/* Human homepage: author: ' */ var Human=(()=>{var r2=Object.defineProperty;var ZT=(e,t,n)=>t in e?r2(e,t,{enumerable:!0,configurable:!0,writable:!0,value:n}):e[t]=n;var YT=e=>r2(e,"__esModule",{value:!0});var Jo=(e=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof require!="undefined"?require:t)[n]}):e)(function(e){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')});var Fc=(e,t)=>{YT(e);for(var n in t)r2(e,n,{get:t[n],enumerable:!0})};var ve=(e,t,n)=>(ZT(e,typeof t!="symbol"?t+"":t,n),n),A5=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var Oc=(e,t,n)=>(A5(e,t,"read from private field"),n?n.call(e):t.get(e)),Mc=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},zc=(e,t,n,s)=>(A5(e,t,"write to private field"),s?s.call(e,n):t.set(e,n),n);var xge={};Fc(xge,{Human:()=>iT,Models:()=>Fp,default:()=>iT,defaults:()=>xa,env:()=>ie});function lt(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: ${r} expecting json file`);return r}function ae(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var We=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function a2(e,t,n="config",s=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")a2(e[r],t[r],r,s);else{let a=e&&typeof e[r]!="undefined";a||s.push({reason:"unknown property",where:`${n}.${r} = ${t[r]}`});let o=e&&typeof e[r]==typeof t[r];a&&!o&&s.push({reason:"property type mismatch",where:`${n}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&n==="config"&&s.length>0&&ae("invalid configuration",s),s}function fn(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,s)=>(Object.keys(s||{}).forEach(r=>{let a=n[r],o=s[r];Array.isArray(a)&&Array.isArray(o)?n[r]=a.concat(...o):t(a)&&t(o)?n[r]=fn(a,o):n[r]=o}),n),{})}var xa={backend:"",modelBasePath:"",wasmPath:"",debug:!0,async:!0,warmup:"full",cacheSensitivity:.75,skipFrame:!1,filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:11,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:12,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:13,minConfidence:.1},antispoof:{enabled:!1,skipFrames:14,modelPath:"antispoof.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",detector:{modelPath:""},maxDetected:-1,minConfidence:.3,skipFrames:1},hand:{enabled:!0,rotation:!0,skipFrames:2,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:15},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var Sl={};Fc(Sl,{Abs:()=>ni,Acos:()=>jl,Acosh:()=>ql,AdadeltaOptimizer:()=>Df,AdagradOptimizer:()=>_f,AdamOptimizer:()=>Pf,AdamaxOptimizer:()=>Ff,Add:()=>qr,AddN:()=>wa,All:()=>Xl,Any:()=>Kl,ArgMax:()=>ka,ArgMin:()=>Zl,Asin:()=>Yl,Asinh:()=>Jl,Atan:()=>Ql,Atan2:()=>tu,Atanh:()=>eu,AvgPool:()=>Ia,AvgPool3D:()=>Uc,AvgPool3DGrad:()=>hh,AvgPoolGrad:()=>ph,BackendWasm:()=>NC,BatchMatMul:()=>Sa,BatchToSpaceND:()=>si,Bincount:()=>fh,BroadcastArgs:()=>p2,BroadcastTo:()=>M5,Callback:()=>Ck,CallbackList:()=>Aw,Cast:()=>Ca,Ceil:()=>Ta,ClipByValue:()=>Xr,Complex:()=>Gc,ComplexAbs:()=>Hc,Concat:()=>ri,Conv2D:()=>Na,Conv2DBackpropFilter:()=>mh,Conv2DBackpropInput:()=>Ea,Conv3D:()=>jc,Conv3DBackpropFilterV2:()=>gh,Conv3DBackpropInputV2:()=>yh,Cos:()=>Ra,Cosh:()=>$a,CropAndResize:()=>oi,Cumsum:()=>ai,CustomCallback:()=>bw,DataStorage:()=>Bc,DenseBincount:()=>Ah,DepthToSpace:()=>ii,DepthwiseConv2dNative:()=>Da,DepthwiseConv2dNativeBackpropFilter:()=>xh,DepthwiseConv2dNativeBackpropInput:()=>bh,Diag:()=>vh,Dilation2D:()=>qc,Dilation2DBackpropFilter:()=>kh,Dilation2DBackpropInput:()=>wh,ENV:()=>ms,EarlyStopping:()=>Nk,Einsum:()=>Xc,Elu:()=>Pa,EluGrad:()=>Ih,Environment:()=>F5,Equal:()=>li,Erf:()=>nu,Exp:()=>Fa,ExpandDims:()=>ui,Expm1:()=>ci,FFT:()=>Sh,Fill:()=>su,FlipLeftRight:()=>di,Floor:()=>Oa,FloorDiv:()=>Ma,FromPixels:()=>sd,FusedBatchNorm:()=>za,FusedConv2D:()=>mo,FusedDepthwiseConv2D:()=>go,GPGPUContext:()=>Om,GatherNd:()=>hi,GatherV2:()=>pi,GraphModel:()=>o7,Greater:()=>fi,GreaterEqual:()=>La,History:()=>xw,IFFT:()=>Ch,Identity:()=>Ba,Imag:()=>Kc,InputSpec:()=>Jt,IsFinite:()=>ru,IsInf:()=>au,IsNan:()=>ou,KernelBackend:()=>Ul,LRN:()=>Yc,LRNGrad:()=>Nh,LayerVariable:()=>hw,LayersModel:()=>aa,LeakyRelu:()=>mi,Less:()=>gi,LessEqual:()=>yi,LinSpace:()=>Th,Log:()=>Wa,Log1p:()=>iu,LogSoftmax:()=>z5,LogicalAnd:()=>Ai,LogicalNot:()=>lu,LogicalOr:()=>Zc,MathBackendWebGL:()=>oc,Max:()=>Va,MaxPool:()=>Ga,MaxPool3D:()=>Jc,MaxPool3DGrad:()=>Rh,MaxPoolGrad:()=>Eh,MaxPoolWithArgmax:()=>$h,Maximum:()=>Ua,Mean:()=>Ha,Min:()=>ja,Minimum:()=>qa,MirrorPad:()=>Xa,Mod:()=>uu,MomentumOptimizer:()=>Of,Multinomial:()=>Dh,Multiply:()=>Ka,Neg:()=>xi,NonMaxSuppressionV3:()=>vi,NonMaxSuppressionV4:()=>cu,NonMaxSuppressionV5:()=>wi,NotEqual:()=>bi,OP_SCOPE_SUFFIX:()=>Q5,OneHot:()=>Ii,OnesLike:()=>ki,Optimizer:()=>na,Pack:()=>Si,PadV2:()=>Za,Pool:()=>qN,Pow:()=>Ya,Prelu:()=>Ja,Prod:()=>Ci,RMSPropOptimizer:()=>Mf,RNN:()=>Fr,Range:()=>du,Rank:()=>y2,Real:()=>Qc,RealDiv:()=>_a,Reciprocal:()=>pu,Reduction:()=>Un,Relu:()=>Qa,Relu6:()=>to,Reshape:()=>Ti,ResizeBilinear:()=>eo,ResizeBilinearGrad:()=>Ph,ResizeNearestNeighbor:()=>hu,ResizeNearestNeighborGrad:()=>_h,Reverse:()=>Ni,RotateWithOffset:()=>Wi,Round:()=>Ei,Rsqrt:()=>no,SGDOptimizer:()=>_d,ScatterNd:()=>Ri,Select:()=>$i,Selu:()=>fu,Sequential:()=>ju,Sigmoid:()=>ro,Sign:()=>mu,Sin:()=>so,Sinh:()=>_i,Slice:()=>Di,Softmax:()=>io,Softplus:()=>gu,SpaceToBatchND:()=>Pi,SparseFillEmptyRows:()=>Fh,SparseReshape:()=>Oh,SparseSegmentMean:()=>Mh,SparseSegmentSum:()=>zh,SparseToDense:()=>ed,SplitV:()=>Fi,Sqrt:()=>ao,Square:()=>yu,SquaredDifference:()=>lo,Step:()=>ho,StridedSlice:()=>Oi,StringNGrams:()=>td,StringSplit:()=>Lh,StringToHashBucketFast:()=>Bh,Sub:()=>uo,Sum:()=>oo,SymbolicTensor:()=>gr,Tan:()=>Mi,Tanh:()=>co,Tensor:()=>Ze,TensorBuffer:()=>nn,Tile:()=>Kr,TopK:()=>Au,Transform:()=>zi,Transpose:()=>po,Unique:()=>Wh,Unpack:()=>Li,UnsortedSegmentSum:()=>nd,Variable:()=>dd,ZerosLike:()=>Bi,_FusedMatMul:()=>fo,abs:()=>Zt,acos:()=>H2,acosh:()=>j2,add:()=>ue,addN:()=>ef,all:()=>tf,any:()=>gd,argMax:()=>Fs,argMin:()=>q2,asin:()=>X2,asinh:()=>K2,atan:()=>Z2,atan2:()=>Y2,atanh:()=>J2,avgPool:()=>Ad,avgPool3d:()=>t1,backend:()=>Tr,backend_util:()=>E,basicLSTMCell:()=>CR,batchNorm:()=>Yi,batchNorm2d:()=>V3,batchNorm3d:()=>U3,batchNorm4d:()=>G3,batchToSpaceND:()=>xd,bincount:()=>n1,booleanMaskAsync:()=>__,broadcastArgs:()=>H3,broadcastTo:()=>Nu,browser:()=>Ks,buffer:()=>Ve,callbacks:()=>qW,cast:()=>pe,ceil:()=>s1,clipByValue:()=>rs,clone:()=>lr,complex:()=>Ao,concat:()=>kt,concat1d:()=>j3,concat2d:()=>Eu,concat3d:()=>q3,concat4d:()=>X3,constraints:()=>jv,conv1d:()=>sf,conv2d:()=>Qr,conv2dTranspose:()=>rf,conv3d:()=>a1,conv3dTranspose:()=>Z3,copyRegisteredKernels:()=>ZN,cos:()=>bd,cosh:()=>af,cosineWindow:()=>D1,cumsum:()=>of,customGrad:()=>Er,data:()=>i7,denseBincount:()=>Y3,deprecationWarn:()=>U2,depthToSpace:()=>o1,depthwiseConv2d:()=>Ru,deregisterOp:()=>KW,device_util:()=>vu,diag:()=>n$,dilation2d:()=>i1,disableDeprecationWarnings:()=>VE,dispose:()=>ee,disposeVariables:()=>UE,div:()=>fe,divNoNan:()=>l1,dot:()=>J3,dropout:()=>xv,einsum:()=>Q3,elu:()=>$u,enableDebugMode:()=>WE,enableProdMode:()=>M3,enclosingPowerOfTwo:()=>bv,engine:()=>ns,env:()=>Z,equal:()=>gs,erf:()=>u1,exp:()=>ys,expandDims:()=>qt,expm1:()=>c1,eye:()=>d1,fft:()=>Rd,fill:()=>Du,findBackend:()=>G2,findBackendFactory:()=>qE,floor:()=>_u,floorDiv:()=>Qh,forceHalfFloat:()=>_4,fused:()=>So,gather:()=>Ji,gatherND:()=>Av,gather_util:()=>O2,getBackend:()=>ur,getGradient:()=>h2,getKernel:()=>Vh,getKernelsForBackend:()=>Zr,gpgpu_util:()=>i4,grad:()=>D$,grads:()=>_$,greater:()=>as,greaterEqual:()=>ko,ifft:()=>zu,imag:()=>lf,image:()=>$e,inTopKAsync:()=>G_,initializers:()=>Qv,input:()=>Uw,io:()=>ts,irfft:()=>wf,isFinite:()=>ev,isInf:()=>tv,isNaN:()=>p1,keep:()=>An,kernel_impls:()=>Ys,layers:()=>cw,leakyRelu:()=>vd,less:()=>uf,lessEqual:()=>Io,linalg:()=>Dv,linspace:()=>nv,loadGraphModel:()=>ot,loadLayersModel:()=>sB,localResponseNormalization:()=>h1,log:()=>As,log1p:()=>wd,logSigmoid:()=>rv,logSoftmax:()=>df,logSumExp:()=>g1,logicalAnd:()=>Zs,logicalNot:()=>kd,logicalOr:()=>pf,logicalXor:()=>lv,losses:()=>CF,matMul:()=>Ke,math:()=>y3,max:()=>Wn,maxPool:()=>Id,maxPool3d:()=>y1,maxPoolWithArgmax:()=>uv,maximum:()=>Rr,mean:()=>Lt,memory:()=>Yh,meshgrid:()=>tD,metrics:()=>kk,min:()=>Sd,minimum:()=>Pu,mirrorPad:()=>A1,mod:()=>x1,model:()=>tB,models:()=>Ik,moments:()=>hf,movingAverage:()=>O_,mul:()=>L,multiRNNCell:()=>uD,multinomial:()=>cv,neg:()=>_t,nextFrame:()=>zf,norm:()=>Cf,notEqual:()=>tl,oneHot:()=>Su,ones:()=>xs,onesLike:()=>bs,op:()=>U,outerProduct:()=>fD,pad:()=>Ms,pad1d:()=>yD,pad2d:()=>xD,pad3d:()=>vD,pad4d:()=>kD,pool:()=>dv,pow:()=>ea,prelu:()=>Td,print:()=>d3,prod:()=>ff,profile:()=>GE,rand:()=>DD,randomGamma:()=>OD,randomNormal:()=>pv,randomUniform:()=>Fu,range:()=>Ou,ready:()=>Jh,real:()=>Nd,reciprocal:()=>w1,registerBackend:()=>Xi,registerCallbackConstructor:()=>rB,registerGradient:()=>L5,registerKernel:()=>Yr,registerOp:()=>XW,regularizers:()=>Sk,relu:()=>cr,relu6:()=>mf,removeBackend:()=>jE,reshape:()=>G,reverse:()=>vs,reverse1d:()=>HD,reverse2d:()=>qD,reverse3d:()=>KD,reverse4d:()=>YD,rfft:()=>$d,round:()=>gf,rsqrt:()=>yf,scalar:()=>Ee,scatterND:()=>yv,scatter_util:()=>M2,selu:()=>Af,separableConv2d:()=>k1,sequential:()=>nB,serialization:()=>de,setBackend:()=>z3,setPlatform:()=>XE,setWasmPath:()=>Tce,setWasmPaths:()=>RC,setWebGLContext:()=>Tm,setdiff1dAsync:()=>hv,sigmoid:()=>ss,sign:()=>I1,signal:()=>SF,sin:()=>xf,sinh:()=>bf,slice:()=>_e,slice1d:()=>vf,slice2d:()=>S1,slice3d:()=>Mu,slice4d:()=>Ed,slice_util:()=>yn,softmax:()=>nl,softplus:()=>Qi,spaceToBatchND:()=>Cd,sparse:()=>Dd,sparseToDense:()=>$1,spectral:()=>IF,split:()=>xn,sqrt:()=>Cn,square:()=>vt,squaredDifference:()=>kf,squeeze:()=>dt,stack:()=>Tn,step:()=>Lu,stridedSlice:()=>C1,string:()=>$f,sub:()=>xe,sum:()=>ke,sumOutType:()=>pd,tan:()=>T1,tanh:()=>Zi,tensor:()=>jt,tensor1d:()=>Yt,tensor2d:()=>dr,tensor3d:()=>A3,tensor4d:()=>k_,tensor5d:()=>I_,tensor6d:()=>S_,tensor_util:()=>or,test_util:()=>P3,tidy:()=>j,tile:()=>Os,time:()=>HE,topk:()=>N1,train:()=>rl,transpose:()=>tt,truncatedNormal:()=>If,unique:()=>Sf,unregisterGradient:()=>KN,unregisterKernel:()=>XN,unsortedSegmentSum:()=>E1,unstack:()=>Vn,upcastType:()=>Bn,util:()=>v,valueAndGrad:()=>P$,valueAndGrads:()=>F$,variable:()=>fv,variableGrads:()=>sv,version:()=>x0e,version_converter:()=>JV,version_core:()=>Zh,version_layers:()=>hy,version_wasm:()=>Nce,version_webgl:()=>cJ,webgl:()=>dJ,webgl_util:()=>$I,webgpu:()=>h6,where:()=>Pn,whereAsync:()=>R1,zeros:()=>Xt,zerosLike:()=>nt});var JT=Object.create,ih=Object.defineProperty,QT=Object.getOwnPropertyDescriptor,eN=Object.getOwnPropertyNames,tN=Object.getPrototypeOf,nN=Object.prototype.hasOwnProperty,x5=e=>ih(e,"__esModule",{value:!0}),Vl=(e=>typeof Jo!="undefined"?Jo:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof Jo!="undefined"?Jo:t)[n]}):e)(function(e){if(typeof Jo!="undefined")return Jo.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')}),Dt=(e,t)=>function(){return t||(0,e[Object.keys(e)[0]])((t={exports:{}}).exports,t),t.exports},Le=(e,t)=>{x5(e);for(var n in t)ih(e,n,{get:t[n],enumerable:!0})},sN=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let s of eN(t))!nN.call(e,s)&&s!=="default"&&ih(e,s,{get:()=>t[s],enumerable:!(n=QT(t,s))||n.enumerable});return e},Qo=e=>sN(x5(ih(e!=null?JT(tN(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),rN=Dt({"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js"(e,t){t.exports=s;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(D){}function s(D,T,O){this.low=D|0,this.high=T|0,this.unsigned=!!O}s.prototype.__isLong__,Object.defineProperty(s.prototype,"__isLong__",{value:!0});function r(D){return(D&&D.__isLong__)===!0}s.isLong=r;var a={},o={};function i(D,T){var O,W,H;return T?(D>>>=0,(H=0<=D&&D<256)&&(W=o[D],W)?W:(O=c(D,(D|0)<0?-1:0,!0),H&&(o[D]=O),O)):(D|=0,(H=-128<=D&&D<128)&&(W=a[D],W)?W:(O=c(D,D<0?-1:0,!1),H&&(a[D]=O),O))}s.fromInt=i;function l(D,T){if(isNaN(D))return T?b:x;if(T){if(D<0)return b;if(D>=g)return $}else{if(D<=-y)return F;if(D+1>=y)return N}return D<0?l(-D,T).neg():c(D%m|0,D/m|0,T)}s.fromNumber=l;function c(D,T,O){return new s(D,T,O)}s.fromBits=c;var u=Math.pow;function d(D,T,O){if(D.length===0)throw Error("empty string");if(D==="NaN"||D==="Infinity"||D==="+Infinity"||D==="-Infinity")return x;if(typeof T=="number"?(O=T,T=!1):T=!!T,O=O||10,O<2||360)throw Error("interior hyphen");if(W===0)return d(D.substring(1),T,O).neg();for(var H=l(u(O,8)),z=x,X=0;X>>0:this.low},R.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},R.toString=function(T){if(T=T||10,T<2||36>>0,ne=Q.toString(T);if(X=J,X.isZero())return ne+te;for(;ne.length<6;)ne="0"+ne;te=""+ne+te}},R.getHighBits=function(){return this.high},R.getHighBitsUnsigned=function(){return this.high>>>0},R.getLowBits=function(){return this.low},R.getLowBitsUnsigned=function(){return this.low>>>0},R.getNumBitsAbs=function(){if(this.isNegative())return this.eq(F)?64:this.neg().getNumBitsAbs();for(var T=this.high!=0?this.high:this.low,O=31;O>0&&(T&1<=0},R.isOdd=function(){return(this.low&1)==1},R.isEven=function(){return(this.low&1)==0},R.equals=function(T){return r(T)||(T=p(T)),this.unsigned!==T.unsigned&&this.high>>>31==1&&T.high>>>31==1?!1:this.high===T.high&&this.low===T.low},R.eq=R.equals,R.notEquals=function(T){return!this.eq(T)},R.neq=R.notEquals,R.ne=R.notEquals,R.lessThan=function(T){return this.comp(T)<0},R.lt=R.lessThan,R.lessThanOrEqual=function(T){return this.comp(T)<=0},R.lte=R.lessThanOrEqual,R.le=R.lessThanOrEqual,R.greaterThan=function(T){return this.comp(T)>0},R.gt=R.greaterThan,R.greaterThanOrEqual=function(T){return this.comp(T)>=0},R.gte=R.greaterThanOrEqual,R.ge=R.greaterThanOrEqual,R.compare=function(T){if(r(T)||(T=p(T)),this.eq(T))return 0;var O=this.isNegative(),W=T.isNegative();return O&&!W?-1:!O&&W?1:this.unsigned?T.high>>>0>this.high>>>0||T.high===this.high&&T.low>>>0>this.low>>>0?-1:1:this.sub(T).isNegative()?-1:1},R.comp=R.compare,R.negate=function(){return!this.unsigned&&this.eq(F)?F:this.not().add(w)},R.neg=R.negate,R.add=function(T){r(T)||(T=p(T));var O=this.high>>>16,W=this.high&65535,H=this.low>>>16,z=this.low&65535,X=T.high>>>16,te=T.high&65535,J=T.low>>>16,Q=T.low&65535,ne=0,K=0,oe=0,ce=0;return ce+=z+Q,oe+=ce>>>16,ce&=65535,oe+=H+J,K+=oe>>>16,oe&=65535,K+=W+te,ne+=K>>>16,K&=65535,ne+=O+X,ne&=65535,c(oe<<16|ce,ne<<16|K,this.unsigned)},R.subtract=function(T){return r(T)||(T=p(T)),this.add(T.neg())},R.sub=R.subtract,R.multiply=function(T){if(this.isZero())return x;if(r(T)||(T=p(T)),n){var O=n.mul(this.low,this.high,T.low,T.high);return c(O,n.get_high(),this.unsigned)}if(T.isZero())return x;if(this.eq(F))return T.isOdd()?F:x;if(T.eq(F))return this.isOdd()?F:x;if(this.isNegative())return T.isNegative()?this.neg().mul(T.neg()):this.neg().mul(T).neg();if(T.isNegative())return this.mul(T.neg()).neg();if(this.lt(A)&&T.lt(A))return l(this.toNumber()*T.toNumber(),this.unsigned);var W=this.high>>>16,H=this.high&65535,z=this.low>>>16,X=this.low&65535,te=T.high>>>16,J=T.high&65535,Q=T.low>>>16,ne=T.low&65535,K=0,oe=0,ce=0,he=0;return he+=X*ne,ce+=he>>>16,he&=65535,ce+=z*ne,oe+=ce>>>16,ce&=65535,ce+=X*Q,oe+=ce>>>16,ce&=65535,oe+=H*ne,K+=oe>>>16,oe&=65535,oe+=z*Q,K+=oe>>>16,oe&=65535,oe+=X*J,K+=oe>>>16,oe&=65535,K+=W*ne+H*Q+z*J+X*te,K&=65535,c(ce<<16|he,K<<16|oe,this.unsigned)},R.mul=R.multiply,R.divide=function(T){if(r(T)||(T=p(T)),T.