getTransforms(batch, 0); float a2 = getTransforms(batch, 1); float a3 = getTransforms(batch, 2); float b1 = getTransforms(batch, 3); float b2 = getTransforms(batch, 4); float b3 = getTransforms(batch, 5); float c1 = getTransforms(batch, 6); float c2 = getTransforms(batch, 7); float projection = c1 * xf + c2 * yf + 1.0; if (projection == 0.0) { outputValue = float(${a}); } else { float inX = (a1 * xf + a2 * yf + a3) / projection; float inY = (b1 * xf + b2 * yf + b3) / projection; float mapX = mapCoord(inX, float(${t})); float mapY = mapCoord(inY, float(${e})); if (${i} == 1) { int coordY = int(round(mapY)); int coordX = int(round(mapX)); outputValue = readWithFillValue(batch, coordY, coordX, channel); } else { float yFloor = floor(mapY); float xFloor = floor(mapX); float yCeil = yFloor + 1.0; float xCeil = xFloor + 1.0; float valueYFloor = (xCeil - mapX) * readWithFillValue(batch, int(yFloor), int(xFloor), channel) + (mapX - xFloor) * readWithFillValue(batch, int(yFloor), int(xCeil), channel); float valueYCeil = (xCeil - mapX) * readWithFillValue(batch, int(yCeil), int(xFloor), channel) + (mapX - xFloor) * readWithFillValue(batch, int(yCeil), int(xCeil), channel); outputValue = (yCeil - mapY) * valueYFloor + (mapY - yFloor) * valueYCeil; } } setOutput(outputValue); } `}};function YG(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=r,[c,h,d,p]=a.shape,[f,m]=u!=null?u:[h,d],A=[c,f,m,p],g=new ZG(h,d,i,o,l,A);return n.runWebGLProgram(g,[a,s],"float32")}var JG={kernelName:hd,backendName:"webgl",kernelFunc:YG};function QG(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;Fl(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=r.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=BP(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([u.length],"int32",u)]}var eq={kernelName:dd,backendName:"webgl",kernelFunc:QG};function tq(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],u=new Array(o-1),c=0;for(let m=0;mn.disposeIntermediateTensorInfo(m)),f}var nq={kernelName:nl,backendName:"webgl",kernelFunc:tq},rq=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,r=e.batchSize,a=e.inSize,s=e.numSegments,i=s*Math.ceil(a/n);this.outputShape=[r,i];let o="0.0",l="sumValue",u=Math.floor(n/4)*4,c=n%4,h=` sumValue += dot(values, segFilter); `,d="";a%n>0&&(d=` if (inIdx < 0 || inIdx >= ${a}) { return initializationValue; } `);let p="";a%n>0&&(p=` if (inIdx < 0 || inIdx >= ${a}) { return -1.0; } `),this.userCode=` const float initializationValue = ${o}; float getValue(int batch, int inIdx) { ${d} return getX(batch, inIdx); } float getSegmentIdAtIndex(int inIdx) { ${p} return getSegmentIds(inIdx); } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = int(floor(float(outIdx) / float( ${s})) * float(${n})); int currentSeg = int(mod(float(outIdx), float(${s}))); float sumValue = 0.0; for (int i = 0; i < ${u}; i += 4) { int inIdx = inOffset + i; vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), getValue(batch, inIdx + 3) ); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0 ); ${h} } int inIdx = inOffset + ${u}; if (${c===1}) { vec4 values = vec4( getValue(batch, inIdx), initializationValue, initializationValue, initializationValue ); int inIdxSeg = int(getSegmentIdAtIndex(inIdx)); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, 0, 0, 0 ); ${h} } else if (${c===2}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), initializationValue, initializationValue ); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0, 0, 0 ); ${h} } else if (${c===3}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), initializationValue ); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0, 0 ); ${h} } setOutput(${l}); } `}};function aq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r,o=a.shape.length,l=[],u=0,c=R.getAxesPermutation([u],o),h=a;c!=null&&(h=En({inputs:{x:a},backend:n,attrs:{perm:c}}),l.push(h),u=R.getInnerMostAxes(1,o)[0]);let d=R.segment_util.computeOutShape(h.shape,u,i),p=v.sizeFromShape([h.shape[u]]),f=we({inputs:{x:h},backend:n,attrs:{shape:[-1,p]}});l.push(f);let m=yd(a.dtype),A=(b,_,x,N,T)=>{let E=b.shape[0],M=b.shape[1],z=R.segment_util.segOpComputeOptimalWindowSize(M,T),B={windowSize:z,inSize:M,batchSize:E,numSegments:T},V=new rq(B,_),U=n.compileAndRun(V,[b,x],N);if(l.push(U),U.shape[1]===T)return U;let j=G_({backend:n,attrs:{start:0,stop:T,step:1,dtype:"float32"}}),X=K_({inputs:{x:j},backend:n,attrs:{reps:[M/z]}});return l.push(j),l.push(X),A(U,_,X,N,T)},g=A(f,"unsortedSegmentSum",s,m,i),y=we({inputs:{x:g},backend:n,attrs:{shape:d}}),w=y;if(c!=null){l.push(y);let b=R.getUndoAxesPermutation(c);w=En({inputs:{x:w},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),w}var sq={kernelName:$u,backendName:"webgl",kernelFunc:aq},iq=[KU,JU,zL,LL,VL,HL,qL,ZL,JL,eW,aW,iW,uW,dW,xW,mW,_W,NW,kW,CW,FW,$W,PW,HW,qW,QW,tB,sB,lB,yL,dB,_B,kB,AB,TB,CB,NB,MB,OB,LB,BB,UB,GB,JB,eV,XB,rV,iV,cV,fV,yV,bV,_V,vV,IV,SV,EV,RV,MV,zV,BV,UV,HV,XV,JV,nU,iU,gL,lU,hB,hU,fU,gU,wL,bU,IU,SU,$U,RU,PU,BU,HU,ej,lj,ij,dj,fj,Aj,aj,yj,wj,kj,Tj,Fj,Wj,IL,Vj,Hj,Xj,Yj,KW,eH,nH,aH,oH,hH,_L,pH,fH,ZW,Oj,gH,IH,bH,SL,EH,FH,DH,PH,VH,jH,qH,ZH,JH,tG,aG,oG,cG,pG,AG,UW,Pj,xG,bG,vG,IG,TG,RG,MG,DG,PG,zj,$L,BG,jG,qG,KG,JG,DL,eq,nq,sq,tH];for(let e of iq)ui(e);var Bn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Bn||(Bn={}));var kc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu"})(kc||(kc={}));var Z_;function oq(e){Z_=e.wasm.cwrap(ii,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function lq(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:h}=r,d=n.dataIdMap.get(a.dataId).id,p=n.dataIdMap.get(s.dataId).id,f=0;if(i!=null){let T=n.dataIdMap.get(i.dataId);if(T.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${T.shape.length}.`);f=T.id}let m=o==null?0:n.dataIdMap.get(o.dataId).id,A=kc[c];if(A==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let g=l?a.shape[2]:a.shape[1],y=u?s.shape[1]:s.shape[2],w=a.shape[0],b=n.makeOutput([w,g,y],a.dtype),_=n.dataIdMap.get(b.dataId).id,x=new Uint8Array(new Int32Array(a.shape).buffer),N=new Uint8Array(new Int32Array(s.shape).buffer);return Z_(d,x,a.shape.length,p,N,s.shape.length,l,u,A,f,m,h||0,_),b}var uq={kernelName:ii,backendName:"wasm",setupFunc:oq,kernelFunc:lq};function Cn(e){let t;function n(a){t=a.wasm.cwrap(e,null,["number","number"])}function r(a){let{backend:s,inputs:{x:i}}=a,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),u=s.dataIdMap.get(l.dataId).id;return v.sizeFromShape(l.shape)===0||t(o,u),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:r}}var cq=Cn(so);function xn(e,t,n){let r;function a(i){r=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:c}=l,h=o.dataIdMap.get(u.dataId).id,d=o.dataIdMap.get(c.dataId).id,p=n!=null?n:u.dtype,f=R.assertAndGetBroadcastShape(u.shape,c.shape),m=o.makeOutput(f,p);if(v.sizeFromShape(f)===0)return m;let A=new Uint8Array(new Int32Array(u.shape).buffer),g=new Uint8Array(new Int32Array(c.shape).buffer),y=o.dataIdMap.get(m.dataId).id,w=()=>r(h,A,u.shape.length,d,g,c.shape.length,Bn[u.dtype],y);if(t&&u.dtype==="float32")return w(),m;let b=R.getBroadcastDims(u.shape,f),_=R.getBroadcastDims(c.shape,f),x=b.every((T,E)=>T===E),N=_.every((T,E)=>T===E);if(x&&N)return w(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:s}}var hq=!0,dq=xn(Ra,hq),Y_;function pq(e){Y_=e.wasm.cwrap(fs,null,["array","number","number","number"])}function fq(e){let{inputs:t,backend:n}=e,r=n.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(r.shape)===0)return r;let a=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(a).buffer),i=n.dataIdMap.get(r.dataId).id;return Y_(s,a.length,Bn[r.dtype],i),r}var mq={kernelName:fs,backendName:"wasm",setupFunc:pq,kernelFunc:fq};function Fp(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype),a=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(r).set(a),r}var Aq={kernelName:Rs,backendName:"wasm",kernelFunc:Fp},J_;function gq(e){J_=e.wasm.cwrap(si,null,["number","array","number","number","number","array","number"])}function Mp(e){let{inputs:t,backend:n,attrs:r}=e,[a,s]=xq(t.x.shape,r.perm),i=!0;for(let f=0;f=a&&(s===-1||r[s]>r[i])&&(s=i);r[s]=a}return[n,r]}var wq={kernelName:si,backendName:"wasm",kernelFunc:Mp,setupFunc:gq};function Ul(e,t,n){let r=e.shape,a=e.shape.length,s=v.parseAxisParam(t,r),i=s,o=R.getAxesPermutation(i,a),l=null,u=!1;if(o!=null){let c=new Array(a);for(let d=0;d`new shape: ${i}, old shape: ${r.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(r.dataId),{dataId:r.dataId,shape:i,dtype:r.dtype}}var Sq={kernelName:jo,backendName:"wasm",kernelFunc:Nr},t3;function Tq(e){t3=e.wasm.cwrap(gs,null,["number","array","number","number","array","number","number","number","number"])}function Eq(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=a.shape.length,u=s.shape.length,c=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[u-2]:s.shape[u-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),A=v.sizeFromShape(f),g=v.sizeFromShape(m),y=A===g||A===1||g===1;v.assert(l>=2&&u>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let w=(A>g?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);v.assert(c===h,()=>`Error in matMul: inner shapes (${c}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let b=i?[A,c,d]:[A,d,c],_=o?[g,p,h]:[g,h,p],x=Nr({inputs:{x:a},backend:n,attrs:{shape:b}}),N=Nr({inputs:{x:s},backend:n,attrs:{shape:_}}),T=n.dataIdMap.get(x.dataId).id,E=n.dataIdMap.get(N.dataId).id,M=i?x.shape[2]:x.shape[1],z=o?N.shape[1]:N.shape[2],B=Math.max(A,g),V=n.makeOutput([B,M,z],x.dtype),U=n.dataIdMap.get(V.dataId).id,j=new Uint8Array(new Int32Array(x.shape).buffer),X=new Uint8Array(new Int32Array(N.shape).buffer);return t3(T,j,x.shape.length,E,X,N.shape.length,i,o,U),n.disposeData(x.dataId),n.disposeData(N.dataId),V.shape=w,V}var Cq={kernelName:gs,backendName:"wasm",setupFunc:Tq,kernelFunc:Eq};function $p(e){let{inputs:{x:t},attrs:{dtype:n},backend:r}=e,a=r.makeOutput(t.shape,n),s=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(a).set(s),a}var Rq={kernelName:ys,backendName:"wasm",kernelFunc:$p},Fq=Cn(xs),n3;function Mq(e){n3=e.wasm.cwrap(Fa,null,["number","number","number","number"])}function $q(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o=n.dataIdMap.get(a.dataId).id,l=n.makeOutput(a.shape,a.dtype),u=n.dataIdMap.get(l.dataId).id;return n3(o,s,i,u),l}var Dq={kernelName:Fa,backendName:"wasm",setupFunc:Mq,kernelFunc:$q};function r3(e){let{inputs:t,backend:n}=e,r=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],a=R.computeOutShape(t.map(p=>p.shape),r),s=t.filter(p=>v.sizeFromShape(p.shape)>0);if(s.length===1)return Fp({inputs:{x:s[0]},backend:n});let i=n.makeOutput(a,t[0].dtype);if(v.sizeFromShape(a)===0)return i;let o=s.map(p=>p.shape);if(R.assertParamsConsistent(o,r),s[0].dtype==="string"){let p=s.map(w=>{let b=v.sizeFromShape(w.shape.slice(r));return Nr({inputs:{x:w},backend:n,attrs:{shape:[-1,b]}})}),f=p.map(w=>({vals:n.readSync(w.dataId),shape:w.shape}));a=R.computeOutShape(p.map(w=>w.shape),1);let m=p[0].shape[0]===1,A=jm(f,a,t[0].dtype,m),g=R.computeOutShape(s.map(w=>w.shape),r);i.shape=g;let y=n.dataIdMap.get(i.dataId);return y.stringBytes=R.fromStringArrayToUint8(A),p.forEach(w=>n.disposeData(w.dataId)),i}let l=v.sizeFromShape(s[0].shape.slice(0,r)),u=0,c=s.map(p=>{let f=v.sizeFromShape(p.shape.slice(r));return u+=f,f}),h=s.map(p=>n.typedArrayFromHeap(p)),d=n.typedArrayFromHeap(i);for(let p=0;p`cumsum does not support ${a.dtype} tensors in the WASM backend`);let u=R.getAxesPermutation([s],l),c=a;u!==null&&(c=Mp({inputs:{x:a},attrs:{perm:u},backend:n}));let h=R.getInnerMostAxes(1,l)[0];R.assertAxesAreInnerMostDims("cumsum",[h],l);let d=n.makeOutput(c.shape,c.dtype),p=c.shape[h],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(d.dataId).id;o3(f,i?1:0,o?1:0,p,m,Bn[a.dtype]);let A=d;if(u!==null){let g=R.getUndoAxesPermutation(u);A=Mp({inputs:{x:d},attrs:{perm:g},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return A}var Kq={kernelName:vs,backendName:"wasm",setupFunc:qq,kernelFunc:Xq},l3;function Zq(e){l3=e.wasm.cwrap(go,null,["number","number","number","array","number","array","array","number","number"])}function Yq(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{blockSize:s,dataFormat:i}=r;v.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],c=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=u*s,p=c/(s*s),f=i==="NHWC"?[o,h,d,p]:[o,p,h,d],m=t.makeOutput(f,"float32"),A=t.dataIdMap.get(a.dataId).id,g=new Uint8Array(new Int32Array(v.computeStrides(a.shape)).buffer),y=new Uint8Array(new Int32Array(f).buffer),w=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer),b=t.dataIdMap.get(m.dataId).id;return l3(A,s,i==="NHWC"?1:0,g,a.shape.length-1,y,w,f.length,b),m}var Jq={kernelName:go,backendName:"wasm",setupFunc:Zq,kernelFunc:Yq},u3;function Qq(e){u3=e.wasm.cwrap(ks,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function eX(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:h}=n,d=u==null?[1,1]:u,p=R.computeConv2DInfo(a.shape,s.shape,l,d,c,h,!0),f=p.filterHeight,m=p.filterWidth,A=p.padInfo.top,g=p.padInfo.right,y=p.padInfo.bottom,w=p.padInfo.left,b=p.dilationHeight,_=p.dilationWidth,x=p.strideHeight,N=p.strideWidth,T=p.inChannels,E=p.outChannels,M=p.padInfo.type==="SAME"?1:0;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let z=r.makeOutput(p.outShape,"float32"),B=r.dataIdMap.get(z.dataId).id;return u3(i,a.shape[0],a.shape[1],a.shape[2],o,f,m,A,g,y,w,M,b,_,x,N,T,E,B),z}var tX={kernelName:ks,backendName:"wasm",setupFunc:Qq,kernelFunc:eX},nX=!1,rX=xn(wo,nX,"bool"),aX=Cn(Ns);function kA(e){let{inputs:t,attrs:n,backend:r}=e,{input:a}=t,{dim:s}=n,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Nr({inputs:{x:a},backend:r,attrs:{shape:o}})}var sX={kernelName:bo,backendName:"wasm",kernelFunc:kA};function iX(e){let{attrs:{shape:t,value:n,dtype:r},backend:a}=e,s=a.makeOutput(t,r);return a.typedArrayFromHeap(s).fill(n),s}var oX={kernelName:ku,backendName:"wasm",kernelFunc:iX},c3;function lX(e){c3=e.wasm.cwrap(vo,null,["number","number","number","number","number","number"])}function uX(e){let{inputs:t,backend:n}=e,{image:r}=t,a=n.makeOutput(r.shape,r.dtype),s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,[o,l,u,c]=r.shape;return c3(s,o,l,u,c,i),a}var cX={kernelName:vo,backendName:"wasm",kernelFunc:uX,setupFunc:lX},hX=Cn(Ss),dX=!1,pX=xn(Ts,dX),h3;function fX(e){h3=e.wasm.cwrap(Es,null,["number","number","number","number","number","number","number"])}function mX(e){let{backend:t,inputs:n,attrs:r}=e,{varianceEpsilon:a}=r,{x:s,mean:i,variance:o,offset:l,scale:u}=n,c=t.dataIdMap.get(s.dataId).id,h=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=l!=null?t.dataIdMap.get(l.dataId).id:0,f=u!=null?t.dataIdMap.get(u.dataId).id:0,m=t.makeOutput(s.shape,s.dtype);if(v.sizeFromShape(s.shape)===0)return m;let A=t.dataIdMap.get(m.dataId).id;return h3(c,h,d,p,f,a,A),m}var AX={kernelName:Es,backendName:"wasm",setupFunc:fX,kernelFunc:mX},d3;function gX(e){d3=e.wasm.cwrap(oi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function yX(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:c,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=n,m=R.computeConv2DInfo(a.shape,s.shape,l,c,u,d),A=kc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let g=r.dataIdMap.get(a.dataId).id,y=r.dataIdMap.get(s.dataId).id,w=m.outChannels,b=0;if(i!=null){let Q=r.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==w)throw new Error(`FusedConv2D bias shape (${Q.shape}) does not match the number of output channels (${w})`);b=Q.id}let _=m.filterHeight,x=m.filterWidth,N=m.padInfo.top,T=m.padInfo.right,E=m.padInfo.bottom,M=m.padInfo.left,z=m.dilationHeight,B=m.dilationWidth,V=m.strideHeight,U=m.strideWidth,j=m.inChannels,X=m.padInfo.type==="SAME"?1:0,G=m.batchSize,ee=m.inHeight,Y=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let se=r.makeOutput(m.outShape,"float32"),ne=r.dataIdMap.get(se.dataId).id,le=o==null?0:r.dataIdMap.get(o.dataId).id;return d3(g,G,ee,Y,y,_,x,b,N,T,E,M,X,z,B,V,U,j,w,A,le,f||0,ne),se}var xX={kernelName:oi,backendName:"wasm",setupFunc:gX,kernelFunc:yX},p3;function wX(e){p3=e.wasm.cwrap(li,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function bX(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:c,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=n,m=R.computeConv2DInfo(a.shape,s.shape,l,c,u,d,!0),A=kc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let g=r.dataIdMap.get(a.dataId).id,y=r.dataIdMap.get(s.dataId).id,w=m.outChannels,b=0;if(i!=null){let Q=r.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==w)throw new Error(`FusedDepthwiseConv2D bias shape (${Q.shape}) does not match the number of output channels (${w})`);b=Q.id}let _=m.filterHeight,x=m.filterWidth,N=m.padInfo.top,T=m.padInfo.right,E=m.padInfo.bottom,M=m.padInfo.left,z=m.dilationHeight,B=m.dilationWidth,V=m.strideHeight,U=m.strideWidth,j=m.inChannels,X=m.padInfo.type==="SAME"?1:0,G=m.batchSize,ee=m.inHeight,Y=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let se=r.makeOutput(m.outShape,"float32"),ne=r.dataIdMap.get(se.dataId).id,le=o==null?0:r.dataIdMap.get(o.dataId).id;return p3(g,G,ee,Y,y,_,x,b,N,T,E,M,X,z,B,V,U,j,w,A,le,f||0,ne),se}var _X={kernelName:li,backendName:"wasm",setupFunc:wX,kernelFunc:bX},f3;function vX(e){f3=e.wasm.cwrap(Io,null,["number","number","number","number","number","number","array","number"])}function kX(e){let{backend:t,inputs:n}=e,{params:r,indices:a}=n,[s,i,o,l]=Uf.prepareAndValidate(r,a),u=t.makeOutput(s,r.dtype);if(i===0)return u;let c=a.shape,h=c[c.length-1],d=t.dataIdMap.get(r.dataId).id,p=t.dataIdMap.get(a.dataId).id,f=new Uint8Array(new Int32Array(l).buffer),m=t.dataIdMap.get(u.dataId).id;return f3(d,Bn[r.dtype],p,i,h,o,f,m),u}var IX={kernelName:Io,backendName:"wasm",setupFunc:vX,kernelFunc:kX},m3;function NX(e){m3=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function SX(e){let{backend:t,inputs:n,attrs:r}=e,{x:a,indices:s}=n,{axis:i,batchDims:o}=r,l=v.parseAxisParam(i,a.shape)[0],u=R.segment_util.collectGatherOpShapeInfo(a,s,l,o),c=Nr({inputs:{x:a},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:t}),h=v.sizeFromShape(s.shape),d=Nr({inputs:{x:s},attrs:{shape:[u.batchSize,h/u.batchSize]},backend:t}),p=[u.batchSize,u.outerSize,h/u.batchSize,u.sliceSize],f=t.makeOutput(p,a.dtype);if(v.sizeFromShape(a.shape)===0)return f;let m=c.shape.length-1,A=t.dataIdMap.get(c.dataId).id,g=t.dataIdMap.get(d.dataId).id,y=t.dataIdMap.get(f.dataId).id,w=new Uint8Array(new Int32Array(v.computeStrides(c.shape)).buffer),b=new Uint8Array(new Int32Array(v.computeStrides(p)).buffer);return m3(A,Bn[a.dtype],w,m,g,u.batchSize,b,y),t.disposeData(c.dataId),t.disposeData(d.dataId),f.shape=u.outputShape,f}var TX={kernelName:ko,backendName:"wasm",setupFunc:NX,kernelFunc:SX},EX=!1,CX=xn(No,EX,"bool"),RX=!1,FX=xn(Cs,RX,"bool"),A3;function MX(e){A3=e.wasm.cwrap(Fs,null,["number","number","number"])}function $X(e){let{inputs:{x:t},attrs:{alpha:n},backend:r}=e,a=r.dataIdMap.get(t.dataId).id,s=r.makeOutput(t.shape,t.dtype);if(v.sizeFromShape(t.shape)!==0){let i=r.dataIdMap.get(s.dataId).id;A3(a,n,i)}return s}var DX={kernelName:Fs,backendName:"wasm",setupFunc:MX,kernelFunc:$X},OX=!1,zX=xn(Co,OX,"bool"),PX=!1,LX=xn(Ro,PX,"bool"),WX=Cn(Ms),BX=!1,VX=xn(Mo,BX,"bool"),g3;function UX(e){g3=e.wasm.cwrap($s,null,["number, number, number"])}function jX(e){let{backend:t,inputs:n,attrs:r}=e,{reductionIndices:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:c,originalAxes:h,inputWasTransposed:d}=Ul(i,a,t);if(d){let y=t.dataIdMap.get(u.dataId).id;l=u,o=y}let p=l.shape.length;R.assertAxesAreInnerMostDims("max",c,p);let[f,m]=R.computeOutAndReduceShapes(l.shape,c),A=v.sizeFromShape(m),g=t.makeOutput(f,i.dtype);if(v.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(g.dataId).id;g3(o,A,y)}if(d&&t.disposeData(u.dataId),s){let y=R.expandShapeToKeepDim(g.shape,h);g.shape=y}return g}var HX={kernelName:$s,backendName:"wasm",setupFunc:UX,kernelFunc:jX},GX=!1,qX=xn(Ds,GX),y3;function XX(e){y3=e.wasm.cwrap(Os,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function KX(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,c=R.computePool2DInfo(a.shape,i,o,1,l,u),h=c.filterHeight,d=c.filterWidth,p=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,A=c.padInfo.left,g=c.dilationHeight,y=c.dilationWidth,w=c.strideHeight,b=c.strideWidth,_=c.inChannels,x=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let N=r.makeOutput(c.outShape,"float32"),T=r.dataIdMap.get(N.dataId).id;return y3(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,f,m,A,g,y,w,b,_,x,T),N}var ZX={kernelName:Os,backendName:"wasm",setupFunc:XX,kernelFunc:KX},x3;function YX(e){x3=e.wasm.cwrap(zs,null,["number, number, number"])}function JX(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=Ul(i,a,t),f=h;if(p){let b=t.dataIdMap.get(c.dataId).id;b!==o&&(u=c,l=b,f=R.getInnerMostAxes(f.length,u.shape.length))}R.assertAxesAreInnerMostDims("mean",f,u.shape.length);let[m,A]=R.computeOutAndReduceShapes(u.shape,f),g=v.sizeFromShape(A),y=u;u.dtype!=="float32"&&(y=$p({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(y.dataId).id);let w=t.makeOutput(m,"float32");if(v.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(w.dataId).id;x3(l,g,b)}if(p&&t.disposeData(c.dataId),s){let b=R.expandShapeToKeepDim(w.shape,d);w.shape=b}return u.dtype!=="float32"&&t.disposeData(y.dataId),w}var QX={kernelName:zs,backendName:"wasm",setupFunc:YX,kernelFunc:JX},w3;function eK(e){w3=e.wasm.cwrap(Ps,null,["number, number, number"])}function tK(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=Ul(i,a,t);if(p){let w=t.dataIdMap.get(c.dataId).id;w!==o&&(u=c,l=w)}let f=u.shape.length;R.assertAxesAreInnerMostDims("min",h,f);let[m,A]=R.computeOutAndReduceShapes(u.shape,h),g=v.sizeFromShape(A),y=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let w=t.dataIdMap.get(y.dataId).id;w3(l,g,w)}if(p&&t.disposeData(c.dataId),s){let w=R.expandShapeToKeepDim(y.shape,d);y.shape=w}return y}var nK={kernelName:Ps,backendName:"wasm",setupFunc:eK,kernelFunc:tK},rK=!1,aK=xn(Ls,rK),sK=!0,iK=xn(Ws,sK),oK=Cn(Do);function IA(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),r=n[0],a=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:r,selectedSize:a,pSelectedScores:s,pValidOutputs:i}}var b3;function lK(e){b3=e.wasm.cwrap(zo,"number",["number","number","number","number","number"])}function uK(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i}=r,{boxes:o,scores:l}=n,u=t.dataIdMap.get(o.dataId).id,c=t.dataIdMap.get(l.dataId).id,h=b3(u,c,s,a,i),{pSelectedIndices:d,selectedSize:p,pSelectedScores:f,pValidOutputs:m}=IA(t,h);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([p],"int32",d)}var cK={kernelName:zo,backendName:"wasm",setupFunc:lK,kernelFunc:uK},_3;function hK(e){_3=e.wasm.cwrap(Po,"number",["number","number","number","number","number","bool"])}function dK(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=r,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(u.dataId).id,d=_3(c,h,s,a,i,o),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:A}=IA(t,d);t.wasm._free(m);let g=t.makeOutput([f],"int32",p),y=t.makeOutput([],"int32",A);return[g,y]}var pK={kernelName:Po,backendName:"wasm",setupFunc:hK,kernelFunc:dK},v3;function fK(e){v3=e.wasm.cwrap(Lo,"number",["number","number","number","number","number","number"])}function mK(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=r,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(u.dataId).id,d=v3(c,h,s,a,i,o),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:A}=IA(t,d);t.wasm._free(A);let g=t.makeOutput([f],"int32",p),y=t.makeOutput([f],"float32",m);return[g,y]}var AK={kernelName:Lo,backendName:"wasm",setupFunc:fK,kernelFunc:mK},gK=!1,yK=xn(Oo,gK,"bool"),k3;function xK(e){k3=e.wasm.cwrap(Bs,null,["number","number","number","number","number"])}function wK(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=n.makeOutput([...a.shape,s],"int32"),u=n.dataIdMap.get(l.dataId).id,c=n.dataIdMap.get(a.dataId).id;return k3(c,s,i,o,u),l}var bK={kernelName:Bs,backendName:"wasm",setupFunc:xK,kernelFunc:wK};function _K(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(1),r}var vK={kernelName:Wo,backendName:"wasm",kernelFunc:_K};function kK(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return kA({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(c=>{let h=kA({inputs:{input:c},backend:n,attrs:{dim:a}});return o.push(h),h}),u=r3({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(c=>n.disposeData(c.dataId)),u}var IK={kernelName:Bo,backendName:"wasm",kernelFunc:kK},I3;function NK(e){I3=e.wasm.cwrap(Vs,null,["number","array","number","number","array","array","number","number"])}function SK(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,constantValue:a}}=e,s=r.map((f,m)=>f[0]+t.shape[m]+f[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=r.map(f=>f[0]),h=r.map(f=>f[1]),d=new Uint8Array(new Int32Array(c).buffer),p=new Uint8Array(new Int32Array(h).buffer);return I3(i,u,t.shape.length,Bn[t.dtype],d,p,a,l),o}var TK={kernelName:Vs,backendName:"wasm",kernelFunc:SK,setupFunc:NK},EK=!1,CK=xn(Us,EK),N3;function RK(e){N3=e.wasm.cwrap(js,null,["number","number","number"])}function FK(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return N3(s,i,l),o}var MK={kernelName:js,backendName:"wasm",setupFunc:RK,kernelFunc:FK},S3;function $K(e){S3=e.wasm.cwrap(Vo,null,["number","number","number","number"])}function DK(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=Ul(i,a,t),f=h;if(p){let w=t.dataIdMap.get(c.dataId).id;w!==o&&(u=c,l=w,f=R.getInnerMostAxes(f.length,u.shape.length))}R.assertAxesAreInnerMostDims("prod",f,u.shape.length);let[m,A]=R.computeOutAndReduceShapes(u.shape,f),g=v.sizeFromShape(A),y=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let w=t.dataIdMap.get(y.dataId).id;S3(l,g,Bn[y.dtype],w)}if(p&&t.disposeData(c.dataId),s){let w=R.expandShapeToKeepDim(y.shape,d);y.shape=w}return y}var OK={kernelName:Vo,backendName:"wasm",setupFunc:$K,kernelFunc:DK},zK=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=qm(r,a,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},PK={kernelName:Cu,backendName:"wasm",kernelFunc:zK},LK=!0,WK=xn(Is,LK),BK=Cn(Hs),VK=Cn(qs),T3;function UK(e){T3=e.wasm.cwrap(Gs,null,["number","number","number","number","number","number","number","number","number","number"])}function jK(e){let{backend:t,inputs:n,attrs:r}=e,{images:a}=n,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,u]=o,[c,h,d,p]=a.shape,f=[c,l,u,p],m=t.dataIdMap.get(a.dataId),A;m.dtype!=="float32"&&(A=$p({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(A.dataId));let g=m.id,y=t.makeOutput(f,"float32");if(v.sizeFromShape(a.shape)===0)return y;let w=t.dataIdMap.get(y.dataId).id;return T3(g,c,h,d,p,l,u,s?1:0,i?1:0,w),A!=null&&t.disposeData(A.dataId),y}var HK={kernelName:Gs,backendName:"wasm",setupFunc:UK,kernelFunc:jK},E3;function GK(e){E3=e.wasm.cwrap(Xs,null,["number","array","number","array","number","number"])}function qK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=v.parseAxisParam(s,a.shape);if(a.shape.length===0)return Fp({inputs:{x:a},backend:n});let o=n.makeOutput(a.shape,a.dtype),l=n.dataIdMap.get(a.dataId).id,u=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(i).buffer),h=new Uint8Array(new Int32Array(a.shape).buffer);E3(l,c,i.length,h,a.shape.length,u);let d=Nr({inputs:{x:o},attrs:{shape:a.shape},backend:n});return n.disposeData(o.dataId),d}var XK={kernelName:Xs,backendName:"wasm",kernelFunc:qK,setupFunc:GK},C3;function KK(e){C3=e.wasm.cwrap(al,null,["number","number","number","number","number","number","number","number","array","number","number"])}function ZK(e){let{inputs:t,backend:n,attrs:r}=e,{image:a}=t,{radians:s,fillValue:i,center:o}=r,l=n.makeOutput(a.shape,a.dtype),u=n.dataIdMap.get(a.dataId).id,c=n.dataIdMap.get(l.dataId).id,[h,d,p,f]=a.shape,[m,A]=R.getImageCenter(o,d,p),g=i===0,y=255,w=typeof i=="number"?[i,i,i,g?0:y]:[...i,y],b=new Uint8Array(new Int32Array(w).buffer);return C3(u,h,d,p,f,s,m,A,b,w.length,c),l}var YK={kernelName:al,backendName:"wasm",kernelFunc:ZK,setupFunc:KK},JK=Cn(Ks),QK=Cn(Zs),R3;function eZ(e){R3=e.wasm.cwrap(Ho,null,["number","number","number","number","number","number","array","number","number"])}function tZ(e){let{backend:t,inputs:n,attrs:r}=e,{indices:a,updates:s}=n,{shape:i}=r,o=t.makeOutput(i,s.dtype);if(v.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:h,outputSize:d}=jf.calculateShapes(s,a,i),p=t.dataIdMap.get(a.dataId).id,f=t.dataIdMap.get(s.dataId).id,m=new Uint8Array(new Int32Array(h).buffer),A=t.dataIdMap.get(o.dataId).id;return R3(p,f,Bn[s.dtype],l,u,c,m,d,A),o}var nZ={kernelName:Ho,backendName:"wasm",setupFunc:eZ,kernelFunc:tZ},F3;function rZ(e){F3=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function aZ(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(a.dataId).id,l=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(u.dataId).id,h=r.shape.length,d=a.shape.length,p=h===0||h>1||d===1?1:v.sizeFromShape(a.shape.slice(1));return F3(i,o,l,p,c),u}var sZ={kernelName:Go,backendName:"wasm",kernelFunc:aZ,setupFunc:rZ},M3;function iZ(e){M3=e.wasm.cwrap(Js,null,["number","number"])}function oZ(e){let{backend:t,inputs:{x:n}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(a.dataId).id;return v.sizeFromShape(a.shape)===0||M3(r,s),a}var lZ={kernelName:"Sigmoid",backendName:"wasm",setupFunc:iZ,kernelFunc:oZ},uZ=Cn(Ys);function Dp(e){let{inputs:{x:t},attrs:{begin:n,size:r},backend:a}=e,[s,i]=pn.parseSliceParams(t,n,r),o=pn.isSliceContinous(t.shape,s,i),l=a.readSync(t.dataId),u=a.makeOutput(i,t.dtype),c=v.computeStrides(t.shape),h=a.dataIdMap.get(u.dataId);if(o){let f=pn.computeFlatOffset(s,c);return t.dtype==="string"?h.stringBytes=l.slice(f,f+v.sizeFromShape(i)):a.typedArrayFromHeap(u).set(l.subarray(f,f+v.sizeFromShape(i))),u}if(t.dtype==="string"){let f=cp(l,s,i,t.shape,t.dtype);return h.stringBytes=f,u}let d=a.typedArrayFromHeap(u),p=t.shape.length;if(p===2)cZ(l,c[0],d,s,i);else if(p===3)hZ(l,c[0],c[1],d,s,i);else if(p===4)dZ(l,c[0],c[1],c[2],d,s,i);else{let f=cp(l,s,i,t.shape,t.dtype);d.set(f)}return u}function cZ(e,t,n,r,a){let s=0,i=r[0],o=r[1],l=i+a[0];for(let u=i;u{let d=[...c];d[o]=h;let p=Dp({inputs:{x:a},attrs:{begin:u,size:d},backend:r});return u[o]+=h,p})}var yZ={kernelName:Jo,backendName:"wasm",kernelFunc:gZ},xZ=Cn(Qs),wZ=Cn(Mu),bZ=!0,_Z=xn(ni,bZ),D3;function vZ(e){D3=e.wasm.cwrap($a,null,["number","number","number"])}function kZ(e){let{backend:t,inputs:n,attrs:r}=e,{alpha:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return D3(i,a,l),o}var IZ={kernelName:$a,backendName:"wasm",setupFunc:vZ,kernelFunc:kZ},O3;function NZ(e){O3=e.wasm.cwrap(Qo,null,["number","array","number","array","array","array","array","array","number","number"])}function SZ(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{begin:s,end:i,strides:o}=r;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:h,shrinkAxisMask:d}=r,p=R.slice_util.maskToAxes(c);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(c!==0&&h!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(c!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=a.shape.length-s.length,m=R.slice_util.maskToAxes(h),A=a.shape.slice();m.forEach(M=>{s[M]=0,i[M]=1,A.splice(M,0,1)});let g=Nr({inputs:{x:a},attrs:{shape:A},backend:t}),{begin:y,end:w,strides:b}=R.slice_util.getNormalizedAxes(g.shape,p,f,s,i,o,l,u,c);s=y,i=w,o=b;let _=R.slice_util.maskToAxes(d);_.forEach(M=>{i[M]=s[M]+1,o[M]=1});let x=R.slice_util.computeOutShape(s,i,o),N=x.filter((M,z)=>_.indexOf(z)===-1);if(o.every(M=>M===1)){let M=Dp({inputs:{x:g},attrs:{begin:s,size:x},backend:t});t.disposeData(g.dataId);let z=Nr({inputs:{x:M},attrs:{shape:N},backend:t});return t.disposeData(M.dataId),z}let T=t.makeOutput(N,"float32");if(!N.some(M=>M===0)){let M=t.dataIdMap.get(g.dataId).id,z=new Uint8Array(new Int32Array(v.computeStrides(g.shape)).buffer),B=new Uint8Array(new Int32Array(s).buffer),V=new Uint8Array(new Int32Array(i).buffer),U=new Uint8Array(new Int32Array(o).buffer),j=new Uint8Array(new Int32Array(N).buffer),X=new Uint8Array(new Int32Array(v.computeStrides(N)).buffer),G=t.dataIdMap.get(T.dataId).id;O3(M,z,g.shape.length,B,V,U,j,X,N.length,G)}t.disposeData(g.dataId);let E=Nr({inputs:{x:T},attrs:{shape:N},backend:t});return t.disposeData(T.dataId),E}var TZ={kernelName:Qo,backendName:"wasm",setupFunc:NZ,kernelFunc:SZ},EZ=!0,CZ=xn(ri,EZ),z3;function RZ(e){z3=e.wasm.cwrap(ei,null,["number, number, number"])}function FZ(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=Ul(i,a,t),f=h;if(p){let w=t.dataIdMap.get(c.dataId).id;w!==o&&(u=c,l=w,f=R.getInnerMostAxes(f.length,u.shape.length))}R.assertAxesAreInnerMostDims("sum",f,u.shape.length);let[m,A]=R.computeOutAndReduceShapes(u.shape,f),g=v.sizeFromShape(A),y=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let w=t.dataIdMap.get(y.dataId).id;z3(l,g,w)}if(p&&t.disposeData(c.dataId),s){let w=R.expandShapeToKeepDim(y.shape,d);y.shape=w}return y}var MZ={kernelName:ei,backendName:"wasm",setupFunc:RZ,kernelFunc:FZ},$Z=Cn(ai),P3;function DZ(e){P3=e.wasm.cwrap(Ma,null,["number","array","number","array","number","number"])}function OZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,s=n.dataIdMap.get(a.dataId).id,{reps:i}=r,o=new Array(a.shape.length);for(let d=0;d{let{x:r}=e,{k:a,sorted:s}=n,i=t.dataIdMap.get(r.dataId).id,o=new Uint8Array(new Int32Array(r.shape).buffer),l=r.shape.slice();l[l.length-1]=a;let u=t.makeOutput(l,r.dtype),c=t.dataIdMap.get(u.dataId).id,h=t.makeOutput(l,"int32"),d=t.dataIdMap.get(h.dataId).id;return L3(i,o,r.shape.length,Bn[r.dtype],a,s,c,d),[u,h]},WZ={kernelName:tl,backendName:"wasm",setupFunc:PZ,kernelFunc:LZ};function BZ(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape[s],o=a.shape.length,l=new Array(o-1),u=0;for(let p=0;p({dataId:p,dtype:f,shape:l}))}var VZ={kernelName:nl,backendName:"wasm",kernelFunc:BZ};function UZ(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(0),r}var jZ={kernelName:rl,backendName:"wasm",kernelFunc:UZ},HZ=[cq,dq,mq,vq,Nq,Cq,Rq,Fq,Dq,Oq,Lq,Vq,Uq,Gq,Kq,Jq,tX,rX,aX,sX,oX,cX,hX,pX,uq,AX,xX,_X,IX,TX,CX,FX,Aq,DX,zX,LX,WX,VX,HX,qX,ZX,QX,nK,aK,iK,oK,cK,pK,AK,yK,bK,vK,IK,TK,CK,MK,OK,PK,WK,BK,VK,Sq,HK,XK,YK,QK,JK,nZ,sZ,lZ,uZ,pZ,AZ,yZ,xZ,wZ,_Z,IZ,TZ,CZ,MZ,$Z,zZ,WZ,wq,VZ,jZ];for(let e of HZ)ui(e);var NA=J();NA.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));NA.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(NA.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var W3=no(Y8()),GZ='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',qZ=no(J8()),B3=class extends mu{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Fh(this,Lr())}write(e,t,n){let r={id:this.dataIdNextNumber++};return this.move(r,e,t,n,1),r}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,n,r,a){let s=this.dataIdNextNumber++;if(r==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:r,memoryOffset:null,refCount:a});return}let i=v.sizeFromShape(n),o=i*v.bytesPerElement(r),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:r,refCount:a}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:r,stringBytes:a}=this.dataIdMap.get(e);if(n==="string")return a;let s=this.wasm.HEAPU8.slice(t,t+v.sizeFromShape(r)*v.bytesPerElement(n));return XZ(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let r;if(n==null)r=this.write(null,e,t);else{let a=this.dataIdNextNumber++;r={id:a},this.dataIdMap.set(r,{id:a,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(a,s,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let r=this.wasm.HEAPU8.buffer,{memoryOffset:a}=this.dataIdMap.get(n),s=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(r,a,s);case"int32":return new Int32Array(r,a,s);case"bool":return new Uint8Array(r,a,s);default:throw new Error(`Unknown dtype ${t}`)}}};function KZ(e){return(t,n)=>(v.fetch(e,{credentials:"same-origin"}).then(r=>{r.ok||t.env.a(`failed to load wasm binary file at '${e}'`),r.arrayBuffer().then(a=>{WebAssembly.instantiate(a,t).then(s=>{n(s.instance)})})}),{})}function V3(e,t,n){if(Op!=null)return Op;let r="tfjs-backend-wasm.wasm";return e&&t?r="tfjs-backend-wasm-threaded-simd.wasm":e&&(r="tfjs-backend-wasm-simd.wasm"),Ic!=null&&Ic[r]!=null?Ic[r]:n+r}async function ZZ(){let[e,t]=await Promise.all([J().getAsync("WASM_HAS_SIMD_SUPPORT"),J().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,r)=>{let a={};a.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=GZ,c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return o.endsWith(".wasm")?V3(e,t,Nc!=null?Nc:l):l+o},SA&&(a.instantiateWasm=KZ(V3(e,t,Nc!=null?Nc:"")));let s=!1;a.onAbort=()=>{s||Sc||(Sc=!0,r({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Op==null?(a.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+W3.default.toString()],{type:"text/javascript"}),i=(0,W3.default)(a)):i=(0,qZ.default)(a),i.then(o=>{s=!0,Sc=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function XZ(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var YZ=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Op=null,Nc=null,Ic={},Sc=!1,SA=!1;function JZ(e,t=!1){if(Zf("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Sc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Op=e,SA=t}function QZ(e,t=!1){if(Sc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Nc=e;else{Ic=e;let n=YZ.filter(r=>Ic[r]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}SA=t}var U3="3.3.0",eY=2;fl("wasm",async()=>{let{wasm:e}=await ZZ();return new B3(e)},eY);Z().prototype.abs=function(){return this.throwIfDisposed(),Vt(this)};Z().prototype.acos=function(){return this.throwIfDisposed(),Jf(this)};Z().prototype.acosh=function(){return this.throwIfDisposed(),Qf(this)};Z().prototype.add=function(e){return this.throwIfDisposed(),ie(this,e)};Z().prototype.all=function(e,t){return this.throwIfDisposed(),Id(this,e,t)};Z().prototype.any=function(e,t){return this.throwIfDisposed(),Gu(this,e,t)};Z().prototype.argMax=function(e){return this.throwIfDisposed(),qu(this,e)};Z().prototype.argMin=function(e){return this.throwIfDisposed(),em(this,e)};Z().prototype.asScalar=function(){return this.throwIfDisposed(),F(this.size===1,()=>"The array must have only 1 element."),H(this,[])};Z().prototype.asType=function(e){return this.throwIfDisposed(),xe(this,e)};Z().prototype.as1D=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.as2D=function(e,t){return this.throwIfDisposed(),H(this,[e,t])};Z().