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&T.low===-1&&T.high===-1)return this;var O=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,T.low,T.high);return c(O,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:x;var W,H,z;if(this.unsigned){if(T.unsigned||(T=T.toUnsigned()),T.gt(this))return b;if(T.gt(this.shru(1)))return k;z=b}else{if(this.eq(F)){if(T.eq(w)||T.eq(S))return F;if(T.eq(F))return w;var X=this.shr(1);return W=X.div(T).shl(1),W.eq(x)?T.isNegative()?w:S:(H=this.sub(T.mul(W)),z=W.add(H.div(T)),z)}else if(T.eq(F))return this.unsigned?b:x;if(this.isNegative())return T.isNegative()?this.neg().div(T.neg()):this.neg().div(T).neg();if(T.isNegative())return this.div(T.neg()).neg();z=x}for(H=this;H.gte(T);){W=Math.max(1,Math.floor(H.toNumber()/T.toNumber()));for(var te=Math.ceil(Math.log(W)/Math.LN2),J=te<=48?1:u(2,te-48),Q=l(W),ne=Q.mul(T);ne.isNegative()||ne.gt(H);)W-=J,Q=l(W,this.unsigned),ne=Q.mul(T);Q.isZero()&&(Q=w),z=z.add(Q),H=H.sub(ne)}return z},R.div=R.divide,R.modulo=function(T){if(r(T)||(T=p(T)),n){var O=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,T.low,T.high);return c(O,n.get_high(),this.unsigned)}return this.sub(this.div(T).mul(T))},R.mod=R.modulo,R.rem=R.modulo,R.not=function(){return c(~this.low,~this.high,this.unsigned)},R.and=function(T){return r(T)||(T=p(T)),c(this.low&T.low,this.high&T.high,this.unsigned)},R.or=function(T){return r(T)||(T=p(T)),c(this.low|T.low,this.high|T.high,this.unsigned)},R.xor=function(T){return r(T)||(T=p(T)),c(this.low^T.low,this.high^T.high,this.unsigned)},R.shiftLeft=function(T){return r(T)&&(T=T.toInt()),(T&=63)==0?this:T<32?c(this.low<>>32-T,this.unsigned):c(0,this.low<>>T|this.high<<32-T,this.high>>T,this.unsigned):c(this.high>>T-32,this.high>=0?0:-1,this.unsigned)},R.shr=R.shiftRight,R.shiftRightUnsigned=function(T){if(r(T)&&(T=T.toInt()),T&=63,T===0)return this;var O=this.high;if(T<32){var W=this.low;return c(W>>>T|O<<32-T,O>>>T,this.unsigned)}else return T===32?c(O,0,this.unsigned):c(O>>>T-32,0,this.unsigned)},R.shru=R.shiftRightUnsigned,R.shr_u=R.shiftRightUnsigned,R.toSigned=function(){return this.unsigned?c(this.low,this.high,!1):this},R.toUnsigned=function(){return this.unsigned?this:c(this.low,this.high,!0)},R.toBytes=function(T){return T?this.toBytesLE():this.toBytesBE()},R.toBytesLE=function(){var T=this.high,O=this.low;return[O&255,O>>>8&255,O>>>16&255,O>>>24,T&255,T>>>8&255,T>>>16&255,T>>>24]},R.toBytesBE=function(){var T=this.high,O=this.low;return[T>>>24,T>>>16&255,T>>>8&255,T&255,O>>>24,O>>>16&255,O>>>8&255,O&255]},s.fromBytes=function(T,O,W){return W?s.fromBytesLE(T,O):s.fromBytesBE(T,O)},s.fromBytesLE=function(T,O){return new s(T[0]|T[1]<<8|T[2]<<16|T[3]<<24,T[4]|T[5]<<8|T[6]<<16|T[7]<<24,O)},s.fromBytesBE=function(T,O){return new s(T[4]<<24|T[5]<<16|T[6]<<8|T[7],T[0]<<24|T[1]<<16|T[2]<<8|T[3],O)}}}),aN=Dt({"(disabled):node_modules/.pnpm/node-fetch@2.6.5/node_modules/node-fetch/browser.js"(){}}),oN=Dt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(c){var u=this,d=l();u.next=function(){var p=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=p-(u.c=p|0)},u.c=1,u.s0=d(" "),u.s1=d(" "),u.s2=d(" "),u.s0-=d(c),u.s0<0&&(u.s0+=1),u.s1-=d(c),u.s1<0&&(u.s1+=1),u.s2-=d(c),u.s2<0&&(u.s2+=1),d=null}function o(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function i(c,u){var d=new a(c),p=u&&u.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,p&&(typeof p=="object"&&o(p,d),h.state=function(){return o(d,{})}),h}function l(){var c=4022871197,u=function(d){d=d.toString();for(var p=0;p>>0,h-=c,h*=c,c=h>>>0,h-=c,c+=h*4294967296}return(c>>>0)*23283064365386963e-26};return u}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),iN=Dt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var p=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^p^p>>>8},l===(l|0)?c.x=l:u+=l;for(var d=0;d>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),lN=Dt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(p^p<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var d=0;d>>4),c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),uN=Dt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.x,p=c.i,h,f,m;return h=d[p],h^=h>>>7,f=h^h<<24,h=d[p+1&7],f^=h^h>>>10,h=d[p+3&7],f^=h^h>>>3,h=d[p+4&7],f^=h^h<<7,h=d[p+7&7],h=h^h<<13,f^=h^h<<9,d[p]=f,c.i=p+1&7,f};function u(d,p){var h,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,h=0;h0;--h)d.next()}u(c,l)}function o(l,c){return c.x=l.x.slice(),c.i=l.i,c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.x&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),cN=Dt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.w,p=c.X,h=c.i,f,m;return c.w=d=d+1640531527|0,m=p[h+34&127],f=p[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[h]=m^f,c.i=h,m+(d^d>>>16)|0};function u(d,p){var h,f,m,g,y,A=[],x=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,x=Math.max(x,p.length)),m=0,g=-32;g>>15,f^=f<<4,f^=f>>>13,g>=0&&(y=y+1640531527|0,h=A[g&127]^=f+y,m=h==0?m+1:0);for(m>=128&&(A[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=A[m+34&127],h=A[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,A[m]=f^h;d.w=y,d.X=A,d.i=m}u(c,l)}function o(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.X&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),dN=Dt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.b,h=c.c,f=c.d,m=c.a;return p=p<<25^p>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-p|0,c.b=p=p<<20^p>>>12^h,c.c=h=h-f|0,c.d=f<<16^h>>>16^m,c.a=m-p|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var d=0;d>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),b5=Dt({"(disabled):crypto"(){}}),pN=Dt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s){var r=this,a=256,o=6,i=52,l="random",c=s.pow(a,o),u=s.pow(2,i),d=u*2,p=a-1,h;function f(w,k,S){var N=[];k=k==!0?{entropy:!0}:k||{};var $=A(y(k.entropy?[w,b(n)]:w==null?x():w,3),N),F=new m(N),R=function(){for(var D=F.g(o),T=c,O=0;D=d;)D/=2,T/=2,O>>>=1;return(D+O)/T};return R.int32=function(){return F.g(4)|0},R.quick=function(){return F.g(4)/4294967296},R.double=R,A(b(F.S),n),(k.pass||S||function(D,T,O,W){return W&&(W.S&&g(W,F),D.state=function(){return g(F,{})}),O?(s[l]=D,T):D})(R,$,"global"in k?k.global:this==s,k.state)}s["seed"+l]=f;function m(w){var k,S=w.length,N=this,$=0,F=N.i=N.j=0,R=N.S=[];for(S||(w=[S++]);$>>0,h-=c,h*=c,c=h>>>0,h-=c,c+=h*4294967296}return(c>>>0)*23283064365386963e-26};return u}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),fN=Dt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var p=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^p^p>>>8},l===(l|0)?c.x=l:u+=l;for(var d=0;d>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),mN=Dt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(p^p<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var d=0;d>>4),c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),gN=Dt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.x,p=c.i,h,f,m;return h=d[p],h^=h>>>7,f=h^h<<24,h=d[p+1&7],f^=h^h>>>10,h=d[p+3&7],f^=h^h>>>3,h=d[p+4&7],f^=h^h<<7,h=d[p+7&7],h=h^h<<13,f^=h^h<<9,d[p]=f,c.i=p+1&7,f};function u(d,p){var h,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,h=0;h0;--h)d.next()}u(c,l)}function o(l,c){return c.x=l.x.slice(),c.i=l.i,c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.x&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),yN=Dt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.w,p=c.X,h=c.i,f,m;return c.w=d=d+1640531527|0,m=p[h+34&127],f=p[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[h]=m^f,c.i=h,m+(d^d>>>16)|0};function u(d,p){var h,f,m,g,y,A=[],x=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,x=Math.max(x,p.length)),m=0,g=-32;g>>15,f^=f<<4,f^=f>>>13,g>=0&&(y=y+1640531527|0,h=A[g&127]^=f+y,m=h==0?m+1:0);for(m>=128&&(A[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=A[m+34&127],h=A[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,A[m]=f^h;d.w=y,d.X=A,d.i=m}u(c,l)}function o(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.X&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),AN=Dt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.b,h=c.c,f=c.d,m=c.a;return p=p<<25^p>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-p|0,c.b=p=p<<20^p>>>12^h,c.c=h=h-f|0,c.d=f<<16^h>>>16^m,c.a=m-p|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var d=0;d>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),xN=Dt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s,r){var a=256,o=6,i=52,l="random",c=r.pow(a,o),u=r.pow(2,i),d=u*2,p=a-1,h;function f(w,k,S){var N=[];k=k==!0?{entropy:!0}:k||{};var $=A(y(k.entropy?[w,b(s)]:w==null?x():w,3),N),F=new m(N),R=function(){for(var D=F.g(o),T=c,O=0;D=d;)D/=2,T/=2,O>>>=1;return(D+O)/T};return R.int32=function(){return F.g(4)|0},R.quick=function(){return F.g(4)/4294967296},R.double=R,A(b(F.S),s),(k.pass||S||function(D,T,O,W){return W&&(W.S&&g(W,F),D.state=function(){return g(F,{})}),O?(r[l]=D,T):D})(R,$,"global"in k?k.global:this==r,k.state)}function m(w){var k,S=w.length,N=this,$=0,F=N.i=N.j=0,R=N.S=[];for(S||(w=[S++]);$1&&(g=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(C){if(!(C instanceof Pc))throw C}),process.on("unhandledRejection",Ur),y=function(C){process.exit(C)},u.inspect=function(){return"[Emscripten Module object]"};var W;try{W=bN()}catch(C){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),C}global.Worker=W.Worker}else w?(typeof read!="undefined"&&($=function(P){return read(P)}),R=function(P){var V;return typeof readbuffer=="function"?new Uint8Array(readbuffer(P)):(V=read(P,"binary"),Ae(typeof V=="object"),V)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(y=function(C){quit(C)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(A||x)&&(x?S=self.location.href:typeof document!="undefined"&&document.currentScript&&(S=document.currentScript.src),typeof s!="undefined"&&s&&(S=s),S.indexOf("blob:")!==0?S=S.substr(0,S.lastIndexOf("/")+1):S="",b?($=function(P,V){return T||(T=Vl("fs")),O||(O=Lc()),P=O.normalize(P),T.readFileSync(P,V?null:"utf8")},R=function(P){var V=$(P,!0);return V.buffer||(V=new Uint8Array(V)),Ae(V.buffer),V}):($=function(C){var P=new XMLHttpRequest;return P.open("GET",C,!1),P.send(null),P.responseText},x&&(R=function(C){var P=new XMLHttpRequest;return P.open("GET",C,!1),P.responseType="arraybuffer",P.send(null),new Uint8Array(P.response)}),F=function(C,P,V){var Y=new XMLHttpRequest;Y.open("GET",C,!0),Y.responseType="arraybuffer",Y.onload=function(){if(Y.status==200||Y.status==0&&Y.response){P(Y.response);return}V()},Y.onerror=V,Y.send(null)}),D=function(C){document.title=C});b&&typeof performance=="undefined"&&(global.performance=vN().performance);var H=u.print||console.log.bind(console),z=u.printErr||console.warn.bind(console);for(f in h)h.hasOwnProperty(f)&&(u[f]=h[f]);h=null,u.arguments&&(m=u.arguments),u.thisProgram&&(g=u.thisProgram),u.quit&&(y=u.quit);var X=Atomics.load,te=Atomics.store,J=Atomics.compareExchange,Q;u.wasmBinary&&(Q=u.wasmBinary);var ne=u.noExitRuntime||!0;typeof WebAssembly!="object"&&Ur("no native wasm support detected");var K,oe,ce=!1,he;function Ae(C,P){C||Ur("Assertion failed: "+P)}function Se(C){var P=u["_"+C];return Ae(P,"Cannot call unknown function "+C+", make sure it is exported"),P}function Ce(C,P,V,Y,ye){var me={string:function(Mn){var Wl=0;if(Mn!=null&&Mn!==0){var y5=(Mn.length<<2)+1;Wl=zl(y5),mt(Mn,Wl,y5)}return Wl},array:function(Mn){var Wl=zl(Mn.length);return ht(Mn,Wl),Wl}};function ge(Mn){return P==="string"?ze(Mn):P==="boolean"?Boolean(Mn):Mn}var Te=Se(C),yt=[],hn=0;if(Y)for(var tn=0;tn=Y);){var me=C[P++];if(!me)return ye;if(!(me&128)){ye+=String.fromCharCode(me);continue}var ge=C[P++]&63;if((me&224)==192){ye+=String.fromCharCode((me&31)<<6|ge);continue}var Te=C[P++]&63;if((me&240)==224?me=(me&15)<<12|ge<<6|Te:me=(me&7)<<18|ge<<12|Te<<6|C[P++]&63,me<65536)ye+=String.fromCharCode(me);else{var yt=me-65536;ye+=String.fromCharCode(55296|yt>>10,56320|yt&1023)}}return ye}function ze(C,P){return C?Ge(o(),C,P):""}function wt(C,P,V,Y){if(!(Y>0))return 0;for(var ye=V,me=V+Y-1,ge=0;ge=55296&&Te<=57343){var yt=C.charCodeAt(++ge);Te=65536+((Te&1023)<<10)|yt&1023}if(Te<=127){if(V>=me)break;P[V++]=Te}else if(Te<=2047){if(V+1>=me)break;P[V++]=192|Te>>6,P[V++]=128|Te&63}else if(Te<=65535){if(V+2>=me)break;P[V++]=224|Te>>12,P[V++]=128|Te>>6&63,P[V++]=128|Te&63}else{if(V+3>=me)break;P[V++]=240|Te>>18,P[V++]=128|Te>>12&63,P[V++]=128|Te>>6&63,P[V++]=128|Te&63}}return P[V]=0,V-ye}function mt(C,P,V){return wt(C,o(),P,V)}function gt(C){for(var P=0,V=0;V=55296&&Y<=57343&&(Y=65536+((Y&1023)<<10)|C.charCodeAt(++V)&1023),Y<=127?++P:Y<=2047?P+=2:Y<=65535?P+=3:P+=4}return P}function ht(C,P){a().set(C,P)}function bt(C,P){return C%P>0&&(C+=P-C%P),C}var Je,Jn,Mt,ps,kn,js,On,Rs,$s;function In(C){Je=C,u.HEAP8=Jn=new Int8Array(C),u.HEAP16=ps=new Int16Array(C),u.HEAP32=js=new Int32Array(C),u.HEAPU8=Mt=new Uint8Array(C),u.HEAPU16=kn=new Uint16Array(C),u.HEAPU32=On=new Uint32Array(C),u.HEAPF32=Rs=new Float32Array(C),u.HEAPF64=$s=new Float64Array(C)}var Ds=u.INITIAL_MEMORY||16777216;if(k)K=u.wasmMemory,Je=u.buffer;else if(u.wasmMemory)K=u.wasmMemory;else if(K=new WebAssembly.Memory({initial:Ds/65536,maximum:2147483648/65536,shared:!0}),!(K.buffer instanceof SharedArrayBuffer))throw z("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),b&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");K&&(Je=K.buffer),Ds=Je.byteLength,In(Je);var _s,hs=[],wr=[],Wr=[],ha=[],$l=[],kr=!1,Lp=!1;k||wr.push({func:function(){eh()}});function D0(){if(!k){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)Wp(u.preRun.shift());_l(hs)}}function Ic(){kr=!0,!k&&_l(wr)}function _0(){k||_l(Wr)}function Bp(){k||(Lp=!0)}function Qn(){if(!k){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)P0(u.postRun.shift());_l($l)}}function Wp(C){hs.unshift(C)}function P0(C){$l.unshift(C)}var Vr=0,fa=null,Ko=null;function F0(C){Ae(!k,"addRunDependency cannot be used in a pthread worker"),Vr++,u.monitorRunDependencies&&u.monitorRunDependencies(Vr)}function O0(C){if(Vr--,u.monitorRunDependencies&&u.monitorRunDependencies(Vr),Vr==0&&(fa!==null&&(clearInterval(fa),fa=null),Ko)){var P=Ko;Ko=null,P()}}u.preloadedImages={},u.preloadedAudios={};function Ur(C){u.onAbort&&u.onAbort(C),k&&console.error("Pthread aborting at "+new Error().stack),C+="",z(C),ce=!0,he=1,C="abort("+C+"). Build with -s ASSERTIONS=1 for more info.";var P=new WebAssembly.RuntimeError(C);throw p(P),P}function Vp(C,P){return String.prototype.startsWith?C.startsWith(P):C.indexOf(P)===0}var Dl="data:application/octet-stream;base64,";function Up(C){return Vp(C,Dl)}var M0="file://";function Gp(C){return Vp(C,M0)}var es="tfjs-backend-wasm-threaded-simd.wasm";Up(es)||(es=N(es));function Hp(C){try{if(C==es&&Q)return new Uint8Array(Q);if(R)return R(C);throw"both async and sync fetching of the wasm failed"}catch(P){Ur(P)}}function z0(){if(!Q&&(A||x)){if(typeof fetch=="function"&&!Gp(es))return fetch(es,{credentials:"same-origin"}).then(function(C){if(!C.ok)throw"failed to load wasm binary file at '"+es+"'";return C.arrayBuffer()}).catch(function(){return Hp(es)});if(F)return new Promise(function(C,P){F(es,function(V){C(new Uint8Array(V))},P)})}return Promise.resolve().then(function(){return Hp(es)})}function L0(){var C={a:Eg};function P(ge,Te){var yt=ge.exports;if(u.asm=yt,_s=u.asm.F,oe=Te,!k){var hn=Re.unusedWorkers.length;Re.unusedWorkers.forEach(function(tn){Re.loadWasmModuleToWorker(tn,function(){--hn||O0("wasm-instantiate")})})}}k||F0("wasm-instantiate");function V(ge){P(ge.instance,ge.module)}function Y(ge){return z0().then(function(Te){return WebAssembly.instantiate(Te,C)}).then(ge,function(Te){z("failed to asynchronously prepare wasm: "+Te),Ur(Te)})}function ye(){return!Q&&typeof WebAssembly.instantiateStreaming=="function"&&!Up(es)&&!Gp(es)&&typeof fetch=="function"?fetch(es,{credentials:"same-origin"}).then(function(ge){var Te=WebAssembly.instantiateStreaming(ge,C);return Te.then(V,function(yt){return z("wasm streaming compile failed: "+yt),z("falling back to ArrayBuffer instantiation"),Y(V)})}):Y(V)}if(u.instantiateWasm)try{var me=u.instantiateWasm(C,P);return me}catch(ge){return z("Module.instantiateWasm callback failed with error: "+ge),!1}return ye().catch(p),{}}var B0={10024:function(){throw"Canceled!"},10042:function(C,P){setTimeout(function(){d5(C,P)},0)}};function jp(){Re.initRuntime()}function _l(C){for(;C.length>0;){var P=C.shift();if(typeof P=="function"){P(u);continue}var V=P.func;typeof V=="number"?P.arg===void 0?_s.get(V)():_s.get(V)(P.arg):V(P.arg===void 0?null:P.arg)}}function Sc(C,P){if(C<=0||C>a().length||C&!0||P<0)return-28;if(P==0)return 0;P>=2147483647&&(P=1/0);var V=Atomics.load(i(),Ll>>2),Y=0;if(V==C){var ye=Atomics.compareExchange(i(),Ll>>2,V,0);if(ye==V&&(--P,Y=1,P<=0))return 1}var me=Atomics.notify(i(),C>>2,P);if(me>=0)return me+Y;throw"Atomics.notify returned an unexpected value "+me}u._emscripten_futex_wake=Sc;function W0(C){if(k)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!C)throw"Internal Error! Null pthread_ptr in killThread!";i()[C+12>>2]=0;var P=Re.pthreads[C];P.worker.terminate(),Re.freeThreadData(P),Re.runningWorkers.splice(Re.runningWorkers.indexOf(P.worker),1),P.worker.pthread=void 0}function V0(C){if(k)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!C)throw"Internal Error! Null pthread_ptr in cancelThread!";var P=Re.pthreads[C];P.worker.postMessage({cmd:"cancel"})}function U0(C){if(k)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!C)throw"Internal Error! Null pthread_ptr in cleanupThread!";var P=Re.pthreads[C];if(P){i()[C+12>>2]=0;var V=P.worker;Re.returnWorkerToPool(V)}}var Re={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var C=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2)),P=0;P>2]=C;var V=C+152;i()[V>>2]=V;for(var Y=Yo(512),P=0;P<128;++P)l()[Y/4+P]=0;Atomics.store(l(),C+100>>2,Y),Atomics.store(l(),C+40>>2,C),n2(C,!x,1),c5(C)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Re.threadExitHandlers.length>0;)Re.threadExitHandlers.pop()();k&&Ol()&&u5()},runExitHandlersAndDeinitThread:function(C,P){Atomics.store(l(),C+56>>2,1),Atomics.store(l(),C+60>>2,0),Re.runExitHandlers(),Atomics.store(l(),C+4>>2,P),Atomics.store(l(),C+0>>2,1),Sc(C+0,2147483647),n2(0,0,0)},threadExit:function(C){var P=Ol();P&&(Re.runExitHandlersAndDeinitThread(P,C),k&&postMessage({cmd:"exit"}))},threadCancel:function(){Re.runExitHandlersAndDeinitThread(Ol(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var C in Re.pthreads){var P=Re.pthreads[C];P&&P.worker&&Re.returnWorkerToPool(P.worker)}Re.pthreads={};for(var V=0;V>2];i()[C.threadInfoStruct+100>>2]=0,Dc(P),Dc(C.threadInfoStruct)}C.threadInfoStruct=0,C.allocatedOwnStack&&C.stackBase&&Dc(C.stackBase),C.stackBase=0,C.worker&&(C.worker.pthread=null)}},returnWorkerToPool:function(C){Re.runWithoutMainThreadQueuedCalls(function(){delete Re.pthreads[C.pthread.threadInfoStruct],Re.unusedWorkers.push(C),Re.runningWorkers.splice(Re.runningWorkers.indexOf(C),1),Re.freeThreadData(C.pthread),C.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(C){i()[g5>>2]=0;try{C()}finally{i()[g5>>2]=1}},receiveObjectTransfer:function(C){},loadWasmModuleToWorker:function(C,P){C.onmessage=function(V){var Y=V.data,ye=Y.cmd;if(C.pthread&&(Re.currentProxiedOperationCallerThread=C.pthread.threadInfoStruct),Y.targetThread&&Y.targetThread!=Ol()){var me=Re.pthreads[Y.targetThread];me?me.worker.postMessage(V.data,Y.transferList):console.error('Internal error! Worker sent a message "'+ye+'" to target pthread '+Y.targetThread+", but that thread no longer exists!"),Re.currentProxiedOperationCallerThread=void 0;return}if(ye==="processQueuedMainThreadWork")e2();else if(ye==="spawnThread")Jp(V.data);else if(ye==="cleanupThread")U0(Y.thread);else if(ye==="killThread")W0(Y.thread);else if(ye==="cancelThread")V0(Y.thread);else if(ye==="loaded")C.loaded=!0,P&&P(C),C.runPthread&&(C.runPthread(),delete C.runPthread);else if(ye==="print")H("Thread "+Y.threadId+": "+Y.text);else if(ye==="printErr")z("Thread "+Y.threadId+": "+Y.text);else if(ye==="alert")alert("Thread "+Y.threadId+": "+Y.text);else if(ye==="exit"){var ge=C.pthread&&Atomics.load(l(),C.pthread.threadInfoStruct+64>>2);ge&&Re.returnWorkerToPool(C)}else if(ye==="exitProcess")try{KT(Y.returnCode)}catch(Te){if(Te instanceof Pc)return;throw Te}else ye==="cancelDone"?Re.returnWorkerToPool(C):ye==="objectTransfer"?Re.receiveObjectTransfer(V.data):V.data.target==="setimmediate"?C.postMessage(V.data):z("worker sent an unknown command "+ye);Re.currentProxiedOperationCallerThread=void 0},C.onerror=function(V){z("pthread sent an error! "+V.filename+":"+V.lineno+": "+V.message)},b&&(C.on("message",function(V){C.onmessage({data:V})}),C.on("error",function(V){C.onerror(V)}),C.on("exit",function(V){})),C.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||s,wasmMemory:K,wasmModule:oe})},allocateUnusedWorker:function(){var C=N("tfjs-backend-wasm-threaded-simd.worker.js");Re.unusedWorkers.push(new Worker(C))},getNewWorker:function(){return Re.unusedWorkers.length==0&&(Re.allocateUnusedWorker(),Re.loadWasmModuleToWorker(Re.unusedWorkers[0])),Re.unusedWorkers.length>0?Re.unusedWorkers.pop():null},busySpinWait:function(C){for(var P=performance.now()+C;performance.now()>2]=C,C}function Z0(C,P){if(k)return ma(1,1,C,P)}function Y0(C,P){if(C==P)postMessage({cmd:"processQueuedMainThreadWork"});else if(k)postMessage({targetThread:C,cmd:"processThreadQueue"});else{var V=Re.pthreads[C],Y=V&&V.worker;if(!Y)return;Y.postMessage({cmd:"processThreadQueue"})}return 1}function J0(){Ur()}function Q0(C,P,V){var Y=rg(P,V);return B0[C].apply(null,Y)}function eg(C,P){}function tg(C,P,V){if(C<=0||C>a().length||C&!0)return-28;if(A){if(Atomics.load(i(),C>>2)!=P)return-6;for(var ye=performance.now(),me=ye+V,ge=Atomics.exchange(i(),Ll>>2,C);;){if(ye=performance.now(),ye>me)return ge=Atomics.exchange(i(),Ll>>2,0),-73;if(ge=Atomics.exchange(i(),Ll>>2,0),ge==0)break;if(e2(),Atomics.load(i(),C>>2)!=P)return-6;ge=Atomics.exchange(i(),Ll>>2,C)}return 0}else{var Y=Atomics.wait(i(),C>>2,P,V);if(Y==="timed-out")return-73;if(Y==="not-equal")return-6;if(Y==="ok")return 0;throw"Atomics.wait returned an unexpected value "+Y}}function ng(C,P,V){o().copyWithin(C,P,P+V)}function sg(){return b?Vl("os").cpus().length:navigator.hardwareConcurrency}function ma(C,P){for(var V=arguments.length-2,Y=_c(),ye=V,me=zl(ye*8),ge=me>>3,Te=0;Te>=2;V=o()[C++];){var Y=V<105;Y&&P&1&&P++,Tc.push(Y?c()[P++>>1]:i()[P]),++P}return Tc}function ag(C,P,V){Cc.length=P;for(var Y=V>>3,ye=0;ye>>16),In(K.buffer),1}catch(P){}}function lg(C){var P=og();if(C<=P)return!1;var V=2147483648;if(C>V)return!1;for(var Y=1;Y<=4;Y*=2){var ye=P*(1+.2/Y);ye=Math.min(ye,C+100663296);var me=Math.min(V,bt(Math.max(C,ye),65536)),ge=ig(me);if(ge)return!0}return!1}var Xe={inEventHandler:0,removeAllEventListeners:function(){for(var C=Xe.eventHandlers.length-1;C>=0;--C)Xe._removeHandler(C);Xe.eventHandlers=[],Xe.deferredCalls=[]},registerRemoveEventListeners:function(){Xe.removeEventListenersRegistered||(ha.push(Xe.removeAllEventListeners),Xe.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(C,P,V){function Y(ge,Te){if(ge.length!=Te.length)return!1;for(var yt in ge)if(ge[yt]!=Te[yt])return!1;return!0}for(var ye in Xe.deferredCalls){var me=Xe.deferredCalls[ye];if(me.targetFunction==C&&Y(me.argsList,V))return}Xe.deferredCalls.push({targetFunction:C,precedence:P,argsList:V}),Xe.deferredCalls.sort(function(ge,Te){return ge.precedence>2]=V,i()[ge+4>>2]=Y,i()[ge+8>>2]=ye,t2(0,C,637534208,P,Y,ge),Ml(me)},getTargetThreadForEventCallback:function(C){switch(C){case 1:return 0;case 2:return Re.currentProxiedOperationCallerThread;default:return C}},getNodeNameForTarget:function(C){return C?C==window?"#window":C==screen?"#screen":C&&C.nodeName?C.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function ug(C){var P=gt(C)+1,V=Yo(P);return mt(C,V,P),V}function cg(C,P,V,Y){var ye=_c(),me=zl(12),ge=0;P&&(ge=ug(P)),i()[me>>2]=ge,i()[me+4>>2]=V,i()[me+8>>2]=Y,t2(0,C,657457152,0,ge,me),Ml(ye)}function dg(C,P,V,Y){P=P?ze(P):"",cg(C,P,V,Y)}function pg(C){return C>2?ze(C):C}var hg=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function fg(C){C=pg(C);var P=hg[C]||(typeof document!="undefined"?document.querySelector(C):void 0);return P}function Nc(C){return fg(C)}function qp(C,P,V){var Y=Nc(C);if(!Y)return-4;if(Y.canvasSharedPtr&&(i()[Y.canvasSharedPtr>>2]=P,i()[Y.canvasSharedPtr+4>>2]=V),Y.offscreenCanvas||!Y.controlTransferredOffscreen){Y.offscreenCanvas&&(Y=Y.offscreenCanvas);var ye=!1;if(Y.GLctxObject&&Y.GLctxObject.GLctx){var me=Y.GLctxObject.GLctx.getParameter(2978);ye=me[0]===0&&me[1]===0&&me[2]===Y.width&&me[3]===Y.height}Y.width=P,Y.height=V,ye&&Y.GLctxObject.GLctx.viewport(0,0,P,V)}else if(Y.canvasSharedPtr){var ge=i()[Y.canvasSharedPtr+8>>2];return dg(ge,C,P,V),1}else return-4;return 0}function Xp(C,P,V){return k?ma(2,1,C,P,V):qp(C,P,V)}function mg(C,P,V){var Y=Nc(C);return Y?qp(C,P,V):Xp(C,P,V)}function gg(C){}function yg(C,P){}function Ag(C){var P=C.getExtension("ANGLE_instanced_arrays");if(P)return C.vertexAttribDivisor=function(V,Y){P.vertexAttribDivisorANGLE(V,Y)},C.drawArraysInstanced=function(V,Y,ye,me){P.drawArraysInstancedANGLE(V,Y,ye,me)},C.drawElementsInstanced=function(V,Y,ye,me,ge){P.drawElementsInstancedANGLE(V,Y,ye,me,ge)},1}function xg(C){var P=C.getExtension("OES_vertex_array_object");if(P)return C.createVertexArray=function(){return P.createVertexArrayOES()},C.deleteVertexArray=function(V){P.deleteVertexArrayOES(V)},C.bindVertexArray=function(V){P.bindVertexArrayOES(V)},C.isVertexArray=function(V){return P.isVertexArrayOES(V)},1}function bg(C){var P=C.getExtension("WEBGL_draw_buffers");if(P)return C.drawBuffers=function(V,Y){P.drawBuffersWEBGL(V,Y)},1}function vg(C){return!!(C.multiDrawWebgl=C.getExtension("WEBGL_multi_draw"))}var ft={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(P){ft.lastError||(ft.lastError=P)},getNewId:function(C){for(var P=ft.counter++,V=C.length;V>2]:-1;ye+=ze(i()[V+me*4>>2],ge<0?void 0:ge)}return ye},createContext:function(C,P){var V=C.getContext("webgl",P);if(!V)return 0;var Y=ft.registerContext(V,P);return Y},registerContext:function(C,P){var V=Yo(8);i()[V+4>>2]=Ol();var Y={handle:V,attributes:P,version:P.majorVersion,GLctx:C};return C.canvas&&(C.canvas.GLctxObject=Y),ft.contexts[V]=Y,(typeof P.enableExtensionsByDefault=="undefined"||P.enableExtensionsByDefault)&&ft.initExtensions(Y),V},makeContextCurrent:function(C){return ft.currentContext=ft.contexts[C],u.ctx=ga=ft.currentContext&&ft.currentContext.GLctx,!(C&&!ga)},getContext:function(C){return ft.contexts[C]},deleteContext:function(C){ft.currentContext===ft.contexts[C]&&(ft.currentContext=null),typeof Xe=="object"&&Xe.removeAllHandlersOnTarget(ft.contexts[C].GLctx.canvas),ft.contexts[C]&&ft.contexts[C].GLctx.canvas&&(ft.contexts[C].GLctx.canvas.GLctxObject=void 0),Dc(ft.contexts[C].handle),ft.contexts[C]=null},initExtensions:function(C){if(C||(C=ft.currentContext),!C.initExtensionsDone){C.initExtensionsDone=!0;var P=C.GLctx;Ag(P),xg(P),bg(P),P.disjointTimerQueryExt=P.getExtension("EXT_disjoint_timer_query"),vg(P);var V=P.getSupportedExtensions()||[];V.forEach(function(Y){Y.indexOf("lose_context")<0&&Y.indexOf("debug")<0&&P.getExtension(Y)})}},populateUniformTable:function(C){for(var P=ft.programs[C],V=ft.programInfos[C]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},Y=V.uniforms,ye=ga.getProgramParameter(P,35718),me=0;me>2,Y=i()[V+(24>>2)],ye={alpha:!!i()[V+(0>>2)],depth:!!i()[V+(4>>2)],stencil:!!i()[V+(8>>2)],antialias:!!i()[V+(12>>2)],premultipliedAlpha:!!i()[V+(16>>2)],preserveDrawingBuffer:!!i()[V+(20>>2)],powerPreference:wg[Y],failIfMajorPerformanceCaveat:!!i()[V+(28>>2)],majorVersion:i()[V+(32>>2)],minorVersion:i()[V+(36>>2)],enableExtensionsByDefault:i()[V+(40>>2)],explicitSwapControl:i()[V+(44>>2)],proxyContextToMainThread:i()[V+(48>>2)],renderViaOffscreenBackBuffer:i()[V+(52>>2)]},me=Nc(C);if(!me||ye.explicitSwapControl)return 0;var ge=ft.createContext(me,ye);return ge}function Ig(C,P){return kg(C,P)}var Pl={mappings:{},buffers:[null,[],[]],printChar:function(C,P){var V=Pl.buffers[C];P===0||P===10?((C===1?H:z)(Ge(V,0)),V.length=0):V.push(P)},varargs:void 0,get:function(){Pl.varargs+=4;var C=i()[Pl.varargs-4>>2];return C},getStr:function(C){var P=ze(C);return P},get64:function(C,P){return C}};function Kp(C){return k?ma(3,1,C):0}function Zp(C,P,V,Y,ye){if(k)return ma(4,1,C,P,V,Y,ye)}function Yp(C,P,V,Y){if(k)return ma(5,1,C,P,V,Y);for(var ye=0,me=0;me>2],Te=i()[P+(me*8+4)>>2],yt=0;yt>2]=ye,0}function Sg(C){var P=Re.threadExitHandlers.pop();C&&P()}function Cg(C,P){Re.threadExitHandlers.push(function(){_s.get(C)(P)})}function Jp(C){if(k)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var P=Re.getNewWorker();if(P.pthread!==void 0)throw"Internal error!";if(!C.pthread_ptr)throw"Internal error, no pthread ptr!";Re.runningWorkers.push(P);for(var V=Yo(128*4),Y=0;Y<128;++Y)i()[V+Y*4>>2]=0;var ye=C.stackBase+C.stackSize,me=Re.pthreads[C.pthread_ptr]={worker:P,stackBase:C.stackBase,stackSize:C.stackSize,allocatedOwnStack:C.allocatedOwnStack,threadInfoStruct:C.pthread_ptr},ge=me.threadInfoStruct>>2;Atomics.store(l(),ge+(64>>2),C.detached),Atomics.store(l(),ge+(100>>2),V),Atomics.store(l(),ge+(40>>2),me.threadInfoStruct),Atomics.store(l(),ge+(80>>2),C.stackSize),Atomics.store(l(),ge+(76>>2),ye),Atomics.store(l(),ge+(104>>2),C.stackSize),Atomics.store(l(),ge+(104+8>>2),ye),Atomics.store(l(),ge+(104+12>>2),C.detached);var Te=l5(),yt=Te+40;Atomics.store(l(),ge+(172>>2),yt),P.pthread=me;var hn={cmd:"run",start_routine:C.startRoutine,arg:C.arg,threadInfoStruct:C.pthread_ptr,stackBase:C.stackBase,stackSize:C.stackSize};P.runPthread=function(){hn.time=performance.now(),P.postMessage(hn,C.transferList)},P.loaded&&(P.runPthread(),delete P.runPthread)}function Tg(C,P,V,Y){if(typeof SharedArrayBuffer=="undefined")return z("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!C)return z("pthread_create called with a null thread pointer!"),28;var ye=[],me=0;if(k&&(ye.length===0||me))return p5(687865856,C,P,V,Y);if(me)return me;var ge=0,Te=0,yt=0;P&&P!=-1?(ge=i()[P>>2],ge+=81920,Te=i()[P+8>>2],yt=i()[P+12>>2]!==0):ge=2097152;var hn=Te==0;hn?Te=m5(16,ge):(Te-=ge,Ae(Te>0));for(var tn=Yo(228),Aa=0;Aa<228>>2;++Aa)l()[(tn>>2)+Aa]=0;i()[C>>2]=tn,i()[tn+12>>2]=tn;var Bl=tn+152;i()[Bl>>2]=Bl;var Mn={stackBase:Te,stackSize:ge,allocatedOwnStack:hn,detached:yt,startRoutine:V,pthread_ptr:tn,arg:Y,transferList:ye};return k?