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),H(this,[e,t,n])};Z().prototype.as4D=function(e,t,n,r){return this.throwIfDisposed(),H(this,[e,t,n,r])};Z().prototype.as5D=function(e,t,n,r,a){return this.throwIfDisposed(),H(this,[e,t,n,r,a])};Z().prototype.asin=function(){return this.throwIfDisposed(),tm(this)};Z().prototype.asinh=function(){return this.throwIfDisposed(),nm(this)};Z().prototype.atan=function(){return this.throwIfDisposed(),rm(this)};Z().prototype.atan2=function(e){return this.throwIfDisposed(),am(this,e)};Z().prototype.atanh=function(){return this.throwIfDisposed(),sm(this)};Z().prototype.avgPool=function(e,t,n,r){return this.throwIfDisposed(),Ku(this,e,t,n,r)};Z().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Zu(this,e,t)};Z().prototype.batchNorm=function(e,t,n,r,a){return this.throwIfDisposed(),mi(this,e,t,n,r,a)};Z().prototype.broadcastTo=function(e){return this.throwIfDisposed(),Yu(this,e)};Z().prototype.cast=function(e){return this.throwIfDisposed(),xe(this,e)};Z().prototype.ceil=function(){return this.throwIfDisposed(),um(this)};Z().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),Nn(this,e,t)};Z().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof qe&&(e=[e]),ot([this,...e],t)};Z().prototype.conv1d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Sd(this,e,t,n,r,a,s)};Z().prototype.conv2dTranspose=function(e,t,n,r,a){return this.throwIfDisposed(),Td(this,e,t,n,r,a)};Z().prototype.conv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),la(this,e,t,n,r,a,s)};Z().prototype.cos=function(){return this.throwIfDisposed(),Ju(this)};Z().prototype.cosh=function(){return this.throwIfDisposed(),Ed(this)};Z().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Cd(this,e,t,n)};Z().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),dm(this,e,t)};Z().prototype.depthwiseConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),yl(this,e,t,n,r,a,s)};Z().prototype.dilation2d=function(e,t,n,r,a){return this.throwIfDisposed(),pm(this,e,t,n,r,a)};Z().prototype.divNoNan=function(e){return this.throwIfDisposed(),fm(this,e)};Z().prototype.div=function(e){return this.throwIfDisposed(),_e(this,e)};Z().prototype.dot=function(e){return this.throwIfDisposed(),bx(this,e)};Z().prototype.elu=function(){return this.throwIfDisposed(),xl(this)};Z().prototype.equal=function(e){return this.throwIfDisposed(),Ba(this,e)};Z().prototype.erf=function(){return this.throwIfDisposed(),mm(this)};Z().prototype.exp=function(){return this.throwIfDisposed(),Jn(this)};Z().prototype.expandDims=function(e){return this.throwIfDisposed(),fn(this,e)};Z().prototype.expm1=function(){return this.throwIfDisposed(),Am(this)};Z().prototype.fft=function(){return this.throwIfDisposed(),lc(this)};Z().prototype.flatten=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.floor=function(){return this.throwIfDisposed(),wl(this)};Z().prototype.floorDiv=function(e){return this.throwIfDisposed(),kd(this,e)};Z().prototype.gather=function(e,t){return this.throwIfDisposed(),Ai(this,e,t)};Z().prototype.greaterEqual=function(e){return this.throwIfDisposed(),Ua(this,e)};Z().prototype.greater=function(e){return this.throwIfDisposed(),ur(this,e)};Z().prototype.ifft=function(){return this.throwIfDisposed(),Il(this)};Z().prototype.irfft=function(){return this.throwIfDisposed(),qd(this)};Z().prototype.isFinite=function(){return this.throwIfDisposed(),_x(this)};Z().prototype.isInf=function(){return this.throwIfDisposed(),vx(this)};Z().prototype.isNaN=function(){return this.throwIfDisposed(),kx(this)};Z().prototype.leakyRelu=function(e){return this.throwIfDisposed(),ec(this,e)};Z().prototype.lessEqual=function(e){return this.throwIfDisposed(),gi(this,e)};Z().prototype.less=function(e){return this.throwIfDisposed(),Fd(this,e)};Z().prototype.localResponseNormalization=function(e,t,n,r){return this.throwIfDisposed(),ym(this,e,t,n,r)};Z().prototype.logSigmoid=function(){return this.throwIfDisposed(),Sx(this)};Z().prototype.logSoftmax=function(e){return this.throwIfDisposed(),Dd(this,e)};Z().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),bm(this,e,t)};Z().prototype.log=function(){return this.throwIfDisposed(),On(this)};Z().prototype.log1p=function(){return this.throwIfDisposed(),Md(this)};Z().prototype.logicalAnd=function(e){return this.throwIfDisposed(),cr(this,e)};Z().prototype.logicalNot=function(){return this.throwIfDisposed(),tc(this)};Z().prototype.logicalOr=function(e){return this.throwIfDisposed(),Od(this,e)};Z().prototype.logicalXor=function(e){return this.throwIfDisposed(),Rx(this,e)};Z().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Ye(this,e,t,n)};Z().prototype.maxPool=function(e,t,n,r){return this.throwIfDisposed(),nc(this,e,t,n,r)};Z().prototype.max=function(e,t){return this.throwIfDisposed(),Qn(this,e,t)};Z().prototype.maximum=function(e){return this.throwIfDisposed(),Vr(this,e)};Z().prototype.mean=function(e,t){return this.throwIfDisposed(),Tt(this,e,t)};Z().prototype.min=function(e,t){return this.throwIfDisposed(),_l(this,e,t)};Z().prototype.minimum=function(e){return this.throwIfDisposed(),vl(this,e)};Z().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),vm(this,e,t)};Z().prototype.mod=function(e){return this.throwIfDisposed(),km(this,e)};Z().prototype.mul=function(e){return this.throwIfDisposed(),O(this,e)};Z().prototype.neg=function(){return this.throwIfDisposed(),St(this)};Z().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Yd(this,e,t,n)};Z().prototype.notEqual=function(e){return this.throwIfDisposed(),xi(this,e)};Z().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),hl(this,e,t,n)};Z().prototype.onesLike=function(){return this.throwIfDisposed(),zn(this)};Z().prototype.pad=function(e,t){return this.throwIfDisposed(),ua(this,e,t)};Z().prototype.pool=function(e,t,n,r,a){return this.throwIfDisposed(),$x(this,e,t,n,r,a)};Z().prototype.pow=function(e){return this.throwIfDisposed(),ca(this,e)};Z().prototype.prelu=function(e){return this.throwIfDisposed(),ac(this,e)};Z().prototype.prod=function(e,t){return this.throwIfDisposed(),Pd(this,e,t)};Z().prototype.reciprocal=function(){return this.throwIfDisposed(),Sm(this)};Z().prototype.relu=function(){return this.throwIfDisposed(),jr(this)};Z().prototype.relu6=function(){return this.throwIfDisposed(),Wd(this)};Z().prototype.reshapeAs=function(e){return this.throwIfDisposed(),H(this,e.shape)};Z().prototype.reshape=function(e){return this.throwIfDisposed(),H(this,e)};Z().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),Jx(this,e,t,n)};Z().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),Qx(this,e,t,n)};Z().prototype.reverse=function(e){return this.throwIfDisposed(),Pn(this,e)};Z().prototype.rfft=function(){return this.throwIfDisposed(),uc(this)};Z().prototype.round=function(){return this.throwIfDisposed(),Tm(this)};Z().prototype.rsqrt=function(){return this.throwIfDisposed(),Bd(this)};Z().prototype.selu=function(){return this.throwIfDisposed(),Vd(this)};Z().prototype.separableConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Em(this,e,t,n,r,a,s)};Z().prototype.sigmoid=function(){return this.throwIfDisposed(),Dn(this)};Z().prototype.sign=function(){return this.throwIfDisposed(),Cm(this)};Z().prototype.sin=function(){return this.throwIfDisposed(),Ud(this)};Z().prototype.sinh=function(){return this.throwIfDisposed(),jd(this)};Z().prototype.slice=function(e,t){return this.throwIfDisposed(),$e(this,e,t)};Z().prototype.softmax=function(e){return this.throwIfDisposed(),oc(this,e)};Z().prototype.softplus=function(){return this.throwIfDisposed(),bl(this)};Z().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),rc(this,e,t)};Z().prototype.split=function(e,t){return this.throwIfDisposed(),jt(this,e,t)};Z().prototype.sqrt=function(){return this.throwIfDisposed(),an(this)};Z().prototype.square=function(){return this.throwIfDisposed(),ht(this)};Z().prototype.squaredDifference=function(e){return this.throwIfDisposed(),Xd(this,e)};Z().prototype.squeeze=function(e){return this.throwIfDisposed(),ja(this,e)};Z().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof qe?[this,e]:[this,...e];return mn(n,t)};Z().prototype.step=function(e){return this.throwIfDisposed(),Nl(this,e)};Z().prototype.stridedSlice=function(e,t,n,r,a,s,i,o){return this.throwIfDisposed(),Fm(this,e,t,n,r,a,s,i,o)};Z().prototype.sub=function(e){return this.throwIfDisposed(),be(this,e)};Z().prototype.sum=function(e,t){return this.throwIfDisposed(),Fe(this,e,t)};Z().prototype.tan=function(){return this.throwIfDisposed(),Mm(this)};Z().prototype.tanh=function(){return this.throwIfDisposed(),Al(this)};Z().prototype.tile=function(e){return this.throwIfDisposed(),Va(this,e)};Z().prototype.toBool=function(){return this.throwIfDisposed(),xe(this,"bool")};Z().prototype.toFloat=function(){return this.throwIfDisposed(),xe(this,"float32")};Z().prototype.toInt=function(){return this.throwIfDisposed(),xe(this,"int32")};Z().prototype.topk=function(e,t){return this.throwIfDisposed(),$m(this,e,t)};Z().prototype.transpose=function(e){return this.throwIfDisposed(),it(this,e)};Z().prototype.unique=function(e){return this.throwIfDisposed(),Zd(this,e)};Z().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),Dm(this,e,t)};Z().prototype.unstack=function(e){return this.throwIfDisposed(),hr(this,e)};Z().prototype.where=function(e,t){return this.throwIfDisposed(),Sn(e,this,t)};Z().prototype.zerosLike=function(){return this.throwIfDisposed(),Xe(this)};var j3={kernelName:so,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>O(e,Nl(xe(n,"float32"),-1))}}},tY={kernelName:io,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=ht(xe(n,"float32")),a=an(be(Ne(1),r));return St(_e(e,a))}}}},nY={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=an(be(ht(xe(n,"float32")),1));return _e(e,r)}}}},rY={kernelName:Ra,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=xt(n.shape,r.shape);return{a:()=>{let s=e,i=Ut(n.shape,a);return i.length>0&&(s=Fe(s,i)),H(s,n.shape)},b:()=>{let s=e,i=Ut(r.shape,a);return i.length>0&&(s=Fe(s,i)),H(s,r.shape)}}}},aY={kernelName:fs,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((r,a)=>{n[a]=()=>e.clone()}),n}},sY={kernelName:ms,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Xe(n)}}},iY={kernelName:yu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Xe(n)}}},oY={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_e(e,an(be(Ne(1),ht(xe(n,"float32")))))}}},lY={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=an(ie(Ne(1),ht(xe(n,"float32"))));return _e(e,r)}}}},uY={kernelName:po,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=xt(n.shape,r.shape);return{a:()=>{let s=ie(ht(n),ht(r)),i=O(e,_e(r,s)),o=Ut(n.shape,a);return o.length>0&&(i=Fe(i,o)),H(i,n.shape)},b:()=>{let s=ie(ht(n),ht(r)),i=St(O(e,_e(n,s))),o=Ut(r.shape,a);return o.length>0&&(i=Fe(i,o)),H(i,r.shape)}}}},cY={kernelName:co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_e(e,ie(ht(xe(n,"float32")),1))}}},hY={kernelName:ho,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_e(e,be(Ne(1),ht(xe(n,"float32"))))}}};function dY(e,t,n,r,a,s){let i=C(e,"dy","avgPool3dGrad"),o=C(t,"input","avgPool3dGrad"),l=i,u=o,c=!1;o.rank===4&&(c=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),F(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),F(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),s!=null&&F(Kt(a),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${a}.`);let h={dy:l,input:u},d={filterSize:n,strides:r,pad:a,dimRoundingMode:s},p=$.runKernel(Lh,h,d);return c?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var pY=D({avgPool3dGrad_:dY}),fY={kernelName:xu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>pY(e,r,a,s,i,o)}}};function mY(e,t,n,r,a){let s=C(e,"dy","avgPoolGrad"),i=C(t,"input","avgPoolGrad");F(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),F(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let c={dy:l,input:o},h={filterSize:n,strides:r,pad:a},d=$.runKernel(Ph,c,h);return u?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var AY=D({avgPoolGrad_:mY}),gY={kernelName:As,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i}=n;return{x:()=>AY(e,r,a,s,i)}}},yY={kernelName:gs,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[r,a]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>Ye(e,a,!1,!0),b:()=>Ye(r,e,!0,!1)}:!s&&i?{a:()=>Ye(e,a,!1,!1),b:()=>Ye(e,r,!0,!1)}:s&&!i?{a:()=>Ye(a,e,!1,!0),b:()=>Ye(r,e,!1,!1)}:{a:()=>Ye(a,e,!0,!0),b:()=>Ye(e,r,!0,!0)}}},xY={kernelName:wu,gradFunc:(e,t,n)=>{let{blockShape:r,crops:a}=n;return{x:()=>rc(e,r,a)}}},wY={kernelName:m5,gradFunc:(e,t,n)=>{let r=n,a=r.inputShape,s=r.shape,i=Array.from(s);for(let l=a.length-1;l>=0;l--)if(a[l]===s[l])i[l]=1;else if(a[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l1&&o.push(l);return{x:()=>Fe(e,o,!0)}}},bY={kernelName:ys,gradFunc:e=>({x:()=>e.clone()})},_Y={kernelName:xs,gradFunc:e=>({x:()=>Xe(e)})},vY={kernelName:Fa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{clipValueMin:a,clipValueMax:s}=n;return{x:()=>Sn(cr(Ua(r,a),gi(r,s)),e,Xe(e))}}},kY={kernelName:bu,inputsToSave:["x"],gradFunc:j3.gradFunc},IY={kernelName:fo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let r=t.map(o=>o.shape),{axis:a}=n,s=or(a,t[0].shape)[0],i=r.map(o=>o[s]);return jt(e,i,s).map(o=>()=>o)}},NY={kernelName:ws,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return F(Wa(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>cm(r.shape,e,a,i,o,l),filter:()=>Lm(r,e,a.shape,i,o,l)}}},SY={kernelName:bs,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>la(e,a,s,i,o,1,l),filter:()=>Lm(e,r,a.shape,s,i,o,l)}}};function TY(e,t,n,r,a){let s=e;e.rank===4&&(s=H(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),F(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),F(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),F(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),F(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),F(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:r,pad:a,filterShape:n};return $.runKernel(Uh,o,l)}var EY=D({conv3DBackpropFilter_:TY}),CY={kernelName:_u,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s}=n;F(Wa(r),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`);let[i,o]=t;return{x:()=>xx(i.shape,e,o,a,s),filter:()=>EY(i,e,o.shape,a,s)}}},RY={kernelName:_s,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>O(St(Ud(xe(n,"float32"))),e)}}},FY={kernelName:mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>O(jd(xe(n,"float32")),e)}}},MY={kernelName:vs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a,exclusive:s,reverse:i}=n;return{x:()=>{let o=Cx([a],r.rank),l=Cd(e,a,s,!i);return o!=null&&(l=it(l,o)),l}}}},$Y={kernelName:ks,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s,dimRoundingMode:i}=n,o=r==null?[1,1]:r;F(Wa(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return F(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),F(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),F(Wr(a,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${o}'.`),i!=null&&F(Kt(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>Hx(l.shape,e,u,a,s,r,i),filter:()=>jx(l,e,u.shape,a,s,r,i)}}},DY={kernelName:vu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,s={x:r,filter:a,dy:e},i={x:r,filter:a,dy:e};return{x:()=>$.runKernel(Kh,s,n),filter:()=>$.runKernel(Zh,i,n)}}},OY={kernelName:yo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,r={dy:e,y:n};return{x:()=>$.runKernel(Yh,r)}}},zY={kernelName:xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=O(Jn(St(ht(n))),2/Math.sqrt(Math.PI));return{x:()=>O(e,r)}}},PY={kernelName:Ns,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>O(e,n)}}},LY={kernelName:bo,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>H(e,n.shape)}}},WY={kernelName:_o,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>O(e,Jn(n))}}},BY={kernelName:Ss,gradFunc:e=>({x:()=>Xe(e)})},VY={kernelName:Ts,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=xt(n.shape,r.shape);return{a:()=>{let s=_e(e,xe(r,"float32")),i=Ut(n.shape,a);return i.length>0?H(Fe(s,i),n.shape):s},b:()=>{let s=O(e,xe(n,"float32")),i=Ut(r.shape,a);i.length>0&&(s=H(Fe(s,i),r.shape));let o=ht(r);return St(_e(s,xe(o,"float32")))}}}},UY={kernelName:Es,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:r}=n,[a,s,i,o]=t,l=o==null?Ne(1):o,u=Ut(s.shape,a.shape),c=[];if(s.rank===1){for(let m=0;ms.rank===1?H(O(O(e,Va(H(p,[1,1,1,s.shape[0]]),c)),l),a.shape):H(O(O(e,p),l),a.shape),mean:()=>{let m=O(O(p,Ne(-1)),d);return s.rank===1&&(m=Fe(m,u)),H(m,s.shape)},variance:()=>{let m=O(O(f,h),d);return s.rank===1&&(m=Fe(m,u)),H(m,s.shape)},scale:()=>{let m=O(h,p),A=O(e,m);return s.rank===1&&(A=Fe(A,u)),H(A,s.shape)},offset:()=>{let m=e;return s.rank===1&&(m=Fe(m,u)),H(m,s.shape)}}}},jY={kernelName:ko,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[r,a]=t,{axis:s}=n,i=or(s,r.shape)[0];return{x:()=>{let o=r.shape,l=a.size,u=o.slice(0,i),c=u.length,h=o.slice(s,o.length).slice(1),d=h.length,p=H3(0,c),f=H3(c+1,c+1+d),m=G3([u,[l],h]),A=H(e,m),g=H(a,[l]),y=G3([[c],p,f]),w=it(A,y),b=Dm(w,g,r.shape[i]),_=wm(y);return b=it(b,_),b},indices:()=>a}}};function H3(e,t){let n=[];for(let r=e;r{let[n,r]=t;return{a:()=>Xe(n),b:()=>Xe(r)}}},GY={kernelName:Rs,gradFunc:e=>({x:()=>xe(e,"float32")})},qY={kernelName:So,gradFunc:e=>({x:()=>Xe(e)})},XY={kernelName:To,gradFunc:e=>({x:()=>Xe(e)})},KY={kernelName:Eo,gradFunc:e=>({x:()=>Xe(e)})},ZY={kernelName:Fs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{alpha:a}=n,s=ur(r,0);return{x:()=>Sn(s,e,O(e,a))}}},YY={kernelName:Fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_e(e,ie(n,1))}}},JY={kernelName:Ms,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_e(e,xe(n,"float32"))}}},QY={kernelName:A5,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n;return{logits:()=>{let s=!0,i=Jn(r);return be(e,O(Fe(e,a,s),i))}}}};function eJ(e,t,n,r=5,a=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:r,bias:a,alpha:s,beta:i};return $.runKernel(nd,o,l)}var tJ=D({localResponseNormalizationBackprop_:eJ}),nJ={kernelName:Su,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>tJ(r,a,e,s,i,o,l)}}};function q3(e,t,n,r){return t.rankO(e,xe(Ba(n,t),e.dtype))}}var X3={kernelName:$s,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{reductionIndices:a}=r,s=t[0],i=t[1],o=or(a,s.shape),l=q3(e,i,s,o);return{x:()=>l.x()}}},rJ={kernelName:Ds,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>O(e,xe(Ua(n,r),"float32")),b:()=>O(e,xe(Fd(n,r),"float32"))}}};function aJ(e,t,n,r,a,s,i){let o=C(e,"dy","maxPool3dGrad"),l=C(t,"input","maxPool3dGrad"),u=C(n,"output","maxPool3dGrad"),c=o,h=l,d=u,p=!1;l.rank===4&&(p=!0,c=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),h=H(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=H(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),F(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),F(h.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${h.rank}.`),F(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),i!=null&&F(Kt(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let f={dy:c,input:h,output:d},m={filterSize:r,strides:a,pad:s,dimRoundingMode:i},A=$.runKernel(ad,f,m);return p?H(A,[A.shape[1],A.shape[2],A.shape[3],A.shape[4]]):A}var sJ=D({maxPool3dGrad_:aJ}),iJ={kernelName:Tu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>sJ(e,r,a,s,i,o,l)}}};function oJ(e,t,n,r,a,s,i){let o=C(e,"dy","maxPoolGrad"),l=C(t,"input","maxPoolGrad"),u=C(n,"output","maxPoolGrad");F(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),F(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),F(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&F(Kt(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let c={dy:o,input:l,output:u},h={filterSize:r,strides:a,pad:s,dimRoundingMode:i};return $.runKernel(rd,c,h)}var lJ=D({maxPoolGrad_:oJ}),uJ={kernelName:Os,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>lJ(e,r,a,s,i,o)}}},cJ={kernelName:zs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n,s=or(a,r.shape),i=Ex(r.shape,s)[1],o=Wt(i);return{x:()=>{let l=r.shape.slice();s.forEach(c=>{l[c]=1});let u=H(e,l);return _e(O(u,Ur(r.shape,"float32")),o)}}}},hJ={kernelName:Ps,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{axis:a}=r,[s,i]=t,o=or(a,s.shape),l=q3(e,i,s,o);return{x:()=>l.x()}}},dJ={kernelName:Ls,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>O(e,xe(gi(n,r),"float32")),b:()=>O(e,xe(ur(n,r),"float32"))}}},pJ={kernelName:Eu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>$e(e,s,r.shape)}}},fJ={kernelName:$o,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=xt(n.shape,r.shape);return{a:()=>{let s=Ut(n.shape,a);return s.length>0?H(Fe(e,s),n.shape):e},b:()=>{let s=O(e,St(wl(_e(n,r)))),i=Ut(r.shape,a);return i.length>0?H(Fe(s,i),r.shape):s}}}},mJ={kernelName:Ws,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=xt(n.shape,r.shape);return{a:()=>{let s=O(e,xe(r,"float32")),i=Ut(n.shape,a);return i.length>0?H(Fe(s,i),n.shape):s},b:()=>{let s=O(e,xe(n,"float32")),i=Ut(r.shape,a);return i.length>0?H(Fe(s,i),r.shape):s}}}},AJ={kernelName:Do,gradFunc:e=>({x:()=>St(e)})},gJ={kernelName:Bs,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Ot(n.shape,"float32")}}},yJ={kernelName:Wo,gradFunc:e=>({x:()=>Xe(e)})},xJ={kernelName:Bo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:r}=n;return hr(e,r).map(a=>()=>a)}},K3={kernelName:Vs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>$e(e,s,r.shape)}}},wJ={kernelName:Us,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,r,a]=t,s=n,i=r,o=xt(s.shape,i.shape);return{a:()=>{let l=xe(i,"float32"),u=O(e,O(l,ca(s,be(l,Ne(1))))),c=Ut(s.shape,o);return c.length>0&&(u=Fe(u,c)),H(u,s.shape)},b:()=>{let l=ur(s,0),u=Sn(l,On(s),Xe(s)),c=O(e,O(a,u)),h=Ut(i.shape,o);return h.length>0&&(c=Fe(c,h)),H(c,i.shape)}}}},bJ={kernelName:js,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,r]=t,a=ur(n,0);return{x:()=>Sn(a,e,O(e,r)),alpha:()=>{let s=Sn(a,Xe(e),O(e,n)),i=Ut(r.shape,e.shape);return i.length>0&&(s=Fe(s,i)),H(s,r.shape)}}}},_J={kernelName:Is,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=xt(n.shape,r.shape);return{a:()=>{let s=_e(e,xe(r,"float32")),i=Ut(n.shape,a);return i.length>0?H(Fe(s,i),n.shape):s},b:()=>{let s=O(e,xe(n,"float32")),i=Ut(r.shape,a);i.length>0&&(s=H(Fe(s,i),r.shape));let o=ht(r);return St(_e(s,xe(o,"float32")))}}}},vJ={kernelName:Uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_e(e,St(ht(n)))}}},kJ={kernelName:qs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=O(gi(n,6),Nl(n));return{x:()=>O(e,xe(r,"float32"))}}},IJ={kernelName:Hs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>O(e,xe(Nl(n),"float32"))}}},NJ={kernelName:jo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>H(e,n.shape)}}},SJ={kernelName:Gs,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(ud,a,n)}}},TJ={kernelName:Ru,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(ld,a,n)}}},EJ={kernelName:Xs,gradFunc:(e,t,n)=>{let{dims:r}=n,a=or(r,e.shape);return{x:()=>Pn(e,a)}}},CJ={kernelName:Ks,gradFunc:e=>({x:()=>Xe(e)})},RJ={kernelName:Zs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>St(_e(e,O(ca(n,1.5),2)))}}},FJ={kernelName:Go,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>xe(Xe(n),"float32"),t:()=>O(e,xe(n,e.dtype)),e:()=>O(e,xe(tc(n),e.dtype))}}},MJ={kernelName:qo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=ur(n,Ne(0)),a=Ne(nw),s=Ne(rw),i=O(e,s),o=O(O(e,a),Jn(xe(n,"float32")));return Sn(r,i,o)}}}},$J={kernelName:Js,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>O(e,O(n,be(Ne(1),n)))}}},DJ={kernelName:Zo,gradFunc:e=>({x:()=>Xe(e)})},OJ={kernelName:Ys,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>O(Ju(xe(n,"float32")),e)}}},zJ={kernelName:Ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>O(Ed(xe(n,"float32")),e)}}},PJ={kernelName:Xo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{begin:a,size:s}=n,i=r.shape,[o,l]=tx(r,a,s),u=[];for(let c=0;cua(e,u)}}},LJ={kernelName:ti,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{dim:a}=n,s=!0,i=O(e,r);return{logits:()=>be(i,O(Fe(i,[a],s),r))}}},WJ={kernelName:Yo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>O(e,Dn(n))}}},Z3={kernelName:Fu,gradFunc:(e,t,n)=>{let{blockShape:r,paddings:a}=n;return{x:()=>Zu(e,r,a)}}},Y3={kernelName:Jo,gradFunc:(e,t,n)=>{let{axis:r}=n;return{x:()=>ot(e,r)}}},BJ={kernelName:Qs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_e(e,O(an(xe(n,"float32")),2))}}},VJ={kernelName:Mu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>O(e,O(xe(n,"float32"),2))}}},UJ={kernelName:ni,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=Ne(2);return{a:()=>O(e,O(a,be(n,r))),b:()=>O(e,O(a,be(r,n)))}}},jJ={kernelName:$a,gradFunc:e=>({x:()=>Xe(e)})},HJ={kernelName:ri,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=xt(n.shape,r.shape);return{a:()=>{let s=e,i=Ut(n.shape,a);return i.length>0&&(s=Fe(s,i)),H(s,n.shape)},b:()=>{let s=e,i=Ut(r.shape,a);return i.length>0&&(s=Fe(s,i)),H(St(s),r.shape)}}}},GJ={kernelName:ei,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,a=r.shape.slice(),{axis:s}=n;or(s,r.shape).forEach(l=>{a[l]=1});let i=H(e,a),o=O(i,Ur(r.shape,"float32"));return{x:()=>o}}},qJ={kernelName:el,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_e(e,ht(Ju(n)))}}},XJ={kernelName:ai,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>O(be(Ne(1),ht(n)),e)}}},KJ={kernelName:Ma,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{reps:a}=n;return{x:()=>{let s=Xe(r);if(r.rank===1)for(let i=0;i{let r=n,{perm:a}=r,s=wm(a);return{x:()=>it(e,s)}}},YJ={kernelName:nl,gradFunc:(e,t,n)=>{let r=n,{axis:a}=r;return{value:()=>mn(e,a)}}},QJ={kernelName:$u,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>JJ(e,n)}}};function JJ(e,t){let n=Vr(t,Xe(t)),r=Ai(e,n),a=Ua(t,Ne(0,"int32")),s=r.rank-a.rank;for(let o=0;o({x:()=>Xe(e)})},tQ=[j3,tY,nY,rY,aY,sY,iY,oY,lY,uY,cY,hY,fY,gY,yY,xY,wY,bY,_Y,vY,kY,IY,SY,NY,CY,RY,FY,MY,$Y,DY,_J,OY,zY,PY,LY,WY,VY,BY,UY,jY,HY,GY,qY,XY,KY,ZY,YY,JY,QY,nJ,X3,X3,rJ,iJ,uJ,cJ,hJ,dJ,pJ,fJ,mJ,AJ,gJ,yJ,xJ,K3,K3,wJ,bJ,vJ,kJ,IJ,NJ,SJ,TJ,EJ,CJ,RJ,FJ,MJ,$J,DJ,OJ,zJ,PJ,LJ,WJ,Z3,Z3,Y3,Y3,BJ,UJ,VJ,jJ,HJ,GJ,qJ,XJ,KJ,ZJ,YJ,QJ,eQ];for(let e of tQ)g5(e);var J3={};We(J3,{maxNorm:()=>nQ,minMaxNorm:()=>sQ,nonNeg:()=>aQ,unitNorm:()=>rQ});var TA;function Ht(){return TA==null&&(TA=lx().epsilon()),TA}function Sr(){return"channelsLast"}var fa=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,fa.prototype)}},Tr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Tr.prototype)}},W=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,W.prototype)}},Pe=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Pe.prototype)}},Q3=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Q3.prototype)}};function Ci(e,t){if(Array.isArray(e)){let n=[];for(let r=0;rn.toUpperCase())}var pr={};function EA(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function CA(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>CA(t));else{let t=Object.keys(e);for(let n of t){let r=e[n];r!=null&&typeof r=="object"&&(!Array.isArray(r)&&r.type==="ndarray"&&typeof r.value=="number"?e[n]=r.value:CA(r))}}}function Tc(e,t={},n={},r="object",a=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in pr)i=pr[s];else if(i=t[s],i==null)throw new W(`Unknown ${r}: ${e}. This may be due to one of the following reasons: 1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. 2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new W(`${r}: Improper config format: ${JSON.stringify(s)}. 'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in pr?[o,l]=pr.className:i in t&&([o,l]=t[i]),o==null)throw new W(`Unknown ${r}: ${i}. This may be due to one of the following reasons: 1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. 2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let p of Object.keys(pr))u[p]=pr[p];for(let p of Object.keys(n))u[p]=n[p];let c=s.config;c.customObjects=u;let h=Object.assign({},pr);for(let p of Object.keys(n))pr[p]=n[p];CA(s.config);let d=l(o,s.config,n,a);return pr=Object.assign({},h),d}else{let u=Object.assign({},pr);for(let h of Object.keys(n))pr[h]=n[h];let c=new o(s.config);return pr=Object.assign({},u),c}}}function iQ(e,t){return et?1:0}function zp(e,t){return-1*iQ(e,t)}function Ka(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function oQ(e){if(e==null)throw new W(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Fi(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new W(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function RA(e,t,n=0,r=Infinity){return Xr(n>=0),Xr(r>=n),Array.isArray(e)&&e.length>=n&&e.length<=r&&e.every(a=>typeof a===t)}function Jt(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,r)=>Jt(n,`element ${r+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${t7(e)}.`)}function t7(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>t7(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function lQ(e,t){let n=v.now(),r;return(...a)=>{let s=v.now();return s-nan(Fe(O(e,e),t,!0)))}var Ec=class extends ae.Serializable{getConfig(){return{}}},MA=class extends Ec{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return L(()=>{let t=FA(e,this.axis),n=Nn(t,0,this.maxValue);return O(e,_e(n,ie(Ht(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};MA.className="MaxNorm";ae.registerClass(MA);var $A=class extends Ec{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return L(()=>_e(e,ie(Ht(),FA(e,this.axis))))}getConfig(){return{axis:this.axis}}};$A.className="UnitNorm";ae.registerClass($A);var DA=class extends Ec{apply(e){return jr(e)}};DA.className="NonNeg";ae.registerClass(DA);var OA=class extends Ec{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return L(()=>{let t=FA(e,this.axis),n=ie(O(this.rate,Nn(t,this.minValue,this.maxValue)),O(1-this.rate,t));return O(e,_e(n,ie(Ht(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};OA.className="MinMaxNorm";ae.registerClass(OA);var r7={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Gt(e){return EA(e)}function a7(e,t={}){return Tc(e,ae.SerializationMap.getMap().classNameMap,t,"constraint")}function qt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in r7?r7[e]:e,config:{}};return a7(t)}else return e instanceof Ec?e:a7(e)}function nQ(e){return new MA(e)}function rQ(e){return new $A(e)}function aQ(){return new DA}function sQ(e){return new OA(e)}var s7={};We(s7,{constant:()=>hQ,glorotNormal:()=>yQ,glorotUniform:()=>gQ,heNormal:()=>xQ,heUniform:()=>wQ,identity:()=>mQ,leCunNormal:()=>bQ,leCunUniform:()=>_Q,ones:()=>cQ,orthogonal:()=>vQ,randomNormal:()=>pQ,randomUniform:()=>dQ,truncatedNormal:()=>fQ,varianceScaling:()=>AQ,zeros:()=>uQ});var kQ=["channelsFirst","channelsLast"],IQ=["nearest","bilinear"],NQ=["valid","same","causal"],SQ=["max","avg"],TQ=["sum","mul","concat","ave"],jl=new Map;function Mt(e){Fi(kQ,"DataFormat",e)}function EQ(e){Fi(IQ,"InterpolationFormat",e)}function nr(e){Fi(NQ,"PaddingMode",e)}function i7(e){Fi(SQ,"PoolMode",e)}var Cc=[],o7="/";function Mi(e,t){Cc.push(e);try{let n=t();return Cc.pop(),n}catch(n){throw Cc.pop(),n}}function CQ(){return Cc.length===0?"":Cc.join(o7)+o7}function u7(e){if(!l7(e))throw new Error("Not a valid tensor name: '"+e+"'");return CQ()+e}function c7(e){if(!l7(e))throw new Error("Not a valid tensor name: '"+e+"'");jl.has(e)||jl.set(e,0);let t=jl.get(e);if(jl.set(e,jl.get(e)+1),t>0){let n=`${e}_${t}`;return jl.set(n,1),n}else return e}var RQ=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function l7(e){return!!e.match(RQ)}function FQ(e){return e===parseInt(e.toString(),10)}function Za(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let r=1;for(let a=t;a{if(e.shape.length!==2)throw new W(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Fc(e,1);return zA(n,[1,t,1])})}function $Q(e){let t=[Za(e.shape)];return e.reshape(t)}function DQ(e){if(e.rank<=1)throw new W(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Za(e.shape,1)];return e.reshape(t)}function $i(e,t,n){return L(()=>{switch(e.rank){case 1:return Hd(e,t,n);case 2:return Rm(e,[t,0],[n,e.shape[1]]);case 3:return Gd(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return ic(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return $e(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return $e(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new W(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function PA(e,t,n){return L(()=>{switch(e.rank){case 1:return Hd(e,t,n);case 2:return Rm(e,[0,t],[e.shape[0],n]);case 3:return Gd(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return ic(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new W(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Pp(e,t,n,r){return L(()=>{switch(e.rank){case 1:return Hd(e,t,n);case 2:switch(r){case 1:return $i(e,t,n);case 2:return PA(e,t,n);default:throw new W(`The axis is not within the rank of the tensor ${r}`)}case 3:switch(r){case 1:return $i(e,t,n);case 2:return Gd(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return PA(e,t,n);default:throw new W(`The axis is not within the rank of the tensor ${r}`)}case 4:switch(r){case 1:return $i(e,t,n);case 2:return ic(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return ic(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return PA(e,t,n);default:throw new W(`The axis is not within the rank of the tensor ${r}`)}default:throw new W(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function LA(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),ot(e,t)}function d7(e,t){switch(e.rank){case 1:return Ax([e,t]);case 2:return gl([e,t],0);case 3:return gx([e,t],0);case 4:return yx([e,t],0);default:throw new W(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function zA(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new W(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Va(e,t)}function Lp(e,t=0,n=1,r,a){return Dx(e,t,n,r,a)}function Kr(e,t,n,r){if(e.rank<2||t.rank<2)throw new Pe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let a=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(a!==s)throw new Pe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let a=!1,s=!1;return Ha.matMul({a:e,b:t,transposeA:a,transposeB:s,bias:r?WA(e.rank,r,Sr()):null,activation:n})}else{let a=e.shape.slice(),s=a.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],c=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=t.transpose(c).reshape([l,-1]);let h=[...a,...u],d=!1,p=!1;return Ha.matMul({a:e,b:t,transposeA:d,transposeB:p,bias:r?WA(e.rank,r,Sr()):null,activation:n}).reshape(h)}}function p7(e,t,n){return L(()=>(Array.isArray(t)?t=hn(t,"int32"):t=t.toInt(),Ai(e,t,n)))}function Mc(e){return O(e,e)}function WA(e,t,n){let r=t.shape;if(t.rank!==1&&t.rank!==e)throw new W(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1,1]):t.reshape([1,r[3],r[0],r[1],r[2]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===4){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1]):t.reshape([1,r[2],r[0],r[1]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===3){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1]):t.reshape([1,r[1],r[0]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,r[0]]):t.reshape([1].concat(r))}else if(e<3)return t;throw new W(`Unsupported input rank by biasAdd: ${t.rank}`)}function Zr(e,t,n){return L(()=>(n==null&&(n=Sr()),Mt(n),e.add(WA(e.rank,t,n))))}function OQ(e,t=1){if(t!==1)throw new Pe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return xl(e)}function zQ(e){return L(()=>_e(e,Vt(e).add(1)))}function f7(e,t,n,r){return L(()=>Vx(e,t,n,r))}function PQ(e){return L(()=>{let t=ie(.5,O(.2,e));return Nn(t,0,1)})}function $c(e,t,n=!1){return n?e():t()}var LQ=["fanIn","fanOut","fanAvg"],WQ=["normal","uniform","truncatedNormal"];function BQ(e){Fi(LQ,"FanMode",e)}function VQ(e){Fi(WQ,"Distribution",e)}var fr=class extends ae.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},BA=class extends fr{apply(e,t){return Ot(e,t)}};BA.className="Zeros";ae.registerClass(BA);var Wp=class extends fr{apply(e,t){return Ur(e,t)}};Wp.className="Ones";ae.registerClass(Wp);var VA=class extends fr{constructor(e){super();if(typeof e!="object")throw new W(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new W(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return L(()=>O(Ne(this.value),Ur(e,t)))}getConfig(){return{value:this.value}}};VA.className="Constant";ae.registerClass(VA);var UA=class extends fr{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return kl(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};UA.className="RandomUniform";ae.registerClass(UA);var jA=class extends fr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Pe(`randomNormal does not support dType ${t}.`);return Lp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};jA.className="RandomNormal";ae.registerClass(jA);var HA=class extends fr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Pe(`truncatedNormal does not support dType ${t}.`);return Kd(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};HA.className="TruncatedNormal";ae.registerClass(HA);var GA=class extends fr{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return L(()=>{if(e.length!==2||e[0]!==e[1])throw new W("Identity matrix initializer can only be used for 2D square matrices.");return O(this.gain,gm(e[0]))})}getConfig(){return{gain:this.gain}}};GA.className="Identity";ae.registerClass(GA);function UQ(e,t="channelsLast"){let n,r;if(Mt(t),e.length===2)n=e[0],r=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let a=Za(e,2);n=e[1]*a,r=e[0]*a}else if(t==="channelsLast"){let a=Za(e,0,e.length-2);n=e[e.length-2]*a,r=e[e.length-1]*a}}else{let a=Za(e);n=Math.sqrt(a),r=Math.sqrt(a)}return[n,r]}var Fn=class extends fr{constructor(e){super();if(e.scale<0)throw new W(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,BQ(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,VQ(this.distribution),this.seed=e.seed}apply(e,t){let n=UQ(e),r=n[0],a=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,r):this.mode==="fanOut"?s/=Math.max(1,a):s/=Math.max(1,(r+a)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Pe(`${this.getClassName()} does not support dType ${t}.