(Mn.cmd="spawnThread",postMessage(Mn,ye)):Jp(Mn),0}function Qp(C){if(k)return ma(6,1,C);switch(C){case 30:return 16384;case 85:var P=2147483648;return P/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return K0(28),-1}k||Re.initMainThreadBlock();var ga,Ng=[null,Z0,Xp,Kp,Zp,Yp,Qp],Eg={e:q0,r:X0,x:Y0,b:J0,y:Q0,j:eg,c:tg,d:Sc,f:Zo,p:ng,z:sg,u:ag,q:lg,v:mg,i:gg,t:yg,w:Ig,m:Kp,n:Zp,g:Yp,o:jp,a:K||u.wasmMemory,k:Sg,l:Cg,h:Tg,s:Qp},o5=L0(),eh=u.___wasm_call_ctors=function(){return(eh=u.___wasm_call_ctors=u.asm.A).apply(null,arguments)},Rg=u._init=function(){return(Rg=u._init=u.asm.B).apply(null,arguments)},$g=u._register_tensor=function(){return($g=u._register_tensor=u.asm.C).apply(null,arguments)},Dg=u._dispose_data=function(){return(Dg=u._dispose_data=u.asm.D).apply(null,arguments)},_g=u._dispose=function(){return(_g=u._dispose=u.asm.E).apply(null,arguments)},Pg=u._Abs=function(){return(Pg=u._Abs=u.asm.G).apply(null,arguments)},Fg=u._Add=function(){return(Fg=u._Add=u.asm.H).apply(null,arguments)},Og=u._AddN=function(){return(Og=u._AddN=u.asm.I).apply(null,arguments)},Mg=u._All=function(){return(Mg=u._All=u.asm.J).apply(null,arguments)},zg=u._Any=function(){return(zg=u._Any=u.asm.K).apply(null,arguments)},Lg=u._ArgMax=function(){return(Lg=u._ArgMax=u.asm.L).apply(null,arguments)},Bg=u._AvgPool=function(){return(Bg=u._AvgPool=u.asm.M).apply(null,arguments)},Wg=u._BatchMatMul=function(){return(Wg=u._BatchMatMul=u.asm.N).apply(null,arguments)},Vg=u._Ceil=function(){return(Vg=u._Ceil=u.asm.O).apply(null,arguments)},Ug=u._ClipByValue=function(){return(Ug=u._ClipByValue=u.asm.P).apply(null,arguments)},Gg=u._Conv2D=function(){return(Gg=u._Conv2D=u.asm.Q).apply(null,arguments)},Hg=u._Conv2DBackpropInput=function(){return(Hg=u._Conv2DBackpropInput=u.asm.R).apply(null,arguments)},jg=u._Cos=function(){return(jg=u._Cos=u.asm.S).apply(null,arguments)},qg=u._Cosh=function(){return(qg=u._Cosh=u.asm.T).apply(null,arguments)},Xg=u._CropAndResize=function(){return(Xg=u._CropAndResize=u.asm.U).apply(null,arguments)},Kg=u._Cumsum=function(){return(Kg=u._Cumsum=u.asm.V).apply(null,arguments)},Zg=u._DepthToSpace=function(){return(Zg=u._DepthToSpace=u.asm.W).apply(null,arguments)},Yg=u._DepthwiseConv2dNative=function(){return(Yg=u._DepthwiseConv2dNative=u.asm.X).apply(null,arguments)},Jg=u._Elu=function(){return(Jg=u._Elu=u.asm.Y).apply(null,arguments)},th=u._Equal=function(){return(th=u._Equal=u.asm.Z).apply(null,arguments)},nh=u._Exp=function(){return(nh=u._Exp=u.asm._).apply(null,arguments)},sh=u._FlipLeftRight=function(){return(sh=u._FlipLeftRight=u.asm.$).apply(null,arguments)},Ec=u._Floor=function(){return(Ec=u._Floor=u.asm.aa).apply(null,arguments)},Fl=u._FloorDiv=function(){return(Fl=u._FloorDiv=u.asm.ba).apply(null,arguments)},Qg=u._FusedBatchNorm=function(){return(Qg=u._FusedBatchNorm=u.asm.ca).apply(null,arguments)},Rc=u._FusedConv2D=function(){return(Rc=u._FusedConv2D=u.asm.da).apply(null,arguments)},se=u._FusedDepthwiseConv2D=function(){return(se=u._FusedDepthwiseConv2D=u.asm.ea).apply(null,arguments)},le=u._Gather=function(){return(le=u._Gather=u.asm.fa).apply(null,arguments)},we=u._GatherNd=function(){return(we=u._GatherNd=u.asm.ga).apply(null,arguments)},ct=u._Greater=function(){return(ct=u._Greater=u.asm.ha).apply(null,arguments)},Vt=u._GreaterEqual=function(){return(Vt=u._GreaterEqual=u.asm.ia).apply(null,arguments)},$t=u._LeakyRelu=function(){return($t=u._LeakyRelu=u.asm.ja).apply(null,arguments)},et=u._Less=function(){return(et=u._Less=u.asm.ka).apply(null,arguments)},rt=u._LessEqual=function(){return(rt=u._LessEqual=u.asm.la).apply(null,arguments)},Sn=u._Log=function(){return(Sn=u._Log=u.asm.ma).apply(null,arguments)},Gr=u._LogicalAnd=function(){return(Gr=u._LogicalAnd=u.asm.na).apply(null,arguments)},Hr=u._Max=function(){return(Hr=u._Max=u.asm.oa).apply(null,arguments)},rh=u._MaxPool=function(){return(rh=u._MaxPool=u.asm.pa).apply(null,arguments)},$c=u._Maximum=function(){return($c=u._Maximum=u.asm.qa).apply(null,arguments)},fs=u._Mean=function(){return(fs=u._Mean=u.asm.ra).apply(null,arguments)},ya=u._Min=function(){return(ya=u._Min=u.asm.sa).apply(null,arguments)},ah=u._Minimum=function(){return(ah=u._Minimum=u.asm.ta).apply(null,arguments)},lT=u._MirrorPad=function(){return(lT=u._MirrorPad=u.asm.ua).apply(null,arguments)},uT=u._Multiply=function(){return(uT=u._Multiply=u.asm.va).apply(null,arguments)},cT=u._Neg=function(){return(cT=u._Neg=u.asm.wa).apply(null,arguments)},dT=u._NonMaxSuppressionV3=function(){return(dT=u._NonMaxSuppressionV3=u.asm.xa).apply(null,arguments)},pT=u._NonMaxSuppressionV4=function(){return(pT=u._NonMaxSuppressionV4=u.asm.ya).apply(null,arguments)},hT=u._NonMaxSuppressionV5=function(){return(hT=u._NonMaxSuppressionV5=u.asm.za).apply(null,arguments)},fT=u._NotEqual=function(){return(fT=u._NotEqual=u.asm.Aa).apply(null,arguments)},mT=u._OneHot=function(){return(mT=u._OneHot=u.asm.Ba).apply(null,arguments)},gT=u._PadV2=function(){return(gT=u._PadV2=u.asm.Ca).apply(null,arguments)},yT=u._Pow=function(){return(yT=u._Pow=u.asm.Da).apply(null,arguments)},AT=u._Prelu=function(){return(AT=u._Prelu=u.asm.Ea).apply(null,arguments)},xT=u._Prod=function(){return(xT=u._Prod=u.asm.Fa).apply(null,arguments)},bT=u._RealDiv=function(){return(bT=u._RealDiv=u.asm.Ga).apply(null,arguments)},vT=u._Relu=function(){return(vT=u._Relu=u.asm.Ha).apply(null,arguments)},wT=u._Relu6=function(){return(wT=u._Relu6=u.asm.Ia).apply(null,arguments)},kT=u._ResizeBilinear=function(){return(kT=u._ResizeBilinear=u.asm.Ja).apply(null,arguments)},IT=u._Reverse=function(){return(IT=u._Reverse=u.asm.Ka).apply(null,arguments)},ST=u._RotateWithOffset=function(){return(ST=u._RotateWithOffset=u.asm.La).apply(null,arguments)},CT=u._Round=function(){return(CT=u._Round=u.asm.Ma).apply(null,arguments)},TT=u._Rsqrt=function(){return(TT=u._Rsqrt=u.asm.Na).apply(null,arguments)},NT=u._ScatterNd=function(){return(NT=u._ScatterNd=u.asm.Oa).apply(null,arguments)},ET=u._SelectV2=function(){return(ET=u._SelectV2=u.asm.Pa).apply(null,arguments)},RT=u._Sigmoid=function(){return(RT=u._Sigmoid=u.asm.Qa).apply(null,arguments)},$T=u._Sin=function(){return($T=u._Sin=u.asm.Ra).apply(null,arguments)},DT=u._Softmax=function(){return(DT=u._Softmax=u.asm.Sa).apply(null,arguments)},_T=u._Sqrt=function(){return(_T=u._Sqrt=u.asm.Ta).apply(null,arguments)},PT=u._Square=function(){return(PT=u._Square=u.asm.Ua).apply(null,arguments)},FT=u._SquaredDifference=function(){return(FT=u._SquaredDifference=u.asm.Va).apply(null,arguments)},OT=u._Step=function(){return(OT=u._Step=u.asm.Wa).apply(null,arguments)},MT=u._StridedSlice=function(){return(MT=u._StridedSlice=u.asm.Xa).apply(null,arguments)},zT=u._Sub=function(){return(zT=u._Sub=u.asm.Ya).apply(null,arguments)},LT=u._Sum=function(){return(LT=u._Sum=u.asm.Za).apply(null,arguments)},BT=u._Tan=function(){return(BT=u._Tan=u.asm._a).apply(null,arguments)},WT=u._Tanh=function(){return(WT=u._Tanh=u.asm.$a).apply(null,arguments)},VT=u._Tile=function(){return(VT=u._Tile=u.asm.ab).apply(null,arguments)},UT=u._TopK=function(){return(UT=u._TopK=u.asm.bb).apply(null,arguments)},GT=u._Transform=function(){return(GT=u._Transform=u.asm.cb).apply(null,arguments)},HT=u._Transpose=function(){return(HT=u._Transpose=u.asm.db).apply(null,arguments)},jT=u.__FusedMatMul=function(){return(jT=u.__FusedMatMul=u.asm.eb).apply(null,arguments)},Yo=u._malloc=function(){return(Yo=u._malloc=u.asm.fb).apply(null,arguments)},Dc=u._free=function(){return(Dc=u._free=u.asm.gb).apply(null,arguments)},i5=u.___errno_location=function(){return(i5=u.___errno_location=u.asm.hb).apply(null,arguments)},l5=u._emscripten_get_global_libc=function(){return(l5=u._emscripten_get_global_libc=u.asm.ib).apply(null,arguments)},Ol=u._pthread_self=function(){return(Ol=u._pthread_self=u.asm.jb).apply(null,arguments)},u5=u.___pthread_tsd_run_dtors=function(){return(u5=u.___pthread_tsd_run_dtors=u.asm.kb).apply(null,arguments)},e2=u._emscripten_main_thread_process_queued_calls=function(){return(e2=u._emscripten_main_thread_process_queued_calls=u.asm.lb).apply(null,arguments)},qT=u._emscripten_current_thread_process_queued_calls=function(){return(qT=u._emscripten_current_thread_process_queued_calls=u.asm.mb).apply(null,arguments)},c5=u._emscripten_register_main_browser_thread_id=function(){return(c5=u._emscripten_register_main_browser_thread_id=u.asm.nb).apply(null,arguments)},d5=u.__emscripten_do_dispatch_to_thread=function(){return(d5=u.__emscripten_do_dispatch_to_thread=u.asm.ob).apply(null,arguments)},p5=u._emscripten_sync_run_in_main_thread_4=function(){return(p5=u._emscripten_sync_run_in_main_thread_4=u.asm.pb).apply(null,arguments)},h5=u._emscripten_run_in_main_runtime_thread_js=function(){return(h5=u._emscripten_run_in_main_runtime_thread_js=u.asm.qb).apply(null,arguments)},t2=u.__emscripten_call_on_thread=function(){return(t2=u.__emscripten_call_on_thread=u.asm.rb).apply(null,arguments)},XT=u._emscripten_tls_init=function(){return(XT=u._emscripten_tls_init=u.asm.sb).apply(null,arguments)},n2=u.__emscripten_thread_init=function(){return(n2=u.__emscripten_thread_init=u.asm.tb).apply(null,arguments)},_c=u.stackSave=function(){return(_c=u.stackSave=u.asm.ub).apply(null,arguments)},Ml=u.stackRestore=function(){return(Ml=u.stackRestore=u.asm.vb).apply(null,arguments)},zl=u.stackAlloc=function(){return(zl=u.stackAlloc=u.asm.wb).apply(null,arguments)},f5=u._emscripten_stack_set_limits=function(){return(f5=u._emscripten_stack_set_limits=u.asm.xb).apply(null,arguments)},m5=u._memalign=function(){return(m5=u._memalign=u.asm.yb).apply(null,arguments)},g5=u.__emscripten_allow_main_runtime_queued_calls=10016,Ll=u.__emscripten_main_thread_futex=11652;u.cwrap=Oe,u.PThread=Re,u.PThread=Re,u.wasmMemory=K,u.ExitStatus=Pc;var oh;function Pc(C){this.name="ExitStatus",this.message="Program terminated with exit("+C+")",this.status=C}Ko=function C(){oh||s2(),oh||(Ko=C)};function s2(C){if(C=C||m,Vr>0)return;if(k){d(u),Ic(),postMessage({cmd:"loaded"});return}if(D0(),Vr>0)return;function P(){oh||(oh=!0,u.calledRun=!0,!ce&&(Ic(),_0(),d(u),u.onRuntimeInitialized&&u.onRuntimeInitialized(),Qn()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),P()},1)):P()}u.run=s2;function KT(C,P){if(!(P&&ne&&C===0)){if(!P&&k)throw postMessage({cmd:"exitProcess",returnCode:C}),new Pc(C);ne||(Re.terminateAllThreads(),he=C,Bp(),u.onExit&&u.onExit(C),ce=!0),y(C,new Pc(C))}}if(u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();return k&&(ne=!1,Re.initWorker()),s2(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),kN=Dt({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.9.0_@tensorflow+tfjs-core@3.9.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};var a=typeof r!="undefined"?r:{},o,i;a.ready=new Promise(function(se,le){o=se,i=le});var l={},c;for(c in a)a.hasOwnProperty(c)&&(l[c]=a[c]);var u=[],d="./this.program",p=function(se,le){throw le},h=!1,f=!1,m=!1,g=!1;h=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g=!h&&!m&&!f;var y="";function A(se){return a.locateFile?a.locateFile(se,y):y+se}var x,b,w,k,S,N;m?(f?y=Lc().dirname(y)+"/":y=__dirname+"/",x=function(le,we){return S||(S=Vl("fs")),N||(N=Lc()),le=N.normalize(le),S.readFileSync(le,we?null:"utf8")},w=function(le){var we=x(le,!0);return we.buffer||(we=new Uint8Array(we)),H(we.buffer),we},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),u=process.argv.slice(2),process.on("uncaughtException",function(se){if(!(se instanceof Qg))throw se}),process.on("unhandledRejection",kr),p=function(se){process.exit(se)},a.inspect=function(){return"[Emscripten Module object]"}):g?(typeof read!="undefined"&&(x=function(le){return read(le)}),w=function(le){var we;return typeof readbuffer=="function"?new Uint8Array(readbuffer(le)):(we=read(le,"binary"),H(typeof we=="object"),we)},typeof scriptArgs!="undefined"?u=scriptArgs:typeof arguments!="undefined"&&(u=arguments),typeof quit=="function"&&(p=function(se){quit(se)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||f)&&(f?y=self.location.href:typeof document!="undefined"&&document.currentScript&&(y=document.currentScript.src),s&&(y=s),y.indexOf("blob:")!==0?y=y.substr(0,y.lastIndexOf("/")+1):y="",x=function(se){var le=new XMLHttpRequest;return le.open("GET",se,!1),le.send(null),le.responseText},f&&(w=function(se){var le=new XMLHttpRequest;return le.open("GET",se,!1),le.responseType="arraybuffer",le.send(null),new Uint8Array(le.response)}),b=function(se,le,we){var ct=new XMLHttpRequest;ct.open("GET",se,!0),ct.responseType="arraybuffer",ct.onload=function(){if(ct.status==200||ct.status==0&&ct.response){le(ct.response);return}we()},ct.onerror=we,ct.send(null)},k=function(se){document.title=se});var $=a.print||console.log.bind(console),F=a.printErr||console.warn.bind(console);for(c in l)l.hasOwnProperty(c)&&(a[c]=l[c]);l=null,a.arguments&&(u=a.arguments),a.thisProgram&&(d=a.thisProgram),a.quit&&(p=a.quit);var R;a.wasmBinary&&(R=a.wasmBinary);var D=a.noExitRuntime||!0;typeof WebAssembly!="object"&&kr("no native wasm support detected");var T,O=!1,W;function H(se,le){se||kr("Assertion failed: "+le)}function z(se){var le=a["_"+se];return H(le,"Cannot call unknown function "+se+", make sure it is exported"),le}function X(se,le,we,ct,Vt){var $t={string:function(fs){var ya=0;if(fs!=null&&fs!==0){var ah=(fs.length<<2)+1;ya=Ec(ah),oe(fs,ya,ah)}return ya},array:function(fs){var ya=Ec(fs.length);return ce(fs,ya),ya}};function et(fs){return le==="string"?ne(fs):le==="boolean"?Boolean(fs):fs}var rt=z(se),Sn=[],Gr=0;if(ct)for(var Hr=0;Hr=ct);)++Vt;if(Vt-le>16&&se.subarray&&J)return J.decode(se.subarray(le,Vt));for(var $t="";le>10,56320|Gr&1023)}}return $t}function ne(se,le){return se?Q(Ce,se,le):""}function K(se,le,we,ct){if(!(ct>0))return 0;for(var Vt=we,$t=we+ct-1,et=0;et=55296&&rt<=57343){var Sn=se.charCodeAt(++et);rt=65536+((rt&1023)<<10)|Sn&1023}if(rt<=127){if(we>=$t)break;le[we++]=rt}else if(rt<=2047){if(we+1>=$t)break;le[we++]=192|rt>>6,le[we++]=128|rt&63}else if(rt<=65535){if(we+2>=$t)break;le[we++]=224|rt>>12,le[we++]=128|rt>>6&63,le[we++]=128|rt&63}else{if(we+3>=$t)break;le[we++]=240|rt>>18,le[we++]=128|rt>>12&63,le[we++]=128|rt>>6&63,le[we++]=128|rt&63}}return le[we]=0,we-Vt}function oe(se,le,we){return K(se,Ce,le,we)}function ce(se,le){Se.set(se,le)}function he(se,le){return se%le>0&&(se+=le-se%le),se}var Ae,Se,Ce,Oe,Ge,ze,wt,mt,gt;function ht(se){Ae=se,a.HEAP8=Se=new Int8Array(se),a.HEAP16=Oe=new Int16Array(se),a.HEAP32=ze=new Int32Array(se),a.HEAPU8=Ce=new Uint8Array(se),a.HEAPU16=Ge=new Uint16Array(se),a.HEAPU32=wt=new Uint32Array(se),a.HEAPF32=mt=new Float32Array(se),a.HEAPF64=gt=new Float64Array(se)}var bt=a.INITIAL_MEMORY||16777216,Je,Jn=[],Mt=[],ps=[],kn=[],js=!1;Mt.push({func:function(){jp()}});function On(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)Ds(a.preRun.shift());fa(Jn)}function Rs(){js=!0,fa(Mt)}function $s(){fa(ps)}function In(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)_s(a.postRun.shift());fa(kn)}function Ds(se){Jn.unshift(se)}function _s(se){kn.unshift(se)}var hs=0,wr=null,Wr=null;function ha(se){hs++,a.monitorRunDependencies&&a.monitorRunDependencies(hs)}function $l(se){if(hs--,a.monitorRunDependencies&&a.monitorRunDependencies(hs),hs==0&&(wr!