`);return Kd(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return kl(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Fn.className="VarianceScaling";ae.registerClass(Fn);var Bp=class extends Fn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Fn.className}};Bp.className="GlorotUniform";ae.registerClass(Bp);var Vp=class extends Fn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Fn.className}};Vp.className="GlorotNormal";ae.registerClass(Vp);var Up=class extends Fn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Fn.className}};Up.className="HeNormal";ae.registerClass(Up);var jp=class extends Fn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Fn.className}};jp.className="HeUniform";ae.registerClass(jp);var Hp=class extends Fn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Fn.className}};Hp.className="LeCunNormal";ae.registerClass(Hp);var Gp=class extends Fn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Fn.className}};Gp.className="LeCunNormal";ae.registerClass(Gp);var qA=class extends fr{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Pe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return L(()=>{if(e.length<2)throw new Pe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,r=Lp(n,0,1,"float32"),a=tw.gramSchmidt(r);return e[0]>e[1]&&(a=a.transpose()),O(this.gain,a)})}getConfig(){return{gain:this.gain,seed:this.seed}}};qA.className="Orthogonal";ae.registerClass(qA);var m7={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function A7(e,t={}){return Tc(e,ae.SerializationMap.getMap().classNameMap,t,"initializer")}function Et(e){return EA(e)}function bt(e){if(typeof e=="string"){let t=e in m7?m7[e]:e;if(t==="GlorotNormal")return new Vp;if(t==="GlorotUniform")return new Bp;if(t==="HeNormal")return new Up;if(t==="HeUniform")return new jp;if(t==="LeCunNormal")return new Hp;if(t==="LeCunUniform")return new Gp;{let n={};return n.className=t,n.config={},A7(n)}}else return e instanceof fr?e:A7(e)}function uQ(){return new BA}function cQ(){return new Wp}function hQ(e){return new VA(e)}function dQ(e){return new UA(e)}function pQ(e){return new jA(e)}function fQ(e){return new HA(e)}function mQ(e){return new GA(e)}function AQ(e){return new Fn(e)}function gQ(e){return new Bp(e)}function yQ(e){return new Vp(e)}function xQ(e){return new Up(e)}function wQ(e){return new jp(e)}function bQ(e){return new Hp(e)}function _Q(e){return new Gp(e)}function vQ(e){return new qA(e)}var g7={};We(g7,{Layer:()=>Je,RNN:()=>Yr,RNNCell:()=>Dc,activation:()=>see,add:()=>fee,alphaDropout:()=>Yee,average:()=>mee,averagePooling1d:()=>XA,averagePooling2d:()=>KA,averagePooling3d:()=>ZA,avgPool1d:()=>kee,avgPool2d:()=>Nee,avgPool3d:()=>Tee,avgPooling1d:()=>Iee,avgPooling2d:()=>See,avgPooling3d:()=>Eee,batchNormalization:()=>bee,bidirectional:()=>Uee,concatenate:()=>Aee,conv1d:()=>YQ,conv2d:()=>JQ,conv2dTranspose:()=>QQ,conv3d:()=>eee,convLstm2d:()=>Lee,convLstm2dCell:()=>Wee,cropping2D:()=>nee,dense:()=>iee,depthwiseConv2d:()=>aee,dot:()=>wee,dropout:()=>oee,elu:()=>HQ,embedding:()=>pee,flatten:()=>uee,gaussianDropout:()=>Zee,gaussianNoise:()=>Kee,globalAveragePooling1d:()=>Cee,globalAveragePooling2d:()=>Ree,globalMaxPool1d:()=>Hee,globalMaxPool2d:()=>Gee,globalMaxPooling1d:()=>x7,globalMaxPooling2d:()=>w7,gru:()=>Mee,gruCell:()=>$ee,input:()=>y7,inputLayer:()=>jQ,layerNormalization:()=>_ee,leakyReLU:()=>qQ,lstm:()=>Dee,lstmCell:()=>Oee,masking:()=>Jee,maxPool1d:()=>qee,maxPool2d:()=>Xee,maxPooling1d:()=>b7,maxPooling2d:()=>_7,maxPooling3d:()=>Fee,maximum:()=>gee,minimum:()=>yee,multiply:()=>xee,permute:()=>dee,prelu:()=>XQ,reLU:()=>GQ,repeatVector:()=>cee,reshape:()=>hee,rnn:()=>Bee,separableConv2d:()=>tee,simpleRNN:()=>zee,simpleRNNCell:()=>Pee,softmax:()=>KQ,spatialDropout1d:()=>lee,stackedRNNCells:()=>Vee,thresholdedReLU:()=>ZQ,timeDistributed:()=>jee,upSampling2d:()=>ree,zeroPadding2d:()=>vee});var Qee=0;function v7(){return Qee++}var qp={};function Xp(e=""){return e in qp||(qp[e]=0),qp[e]+=1,e+qp[e].toString()}function YA(e){return Array.isArray(e)&&Array.isArray(e[0])}function Kp(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Be(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new W(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function pt(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new W(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Zp(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((r,a)=>r*a);return t}var k7="Variable",I7=class{constructor(e,t="float32",n=k7,r=!0,a=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=v7(),n=n==null?k7:n,this.originalName=u7(n),this.name=c7(this.originalName),this.trainable_=r,this.constraint=a,this.val=zx(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),ete(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function ete(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function JA(e){return e.map(t=>t.read())}function QA(e){e.forEach(t=>{t[0].write(t[1])})}var Qt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Cr=class{constructor(e,t,n,r,a,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=r,this.callArgs=a,this.outputTensorIndex=i,this.id=v7(),s!=null&&(this.originalName=u7(s),this.name=c7(this.originalName)),this.rank=t.length}},tte=0,Yp=class{constructor(e,t){this.callArgs=t,this.id=tte++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},nte=0,Je=class extends ae.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=nte++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=ma(n)+"_"+Xp(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let a=null;e.batchSize!=null&&(a=e.batchSize),n=[a].concat(e.inputShape)}this.batchInputShape=n;let r=e.dtype;r==null&&(r=e.inputDType),r==null&&(r="float32"),this.dtype=r}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Tr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new W(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Rn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Rn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new fa(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new fa(`Layer ${this.name} is not connected, no input to return.`);return Rn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new fa(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new fa(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Rn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=At(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=At(this.inputSpec);if(e.length!==t.length)throw new W(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;na.maxNDim)throw new W(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${a.maxNDim}, found ndim=${s}`);if(a.minNDim!=null&&s=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(c)===-1)throw new W(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(a.shape!=null)for(let i=0;i{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of At(e))s.push(i.shape);this.build(Rn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&a&&(this._refCount=1)}if(this.assertInputCompatibility(e),a){let s=this.call(e,t),i=At(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=Rn(o),this.activityRegularizer!=null)throw new Pe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=rte(e),i=this.computeOutputShape(s),o,l=ate(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,c)=>new Cr(l,u,this,At(e),t,this.name,c)):o=new Cr(l,i,this,At(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new Pe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,r)=>{n!=null&&e[r]!=null&&e[r]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new fa(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new fa(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Tr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Zp(this.weights)}build(e){this.built=!0}getWeights(e=!1){return JA(e?this.trainableWeights:this.weights)}setWeights(e){L(()=>{let t=this.weights;if(t.length!==e.length)throw new W(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],r=JA(t);for(let a=0;aa.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=At(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,r,a,s,i=null){let o=At(e);t=At(t),n=At(n),r=At(r),a=Kp(a),s=Kp(s);let l=[],u=[],c=[];for(let h of o)l.push(h.sourceLayer),u.push(h.nodeIndex),c.push(h.tensorIndex);new Yp({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:c,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:r,inputShapes:a,outputShapes:s},i);for(let h=0;he.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function rte(e){e=At(e);let t=[];for(let n of e)t.push(n.shape);return Rn(t)}function ate(e){return"float32"}function N7(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let r=t.inboundNodes[n];if(r.inboundLayers.length===0)return r.inputTensors;{let a=[];for(let s=0;s0){let a=await Promise.all(t);for(let s=0;sie(this.totals[r],O(a,n)));this.totals[r]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:L(()=>{let r=O(_e(1,this.seen),this.totals[n]);t[n]=r,this.totals[n].dispose(),Zt(t[n])}))}},R7=class extends ql{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let a in this.history){let s=this.history[a];for(let i=0;inew F7(n,t))}var mr=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),mr.checkForDuplicate(t),mr.constructors[e]==null&&(mr.constructors[e]=[]),mr.constructors[e].push(t)}static checkForDuplicate(e){for(let t in mr.constructors)mr.constructors[+t].forEach(n=>{if(n===e)throw new W("Duplicate callback constructor.")})}static clear(){mr.constructors={}}static createCallbacks(e){let t=[];for(let n in mr.constructors){let r=+n;e>=r&&t.push(...mr.constructors[r])}return t.map(n=>new n)}};mr.constructors={};function $7(e,t,n,r,a,s,i,o,l){let u=new R7,c=[new ite,...mr.createCallbacks(t)];e!=null&&c.push(...e),c.push(u);let h=new C7(c);return h.setParams({epochs:n,initialEpoch:r,samples:a,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:h,history:u}}function Rr(e,t={},n=!1){return Tc(e,ae.SerializationMap.getMap().classNameMap,t,"layer",n)}function Jp(e,t){return L(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Fe(Mc(e),t,!0),r=Qu(n.shape,Ht()),a=an(Vr(n,r));return _e(e,a)})}function Di(e,t){return L(()=>Tt(Mc(be(t,e)),-1))}function Qp(e,t){return L(()=>Tt(Vt(be(t,e)),-1))}function Xl(e,t){return L(()=>{let n=be(e,t),r=Nn(Vt(e),Ht(),Number.MAX_VALUE),a=Vt(_e(n,r));return O(100,Tt(a,-1))})}function ote(e,t){return L(()=>{let n=Nn(t,Ht(),Number.MAX_VALUE),r=On(ie(1,n)),a=Nn(e,Ht(),Number.MAX_VALUE),s=On(ie(1,a));return Tt(Mc(be(r,s)),-1)})}function lte(e,t){return L(()=>{let n=Vr(0,be(1,O(e,t)));return Tt(Mc(n),-1)})}function ute(e,t){return L(()=>{let n=Vr(0,be(1,O(e,t)));return Tt(n,-1)})}function cte(e,t){return L(()=>{let n=Fe(O(e,t),-1),r=Qn(O(be(1,e),t),-1);return Vr(0,ie(1,be(r,n)))})}function hte(e,t){return L(()=>{let n=Math.log(2),r=be(t,e),a=be(ie(r,bl(O(-2,r))),n);return Tt(a,-1)})}function Oc(e,t,n=!1){return L(()=>{if(n)t=oc(t);else{let r=Fe(t,t.shape.length-1,!0);t=_e(t,r)}return t=Nn(t,Ht(),1-Ht()),St(Fe(O(e.toFloat(),On(t)),t.shape.length-1))})}function e0(e,t,n=!1){return L(()=>{let r=wl($Q(e)).toInt();t=Nn(t,Ht(),1-Ht());let a=t.shape,s=hl(r,a[a.length-1]).reshape(a);return Oc(s,t,n)})}function dte(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new W(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return L(()=>{let n=t.relu(),r=t.abs().neg();return n.sub(t.mul(e)).add(r.exp().log1p())})}function t0(e,t){return L(()=>{let n;return n=Nn(t,Ht(),1-Ht()),n=On(_e(n,be(1,n))),Tt(dte(e,n),-1)})}function pte(e,t){return L(()=>{let n=Nn(e,Ht(),1),r=Nn(t,Ht(),1);return Fe(O(e,On(_e(n,r))),-1)})}function fte(e,t){return L(()=>{let n=On(ie(Ht(),t));return Tt(be(t,O(e,n)),-1)})}function eg(e,t){return L(()=>{let n=Jp(e,-1),r=Jp(t,-1),a=O(n,r);return St(Fe(a,-1))})}var n0={meanSquaredError:Di,meanAbsoluteError:Qp,meanAbsolutePercentageError:Xl,meanSquaredLogarithmicError:ote,squaredHinge:lte,hinge:ute,categoricalHinge:cte,logcosh:hte,categoricalCrossentropy:Oc,sparseCategoricalCrossentropy:e0,binaryCrossentropy:t0,kullbackLeiblerDivergence:pte,poisson:fte,cosineProximity:eg};function tg(e){if(typeof e=="string"){if(e in n0)return n0[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new W(t)}else return e}function ng(e,t){return L(()=>{let n=O(.5,zn(t)),r=Rc(ur(t,n),e.dtype);return Tt(Ba(e,r),-1)})}function rg(e,t){return L(()=>Rc(Ba(qu(e,-1),qu(t,-1)),"float32"))}function D7(e,t){return L(()=>cr(e.equal(1),t.equal(1)).sum().cast("float32"))}function mte(e,t){return L(()=>cr(e.equal(1),t.equal(0)).sum().cast("float32"))}function Ate(e,t){return L(()=>cr(e.equal(0),t.equal(1)).sum().cast("float32"))}function O7(e,t){return L(()=>{let n=D7(e,t),r=Ate(e,t),a=n.add(r);return Sn(ur(a,0),n.div(a),0).cast("float32")})}function gte(e,t){return L(()=>{let n=D7(e,t),r=mte(e,t),a=n.add(r);return Sn(ur(a,0),n.div(a),0).cast("float32")})}function z7(e,t){return t0(e,t)}function P7(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),Ba(e,t).asType("float32")}var yte=Di,xte=Di,wte=Qp,bte=Qp,_te=Xl,vte=Xl,ag=Oc,kte=eg,L7=e0,r0={binaryAccuracy:ng,categoricalAccuracy:rg,precision:O7,categoricalCrossentropy:ag,sparseCategoricalCrossentropy:L7,mse:yte,MSE:xte,mae:wte,MAE:bte,mape:_te,MAPE:vte,cosine:kte};function Ite(e){if(typeof e=="string"&&e in r0)return r0[e];if(typeof e!="string"&&e!=null)return e;throw new W(`Unknown metric ${e}`)}function a0(e){if(Xr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(n0))if(n0[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(r0))if(r0[n]===e){t=n;break}return t!==void 0?t:e.name}}function Nte(e){let t={Adagrad:()=>bi.adagrad(.01),Adadelta:()=>bi.adadelta(1,.95,Ht()),Adam:()=>bi.adam(.001,.9,.999,Ht()),Adamax:()=>bi.adamax(.002,.9,.999,Ht(),0),RMSProp:()=>bi.rmsprop(.001,.9,0,Ht()),SGD:()=>bi.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new W(`Unknown Optimizer ${e}`)}var W7=1*1024*1024;function B7(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!sg(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let r=JSON.stringify(e);r.length>W7&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${r.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${W7}.`)}}function sg(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!sg(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!sg(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function Rte(e,t,n,r=console.log){let a=Tte(e),s=["Layer (type)","Output shape","Param #"];a?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let i;if(!a){s.push("Receives inputs"),i=[];for(let c in e.nodesByDepth)i.push(...e.nodesByDepth[c])}r("_".repeat(t)),s0(s,n,r),r("=".repeat(t));let o=e.layers;for(let c=0;c1||a.length===1&&a[0].inboundLayers.length>1){t=!1;break}r.push(...a)}if(t)for(let a of e.layers){let s=!1;for(let i of a.inboundNodes)if(r.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function s0(e,t,n=console.log){let r="";for(let a=0;a0&&(r=r.slice(0,r.length-1)+" "),r+=e[a],r=r.slice(0,t[a]),r+=" ".repeat(t[a]-r.length);n(r)}function Ete(e,t,n){let r;try{r=JSON.stringify(e.outputShape)}catch(o){r="multiple"}let a=e.name,s=e.getClassName(),i=[`${a} (${s})`,r,e.countParams().toString()];s0(i,t,n)}function Cte(e,t,n,r){let a;try{a=JSON.stringify(e.outputShape)}catch(c){a="multiple"}let s=[];for(let c of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(c)===-1))for(let h=0;hf.name),l=[],u=t.names();for(let f of o)u.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);r!=null&&(r.maxNumTensors=-Infinity,r.minNumTensors=Infinity);let c=o.join(",")+"|"+t.names().join(","),h,d;if(lg[c]==null){let f=Mte(i,t);h=f.sorted,d=f.recipientCounts,lg[c]=h,U7[c]=d}h=lg[c],d={},a||Object.assign(d,U7[c]);let p=new Oi(t);for(let f=0;fr.maxNumTensors&&(r.maxNumTensors=E),E0,()=>"Expected at least one fetch, got none");let n=[],r={};if(e.length===1){let a=j7(e[0],t);n=a.sorted,r=a.recipientMap}else{let a=new Set;for(let s of e){let{sorted:i,recipientMap:o}=j7(s,t);for(let l of i)a.has(l.name)||(n.push(l),a.add(l.name));for(let l in o)r[l]==null&&(r[l]=new Set),o[l].forEach(u=>r[l].add(u))}}return{sorted:n,recipientCounts:Dte(r)}}function Dte(e){let t={};for(let n in e)t[n]=e[n].size;return t}function j7(e,t){let n=new Set,r=[],a={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),r.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)a[u.name]==null&&(a[u.name]=new Set),a[u.name].add(o.name),!n.has(u.name)&&s.push(u)}}return{sorted:r,recipientMap:a}}function $te(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let r=0;rg.name)}`);Ka(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(g=>g.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let g of this.outputs){let y=g.sourceLayer,w=g.nodeIndex,b=g.tensorIndex;this.outputLayers.push(y),this.outputLayersNodeIndices.push(w),this.outputLayersTensorIndices.push(b)}for(let g of this.inputs){let y=g.sourceLayer,w=g.nodeIndex,b=g.tensorIndex;Xr(w===0,"input layer has >1 nodes"),Xr(b===0,"input layer has >1 tensors"),this.inputLayers.push(y),this.inputLayersNodeIndices.push(w),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let g=0;gg.shape),this.internalOutputShapes=this.outputs.map(g=>g.shape);let t={},n={},r={},a={},s={},i=[],o=(g,y,w,b,_,x)=>{(b==null||_==null||x==null)&&(b=g.sourceLayer,_=g.nodeIndex,x=g.tensorIndex);let N=b.inboundNodes[_];if(w.indexOf(N)!==-1)throw new Tr(`The tensor ${g.name} at layer "${b.name}" is part of a cycle.`);if(y.indexOf(N)!==-1)return;this.containerNodes.add(Jr.nodeKey(b,_)),b.id in s||(s[b.id]=Object.keys(s).length),w.indexOf(N)===-1&&w.push(N);let T=N.inboundLayers.length;for(let E=0;E=0;)w.splice(w.indexOf(N),1);i.push(N)},l=[],u=[];for(let g of this.outputs)o(g,l,u);let c=i.slice().reverse();for(let g of c){n[g.id]=g,g.id in t||(t[g.id]=0);let y=t[g.id],w=r[g.outboundLayer.id]==null?0:r[g.outboundLayer.id];y=Math.max(y,w),r[g.outboundLayer.id]=y,a[g.outboundLayer.id]=g.outboundLayer,t[g.id]=y;for(let b=0;bparseInt(g,10)).sort(zp);this.layers=[];for(let g of p){let y=d[g];y.sort((w,b)=>{let _=s[w.id],x=s[b.id];return _x?1:0});for(let w of y)w instanceof Jr&&this.internalContainerRefs.push(w),this.layers.push(w)}this.layersByDepth=d,p=Object.keys(h).map(g=>parseInt(g,10)).sort(zp);let f=this.inputs.slice(),m=[];for(let g of p)for(let y of h[g]){let w=y.outboundLayer;if(w!=null){for(let b of y.inputTensors)if(f.indexOf(b)===-1)throw new Tr(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${w.name}". The following previous layers were accessed without issue: ${m}`);for(let b of y.outputTensors)f.push(b);m.push(w.name)}}this.nodesByDepth=h;let A=this.layers.map(g=>g.name);for(let g of A){let y=A.filter(w=>w===g).length;if(y!==1)throw new Tr(`The name "${g}" is used ${y} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(A))}this.outboundNodes=[],this.inboundNodes=[],new Yp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(g=>null),outputMasks:this.outputs.map(g=>null),inputShapes:this.inputs.map(g=>g.shape),outputShapes:this.outputs.map(g=>g.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new W("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},r=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new W(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,r++}let a=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)a.push([n[i],e[s]]);else if(t)throw new W(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new W(`${s.length} of ${r} weights are not set: ${s}`)}QA(a)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${og}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=ig(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return L(()=>{e=At(e);let n=new Oi;for(let r=0;r{e=At(e);let n;return t==null?n=Ci(null,e.length):n=At(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Kp(e);if(t.length!==this.inputLayers.length)throw new W(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;iparseInt(i,10)).sort(zp);if(r.length>1)for(let i of r){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(u.id)!==-1)continue;let c=[];for(let f=0;fparseInt(o,10)).sort(zp);for(let o of r){let l=this.nodesByDepth[o];for(let u of l){let c=u.outboundLayer,h=u.inputTensors,d=u.outputTensors,p=new Array;for(let f of h)f.id in n&&p.push(n[f.id]);if(p.length===h.length){let f={},m,A,g,y;if(u.callArgs!=null&&(f=u.callArgs),p.length===1){let[w,b]=p[0];f.mask==null&&(f.mask=b),g=At(c.call(w,f)),y=At(c.computeMask(w,b)),m=[w],A=[b]}else m=p.map(w=>w[0]),A=p.map(w=>w[1]),f.mask==null&&(f.mask=A),g=At(c.call(m,f)),y=At(c.computeMask(m,A));if(c.activityRegularizer)throw new Pe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let w=0;w{let e=[];for(let t of this.layers)for(let n=0;n0){let f=[];for(let m=0;m0&&m.apply(Rn(g),y)}function l(m){let A=m.name,g=Rr(m,t.customObjects!=null?t.customObjects:{});g.setFastWeightInitDuringBuild(r),a[A]=g,m.inboundNodes.forEach(y=>{if(!(y instanceof Array))throw new W(`Corrupted configuration, expected array for nodeData: ${y}`);i(g,y)})}let u=t.name,c=t.layers;for(let m of c)l(m);for(;!oQ(s);)for(let m of c){let A=a[m.name];if(A.name in s){let g=s[A.name];delete s[A.name];for(let y of g)o(A,y)}}let h=[],d=[],p=t.inputLayers;for(let m of p){let A=m[0],g=m[1],y=m[2];Xr(A in a);let w=a[A].inboundNodes[g].outputTensors;h.push(w[y])}let f=t.outputLayers;for(let m of f){let A=m[0],g=m[1],y=m[2];Xr(A in a);let w=a[A].inboundNodes[g].outputTensors;d.push(w[y])}return new e({inputs:h,outputs:d,name:u})}get stateful(){if(this._stateful)throw new W("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){L(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function Ote(e,t,n){let r=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>null);if(r===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==r)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${r} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let a=[];return t.forEach(s=>{s in e?a.push(e[s]):a.push(null)}),a}else throw new Error(`The model has multiple (${r}) outputs, so ${n} must be either an array with ${r} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function H7(e,t){return Ote(e,t,"classWeight")}async function G7(e,t,n,r){if(t!=null||r!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let a=L(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await a.data());Re(a);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),hn(i,"float32")}else return null}function zte(e,t){return O(e,t)}var Pte=32;function X7(e,t){let n,r,a=t;n=a.xs,r=a.ys,v.assert(n!=null&&r!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=q7("input",e.inputNames,n),i=q7("output",e.outputNames,r),o=s[0].shape[0];v.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function q7(e,t,n){if(n instanceof qe)return[n];if(Array.isArray(n))return v.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let r=[];for(let a of t){if(n[a]==null)throw new W(`The feature data generated by the dataset lacks the required ${e} key '${a}'.`);r.push(n[a])}return r}}function Lte(e){if(e.length===3)throw new Pe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function Bte(e,t,n){let r=n.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),v.assert(!r||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),v.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let a=n.validationData!=null,s,i;if(a)if(K7(n.validationData))v.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let A=Lte(n.validationData);s=A.xs,i=A.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;a?u=l.slice().concat(l.map(A=>"val_"+A)):u=l.slice();let c=M7(n.callbacks,n.yieldEvery),h=n.verbose==null?1:n.verbose,{callbackList:d,history:p}=$7(c,h,n.epochs,null,null,Wte(t,n),null,a,u);d.setModel(e),e.history=p,await d.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f=n.batchesPerEpoch:w.done){if(a){let b;K7(n.validationData)?b=At(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=At(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?Pte:n.validationBatchSize,verbose:0}));for(let _=0;_0)throw new Pe("Verbose mode is not implemented yet.");v.assert(!r||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=Vte(t)?t:await t.iterator(),o=0,l=0;for(;r?l{if(u.value){let{xs:c,ys:h}=X7(e,u.value),d=c.concat(h),p=L(()=>a(d));if(Re(d),l===0)for(let m=0;mie(s[m],O(f,A))),l>0&&Re(g)}Re(p),o+=f,++l}return s}),u.done){r&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Lc(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(r=>$i(r,t,n-t)):$i(e,t,n-t)}function cg(e,t){return L(()=>e==null?null:Array.isArray(e)?e.map(n=>cg(n,t)):p7(e,t.dtype==="int32"?t:t.toInt()))}function hg(e,t){let n=[],r=0,a=null;for(;r=e&&(a=e),n.push([r,a]),r=a;return n}async function jte(e,t,n,r,a,s,i,o,l,u,c,h,d,p,f){a==null&&(a=32),s==null&&(s=1),c==null&&(c=!0),d==null&&(d=0);let m=!1;if(l!=null&&u!=null&&(m=!0),f!=null&&(m=!0,p==null))throw new W("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let A=e.checkNumSamples(n,a,p,"steps_per_epoch"),g;A!=null&&(g=Er(0,A)),i==null&&(i=1);let{callbackList:y,history:w}=$7(o,i,s,d,A,p,a,m,h);y.setModel(e),e.history=w,await y.onTrainBegin(),e.stopTraining_=!1;for(let b=d;b{let M=N[T][0],z=N[T][1],B=$i(x,M,z-M);E.batch=T,E.size=z-M;let V=cg(n,B),U=t(V);for(let j=0;j0){if(f=!0,r.validationData.length===2)i=r.validationData[0],o=r.validationData[1];else throw r.validationData.length===3?new Pe("validationData including sample weights is not supported yet."):new W(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${r.validationData} is invalid.`);let x=!0,N=await e.standardizeUserData(i,o,null,null,x,h);l=N[0],u=N[1],m=l.concat(u)}else if(r.validationSplit!=null&&r.validationSplit>0&&r.validationSplit<1){f=!0;let x=Math.floor(a[0].shape[0]*(1-r.validationSplit)),N=a[0].shape[0];l=Lc(a,x,N),a=Lc(a,0,x),u=Lc(s,x,N),s=Lc(s,0,x),m=l.concat(u)}else r.validationSteps!=null&&(f=!0);let A=a.concat(s).concat(c);e.checkTrainableWeightsConsistency();let g=e.makeTrainFunction(),y=e.getDedupedMetricsNames(),w,b;f?(e.makeTestFunction(),w=e.testFunction,b=y.slice().concat(y.map(x=>"val_"+x))):(w=null,m=[],b=y.slice());let _=M7(r.callbacks,r.yieldEvery);return await jte(e,g,A,y,h,r.epochs,r.verbose,_,w,m,r.shuffle,b,r.initialEpoch,null,null)}finally{e.isTraining=!1,zi(a,t),zi(s,n),zi(l,i),zi(u,o),c!=null&&Re(c)}}function Z7(e){let t=[];e instanceof qe&&(e=[e]);for(let n=0;nn.push(a.id));else if(t!=null)for(let a in t){let s=t[a];n.push(s.id)}let r=[];if(e instanceof qe)n.indexOf(e.id)===-1&&r.push(e);else if(Array.isArray(e))e.forEach(a=>{n.indexOf(a.id)===-1&&r.push(a)});else if(e!=null)for(let a in e){let s=e[a];n.indexOf(s.id)===-1&&r.push(s)}r.forEach(a=>{a.isDisposed||a.dispose()})}function Gte(e){return e instanceof qe}function dg(e){return Array.isArray(e)}function Y7(e){return!Gte(e)&&!dg(e)}function J7(e,t,n,r=!0,a=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(dg(e)&&e.length>0)i=!0;else if(Y7(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new W(`Error when checking model ${a} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(Y7(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new W(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(dg(e)){if(e=e,e.length!==t.length)throw new W(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new W(`The model ${a} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=Z7(s),n!=null)for(let i=0;i=0&&u!==c)throw new W(`Error when checking ${a}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function qte(e,t,n){let r=Ka(e.map(s=>s.shape[0]));r.sort();let a=Ka(t.map(s=>s.shape[0]));if(a.sort(),r.length>1)throw new W(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(a.length>1)throw new W(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(r.length>0&&a.length>0&&!v.arraysEqual(r,a))throw new W(`Input Tensors should have the same number of samples as target Tensors. Found ${r[0]} input sample(s) and ${a[0]} target sample(s).`)}function Xte(e,t,n){let r=[Di,t0,Oc];for(let a=0;a1)throw new W(`The model expects ${t.length} ${a} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(r=>n);{let r=[];for(let a of t){let s=n.hasOwnProperty(a)?n[a]:[];Array.isArray(s)||(s=[s]),r.push(s)}return r}}var Zte="layers-model",Aa=class extends Jr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new W("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");Rte(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=Nte(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof da))throw new W("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new W(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(tg(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new W(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>tg(s))}else{let s=tg(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s{for(let s=0;s1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let r=Kte(e.metrics,this.outputNames),a=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Mi("metric",()=>{for(let s=0;s{let l="",u,c,h;for(let d of o){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let f=this.internalOutputShapes[s];f[f.length-1]===1||this.lossFunctions[s]===t0?["accuracy","acc"].indexOf(d)!==-1?c=ng:["crossentropy","ce"].indexOf(d)!==-1&&(c=z7):this.lossFunctions[s]===e0?["accuracy","acc"].indexOf(d)!==-1?c=P7:["crossentropy","ce"].indexOf(d)!==-1&&(c=L7):["accuracy","acc"].indexOf(d)!==-1?c=rg:["crossentropy","ce"].indexOf(d)!==-1&&(c=ag);let m;["accuracy","acc"].indexOf(d)!==-1?m="acc":["crossentropy","ce"].indexOf(d)!==-1&&(m="ce"),h=c,u=l+m}else h=Ite(d),u=l+a0(d);let p;Mi(u,()=>{p=h}),a(s,u,p)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let r=n.batchSize==null?32:n.batchSize;ug(r);let a=!0,s=this.standardizeUserDataXY(e,t,a,r);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,r,n.verbose,n.steps);return Rn(l)}finally{zi(s[0],e),zi(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),Ute(this,e,t)}checkNumSamples(e,t,n,r="steps"){let a;if(n!=null){if(a=null,t!=null)throw new W(`If ${r} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?a=e[0].shape[0]:a=e.shape[0];else throw new W(`Either the input data should have a defined shape, or ${r} shoud be specified.`);return a}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new W("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),r=n?t:[t],a=this.retrieveSymbolicTensors(r),s=new Oi;if(e instanceof qe&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new W(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;oi.name);for(let i=0;i0){let r=[];throw t.forEach((a,s)=>{a==null&&r.push(e[s])}),new W(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(r)}`)}return t}predictLoop(e,t=32,n=!1){return L(()=>{let r=this.checkNumSamples(e);if(n)throw new Pe("Verbose predictLoop() is not implemented yet.");let a=hg(r,t),s=this.outputs.map(i=>[]);for(let i=0;i{let o=a[i][0],l=a[i][1],u=Lc(e,o,l),c=[];if(Array.isArray(u))for(let d=0;ds[l].push(o));return Rn(s.map(i=>ot(i,0)))})}predict(e,t={}){let n=Z7(e);Q7(n,this.inputNames,this.feedInputShapes,!1);try{let r=t.batchSize==null?32:t.batchSize;return ug(r),this.predictLoop(n,r)}finally{zi(n,e)}}predictOnBatch(e){Q7(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,r){if(this.optimizer_==null)throw new Tr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let a=[];for(let s=0;s0&&e[0].shape[0]%r!=0)throw new W(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${r}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,r,a=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,a,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(r!=null){let u=H7(r,this.outputNames);l=[];for(let c=0;c{let s=this.checkNumSamples(t,n,a,"steps"),i=[];if(r>0)throw new Pe("Verbose mode is not implemented yet.");if(a!=null)throw new Pe("steps mode in testLoop() is not implemented yet");{let o=hg(s,n),l=hn(Er(0,s));for(let u=0;u1&&(a+=`_${e7(e.slice(0,n),r)}`),t.push(a)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let p=0;p1&&p{d=ie(d,p)}),d},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>L(()=>{let t=[],n,r=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;lma(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let r of t)if(typeof n[r]=="string")e[r]=ma(n[r]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[ma(a0(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>ma(a0(e)));{let e={};for(let t in this.metrics)e[t]=ma(a0(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=zc(e.optimizer_config),n=Rr(t),r;if(typeof e.loss=="string")r=Ri(e.loss);else if(Array.isArray(e.loss))r=e.loss.map(s=>Ri(s));else if(e.loss!=null){r={};for(let s in e.loss)r[s]=Ri(e.loss[s])}let a;if(Array.isArray(e.metrics))a=e.metrics.map(s=>Ri(s));else if(e.metrics!=null){a={};for(let s in e.metrics)a[s]=Ri(e.metrics[s])}this.compile({loss:r,metrics:a,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=In.getSaveHandlers(e);if(i.length===0)throw new W(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new W(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new W("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await In.encodeWeights(this.getNamedWeights(t)),r=!1,a=null,s={modelTopology:this.toJSON(a,r),format:Zte,generatedBy:`TensorFlow.js tfjs-layers v${og}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await In.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=In.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;B7(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){B7(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Aa.className="Model";ae.registerClass(Aa);var ev=class extends Aa{};ev.className="Functional";ae.registerClass(ev);async function Yte(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let r=zc(n),a=Rr(r,t);if(e.weightsManifest!=null){let s=await In.loadWeights(e.weightsManifest,e.pathPrefix,a.weights.map(o=>o.originalName)),i={};for(let o of a.weights)i[o.originalName]=s[o.originalName];a.loadWeights(i),Re(s)}return a}async function Qte(e,t){if(t==null&&(t={}),typeof e=="string"){let n=In.getLoadHandlers(e,t);if(n.length===0)n.push(In.browserHTTPRequest(e,t));else if(n.length>1)throw new W(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return Jte(e,void 0,t)}async function Jte(e,t,n){if(n==null&&(n={}),e.load==null)throw new W("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let r=await e.load(),a=r.modelTopology;a.model_config!=null&&(a=a.model_config);let s=n.strict==null?!0:n.strict,i=r.weightData!=null&&r.weightSpecs!=null&&s,o=Rr(zc(a),t,i),l=r.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),r.userDefinedMetadata!=null&&o.setUserDefinedMetadata(r.userDefinedMetadata),r.weightData!=null){if(r.weightSpecs==null)throw new W("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=ene(r.weightData,r.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&c.length>0&&await o.optimizer.setWeights(c),Re(u),Re(c.map(h=>h.tensor))}return o}function ene(e,t){let n=In.decodeWeights(e,t),r={},a=[];return t.forEach(s=>{s.group==="optimizer"?a.push({name:s.name,tensor:n[s.name]}):r[s.name]=n[s.name]}),{modelWeights:r,optimizerWeights:a}}var Kl=class extends Aa{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Xp("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new W(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Kl||e instanceof Aa,n;if(t){if(n=e,n.outputs.length!==1)throw new W("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new W("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new W("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let r=S7({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(r)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new W(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new W("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=N7(this.outputs[0])}this.inboundNodes=[],new Yp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Ci(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(r=>r.shape),outputShapes:this.outputs[0].shape})}else{let r=e.apply(this.outputs[0]);if(Array.isArray(r))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[r],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(pt(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Aa({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Tr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Tr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Tr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Tr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},r=!1){let a,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new W("Legacy serialization format not supported yet.");a=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),a=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Kl))throw new Pe(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of a){let l=Rr(o,void 0,r);r&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new W("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new W("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Kl.className="Sequential";ae.registerClass(Kl);function tne(e){return new Aa(e)}function nne(e){return new Kl(e)}function rne(e,t){return t==null&&(t={}),Qte(e,t)}function y7(e){return S7(e)}function ane(e,t){mr.registerCallbackConstructor(e,t)}var Vn=class extends ae.Serializable{getConfig(){return{}}},tv=class extends Vn{apply(e,t=1){return OQ(e,t)}};tv.className="elu";ae.registerClass(tv);var nv=class extends Vn{apply(e){return Vd(e)}};nv.className="selu";ae.registerClass(nv);var rv=class extends Vn{apply(e){return jr(e)}};rv.className="relu";ae.registerClass(rv);var av=class extends Vn{apply(e){return L(()=>vl(6,jr(e)))}};av.className="relu6";ae.registerClass(av);var sv=class extends Vn{apply(e){return e}};sv.className="linear";ae.registerClass(sv);var iv=class extends Vn{apply(e){return Dn(e)}};iv.className="sigmoid";ae.registerClass(iv);var ov=class extends Vn{apply(e){return PQ(e)}};ov.className="hardSigmoid";ae.registerClass(ov);var lv=class extends Vn{apply(e){return bl(e)}};lv.className="softplus";ae.registerClass(lv);var uv=class extends Vn{apply(e){return zQ(e)}};uv.className="softsign";ae.registerClass(uv);var cv=class extends Vn{apply(e){return Al(e)}};cv.className="tanh";ae.registerClass(cv);var pg=class extends Vn{apply(e,t=-1){return oc(e,t)}};pg.className="softmax";ae.registerClass(pg);var hv=class extends Vn{apply(e,t=-1){return Dd(e,t)}};hv.className="logSoftmax";ae.registerClass(hv);var dv=class extends Vn{apply(e,t=1){return L(()=>Dn(e.mul(t)).mul(e))}};dv.className="swish";ae.registerClass(dv);function Qa(e){return e.getClassName()}function fg(e,t={}){return Tc(e,ae.SerializationMap.getMap().classNameMap,t,"activation")}function es(e){if(e==null){let t={};return t.className="linear",t.config={},fg(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},fg(t)}else return e instanceof Vn?e:fg(e)}function mg(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var pv=class extends ae.Serializable{},Wc=class extends pv{constructor(e){super();mg(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return L(()=>{let t=Ot([1]);return this.hasL1&&(t=ie(t,Fe(O(this.l1,Vt(e))))),this.hasL2&&(t=ie(t,Fe(O(this.l2,Mc(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Wc.className="L1L2";ae.registerClass(Wc);function sne(e){return mg(e),new Wc({l1:e!=null?e.l1:null,l2:0})}function ine(e){return mg(e),new Wc({l2:e!=null?e.l2:null,l1:0})}var fv={l1l2:"L1L2"};function ft(e){return EA(e)}function mv(e,t={}){return Tc(e,ae.SerializationMap.getMap().classNameMap,t,"regularizer")}function _t(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in fv?fv[e]:e,config:{}};return mv(t)}else return e instanceof pv?e:mv(e)}var Ag=class extends Je{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Be(e);let n=jr(e);return this.maxValue!=null&&(n=Nn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};Ag.className="ReLU";ae.registerClass(Ag);var gg=class extends Je{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Be(e);return ec(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};gg.className="LeakyReLU";ae.registerClass(gg);var yg=class extends Je{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=bt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=_t(e.alphaRegularizer),this.alphaConstraint=qt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new W(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=pt(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let r of this.sharedAxes)t[r-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let r=1;r(Mt(t),t==="channelsFirst"?it(e,[0,2,3,1]):e))}function Av(e,t){return L(()=>(Mt(t),t==="channelsFirst"?it(e,[0,2,3,4,1]):e))}function one(e,t,n,r=1,a="valid",s,i=1){return L(()=>{if(s==null&&(s=Sr()),Mt(s),e.shape.length!==3)throw new W(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new W(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new W(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=it(e,[0,2,1])),a==="causal")throw new Pe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=Sd(e,t,r,a==="same"?"same":"valid","NWC",i);return n!=null&&(o=Zr(o,n)),o})}function gv(e,t,n,r=[1,1],a="valid",s,i,o=null){return L(()=>{if(s==null&&(s=Sr()),Mt(s),e.rank!==3&&e.rank!==4)throw new W(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new W(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=_g(e,s);if(a==="causal")throw new Pe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Ha.conv2d({x:l,filter:t,strides:r,pad:a==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=it(l,[0,3,1,2])),l})}function lne(e,t,n,r=[1,1,1],a="valid",s,i){return L(()=>{if(s==null&&(s=Sr()),Mt(s),e.rank!==4&&e.rank!==5)throw new W(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new W(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=Av(e,s);if(a==="causal")throw new Pe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=hm(o,t,r,a==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Zr(o,n)),s==="channelsFirst"&&(o=it(o,[0,4,1,2,3])),o})}var vg=class extends Je{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",vg.verifyArgs(t),this.rank=e,Jt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Pe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Zl(t.kernelSize,e,"kernelSize"),this.strides=Zl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,nr(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Mt(this.dataFormat),this.activation=es(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=bt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=qt(t.biasConstraint),this.biasRegularizer=_t(t.biasRegularizer),this.activityRegularizer=_t(t.activityRegularizer),this.dilationRate=Zl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new W(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new W(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new W(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Xr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!RA(e.kernelSize,"number",1,3))throw new W(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Qa(this.activation),useBias:this.useBias,biasInitializer:Et(this.biasInitializer),biasRegularizer:ft(this.biasRegularizer),activityRegularizer:ft(this.activityRegularizer),biasConstraint:Gt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Bc=class extends vg{constructor(e,t){super(e,t);this.kernel=null,Bc.verifyArgs(t),this.filters=t.filters,Jt(this.filters,"filters"),this.kernelInitializer=bt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=qt(t.kernelConstraint),this.kernelRegularizer=_t(t.kernelRegularizer)}build(e){e=pt(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new W(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],r=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",r,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return L(()=>{e=Be(e);let n,r=this.bias==null?null:this.bias.read(),a=n7(this.activation.getClassName());if(a!=null&&this.rank===2)n=gv(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate,a);else{if(this.rank===1)n=one(e,this.kernel.read(),r,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=gv(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=lne(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Pe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=pt(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let a=0;a 0 but got ${JSON.stringify(e.filters)}`)}},Vc=class extends Bc{constructor(e){super(2,e);Vc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!RA(e.kernelSize,"number",1,2))throw new W(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Vc.className="Conv2D";ae.registerClass(Vc);var o0=class extends Bc{constructor(e){super(3,e);o0.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new W(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};o0.className="Conv3D";ae.registerClass(o0);var kg=class extends Vc{constructor(e){super(e);if(this.inputSpec=[new Qt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new W(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=pt(e),e.length!==4)throw new W("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new W("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Qt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return L(()=>{let n=Be(e);if(n.shape.length!==4)throw new W(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=r[s],l=r[i],u=this.kernelSize[0],c=this.kernelSize[1],h=this.strides[0],d=this.strides[1],p=i0(o,h,u,this.padding),f=i0(l,d,c,this.padding),m=[a,p,f,this.filters];this.dataFormat!=="channelsLast"&&(n=it(n,[0,2,3,1]));let A=Td(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(A=it(A,[0,3,1,2])),this.bias!=null&&(A=Zr(A,this.bias.read(),this.dataFormat)),this.activation!=null&&(A=this.activation.apply(A)),A})}computeOutputShape(e){e=pt(e);let t=e.slice(),n,r,a;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3):(n=3,r=1,a=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[r]=i0(t[r],o,s,this.padding),t[a]=i0(t[a],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};kg.className="Conv2DTranspose";ae.registerClass(kg);var yv=class extends Bc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new W("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new W("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new W(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=bt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=_t(t.depthwiseRegularizer),this.depthwiseConstraint=qt(t.depthwiseConstraint),this.pointwiseInitializer=bt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=_t(t.pointwiseRegularizer),this.pointwiseConstraint=qt(t.pointwiseConstraint)}build(e){if(e=pt(e),e.length{e=Be(e);let n;if(this.rank===1)throw new Pe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=it(e,[0,2,3,1])),n=Em(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Zr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=it(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Et(this.depthwiseInitializer),e.pointwiseInitializer=Et(this.pointwiseInitializer),e.depthwiseRegularizer=ft(this.depthwiseRegularizer),e.pointwiseRegularizer=ft(this.pointwiseRegularizer),e.depthwiseConstraint=Gt(this.depthwiseConstraint),e.pointwiseConstraint=Gt(this.pointwiseConstraint),e}};yv.className="SeparableConv";var Ig=class extends yv{constructor(e){super(2,e)}};Ig.className="SeparableConv2D";ae.registerClass(Ig);var l0=class extends Bc{constructor(e){super(1,e);l0.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!RA(e.kernelSize,"number",1,1))throw new W(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};l0.className="Conv1D";ae.registerClass(l0);var Ng=class extends Je{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return L(()=>{if(e=Be(e),this.dataFormat==="channelsLast"){let n=Pp(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Pp(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Pp(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Pp(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Ng.className="Cropping2D";ae.registerClass(Ng);var Sg=class extends Je{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Mt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,EQ(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return L(()=>{let n=Be(e),r=n.shape;if(this.dataFormat==="channelsFirst"){n=it(n,[0,2,3,1]);let a=this.size[0]*r[2],s=this.size[1]*r[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s]);return it(i,[0,3,1,2])}else{let a=this.size[0]*r[1],s=this.size[1]*r[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Sg.className="UpSampling2D";ae.registerClass(Sg);function une(e,t,n=[1,1],r="valid",a,s){return L(()=>{a==null&&(a=Sr()),Mt(a);let i=_g(e,a);if(e.rank!==4)throw new W(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new W(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=yl(i,t,n,r==="same"?"same":"valid","NHWC",s),a==="channelsFirst"&&(i=it(i,[0,3,1,2])),i})}var Tg=class extends vg{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=bt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=qt(e.depthwiseConstraint),this.depthwiseRegularizer=_t(e.depthwiseRegularizer)}build(e){if(e=pt(e),e.length<4)throw new W(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new W(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],r=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",r,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return L(()=>{e=Be(e);let n=une(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Zr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=pt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,a=Fr(t,this.kernelSize[0],this.padding,this.strides[0]),s=Fr(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],r,a,s]:[e[0],a,s,r]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Et(this.depthwiseInitializer),e.depthwiseRegularizer=ft(this.depthwiseRegularizer),e.depthwiseConstraint=Gt(this.depthwiseRegularizer),e}};Tg.className="DepthwiseConv2D";ae.registerClass(Tg);function xv(e,t,n,r){if(Array.isArray(e)){if(t!=null||n!=null)throw new W("When inputs is an array, neither initialState or constants should be provided");r!=null&&(n=e.slice(e.length-r,e.length),e=e.slice(0,e.length-r)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function a(s){return s==null||Array.isArray(s)?s:[s]}return t=a(t),n=a(n),{inputs:e,initialState:t,constants:n}}function wv(e,t,n,r=!1,a,s,i=!1,o=!1){return L(()=>{let l=t.shape.length;if(l<3)throw new W(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Er(2,l));if(t=it(t,u),s!=null)throw new Pe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),a!=null&&(a=a.asType("bool").asType("float32"),a.rank===l-1&&(a=fn(a,-1)),a=it(a,u)),r&&(t=Pn(t,0),a!=null&&(a=Pn(a,0)));let c=[],h,d=n,p=t.shape[0],f=hr(t),m;a!=null&&(m=hr(a));for(let g=0;ge(y,d));if(a==null)h=w[0],d=w[1];else{let b=L(()=>{let _=m[g],x=zn(_).sub(_),N=w[0].mul(_).add(d[0].mul(x)),T=d.map((E,M)=>w[1][M].mul(_).add(E.mul(x)));return{output:N,newStates:T}});h=b.output,d=b.newStates}o&&c.push(h)}let A;return o&&(A=mn(c,1)),[h,A,d]})}var Yr=class extends Je{constructor(e){super(e);let t;if(e.cell==null)throw new W("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new u0({cells:e.cell}):t=e.cell,t.stateSize==null)throw new W("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Qt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Er(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){YA(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],r;if(this.returnSequences?r=[e[0],e[1],n]:r=[e[0],n],this.returnState){let a=[];for(let s of t)a.push([e[0],s]);return[r].concat(a)}else return r}computeMask(e,t){return L(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let r=this.states.map(a=>null);return[n].concat(r)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;ni.shape[i.shape.length-1]),s))throw new W(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Qt({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){L(()=>{if(!this.stateful)throw new fa("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new W("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Ot([n,r])):this.states_=[Ot([n,this.cell.stateSize])];else if(e==null)Re(this.states_),this.keptStates!=null&&(Re(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Ot([n,r])):this.states_[0]=Ot([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new W(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Re(this.states_);for(let r=0;rZt(r.clone()))})}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=xv(e,n,r,this.numConstants);e=a.inputs,n=a.initialState,r=a.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Qt({shape:o.shape}));i=i.concat(this.stateSpec)}if(r!=null&&(t.constants=r,s=s.concat(r),this.numConstants=r.length),s[0]instanceof Cr){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let c=super.apply(o,t);return this.inputSpec=u,c}else return super.apply(e,t)}call(e,t){return L(()=>{let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;e=Be(e),a==null&&(this.stateful?a=this.states_:a=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(a.length!==s)throw new W(`RNN Layer has ${s} state(s) but was passed ${a.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:r},o=wv((d,p)=>{let f=this.cell.call([d].concat(p),i);return[f[0],f.slice(1)]},e,a,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],u=o[1],c=o[2];this.stateful&&this.resetStates(c,r);let h=this.returnSequences?u:l;return this.returnState?[h].concat(c):h})}getInitialState(e){return L(()=>{let t=Ot(e.shape);return t=Fe(t,[1,2]),t=Fc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?zA(t,[1,n]):t):this.cell.stateSize>1?[zA(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Yr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let r=t.cell,a=Rr(r,n);return new e(Object.assign(t,{cell:a}))}};Yr.className="RNN";ae.registerClass(Yr);var Dc=class extends Je{},c0=class extends Dc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Jt(this.units,"units"),this.activation=es(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=bt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=bt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=bt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=_t(e.kernelRegularizer),this.recurrentRegularizer=_t(e.recurrentRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.kernelConstraint=qt(e.kernelConstraint),this.recurrentConstraint=qt(e.recurrentConstraint),this.biasConstraint=qt(e.biasConstraint),this.dropout=Hl([1,Ya([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Hl([1,Ya([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=pt(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return L(()=>{if(e=e,e.length!==2)throw new W(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let r=t.training==null?!1:t.training;0zn(e),rate:this.dropout,training:r})),0zn(n),rate:this.recurrentDropout,training:r}));let a,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?a=Kr(O(e,s),this.kernel.read()):a=Kr(e,this.kernel.read()),this.bias!=null&&(a=Zr(a,this.bias.read())),i!=null&&(n=O(n,i));let o=ie(a,Kr(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Qa(this.activation),useBias:this.useBias,kernelInitializer:Et(this.kernelInitializer),recurrentInitializer:Et(this.recurrentInitializer),biasInitializer:Et(this.biasInitializer),kernelRegularizer:ft(this.kernelRegularizer),recurrentRegularizer:ft(this.recurrentRegularizer),biasRegularizer:ft(this.biasRegularizer),activityRegularizer:ft(this.activityRegularizer),kernelConstraint:Gt(this.kernelConstraint),recurrentConstraint:Gt(this.recurrentConstraint),biasConstraint:Gt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};c0.className="SimpleRNNCell";ae.registerClass(c0);var Eg=class extends Yr{constructor(e){e.cell=new c0(e),super(e)}call(e,t){return L(()=>{this.cell.dropoutMask!=null&&(Re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return new e(t)}};Eg.className="SimpleRNN";ae.registerClass(Eg);var h0=class extends Dc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new W("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Jt(this.units,"units"),this.activation=es(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=es(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=bt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=bt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=bt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=_t(e.kernelRegularizer),this.recurrentRegularizer=_t(e.recurrentRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.kernelConstraint=qt(e.kernelConstraint),this.recurrentConstraint=qt(e.recurrentConstraint),this.biasConstraint=qt(e.biasConstraint),this.dropout=Hl([1,Ya([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Hl([1,Ya([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=pt(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return L(()=>{if(e=e,e.length!==2)throw new W(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,r=e[1];e=e[0],0zn(e),rate:this.dropout,training:n,count:3})),0zn(r),rate:this.recurrentDropout,training:n,count:3}));let a=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0{this.cell.dropoutMask!=null&&(Re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Cg.className="GRU";ae.registerClass(Cg);var Uc=class extends Dc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Jt(this.units,"units"),this.activation=es(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=es(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=bt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=bt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=bt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=_t(e.kernelRegularizer),this.recurrentRegularizer=_t(e.recurrentRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.kernelConstraint=qt(e.kernelConstraint),this.recurrentConstraint=qt(e.recurrentConstraint),this.biasConstraint=qt(e.biasConstraint),this.dropout=Hl([1,Ya([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Hl([1,Ya([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=pt(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let r;if(this.useBias){if(this.unitForgetBias){let a=this.biasInitializer,s=this.units;r=new(t=class extends fr{apply(i,o){let l=a.apply([s]),u=new Wp().apply([s]),c=a.apply([s*2]);return d7(d7(l,u),c)}},t.className="CustomInit",t)}else r=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,r,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return L(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new W(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=e[1],a=e[2];e=e[0],0zn(e),rate:this.dropout,training:n,count:4})),0zn(r),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,c;0{this.cell.dropoutMask!=null&&(Re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Rg.className="LSTM";ae.registerClass(Rg);var u0=class extends Dc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return L(()=>{e=e;let n=e.slice(1),r=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?r.push(n.splice(0,i.stateSize.length)):r.push(n.splice(0,1));r.reverse();let a=[],s;for(let i=0;i{Mi(`RNNCell_${r}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let r=[];for(let a of t.cells)r.push(Rr(a,n));return new e({cells:r})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return JA(e)}setWeights(e){let t=[];for(let n of this.cells){let r=n.weights.length,a=e.splice(r);for(let s=0;sf7(t(),n),i=()=>$c(s,t,r);return!a||a<=1?Zt(i().clone()):Array(a).fill(void 0).map(i).map(o=>Zt(o.clone()))}var cne=function(e,t){var n={};for(var r in e)Object.prototype.hasOwnProperty.call(e,r)&&t.indexOf(r)<0&&(n[r]=e[r]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var a=0,r=Object.getOwnPropertySymbols(e);a{if(this.cell.dropoutMask!=null&&(Re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new W("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return L(()=>{let{stateSize:t}=this.cell,n=e.shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)],s=Ot(a);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){L(()=>{if(!this.stateful)throw new fa("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)];if(n[0]==null)throw new W("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ot(a)):this.states_=[Ot(a)];else if(e==null)Re(this.states_),this.keptStates!=null&&(Re(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ot(a)):this.states_[0]=Ot(a);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new W(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Re(this.states_);for(let s=0;sZt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:r,padding:a,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],c=Fr(l,r[0],a,s[0],i[0]),h=Fr(u,r[1],a,s[1],i[1]);return[...e.slice(0,2),...o?[n,c,h]:[c,h,n]]}};bv.className="ConvRNN2D";var d0=class extends Uc{constructor(e){let{filters:t,kernelSize:n,strides:r,padding:a,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Jt(this.filters,"filters"),this.kernelSize=Zl(n,2,"kernelSize"),this.kernelSize.forEach(o=>Jt(o,"kernelSize")),this.strides=Zl(r||1,2,"strides"),this.strides.forEach(o=>Jt(o,"strides")),this.padding=a||"valid",nr(this.padding),this.dataFormat=s||"channelsLast",Mt(this.dataFormat),this.dilationRate=Zl(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Jt(o,"dilationRate"))}build(e){var t;e=pt(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new W(`The channel dimension of the input should be defined. Found ${e[n]}`);let r=e[n],a=4,s=this.kernelSize.concat([r,this.filters*a]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*a]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends fr{apply(c,h){let d=l.apply([u]),p=Ur([u]),f=l.apply([u*2]);return LA([d,p,f])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*a],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return L(()=>{if(e.length!==3)throw new W(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,r=e[0],a=e[1],s=e[2],i=4;0zn(r),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(Y,se,ne)=>!se||!se[ne]?Y:O(se[ne],Y),u=l(r,o,0),c=l(r,o,1),h=l(r,o,2),d=l(r,o,3);0zn(a),rate:this.recurrentDropout,training:n,count:i}));let p=this.recurrentDropoutMask,f=l(a,p,0),m=l(a,p,1),A=l(a,p,2),g=l(a,p,3),y=3,[w,b,_,x]=jt(this.kernel.read(),i,y),[N,T,E,M]=this.useBias?jt(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,w,N,this.padding),c=this.inputConv(c,b,T,this.padding),h=this.inputConv(h,_,E,this.padding),d=this.inputConv(d,x,M,this.padding);let[z,B,V,U]=jt(this.recurrentKernel.read(),i,y);f=this.recurrentConv(f,z),m=this.recurrentConv(m,B),A=this.recurrentConv(A,V),g=this.recurrentConv(g,U);let j=this.recurrentActivation.apply(ie(u,f)),X=this.recurrentActivation.apply(ie(c,m)),G=ie(O(X,s),O(j,this.activation.apply(ie(h,A)))),ee=O(this.recurrentActivation.apply(ie(d,g)),this.activation.apply(G));return[ee,ee,G]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=cne(e,["units"]),r={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,r)}inputConv(e,t,n,r){let a=la(e,t,this.strides,r||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Zr(a,n,this.dataFormat):a}recurrentConv(e,t){return la(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};d0.className="ConvLSTM2DCell";ae.registerClass(d0);var Fg=class extends bv{constructor(e){let t=new d0(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};Fg.className="ConvLSTM2D";ae.registerClass(Fg);var p0=class extends Je{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let r=0;r{this.invokeCallHook(e,t);let n=Be(e);if(0f7(n,this.rate,a,this.seed),()=>n,r)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};p0.className="Dropout";ae.registerClass(p0);var Mg=class extends p0{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Mg.className="SpatialDropout1D";ae.registerClass(Mg);var $g=class extends Je{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Jt(this.units,"units"),this.activation=es(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=bt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=bt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=qt(e.kernelConstraint),this.biasConstraint=qt(e.biasConstraint),this.kernelRegularizer=_t(e.kernelRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.activityRegularizer=_t(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=pt(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=pt(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=Be(e),r=n7(this.activation.getClassName()),a;return r!=null?a=Kr(n,this.kernel.read(),r,this.bias?this.bias.read():null):(a=Kr(n,this.kernel.read()),this.bias!=null&&(a=Zr(a,this.bias.read())),this.activation!=null&&(a=this.activation.apply(a))),a})}getConfig(){let e={units:this.units,activation:Qa(this.activation),useBias:this.useBias,kernelInitializer:Et(this.kernelInitializer),biasInitializer:Et(this.biasInitializer),kernelRegularizer:ft(this.kernelRegularizer),biasRegularizer:ft(this.biasRegularizer),activityRegularizer:ft(this.activityRegularizer),kernelConstraint:Gt(this.kernelConstraint),biasConstraint:Gt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};$g.className="Dense";ae.registerClass($g);var Dg=class extends Je{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=pt(e);for(let t of e.slice(1))if(t==null)throw new W(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Za(e,1)]}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=Be(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let r=[0];for(let a=2;a{this.invokeCallHook(e,t);let n=Be(e);return this.activation.apply(n)})}getConfig(){let e={activation:Qa(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Og.className="Activation";ae.registerClass(Og);var zg=class extends Je{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return L(()=>(e=Be(e),MQ(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};zg.className="RepeatVector";ae.registerClass(zg);var Pg=class extends Je{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t{this.invokeCallHook(e,t);let n=Be(e),r=n.shape,a=r.slice(0,1).concat(this.fixUnknownDimension(r.slice(1),this.targetShape));return n.reshape(a)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Pg.className="Reshape";ae.registerClass(Pg);var Lg=class extends Je{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Er(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Qt({ndim:this.dims.length+1})]}computeOutputShape(e){e=pt(e);let t=e.slice();return this.dims.forEach((n,r)=>{t[r+1]=e[n]}),t}call(e,t){return it(Be(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Lg.className="Permute";ae.registerClass(Lg);var Wg=class extends Je{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Be(e),r=-1;return Gu(xi(n,this.maskValue),r)}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=Be(e),r=-1,a=!0,s=Gu(xi(n,this.maskValue),r,a);return n.mul(s.asType(n.dtype))})}};Wg.className="Masking";ae.registerClass(Wg);var Bg=class extends Je{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(At(e.inputLength))}this.inputDim=e.inputDim,Jt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Jt(this.outputDim,"outputDim"),this.embeddingsInitializer=bt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=_t(e.embeddingsRegularizer),this.activityRegularizer=_t(e.activityRegularizer),this.embeddingsConstraint=qt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return L(()=>this.maskZero?(e=Be(e),xi(e,Xe(e))):null)}computeOutputShape(e){if(e=pt(e),this.inputLength==null)return[...e,this.outputDim];let t=At(this.inputLength);if(t.length!==e.length-1)throw new W(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let r=0;r{this.invokeCallHook(e,t);let n=Be(e);return n.dtype!=="int32"&&(n=Rc(n,"int32")),p7(this.embeddings.read(),n.as1D()).reshape(pt(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Et(this.embeddingsInitializer),embeddingsRegularizer:ft(this.embeddingsRegularizer),activityRegularizer:ft(this.activityRegularizer),embeddingsConstraint:Gt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};Bg.className="Embedding";ae.registerClass(Bg);var Pi=class extends Je{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Pe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length1)throw new W(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let a=1;aa.length);e.indexOf(null)===-1&&Ka(r).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return L(()=>{if(e=e,this.reshapeRequired){let n=[],r=e.map(a=>a.rank);if(r.indexOf(null)===-1){let a=Ya(r);for(let s of e){let i=s.rank;for(let o=0;o1){let u=Er(1,l).concat([0]);n.push(it(o,u)),a=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(a){if(i==null){let o=s.shape,l=o.length,u=o[l-1],c=[u].concat(o.slice(0,o.length-1));s=it(s.reshape([-1,u]),[1,0]).reshape(c)}else if(i>1){let o=[i-1].concat(Er(0,i-1));s=it(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let r=1;r{if(t==null)return null;if(!Array.isArray(t))throw new W("`mask` should be an Array");if(!Array.isArray(e))throw new W("`inputs` should be an Array");if(t.length!==e.length)throw new W(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(r=>r==null))return null;t=t.map(r=>r==null?r:fn(r,0));let n=t[0];for(let r=1;r{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0];for(let n=1;n{let t=e[0];for(let n=1;n1)throw new W("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return L(()=>LA(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new W("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),r=this.axis<0?n.length+this.axis:this.axis;for(let a of t.slice(1)){if(n[r]==null||a[r]==null){n[r]=null;break}n[r]+=a[r]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new W("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new W("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new W(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return L(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let r=[];for(let s=0;s3||t.shape.length>3)throw new Pe("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Pe("batchDot is not implemented for complex64-type Tensors yet.");let r=e.shape.length,a=t.shape.length;n==null&&(n=[r-1,a-2]);let s=n;return L(()=>{let i;if(r>a){i=r-a;let l=[];for(let u=0;ur){i=a-r;let l=[];for(let u=0;u0){let l;r>a?l=r+a-3:l=r-1;let u=[];for(let c=l;c"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Pe("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);if(t[r[0]]!==n[r[1]])throw new W(`Dimension incompatibility: ${t[r[0]]} !== ${n[r[1]]}`)}mergeFunction(e){if(e.length!==2)throw new W(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],r;return Array.isArray(this.axes)?r=this.axes.map((a,s)=>jc(a,e[s].shape.length)):r=[jc(this.axes,t.shape.length),jc(this.axes,n.shape.length)],this.normalize&&(t=Jp(t,r[0]),n=Jp(n,r[1])),hne(t,n,r)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[jc(this.axes,e.length),jc(this.axes,t.length)],n}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Pe("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);t.splice(r[0],1),n.splice(r[1],1),n.splice(0,1);let a=t.concat(n);return a.length===1&&a.push(1),a}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Xg.className="Dot";ae.registerClass(Xg);var Kg=class extends Je{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=Be(e);return $c(()=>Lp(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};Kg.className="GaussianNoise";ae.registerClass(Kg);var Zg=class extends Je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=Be(e);return this.rate>0&&this.rate<1?$c(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return n.mul(Lp(n.shape,1,r))},()=>n,t.training||!1):n})}};Zg.className="GaussianDropout";ae.registerClass(Zg);var Yg=class extends Je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Be(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return L(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return $c(()=>{let r=Be(e),a=1.6732632423543772,s=1.0507009873554805,i=-a*s,o=Ua(kl(n),this.rate);o=Rc(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate;return r.mul(o).add(o.add(-1).mul(i)).mul(l).add(u)},()=>Be(e),t.training||!1)}return e})}};Yg.className="AlphaDropout";ae.registerClass(Yg);function Hc(e,t,n,r,a,s=.001){let i;if(e.rank===2)i=dx(e,t,n,r,a,s);else if(e.rank===3)i=px(e,t,n,r,a,s);else if(e.rank===4)i=fx(e,t,n,r,a,s);else throw new Pe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function dne(e,t,n,r,a=.001){return L(()=>{let s=zd(e,r),i=s.mean,o=s.variance;return[Hc(e,i,o,n,t,a),i,o]})}function pne(e,t,n,r,a=.001){return L(()=>{let s=zd(e,r),i=s.mean,o=s.variance,l=[];for(let p of Er(0,e.rank))r.indexOf(p)!==-1?l.push(1):l.push(e.shape[p]);let u=i.reshape(l),c=o.reshape(l),h=t==null?null:t.reshape(l),d=n==null?null:n.reshape(l);return[Hc(e,u,c,d,h,a),i,o]})}function fne(e,t,n,r,a=.001){return v.arraysEqual(r.slice().sort(),Er(0,e.rank-1))?dne(e,t,n,r,a):pne(e,t,n,r,a)}var Jg=class extends Je{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=bt(e.betaInitializer||"zeros"),this.gammaInitializer=bt(e.gammaInitializer||"ones"),this.movingMeanInitializer=bt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=bt(e.movingVarianceInitializer||"ones"),this.betaConstraint=qt(e.betaConstraint),this.gammaConstraint=qt(e.gammaConstraint),this.betaRegularizer=_t(e.betaRegularizer),this.gammaRegularizer=_t(e.gammaRegularizer)}build(e){e=pt(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new W(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Qt({ndim:e.length,axes:{[t]:n}})];let r=[n];this.scale&&(this.gamma=this.addWeight("gamma",r,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",r,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",r,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",r,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return L(()=>{let n=t.training==null?!1:t.training,r=Be(e),a=r.shape,s=a.length,i=Er(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=Ci(1,s);l[o]=a[o];let u=i.slice();u.sort();let c=!v.arraysEqual(u,Er(0,s).slice(0,s-1)),h=()=>{if(c){let A=this.movingMean.read().reshape(l),g=this.movingVariance.read().reshape(l),y=this.center?this.beta.read().reshape(l):null,w=this.scale?this.gamma.read().reshape(l):null;return Hc(r,A,g,y,w,this.epsilon)}else return Hc(r,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return h();let[d,p,f]=fne(r,this.gamma.read(),this.beta.read(),i,this.epsilon),m=(A,g,y)=>{L(()=>{let w=1-y,b=A.read(),_=b.sub(g).mul(w);A.write(b.sub(_))})};return(()=>{m(this.movingMean,p,this.momentum),m(this.movingVariance,f,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Et(this.betaInitializer),gammaInitializer:Et(this.gammaInitializer),movingMeanInitializer:Et(this.movingMeanInitializer),movingVarianceInitializer:Et(this.movingVarianceInitializer),betaRegularizer:ft(this.betaRegularizer),gammaRegularizer:ft(this.gammaRegularizer),betaConstraint:Gt(this.betaConstraint),gammaConstraint:Gt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Jg.className="BatchNormalization";ae.registerClass(Jg);var Qg=class extends Je{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=bt(e.betaInitializer||"zeros"),this.gammaInitializer=bt(e.gammaInitializer||"ones"),this.betaRegularizer=_t(e.betaRegularizer),this.gammaRegularizer=_t(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=pt(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let a=0;a=t)throw new Error(`Invalid axis: ${a}`);if(this.axis.length!==Ka(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(a=>e[a]),r=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,r):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,r):this.beta=null,this.built=!0}call(e,t){let n=Be(e),r=n.shape,a=r.length;return L(()=>{let s=!0,{mean:i,variance:o}=zd(n,this.axis,s),l=Ci(1,a);for(let f of this.axis)l[f]=r[f];let u=f=>f!=null&&f.shape.length!==a&&this.axis!==[a-1]?f.reshape(l):f,c=u(this.gamma.read()),h=u(this.beta.read()),d=[],p=[];for(let f=0;f{if(e.rank!==4)throw new W(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new W("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Sr()),n!=="channelsLast"&&n!