==null&&(clearInterval(wr),wr=null),Wr)){var le=Wr;Wr=null,le()}}a.preloadedImages={},a.preloadedAudios={};function kr(se){a.onAbort&&a.onAbort(se),se+="",F(se),O=!0,W=1,se="abort("+se+"). Build with -s ASSERTIONS=1 for more info.";var le=new WebAssembly.RuntimeError(se);throw i(le),le}function Lp(se,le){return String.prototype.startsWith?se.startsWith(le):se.indexOf(le)===0}var D0="data:application/octet-stream;base64,";function Ic(se){return Lp(se,D0)}var _0="file://";function Bp(se){return Lp(se,_0)}var Qn="tfjs-backend-wasm.wasm";Ic(Qn)||(Qn=A(Qn));function Wp(se){try{if(se==Qn&&R)return new Uint8Array(R);if(w)return w(se);throw"both async and sync fetching of the wasm failed"}catch(le){kr(le)}}function P0(){if(!R&&(h||f)){if(typeof fetch=="function"&&!Bp(Qn))return fetch(Qn,{credentials:"same-origin"}).then(function(se){if(!se.ok)throw"failed to load wasm binary file at '"+Qn+"'";return se.arrayBuffer()}).catch(function(){return Wp(Qn)});if(b)return new Promise(function(se,le){b(Qn,function(we){se(new Uint8Array(we))},le)})}return Promise.resolve().then(function(){return Wp(Qn)})}function Vr(){var se={a:L0};function le(et,rt){var Sn=et.exports;a.asm=Sn,T=a.asm.i,ht(T.buffer),Je=a.asm.o,$l("wasm-instantiate")}ha("wasm-instantiate");function we(et){le(et.instance)}function ct(et){return P0().then(function(rt){return WebAssembly.instantiate(rt,se)}).then(et,function(rt){F("failed to asynchronously prepare wasm: "+rt),kr(rt)})}function Vt(){return!R&&typeof WebAssembly.instantiateStreaming=="function"&&!Ic(Qn)&&!Bp(Qn)&&typeof fetch=="function"?fetch(Qn,{credentials:"same-origin"}).then(function(et){var rt=WebAssembly.instantiateStreaming(et,se);return rt.then(we,function(Sn){return F("wasm streaming compile failed: "+Sn),F("falling back to ArrayBuffer instantiation"),ct(we)})}):ct(we)}if(a.instantiateWasm)try{var $t=a.instantiateWasm(se,le);return $t}catch(et){return F("Module.instantiateWasm callback failed with error: "+et),!1}return Vt().catch(i),{}}function fa(se){for(;se.length>0;){var le=se.shift();if(typeof le=="function"){le(a);continue}var we=le.func;typeof we=="number"?le.arg===void 0?Je.get(we)():Je.get(we)(le.arg):we(le.arg===void 0?null:le.arg)}}function Ko(){kr()}function F0(se,le,we){Ce.copyWithin(se,le,le+we)}function O0(){return Ce.length}function Ur(se){try{return T.grow(se-Ae.byteLength+65535>>>16),ht(T.buffer),1}catch(le){}}function Vp(se){var le=O0(),we=2147483648;if(se>we)return!1;for(var ct=1;ct<=4;ct*=2){var Vt=le*(1+.2/ct);Vt=Math.min(Vt,se+100663296);var $t=Math.min(we,he(Math.max(se,Vt),65536)),et=Ur($t);if(et)return!0}return!1}var Dl={mappings:{},buffers:[null,[],[]],printChar:function(se,le){var we=Dl.buffers[se];le===0||le===10?((se===1?$:F)(Q(we,0)),we.length=0):we.push(le)},varargs:void 0,get:function(){Dl.varargs+=4;var se=ze[Dl.varargs-4>>2];return se},getStr:function(se){var le=ne(se);return le},get64:function(se,le){return se}};function Up(se){return 0}function M0(se,le,we,ct,Vt){}function Gp(se,le,we,ct){for(var Vt=0,$t=0;$t>2],rt=ze[le+($t*8+4)>>2],Sn=0;Sn>2]=Vt,0}function es(){return 6}function Hp(se){return ze[th()>>2]=se,se}function z0(se){switch(se){case 30:return 16384;case 85:var le=2147483648;return le/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return Hp(28),-1}var L0={a:Ko,d:F0,e:Vp,f:Up,c:M0,b:Gp,g:es,h:z0},B0=Vr(),jp=a.___wasm_call_ctors=function(){return(jp=a.___wasm_call_ctors=a.asm.j).apply(null,arguments)},_l=a._init=function(){return(_l=a._init=a.asm.k).apply(null,arguments)},Sc=a._register_tensor=function(){return(Sc=a._register_tensor=a.asm.l).apply(null,arguments)},W0=a._dispose_data=function(){return(W0=a._dispose_data=a.asm.m).apply(null,arguments)},V0=a._dispose=function(){return(V0=a._dispose=a.asm.n).apply(null,arguments)},U0=a._Abs=function(){return(U0=a._Abs=a.asm.p).apply(null,arguments)},Re=a._Add=function(){return(Re=a._Add=a.asm.q).apply(null,arguments)},G0=a._AddN=function(){return(G0=a._AddN=a.asm.r).apply(null,arguments)},H0=a._All=function(){return(H0=a._All=a.asm.s).apply(null,arguments)},j0=a._Any=function(){return(j0=a._Any=a.asm.t).apply(null,arguments)},q0=a._ArgMax=function(){return(q0=a._ArgMax=a.asm.u).apply(null,arguments)},X0=a._AvgPool=function(){return(X0=a._AvgPool=a.asm.v).apply(null,arguments)},Zo=a._BatchMatMul=function(){return(Zo=a._BatchMatMul=a.asm.w).apply(null,arguments)},K0=a._Ceil=function(){return(K0=a._Ceil=a.asm.x).apply(null,arguments)},Z0=a._ClipByValue=function(){return(Z0=a._ClipByValue=a.asm.y).apply(null,arguments)},Y0=a._Conv2D=function(){return(Y0=a._Conv2D=a.asm.z).apply(null,arguments)},J0=a._Conv2DBackpropInput=function(){return(J0=a._Conv2DBackpropInput=a.asm.A).apply(null,arguments)},Q0=a._Cos=function(){return(Q0=a._Cos=a.asm.B).apply(null,arguments)},eg=a._Cosh=function(){return(eg=a._Cosh=a.asm.C).apply(null,arguments)},tg=a._CropAndResize=function(){return(tg=a._CropAndResize=a.asm.D).apply(null,arguments)},ng=a._Cumsum=function(){return(ng=a._Cumsum=a.asm.E).apply(null,arguments)},sg=a._DepthToSpace=function(){return(sg=a._DepthToSpace=a.asm.F).apply(null,arguments)},ma=a._DepthwiseConv2dNative=function(){return(ma=a._DepthwiseConv2dNative=a.asm.G).apply(null,arguments)},Cc=a._Elu=function(){return(Cc=a._Elu=a.asm.H).apply(null,arguments)},Tc=a._Equal=function(){return(Tc=a._Equal=a.asm.I).apply(null,arguments)},rg=a._Exp=function(){return(rg=a._Exp=a.asm.J).apply(null,arguments)},ag=a._FlipLeftRight=function(){return(ag=a._FlipLeftRight=a.asm.K).apply(null,arguments)},og=a._Floor=function(){return(og=a._Floor=a.asm.L).apply(null,arguments)},ig=a._FloorDiv=function(){return(ig=a._FloorDiv=a.asm.M).apply(null,arguments)},lg=a._FusedBatchNorm=function(){return(lg=a._FusedBatchNorm=a.asm.N).apply(null,arguments)},Xe=a._FusedConv2D=function(){return(Xe=a._FusedConv2D=a.asm.O).apply(null,arguments)},ug=a._FusedDepthwiseConv2D=function(){return(ug=a._FusedDepthwiseConv2D=a.asm.P).apply(null,arguments)},cg=a._Gather=function(){return(cg=a._Gather=a.asm.Q).apply(null,arguments)},dg=a._GatherNd=function(){return(dg=a._GatherNd=a.asm.R).apply(null,arguments)},pg=a._Greater=function(){return(pg=a._Greater=a.asm.S).apply(null,arguments)},hg=a._GreaterEqual=function(){return(hg=a._GreaterEqual=a.asm.T).apply(null,arguments)},fg=a._LeakyRelu=function(){return(fg=a._LeakyRelu=a.asm.U).apply(null,arguments)},Nc=a._Less=function(){return(Nc=a._Less=a.asm.V).apply(null,arguments)},qp=a._LessEqual=function(){return(qp=a._LessEqual=a.asm.W).apply(null,arguments)},Xp=a._Log=function(){return(Xp=a._Log=a.asm.X).apply(null,arguments)},mg=a._LogicalAnd=function(){return(mg=a._LogicalAnd=a.asm.Y).apply(null,arguments)},gg=a._Max=function(){return(gg=a._Max=a.asm.Z).apply(null,arguments)},yg=a._MaxPool=function(){return(yg=a._MaxPool=a.asm._).apply(null,arguments)},Ag=a._Maximum=function(){return(Ag=a._Maximum=a.asm.$).apply(null,arguments)},xg=a._Mean=function(){return(xg=a._Mean=a.asm.aa).apply(null,arguments)},bg=a._Min=function(){return(bg=a._Min=a.asm.ba).apply(null,arguments)},vg=a._Minimum=function(){return(vg=a._Minimum=a.asm.ca).apply(null,arguments)},ft=a._MirrorPad=function(){return(ft=a._MirrorPad=a.asm.da).apply(null,arguments)},wg=a._Multiply=function(){return(wg=a._Multiply=a.asm.ea).apply(null,arguments)},kg=a._Neg=function(){return(kg=a._Neg=a.asm.fa).apply(null,arguments)},Ig=a._NonMaxSuppressionV3=function(){return(Ig=a._NonMaxSuppressionV3=a.asm.ga).apply(null,arguments)},Pl=a._NonMaxSuppressionV4=function(){return(Pl=a._NonMaxSuppressionV4=a.asm.ha).apply(null,arguments)},Kp=a._NonMaxSuppressionV5=function(){return(Kp=a._NonMaxSuppressionV5=a.asm.ia).apply(null,arguments)},Zp=a._NotEqual=function(){return(Zp=a._NotEqual=a.asm.ja).apply(null,arguments)},Yp=a._OneHot=function(){return(Yp=a._OneHot=a.asm.ka).apply(null,arguments)},Sg=a._PadV2=function(){return(Sg=a._PadV2=a.asm.la).apply(null,arguments)},Cg=a._Pow=function(){return(Cg=a._Pow=a.asm.ma).apply(null,arguments)},Jp=a._Prelu=function(){return(Jp=a._Prelu=a.asm.na).apply(null,arguments)},Tg=a._Prod=function(){return(Tg=a._Prod=a.asm.oa).apply(null,arguments)},Qp=a._RealDiv=function(){return(Qp=a._RealDiv=a.asm.pa).apply(null,arguments)},ga=a._Relu=function(){return(ga=a._Relu=a.asm.qa).apply(null,arguments)},Ng=a._Relu6=function(){return(Ng=a._Relu6=a.asm.ra).apply(null,arguments)},Eg=a._ResizeBilinear=function(){return(Eg=a._ResizeBilinear=a.asm.sa).apply(null,arguments)},o5=a._Reverse=function(){return(o5=a._Reverse=a.asm.ta).apply(null,arguments)},eh=a._RotateWithOffset=function(){return(eh=a._RotateWithOffset=a.asm.ua).apply(null,arguments)},Rg=a._Round=function(){return(Rg=a._Round=a.asm.va).apply(null,arguments)},$g=a._Rsqrt=function(){return($g=a._Rsqrt=a.asm.wa).apply(null,arguments)},Dg=a._ScatterNd=function(){return(Dg=a._ScatterNd=a.asm.xa).apply(null,arguments)},_g=a._SelectV2=function(){return(_g=a._SelectV2=a.asm.ya).apply(null,arguments)},Pg=a._Sigmoid=function(){return(Pg=a._Sigmoid=a.asm.za).apply(null,arguments)},Fg=a._Sin=function(){return(Fg=a._Sin=a.asm.Aa).apply(null,arguments)},Og=a._Softmax=function(){return(Og=a._Softmax=a.asm.Ba).apply(null,arguments)},Mg=a._Sqrt=function(){return(Mg=a._Sqrt=a.asm.Ca).apply(null,arguments)},zg=a._Square=function(){return(zg=a._Square=a.asm.Da).apply(null,arguments)},Lg=a._SquaredDifference=function(){return(Lg=a._SquaredDifference=a.asm.Ea).apply(null,arguments)},Bg=a._Step=function(){return(Bg=a._Step=a.asm.Fa).apply(null,arguments)},Wg=a._StridedSlice=function(){return(Wg=a._StridedSlice=a.asm.Ga).apply(null,arguments)},Vg=a._Sub=function(){return(Vg=a._Sub=a.asm.Ha).apply(null,arguments)},Ug=a._Sum=function(){return(Ug=a._Sum=a.asm.Ia).apply(null,arguments)},Gg=a._Tan=function(){return(Gg=a._Tan=a.asm.Ja).apply(null,arguments)},Hg=a._Tanh=function(){return(Hg=a._Tanh=a.asm.Ka).apply(null,arguments)},jg=a._Tile=function(){return(jg=a._Tile=a.asm.La).apply(null,arguments)},qg=a._TopK=function(){return(qg=a._TopK=a.asm.Ma).apply(null,arguments)},Xg=a._Transform=function(){return(Xg=a._Transform=a.asm.Na).apply(null,arguments)},Kg=a._Transpose=function(){return(Kg=a._Transpose=a.asm.Oa).apply(null,arguments)},Zg=a.__FusedMatMul=function(){return(Zg=a.__FusedMatMul=a.asm.Pa).apply(null,arguments)},Yg=a._malloc=function(){return(Yg=a._malloc=a.asm.Qa).apply(null,arguments)},Jg=a._free=function(){return(Jg=a._free=a.asm.Ra).apply(null,arguments)},th=a.___errno_location=function(){return(th=a.___errno_location=a.asm.Sa).apply(null,arguments)},nh=a.stackSave=function(){return(nh=a.stackSave=a.asm.Ta).apply(null,arguments)},sh=a.stackRestore=function(){return(sh=a.stackRestore=a.asm.Ua).apply(null,arguments)},Ec=a.stackAlloc=function(){return(Ec=a.stackAlloc=a.asm.Va).apply(null,arguments)};a.cwrap=te;var Fl;function Qg(se){this.name="ExitStatus",this.message="Program terminated with exit("+se+")",this.status=se}Wr=function se(){Fl||Rc(),Fl||(Wr=se)};function Rc(se){if(se=se||u,hs>0||(On(),hs>0))return;function le(){Fl||(Fl=!0,a.calledRun=!0,!O&&(Rs(),$s(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),In()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),le()},1)):le()}if(a.run=Rc,a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();return Rc(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),IN=1e-7,SN=1e-4,Bc=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Ul=class{refCount(e){return qs("refCount")}incRef(e){return qs("incRef")}timerAvailable(){return!0}time(e){return qs("time")}read(e){return qs("read")}readSync(e){return qs("readSync")}numDataIds(){return qs("numDataIds")}disposeData(e,t){return qs("disposeData")}write(e,t,n){return qs("write")}move(e,t,n,s,r){return qs("move")}memory(){return qs("memory")}floatPrecision(){return qs("floatPrecision")}epsilon(){return this.floatPrecision()===32?IN:SN}dispose(){return qs("dispose")}};function qs(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function I5(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,lh(e,t,n)}function CN(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,s=0;for(;n>0;)s=Math.random()*n|0,n--,lh(e,n,s),lh(t,n,s)}function Wc(e,t,n){return Math.max(e,Math.min(t,n))}function TN(e){return e%2==0?e:e+1}function lh(e,t,n){let s=e[t];e[t]=e[n],e[n]=s}function NN(e){let t=0;for(let n=0;nn+` Shapes ${e} and ${t} must match`)}function ei(e){M(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function ti(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||_n(e)&&!n)for(let s=0;s0,n){return new Promise((s,r)=>{let a=0,o=()=>{if(e()){s();return}a++;let i=t(a);if(n!=null&&a>=n){r();return}setTimeout(o,i)};o()})}function ON(e,t){let n=1,s=-1;for(let a=0;a=0)n*=e[a];else if(e[a]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${a}`);s=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[s]=t/n,r}function Xs(e,t){let n=t.length;return e=e==null?t.map((s,r)=>r):[].concat(e),M(e.every(s=>s>=-n&&s`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),M(e.every(s=>mn(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function S5(e,t){let n=[],s=[],r=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||r?null:Xs(t,e).sort(),o=0;for(let i=0;ii)&&e[i]===1&&(n.push(e[i]),s.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),s.push(i))}return{newShape:n,keptDims:s}}function C5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function T5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function N5(e,t){for(let n=0;nt+=n.length),t}function ba(e){return typeof e=="string"||e instanceof String}function $5(e){return typeof e=="boolean"}function D5(e){return typeof e=="number"}function uh(e){return Array.isArray(e)?uh(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":D5(e)?"float32":ba(e)?"string":$5(e)?"bool":"float32"}function va(e){return!!