=="channelsFirst")throw new W(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let r;return n==="channelsFirst"?r=[[0,0],[0,0],t[0],t[1]]:r=[[0,0],t[0],t[1],[0,0]],ua(e,r)})}var ey=class extends Je{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Sr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new W(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new W(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new W(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Qt({ndim:4})]}computeOutputShape(e){e=pt(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return L(()=>mne(Be(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};ey.className="ZeroPadding2D";ae.registerClass(ey);function f0(e,t,n,r,a,s){return L(()=>{Mt(a),i7(s),nr(r),n==null&&(n=[1,1]),r==null&&(r="valid"),a==null&&(a=Sr()),s==null&&(s="max"),e=_g(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=nc(e,t,n,o):i=Ku(e,t,n,o),a==="channelsFirst"&&(i=it(i,[0,3,1,2])),i})}function _v(e,t,n,r,a,s){return L(()=>{Mt(a),i7(s),nr(r),n==null&&(n=[1,1,1]),r==null&&(r="valid"),a==null&&(a=Sr()),s==null&&(s="max"),e=Av(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=_m(e,t,n,o):i=lm(e,t,n,o),a==="channelsFirst"&&(i=it(i,[0,4,1,2,3])),i})}var vv=class extends Je{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new W(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Jt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new W(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Jt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,nr(this.padding),this.inputSpec=[new Qt({ndim:3})]}computeOutputShape(e){e=pt(e);let t=Fr(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return L(()=>{this.invokeCallHook(e,t),e=Fc(Be(e),2);let n=this.poolingFunction(Be(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return ja(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},ty=class extends vv{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Mt(a),nr(r),f0(e,t,n,r,a,"max")}};ty.className="MaxPooling1D";ae.registerClass(ty);var ny=class extends vv{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Mt(a),nr(r),f0(e,t,n,r,a,"avg")}};ny.className="AveragePooling1D";ae.registerClass(ny);var kv=class extends Je{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new W(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Jt(this.poolSize,"poolSize"),Jt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Mt(this.dataFormat),nr(this.padding),this.inputSpec=[new Qt({ndim:4})]}computeOutputShape(e){e=pt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Fr(t,this.poolSize[0],this.padding,this.strides[0]),n=Fr(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return L(()=>(this.invokeCallHook(e,t),this.poolingFunction(Be(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},ry=class extends kv{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Mt(a),nr(r),f0(e,t,n,r,a,"max")}};ry.className="MaxPooling2D";ae.registerClass(ry);var ay=class extends kv{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Mt(a),nr(r),f0(e,t,n,r,a,"avg")}};ay.className="AveragePooling2D";ae.registerClass(ay);var Iv=class extends Je{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new W(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Jt(this.poolSize,"poolSize"),Jt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Mt(this.dataFormat),nr(this.padding),this.inputSpec=[new Qt({ndim:5})]}computeOutputShape(e){e=pt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Fr(t,this.poolSize[0],this.padding,this.strides[0]),n=Fr(n,this.poolSize[1],this.padding,this.strides[1]),r=Fr(r,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,r]:[e[0],t,n,r,e[4]]}call(e,t){return L(()=>(this.invokeCallHook(e,t),this.poolingFunction(Be(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},sy=class extends Iv{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Mt(a),nr(r),_v(e,t,n,r,a,"max")}};sy.className="MaxPooling3D";ae.registerClass(sy);var iy=class extends Iv{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Mt(a),nr(r),_v(e,t,n,r,a,"avg")}};iy.className="AveragePooling3D";ae.registerClass(iy);var Nv=class extends Je{constructor(e){super(e);this.inputSpec=[new Qt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Pe}},oy=class extends Nv{constructor(e){super(e||{})}call(e,t){return L(()=>{let n=Be(e);return Tt(n,1)})}};oy.className="GlobalAveragePooling1D";ae.registerClass(oy);var ly=class extends Nv{constructor(e){super(e||{})}call(e,t){return L(()=>{let n=Be(e);return Qn(n,1)})}};ly.className="GlobalMaxPooling1D";ae.registerClass(ly);var Sv=class extends Je{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Mt(this.dataFormat),this.inputSpec=[new Qt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Pe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},uy=class extends Sv{call(e,t){return L(()=>{let n=Be(e);return this.dataFormat==="channelsLast"?Tt(n,[1,2]):Tt(n,[2,3])})}};uy.className="GlobalAveragePooling2D";ae.registerClass(uy);var cy=class extends Sv{call(e,t){return L(()=>{let n=Be(e);return this.dataFormat==="channelsLast"?Qn(n,[1,2]):Qn(n,[2,3])})}};cy.className="GlobalMaxPooling2D";ae.registerClass(cy);var Tv=class extends Je{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let r=t.layer,a=Rr(r,n);delete t.layer;let s={layer:a};return Object.assign(s,t),new e(s)}},hy=class extends Tv{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=pt(e),e.length<3)throw new W(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=pt(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),r=e[1];return[n[0],r].concat(n.slice(1))}call(e,t){return L(()=>(e=Be(e),wv((n,r)=>[Be(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};hy.className="TimeDistributed";ae.registerClass(hy);function Ane(e){Fi(TQ,"BidirectionalMergeMode",e)}var gne="concat",dy=class extends Tv{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Rr(n),t.goBackwards=t.goBackwards!==!0;let r={};if(r.className=e.layer.getClassName(),r.config=t,this.backwardLayer=Rr(r),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?gne:e.mergeMode,Ane(this.mergeMode),e.weights)throw new Pe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,r,a;return this.returnState&&(a=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,r=[n]):this.mergeMode==null?r=[n,n.slice()]:r=[n],this.returnState?this.mergeMode==null?r.concat(a).concat(a.slice()):[n].concat(a).concat(a.slice()):Rn(r)}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=xv(e,n,r,this.numConstants);if(e=a.inputs,n=a.initialState,r=a.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&r==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new W("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let u=n.map(c=>new Qt({shape:c.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(r!=null)throw new Pe("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Cr;for(let l of s)if(l instanceof Cr!==o)throw new W("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=u;let h=super.apply(l,t);return this.inputSpec=c,h}else return super.apply(e,t)}call(e,t){return L(()=>{let n=t.initialState,r,a;if(n==null)r=this.forwardLayer.call(e,t),a=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);r=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),a=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(r)&&(s=r.slice(1).concat(a.slice(1))),r=r[0],a=a[0]),this.returnSequences&&(a=Pn(a,1));let i;return this.mergeMode==="concat"?i=LA([r,a]):this.mergeMode==="sum"?i=ie(r,a):this.mergeMode==="ave"?i=O(.5,ie(r,a)):this.mergeMode==="mul"?i=O(r,a):this.mergeMode==null&&(i=[r,a]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Mi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Mi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Rr(t.layer);if(delete t.layer,t.numConstants!=null)throw new Pe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let r=t;return r.layer=n,new e(r)}};dy.className="Bidirectional";ae.registerClass(dy);function jQ(e){return new Gl(e)}function HQ(e){return new xg(e)}function GQ(e){return new Ag(e)}function qQ(e){return new gg(e)}function XQ(e){return new yg(e)}function KQ(e){return new bg(e)}function ZQ(e){return new wg(e)}function YQ(e){return new l0(e)}function JQ(e){return new Vc(e)}function QQ(e){return new kg(e)}function eee(e){return new o0(e)}function tee(e){return new Ig(e)}function nee(e){return new Ng(e)}function ree(e){return new Sg(e)}function aee(e){return new Tg(e)}function see(e){return new Og(e)}function iee(e){return new $g(e)}function oee(e){return new p0(e)}function lee(e){return new Mg(e)}function uee(e){return new Dg(e)}function cee(e){return new zg(e)}function hee(e){return new Pg(e)}function dee(e){return new Lg(e)}function pee(e){return new Bg(e)}function fee(e){return new Vg(e)}function mee(e){return new jg(e)}function Aee(e){return new qg(e)}function gee(e){return new Hg(e)}function yee(e){return new Gg(e)}function xee(e){return new Ug(e)}function wee(e){return new Xg(e)}function bee(e){return new Jg(e)}function _ee(e){return new Qg(e)}function vee(e){return new ey(e)}function XA(e){return new ny(e)}function kee(e){return XA(e)}function Iee(e){return XA(e)}function KA(e){return new ay(e)}function Nee(e){return KA(e)}function See(e){return KA(e)}function ZA(e){return new iy(e)}function Tee(e){return ZA(e)}function Eee(e){return ZA(e)}function Cee(e){return new oy(e)}function Ree(e){return new uy(e)}function x7(e){return new ly(e)}function w7(e){return new cy(e)}function b7(e){return new ty(e)}function _7(e){return new ry(e)}function Fee(e){return new sy(e)}function Mee(e){return new Cg(e)}function $ee(e){return new h0(e)}function Dee(e){return new Rg(e)}function Oee(e){return new Uc(e)}function zee(e){return new Eg(e)}function Pee(e){return new c0(e)}function Lee(e){return new Fg(e)}function Wee(e){return new d0(e)}function Bee(e){return new Yr(e)}function Vee(e){return new u0(e)}function Uee(e){return new dy(e)}function jee(e){return new hy(e)}var Hee=x7,Gee=w7,qee=b7,Xee=_7;function Kee(e){return new Kg(e)}function Zee(e){return new Zg(e)}function Yee(e){return new Yg(e)}function Jee(e){return new Wg(e)}var Ev={};We(Ev,{MAPE:()=>Tne,MSE:()=>Rne,binaryAccuracy:()=>yne,binaryCrossentropy:()=>xne,categoricalAccuracy:()=>bne,categoricalCrossentropy:()=>_ne,cosineProximity:()=>Ine,mape:()=>Ene,meanAbsoluteError:()=>Nne,meanAbsolutePercentageError:()=>Sne,meanSquaredError:()=>Cne,mse:()=>Fne,precision:()=>vne,recall:()=>kne,sparseCategoricalAccuracy:()=>wne});function yne(e,t){return ng(e,t)}function xne(e,t){return z7(e,t)}function wne(e,t){return P7(e,t)}function bne(e,t){return rg(e,t)}function _ne(e,t){return ag(e,t)}function vne(e,t){return O7(e,t)}function kne(e,t){return gte(e,t)}function Ine(e,t){return eg(e,t)}function Nne(e,t){return Qp(e,t)}function Sne(e,t){return Xl(e,t)}function Tne(e,t){return Xl(e,t)}function Ene(e,t){return Xl(e,t)}function Cne(e,t){return Di(e,t)}function Rne(e,t){return Di(e,t)}function Fne(e,t){return Di(e,t)}var Cv={};We(Cv,{modelFromJSON:()=>Yte});var Rv={};We(Rv,{l1:()=>$ne,l1l2:()=>Mne,l2:()=>Dne});function Mne(e){return new Wc(e)}function $ne(e){return sne(e)}function Dne(e){return ine(e)}var Fv=class extends ql{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof Aa))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function m0(e,t){return et}var $v=class extends Fv{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Pe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=m0:this.mode==="max"?this.monitorFunc=Mv:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Mv:this.monitorFunc=m0,this.monitorFunc===m0&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===m0?Infinity:-Infinity}async onEpochEnd(e,t){await Ja(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function One(e){return new $v(e)}var zne={earlyStopping:One},Mr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Mr||(Mr={}));var Dv;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(Dv||(Dv={}));var py={};function Pne(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};py[e]=n}function Ov(e){return py[e]}function Lne(e){delete py[e]}function k(e,t,n,r,a){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return Mn(t.inputNames[s.inputIndexStart],n,r,a);if(s.type==="tensors")return t.inputNames.slice(o,l).map(h=>Mn(h,n,r,a));let u=Mn(t.inputNames.slice(o)[0],n,r,a),c=u.dataSync();return s.type==="number"?c[0]:v.toNestedArray(u.shape,c)}let i=t.attrParams[e];return i&&i.value}function Mn(e,t,n,r){let[a,s]=Un(e);if(r!=null){let o=r.getHashTableHandleByName(a);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[A0(a,o)]);return i!==void 0?t[A0(a,i)][s]:void 0}function Wne(e,t,n){return t[A0(e,n.currentContextId)]}function ga(e,t){let[n,r]=Un(e);return[A0(n,t&&t.currentContextId),r]}function A0(e,t){return t?`${e}-${t}`:e}function Un(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function g0(e,t,n){let r=k("pad",e,t,n);if(r==="explicit"){r=k("explicitPaddings",e,t,n);let a=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)a[s][0]=r[s*2],a[s][1]=r[s*2+1];return a}return r}function ya(e){return e.kept?e:Pr(e)}var zv={};We(zv,{json:()=>Bne});var Bne=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Pv={};We(Pv,{json:()=>Vne});var Vne=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Lv={};We(Lv,{json:()=>Une});var Une=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],Wv={};We(Wv,{json:()=>jne});var jne=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],Bv={};We(Bv,{json:()=>Hne});var Hne=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],Vv={};We(Vv,{json:()=>Gne});var Gne=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Uv={};We(Uv,{json:()=>qne});var qne=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],jv={};We(jv,{json:()=>Xne});var Xne=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],Hv={};We(Hv,{json:()=>Kne});var Kne=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],Gv={};We(Gv,{json:()=>Zne});var Zne=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],qv={};We(qv,{json:()=>Yne});var Yne=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Xv={};We(Xv,{json:()=>Jne});var Jne=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Kv={};We(Kv,{json:()=>Qne});var Qne=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],Zv={};We(Zv,{json:()=>ere});var ere=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],Yv={};We(Yv,{json:()=>tre});var tre=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],Jv={};We(Jv,{json:()=>nre});var nre=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],Qv={};We(Qv,{json:()=>rre});var rre=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],t6=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[zv,Pv,Lv,Wv,Bv,Vv,Uv,qv,Gv,jv,Xv,Kv,Zv,Yv,Jv,Qv,Hv],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,r)=>(n[r.tfOpName]=r,n),{})}transformGraph(e,t={}){let n=e.node,r=[],a=[],s=[],i=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?r.push(f[m.name]):m.op==="Const"?a.push(f[m.name]):(m.input==null||m.input.length===0)&&s.push(f[m.name]),f),{}),o=[],l=[],u={},c={};t!=null&&(u=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let h=Object.keys(i);h.forEach(f=>{let m=i[f];m.inputNames.forEach(A=>{let[g]=ga(A);m.inputs.push(i[g]),i[g].children.push(m)})}),Object.keys(c).length===0?h.forEach(f=>{let m=i[f];m.children.length===0&&l.push(m)}):Object.keys(c).forEach(f=>{let[m]=ga(f),A=i[m];A!=null&&(A.signatureKey=c[f],l.push(A))}),Object.keys(u).length>0?Object.keys(u).forEach(f=>{let[m]=ga(f),A=i[m];A&&(A.signatureKey=u[f],o.push(A))}):o=r;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let p={nodes:i,inputs:o,outputs:l,weights:a,placeholders:r,signature:t,functions:d};return s.length>0&&(p.initNodes=s),p}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=Ov(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(r=>r.startsWith("^")?r.substr(1):r),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((r,a)=>(r[a.name]={type:a.type,inputIndexStart:a.start,inputIndexEnd:a.end},r),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((r,a)=>{let s=a.type,i;switch(a.type){case"string":i=fy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=fy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"string[]":i=_y(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=_y(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number":i=Ay(e.attr,a.tfName,a.defaultValue||0),i===void 0&&!!a.tfDeprecatedName&&(i=Ay(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number[]":i=by(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=by(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool":i=my(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=my(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool[]":i=ky(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=ky(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape":i=wy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=wy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape[]":i=vy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=vy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype":i=yy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=yy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype[]":i=xy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=xy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"func":i=e6(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=e6(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${a.type} for op: ${e.op}`)}return r[a.name]={value:i,type:s},r},{})),n}mapFunction(e){let t=e.nodeDef,n=[],r=[],a={};t!=null&&(a=t.reduce((u,c)=>(u[c.name]=this.mapNode(c),c.op==="Const"&&r.push(u[c.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[c]=ga(u.name),h={name:c,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:gy(u.type),type:"dtype"}},children:[]};h.signatureKey=u.name,s.push(h),a[c]=h}),Object.keys(a).forEach(u=>{let c=a[u];c.inputNames.forEach(h=>{let[d]=ga(h);c.inputs.push(a[d]),a[d].children.push(c)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[c,h]=ga(o[u.name]),d=a[c];d!=null&&(d.defaultOutput=h,i.push(d))});let l=this.mapArgsToSignature(e);return{nodes:a,inputs:s,outputs:i,weights:r,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function are(e){let t=J().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function n6(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):are(e);return t?n:n.toLowerCase()}function fy(e,t,n,r=!1){let a=e[t];return a!=null?n6(a.s,r):n}function my(e,t,n){let r=e[t];return r?r.b:n}function Ay(e,t,n){let r=e[t]||{},a=r.i!=null?r.i:r.f!=null?r.f:n;return typeof a=="number"?a:parseInt(a,10)}function gy(e){switch(typeof e=="string"&&(e=Mr[e]),e){case Mr.DT_FLOAT:return"float32";case Mr.DT_INT32:case Mr.DT_INT64:case Mr.DT_INT8:case Mr.DT_UINT8:return"int32";case Mr.DT_BOOL:return"bool";case Mr.DT_DOUBLE:return"float32";case Mr.DT_STRING:return"string";default:return null}}function e6(e,t,n){let r=e[t];return r&&r.func?r.func.name:n}function yy(e,t,n){let r=e[t];return r&&r.type?gy(r.type):n}function xy(e,t,n){let r=e[t];return r&&r.list&&r.list.type?r.list.type.map(a=>gy(a)):n}function r6(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function wy(e,t,n){let r=e[t];return r&&r.shape?r6(r.shape):n}function by(e,t,n){let r=e[t];return r?((r.list.f&&r.list.f.length?r.list.f:r.list.i)||[]).map(a=>typeof a=="number"?a:parseInt(a,10)):n}function _y(e,t,n,r=!1){let a=e[t];return a&&a.list&&a.list.s?a.list.s.map(s=>n6(s,r)):n}function vy(e,t,n){let r=e[t];return r&&r.list&&r.list.shape?r.list.shape.map(a=>r6(a)):n}function ky(e,t,n){let r=e[t];return r&&r.list&&r.list.b?r.list.b:n}var sre=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(r=>this.getInput(r)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((r,a)=>(r[a]=this.getAttr(a),r),{}))}getInput(e){return Mn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return Mn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Ay(this.node.rawAttrs,e,t);if(n.s!=null)return fy(this.node.rawAttrs,e,t);if(n.b!=null)return my(this.node.rawAttrs,e,t);if(n.shape!=null)return wy(this.node.rawAttrs,e,t);if(n.type!=null)return yy(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return by(this.node.rawAttrs,e,t);if(n.list.s!=null)return _y(this.node.rawAttrs,e,t);if(n.list.shape!=null)return vy(this.node.rawAttrs,e,t);if(n.list.b!=null)return ky(this.node.rawAttrs,e,t);if(n.list.type!=null)return xy(this.node.rawAttrs,e,t)}return t}},ire=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[ie(k("a",e,t,n),k("b",e,t,n))];case"AddN":return[La(k("tensors",e,t,n))];case"FloorMod":case"Mod":return[km(k("a",e,t,n),k("b",e,t,n))];case"Mul":return[O(k("a",e,t,n),k("b",e,t,n))];case"RealDiv":case"Div":return[_e(k("a",e,t,n),k("b",e,t,n))];case"DivNoNan":return[fm(k("a",e,t,n),k("b",e,t,n))];case"FloorDiv":return[kd(k("a",e,t,n),k("b",e,t,n))];case"Sub":return[be(k("a",e,t,n),k("b",e,t,n))];case"Minimum":return[vl(k("a",e,t,n),k("b",e,t,n))];case"Maximum":return[Vr(k("a",e,t,n),k("b",e,t,n))];case"Pow":return[ca(k("a",e,t,n),k("b",e,t,n))];case"SquaredDifference":return[Xd(k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},ore=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Vt(k("x",e,t,n))];case"Acos":return[Jf(k("x",e,t,n))];case"Acosh":return[Qf(k("x",e,t,n))];case"Asin":return[tm(k("x",e,t,n))];case"Asinh":return[nm(k("x",e,t,n))];case"Atan":return[rm(k("x",e,t,n))];case"Atan2":return[am(k("x",e,t,n),k("y",e,t,n))];case"Atanh":return[sm(k("x",e,t,n))];case"Ceil":return[um(k("x",e,t,n))];case"Complex":return[Da(k("real",e,t,n),k("imag",e,t,n))];case"Cos":return[Ju(k("x",e,t,n))];case"Cosh":return[Ed(k("x",e,t,n))];case"Elu":return[xl(k("x",e,t,n))];case"Erf":return[mm(k("x",e,t,n))];case"Exp":return[Jn(k("x",e,t,n))];case"Expm1":return[Am(k("x",e,t,n))];case"Floor":return[wl(k("x",e,t,n))];case"Log":return[On(k("x",e,t,n))];case"Log1p":return[Md(k("x",e,t,n))];case"Imag":return[Rd(k("x",e,t,n))];case"Neg":return[St(k("x",e,t,n))];case"Reciprocal":return[Sm(k("x",e,t,n))];case"Real":return[sc(k("x",e,t,n))];case"Relu":return[jr(k("x",e,t,n))];case"Round":return[Tm(k("x",e,t,n))];case"Selu":return[Vd(k("x",e,t,n))];case"Sigmoid":return[Dn(k("x",e,t,n))];case"Sin":return[Ud(k("x",e,t,n))];case"Sign":return[Cm(k("x",e,t,n))];case"Sinh":return[jd(k("x",e,t,n))];case"Softplus":return[bl(k("x",e,t,n))];case"Sqrt":return[an(k("x",e,t,n))];case"Square":return[ht(k("x",e,t,n))];case"Tanh":return[Al(k("x",e,t,n))];case"Tan":return[Mm(k("x",e,t,n))];case"ClipByValue":return[Nn(k("x",e,t,n),k("clipValueMin",e,t,n),k("clipValueMax",e,t,n))];case"Relu6":return[Wd(k("x",e,t,n))];case"Rsqrt":return[Bd(Mn(e.inputNames[0],t,n))];case"Prod":return[Pd(k("x",e,t,n),k("axes",e,t,n))];case"LeakyRelu":return[ec(k("x",e,t,n),k("alpha",e,t,n))];case"Prelu":return[ac(k("x",e,t,n),k("alpha",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Ar(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let r=0;rn+` Shapes ${e} and ${t} must match`)}}}function a6(e){return!(typeof e=="number"||e.some(t=>t<0))}function Gc(e,t,n){let r=Iy(e,n),a=!a6(r);if(a&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${r}`);if(a&&t.forEach(s=>{r=Iy(s.shape,r)}),!a6(r))throw new Error(`Non-fully-defined elementShape: ${r}`);return r}function Iy(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let r=0;r=0&&s>=0&&a!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[r]=a>=0?a:s}return n}var lre=class{constructor(e,t,n,r,a,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=r,this.identicalElementShapes=a,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=Ne(0),Zt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Ar(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Zt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,r)=>this.write(n,t[r]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let r=0;r=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,hr(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,r=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is ${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let a=n===0?0:t.size/n,s=[];L(()=>{t=H(t,[1,n,a]);for(let o=0;o{if(n!==a.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${a.dtype}`);Ar(t,a.shape,"TensorList shape mismatch: "),Zt(a)}),this.idTensor=Ne(0),this.maxNumElements=r,Zt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new qc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Ar(e,this.elementShape,"TensorList shape mismatch: ");let r=Gc(this.elementShape,this.tensors,e);return L(()=>{let a=this.tensors.map(s=>H(s,r));return mn(a,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Gc(this.elementShape,this.tensors,e),r=this.tensors.pop();return Ar(r.shape,e,"TensorList shape mismatch: "),H(r,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Ar(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Zt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Ar(this.tensors[e].shape,t,"TensorList shape mismatch: ");let r=Gc(this.elementShape,this.tensors,t);return H(this.tensors[e],r)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Ar(this.elementShape,t.shape,"TensorList shape mismatch: "),Zt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Ar(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let r=Gc(this.elementShape,this.tensors,n);return e.length===0?kr([],[0].concat(r)):L(()=>{let a=e.map(s=>H(this.tensors[s],r));return mn(a,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Ar(this.elementShape,t,"TensorList shape mismatch: ");let n=Gc(this.elementShape,this.tensors,t);return this.size()===0?kr([],[0].concat(n)):L(()=>{let r=this.tensors.map(a=>H(a,n));return ot(r,0)})}};function ure(e,t,n){let r=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let a=e.shape.slice(1);Ar(a,t,"TensorList shape mismatch: ");let s=hr(e);return new qc(s,t,r)}function cre(e,t,n){return new qc([],e,t,n)}function hre(e,t,n,r){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let a=Math.max(...t);if(r!=null&&r!==-1&&a>=r)throw new Error(`Max index must be < array size (${a} vs. ${r})`);let s=new qc([],n,e.dtype,r),i=hr(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function dre(e,t,n){let r=0,a=t.map(c=>(r+=c,r));if(r!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is ${r}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=Iy(s,n),o=r===0?0:e.size/r,l=L(()=>{let c=[];e=H(e,[1,r,o]);for(let h=0;h{switch(e.op){case"If":case"StatelessIf":{let r=k("thenBranch",e,t,n),a=k("elseBranch",e,t,n),s=k("cond",e,t,n),i=k("args",e,t,n);return(await s.data())[0]?n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let r=k("body",e,t,n),a=k("cond",e,t,n),s=k("args",e,t,n),i=await n.functionMap[a].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(c=>c.id),l=await i[0].data();i.forEach(c=>{!c.kept&&o.indexOf(c.id)===-1&&c.dispose()});let u=s;for(;l[0];){let c=u;u=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let h=u.map(p=>p.id);c.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()});let d=await n.functionMap[a].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()})}return u}case"LoopCond":{let r=k("pred",e,t,n);return[ya(r)]}case"Switch":{let r=k("pred",e,t,n),a=k("data",e,t,n);return a.kept||(a=ya(a)),(await r.data())[0]?[void 0,a]:[a,void 0]}case"Merge":{let r=e.inputNames.find(a=>Mn(a,t,n)!==void 0);if(r){let a=Mn(r,t,n);return[ya(a)]}return}case"Enter":{let r=k("frameName",e,t,n),a=k("tensor",e,t,n);return n.enterFrame(r),[ya(a)]}case"Exit":{let r=k("tensor",e,t,n);return n.exitFrame(),[ya(r)]}case"NextIteration":{let r=k("tensor",e,t,n);return n.nextIteration(),[ya(r)]}case"TensorArrayV3":{let r=k("size",e,t,n),a=k("dtype",e,t,n),s=k("elementShape",e,t,n),i=k("dynamicSize",e,t,n),o=k("clearAfterRead",e,t,n),l=k("identicalElementShapes",e,t,n),u=k("name",e,t,n),c=new lre(u,a,r,s,l,i,o);return n.addTensorArray(c),[c.idTensor,Ne(1)]}case"TensorArrayWriteV3":{let r=k("tensorArrayId",e,t,n),a=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(r.id);return i.write(a,s),[i.idTensor]}case"TensorArrayReadV3":{let r=k("tensorArrayId",e,t,n),a=k("index",e,t,n);return[n.getTensorArray(r.id).read(a)]}case"TensorArrayGatherV3":{let r=k("tensorArrayId",e,t,n),a=k("indices",e,t,n),s=k("dtype",e,t,n);return[n.getTensorArray(r.id).gather(a,s)]}case"TensorArrayScatterV3":{let r=k("tensorArrayId",e,t,n),a=k("indices",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(r.id);return i.scatter(a,s),[i.idTensor]}case"TensorArrayConcatV3":{let r=k("tensorArrayId",e,t,n),a=n.getTensorArray(r.id),s=k("dtype",e,t,n);return[a.concat(s)]}case"TensorArraySplitV3":{let r=k("tensorArrayId",e,t,n),a=k("tensor",e,t,n),s=k("lengths",e,t,n),i=n.getTensorArray(r.id);return i.split(s,a),[i.idTensor]}case"TensorArraySizeV3":{let r=k("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return[Ne(a.size(),"int32")]}case"TensorArrayCloseV3":{let r=k("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return a.clearAndClose(),[a.idTensor]}case"TensorListSetItem":{let r=k("tensorListId",e,t,n),a=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorList(r.id);return i.setItem(a,s),[i.idTensor]}case"TensorListGetItem":{let r=k("tensorListId",e,t,n),a=k("index",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(r.id).getItem(a,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let r=k("indices",e,t,n),a=k("tensor",e,t,n),s=k("elementShape",e,t,n),i=k("numElements",e,t,n),o=hre(a,r,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let r=k("elementShape",e,t,n),a=k("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=k(s,e,t,n),o=cre(r,a,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let r=k("tensorListId",e,t,n),a=k("indices",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(r.id).gather(a,i,s)]}case"TensorListStack":{let r=k("tensorListId",e,t,n),a=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=k("numElements",e,t,n);return[n.getTensorList(r.id).stack(a,s,i)]}case"TensorListFromTensor":{let r=k("tensor",e,t,n),a=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=ure(r,a,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let r=k("tensorListId",e,t,n),a=n.getTensorList(r.id),s=k("dtype",e,t,n),i=k("elementShape",e,t,n);return[a.concat(s,i)]}case"TensorListPushBack":{let r=k("tensorListId",e,t,n),a=k("tensor",e,t,n),s=n.getTensorList(r.id);return s.pushBack(a),[s.idTensor]}case"TensorListPopBack":{let r=k("tensorListId",e,t,n),a=k("elementShape",e,t,n),s=k("elementDType",e,t,n);return[n.getTensorList(r.id).popBack(a,s)]}case"TensorListSplit":{let r=k("tensor",e,t,n),a=k("elementShape",e,t,n),s=k("lengths",e,t,n),i=dre(r,s,a);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function s6(e,t,n){let[r,a]=k("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=r==="fusedbatchnorm",l=k("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");let u=k("strides",e,t,n),c=g0(e,t,n),h=k("dataFormat",e,t,n).toUpperCase(),d=k("dilations",e,t,n),[p,f]=k("args",e,t,n),m=k("leakyreluAlpha",e,t,n);return{stride:u,pad:c,dataFormat:h,dilations:d,biasArg:p,preluArg:f,activationFunc:a,leakyreluAlpha:m}}var fre=(e,t,n)=>{switch(e.op){case"Conv1D":{let r=k("stride",e,t,n),a=k("pad",e,t,n),s=k("dataFormat",e,t,n).toUpperCase(),i=k("dilation",e,t,n);return[Sd(k("x",e,t,n),k("filter",e,t,n),r,a,s,i)]}case"Conv2D":{let r=k("strides",e,t,n),a=g0(e,t,n),s=k("dataFormat",e,t,n).toUpperCase(),i=k("dilations",e,t,n);return[la(k("x",e,t,n),k("filter",e,t,n),[r[1],r[2]],a,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:c}=s6(e,t,n);return[Ha.conv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:c}=s6(e,t,n);return[Ha.depthwiseConv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=k("outputShape",e,t,n),a=k("strides",e,t,n),s=g0(e,t,n);return[Td(k("x",e,t,n),k("filter",e,t,n),r,[a[1],a[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=k("strides",e,t,n),a=g0(e,t,n),s=k("dilations",e,t,n),i=k("dataFormat",e,t,n).toUpperCase();return[yl(k("input",e,t,n),k("filter",e,t,n),[r[1],r[2]],a,i,[s[1],s[2]])]}case"Conv3D":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("dataFormat",e,t,n).toUpperCase(),i=k("dilations",e,t,n);return[hm(k("x",e,t,n),k("filter",e,t,n),[r[1],r[2],r[3]],a,s,[i[1],i[2],i[3]])]}case"AvgPool":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("kernelSize",e,t,n);return[Ku(k("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPool":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("kernelSize",e,t,n);return[nc(k("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPoolWithArgmax":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("kernelSize",e,t,n),i=k("includeBatchInIndex",e,t,n),{result:o,indexes:l}=Fx(k("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a,i);return[o,l]}case"AvgPool3D":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("kernelSize",e,t,n);return[lm(k("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"MaxPool3D":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("kernelSize",e,t,n);return[_m(k("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"Dilation2D":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("dilations",e,t,n),i=r[1],o=r[2],l=s[1],u=s[2];return[pm(k("x",e,t,n),k("filter",e,t,n),[i,o],a,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},mre=(e,t,n)=>{switch(e.op){case"Fill":{let r=k("shape",e,t,n),a=k("dtype",e,t,n),s=k("value",e,t,n);return[Qu(r,s,a)]}case"LinSpace":{let r=k("start",e,t,n),a=k("stop",e,t,n),s=k("num",e,t,n);return[Ix(r,a,s)]}case"Multinomial":{let r=k("logits",e,t,n),a=k("numSamples",e,t,n),s=k("seed",e,t,n);return[Mx(r,a,s)]}case"OneHot":{let r=k("indices",e,t,n),a=k("depth",e,t,n),s=k("onValue",e,t,n),i=k("offValue",e,t,n);return[hl(r,a,s,i)]}case"Ones":return[Ur(k("shape",e,t,n),k("dtype",e,t,n))];case"OnesLike":return[zn(k("x",e,t,n))];case"RandomUniform":return[kl(k("shape",e,t,n),k("minval",e,t,n),k("maxval",e,t,n),k("dtype",e,t,n))];case"Range":{let r=k("start",e,t,n),a=k("stop",e,t,n),s=k("step",e,t,n);return[Ld(r,a,s,k("dtype",e,t,n))]}case"TruncatedNormal":{let r=k("shape",e,t,n),a=k("mean",e,t,n),s=k("stdDev",e,t,n),i=k("seed",e,t,n);return[Kd(r,a,s,k("dtype",e,t,n),i)]}case"Zeros":return[Ot(k("shape",e,t,n),k("dtype",e,t,n))];case"ZerosLike":return[Xe(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Ny(e,t,n){let r=k("boxes",e,t,n),a=k("scores",e,t,n),s=k("maxOutputSize",e,t,n),i=k("iouThreshold",e,t,n),o=k("scoreThreshold",e,t,n),l=k("softNmsSigma",e,t,n);return{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var Are=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=Ny(e,t,n),u=await Ke.nonMaxSuppressionWithScoreAsync(r,a,s,i,o,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Ny(e,t,n),l=k("padToMaxOutputSize",e,t,n),u=await Ke.nonMaxSuppressionPaddedAsync(r,a,s,i,o,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Ny(e,t,n);return[await Ke.nonMaxSuppressionAsync(r,a,s,i,o)]}case"Where":{let r=xe(k("condition",e,t,n),"bool"),a=[await Om(r)];return r.dispose(),a}case"ListDiff":return Ox(k("x",e,t,n),k("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},gre=(e,t,n)=>{switch(e.op){case"TopKV2":{let r=k("x",e,t,n),a=k("k",e,t,n),s=k("sorted",e,t,n),i=$m(r,a,s);return[i.values,i.indices]}case"Unique":{let r=k("x",e,t,n),a=Zd(r);return[a.values,a.indices]}case"UniqueV2":{let r=k("x",e,t,n),a=k("axis",e,t,n),s=Zd(r,a);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},yre=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=k("default",e,t,n);return[Mn(e.name,t,n)||r];case"Placeholder":return[Mn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=k("x",e,t,n);return[ya(u)]}case"IdentityN":return k("x",e,t,n).map(u=>ya(u));case"Snapshot":let a=k("x",e,t,n);return[ya(a)];case"Shape":return[hn(k("x",e,t,n).shape,"int32")];case"ShapeN":return k("x",e,t,n).map(u=>hn(u.shape));case"Size":return[Ne(k("x",e,t,n).size,"int32")];case"Rank":return[Ne(k("x",e,t,n).rank,"int32")];case"NoOp":return[Ne(1)];case"Print":let s=k("x",e,t,n),i=k("data",e,t,n),o=k("message",e,t,n),l=k("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let u=0;ue.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Ne(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(r=>r.dispose()),this.tensorMap.clear(),L(()=>{let r=hr(t),a=n.length,s=r.length;v.assert(a===s,()=>`The number of elements doesn't match, keys has ${a} elements, the values has ${s} elements.`);for(let i=0;i{let r=[];for(let a=0;a{switch(e.op){case"HashTable":case"HashTableV2":{let a=k("keyDType",e,t,n),s=k("valueDType",e,t,n),i=new xre(a,s);return r.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let a=k("tableHandle",e,t,n,r),s=k("keys",e,t,n),i=k("values",e,t,n);return[await r.getHashTableById(a.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let a=k("tableHandle",e,t,n,r),s=k("keys",e,t,n),i=k("defaultValue",e,t,n);return[await r.getHashTableById(a.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let a=k("tableHandle",e,t,n,r);return[r.getHashTableById(a.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},bre=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let r=k("images",e,t,n),a=k("size",e,t,n),s=k("alignCorners",e,t,n),i=k("halfPixelCenters",e,t,n);return[Ke.resizeBilinear(r,[a[0],a[1]],s,i)]}case"ResizeNearestNeighbor":{let r=k("images",e,t,n),a=k("size",e,t,n),s=k("alignCorners",e,t,n),i=k("halfPixelCenters",e,t,n);return[Ke.resizeNearestNeighbor(r,[a[0],a[1]],s,i)]}case"CropAndResize":{let r=k("image",e,t,n),a=k("boxes",e,t,n),s=k("boxInd",e,t,n),i=k("cropSize",e,t,n),o=k("method",e,t,n),l=k("extrapolationValue",e,t,n);return[Ke.cropAndResize(r,a,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},_re=(e,t,n)=>{switch(e.op){case"Equal":return[Ba(k("a",e,t,n),k("b",e,t,n))];case"NotEqual":return[xi(k("a",e,t,n),k("b",e,t,n))];case"Greater":return[ur(k("a",e,t,n),k("b",e,t,n))];case"GreaterEqual":return[Ua(k("a",e,t,n),k("b",e,t,n))];case"Less":return[Fd(k("a",e,t,n),k("b",e,t,n))];case"LessEqual":return[gi(k("a",e,t,n),k("b",e,t,n))];case"LogicalAnd":return[cr(k("a",e,t,n),k("b",e,t,n))];case"LogicalNot":return[tc(k("a",e,t,n))];case"LogicalOr":return[Od(k("a",e,t,n),k("b",e,t,n))];case"Select":case"SelectV2":return[Sn(k("condition",e,t,n),k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},vre=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ye(k("a",e,t,n),k("b",e,t,n),k("transposeA",e,t,n),k("transposeB",e,t,n))];case"Transpose":return[it(k("x",e,t,n),k("perm",e,t,n))];case"_FusedMatMul":let[r,a]=k("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=k("numArgs",e,t,n),l=k("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=k("args",e,t,n);return[Ha.matMul({a:k("a",e,t,n),b:k("b",e,t,n),transposeA:k("transposeA",e,t,n),transposeB:k("transposeB",e,t,n),bias:u,activation:a,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},kre=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[mi(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"FusedBatchNormV3":return[mi(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"LRN":return[ym(k("x",e,t,n),k("radius",e,t,n),k("bias",e,t,n),k("alpha",e,t,n),k("beta",e,t,n))];case"Softmax":return[oc(k("x",e,t,n))];case"LogSoftmax":return[Dd(k("x",e,t,n))];case"SparseToDense":return[zm(k("sparseIndices",e,t,n),k("outputShape",e,t,n),k("sparseValues",e,t,n),k("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ire=(e,t,n)=>{switch(e.op){case"Max":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[Qn(k("x",e,t,n),i,o)]}case"Mean":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[Tt(k("x",e,t,n),i,o)]}case"Min":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[_l(k("x",e,t,n),i,o)]}case"Sum":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[Fe(k("x",e,t,n),i,o)]}case"All":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[Id(k("x",e,t,n),i,o)]}case"Any":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[Gu(k("x",e,t,n),i,o)]}case"ArgMax":{let i=k("axis",e,t,n);return[qu(k("x",e,t,n),i)]}case"ArgMin":{let i=k("axis",e,t,n);return[em(k("x",e,t,n),i)]}case"Prod":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[Pd(k("x",e,t,n),i,o)]}case"Cumsum":{let i=k("axis",e,t,n),o=k("exclusive",e,t,n),l=k("reverse",e,t,n);return[Cd(k("x",e,t,n),i,o,l)]}case"Bincount":let r=k("x",e,t,n),a=k("weights",e,t,n),s=k("size",e,t,n);return[mx(r,a,s)];case"DenseBincount":{let i=k("x",e,t,n),o=k("weights",e,t,n),l=k("size",e,t,n),u=k("binaryOutput",e,t,n);return[wx(i,o,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Nre=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=k("n",e,t,n),a=k("axis",e,t,n),s=k("tensors",e,t,n);return s=s.slice(0,r),[ot(s,a)]}case"Gather":{let r=k("x",e,t,n),a=k("indices",e,t,n);return[Ai(r,xe(a,"int32"),0)]}case"GatherV2":{let r=k("axis",e,t,n),a=k("batchDims",e,t,n),s=k("x",e,t,n),i=k("indices",e,t,n);return[Ai(s,xe(i,"int32"),r,a)]}case"Reverse":{let r=k("dims",e,t,n),a=[];for(let i=0;i{let r=k("axis",e,t,n),a=k("tensors",e,t,n),s=a[0].shape,i=ja(a[0]).shape,o=a.map(l=>{let u=v.arraysEqual(l.shape,s);if(!u&&!v.arraysEqual(ja(l).shape,i))throw new Error("the input tensors shape does not match");return u?l:H(l,s)});return[mn(o,r)]});case"Unpack":{let r=k("axis",e,t,n),a=k("tensor",e,t,n);return hr(a,r)}case"Tile":{let r=k("reps",e,t,n);return[Va(k("x",e,t,n),r)]}case"Split":case"SplitV":{let r=k("axis",e,t,n),a=k("numOrSizeSplits",e,t,n),s=k("x",e,t,n);return jt(s,a,r)}case"ScatterNd":{let r=k("indices",e,t,n),a=k("values",e,t,n),s=k("shape",e,t,n);return[Wx(r,a,s)]}case"GatherNd":{let r=k("x",e,t,n),a=k("indices",e,t,n);return[Bx(r,a)]}case"SparseToDense":{let r=k("sparseIndices",e,t,n),a=k("outputShape",e,t,n),s=k("sparseValues",e,t,n),i=k("defaultValue",e,t,n);return[zm(r,s,a,s.dtype===i.dtype?i:xe(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Sre=(e,t,n)=>{switch(e.op){case"FFT":return[lc(k("x",e,t,n))];case"IFFT":return[Il(k("x",e,t,n))];case"RFFT":return[uc(k("x",e,t,n))];case"IRFFT":return[qd(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Tre=(e,t,n)=>{switch(e.op){case"Cast":return[xe(k("x",e,t,n),k("dtype",e,t,n))];case"ExpandDims":{let r=k("axis",e,t,n);return[fn(k("x",e,t,n),r)]}case"Squeeze":{let r=k("axis",e,t,n);return[ja(k("x",e,t,n),r)]}case"Reshape":return[H(k("x",e,t,n),k("shape",e,t,n))];case"MirrorPad":return[vm(k("x",e,t,n),k("padding",e,t,n),k("mode",e,t,n))];case"PadV2":case"Pad":return[ua(k("x",e,t,n),k("padding",e,t,n),k("constantValue",e,t,n))];case"SpaceToBatchND":{let r=k("blockShape",e,t,n),a=k("paddings",e,t,n);return[rc(k("x",e,t,n),r,a)]}case"BatchToSpaceND":{let r=k("blockShape",e,t,n),a=k("crops",e,t,n);return[Zu(k("x",e,t,n),r,a)]}case"DepthToSpace":{let r=k("blockSize",e,t,n),a=k("dataFormat",e,t,n).toUpperCase();return[dm(k("x",e,t,n),r,a)]}case"BroadcastTo":return[Yu(k("x",e,t,n),k("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function i6(e,t,n,r){let a=((s,i,o)=>{switch(s.category){case"arithmetic":return L(()=>ire(s,i,o));case"basic_math":return L(()=>ore(s,i,o));case"control":return pre(s,i,o);case"convolution":return L(()=>fre(s,i,o));case"creation":return L(()=>mre(s,i,o));case"dynamic":return Are(s,i,o);case"evaluation":return L(()=>gre(s,i,o));case"image":return L(()=>bre(s,i,o));case"graph":return L(()=>yre(s,i,o));case"logical":return L(()=>_re(s,i,o));case"matrices":return L(()=>vre(s,i,o));case"normalization":return L(()=>kre(s,i,o));case"reduction":return L(()=>Ire(s,i,o));case"slice_join":return L(()=>Nre(s,i,o));case"spectral":return L(()=>Sre(s,i,o));case"transformation":return L(()=>Tre(s,i,o));case"hash_table":return wre(s,i,o,r);case"custom":let l=Ov(s.op);if(l&&l.customExecutor)return l.customExecutor(new sre(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return v.isPromise(a)?a.then(s=>[].concat(s)):[].concat(a)}var o6=class{constructor(e={},t={},n={},r={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;tt.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function u6(e,t,n,r){let a=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(d=>Un(d)[0]),c=[];r!=null&&(c=r.map(d=>Un(d.name)[0]));let h=[...t];for(;h.length>0;){let d=h.pop();if((l6(d)||Ere(d)||Cre(d))&&i==null&&(i=d,o=i.children.map(p=>p.name).filter(p=>a.has(p))),a.add(d.name),n[d.name]==null&&u.indexOf(d.name)===-1&&c.indexOf(d.name)===-1){if(d.inputs.length===0){s.push(d.name);continue}d.inputs.forEach(p=>{l.has(p.name)||(l.add(p.name),h.push(p))})}}return{inputs:e,outputs:t,usedNodes:a,missingInputs:s,dynamicNode:i,syncInputs:o}}function Rre(e,t,n){let{usedNodes:r,inputs:a}=n,s=[],i=Object.keys(a).map(c=>Un(c)[0]).map(c=>e.nodes[c]),o=e.initNodes;i.forEach(c=>{r.has(c.name)&&s.push(c)}),e.weights.forEach(c=>{r.has(c.name)&&s.push(c)}),o!=null&&o.forEach(c=>{r.has(c.name)&&s.push(c)});let l=new Set,u=[];for(;s.length>0;){let c=s.pop();l.add(c.name),t[c.name]||u.push(c),c.children.forEach(h=>{!l.has(h.name)&&r.has(h.name)&&h.inputs.every(d=>l.has(d.name))&&s.push(h)})}return u}var Fre=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],Mre=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],$re=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function l6(e){return Fre.indexOf(e.op)>=0}function Ere(e){return Mre.indexOf(e.op)>=0}function Cre(e){return $re.indexOf(e.op)>=0}var Sy=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new Sy(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(r=>r.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(a=>a.name).sort(),r=t.map(a=>a.name).sort();return n.join(this.SEPERATOR)+"--"+r.join(this.SEPERATOR)}compile(e,t){let n=u6(e,t,this.weightMap,this._initNodes),{missingInputs:r,dynamicNode:a,syncInputs:s}=n;if(a!=null)throw new Error(`This execution contains the node '${a.name}', which has the dynamic op '${a.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(r.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${r}]`)}return Rre(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let r=n.map(c=>this.graph.nodes[Un(c)[0]]),a=t.map(c=>Un(c)[0]),s=a.map(c=>this.graph.nodes[c]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(r,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},u={};return L(()=>{let c=new o6(this.weightMap,l,u,this.functionExecutorMap),h=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,A]=Un(f),g=[];g[A]=e[f],h[m]=g});let d=this.getFrozenTensorIds(h),p={};for(let f=0;fMn(f,h,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(r=>r.id)));return new Set(t)}checkTensorForDisposal(e,t,n,r,a,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=Wne(o.name,n,r);l!=null&&l.forEach(u=>{if(u&&!a.has(u.id)){let c=i[u.id];c===1?(u.dispose(),delete i[u.id]):c!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,r={},a={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new o6(this.weightMap,r,a,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(h=>Mn(h,i,s)),l=o.map(h=>h.id),u=Object.keys(e).map(h=>e[h].id),c=new Set([...l,...u,...this.weightIds]);return Object.keys(i).forEach(h=>{i[h].forEach(d=>{d&&!d.isDisposed&&!c.has(d.id)&&d.dispose()})}),this.parent==null&&s.dispose(c),o}async executeFunctionAsync(e,t,n){let r=e.reduce((a,s,i)=>(a[this.inputs[i].name]=s,a),{});return this._executeAsync(r,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,r){let a=Object.keys(e),s=a.map(y=>this.graph.nodes[Un(y)[0]]),i=n.map(y=>Un(y)[0]),o=i.map(y=>this.graph.nodes[y]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:c,syncInputs:h}=u6(e,o,this.weightMap,this._initNodes),d=[...s,...this.graph.weights,...this._initNodes||[]].map(y=>({node:y,contexts:t.currentContext})),p=Object.assign({},this.weightMap);Object.keys(e).forEach(y=>{let[w,b]=Un(y),_=[];_[b]=e[y],p[w]=_});let f={},m=this.getFrozenTensorIds(p),A={};for(;d.length>0;){let y=this.processStack(s,d,t,p,A,m,i,f,l);await Promise.all(y)}c==null&&!r&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let g=o.filter(y=>!l6(y)&&!Mn(y.name,p,t)).map(y=>y.name);if(g.length>0){let y="";throw c!=null&&(y=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${h}]`),new Error(`Cannot compute the outputs [${g}] from the provided inputs [${a}]. Consider providing the following inputs: [${u}]. ${y}`)}return p}processStack(e,t,n,r,a,s,i,o,l){let u=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let h="";if(c.node.op==="Enter"&&k("isConstant",c.node,r,n)&&([h]=ga(c.node.name,n)),r[c.node.name]==null){let d=i6(c.node,r,n,this._resourceManager);h||([h]=ga(c.node.name,n));let p=n.currentContext;v.isPromise(d)?u.push(d.then(f=>(r[h]=f,n.currentContext=p,this.checkTensorForDisposal(h,c.node,r,n,s,i,o),this.processChildNodes(c.node,t,n,r,a,l),f))):(r[h]=d,this.checkTensorForDisposal(h,c.node,r,n,s,i,o),this.processChildNodes(c.node,t,n,r,a,l))}else this.processChildNodes(c.node,t,n,r,a,l)}return u}processChildNodes(e,t,n,r,a,s){e.children.forEach(i=>{let[o]=ga(i.name,n);a[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!Mn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!Mn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[r]=Un(t),a=this.graph.nodes[r];if(a.attrParams.shape&&a.attrParams.shape.value){let s=a.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);v.assert(i,()=>`The shape of dict['${a.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}a.attrParams.dtype&&a.attrParams.dtype.value&&v.assert(n.dtype===a.attrParams.dtype.value,()=>`The dtype of dict['${a.name}'] provided in model.execute(dict) must be ${a.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let r=this._signature.inputs[n];t[r.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[r]=Un(n);return this.graph.nodes[r]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Un(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},Dre=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},Ore="?tfjs-format=file",zre="model.json",c6=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new Dre}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=In.browserHTTPRequest(e,this.loadOptions);else{let t=In.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(In.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let r=In.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Sy(t6.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(r),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let a=t6.Instance.transformGraph(e.modelInitializer);this.initializer=new Sy(a),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=In.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof qe)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,r)=>(t[n]=e[r],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Ft(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${zre}${Ore}`);let n=new c6(e,t);return await n.load(),n}var Pre="3.3.0",h6={};We(h6,{CSVDataset:()=>p6,Dataset:()=>Yl,FileDataSource:()=>f6,TextLineDataset:()=>d6,URLDataSource:()=>m6,array:()=>Lre,csv:()=>Bre,func:()=>Vre,generator:()=>Ure,microphone:()=>Hre,version_data:()=>Gre,webcam:()=>jre,zip:()=>Wre});var qre=no(t5()),Xre=no(t5());function Kre(e,t){return y0(e,t)}function y0(e,t,n=new Map,r=new Set){if(e==null)return null;if(r.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(a.recurse)if(Jl(e)){let s=Array.isArray(e)?[]:{};r.add(e);for(let i in e){let o=e[i],l=y0(o,t,n,r);s[i]=l}return r.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,a.value),a.value}function Zre(e,t=g6){return A6(e,t)}function A6(e,t,n=new Set){let r=e[0];if(n.has(r))throw new Error("Circular references are not supported.");let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(a.recurse)if(Jl(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let i in r){let o=e.map(u=>u[i]),l=A6(o,t,n);s[i]=l}return n.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return a.value}function g6(e){return e===null?null:Jl(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function y6(e,t){let n=new Map;y0(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(v.isPromise(a)){let s=await a;n.set(r,s)}}return y0(e,t,n)}function Jl(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof qe))}function Jre(e){return e==null||Yre(e)||Array.isArray(e)||typeof e=="object"&&e instanceof qe||v.isTypedArray(e)}function Yre(e){return e===null||typeof e!="object"&&typeof e!="function"}function eae(e){return Kre(e,Qre)}function Qre(e){return e instanceof qe?{value:e.clone(),recurse:!1}:Jl(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var x6=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},Ty=class extends x6{constructor(){super(Ty.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let r=0;rt===!0)}rowMajorBatch(e,t=!0){return new uae(this,e,t)}columnMajorBatch(e,t=!0,n=g6){return this.rowMajorBatch(e,t).map(r=>Zre(r,n))}concatenate(e,t){return new b6(w6([this,e]),t)}take(e){return e<0||e==null?this:new lae(this,e)}skip(e){return e<0||e==null?this:new oae(this,e)}prefetch(e){return new v6(this,e)}shuffle(e,t){return new fae(this,e,t)}serial(){return new iae(this)}},tae=class extends en{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:eae(e),done:!1}}},nae=class extends en{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},iae=class extends en{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},oae=class extends en{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++ Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},uae=class extends en{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},cae=class extends en{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Re(e.value)}}},hae=class extends en{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=_r.getTensorsInContainer(e.value),n=this.transform(e.value),r=_r.getTensorsInContainer(n);for(let a of t)_r.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},dae=class extends en{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},_6=class extends en{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=_r.getTensorsInContainer(e.value),n=await this.transform(e.value),r=_r.getTensorsInContainer(n);for(let a of t)_r.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},Cy=class extends en{constructor(){super();this.outputQueue=new Ty,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},pae=class extends Cy{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=_r.getTensorsInContainer(e.value),n=this.transform(e.value),r=_r.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let a of t)_r.isTensorInList(a,r)||a.dispose();return!0}},b6=class extends en{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},ns;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(ns||(ns={}));var aae=class extends en{constructor(e,t=ns.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function r(s){return s instanceof en?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let a=await y6(this.iterators,r);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case ns.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case ns.SHORTEST:return{value:null,done:!0};case ns.LONGEST:default:}return this.count++,{value:a,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},v6=class extends en{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new x6(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},fae=class extends v6{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=Xre.alea(n||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Yl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is ${e}`);let r;return this.size===Infinity||this.size==null?r=this.size:t?r=Math.ceil(this.size/e):r=Math.floor(this.size/e),jn(async()=>(await n.iterator()).columnMajorBatch(e,t,mae),r)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,jn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,jn(async()=>(await t.iterator()).filter(r=>L(()=>e(r))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return jn(async()=>(await t.iterator()).map(n=>L(()=>e(n))),this.size)}mapAsync(e){let t=this;return jn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return jn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,jn(async()=>{let r=Ey(async()=>({value:await t.iterator(),done:!1}));return rae(r.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let r=this,a=qre.alea(t||v.now().toString());return jn(async()=>{let s=a.int32();return n&&(s+=a.int32()),(await r.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,jn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Yl.MAX_BUFFER_SIZE=1e4;function jn(e,t=null){return new class extends Yl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function Lre(e){return jn(async()=>w6(e),e.length)}function Wre(e){if(!Jl(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n{let n=await y6(e,r=>{if(r instanceof Yl)return{value:r.iterator(),recurse:!1};if(Jl(r))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return sae(n,ns.SHORTEST)},t)}function mae(e){if(e===null)return null;let t=e[0];return Jre(t)?{value:Aae(e),recurse:!1}:{value:null,recurse:!0}}function Aae(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof qe?mn(e):kr(e)}var d6=class extends Yl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(` `).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},x0='"',Xc=Symbol("out"),k6=Symbol("field"),w0=Symbol("quote"),Ry=Symbol("quoteafterquote"),I6=Symbol("quoteinquote"),p6=class extends Yl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new d6(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((r,a)=>(r[a]=r[a]+1||1,r),{}),n=Object.keys(t).filter(r=>t[r]>1);if(v.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let r of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(r)===-1)throw new Error('The key "'+r+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},r={};for(let a=0;a14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(J().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new N6(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let r=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(r,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let r=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(r,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(r=>{let a=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&r({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(a),r({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((r,a)=>n.set(r,a*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(v.sizeFromShape(t));return n.set(e,n.length-e.length),kr(n,t)}},S6=class extends en{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=hn([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,r=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,a=(1-n)/2,s=(1-r)/2,i=a+n,o=r+s;this.cropBox=Tn([s,a,o,i],[1,4])}else this.cropBox=Tn([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(J().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new S6(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=dl.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return L(()=>{let t=fn(xe(e,"float32"),0),n;n=Ke.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let r=n.shape;return H(n,r.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},T6=class{},E6=class extends en{split(e){return new gae(this,e)}},gae=class extends E6{constructor(e,t){super();this.upstream=e,this.impl=new yae(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},yae=class extends Cy{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},wae=class extends en{decodeUTF8(){return new xae(this)}},xae=class extends E6{constructor(e){super();this.upstream=e,this.impl=new bae(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},bae=class extends Cy{constructor(e){super();if(this.upstream=e,J().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=ik();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return J().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},C6=class extends wae{constructor(e,t={}){super();this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(J().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let r=new FileReader;r.onload=s=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},r.onabort=s=>t(new Error("Aborted")),r.onerror=s=>t(new Error(s.type));let a=this.file.slice(this.offset,n);r.readAsArrayBuffer(a)}this.offset=n}),done:!1}}};async function vae(e,t={}){let n,r;typeof e=="string"?n=e:(n=e.url,r=_ae(e));let a=await v.fetch(n,r);if(a.ok){let s=new Uint8Array(await a.arrayBuffer());return new C6(s,t)}else throw new Error(a.statusText)}var _ae=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function R6(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var f6=class extends T6{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(R6(this.input)&&J().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new C6(this.input,this.options)}},m6=class extends T6{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return R6(this.url)?new f6(this.url,this.fileOptions).iterator():vae(this.url,this.fileOptions)}};function Bre(e,t={}){return new p6(new m6(e),t)}function Vre(e){let t=Ey(e);return jn(async()=>t)}function Ure(e){return jn(async()=>{let t=await e();return Ey(()=>t.next())})}async function jre(e,t){return S6.create(e,t)}async function Hre(e){return N6.create(e)}var Gre="3.3.0",kae={tfjs:ok,"tfjs-core":lk,"tfjs-data":uk,"tfjs-layers":ck,"tfjs-converter":hk,"tfjs-backend-cpu":Rw,"tfjs-backend-webgl":Qb,"tfjs-backend-wasm":U3};var Hn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function F6(){if(!Yf(Hn.name)){Me("backend registration:",Hn.name);try{Hn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Hn.width,Hn.height):document.createElement("canvas")}catch(e){Me("error: cannot create canvas:",e);return}try{Hn.gl=Hn.canvas.getContext("webgl2",Hn.webGLattr)}catch(e){Me("error: cannot get WebGL2 context:",e);return}try{yp(2,Hn.gl)}catch(e){Me("error: cannot set WebGL2 context:",e);return}try{let e=new _p(Hn.gl);fl(Hn.name,()=>new Ll(e),Hn.priority)}catch(e){Me("error: cannot register WebGL backend:",e);return}try{il("webgl").forEach(t=>{let n={...t,backendName:Hn.name};ui(n)})}catch(e){Me("error: cannot update WebGL backend registration:",e);return}try{br.set("WEBGL_VERSION",2)}catch(e){Me("error: cannot set WebGL backend flags:",e);return}Me("backend registered:",Hn.name)}}var M6=6;function Iae(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let r=0;r({startEndTensor:e,startPoint:$e(e,[0,0],[-1,2]),endPoint:$e(e,[0,2],[-1,2])});function Sae(e,t,n){let r=$e(e,[0,1],[-1,2]),a=ie(r,t),s=$e(e,[0,3],[-1,2]),i=_e(s,n),o=_e(a,n),l=_e(i,2),u=be(o,l),c=ie(o,l),h=O(u,n),d=O(c,n);return gl([h,d],1)}var $6=class{constructor(t,n){this.model=t,this.anchorsData=Iae(t.inputs[0].shape[1]),this.anchors=Tn(this.anchorsData),this.inputSize=t.inputs[0].shape[2],this.config=n}async getBoundingBoxes(t){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[n,r,a]=L(()=>{let d=t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(.5),p=this.model.predict(d),f;if(Array.isArray(p)){let y=p.sort((x,N)=>x.size-N.size),w=ot([y[0],y[2]],2),b=ot([y[1],y[3]],2);f=ot([b,w],1).squeeze(0)}else f=p.squeeze();let m=Sae(f,this.anchors,[this.inputSize,this.inputSize]),A=$e(f,[0,0],[-1,1]),g=Dn(A).squeeze();return[f,m,g]}),s=await Ke.nonMaxSuppressionAsync(r,a,this.config.face.detector.maxFaces,this.config.face.detector.iouThreshold,this.config.face.detector.scoreThreshold),i=s.arraySync();s.dispose();let l=i.map(h=>$e(r,[h,0],[1,-1])).map(h=>{let d=h.arraySync();return h.dispose(),d}),u=a.dataSync(),c=[];for(let h=0;hthis.config.face.detector.minConfidence){let f=Nae(l[h]),m=this.anchorsData[d],A=L(()=>$e(n,[d,M6-1],[1,-1]).squeeze().reshape([M6,-1]));c.push({box:f,landmarks:A,anchor:m,confidence:p})}}return n.dispose(),r.dispose(),a.dispose(),{boxes:c,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function D6(e){let t=await Ft(e.face.detector.modelPath,{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new $6(t,e);return e.debug&&Me(`load model: ${e.face.detector.modelPath.match(/\/(.*)\./)[1]}`),n}function O6(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:r}}function Kc(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Ql(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function eu(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Ke.cropAndResize(t,s,[0],n)}function b0(e,t=1.5){let n=Ql(e),r=Kc(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function _0(e){let t=Ql(e),n=Kc(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}var v0=[[1,0,0],[0,1,0],[0,0,1]];function Tae(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function Fy(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Tae(n)}function z6(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function rs(e,t){let n=0;for(let r=0;r$y[e]),fhe=Rae.map(e=>$y[e]),mhe=Fae.map(e=>$y[e]);var Dy=Qr.leftEyeLower0,Oy=Qr.rightEyeLower0,tu={leftBounds:[Dy[0],Dy[Dy.length-1]],rightBounds:[Oy[0],Oy[Oy.length-1]]},I0={count:468,mouth:13,symmetryLine:[13,Qr.midwayBetweenEyes[0]]},B6={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},nu={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function N0(e,t,n,r){for(let a=0;a[s[0]/this.meshSize*(h[0]-this.meshSize/2),s[1]/this.meshSize*(h[1]-this.meshSize/2),h[2]]),o=r!==0?k0(r,[0,0]):v0,l=r!==0?i.map(h=>[...W6(h,o),h[2]]):i,u=r!==0?L6(a):v0,c=[...Ql({startPoint:n.startPoint,endPoint:n.endPoint}),1];return l.map(h=>[h[0]+rs(c,u[0]),h[1]+rs(c,u[1]),h[2]])}getLeftToRightEyeDepthDifference(t){let n=t[tu.leftBounds[0]][2],r=t[tu.rightBounds[0]][2];return n-r}getEyeBox(t,n,r,a,s=!1){let i=_0(b0(this.calculateLandmarksBoundingBox([t[r],t[a]]),this.irisEnlarge)),o=Kc(i),l=Ke.cropAndResize(n,[[i.startPoint[1]/this.meshSize,i.startPoint[0]/this.meshSize,i.endPoint[1]/this.meshSize,i.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);return s&&br.flags.IS_BROWSER&&(l=Ke.flipLeftRight(l)),{box:i,boxSize:o,crop:l}}getEyeCoords(t,n,r,a=!1){let s=[];for(let i=0;i{let u=i;return l===2?u=a:l===4&&(u=s),[o[0],o[1],u]})}async predict(t,n){let r=!1,a;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.videoOptimized)&&(a=await this.boundingBoxDetector.getBoundingBoxes(t),this.skipped=0),n.videoOptimized&&this.skipped++,a&&a.boxes&&(!n.face.mesh.enabled||a.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxFaces)){this.storedBoxes=[],this.detectedFaces=0;for(let i of a.boxes)this.storedBoxes.push({startPoint:i.box.startPoint.dataSync(),endPoint:i.box.endPoint.dataSync(),landmarks:i.landmarks,confidence:i.confidence});this.storedBoxes.length>0&&(r=!0)}if(n.face.detector.skipInitial&&this.detectedFaces===0&&(this.skipped=0),r){if(!a||!a.boxes||a.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i{i.box.startPoint.dispose(),i.box.endPoint.dispose(),i.landmarks.dispose()});let s=L(()=>this.storedBoxes.map((i,o)=>{let l=i.confidence,u,c=0,h;if(n.face.detector.rotation&&n.face.mesh.enabled&&br.flags.IS_BROWSER){let[_,x]=i.landmarks.length>=I0.count?I0.symmetryLine:B6.symmetryLine;c=Fy(i.landmarks[_],i.landmarks[x]);let N=Ql({startPoint:i.startPoint,endPoint:i.endPoint}),T=[N[0]/t.shape[2],N[1]/t.shape[1]],E=Ke.rotateWithOffset(t,c,0,T);h=k0(-c,N),n.face.mesh.enabled?u=eu({startPoint:i.startPoint,endPoint:i.endPoint},E,[this.meshSize,this.meshSize]).div(255):u=eu({startPoint:i.startPoint,endPoint:i.endPoint},E,[this.boxSize,this.boxSize]).div(255)}else{h=v0;let _=t.clone();n.face.mesh.enabled?u=eu({startPoint:i.startPoint,endPoint:i.endPoint},_,[this.meshSize,this.meshSize]).div(255):u=eu({startPoint:i.startPoint,endPoint:i.endPoint},_,[this.boxSize,this.boxSize]).div(255)}if(!n.face.mesh.enabled)return{coords:null,box:i,faceConfidence:null,boxConfidence:i.confidence,confidence:i.confidence,image:u};let[,d,p]=this.meshDetector.predict(u),f=d.dataSync()[0];if(f=I0.count?I0.symmetryLine:B6.symmetryLine;c=Fy(i.landmarks[_],i.landmarks[x]);let N=Ql({startPoint:i.startPoint,endPoint:i.endPoint}),T=[N[0]/t.shape[2],N[1]/t.shape[1]],E=Ke.rotateWithOffset(t,c,0,T);h=k0(-c,N),u=eu({startPoint:i.startPoint,endPoint:i.endPoint},E,[this.meshSize,this.meshSize]).div(255)}let w={coords:y,box:i,faceConfidence:f,boxConfidence:l,image:u,rawCoords:A},b=_0(i);return this.storedBoxes[o]={...b,landmarks:g,confidence:i.confidence,faceConfidence:f},w}));return s=s.filter(i=>i!==null),n.face.mesh.enabled&&(this.storedBoxes=this.storedBoxes.filter(i=>i.faceConfidence>n.face.detector.minConfidence)),this.detectedFaces=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s,landmarks:t}}};var O2=Eh(U6());var Wy={};wr(Wy,{load:()=>By,predict:()=>Vy});var Ly={};function gr(e,t){if(!t||!t.kernels)return;let n=5,r=t.kernels.filter(o=>o.kernelTimeMs>0).reduce((o,l)=>o+=l.kernelTimeMs,0),a=t.kernels.map((o,l)=>(o.id=l,o)).filter(o=>o.kernelTimeMs>0).sort((o,l)=>l.kernelTimeMs-o.kernelTimeMs),s=t.kernels.map((o,l)=>(o.id=l,o)).filter(o=>o.totalBytesSnapshot>0).sort((o,l)=>l.totalBytesSnapshot-o.totalBytesSnapshot);a.length>n&&(a.length=n),s.length>n&&(s.length=n);let i={newBytes:t.newBytes,newTensors:t.newTensors,peakBytes:t.peakBytes,numKernelOps:t.kernels.length,timeKernelOps:r,slowestKernelOps:a,largestKernelOps:s};Ly[e]=i,Me("Human profiler",e,i)}var as,S0={age:0},T0=Number.MAX_SAFE_INTEGER;async function By(e){return as||(as=await Ft(e.face.age.modelPath),e.debug&&Me(`load model: ${e.face.age.modelPath.match(/\/(.*)\./)[1]}`)),as}async function Vy(e,t){return as?T00?(T0++,S0):(t.videoOptimized?T0=0:T0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Ke.resizeBilinear(e,[as.inputs[0].shape[2],as.inputs[0].shape[1]],!1),a=O(r,[255]);Re(r);let s,i={age:0};if(!t.profile)t.face.age.enabled&&(s=await as.predict(a));else{let o=t.face.age.enabled?await Yn(()=>as.predict(a)):{};s=o.result.clone(),o.result.dispose(),gr("age",o)}if(a.dispose(),s){let o=s.dataSync();i.age=Math.trunc(10*o[0])/10}s.dispose(),S0=i,n(i)})):null}var Uy={};wr(Uy,{load:()=>qy,predict:()=>Xy});var xa,jy={gender:""},E0=Number.MAX_SAFE_INTEGER,Hy=!1,Gy=[.2989,.587,.114];async function qy(e){return xa||(xa=await Ft(e.face.gender.modelPath),Hy=xa.inputs[0].shape[3]===1,e.debug&&Me(`load model: ${e.face.gender.modelPath.match(/\/(.*)\./)[1]}`)),xa}async function Xy(e,t){return xa?E0{let r=Ke.resizeBilinear(e,[xa.inputs[0].shape[2],xa.inputs[0].shape[1]],!1),a;Hy?a=L(()=>{let[o,l,u]=jt(r,3,3),c=O(o,Gy[0]),h=O(l,Gy[1]),d=O(u,Gy[2]);return La([c,h,d]).sub(.5).mul(2)}):a=O(r,[255]),Re(r);let s,i={gender:"",confidence:0};if(!t.profile)t.face.gender.enabled&&(s=await xa.predict(a));else{let o=t.face.gender.enabled?await Yn(()=>xa.predict(a)):{};s=o.result.clone(),o.result.dispose(),gr("gender",o)}if(a.dispose(),s){let o=s.dataSync();if(Hy)(o[0]>t.face.gender.minConfidence||o[1]>t.face.gender.minConfidence)&&(i.gender=o[0]>o[1]?"female":"male",i.confidence=o[0]>o[1]?Math.trunc(100*o[0])/100:Math.trunc(100*o[1])/100);else{let l=Math.trunc(200*Math.abs(o[0]-.5))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]<=.5?"female":"male",i.confidence=Math.min(.99,l))}}s.dispose(),jy=i,n(i)})):null}var Ky={};wr(Ky,{load:()=>Jy,predict:()=>Qy});var $ae=["angry","disgust","fear","happy","sad","surprise","neutral"],ss,Zy=[],C0=Number.MAX_SAFE_INTEGER,Yy=[.2989,.587,.114];async function Jy(e){return ss||(ss=await Ft(e.face.emotion.modelPath),e.debug&&Me(`load model: ${e.face.emotion.modelPath.match(/\/(.*)\./)[1]}`)),ss}async function Qy(e,t){return ss?C00?(C0++,Zy):(t.videoOptimized?C0=0:C0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Ke.resizeBilinear(e,[ss.inputs[0].shape[2],ss.inputs[0].shape[1]],!1),[a,s,i]=jt(r,3,3);r.dispose();let o=O(a,Yy[0]),l=O(s,Yy[1]),u=O(i,Yy[2]);a.dispose(),s.dispose(),i.dispose();let c=La([o,l,u]);o.dispose(),l.dispose(),u.dispose();let h=L(()=>c.sub(.5).mul(2));c.dispose();let d=[];if(t.face.emotion.enabled){let p;if(t.profile){let f=await Yn(()=>ss.predict(h));p=f.result.dataSync(),f.result.dispose(),gr("emotion",f)}else{let f=await ss.predict(h);p=f.dataSync(),Re(f)}for(let f=0;ft.face.emotion.minConfidence&&d.push({score:Math.min(.99,Math.trunc(100*p[f])/100),emotion:$ae[f]});d.sort((f,m)=>m.score-f.score)}h.dispose(),Zy=d,n(d)})):null}var ea;async function e2(e){return ea||(ea=await Ft(e.face.embedding.modelPath),e.debug&&Me(`load model: ${e.face.embedding.modelPath.match(/\/(.*)\./)[1]}`)),ea}function t2(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let r=e.map((s,i)=>Math.abs(e[i]-t[i])**n).reduce((s,i)=>s+i,0)**(1/n);return Math.max(Math.trunc(1e3*(1-r))/1e3,0)}function j6(e,t,n=0){let r={simmilarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return r;for(let a of t)if(a.embedding&&a.name){let s=t2(e,a.embedding);s>n&&s>r.simmilarity&&(r={...a,simmilarity:s})}return r}function n2(e){return L(()=>{let n=[[.05,.15,.85,.85]],r=e.image||e.tensor;if(!(r instanceof qe))return null;let a=r.shape.length===3?Ke.cropAndResize(fn(r,0),n,[0],[ea.inputs[0].shape[2],ea.inputs[0].shape[1]]):Ke.cropAndResize(r,n,[0],[ea.inputs[0].shape[2],ea.inputs[0].shape[1]]),s=[.2989,.587,.114],[i,o,l]=jt(a,3,3),u=O(i,s[0]),c=O(o,s[1]),h=O(l,s[2]),d=La([u,c,h]),p=mn([d,d,d],3).squeeze(4),f=p.sub(p.min());return f.div(f.max())})}async function r2(e,t){return ea?new Promise(async n=>{let r=[];if(t.face.embedding.enabled){let a=n2(e);if(!t.profile)r=L(()=>[...ea.predict(a).reshape([128,2]).logSumExp(1).dataSync()]);else{let s=await Yn(()=>ea.predict({img_inputs:a}));r=[...s.result.dataSync()],s.result.dispose(),gr("emotion",s)}Re(a)}n(r)}):[]}var m2={};wr(m2,{PoseNet:()=>A2,load:()=>g2});function Dae(e){let[t,n,r,a]=e;return{offsets:t,heatmap:n,displacementFwd:r,displacementBwd:a}}var a2=class{constructor(t){this.model=t}predict(t){return L(()=>{let r=t.toFloat().div(127.5).sub(1).expandDims(0),s=this.model.predict(r).map(o=>o.squeeze([0])),i=Dae(s);return{heatmapScores:i.heatmap.sigmoid(),offsets:i.offsets,displacementFwd:i.displacementFwd,displacementBwd:i.displacementBwd}})}dispose(){this.model.dispose()}};function s2(e){return Math.floor(e/2)}var i2=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(s2(t),t);)this.exchange(t,s2(t)),t=s2(t)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(nt){l=!1;break}if(!l)break}return l}function H6(e,t,n){let[r,a,s]=n.shape,i=new i2(r*a*s,({score:o})=>o);for(let o=0;on?n:e}function q6(e,t,n,r){let a=n-e,s=r-t;return a*a+s*s}function h2(e,t){return{x:e.x+t.x,y:e.y+t.y}}var M0=Eh(R0());function X6(e,t){let n=t.shape[0],r=new Float32Array(n);for(let a=0;ae.toTensor().mul(Ne(t,"int32")).toFloat().add(jae(e,n)))}function Hae(e,t){return L(()=>{let n=e.div(Ne(t,"int32"));return e.sub(n.mul(Ne(t,"int32")))})}function Z6(e){let[t,n,r]=e.shape;return L(()=>{let s=e.reshape([t*n,r]).argMax(0),i=s.div(Ne(n,"int32")).expandDims(1),o=Hae(s,n).expandDims(1);return ot([i,o],1)})}var Y6=wa.poseChain.map(([e,t])=>[wa.partIds[e],wa.partIds[t]]),d2=Y6.map(([,e])=>e),J6=Y6.map(([e])=>e),Gae=16;function qae(e,t,n){let r=n.shape[2]/2;return{y:n.get(t.y,t.x,e),x:n.get(t.y,t.x,r+e)}}function p2(e,t,n,r){return{y:c2(Math.round(e.y/t),0,n-1),x:c2(Math.round(e.x/t),0,r-1)}}function Q6(e,t,n,r,a,s,i,o=2){let[l,u]=r.shape,c=p2(t.position,s,l,u),h=qae(e,c,i),p=h2(t.position,h);for(let A=0;A=0;--d){let p=d2[d],f=J6[d];l[p]&&!l[f]&&(l[f]=Q6(d,l[p],f,t,n,r,s))}for(let d=0;d(r+=f,{position:{y:c.get(m,0),x:c.get(m,1)},part:wa.partNames[m],score:f})),p=d.filter(f=>f.score>n);return a.dispose(),u.dispose(),{keypoints:p,score:r/d.length}}var Xae=1,n4=16;function r4(e,t,{x:n,y:r},a){return e.some(({keypoints:s})=>{let i=s[a].position;return q6(r,n,i.y,i.x)<=t})}function Kae(e,t,n){return n.reduce((a,{position:s,score:i},o)=>(r4(e,t,s,o)||(a+=i),a),0)/n.length}function a4(e,t,n,r,a,s,i){let o=[],l=H6(i,Xae,e),u=a^2;for(;o.lengthi&&o.push({keypoints:d,score:p})}return o}async function s4(e){return Promise.all(e.map(t=>t.buffer()))}function Zae(e,t,n){return{score:e.score,keypoints:e.keypoints.map(({score:r,part:a,position:s})=>({score:r,part:a,position:{x:Math.trunc(s.x*n),y:Math.trunc(s.y*t)}}))}}function i4(e,[t,n]){let r=e.squeeze(0),a=r.resizeBilinear([t,n]);return r.dispose(),a}function f2(e,[t,n],[r,a]){return e.map(i=>Zae(i,t/r,n/a))}async function Yae(e,t,n,r){return new Promise(async a=>{let s=await s4([t.heatmapScores,t.offsets,t.displacementFwd,t.displacementBwd]),i=s[0],o=s[1],l=s[2],u=s[3],c=await a4(i,o,l,u,n.body.nmsRadius,n.body.maxDetections,n.body.scoreThreshold),h=f2(c,[e.shape[1],e.shape[2]],[r,r]);a(h)})}async function Jae(e,t,n,r){return new Promise(async a=>{let s=await t4(t.heatmapScores,t.offsets,n.body.scoreThreshold),i=f2([s],[e.shape[1],e.shape[2]],[r,r]);a(i)})}var A2=class{constructor(t){this.baseModel=t,this.inputSize=t.model.inputs[0].shape[1],this.inputSize<128&&(this.inputSize=257)}async estimatePoses(t,n){let r=i4(t,[this.inputSize,this.inputSize]),a=this.baseModel.predict(r,n),s=n.body.maxDetections<2?await Jae(t,a,n,this.inputSize):await Yae(t,a,n,this.inputSize);return a.heatmapScores.dispose(),a.offsets.dispose(),a.displacementFwd.dispose(),a.displacementBwd.dispose(),r.dispose(),s}dispose(){this.baseModel.dispose()}};async function g2(e){let t=await Ft(e.body.modelPath),n=new a2(t);return e.debug&&Me(`load model: ${e.body.modelPath.match(/\/(.*)\./)[1]}`),new A2(n)}var _2={};wr(_2,{HandPose:()=>k2,load:()=>I2});function $0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Zc(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function o4(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Ke.cropAndResize(t,s,[0],n)}function l4(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],a=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:r,palmLandmarks:a,confidence:e.confidence}}function D0(e,t=1.5){let n=Zc(e),r=$0(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function O0(e){let t=Zc(e),n=$0(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}var y2=class{constructor(t,n,r){this.model=t,this.anchors=r.map(a=>[a.x_center,a.y_center]),this.anchorsTensor=Tn(this.anchors),this.inputSize=n,this.inputSizeTensor=hn([n,n]),this.doubleInputSizeTensor=hn([n*2,n*2])}normalizeBoxes(t){return L(()=>{let n=$e(t,[0,0],[-1,2]),r=$e(t,[0,2],[-1,2]),a=ie(_e(n,this.inputSizeTensor),this.anchorsTensor),s=_e(r,this.doubleInputSizeTensor),i=O(be(a,s),this.inputSizeTensor),o=O(ie(a,s),this.inputSizeTensor);return gl([i,o],1)})}normalizeLandmarks(t,n){return L(()=>{let r=ie(_e(t.