(e&&e.constructor&&e.call&&e.apply)}function ch(e,t){for(let n=t;n=0;--s)n[s]=n[s+1]*e[s+1];return n}function _5(e,t,n,s=!1){let r=new Array;if(t.length===1){let a=t[0]*(s?2:1);for(let o=0;ol*c)*(s?2:1);for(let l=0;lr*a)*(n?2:1);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return _5(0,e,t,n)}function i2(e,t){let n=dh(e,t);for(let s=0;ss*r,1);if(t==null||t==="float32")return Hl(e,new Float32Array(n));if(t==="int32")return Hl(e,new Int32Array(n));if(t==="bool")return Hl(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function l2(e){e.forEach(t=>{M(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function LN(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let r=0;r{let[s,r]=n.split(":");this.urlFlags[s]=GN(s,r)})}};function VN(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(UN(t,s[0],s[1]),s.join("="))),t}function UN(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function GN(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function Z(){return ms}var ms=null;function HN(e){ms=e}var c2;function O5(){if(c2==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");c2=e}return c2}function jN(){let e=O5();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function d2(e,t){let n=jN();if(n.has(e))return n.get(e);{let s=t();return n.set(e,s),n.get(e)}}var ni="Abs",jl="Acos",ql="Acosh",qr="Add",wa="AddN",Xl="All",Kl="Any",ka="ArgMax",Zl="ArgMin",Yl="Asin",Jl="Asinh",Ql="Atan",eu="Atanh",tu="Atan2",Ia="AvgPool",ph="AvgPoolGrad",Uc="AvgPool3D",hh="AvgPool3DGrad",Sa="BatchMatMul",si="BatchToSpaceND",fh="Bincount",M5="BroadcastTo",p2="BroadcastArgs",Ca="Cast",Ta="Ceil",Xr="ClipByValue",Gc="Complex",Hc="ComplexAbs",ri="Concat",Na="Conv2D",mh="Conv2DBackpropFilter",Ea="Conv2DBackpropInput",jc="Conv3D",gh="Conv3DBackpropFilterV2",yh="Conv3DBackpropInputV2",Ra="Cos",$a="Cosh",ai="Cumsum",oi="CropAndResize",Ah="DenseBincount",ii="DepthToSpace",Da="DepthwiseConv2dNative",xh="DepthwiseConv2dNativeBackpropFilter",bh="DepthwiseConv2dNativeBackpropInput",vh="Diag",qc="Dilation2D",wh="Dilation2DBackpropInput",kh="Dilation2DBackpropFilter",_a="RealDiv",Xc="Einsum",Pa="Elu",Ih="EluGrad",nu="Erf",li="Equal",Fa="Exp",ui="ExpandDims",ci="Expm1",Sh="FFT",su="Fill",di="FlipLeftRight",Oa="Floor",Ma="FloorDiv",za="FusedBatchNorm",pi="GatherV2",hi="GatherNd",fi="Greater",La="GreaterEqual",Ba="Identity",Ch="IFFT",Kc="Imag",ru="IsFinite",au="IsInf",ou="IsNan",mi="LeakyRelu",gi="Less",yi="LessEqual",Th="LinSpace",Wa="Log",iu="Log1p",Ai="LogicalAnd",lu="LogicalNot",Zc="LogicalOr",z5="LogSoftmax",Yc="LRN",Nh="LRNGrad",Va="Max",Ua="Maximum",Ga="MaxPool",Eh="MaxPoolGrad",Jc="MaxPool3D",Rh="MaxPool3DGrad",$h="MaxPoolWithArgmax",Ha="Mean",ja="Min",qa="Minimum",Xa="MirrorPad",uu="Mod",Dh="Multinomial",Ka="Multiply",xi="Neg",bi="NotEqual",vi="NonMaxSuppressionV3",cu="NonMaxSuppressionV4",wi="NonMaxSuppressionV5",ki="OnesLike",Ii="OneHot",Si="Pack",Za="PadV2",qN="Pool",Ya="Pow",Ja="Prelu",Ci="Prod",du="Range",Qc="Real",pu="Reciprocal",Qa="Relu",Ti="Reshape",hu="ResizeNearestNeighbor",_h="ResizeNearestNeighborGrad",eo="ResizeBilinear",Ph="ResizeBilinearGrad",to="Relu6",Ni="Reverse",Ei="Round",no="Rsqrt",Ri="ScatterNd",$i="Select",fu="Selu",Di="Slice",so="Sin",_i="Sinh",mu="Sign",ro="Sigmoid",gu="Softplus",ao="Sqrt",oo="Sum",Pi="SpaceToBatchND",Fi="SplitV",io="Softmax",Fh="SparseFillEmptyRows",Oh="SparseReshape",Mh="SparseSegmentMean",zh="SparseSegmentSum",ed="SparseToDense",lo="SquaredDifference",yu="Square",Oi="StridedSlice",td="StringNGrams",Lh="StringSplit",Bh="StringToHashBucketFast",uo="Sub",Mi="Tan",co="Tanh",Kr="Tile",Au="TopK",zi="Transform",po="Transpose",Wh="Unique",Li="Unpack",nd="UnsortedSegmentSum",Bi="ZerosLike",ho="Step",sd="FromPixels",Wi="RotateWithOffset",fo="_FusedMatMul",mo="FusedConv2D",go="FusedDepthwiseConv2D",xu=d2("kernelRegistry",()=>new Map),rd=d2("gradRegistry",()=>new Map);function Vh(e,t){let n=f2(e,t);return xu.get(n)}function h2(e){return rd.get(e)}function Zr(e){let t=xu.entries(),n=[];for(;;){let{done:s,value:r}=t.next();if(s)break;let[a,o]=r,[i]=a.split("_");i===e&&n.push(o)}return n}function Yr(e){let{kernelName:t,backendName:n}=e,s=f2(t,n);xu.has(s)&&Ir(`The kernel '${t}' for backend '${n}' is already registered`),xu.set(s,e)}function L5(e){let{kernelName:t}=e;rd.has(t)&&Z().getBool("DEBUG")&&Ir(`Overriding the gradient for '${t}'`),rd.set(t,e)}function XN(e,t){let n=f2(e,t);if(!xu.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);xu.delete(n)}function KN(e){if(!rd.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);rd.delete(e)}function ZN(e,t){Zr(e).forEach(s=>{let r=Object.assign({},s,{backendName:t});Yr(r)})}function f2(e,t){return`${t}_${e}`}var v={};Le(v,{arraysEqual:()=>jr,assert:()=>M,assertNonNegativeIntegerDimensions:()=>l2,assertNonNull:()=>ei,assertShapesMatch:()=>zn,bytesFromStringArray:()=>R5,bytesPerElement:()=>o2,checkConversionForErrors:()=>N5,clamp:()=>Wc,computeStrides:()=>Gl,createScalarValue:()=>n9,createShuffledIndices:()=>PN,decodeString:()=>Hh,distSquared:()=>RN,encodeString:()=>id,fetch:()=>r9,fingerPrint64:()=>t9,flatten:()=>ti,getArrayFromDType:()=>T5,getTypedArrayFromDType:()=>C5,hasEncodingLoss:()=>MN,hexToLong:()=>ad,indexToLoc:()=>BN,inferDtype:()=>uh,inferFromImplicitShape:()=>ON,isBoolean:()=>$5,isFunction:()=>va,isInt:()=>mn,isNumber:()=>D5,isPromise:()=>u2,isScalarShape:()=>$N,isString:()=>ba,isTypedArray:()=>_n,isValidDtype:()=>E5,locToIndex:()=>LN,makeOnesTypedArray:()=>i2,makeZerosNestedTypedArray:()=>zN,makeZerosTypedArray:()=>dh,nearestDivisor:()=>ch,nearestLargerEven:()=>TN,now:()=>od,parseAxisParam:()=>Xs,randUniform:()=>EN,repeatedTry:()=>FN,rightPad:()=>Vc,shuffle:()=>I5,shuffleCombo:()=>CN,sizeFromShape:()=>Ht,sizeToSquarishShape:()=>_N,squeezeShape:()=>S5,sum:()=>NN,swap:()=>lh,tanh:()=>DN,toNestedArray:()=>Hl,toTypedArray:()=>Gh});var B5=Qo(rN()),Vi=B5.default||B5;function ad(e){return Vi.fromString(e,!0,16)}var W5=ad("c3a5c85c97cb3127"),Ui=ad("b492b66fbe98f273"),Ln=ad("9ae16a3b2f90404f");function m2(e){return e.xor(e.shru(47))}function V5(e,t,n){let s=e.slice(t,t+n);return Vi.fromBytes(Array.from(s),!0,!0)}function Ct(e,t){return V5(e,t,8)}function U5(e,t){return V5(e,t,4)}function gn(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function yo(e,t,n=ad("9ddfea08eb382d69")){let s=e.xor(t).mul(n);s=s.xor(s.shru(47));let r=t.xor(s).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function YN(e,t,n,s,r,a){r=r.add(e),a=gn(a.add(r).add(s),21);let o=r;return r=r.add(t),r=r.add(n),a=a.add(gn(r,44)),[r.add(s),a.add(o)]}function Uh(e,t,n,s){return YN(Ct(e,t),Ct(e,t+8),Ct(e,t+16),Ct(e,t+24),n,s)}function JN(e,t=e.length){if(t>=8){let n=Ln.add(t*2),s=Ct(e,0).add(Ln),r=Ct(e,t-8),a=gn(r,37).mul(n).add(s),o=gn(s,25).add(r).mul(n);return yo(a,o,n)}if(t>=4){let n=Ln.add(t*2),s=U5(e,0);return yo(s.shl(3).add(t),U5(e,t-4),n)}if(t>0){let n=e[0],s=e[t>>1],r=e[t-1],a=n+(s<<8),o=t+(r<<2);return m2(Ln.mul(a).xor(W5.mul(o))).mul(Ln)}return Ln}function QN(e,t=e.length){let n=Ln.add(t*2),s=Ct(e,0).mul(Ui),r=Ct(e,8),a=Ct(e,t-8).mul(n),o=Ct(e,t-16).mul(Ln);return yo(gn(s.add(r),43).add(gn(a,30)).add(o),s.add(gn(r.add(Ln),18)).add(a),n)}function e9(e,t=e.length){let n=Ln.add(t*2),s=Ct(e,0).mul(Ln),r=Ct(e,8),a=Ct(e,t-8).mul(n),o=Ct(e,t-16).mul(Ln),i=gn(s.add(r),43).add(gn(a,30)).add(o),l=yo(i,s.add(gn(r.add(Ln),18)).add(a),n),c=Ct(e,16).mul(n),u=Ct(e,24),d=i.add(Ct(e,t-32)).mul(n),p=l.add(Ct(e,t-24)).mul(n);return yo(gn(c.add(u),43).add(gn(d,30)).add(p),c.add(gn(u.add(s),18)).add(d),n)}function t9(e,t=e.length){let n=Vi.fromNumber(81,!0);if(t<=32)return t<=16?JN(e,t):QN(e,t);if(t<=64)return e9(e,t);let s=n,r=n.mul(Ui).add(113),a=m2(r.mul(Ln).add(113)).mul(Ln),o=[Vi.UZERO,Vi.UZERO],i=[Vi.UZERO,Vi.UZERO];s=s.mul(Ln).add(Ct(e,0));let l=0,c=(t-1>>6)*64,u=c+(t-1&63)-63;do s=gn(s.add(r).add(o[0]).add(Ct(e,l+8)),37).mul(Ui),r=gn(r.add(o[1]).add(Ct(e,l+48)),42).mul(Ui),s=s.xor(i[1]),r=r.add(o[0]).add(Ct(e,l+40)),a=gn(a.add(i[0]),33).mul(Ui),o=Uh(e,l,o[1].mul(Ui),s.add(i[0])),i=Uh(e,l+32,a.add(i[1]),r.add(Ct(e,l+16))),[a,s]=[s,a],l+=64;while(l!==c);let d=Ui.add(a.and(255).shl(1));return l=u,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),s=gn(s.add(r).add(o[0]).add(Ct(e,l+8)),37).mul(d),r=gn(r.add(o[1]).add(Ct(e,l+48)),42).mul(d),s=s.xor(i[1].mul(9)),r=r.add(o[0].mul(9).add(Ct(e,l+40))),a=gn(a.add(i[0]),33).mul(d),o=Uh(e,l,o[1].mul(d),s.add(i[0])),i=Uh(e,l+32,a.add(i[1]),r.add(Ct(e,l+16))),[a,s]=[s,a],yo(yo(o[0],i[0],d).add(m2(r).mul(W5)).add(a),yo(o[1],i[1],d).add(s),d)}function n9(e,t){return t==="string"?id(e):Gh([e],t)}function s9(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Gh(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=ti(e)),Z().getBool("DEBUG")&&N5(e,t),s9(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let s=0;s{s=n()},a,o=od();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(r);else{r();for(let l of s)l.dataSync();a=Promise.resolve({kernelMs:od()-o})}if(Z().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l{o9(u,c.dtype,e)})}return{kernelName:e,outputs:s,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:s,inputs:r,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),s,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],r,i[2])})})}};function o9(e,t,n){if(t!=="float32")return!1;for(let s=0;s0?f:""} `}}console.log(`%c${i} %c${o} %c${l}D ${u} %c${c} %c${d} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function l9(e,t,n){let s={},r={};for(let l=0;ls[m.id]=!0),h=!0,r[c.id]=!0;break}if(h)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let c=e[l],u=c.inputs;for(let d=0;d=0;r--){let a=t[r],o=[];if(a.outputs.forEach(l=>{let c=e[l.id];c!=null?o.push(c):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let c=n(()=>i[l]());if(c.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${c.dtype}'`);let u=a.inputs[l];if(!jr(c.shape,u.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${c.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=c;else{let d=e[u.id];e[u.id]=s(d,c),d.dispose()}}}}var G5=20,ld=3,g2=7;function c9(e,t,n,s){let r=Gl(t),a=d9(e,t,n,r),o=t.length,i=jh(e,t,n,r,a),l=["Tensor"];return s&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(c=>" "+c).join(` `)),l.join(` `)}function d9(e,t,n,s){let r=Ht(t),a=s[s.length-1],o=new Array(a).fill(0),i=t.length,l=n==="complex64"?cd(e):e;if(i>1)for(let c=0;cG5){let g=ld*o,y=Array.from(e.slice(0,g)),A=Array.from(e.slice((i-ld)*o,i*o));return n==="complex64"&&(y=cd(y),A=cd(A)),["["+y.map((x,b)=>ud(x,r[b],n)).join(", ")+", ..., "+A.map((x,b)=>ud(x,r[i-ld+b],n)).join(", ")+"]"]}let m=n==="complex64"?cd(e):Array.from(e);return["["+m.map((g,y)=>ud(g,r[y],n)).join(", ")+"]"]}let c=t.slice(1),u=s.slice(1),d=s[0]*o,p=[];if(i>G5){for(let m=0;m`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||T5(t,this.size),this.strides=Gl(e)}set(e,...t){t.length===0&&(t=[0]),M(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let s of e){if(s<0||s>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let s=0;sHh(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Sr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Hh(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Sr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Sr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return bu.print(this,e)}clone(){return this.throwIfDisposed(),bu.clone(this)}toString(e=!1){let t=this.dataSync();return c9(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),bu.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Sr().makeVariable(this,e,t,n)}};Object.defineProperty(Ze,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function re(){return d2("Tensor",()=>Ze)}re();var dd=class extends Ze{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!jr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Sr().disposeTensor(this),this.dataId=e.dataId,Sr().incRef(this,null)}dispose(){Sr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(dd,Symbol.hasInstance,{value:e=>e instanceof Ze&&e.assign!=null&&e.assign instanceof Function});var or={};Le(or,{assertTypesMatch:()=>j5,getTensorsInContainer:()=>w2,isTensorInList:()=>y9,makeTypesMatch:()=>zt});var y2;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(y2||(y2={}));var A2;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(A2||(A2={}));var x2;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(x2||(x2={}));var b2;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(b2||(b2={}));var v2;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(v2||(v2={}));var g9={float32:b2,int32:A2,bool:x2,complex64:v2};function Bn(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return g9[e][t]}function pd(e){return Bn(e,"int32")}function zt(e,t){if(e.dtype===t.dtype)return[e,t];let n=Bn(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function j5(e,t){M(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function y9(e,t){return t.some(n=>n.id===e.id)}function w2(e){let t=[],n=new Set;return q5(e,t,n),t}function q5(e,t,n){if(e==null)return;if(e instanceof Ze){t.push(e);return}if(!A9(e))return;let s=e;for(let r in s){let a=s[r];n.has(a)||(n.add(a),q5(a,t,n))}}function A9(e){return Array.isArray(e)||typeof e=="object"}function k2(e){return e.kernelName!=null}var X5=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},hd=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new X5}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Zr(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Ul)&&typeof n.then=="function"){let s=++this.pendingBackendInitId,r=n.then(a=>s(sthis.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;tthis.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{let s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return hd.nextTensorId++}nextVariableId(){return hd.nextVariableId++}clone(e){let t=B.runKernel(Ba,{x:e}),n={x:e},s=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return B.runKernel(Ca,i,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(Vh(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let s=this.backend.numDataIds(),r=0;n.forEach(i=>{r+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=s-t-r-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],s=this.isTapeOn(),r=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=k2(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(k2(e)){let{kernelName:h,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=Vh(h,this.backendName);M(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),o=()=>{let y=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let A=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,y,A);let x=A.map(b=>{if(b.rank!=null)return b;let{dataId:w,shape:k,dtype:S}=b;return this.makeTensorFromDataId(w,k,S)});if(s){let b=this.getTensorsForGradient(h,f,x);n=this.saveTensorsForBackwardMode(b)}return x}}else{let{forwardFunc:h}=e,f=m=>{!s||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>h(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:c,attrs:u}=e,d=k2(e)?null:e.backwardsFunc,p;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(p=this.profiler.profileKernel(l,c,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(p),t=p.outputs)}),s&&this.addTapeNode(l,c,t,d,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(h=>c[h]!=null?c[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:p.timeMs,extraInfo:p.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let s=h2(e);if(s!=null){let r=s.inputsToSave||[],a=s.outputsToSave||[],o;s.saveAllInputs?(M(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=r.map(l=>t[l]);let i=n.filter((l,c)=>a[c]);return o.concat(i)}return[]}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let r=e;n==="string"&&ba(e[0])&&(r=e.map(i=>id(i)));let a=s.write(r,t,n),o=new Ze(t,n,a,this.nextTensorId());if(this.trackTensor(o,s),n==="string"){let i=this.state.tensorInfo.get(a),l=R5(r);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,s){n=n||"float32";let r=new Ze(t,n,e,this.nextTensorId());return this.trackTensor(r,s),r}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));let r=new dd(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*o2(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof dd||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*o2(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,r,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},i=h2(e);i!=null&&(s=i.gradFunc),s!=null&&(o.gradient=l=>(l=l.map((c,u)=>{if(c==null){let d=n[u],p=dh(d.size,d.dtype);return this.makeTensor(p,d.shape,d.dtype)}return c}),s(l.length>1?l:l[0],r,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=w2(e),n=new Set(t.map(r=>r.id));for(let r=0;r{!r.kept&&r.scopeId===s.id&&this.track(r)})}gradients(e,t,n,s=!1){if(M(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));M(r instanceof Ze,()=>"The result y returned by f() must be a tensor.");let a=l9(this.state.activeTape,t,r);if(!s&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[r.id]=n==null?x9(r.shape):n,u9(o,a,l=>this.tidy(l),b9);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:r,grads:i}})}customGrad(e){return M(va(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{M(t.every(o=>o instanceof Ze),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,s={};t.forEach((o,i)=>{s[i]=o});let r=(o,i)=>(n=e(...t,i),M(n.value instanceof Ze,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),M(va(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),c=Array.isArray(l)?l:[l];M(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),M(c.every(d=>d instanceof Ze),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return c.forEach((d,p)=>{u[p]=()=>d}),u};return this.runKernelFunc({forwardFunc:r,backwardsFunc:a,inputs:s})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=od(),n=await this.backend.time(e);return n.wallMs=od()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new X5;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};hd.nextTensorId=0;hd.nextVariableId=0;function x9(e){let t=i2(Ht(e),"float32");return B.makeTensor(t,e,"float32")}function K5(){let e=O5();if(e._tfengine==null){let t=new F5(e);e._tfengine=new hd(t)}return HN(e._tfengine.ENV),h9(()=>e._tfengine),e._tfengine}var B=K5();function b9(e,t){let n={a:e,b:t};return B.runKernel(qr,n)}var vu={};Le(vu,{isBrowser:()=>Z5,isMobile:()=>w9});function v9(){return typeof navigator!="undefined"&&navigator!=null}function w9(e){if(e||v9()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function Z5(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var ir=Z();ir.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});ir.registerFlag("IS_BROWSER",()=>Z5());ir.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");ir.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));ir.registerFlag("PROD",()=>!1);ir.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>ir.getBool("DEBUG"));ir.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);ir.registerFlag("IS_TEST",()=>!1);ir.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);ir.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Cr(e,t){let n=e;if(_n(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let s=[];for(;Array.isArray(n)||_n(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&Z().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&Y5(e,s,[]),s}function Y5(e,t,n){if(n=n||[],!Array.isArray(e)&&!_n(e)){M(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}M(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),M(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let s=t.slice(1);for(let r=0;r=0&&(r=s),J5(s,r,t,n),e==null||!_n(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=Cr(e,r);!_n(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?Gh(e,r):ti(e,[],!0);return B.makeTensor(i,a,r)}function fd(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>_(a,`${t}[${o}]`,n,s))}var Q5="__op";function U(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Q5;let r=(...a)=>{B.startScope(n);try{let o=s(...a);return u2(o)&&console.error("Cannot return a Promise inside of tidy."),B.endScope(o),o}catch(o){throw B.endScope(null),o}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function k9(e,t){let n=_(e,"real","complex"),s=_(t,"imag","complex");zn(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);let r={real:n,imag:s};return B.runKernel(Gc,r)}var Ao=U({complex_:k9});function xo(e,t,n,s){if(s==null&&(s=uh(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!_n(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){l2(t);let r=Ht(t),a=Ht(n);M(r===a,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${a}`);for(let o=0;o`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!_n(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?Gh(e,s):ti(e,[],!0),B.makeTensor(e,t,s)}function jt(e,t,n){let s=Cr(e,n);return xo(e,t,s,n)}var I2={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},qh=4;async function I9(e,t){let n=[],s=[],r=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o{let p=await l.bytes(),h=p.reduce((g,y)=>g+y.length,0)+qh*p.length,f=new Uint8Array(h),m=0;for(let g=0;g{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let s=new Uint8Array(t),r=0;return n.forEach(a=>{s.set(new Uint8Array(a.buffer),r),r+=a.byteLength}),s.buffer}var S2=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function t3(e){return S2?Buffer.byteLength(e):new Blob([e]).size}function C9(e){if(S2)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let s=0,r=t.length;s{t+=r.byteLength});let n=new Uint8Array(t),s=0;return e.forEach(r=>{n.set(new Uint8Array(r),s),s+=r.byteLength}),n.buffer}function n3(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function s3(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function T2(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[s,r]=await t(e.weightsManifest);n.weightSpecs=s,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function md(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:t3(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:t3(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function N9(){let e=n=>{let s=n<<13,r=0;for(;(s&8388608)==0;)r-=8388608,s<<=1;return s&=~8388608,r+=947912704,s|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function E9(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function R9(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function $9(){let e=N9(),t=E9(),n=R9();return s=>{let r=new ArrayBuffer(4*s.length),a=new Uint32Array(r);for(let o=0;o>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(r)}}var Ut=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Ut.instance==null&&(Ut.instance=new Ut),Ut.instance}static registerSaveRouter(e){Ut.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Ut.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Ut.getHandlers(e,"save")}static getLoadHandlers(e,t){return Ut.getHandlers(e,"load",t)}static getHandlers(e,t,n){let s=[];return(t==="load"?Ut.getInstance().loadRouters:Ut.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&s.push(o)}),s}},D9=e=>Ut.registerSaveRouter(e),_9=e=>Ut.registerLoadRouter(e),P9=e=>Ut.getSaveHandlers(e),F9=(e,t)=>Ut.getLoadHandlers(e,t),N2="tensorflowjs",E2=1,Gi="models_store",bo="model_info_store";function r3(){if(!Z().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function R2(e){let t=e.result;t.createObjectStore(Gi,{keyPath:"modelPath"}),t.createObjectStore(bo,{keyPath:"modelPath"})}var Hi=class{constructor(e){if(this.indexedDB=r3(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{let r=this.indexedDB.open(N2,E2);r.onupgradeneeded=()=>R2(r),r.onsuccess=()=>{let a=r.result;if(t==null){let o=a.transaction(Gi,"readonly"),l=o.objectStore(Gi).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=c=>(a.close(),s(l.error)),o.oncomplete=()=>a.close()}else{let o=md(t),i=a.transaction(bo,"readwrite"),l=i.objectStore(bo),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),u;c.onsuccess=()=>{u=a.transaction(Gi,"readwrite");let p=u.objectStore(Gi).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});p.onsuccess=()=>n({modelArtifactsInfo:o}),p.onerror=h=>{l=i.objectStore(bo);let f=l.delete(this.modelPath);f.onsuccess=()=>(a.close(),s(p.error)),f.onerror=m=>(a.close(),s(p.error))}},c.onerror=d=>(a.close(),s(c.error)),i.oncomplete=()=>{u==null?a.close():u.oncomplete=()=>a.close()}}},r.onerror=a=>s(r.error)})}};Hi.URL_SCHEME="indexeddb://";var a3=e=>Z().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Hi.URL_SCHEME)?O9(e.slice(Hi.URL_SCHEME.length)):null;Ut.registerSaveRouter(a3);Ut.registerLoadRouter(a3);function O9(e){return new Hi(e)}function M9(e){return e.startsWith(Hi.URL_SCHEME)?e.slice(Hi.URL_SCHEME.length):e}var z9=class{constructor(){this.indexedDB=r3()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(N2,E2);n.onupgradeneeded=()=>R2(n),n.onsuccess=()=>{let s=n.result,r=s.transaction(bo,"readonly"),o=r.objectStore(bo).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(s.close(),t(o.error)),r.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=M9(e),new Promise((t,n)=>{let s=this.indexedDB.open(N2,E2);s.onupgradeneeded=()=>R2(s),s.onsuccess=()=>{let r=s.result,a=r.transaction(bo,"readwrite"),o=a.objectStore(bo),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=o.delete(e),u=()=>{l=r.transaction(Gi,"readwrite");let p=l.objectStore(Gi).delete(e);p.onsuccess=()=>t(i.result.modelArtifactsInfo),p.onerror=h=>n(i.error)};c.onsuccess=u,c.onerror=d=>(u(),r.close(),n(i.error))}},i.onerror=c=>(r.close(),n(i.error)),a.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},s.onerror=r=>n(s.error)})}},Jr="/",wu="tensorflowjs_models",o3="info",L9="model_topology",B9="weight_specs",W9="weight_data",V9="model_metadata";function i3(e){return{info:[wu,e,o3].join(Jr),topology:[wu,e,L9].join(Jr),weightSpecs:[wu,e,B9].join(Jr),weightData:[wu,e,W9].join(Jr),modelMetadata:[wu,e,V9].join(Jr)}}function l3(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function U9(e){let t=e.split(Jr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Jr)}function G9(e){return e.startsWith(ji.URL_SCHEME)?e.slice(ji.URL_SCHEME.length):e}var ji=class{constructor(e){if(!Z().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=i3(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=md(e);try{this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,C9(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:s}}catch(r){throw l3(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let o=JSON.parse(r);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=T9(a),t}};ji.URL_SCHEME="localstorage://";var u3=e=>Z().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ji.URL_SCHEME)?H9(e.slice(ji.URL_SCHEME.length)):null;Ut.registerSaveRouter(u3);Ut.registerLoadRouter(u3);function H9(e){return new ji(e)}var j9=class{constructor(){M(Z().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),M(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=wu+Jr,n=Jr+o3;for(let s=0;s"scheme must not be undefined or null."),e.endsWith(ku)&&(e=e.slice(0,e.indexOf(ku))),M(e.length>0,()=>"scheme must not be an empty string.");let n=Ps.getInstance();M(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Xh(e){if(e.indexOf(ku)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Ps.getSchemes().join(",")}`);return{scheme:e.split(ku)[0],path:e.split(ku)[1]}}async function c3(e,t,n=!1){M(e!==t,()=>`Old path and new path are the same: '${e}'`);let s=Ut.getLoadHandlers(e);M(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),M(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);let r=s[0],a=Ut.getSaveHandlers(t);M(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),M(a.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);let o=a[0],i=Xh(e).scheme,l=Xh(e).path,c=i===Xh(e).scheme,u=await r.load();n&&c&&await Ps.getManager(i).removeModel(l);let d=await o.save(u);return n&&!c&&await Ps.getManager(i).removeModel(l),d.modelArtifactsInfo}async function q9(){let e=Ps.getSchemes(),t={};for(let n of e){let s=await Ps.getManager(n).listModels();for(let r in s){let a=n+ku+r;t[a]=s[r]}}return t}async function X9(e){let t=Xh(e);return Ps.getManager(t.scheme).removeModel(t.path)}async function K9(e,t){return c3(e,t,!1)}async function Z9(e,t){return c3(e,t,!0)}var Y9=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(Z().get("IS_BROWSER")){Z().setPlatform("browser",new Y9);try{Ps.registerManager(ji.URL_SCHEME,new j9)}catch(e){}try{Ps.registerManager(Hi.URL_SCHEME,new z9)}catch(e){}}var J9={importFetch:()=>aN()},$2,Q9=class{constructor(){this.util=Vl("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return Z().global.fetch!=null?Z().global.fetch(e,t):($2==null&&($2=J9.importFetch()),$2(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};Z().get("IS_NODE")&&Z().setPlatform("node",new Q9);function Ve(e,t="float32",n){return t=t||"float32",l2(e),new nn(e,t,n)}function eE(e,t){let n=_(e,"x","cast");if(!E5(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let s={x:n},r={dtype:t};return B.runKernel(Ca,s,r)}var pe=U({cast_:eE});function tE(e){let n={x:_(e,"x","clone","string_or_numeric")};return B.runKernel(Ba,n)}var lr=U({clone_:tE});function d3(e,t=!1){console.log(e.toString(t))}K5();var nE={buffer:Ve,cast:pe,clone:lr,print:d3};f9(nE);var ts={};Le(ts,{browserFiles:()=>uE,browserHTTPRequest:()=>fE,concatenateArrayBuffers:()=>C2,copyModel:()=>K9,decodeWeights:()=>e3,encodeWeights:()=>I9,fromMemory:()=>gE,getLoadHandlers:()=>F9,getModelArtifactsForJSON:()=>T2,getModelArtifactsInfoForJSON:()=>md,getSaveHandlers:()=>P9,http:()=>P2,isHTTPScheme:()=>_2,listModels:()=>q9,loadWeights:()=>cE,moveModel:()=>Z9,registerLoadRouter:()=>_9,registerSaveRouter:()=>D9,removeModel:()=>X9,weightsLoaderFactory:()=>m3,withSaveHandler:()=>yE});var sE="model",rE=".json",aE=".weights.bin";function p3(e){return new Promise(t=>setTimeout(t)).then(e)}var Iu=class{constructor(e){if(!Z().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Iu.URL_SCHEME)&&(e=e.slice(Iu.URL_SCHEME.length)),(e==null||e.length===0)&&(e=sE),this.modelJsonFileName=e+rE,this.weightDataFileName=e+aE}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=s3(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=r,await p3(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await p3(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:md(e)}}}};Iu.URL_SCHEME="downloads://";var oE=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=s=>{let r=JSON.parse(s.target.result),a=r.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=T2(r,l=>this.loadWeights(l));e(i)},n.onerror=s=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let s=this.checkManifestAndWeightFiles(e),r=n.map(a=>this.loadWeightsFile(a,s[a]));return Promise.all(r).then(a=>[t,C2(a)])}loadWeightsFile(e,t){return new Promise((n,s)=>{let r=new FileReader;r.onload=a=>{let o=a.target.result;n(o)},r.onerror=a=>s(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>n3(r.name)),s={};for(let r of e)r.paths.forEach(a=>{let o=n3(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);s[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return s}},iE=e=>Z().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Iu.URL_SCHEME)?lE(e.slice(Iu.URL_SCHEME.length)):null;Ut.registerSaveRouter(iE);function lE(e="model"){return new Iu(e)}function uE(e){return new oE(e)}function h3(e,t,n,s){o(e),n=n==null?0:n,s=s==null?1:s,i(n,s);let r=0,a=l=>(l.then(c=>{let u=n+ ++r/e.length*(s-n);return t(u),c}),l);function o(l){M(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,c){M(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),M(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),M(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(a))}async function f3(e,t){t==null&&(t={});let n=t.fetchFunc==null?Z().platform.fetch:t.fetchFunc,s=e.map(d=>n(d,t.requestInit,{isBinary:!0})),r=0,a=.5,i=(t.onProgress==null?await Promise.all(s):await h3(s,t.onProgress,r,a)).map(d=>d.arrayBuffer()),l=.5,c=1;return t.onProgress==null?await Promise.all(i):await h3(i,t.onProgress,l,c)}async function cE(e,t="",n,s){return m3(o=>f3(o,{requestInit:s}))(e,t,n)}function m3(e){return async(t,n="",s)=>{let r=t.map(()=>!1),a={},o=s!