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[n]);return O(r,this.inputSizeTensor)})}async getBoxes(t,n){let r=this.model.predict(t),a=r.squeeze();r.dispose();let s=L(()=>Dn($e(a,[0,0],[-1,1])).squeeze()),i=s.dataSync(),o=$e(a,[0,1],[-1,4]),l=this.normalizeBoxes(o);o.dispose();let u=await Ke.nonMaxSuppressionAsync(l,i,n.hand.maxHands,n.hand.iouThreshold,n.hand.scoreThreshold),c=u.arraySync();s.dispose(),u.dispose();let h=[];for(let d of c)if(i[d]>=n.hand.minConfidence){let p=$e(l,[d,0],[1,-1]),f=$e(a,[d,5],[1,14]),m=L(()=>this.normalizeLandmarks(f,d).reshape([-1,2]));f.dispose(),h.push({box:p,palmLandmarks:m,confidence:i[d]})}return a.dispose(),l.dispose(),h}async estimateHandBounds(t,n){let r=t.shape[1],a=t.shape[2],s=L(()=>t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(1)),i=await this.getBoxes(s,n);s.dispose();let o=[];if(!i||i.length===0)return o;for(let l of i){let u=l.box.dataSync(),c=u.slice(0,2),h=u.slice(2,4),d=l.palmLandmarks.arraySync();l.box.dispose(),l.palmLandmarks.dispose(),o.push(l4({startPoint:c,endPoint:h,palmLandmarks:d,confidence:l.confidence},[a/this.inputSize,r/this.inputSize]))}return o}};function Qae(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function u4(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Qae(n)}var c4=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function is(e,t){let n=0;for(let r=0;rw2([...s,1],n)),a=this.calculateLandmarksBoundingBox(r);return D0(O0(a),tse)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),r=D0(O0(n),p4);r.palmLandmarks=[];for(let a=0;a[i[0]*(p[0]-this.inputSize/2),i[1]*(p[1]-this.inputSize/2),i[2]*p[2]]),l=x2(r,[0,0]),u=o.map(p=>[...w2(p,l),p[2]]),c=d4(a),h=[...Zc(n),1],d=[is(h,c[0]),is(h,c[1])];return u.map(p=>[p[0]+d[0],p[1]+d[1],p[2]])}async estimateHands(t,n){let r=!1,a;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.videoOptimized)&&(a=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.videoOptimized&&this.skipped++,a&&a.length>0&&(a.length!==this.detectedHands&&this.detectedHands!==n.hand.maxHands||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...a],this.storedBoxes.length>0&&(r=!0));let s=[];n.hand.skipInitial&&this.detectedHands===0&&(this.skipped=0);for(let i=0;i=n.hand.minConfidence){let w=H(g,[-1,3]),b=w.arraySync();g.dispose(),w.dispose();let _=this.transformRawCoords(b,p,l,d),x=this.getBoxForHandLandmarks(_);this.storedBoxes[i]=x;let N={landmarks:_,confidence:y,box:{topLeft:x.startPoint,bottomRight:x.endPoint}};s.push(N)}else this.storedBoxes[i]=null;g.dispose()}else{let l=D0(O0(o),p4),u={confidence:o.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};s.push(u)}}return this.storedBoxes=this.storedBoxes.filter(i=>i!==null),this.detectedHands=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s}}};var m4=[{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375}];var v2={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},k2=class{constructor(t){this.handPipeline=t}static getAnnotations(){return v2}async estimateHands(t,n){let r=await this.handPipeline.estimateHands(t,n);if(!r)return[];let a=[];for(let s of r){let i={};if(s.landmarks)for(let u of Object.keys(v2))i[u]=v2[u].map(c=>s.landmarks[c]);let o=s.box?[Math.max(0,s.box.topLeft[0]),Math.max(0,s.box.topLeft[1]),Math.min(t.shape[2],s.box.bottomRight[0])-Math.max(0,s.box.topLeft[0]),Math.min(t.shape[1],s.box.bottomRight[1])-Math.max(0,s.box.topLeft[1])]:[],l=[s.box.topLeft[0]/t.shape[2],s.box.topLeft[1]/t.shape[1],(s.box.bottomRight[0]-s.box.topLeft[0])/t.shape[2],(s.box.bottomRight[1]-s.box.topLeft[1])/t.shape[1]];a.push({confidence:s.confidence,box:o,boxRaw:l,landmarks:s.landmarks,annotations:i})}return a}};async function I2(e){let[t,n]=await Promise.all([e.hand.enabled?Ft(e.hand.detector.modelPath,{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?Ft(e.hand.skeleton.modelPath,{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),r=new y2(t,t==null?void 0:t.inputs[0].shape[2],m4),a=new b2(r,n,n==null?void 0:n.inputs[0].shape[2]),s=new k2(a);return e.hand.enabled&&e.debug&&Me(`load model: ${e.hand.detector.modelPath.match(/\/(.*)\./)[1]}`),e.hand.landmarks&&e.debug&&Me(`load model: ${e.hand.skeleton.modelPath.match(/\/(.*)\./)[1]}`),s}var N2={};wr(N2,{load:()=>S2,predict:()=>T2});var A4=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],g4=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var yr;async function S2(e){return yr||(yr=await Ft(e.body.modelPath),yr.width=parseInt(yr.signature.inputs["input_1:0"].tensorShape.dim[2].size),yr.height=parseInt(yr.signature.inputs["input_1:0"].tensorShape.dim[1].size),e.debug&&Me(`load model: ${e.body.modelPath.match(/\/(.*)\./)[1]}`)),yr}async function T2(e,t){if(!yr||!t.body.enabled)return null;let n={width:e.shape[2],height:e.shape[1]},r=Ke.resizeBilinear(e,[yr.width,yr.height],!1),a=_e(r,[255]);r.dispose();let s;if(t.profile){let u=await Yn(()=>yr.predict(a));s=u.result.find(c=>c.size===195||c.size===155).dataSync(),u.result.forEach(c=>c.dispose()),gr("blazepose",u)}else{let u=await yr.predict(a);s=u.find(c=>c.size===195||c.size===155).dataSync(),u.forEach(c=>c.dispose())}a.dispose();let i=[],o=s.length===195?A4:g4,l=5;for(let u=0;uR2,predict:()=>F2});var $r,C2=[],z0=Number.MAX_SAFE_INTEGER,P0=2.5,ase=["person","bicycle","car","motorcycle","airplane","bus","train","vehicle","boat","traffic light","fire hydrant","stop sign","parking meter","bench","animal","animal","animal","animal","animal","animal","animal","bear","animal","animal","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite","baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife","spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza","pastry","cake","chair","couch","potted plant","bed","dining table","toilet","tv","laptop","mouse","remote","keyboard","cell phone","microwave","oven","toaster","sink","refrigerator","book","clock","vase","scissors","teddy bear","hair drier","toothbrush"];async function R2(e){return $r||($r=await Ft(e.object.modelPath),$r.inputSize=parseInt(Object.values($r.modelSignature.inputs)[0].tensorShape.dim[2].size),e.debug&&Me(`load model: ${e.object.modelPath.match(/\/(.*)\./)[1]}`)),$r}async function sse(e,t,n,r){let a=[];for(let u of[1,2,4])L(()=>{var g,y;let c=u*13,h=(g=e.find(w=>w.shape[1]===c**2&&w.shape[2]===80))==null?void 0:g.squeeze(),d=(y=e.find(w=>w.shape[1]===c**2&&w.shape[2]===32))==null?void 0:y.squeeze(),p=h.argMax(1).dataSync(),f=h.max(1).dataSync(),A=d.reshape([-1,4,8]).argMax(2).arraySync();for(let w=0;wr.object.minConfidence){let b=(.5+Math.trunc(w%c))/c,_=(.5+Math.trunc(w/c))/c,x=A[w].map(M=>M*(c/u/t)),N=[b-P0/u*x[0],_-P0/u*x[1],b+P0/u*x[2],_+P0/u*x[3]];N=N.map(M=>Math.max(0,Math.min(M,1)));let T=[Math.max(0,N[0]*n[0]),Math.max(0,N[1]*n[1]),Math.min(1,N[2]*n[0]-N[0]*n[0]),Math.min(1,N[3]*n[1]-N[1]*n[1])],E={score:f[w],strideSize:u,class:p[w]+1,label:ase[p[w]],center:[Math.trunc(n[0]*b),Math.trunc(n[1]*_)],centerRaw:[b,_],box:T.map(M=>Math.trunc(M)),boxRaw:N};a.push(E)}});e.forEach(u=>Re(u));let s=a.map(u=>u.boxRaw),i=a.map(u=>u.score),o=await Ke.nonMaxSuppressionAsync(s,i,r.object.maxResults,r.object.iouThreshold,r.object.minConfidence),l=o.dataSync();return Re(o),a=a.filter((u,c)=>l.includes(c)).sort((u,c)=>c.score-u.score),a}async function F2(e,t){return $r?z00?(z0++,C2):(t.videoOptimized?z0=0:z0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=[e.shape[2],e.shape[1]],a=Ke.resizeBilinear(e,[$r.inputSize,$r.inputSize],!1),s=a.div(255);a.dispose();let i=s.transpose([0,3,1,2]);s.dispose();let o;if(!t.profile)t.object.enabled&&(o=await $r.predict(i));else{let u=t.object.enabled?await Yn(()=>$r.predict(i)):{};o=u.result.clone(),u.result.dispose(),gr("object",u)}i.dispose();let l=await sse(o,$r.inputSize,r,t);C2=l,n(l)})):null}var y4=e=>{if(!e)return[];let t=[];for(let n=0;nl.part==="leftWrist"),a=e[n].keypoints.find(l=>l.part==="rightWrist"),s=e[n].keypoints.find(l=>l.part==="nose");s&&r&&a&&r.position.yl.part==="leftShoulder"),o=e[n].keypoints.find(l=>l.part==="rightShoulder");i&&o&&t.push({body:n,gesture:`leaning ${i.position.y>o.position.y?"left":"right"}`})}return t},x4=e=>{if(!e)return[];let t=[];for(let n=0;n0){let r=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(r)<10?t.push({face:n,gesture:"facing camera"}):t.push({face:n,gesture:`facing ${r<0?"right":"left"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let o=e[n].mesh[152][2];Math.abs(o)>10&&t.push({face:n,gesture:`head ${o<0?"up":"down"}`})}return t},w4=e=>{if(!e)return[];let t=[];for(let n=0;n{if(!e)return[];let t=[];for(let n=0;n0){let a=r.reduce((i,o)=>i.position[2]i.position[1](u[d]=0,h))},a=function(o,l){let u=e.createShader(l);if(e.shaderSource(u,o),e.compileShader(u),!e.getShaderParameter(u,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(u));return u};this.uniform={},this.attribute={};let s=a(t,e.VERTEX_SHADER),i=a(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,s),e.attachShader(this.id,i),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),r(t,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=e.getAttribLocation(this.id,o);r(t,"uniform",this.uniform),r(n,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=e.getUniformLocation(this.id,o)}function _4(e){e||(e={});let t=0,n=null,r=!1,a=-1,s=[null,null],i=[],o=-1,l=-1,u=null,c=null,h={},d=e.canvas||document.createElement("canvas"),p={},f={INTERMEDIATE:1},m=d.getContext("webgl");if(!m)throw new Error("Filter: getContext() failed");this.addFilter=function(_){let x=Array.prototype.slice.call(arguments,1),N=h[_];i.push({func:N,args:x})},this.reset=function(){i=[]};let A=function(_,x){if(!(_===o&&x===l)){if(d.width=_,o=_,d.height=x,l=x,!u){let N=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);u=m.createBuffer(),m.bindBuffer(m.ARRAY_BUFFER,u),m.bufferData(m.ARRAY_BUFFER,N,m.STATIC_DRAW),m.pixelStorei(m.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}m.viewport(0,0,o,l),s=[null,null]}},g=function(_,x){let N=m.createFramebuffer();m.bindFramebuffer(m.FRAMEBUFFER,N);let T=m.createRenderbuffer();m.bindRenderbuffer(m.RENDERBUFFER,T);let E=m.createTexture();return m.bindTexture(m.TEXTURE_2D,E),m.texImage2D(m.TEXTURE_2D,0,m.RGBA,_,x,0,m.RGBA,m.UNSIGNED_BYTE,null),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MAG_FILTER,m.LINEAR),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MIN_FILTER,m.LINEAR),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_S,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_T,m.CLAMP_TO_EDGE),m.framebufferTexture2D(m.FRAMEBUFFER,m.COLOR_ATTACHMENT0,m.TEXTURE_2D,E,0),m.bindTexture(m.TEXTURE_2D,null),m.bindFramebuffer(m.FRAMEBUFFER,null),{fbo:N,texture:E}},y=function(_){return s[_]=s[_]||g(o,l),s[_]},w=function(_=null){var E,M;let x=null,N=null,T=!1;t===0?x=n:x=(E=y(a))==null?void 0:E.texture,t++,r&&!(_&f.INTERMEDIATE)?(N=null,T=t%2==0):(a=(a+1)%2,N=(M=y(a))==null?void 0:M.fbo),m.bindTexture(m.TEXTURE_2D,x),m.bindFramebuffer(m.FRAMEBUFFER,N),m.uniform1f(c.uniform.flipY,T?-1:1),m.drawArrays(m.TRIANGLES,0,6)};this.apply=function(_){if(A(_.width,_.height),t=0,n||(n=m.createTexture()),m.bindTexture(m.TEXTURE_2D,n),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_S,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_T,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MIN_FILTER,m.NEAREST),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MAG_FILTER,m.NEAREST),m.texImage2D(m.TEXTURE_2D,0,m.RGBA,m.RGBA,m.UNSIGNED_BYTE,_),i.length===0)return w(),d;for(let x=0;x0,s=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0,i=a,o=s;if(i>L0&&(i=L0,o=i*s/a),o>L0&&(o=L0,i=o*a/s),t.filter.width>0?i=t.filter.width:t.filter.height>0&&(i=a*(t.filter.height/s)),t.filter.height>0?o=t.filter.height:t.filter.width>0&&(o=s*(t.filter.width/a)),!i||!o)return Me("Human: invalid input",e),{tensor:null,canvas:null};(!$t||$t.width!==i||$t.height!==o)&&($t=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas"),$t.width!==i&&($t.width=i),$t.height!==o&&($t.height=o));let l=$t.getContext("2d");if(e instanceof ImageData?l.putImageData(e,0,0):l.drawImage(e,0,0,a,s,0,0,$t.width,$t.height),t.filter.enabled){if((!Pt||!ln||$t.width!==ln.width||$t.height!==ln.height)&&(ln=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas($t.width,$t.height):document.createElement("canvas"),ln.width!==$t.width&&(ln.width=$t.width),ln.height!==$t.height&&(ln.height=$t.height),Pt=br.flags.IS_BROWSER?new _4({canvas:ln}):null),!Pt)return{tensor:null,canvas:$t};Pt.reset(),Pt.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&Pt.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&Pt.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&Pt.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&Pt.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&Pt.addFilter("hue",t.filter.hue),t.filter.negative&&Pt.addFilter("negative"),t.filter.sepia&&Pt.addFilter("sepia"),t.filter.vintage&&Pt.addFilter("brownie"),t.filter.sepia&&Pt.addFilter("sepia"),t.filter.kodachrome&&Pt.addFilter("kodachrome"),t.filter.technicolor&&Pt.addFilter("technicolor"),t.filter.polaroid&&Pt.addFilter("polaroid"),t.filter.pixelate!==0&&Pt.addFilter("pixelate",t.filter.pixelate),Pt.apply($t)}else ln=$t,Pt&&(Pt=null);let u;if(ln.data){let h=[ln.height,ln.width,3];u=bd(ln.data,h,"int32")}else if(t.backend==="webgl"||ln instanceof ImageData)u=dl.fromPixels(ln);else{let h=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");h.width=i,h.height=o;let d=h.getContext("2d");d==null||d.drawImage(ln,0,0);let p=d==null?void 0:d.getImageData(0,0,i,o);u=dl.fromPixels(p)}let c=u.toFloat();n=c.expandDims(0),u.dispose(),c.dispose()}let r=t.filter.return?ln:null;return{tensor:n,canvas:r}}var $2={};wr($2,{all:()=>lse,body:()=>I4,canvas:()=>ose,drawOptions:()=>oe,face:()=>k4,gesture:()=>v4,hand:()=>N4,object:()=>S4});var gt={backend:"webgl",wasmPath:"../assets/",debug:!0,async:!0,profile:!1,deallocate:!1,scoped:!1,videoOptimized:!0,warmup:"face",filter:{enabled:!0,width:0,height:0,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"../models/blazeface-back.json",rotation:!1,maxFaces:10,skipFrames:21,skipInitial:!1,minConfidence:.2,iouThreshold:.1,scoreThreshold:.2,return:!1},mesh:{enabled:!0,modelPath:"../models/facemesh.json"},iris:{enabled:!0,modelPath:"../models/iris.json"},age:{enabled:!0,modelPath:"../models/age.json",skipFrames:31},gender:{enabled:!0,minConfidence:.1,modelPath:"../models/gender.json",skipFrames:32},emotion:{enabled:!0,minConfidence:.1,skipFrames:33,modelPath:"../models/emotion.json"},embedding:{enabled:!1,modelPath:"../models/mobileface.json"}},body:{enabled:!0,modelPath:"../models/posenet.json",maxDetections:10,scoreThreshold:.3,nmsRadius:20},hand:{enabled:!0,rotation:!1,skipFrames:12,skipInitial:!1,minConfidence:.1,iouThreshold:.1,scoreThreshold:.5,maxHands:1,landmarks:!0,detector:{modelPath:"../models/handdetect.json"},skeleton:{modelPath:"../models/handskeleton.json"}},object:{enabled:!1,modelPath:"../models/nanodet.json",minConfidence:.15,iouThreshold:.25,maxResults:10,skipFrames:13}};var oe={color:"rgba(173, 216, 230, 0.3)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 16px "Segoe UI"',lineHeight:20,lineWidth:6,pointSize:2,roundRect:28,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawPolygons:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!1,useRawBoxes:!1};function W0(e,t,n,r=null){e.fillStyle=oe.useDepth&&r?`rgba(${127.5+2*(r||0)}, ${127.5-2*(r||0)}, 255, 0.3)`:oe.color,e.beginPath(),e.arc(t,n,oe.pointSize,0,2*Math.PI),e.fill()}function ru(e,t,n,r,a){if(e.beginPath(),oe.useCurves){let s=(t+t+r)/2,i=(n+n+a)/2;e.ellipse(s,i,r/2,a/2,0,0,2*Math.PI)}else e.lineWidth=oe.lineWidth,e.moveTo(t+oe.roundRect,n),e.lineTo(t+r-oe.roundRect,n),e.quadraticCurveTo(t+r,n,t+r,n+oe.roundRect),e.lineTo(t+r,n+a-oe.roundRect),e.quadraticCurveTo(t+r,n+a,t+r-oe.roundRect,n+a),e.lineTo(t+oe.roundRect,n+a),e.quadraticCurveTo(t,n+a,t,n+a-oe.roundRect),e.lineTo(t,n+oe.roundRect),e.quadraticCurveTo(t,n,t+oe.roundRect,n),e.closePath();e.stroke()}function D2(e,t=[]){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let n of t)e.strokeStyle=oe.useDepth&&n[2]?`rgba(${127.5+2*n[2]}, ${127.5-2*n[2]}, 255, 0.3)`:oe.color,e.fillStyle=oe.useDepth&&n[2]?`rgba(${127.5+2*n[2]}, ${127.5-2*n[2]}, 255, 0.3)`:oe.color,e.lineTo(n[0],parseInt(n[1]));e.stroke(),oe.fillPolygons&&(e.closePath(),e.fill())}}function B0(e,t=[]){if(!(t===void 0||t.length===0)){if(!oe.useCurves||t.length<=2){D2(e,t);return}e.moveTo(t[0][0],t[0][1]);for(let n=0;n1&&i[1].length>0){let o=s[1]>0?`#${s[1]}`:"",l=`${s[0]} ${o}: ${i[1]}`;oe.shadowColor&&oe.shadowColor!==""&&(n.fillStyle=oe.shadowColor,n.fillText(l,8,2+r*oe.lineHeight)),n.fillStyle=oe.labelColor,n.fillText(l,6,0+r*oe.lineHeight),r+=1}}}async function k4(e,t){if(!t||!e||!(e instanceof HTMLCanvasElement))return;let n=e.getContext("2d");if(!!n)for(let r of t){n.font=oe.font,n.strokeStyle=oe.color,n.fillStyle=oe.color,oe.drawBoxes&&(oe.useRawBoxes?ru(n,e.width*r.boxRaw[0],e.height*r.boxRaw[1],e.width*r.boxRaw[2],e.height*r.boxRaw[3]):ru(n,r.box[0],r.box[1],r.box[2],r.box[3]));let a=[];if(a.push(`face confidence: ${Math.trunc(100*r.confidence)}%`),r.genderConfidence&&a.push(`${r.gender||""} ${Math.trunc(100*r.genderConfidence)}% confident`),r.age&&a.push(`age: ${r.age||""}`),r.iris&&a.push(`iris distance: ${r.iris}`),r.emotion&&r.emotion.length>0){let s=r.emotion.map(i=>`${Math.trunc(100*i.score)}% ${i.emotion}`);a.push(s.join(" "))}r.angle&&r.angle.roll&&a.push(`roll: ${Math.trunc(100*r.angle.roll)/100} yaw:${Math.trunc(100*r.angle.yaw)/100} pitch:${Math.trunc(100*r.angle.pitch)/100}`),a.length===0&&a.push("face"),n.fillStyle=oe.color;for(let s=a.length-1;s>=0;s--){let i=Math.max(r.box[0],0),o=s*oe.lineHeight+r.box[1];oe.shadowColor&&oe.shadowColor!==""&&(n.fillStyle=oe.shadowColor,n.fillText(a[s],i+5,o+16)),n.fillStyle=oe.labelColor,n.fillText(a[s],i+4,o+15)}if(n.lineWidth=1,r.mesh&&r.mesh.length>0){if(oe.drawPoints)for(let s of r.mesh)W0(n,s[0],s[1],s[2]);if(oe.drawPolygons){n.lineWidth=1;for(let s=0;sr.mesh[o]);D2(n,i)}if(r.annotations&&r.annotations.leftEyeIris){n.strokeStyle=oe.useDepth?"rgba(255, 200, 255, 0.3)":oe.color,n.beginPath();let s=Math.abs(r.annotations.leftEyeIris[3][0]-r.annotations.leftEyeIris[1][0])/2,i=Math.abs(r.annotations.leftEyeIris[4][1]-r.annotations.leftEyeIris[2][1])/2;n.ellipse(r.annotations.leftEyeIris[0][0],r.annotations.leftEyeIris[0][1],s,i,0,0,2*Math.PI),n.stroke(),oe.fillPolygons&&(n.fillStyle=oe.useDepth?"rgba(255, 255, 200, 0.3)":oe.color,n.fill())}if(r.annotations&&r.annotations.rightEyeIris){n.strokeStyle=oe.useDepth?"rgba(255, 200, 255, 0.3)":oe.color,n.beginPath();let s=Math.abs(r.annotations.rightEyeIris[3][0]-r.annotations.rightEyeIris[1][0])/2,i=Math.abs(r.annotations.rightEyeIris[4][1]-r.annotations.rightEyeIris[2][1])/2;n.ellipse(r.annotations.rightEyeIris[0][0],r.annotations.rightEyeIris[0][1],s,i,0,0,2*Math.PI),n.stroke(),oe.fillPolygons&&(n.fillStyle=oe.useDepth?"rgba(255, 255, 200, 0.3)":oe.color,n.fill())}}}}}var os=[];async function I4(e,t){if(!t||!e||!(e instanceof HTMLCanvasElement))return;let n=e.getContext("2d");if(!!n){n.lineJoin="round";for(let r=0;ri.part==="leftShoulder"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightShoulder"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightHip"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftHip"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftShoulder"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),s.length===5&&D2(n,s),s.length=0,a=t[r].keypoints.find(i=>i.part==="leftHip"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftKnee"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftAnkle"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftHeel"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftFoot"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),B0(n,s),s.length=0,a=t[r].keypoints.find(i=>i.part==="rightHip"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightKnee"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightAnkle"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightHeel"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightFoot"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),B0(n,s),s.length=0,a=t[r].keypoints.find(i=>i.part==="leftShoulder"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftElbow"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftWrist"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftPalm"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),B0(n,s),s.length=0,a=t[r].keypoints.find(i=>i.part==="rightShoulder"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightElbow"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightWrist"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightPalm"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),B0(n,s)}}}}async function N4(e,t){if(!t||!e||!(e instanceof HTMLCanvasElement))return;let n=e.getContext("2d");if(!!n){n.lineJoin="round",n.font=oe.font;for(let r of t){if(oe.drawBoxes&&(n.strokeStyle=oe.color,n.fillStyle=oe.color,oe.useRawBoxes?ru(n,e.width*r.boxRaw[0],e.height*r.boxRaw[1],e.width*r.boxRaw[2],e.height*r.boxRaw[3]):ru(n,r.box[0],r.box[1],r.box[2],r.box[3]),oe.drawLabels&&(oe.shadowColor&&oe.shadowColor!==""&&(n.fillStyle=oe.shadowColor,n.fillText("hand",r.box[0]+3,1+r.box[1]+oe.lineHeight,r.box[2])),n.fillStyle=oe.labelColor,n.fillText("hand",r.box[0]+2,0+r.box[1]+oe.lineHeight,r.box[2])),n.stroke()),oe.drawPoints&&r.landmarks&&r.landmarks.length>0)for(let a of r.landmarks)n.fillStyle=oe.useDepth?`rgba(${127.5+2*a[2]}, ${127.5-2*a[2]}, 255, 0.5)`:oe.color,W0(n,a[0],a[1]);if(oe.drawPolygons){let a=s=>{if(!!s)for(let i=0;i0?i-1:0][0],s[i>0?i-1:0][1]),n.lineTo(s[i][0],s[i][1]),n.stroke()};a(r.annotations.indexFinger),a(r.annotations.middleFinger),a(r.annotations.ringFinger),a(r.annotations.pinky),a(r.annotations.thumb)}}}}async function S4(e,t){if(!t||!e||!(e instanceof HTMLCanvasElement))return;let n=e.getContext("2d");if(!!n){n.lineJoin="round",n.font=oe.font;for(let r of t)if(oe.drawBoxes){if(n.strokeStyle=oe.color,n.fillStyle=oe.color,oe.useRawBoxes?ru(n,e.width*r.boxRaw[0],e.height*r.boxRaw[1],e.width*r.boxRaw[2],e.height*r.boxRaw[3]):ru(n,r.box[0],r.box[1],r.box[2],r.box[3]),oe.drawLabels){let a=`${Math.round(100*r.score)}% ${r.label}`;oe.shadowColor&&oe.shadowColor!==""&&(n.fillStyle=oe.shadowColor,n.fillText(a,r.box[0]+3,1+r.box[1]+oe.lineHeight,r.box[2])),n.fillStyle=oe.labelColor,n.fillText(a,r.box[0]+2,0+r.box[1]+oe.lineHeight,r.box[2])}n.stroke()}}}async function ose(e,t){if(!e||!t||!(e instanceof HTMLCanvasElement)||!(t instanceof HTMLCanvasElement))return;let n=e.getContext("2d");n==null||n.drawImage(e,0,0)}async function lse(e,t){!t||!e||e instanceof HTMLCanvasElement&&(k4(e,t.face),I4(e,t.body),N4(e,t.hand),v4(e,t.gesture),S4(e,t.object))}var V0=` /9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1 tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/ AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z 5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9 zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6 8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6 GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4 HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD 1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX +BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3 GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0 nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8 87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681 ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF 63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2 ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4 /wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5 rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru /DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1 jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk 4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6 wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP 1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1 H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ 1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe 5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69 MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn 0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb 0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz 9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu 6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd 9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8 VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+ 5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh 05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ 5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8 1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4 B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA 3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn 3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx 1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6 f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup 6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM 350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0 /AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt 4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1 8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3 ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,U0=` /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj +s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp +alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2 ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67 d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/ Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+ r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc 0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w +PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4 Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6 rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ 9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/ /OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6 jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN +SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX 12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf 0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4 ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6 tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+ fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9 lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV 5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/ +bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0 77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8 5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8 to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/ w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS 34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn 26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf 3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q 6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN 3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8 2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc 1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK 0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9 dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218 8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1 axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/ tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1 izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2 crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4 OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2 r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz +THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095 YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE 9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8 mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6 Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3 6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1 Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0 5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1 mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO 1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7 ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T +PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+ O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1 +UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY 36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY 3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr 1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z 1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+ n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O 8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0 Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8 8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1 lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+ oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm 9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2 +To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37 O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1 L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4 izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt 1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12 CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh 5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3 6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9 XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr 79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223 2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p 7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7 x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz 5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2 IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1 vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0 ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm 6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22 gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX 6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn 1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u 7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O 8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx 5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm 2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9 RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8 cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF 0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK 66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9 XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK 7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI 3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m 1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9 8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8 elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL +Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl 5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q 7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv 6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa 0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/ AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5 6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX 0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK 3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0 vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2 O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz 0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O 1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi 0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY 5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L /tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3 Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ 3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI 6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/ AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ 92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp +0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0 vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP 8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3 7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P 0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG 0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv 9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1 rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+ x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4 5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2 H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF +NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN 3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi /j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00 +FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2 M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp 5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL /Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3 GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4 qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2 rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc 3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3 Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h 2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7 cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7 mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu 9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1 8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5 PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX 6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2 JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI 6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5 K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7 Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ 2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4 eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7 piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61 rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2 f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2 SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/ 2Q==`;var T4="1.1.9";var ut=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function Yc(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,r)=>(Object.keys(r||{}).forEach(a=>{let s=n[a],i=r[a];Array.isArray(s)&&Array.isArray(i)?n[a]=s.concat(...i):t(s)&&t(i)?n[a]=Yc(s,i):n[a]=i}),n),{})}var He,au,Jc,Qc,Bi,Dt,j0,eh,H0,th,G0,q0,X0,z2=class{constructor(t={}){He.set(this,void 0);au.set(this,void 0);Jc.set(this,void 0);Qc.set(this,void 0);Bi.set(this,void 0);Dt.set(this,(...t)=>{if(!ye(this,Jc))return;let n=this.tf.engine().state.numTensors,r=ye(this,au);Ta(this,au,n);let a=n-r;a!==0&&Me(...t,a)});j0.set(this,t=>{if(!ye(this,Qc))return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof qe))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});eh.set(this,async(t=!1)=>{if(this.config.backend&&this.config.backend!==""&&t||this.tf.getBackend()!==this.config.backend){let n=ut();if(this.state="backend",this.config.backend&&this.config.backend!==""){if(this.config.debug&&Me("setting backend:",this.config.backend),this.config.backend==="wasm"){this.config.debug&&Me("wasm path:",this.config.wasmPath),this.tf.setWasmPaths(this.config.wasmPath);let r=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),a=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&Me(`wasm execution: ${r?"SIMD":"no SIMD"} ${a?"multithreaded":"singlethreaded"}`),r||Me("warning: wasm simd support is not enabled")}this.config.backend==="humangl"&&F6();try{await this.tf.setBackend(this.config.backend)}catch(r){Me("error: cannot set backend:",this.config.backend,r)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"){this.config.deallocate&&(Me("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",this.config.deallocate),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",this.config.deallocate?0:-1));let r=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&Me(`gl version:${r.getParameter(r.VERSION)} renderer:${r.getParameter(r.RENDERER)}`)}await this.tf.ready(),ye(this,He).backend=Math.trunc(ut()-n)}});H0.set(this,t=>{if(!t||t.length<300)return{roll:null,yaw:null,pitch:null};let n=(s,i,o,l)=>Math.atan2(l-i,o-s),r=s=>Math.abs(s*180/Math.PI%360);return{roll:n(t[33][0],t[33][1],t[263][0],t[263][1]),yaw:n(t[33][0],t[33][2],t[263][0],t[263][2]),pitch:n(t[10][1],t[10][2],t[152][1],t[152][2])}});th.set(this,async t=>{var u,c,h,d,p,f,m;let n,r,a,s,i,o=[];this.state="run:face",n=ut();let l=await((u=this.models.face)==null?void 0:u.estimateFaces(t,this.config));if(ye(this,He).face=Math.trunc(ut()-n),!l)return[];for(let A of l){if(ye(this,Dt).call(this,"Get Face"),!A.image||A.image.isDisposedInternal){Me("Face object is disposed:",A.image);continue}let g=ye(this,H0).call(this,A.mesh);ye(this,Dt).call(this,"Start Age:"),this.config.async?r=this.config.face.age.enabled?Vy(A.image,this.config):{}:(this.state="run:age",n=ut(),r=this.config.face.age.enabled?await Vy(A.image,this.config):{},ye(this,He).age=Math.trunc(ut()-n)),ye(this,Dt).call(this,"Start Gender:"),this.config.async?a=this.config.face.gender.enabled?Xy(A.image,this.config):{}:(this.state="run:gender",n=ut(),a=this.config.face.gender.enabled?await Xy(A.image,this.config):{},ye(this,He).gender=Math.trunc(ut()-n)),ye(this,Dt).call(this,"Start Emotion:"),this.config.async?s=this.config.face.emotion.enabled?Qy(A.image,this.config):{}:(this.state="run:emotion",n=ut(),s=this.config.face.emotion.enabled?await Qy(A.image,this.config):{},ye(this,He).emotion=Math.trunc(ut()-n)),ye(this,Dt).call(this,"End Emotion:"),ye(this,Dt).call(this,"Start Embedding:"),this.config.async?i=this.config.face.embedding.enabled?r2(A,this.config):[]:(this.state="run:embedding",n=ut(),i=this.config.face.embedding.enabled?await r2(A,this.config):[],ye(this,He).embedding=Math.trunc(ut()-n)),ye(this,Dt).call(this,"End Emotion:"),this.config.async&&([r,a,s,i]=await Promise.all([r,a,s,i])),ye(this,Dt).call(this,"Finish Face:"),!this.config.face.iris.enabled&&((c=A==null?void 0:A.annotations)==null?void 0:c.leftEyeIris)&&((h=A==null?void 0:A.annotations)==null?void 0:h.rightEyeIris)&&(delete A.annotations.leftEyeIris,delete A.annotations.rightEyeIris);let y=((d=A.annotations)==null?void 0:d.leftEyeIris)&&((p=A.annotations)==null?void 0:p.rightEyeIris)?11.7*Math.max(Math.abs(A.annotations.leftEyeIris[3][0]-A.annotations.leftEyeIris[1][0]),Math.abs(A.annotations.rightEyeIris[4][1]-A.annotations.rightEyeIris[2][1])):0;o.push({...A,age:r.age,gender:a.gender,genderConfidence:a.confidence,emotion:s,embedding:i,iris:y!==0?Math.trunc(y)/100:0,angle:g,tensor:this.config.face.detector.return?(f=A.image)==null?void 0:f.squeeze():null}),(m=A.image)==null||m.dispose(),ye(this,Dt).call(this,"End Face")}return ye(this,Dt).call(this,"End FaceMesh:"),this.config.async&&(ye(this,He).face&&delete ye(this,He).face,ye(this,He).age&&delete ye(this,He).age,ye(this,He).gender&&delete ye(this,He).gender,ye(this,He).emotion&&delete ye(this,He).emotion),o});G0.set(this,async()=>{let t=(a,s="application/octet-stream")=>fetch(`data:${s};base64,${a}`).then(i=>i.blob()),n,r;switch(this.config.warmup){case"face":n=await t(V0);break;case"full":n=await t(U0);break;default:n=null}if(n){let a=await createImageBitmap(n);r=await this.detect(a,this.config),a.close()}return r});q0.set(this,async()=>new Promise(t=>{let n,r=0;switch(this.config.warmup){case"face":r=256,n="data:image/jpeg;base64,"+V0;break;case"full":case"body":r=1200,n="data:image/jpeg;base64,"+U0;break;default:n=null}let a=new Image;a.onload=async()=>{let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(r,r):document.createElement("canvas");s.width=a.naturalWidth,s.height=a.naturalHeight;let i=s.getContext("2d");i==null||i.drawImage(a,0,0);let o=await this.detect(s,this.config);t(o)},n?a.src=n:t(null)}));X0.set(this,async()=>{let t=i=>Buffer.from(i,"base64"),n=this.config.warmup==="face"?t(V0):t(U0),r=(void 0).decodeJpeg(n),a=r.expandDims(0);this.tf.dispose(r);let s=await this.detect(a,this.config);return this.tf.dispose(a),s});this.tf=Ch,this.draw=$2,this.version=T4,this.config=Yc(gt,t),this.state="idle",Ta(this,au,0),Ta(this,Jc,!1),Ta(this,Qc,!1),Ta(this,Bi,!0),Ta(this,He,{}),this.models={face:null,posenet:null,blazepose:null,handpose:null,iris:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null},this.image=n=>M2(n,this.config),this.classes={facemesh:O2,age:Wy,gender:Uy,emotion:Ky,body:this.config.body.modelPath.includes("posenet")?m2:N2,hand:_2,nanodet:E2},this.sysinfo=J2()}profileData(){return this.config.profile?Ly:{}}simmilarity(t,n){return this.config.face.embedding.enabled?t2(t,n):0}enhance(t){return n2(t)}match(t,n,r=0){return j6(t,n,r)}async load(t={}){this.state="load";let n=ut();t&&(this.config=Yc(this.config,t)),ye(this,Bi)&&(this.config.debug&&Me(`version: ${this.version}`),this.config.debug&&Me(`tfjs version: ${this.tf.version_core}`),this.config.debug&&Me("platform:",this.sysinfo.platform),this.config.debug&&Me("agent:",this.sysinfo.agent),await ye(this,eh).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&Me("configuration:",this.config),this.config.debug&&Me("tf flags:",this.tf.ENV.flags))),this.config.async?[this.models.face,this.models.age,this.models.gender,this.models.emotion,this.models.embedding,this.models.handpose,this.models.posenet,this.models.blazepose,this.models.nanodet]=await Promise.all([this.models.face||(this.config.face.enabled?O2.load(this.config):null),this.models.age||(this.config.face.enabled&&this.config.face.age.enabled?By(this.config):null),this.models.gender||(this.config.face.enabled&&this.config.face.gender.enabled?qy(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?Jy(this.config):null),this.models.embedding||(this.config.face.enabled&&this.config.face.embedding.enabled?e2(this.config):null),this.models.handpose||(this.config.hand.enabled?I2(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelPath.includes("posenet")?g2(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelPath.includes("blazepose")?S2(this.config):null),this.models.nanodet||(this.config.object.enabled?R2(this.config):null)]):(this.config.face.enabled&&!this.models.face&&(this.models.face=await O2.load(this.config)),this.config.face.enabled&&this.config.face.age.enabled&&!this.models.age&&(this.models.age=await By(this.config)),this.config.face.enabled&&this.config.face.gender.enabled&&!this.models.gender&&(this.models.gender=await qy(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await Jy(this.config)),this.config.face.enabled&&this.config.face.embedding.enabled&&!this.models.embedding&&(this.models.embedding=await e2(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await I2(this.config)),this.config.body.enabled&&!this.models.posenet&&this.config.body.modelPath.includes("posenet")&&(this.models.posenet=await g2(this.config)),this.config.body.enabled&&!this.models.blazepose&&this.config.body.modelPath.includes("blazepose")&&(this.models.blazepose=await S2(this.config)),this.config.object.enabled&&!this.models.nanodet&&(this.models.nanodet=await R2(this.config))),ye(this,Bi)&&(this.config.debug&&Me("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),Ta(this,Bi,!1));let r=Math.trunc(ut()-n);r>(ye(this,He).load||0)&&(ye(this,He).load=r)}async detect(t,n={}){return new Promise(async r=>{var f,m,A,g;this.state="config";let a;this.config=Yc(this.config,n),this.state="check";let s=ye(this,j0).call(this,t);s&&(Me(s,t),r({error:s}));let i=ut();await ye(this,eh).call(this),await this.load(),this.config.scoped&&this.tf.engine().startScope(),ye(this,Dt).call(this,"Start Scope:"),a=ut();let o=M2(t,this.config);if(!o||!o.tensor){Me("could not convert input to tensor"),r({error:"could not convert input to tensor"});return}ye(this,He).image=Math.trunc(ut()-a),ye(this,Dt).call(this,"Get Image:");let l,u,c,h;this.config.async?(c=this.config.face.enabled?ye(this,th).call(this,o.tensor):[],ye(this,He).face&&delete ye(this,He).face):(this.state="run:face",a=ut(),c=this.config.face.enabled?await ye(this,th).call(this,o.tensor):[],ye(this,He).face=Math.trunc(ut()-a)),ye(this,Dt).call(this,"Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?l=this.config.body.enabled?(f=this.models.posenet)==null?void 0:f.estimatePoses(o.tensor,this.config):[]:l=this.config.body.enabled?T2(o.tensor,this.config):[],ye(this,He).body&&delete ye(this,He).body):(this.state="run:body",a=ut(),this.config.body.modelPath.includes("posenet")?l=this.config.body.enabled?await((m=this.models.posenet)==null?void 0:m.estimatePoses(o.tensor,this.config)):[]:l=this.config.body.enabled?await T2(o.tensor,this.config):[],ye(this,He).body=Math.trunc(ut()-a)),ye(this,Dt).call(this,"End Body:"),ye(this,Dt).call(this,"Start Hand:"),this.config.async?(u=this.config.hand.enabled?(A=this.models.handpose)==null?void 0:A.estimateHands(o.tensor,this.config):[],ye(this,He).hand&&delete ye(this,He).hand):(this.state="run:hand",a=ut(),u=this.config.hand.enabled?await((g=this.models.handpose)==null?void 0:g.estimateHands(o.tensor,this.config)):[],ye(this,He).hand=Math.trunc(ut()-a)),ye(this,Dt).call(this,"End Hand:"),ye(this,Dt).call(this,"Start Object:"),this.config.async?(h=this.config.object.enabled?F2(o.tensor,this.config):[],ye(this,He).object&&delete ye(this,He).object):(this.state="run:object",a=ut(),h=this.config.object.enabled?await F2(o.tensor,this.config):[],ye(this,He).object=Math.trunc(ut()-a)),ye(this,Dt).call(this,"End Object:"),this.config.async&&([c,l,u,h]=await Promise.all([c,l,u,h])),o.tensor.dispose(),this.config.scoped&&this.tf.engine().endScope(),ye(this,Dt).call(this,"End Scope:");let d=[];this.config.gesture.enabled&&(a=ut(),d=[...x4(c),...y4(l),...b4(u),...w4(c)],this.config.async?ye(this,He).gesture&&delete ye(this,He).gesture:ye(this,He).gesture=Math.trunc(ut()-a)),ye(this,He).total=Math.trunc(ut()-i),this.state="idle";let p={face:c,body:l,hand:u,gesture:d,object:h,performance:ye(this,He),canvas:o.canvas};r(p)})}async warmup(t={}){let n=ut();t&&(this.config=Yc(this.config,t));let r=this.config.videoOptimized;this.config.videoOptimized=!1;let a;typeof createImageBitmap=="function"?a=await ye(this,G0).call(this):typeof Image!="undefined"?a=await ye(this,q0).call(this):a=await ye(this,X0).call(this),this.config.videoOptimized=r;let s=ut();return this.config.debug&&Me("Warmup",this.config.warmup,Math.round(s-n),"ms",a),a}};He=new WeakMap,au=new WeakMap,Jc=new WeakMap,Qc=new WeakMap,Bi=new WeakMap,Dt=new WeakMap,j0=new WeakMap,eh=new WeakMap,H0=new WeakMap,th=new WeakMap,G0=new WeakMap,q0=new WeakMap,X0=new WeakMap;var nh=0,E4=!1,vt={background:"darkslategray",hover:"lightgray",itemBackground:"black",itemColor:"white",buttonBackground:"lightblue",buttonHover:"lightgreen",checkboxOn:"lightgreen",checkboxOff:"lightcoral",rangeBackground:"lightblue",rangeLabel:"white",chartColor:"lightblue"};function use(){if(E4)return;let e=` :root { --rounded: 0.1rem; } .menu { position: absolute; top: 0rem; right: 0; width: max-content; padding: 0 0.2rem 0 0.2rem; line-height: 1.8rem; z-index: 10; box-shadow: 0 0 8px dimgrey; background: ${vt.background}; border-radius: var(--rounded); border-color: black; border-style: solid; border-width: thin; } .menu:hover { box-shadow: 0 0 8px ${vt.hover}; } .menu-container { display: block; max-height: 100vh; } .menu-container-fadeout { max-height: 0; overflow: hidden; transition: max-height, 0.5s ease; } .menu-container-fadein { max-height: 100vh; overflow: hidden; transition: max-height, 0.5s ease; } .menu-item { display: flex; white-space: nowrap; padding: 0.2rem; cursor: default; width: 100%; } .menu-title { cursor: pointer; } .menu-hr { margin: 0.2rem; border: 1px solid rgba(0, 0, 0, 0.5) } .menu-label { padding: 0; font-weight: 800; } .menu-list { margin-right: 0.8rem; } select:focus { outline: none; } .menu-list-item { background: ${vt.itemBackground}; color: ${vt.itemColor}; border: none; padding: 0.2rem; font-family: inherit; font-variant: inherit; border-radius: var(--rounded); font-weight: 800; } .menu-chart-title { padding: 0; font-size: 0.8rem; font-weight: 800; align-items: center} .menu-chart-canvas { background: transparent; margin: 0.2rem 0 0.2rem 0.6rem; } .menu-button { border: 0; background: ${vt.buttonBackground}; width: -webkit-fill-available; padding: 8px; margin: 8px; cursor: pointer; box-shadow: 4px 4px 4px 0 dimgrey; border-radius: var(--rounded); justify-content: center; font-family: inherit; font-variant: inherit; font-size: 1rem; font-weight: 800; } .menu-button:hover { background: ${vt.buttonHover}; box-shadow: 4px 4px 4px 0 black; } .menu-button:focus { outline: none; } .menu-checkbox { width: 2.8rem; height: 1rem; background: ${vt.itemBackground}; margin: 0.5rem 0.5rem 0 0; position: relative; border-radius: var(--rounded); } .menu-checkbox:after { content: 'OFF'; color: ${vt.checkboxOff}; position: absolute; right: 0.2rem; top: -0.4rem; font-weight: 800; font-size: 0.5rem; } .menu-checkbox:before { content: 'ON'; color: ${vt.checkboxOn}; position: absolute; left: 0.3rem; top: -0.4rem; font-weight: 800; font-size: 0.5rem; } .menu-checkbox-label { width: 1.3rem; height: 0.8rem; cursor: pointer; position: absolute; top: 0.1rem; left: 0.1rem; z-index: 1; background: ${vt.checkboxOff}; border-radius: var(--rounded); transition: left 0.6s ease; } input[type=checkbox] { visibility: hidden; } input[type=checkbox]:checked + label { left: 1.4rem; background: ${vt.checkboxOn}; } .menu-range { margin: 0.2rem 0.5rem 0 0; width: 3.5rem; background: transparent; color: ${vt.rangeBackground}; } .menu-range:before { color: ${vt.rangeLabel}; margin: 0 0.4rem 0 0; font-weight: 800; font-size: 0.6rem; position: relative; top: 0.3rem; content: attr(value); } input[type=range] { -webkit-appearance: none; } input[type=range]::-webkit-slider-runnable-track { width: 100%; height: 1rem; cursor: pointer; background: ${vt.itemBackground}; border-radius: var(--rounded); border: 1px; } input[type=range]::-moz-range-track { width: 100%; height: 1rem; cursor: pointer; background: ${vt.itemBackground}; border-radius: var(--rounded); border: 1px; } input[type=range]::-webkit-slider-thumb { border: 1px solid #000000; margin-top: 0.05rem; height: 0.9rem; width: 1rem; border-radius: var(--rounded); background: ${vt.rangeBackground}; cursor: pointer; -webkit-appearance: none; } input[type=range]::-moz-range-thumb { border: 1px solid #000000; margin-top: 0.05rem; height: 0.9rem; width: 1rem; border-radius: var(--rounded); background: ${vt.rangeBackground}; cursor: pointer; -webkit-appearance: none; } .svg-background { fill:darkslategrey; cursor:pointer; opacity: 0.6; } .svg-foreground { fill:white; cursor:pointer; opacity: 0.8; } `,t=document.createElement("style");t.innerHTML=e,document.getElementsByTagName("head")[0].appendChild(t),E4=!0}var C4=class{constructor(t,n,r,a){a&&(vt={...vt,...a}),use(),this.createMenu(t,n,r),this.id=0,this.instance=nh,nh++,this._maxFPS=0,this.hidden=0}createMenu(t,n="",r={top:null,left:null,bottom:null,right:null}){this.menu=document.createElement("div"),this.menu.id=`menu-${nh}`,this.menu.className="menu",r&&(r.top&&(this.menu.style.top=r.top),r.bottom&&(this.menu.style.bottom=r.bottom),r.left&&(this.menu.style.left=r.left),r.right&&(this.menu.style.right=r.right)),this.container=document.createElement("div"),this.container.id=`menu-container-${nh}`,this.container.className="menu-container menu-container-fadein";let a=document.createElement("div");a.className="menu-title",a.id=`menu-title-${nh}`;let s=` `;n&&(a.innerHTML=`${n}${s}`),this.menu.appendChild(a),a.addEventListener("click",()=>{this.container.classList.toggle("menu-container-fadeout"),this.container.classList.toggle("menu-container-fadein"),this.menu.style.borderStyle=this.container.classList.contains("menu-container-fadeout")?"none":"solid"}),this.menu.appendChild(this.container),typeof t=="object"?t.appendChild(this.menu):document.getElementById(t).appendChild(this.menu)}get newID(){return this.id++,`menu-${this.instance}-${this.id}`}get ID(){return`menu-${this.instance}-${this.id}`}get width(){return this.menu.offsetWidth}get height(){return this.menu.offsetHeight}hide(){this.container.classList.contains("menu-container-fadein")&&(this.container.classList.toggle("menu-container-fadeout"),this.container.classList.toggle("menu-container-fadein"))}visible(){return this.container.classList.contains("menu-container-fadein")}toggle(t){if(this.container.classList.toggle("menu-container-fadeout"),this.container.classList.toggle("menu-container-fadein"),this.container.classList.contains("menu-container-fadein")&&t){let n=t.x||(t.touches&&t.touches[0]?t.touches[0].pageX:null);n&&(this.menu.style.left=`${n-this.menu.offsetWidth/2}px`),this.menu.offsetLeft<0&&(this.menu.style.left=0),this.menu.offsetLeft+this.menu.offsetWidth>window.innerWidth&&(this.menu.style.left=null,this.menu.style.right=0),this.menu.style.borderStyle="solid"}else this.menu.style.borderStyle="none"}addTitle(t){let n=document.createElement("div");return n.className="menu-title",n.id=this.newID,n.innerHTML=t,this.menu.appendChild(n),n.addEventListener("click",()=>{this.hidden=!this.hidden;let r=document.getElementsByClassName("menu");for(let a of r)a.style.display=this.hidden?"none":"block"}),n}addLabel(t){let n=document.createElement("div");return n.className="menu-item menu-label",n.id=this.newID,n.innerHTML=t,this.container.appendChild(n),n}addBool(t,n,r,a){let s=document.createElement("div");return s.className="menu-item",s.innerHTML=`${t}`,this.container.appendChild(s),s.addEventListener("change",i=>{n[r]=i.target.checked,a&&a(i.target.checked)}),s}async addList(t,n,r,a){let s=document.createElement("div");s.className="menu-item";let i="";for(let o of n)i+=``;return s.innerHTML=`${t}`,s.style.fontFamily=document.body.style.fontFamily,s.style.fontSize=document.body.style.fontSize,s.style.fontVariant=document.body.style.fontVariant,this.container.appendChild(s),s.addEventListener("change",o=>{a&&a(n[o.target.selectedIndex])}),s}addRange(t,n,r,a,s,i,o){let l=document.createElement("div");return l.className="menu-item",l.innerHTML=`${t}`,this.container.appendChild(l),l.addEventListener("change",u=>{n[r]=parseInt(u.target.value)===parseFloat(u.target.value)?parseInt(u.target.value):parseFloat(u.target.value),u.target.setAttribute("value",u.target.value),o&&o(u.target.value)}),l.input=l.children[0],l}addHTML(t){let n=document.createElement("div");return n.className="menu-item",n.id=this.newID,t&&(n.innerHTML=t),this.container.appendChild(n),n}addButton(t,n,r){let a=document.createElement("button");return a.className="menu-item menu-button",a.style.fontFamily=document.body.style.fontFamily,a.style.fontSize=document.body.style.fontSize,a.style.fontVariant=document.body.style.fontVariant,a.type="button",a.id=this.newID,a.innerText=t,this.container.appendChild(a),a.addEventListener("click",()=>{a.innerText===t?a.innerText=n:a.innerText=t,r&&r(a.innerText!==t)}),a}addValue(t,n,r=""){let a=document.createElement("div");return a.className="menu-item",a.id=`menu-val-${t}`,a.innerText=`${t}: ${n}${r}`,this.container.appendChild(a),a}updateValue(t,n,r=""){let a=document.getElementById(`menu-val-${t}`);a?a.innerText=`${t}: ${n}${r}`:this.addValue(t,n)}addChart(t,n,r=150,a=40,s){s&&(vt.chartColor=s);let i=document.createElement("div");return i.className="menu-item menu-chart-title",i.id=this.newID,i.innerHTML=`${t}`,this.container.appendChild(i),i}async updateChart(t,n){if(!n||n.length===0)return;let r=document.getElementById(`menu-canvas-${t}`);if(!r)return;let a=r.getContext("2d");a.fillStyle=vt.background,a.fillRect(0,0,r.width,r.height);let s=r.width/n.length,i=1+Math.max(...n),o=r.height/i;for(let l=0;l 00 FPS `,R4=class{constructor(t,n={}){this.css=cse,this.svg=hse,this.paramLogger=()=>{},this.chartLogger=()=>{},this.chartLen=20,this.chartHz=20,this.names=[],this.cpuAccums=[],this.gpuAccums=[],this.activeAccums=[],this.chart=new Array(this.chartLen),this.now=()=>performance&&performance.now?performance.now():Date.now(),this.updateUI=()=>{[].forEach.call(this.nodes["gl-gpu-svg"],o=>o.style.display=this.trackGPU?"inline":"none")},Object.assign(this,n),this.detected=0,this.finished=[],this.isFramebuffer=0,this.frameId=0;let r,a=0,s,i=o=>{++a<20?r=requestAnimationFrame(i):(this.detected=Math.ceil(1e3*a/(o-s)/70),cancelAnimationFrame(r)),s||(s=o)};if(requestAnimationFrame(i),t){let o=async(c,h)=>Promise.resolve(setTimeout(()=>{t.getError();let d=this.now()-c;h.forEach((p,f)=>{p&&(this.gpuAccums[f]+=d)})},0)),l=(c,h,d)=>{let p=h.now();c.apply(d,arguments),h.trackGPU&&h.finished.push(o(p,h.activeAccums.slice(0)))},u="drawElements";t[u]?t[u]=l(t[u],this,t):console.log("bench: cannot attach to webgl function")}if(!this.withoutUI){this.dom||(this.dom=document.body);let o=document.createElement("div");o.id="gl-bench",this.dom.appendChild(o),this.dom.insertAdjacentHTML("afterbegin",'"),this.dom=o,this.dom.addEventListener("click",()=>{this.trackGPU=!this.trackGPU,this.updateUI()}),this.paramLogger=((l,u,c)=>{let h=["gl-cpu","gl-gpu","gl-mem","gl-fps","gl-gpu-svg","gl-chart"],d={...h};return h.forEach(p=>d[p]=u.getElementsByClassName(p)),this.nodes=d,(p,f,m,A,g,y,w)=>{d["gl-cpu"][p].style.strokeDasharray=(f*.27).toFixed(0)+" 100",d["gl-gpu"][p].style.strokeDasharray=(m*.27).toFixed(0)+" 100",d["gl-mem"][p].innerHTML=c[p]?c[p]:A?"mem: "+A.toFixed(0)+"mb":"",d["gl-fps"][p].innerHTML="FPS: "+g.toFixed(1),l(c[p],f,m,A,g,y,w)}})(this.paramLogger,this.dom,this.names),this.chartLogger=((l,u)=>{let c={"gl-chart":u.getElementsByClassName("gl-chart")};return(h,d,p)=>{let f="",m=d.length;for(let A=0;A=1e3){let a=this.frameId-this.paramFrame,s=a/r*1e3;for(let i=0;i{this.gpuAccums[i]=0,this.finished=[]})}this.paramFrame=this.frameId,this.paramTime=n}}if(!this.detected||!this.chartFrame)this.chartFrame=this.frameId,this.chartTime=n,this.circularId=0;else{let r=n-this.chartTime,a=this.chartHz*r/1e3;for(;--a>0&&this.detected;){let i=(this.frameId-this.chartFrame)/r*1e3;this.chart[this.circularId%this.chartLen]=i;for(let o=0;o0)||((a=(r=e==null?void 0:e.face[0])==null?void 0:r.embedding)==null?void 0:a.length)>=64)return;if(!Ui)if(Ui=e,e.face[0].tensor){let o=te.enhance(e.face[0]);if(o){let l=document.getElementById("orig"),u=o.squeeze();te.tf.browser.toPixels(u,l),o.dispose(),u.dispose()}}else document.getElementById("compare-canvas").getContext("2d").drawImage(Ui.canvas,0,0,200,200);let t=te.simmilarity((s=Ui==null?void 0:Ui.face[0])==null?void 0:s.embedding,(i=e==null?void 0:e.face[0])==null?void 0:i.embedding);document.getElementById("simmilarity").innerText=`simmilarity: ${Math.trunc(1e3*t)/10}%`}var M4=performance.now();async function Y0(e){let t=Z0,n=document.getElementById("canvas");if(he.drawFPS.push(1e3/(performance.now()-M4)),he.drawFPS.length>he.maxFPSframes&&he.drawFPS.shift(),M4=performance.now(),await Ae.process.updateChart("FPS",he.detectFPS),he.buffered||!t.canvas){let h=await te.image(e);t.canvas=h.canvas,te.tf.dispose(h.tensor)}let r=n.getContext("2d");r.fillStyle=he.baseBackground,r.fillRect(0,0,n.width,n.height),t.canvas?(t.canvas.width!==n.width&&(n.width=t.canvas.width),t.canvas.height!==n.height&&(n.height=t.canvas.height),r.drawImage(t.canvas,0,0,t.canvas.width,t.canvas.height,0,0,t.canvas.width,t.canvas.height)):r.drawImage(e,0,0,e.width,e.height,0,0,n.width,n.height),te.draw.face(n,t.face),te.draw.body(n,t.body),te.draw.hand(n,t.hand),te.draw.object(n,t.object),te.draw.gesture(n,t.gesture),await pse(t);let a=te.tf.engine(),s=a.backendInstance?`gpu: ${(a.backendInstance.numBytesInGPU?a.backendInstance.numBytesInGPU:0).toLocaleString()} bytes`:"",i=`system: ${a.state.numBytes.toLocaleString()} bytes ${s} | tensors: ${a.state.numTensors.toLocaleString()}`,o=t.canvas?`processing: ${t.canvas.width} x ${t.canvas.height}`:"",l=Math.trunc(10*he.detectFPS.reduce((h,d)=>h+d,0)/he.detectFPS.length)/10,u=Math.trunc(10*he.drawFPS.reduce((h,d)=>h+d,0)/he.drawFPS.length)/10,c=he.detectFPS.length>5&&l<5?'warning: your performance is low: try switching to higher performance backend, lowering resolution or disabling some models':"";document.getElementById("log").innerHTML=` video: ${he.camera.name} | facing: ${he.camera.facing} | screen: ${window.innerWidth} x ${window.innerHeight} camera: ${he.camera.width} x ${he.camera.height} ${o}
backend: ${te.tf.getBackend()} | ${i}
performance: ${dse(t.performance)}ms FPS process:${l} refresh:${u}
${c}
`,he.framesDraw++,he.lastFrame=performance.now(),he.buffered?he.drawThread=requestAnimationFrame(()=>Y0(e,n)):!he.buffered&&he.drawThread&&(Gn("stopping buffered refresh"),cancelAnimationFrame(he.drawThread),he.drawThread=null)}async function J0(){var u;if(he.busy)return null;he.busy=!0;let e=document.getElementById("video"),t=document.getElementById("canvas"),n=document.getElementById("log"),r=e.srcObject?e.srcObject.getVideoTracks()[0].readyState==="live"&&e.readyState>2&&!e.paused:!1,a="";if(rr("setting up camera"),!navigator.mediaDevices)return a="camera access not supported",n.innerText+=` ${a}`,Gn(a),rr(a),he.busy=!1,a;let s,i={audio:!1,video:{facingMode:he.facing?"user":"environment",resizeMode:he.crop?"crop-and-scale":"none"}};window.innerWidth>window.innerHeight?i.video.width={ideal:window.innerWidth}:i.video.height={ideal:window.innerHeight-document.getElementById("menubar").offsetHeight};try{s=await navigator.mediaDevices.getUserMedia(i)}catch(c){return c.name==="PermissionDeniedError"||c.name==="NotAllowedError"?a="camera permission denied":c.name==="SourceUnavailableError"?a="camera not available":a=`camera error: ${c.message||c}`,n.innerText+=` ${a}`,rr(a),Gn("camera error:",c),he.busy=!1,a}if(s)e.srcObject=s;else return he.busy=!1,"camera stream empty";let o=s.getVideoTracks()[0],l=o.getSettings();return he.camera={name:(u=o.label)==null?void 0:u.toLowerCase(),width:l.width,height:l.height,facing:l.facingMode==="user"?"front":"back"},new Promise(c=>{e.onloadeddata=async()=>{e.width=e.videoWidth,e.height=e.videoHeight,t.width=e.width,t.height=e.height,t.style.width=t.width>t.height?"100vw":"",t.style.height=t.width>t.height?"":"100vh",he.menuWidth.input.setAttribute("value",e.width),he.menuHeight.input.setAttribute("value",e.height),r&&e.play(),r&&!he.detectThread&&ah(e,t),he.busy=!1,rr(""),c()}})}function $4(){if(!Vi){let e=null;Vi=new F4(e,{trackGPU:!1,chartHz:20,chartLen:20}),Vi.begin()}}function fse(e,t,n,r){K0||(Gn("creating worker thread"),K0=new Worker(he.worker,{type:"module"}),K0.addEventListener("message",a=>{a.data.result.performance&&a.data.result.performance.total&&he.detectFPS.push(1e3/a.data.result.performance.total),he.detectFPS.length>he.maxFPSframes&&he.detectFPS.shift(),he.bench&&(Vi||$4(),Vi.nextFrame(r)),document.getElementById("gl-bench")&&(document.getElementById("gl-bench").style.display=he.bench?"block":"none"),Z0=a.data.result,he.framesDetect++,he.drawThread||Y0(e),he.detectThread=requestAnimationFrame(s=>ah(e,n,s))})),K0.postMessage({image:t.data.buffer,width:n.width,height:n.height,userConfig:ls},[t.data.buffer])}function ah(e,t,n){var a;if(!(e.srcObject&&e.srcObject.getVideoTracks()[0].readyState==="live"&&e.readyState>2&&!e.paused)&&e.srcObject){he.drawThread&&cancelAnimationFrame(he.drawThread),he.detectThread&&cancelAnimationFrame(he.detectThread),he.drawThread=null,he.detectThread=null,e.paused?Gn("camera paused"):e.srcObject.getVideoTracks()[0].readyState==="live"&&e.readyState<=2?setTimeout(()=>ah(e,t),500):Gn(`camera not ready: track state: ${(a=e.srcObject)==null?void 0:a.getVideoTracks()[0].readyState} stream state: ${e.readyState}`),clearTimeout(he.drawThread),he.drawThread=null,Gn("frame statistics: process:",he.framesDetect,"refresh:",he.framesDraw),Gn("memory",te.tf.engine().memory());return}if(rr(""),he.useWorker){let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t.width,t.height):document.createElement("canvas");s.width=t.width,s.height=t.height;let i=s.getContext("2d");i.drawImage(e,0,0,e.width,e.height,0,0,t.width,t.height);let o=i.getImageData(0,0,t.width,t.height);fse(e,o,t,ls,n)}else te.detect(e,ls).then(s=>{s.performance&&s.performance.total&&he.detectFPS.push(1e3/s.performance.total),he.detectFPS.length>he.maxFPSframes&&he.detectFPS.shift(),he.bench&&(Vi||$4(),Vi.nextFrame(n)),document.getElementById("gl-bench")&&(document.getElementById("gl-bench").style.display=he.bench?"block":"none"),s.error?(Gn(s.error),document.getElementById("log").innerText+=` Human error: ${s.error}`):(Z0=s,he.drawThread||Y0(e),he.framesDetect++,he.detectThread=requestAnimationFrame(i=>ah(e,t,i)))})}async function mse(e){return new Promise(t=>{let n=new Image;n.onload=async()=>{Gn("Processing image:",encodeURI(n.src));let r=document.getElementById("canvas");n.width=n.naturalWidth,n.height=n.naturalHeight,r.width=te.config.filter.width&&te.config.filter.width>0?te.config.filter.width:n.naturalWidth,r.height=te.config.filter.height&&te.config.filter.height>0?te.config.filter.height:n.naturalHeight;let a=await te.detect(n,ls);Z0=a,await Y0(n);let s=document.createElement("canvas");s.className="thumbnail",s.width=window.innerWidth/(he.columns+.1),s.height=s.width*r.height/r.width,a.face&&a.face.length>0?s.title=a.face.map((o,l)=>`#${l} face: ${Math.trunc(100*o.faceConfidence)}% box: ${Math.trunc(100*o.boxConfidence)}% age: ${Math.trunc(o.age)} gender: ${Math.trunc(100*o.genderConfidence)}% ${o.gender}`).join(" | "):s.title="no face detected",s.getContext("2d").drawImage(r,0,0,r.width,r.height,0,0,s.width,s.height),document.getElementById("samples-container").appendChild(s),n.src="",t(!0)},n.src=e})}async function D4(){document.getElementById("samples-container").style.display="none",document.getElementById("canvas").style.display="block";let e=document.getElementById("video"),t=document.getElementById("canvas");if(e.srcObject!==null&&!e.paused)document.getElementById("play").style.display="block",document.getElementById("btnStart").className="button button-start",document.getElementById("btnStart").innerHTML="start
video",rr("paused"),e.pause();else{let n=await J0();if(n)rr(n);else{document.getElementById("play").style.display="none";for(let r of Object.values(Ae))r.hide();rr(""),document.getElementById("btnStart").className="button button-stop",document.getElementById("btnStart").innerHTML="pause
video",await e.play(),he.detectThread||ah(e,t)}}}async function Ase(){ls.videoOptimized=!1,document.getElementById("play").style.display="none",document.getElementById("canvas").style.display="none",document.getElementById("samples-container").style.display="block",Gn("Running detection of sample images"),rr("processing images"),document.getElementById("samples-container").innerHTML="";for(let e of Object.values(Ae))e.hide();for(let e of he.samples)await mse(e);rr("")}function gse(){let e=[];window.innerWidth>800?e=[`${document.getElementById("btnDisplay").offsetLeft-50}px`,`${document.getElementById("btnImage").offsetLeft-50}px`,`${document.getElementById("btnProcess").offsetLeft-50}px`,`${document.getElementById("btnModel").offsetLeft-50}px`]:e=["0rem","11rem","21.1rem","33rem"],Ae.display=new rh(document.body,"",{top:`${document.getElementById("menubar").offsetHeight}px`,left:e[0]}),Ae.display.addBool("perf monitor",he,"bench",t=>he.bench=t),Ae.display.addBool("buffered output",he,"buffered",t=>he.buffered=t),Ae.display.addBool("crop & scale",he,"crop",t=>{he.crop=t,J0()}),Ae.display.addBool("camera facing",he,"facing",t=>{he.facing=t,J0()}),Ae.display.addHTML('
'),Ae.display.addBool("use 3D depth",te.draw.drawOptions,"useDepth"),Ae.display.addBool("draw with curves",te.draw.drawOptions,"useCurves"),Ae.display.addBool("print labels",te.draw.drawOptions,"drawLabels"),Ae.display.addBool("draw points",te.draw.drawOptions,"drawPoints"),Ae.display.addBool("draw boxes",te.draw.drawOptions,"drawBoxes"),Ae.display.addBool("draw polygons",te.draw.drawOptions,"drawPolygons"),Ae.display.addBool("fill polygons",te.draw.drawOptions,"fillPolygons"),Ae.image=new rh(document.body,"",{top:`${document.getElementById("menubar").offsetHeight}px`,left:e[1]}),Ae.image.addBool("enabled",te.config.filter,"enabled",t=>te.config.filter.enabled=t),he.menuWidth=Ae.image.addRange("image width",te.config.filter,"width",0,3840,10,t=>te.config.filter.width=parseInt(t)),he.menuHeight=Ae.image.addRange("image height",te.config.filter,"height",0,2160,10,t=>te.config.filter.height=parseInt(t)),Ae.image.addHTML('
'),Ae.image.addRange("brightness",te.config.filter,"brightness",-1,1,.05,t=>te.config.filter.brightness=parseFloat(t)),Ae.image.addRange("contrast",te.config.filter,"contrast",-1,1,.05,t=>te.config.filter.contrast=parseFloat(t)),Ae.image.addRange("sharpness",te.config.filter,"sharpness",0,1,.05,t=>te.config.filter.sharpness=parseFloat(t)),Ae.image.addRange("blur",te.config.filter,"blur",0,20,1,t=>te.config.filter.blur=parseInt(t)),Ae.image.addRange("saturation",te.config.filter,"saturation",-1,1,.05,t=>te.config.filter.saturation=parseFloat(t)),Ae.image.addRange("hue",te.config.filter,"hue",0,360,5,t=>te.config.filter.hue=parseInt(t)),Ae.image.addRange("pixelate",te.config.filter,"pixelate",0,32,1,t=>te.config.filter.pixelate=parseInt(t)),Ae.image.addHTML('
'),Ae.image.addBool("negative",te.config.filter,"negative",t=>te.config.filter.negative=t),Ae.image.addBool("sepia",te.config.filter,"sepia",t=>te.config.filter.sepia=t),Ae.image.addBool("vintage",te.config.filter,"vintage",t=>te.config.filter.vintage=t),Ae.image.addBool("kodachrome",te.config.filter,"kodachrome",t=>te.config.filter.kodachrome=t),Ae.image.addBool("technicolor",te.config.filter,"technicolor",t=>te.config.filter.technicolor=t),Ae.image.addBool("polaroid",te.config.filter,"polaroid",t=>te.config.filter.polaroid=t),Ae.process=new rh(document.body,"",{top:`${document.getElementById("menubar").offsetHeight}px`,left:e[2]}),Ae.process.addList("backend",["cpu","webgl","wasm","humangl"],te.config.backend,t=>te.config.backend=t),Ae.process.addBool("async operations",te.config,"async",t=>te.config.async=t),Ae.process.addBool("use web worker",he,"useWorker"),Ae.process.addHTML('
'),Ae.process.addLabel("model parameters"),Ae.process.addRange("max objects",te.config.face.detector,"maxFaces",1,50,1,t=>{te.config.face.detector.maxFaces=parseInt(t),te.config.body.maxDetections=parseInt(t),te.config.hand.maxHands=parseInt(t)}),Ae.process.addRange("skip frames",te.config.face.detector,"skipFrames",0,50,1,t=>{te.config.face.detector.skipFrames=parseInt(t),te.config.face.emotion.skipFrames=parseInt(t),te.config.face.age.skipFrames=parseInt(t),te.config.hand.skipFrames=parseInt(t)}),Ae.process.addRange("min confidence",te.config.face.detector,"minConfidence",0,1,.05,t=>{te.config.face.detector.minConfidence=parseFloat(t),te.config.face.gender.minConfidence=parseFloat(t),te.config.face.emotion.minConfidence=parseFloat(t),te.config.hand.minConfidence=parseFloat(t)}),Ae.process.addRange("score threshold",te.config.face.detector,"scoreThreshold",.1,1,.05,t=>{te.config.face.detector.scoreThreshold=parseFloat(t),te.config.hand.scoreThreshold=parseFloat(t),te.config.body.scoreThreshold=parseFloat(t)}),Ae.process.addRange("overlap",te.config.face.detector,"iouThreshold",.1,1,.05,t=>{te.config.face.detector.iouThreshold=parseFloat(t),te.config.hand.iouThreshold=parseFloat(t)}),Ae.process.addBool("detection rotation",te.config.face.detector,"rotation",t=>{te.config.face.detector.rotation=t,te.config.hand.rotation=t}),Ae.process.addHTML('
'),Ae.process.addButton("process sample images","process images",()=>Ase()),Ae.process.addHTML('
'),Ae.process.addChart("FPS","FPS"),Ae.models=new rh(document.body,"",{top:`${document.getElementById("menubar").offsetHeight}px`,left:e[3]}),Ae.models.addBool("face detect",te.config.face,"enabled",t=>te.config.face.enabled=t),Ae.models.addBool("face mesh",te.config.face.mesh,"enabled",t=>te.config.face.mesh.enabled=t),Ae.models.addBool("face iris",te.config.face.iris,"enabled",t=>te.config.face.iris.enabled=t),Ae.models.addBool("face age",te.config.face.age,"enabled",t=>te.config.face.age.enabled=t),Ae.models.addBool("face gender",te.config.face.gender,"enabled",t=>te.config.face.gender.enabled=t),Ae.models.addBool("face emotion",te.config.face.emotion,"enabled",t=>te.config.face.emotion.enabled=t),Ae.models.addHTML('
'),Ae.models.addBool("body pose",te.config.body,"enabled",t=>te.config.body.enabled=t),Ae.models.addBool("hand pose",te.config.hand,"enabled",t=>te.config.hand.enabled=t),Ae.models.addHTML('
'),Ae.models.addBool("gestures",te.config.gesture,"enabled",t=>te.config.gesture.enabled=t),Ae.models.addHTML('
'),Ae.models.addBool("object detection",te.config.object,"enabled",t=>te.config.object.enabled=t),Ae.models.addHTML('
'),Ae.models.addBool("face compare",te.config.face.embedding,"enabled",t=>{te.config.face.embedding.enabled=t,Ui=null}),document.getElementById("btnDisplay").addEventListener("click",t=>Ae.display.toggle(t)),document.getElementById("btnImage").addEventListener("click",t=>Ae.image.toggle(t)),document.getElementById("btnProcess").addEventListener("click",t=>Ae.process.toggle(t)),document.getElementById("btnModel").addEventListener("click",t=>Ae.models.toggle(t)),document.getElementById("btnStart").addEventListener("click",()=>D4()),document.getElementById("play").addEventListener("click",()=>D4())}async function yse(e){let t=document.getElementById("canvas");t.width=e.canvas.width,t.height=e.canvas.height,t.getContext("2d").drawImage(e.canvas,0,0,e.canvas.width,e.canvas.height,0,0,t.width,t.height),await te.draw.all(t,e)}async function xse(){if(Gn("Demo starting ..."),gse(),document.getElementById("log").innerText=`Human: version ${te.version}`,he.modelsPreload&&!he.useWorker){rr("loading"),await te.load(ls);let e=Object.keys(te.models).filter(t=>te.models[t]);Gn("Demo loaded models:",e)}if(!he.useWorker){rr("initializing");let e=await te.warmup(ls);e&&e.canvas&&he.drawWarmup&&await yse(e)}rr("human: ready"),document.getElementById("loader").style.display="none",document.getElementById("play").style.display="block",Gn("Demo ready...")}window.onload=xse;window.onresize=J0; /** * @license * Copyright 2017 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2018 Google LLC * * Use of this source code is governed by an MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT. * ============================================================================= */ /** * @license * Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * ============================================================================= */ /** * @license * Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2019 Google LLC * * Use of this source code is governed by an MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT. * ============================================================================= */ /** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * ============================================================================= */ /** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2020 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2020 Google LLC * * Use of this source code is governed by an MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT. * ============================================================================= */ /** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the License); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2021 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** @license See the LICENSE file. */ //# sourceMappingURL=demo-browser-index.js.map