=null?s.map(()=>!1):[],i=[];if(t.forEach((h,f)=>{let m=0;h.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,A=I2[y]*Ht(g.shape),x=()=>{r[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:A})};s!=null?s.forEach((b,w)=>{b===g.name&&(x(),o[w]=!0)}):x(),i.push(g.name),m+=A})}),!o.every(h=>h)){let h=s.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}. Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=r.reduce((h,f,m)=>(f&&h.push(m),h),[]),c=[];l.forEach(h=>{t[h].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;c.push(m)})});let u=await e(c),d={},p=0;return l.forEach(h=>{let f=t[h].paths.length,m=0;for(let b=0;b{let w=g.slice(b.groupOffset,b.groupOffset+b.sizeBytes),k=e3(w,[b.manifestEntry]);for(let S in k)d[S]=k[S]}),p+=f}),d}}var dE="application/octet-stream",pE="application/json",D2=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(M(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=Z().platform.fetch,M(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&M(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s=s3(e,n);t.body.append("model.json",new Blob([JSON.stringify(s)],{type:pE}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:dE}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:md(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,s=t.weightsManifest;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return T2(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=hE(t),r=this.weightPathPrefix||n,a=[];for(let c of e)a.push(...c.weights);let o=[],i=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(u)):o.push(r+u+s);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await f3(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,C2(l)]}};D2.URL_SCHEME_REGEX=/^https?:\/\//;function hE(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),r=n>t?e.substring(n):"";return[s+"/",r]}function _2(e){return e.match(D2.URL_SCHEME_REGEX)!=null}var g3=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>_2(s)):n=_2(e),n)return P2(e,t)}return null};Ut.registerSaveRouter(g3);Ut.registerLoadRouter(g3);function P2(e,t){return new D2(e,t)}function fE(e,t){return P2(e,t)}var F2=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},mE=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function gE(e,t,n,s){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new F2(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new F2({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new F2({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s}))}function yE(e){return new mE(e)}var y3={};Le(y3,{confusionMatrix:()=>wE});function AE(e,t,n=!1,s=!1){let r=_(e,"a","matMul"),a=_(t,"b","matMul");[r,a]=zt(r,a);let o={a:r,b:a},i={transposeA:n,transposeB:s};return B.runKernel(Sa,o,i)}var Ke=U({matMul_:AE});function xE(e,t,n=1,s=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:_(e,"indices","oneHot","int32")},o={depth:t,onValue:n,offValue:s};return B.runKernel(Ii,a,o)}var Su=U({oneHot_:xE});function bE(e,t){let n=_(e,"x","transpose");if(t==null&&(t=n.shape.map((a,o)=>o).reverse()),M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(a=>{M(a>=0&&a`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let s={x:n},r={perm:t};return B.runKernel(po,s,r)}var tt=U({transpose_:bE});function vE(e,t,n){let s=_(e,"labels","confusionMatrix"),r=_(t,"predictions","confusionMatrix");M(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),M(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),M(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),M(s.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),M(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=Su(pe(s,"int32"),n),o=Su(pe(r,"int32"),n),i=tt(a),l=Ke(i,o);return pe(l,"int32")}var wE=U({confusionMatrix_:vE}),Ks={};Le(Ks,{fromPixels:()=>EE,fromPixelsAsync:()=>TE,toPixels:()=>NE});function A3(e,t,n){if(ei(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let s=Cr(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return xo(e,t,s,n)}var Cu;function x3(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,r=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let f=2;if(r&&e.readyState element.")}if(Vh(sd,B.backendName)!=null){let f={pixels:e},m={numChannels:t};return B.runKernel(sd,f,m)}let[c,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;o?d=e.getContext("2d").getImageData(0,0,c,u).data:s||n?d=e.data:(a||r||i)&&(Cu==null&&(Cu=document.createElement("canvas").getContext("2d")),Cu.canvas.width=c,Cu.canvas.height=u,Cu.drawImage(e,0,0,c,u),d=Cu.getImageData(0,0,c,u).data);let p;if(t===4)p=new Int32Array(d);else{let f=c*u;p=new Int32Array(f*t);for(let m=0;m4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*s*4);for(let c=0;c1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);a===1?(u[0]=h*i,u[1]=h*i,u[2]=h*i):u[p]=h*i}let d=c*4;l[d+0]=Math.round(u[0]),l[d+1]=Math.round(u[1]),l[d+2]=Math.round(u[2]),l[d+3]=Math.round(u[3])}if(t!=null){t.width=r,t.height=s;let c=t.getContext("2d"),u=new ImageData(l,r,s);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var EE=U({fromPixels_:x3}),O2={};Le(O2,{prepareAndValidate:()=>b3});function b3(e,t){let n=e.shape.length,s=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(s<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${s}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[s-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[s-1]} vs. ${n}`);if(Ht(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,a=r[r.length-1],o=1;for(let d=0;dd/c),1].slice(0,a);return[l,o,c,u]}var M2={};Le(M2,{calculateShapes:()=>v3,validateInput:()=>L2,validateUpdateShape:()=>z2});function z2(e,t,n){let s=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${r}.`;if(n.rank1?t.shape[s-1]:1,a=n.length,o=1;for(let d=r;dRE,computeFlatOffset:()=>DE,computeOutShape:()=>w3,getNormalizedAxes:()=>C3,isSliceContinous:()=>$E,maskToAxes:()=>Kh,parseSliceParams:()=>D3,sliceInfo:()=>_E,startForAxis:()=>R3,startIndicesWithElidedDims:()=>T3,stopForAxis:()=>$3,stopIndicesWithElidedDims:()=>N3,stridesForAxis:()=>E3,stridesWithElidedDims:()=>k3});function RE(e,t,n){let s=e.shape.length;M(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),M(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let r=0;r`Error in slice${s}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function Kh(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function w3(e,t,n){let s=[];for(let r=0;r0){let h=t[0],f=n+1;u=T3(o,h,f,s,e),d=N3(i,h,f,r,e),p=k3(a,h,f,e)}else for(let h=0;h-1)a[i]=0;else{let l=I3(t,n,i),c=s[l];e&1<-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=I3(t,n,i),c=s[l];e&1<0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),o=Wc(0,o,l-1),o}function $3(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),i>0?o=Wc(0,o,l):o=Wc(-1,o,l-1),o}function $E(e,t,n){let s=n.length;for(let r=0;r1){s=r;break}for(let r=s+1;r0||n[r]!==e[r])return!1;return!0}function DE(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s{M(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(r).fill(-1):typeof n=="number"?a=[n,...new Array(r-1).fill(-1)]:n.lengtho>=0?o:(M(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-s[i])),[s,a]}function _E(e,t,n,s,r,a,o,i,l){let c=t.slice(),u=n.slice(),d=s;s==null&&(d=new Array(c.length));let p=Kh(o);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(o!==0&&i!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(o!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let h=e.length-c.length,f=Kh(i),m=e.slice();f.forEach(S=>{c[S]=0,u[S]=1,m.splice(S,0,1)});let{begin:g,end:y,strides:A}=C3(m,p,h,c,u,d,r,a,o);c=g,u=y,d=A;let x=Kh(l);x.forEach(S=>{u[S]=c[S]+1,d[S]=1});let b=w3(c,u,d),w=b.filter((S,N)=>x.indexOf(N)===-1);return{nonStrided:d.every(S=>S===1),$begin:c,$end:u,$strides:d,size:b,newShape:m,outShape:w}}var de={};Le(de,{Serializable:()=>_3,SerializationMap:()=>qi,registerClass:()=>vo});var _3=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},qi=class{constructor(){this.classNameMap={}}static getMap(){return qi.instance==null&&(qi.instance=new qi),qi.instance}static register(e){qi.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function vo(e){M(e.className!=null,()=>"Class being registered does not have the static className property defined."),M(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),M(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),qi.register(e)}var P3={};Le(P3,{TEST_EPSILON_FLOAT16:()=>F3,encodeStrings:()=>O3,expectArrayBuffersEqual:()=>BE,expectArraysClose:()=>FE,expectArraysEqual:()=>ME,expectNumbersClose:()=>zE,expectPromiseToFail:()=>OE,expectValuesInRange:()=>LE,testEpsilon:()=>B2});var PE=.001,F3=.1;function FE(e,t,n){return n==null&&(n=B2()),W2(e,t,(s,r)=>V2(s,r,n))}function B2(){return B.backend.floatPrecision()===32?PE:F3}function W2(e,t,n){let s=!0;if((_n(e)||_n(t))&&(s=!1),_n(e)&&_n(t)&&(s=!0),s){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=Cr(e),i=Cr(t);if(!jr(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let r=_n(e)?e:ti(e),a=_n(t)?t:ti(t);if(r.length!==a.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${a.length}. Actual: ${r}. Expected: ${a}.`);for(let o=0;ot.fail(),()=>t())}function ME(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return ba(e)||ba(e[0])||ba(t)||ba(t[0])?W2(e,n,(s,r)=>s==r):W2(e,t,(s,r)=>V2(s,r,0))}function zE(e,t,n){if(n==null&&(n=B2()),!V2(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function V2(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function LE(e,t,n){for(let s=0;sn)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function BE(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function O3(e){for(let t=0;tn.dispose())}function An(e){return B.keep(e)}function HE(e){return B.time(e)}function z3(e){return B.setBackend(e)}function Jh(){return B.ready()}function ur(){return B.backendName}function jE(e){B.removeBackend(e)}function G2(e){return B.findBackend(e)}function qE(e){return B.findBackendFactory(e)}function Xi(e,t,n=1){return B.registerBackend(e,t,n)}function Tr(){return B.backend}function XE(e,t){Z().setPlatform(e,t)}function KE(e,t){let n=_(e,"a","add"),s=_(t,"b","add");[n,s]=zt(n,s);let r={a:n,b:s};return B.runKernel(qr,r)}var ue=U({add_:KE});function ZE(e,t){let n=_(e,"a","floorDiv"),s=_(t,"b","floorDiv");[n,s]=zt(n,s);let r={a:n,b:s};return B.runKernel(Ma,r)}var Qh=U({floorDiv_:ZE});function YE(e,t){let n=_(e,"a","div"),s=_(t,"b","div");if([n,s]=zt(n,s),n.dtype==="int32"&&s.dtype==="int32")return Qh(n,s);let r={a:n,b:s},a={};return B.runKernel(_a,r,a)}var fe=U({div_:YE});function JE(e,t){let n=_(e,"a","mul"),s=_(t,"b","mul");[n,s]=zt(n,s);let r={a:n,b:s};return B.runKernel(Ka,r)}var L=U({mul_:JE});function QE(e){let t=_(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return B.runKernel(Hc,n)}else{let n={x:t};return B.runKernel(ni,n)}}var Zt=U({abs_:QE});function eR(e){let n={x:_(e,"x","acos")};return B.runKernel(jl,n)}var H2=U({acos_:eR});function tR(e){let n={x:_(e,"x","acosh")};return B.runKernel(ql,n)}var j2=U({acosh_:tR});function nR(e){M(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),M(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,a)=>_(r,`tensors${a}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!jr(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let s=t;return B.runKernel(wa,s)}var ef=U({addN_:nR});function sR(e,t=null,n=!1){let r={x:_(e,"x","all","bool")},a={axis:t,keepDims:n};return B.runKernel(Xl,r,a)}var tf=U({all_:sR});function rR(e,t=null,n=!1){let r={x:_(e,"x","any","bool")},a={axis:t,keepDims:n};return B.runKernel(Kl,r,a)}var gd=U({any_:rR});function aR(e,t=0){let s={x:_(e,"x","argMax")},r={axis:t};return B.runKernel(ka,s,r)}var Fs=U({argMax_:aR});function oR(e,t=0){let s={x:_(e,"x","argMin")},r={axis:t};return B.runKernel(Zl,s,r)}var q2=U({argMin_:oR});function iR(e){let n={x:_(e,"x","asin")};return B.runKernel(Yl,n)}var X2=U({asin_:iR});function lR(e){let n={x:_(e,"x","asinh")};return B.runKernel(Jl,n)}var K2=U({asinh_:lR});function uR(e){let n={x:_(e,"x","atan")};return B.runKernel(Ql,n)}var Z2=U({atan_:uR});function cR(e,t){let n=_(e,"a","atan2"),s=_(t,"b","atan2");[n,s]=zt(n,s);let r={a:n,b:s};return B.runKernel(tu,r)}var Y2=U({atan2_:cR});function dR(e){let n={x:_(e,"x","atanh")};return B.runKernel(eu,n)}var J2=U({atanh_:dR});function pR(e,t,n,s,r="NHWC",a){let o=e[3],i=[...t,o],l=W3(r);return yd(e,i,n,a,s,null,null,l)}function L3(e,t,n,s,r,a,o="channelsLast"){let[i,l]=nf(t),c;if(o==="channelsLast")c=[i,l,e[3],e[3]];else if(o==="channelsFirst")c=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return yd(e,c,n,s,r,a,!1,o)}function hR(e,t,n,s,r,a,o="NDHWC"){let[i,l,c]=e1(t),u,d;if(o==="NDHWC")d="channelsLast",u=[i,l,c,e[4],e[4]];else if(o==="NCDHW")d="channelsFirst",u=[i,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return B3(e,u,n,s,r,!1,d,a)}function yd(e,t,n,s,r,a,o=!1,i="channelsLast"){let[l,c,u,d]=[-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,d]=e;else if(i==="channelsFirst")[l,d,c,u]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,h,,f]=t,[m,g]=nf(n),[y,A]=nf(s),x=Tu(p,y),b=Tu(h,A),{padInfo:w,outHeight:k,outWidth:S}=gR(r,c,u,m,g,x,b,a,i),N=o?f*d:f,$;return i==="channelsFirst"?$=[l,N,k,S]:i==="channelsLast"&&($=[l,k,S,N]),{batchSize:l,dataFormat:i,inHeight:c,inWidth:u,inChannels:d,outHeight:k,outWidth:S,outChannels:N,padInfo:w,strideHeight:m,strideWidth:g,filterHeight:p,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:b,dilationHeight:y,dilationWidth:A,inShape:e,outShape:$,filterShape:t}}function B3(e,t,n,s,r,a=!1,o="channelsLast",i){let[l,c,u,d,p]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,d,p]=e;else if(o==="channelsFirst")[l,p,c,u,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[h,f,m,,g]=t,[y,A,x]=e1(n),[b,w,k]=e1(s),S=Tu(h,b),N=Tu(f,w),$=Tu(m,k),{padInfo:F,outDepth:R,outHeight:D,outWidth:T}=yR(r,c,u,d,y,A,x,S,N,$,i),O=a?g*p:g,W;return o==="channelsFirst"?W=[l,O,R,D,T]:o==="channelsLast"&&(W=[l,R,D,T,O]),{batchSize:l,dataFormat:o,inDepth:c,inHeight:u,inWidth:d,inChannels:p,outDepth:R,outHeight:D,outWidth:T,outChannels:O,padInfo:F,strideDepth:y,strideHeight:A,strideWidth:x,filterDepth:h,filterHeight:f,filterWidth:m,effectiveFilterDepth:S,effectiveFilterHeight:N,effectiveFilterWidth:$,dilationDepth:b,dilationHeight:w,dilationWidth:k,inShape:e,outShape:W,filterShape:t}}function fR(e,t,n,s,r){s==null&&(s=Q2(e,t,n));let a=e[0],o=e[1],i=Ki((a-t+2*s)/n+1,r),l=Ki((o-t+2*s)/n+1,r);return[i,l]}function mR(e,t,n,s,r,a){r==null&&(r=Q2(e,t,s));let o=e[0],i=e[1],l=e[2],c=Ki((o-t+2*r)/s+1,a),u=Ki((i-t+2*r)/s+1,a),d=Ki((l-t+2*r)/s+1,a);return[c,u,d,n]}function Q2(e,t,n,s=1){let r=Tu(t,s);return Math.floor((e[0]*(n-1)-n+r)/2)}function nf(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function e1(e){return typeof e=="number"?[e,e,e]:e}function Tu(e,t){return t<=1?e:e+(e-1)*(t-1)}function gR(e,t,n,s,r,a,o,i,l){let c,u,d;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let h=fR([t,n],a,s,e,i);u=h[0],d=h[1]}else if(e==="same"){u=Math.ceil(t/s),d=Math.ceil(n/r);let p=Math.max(0,(u-1)*s+a-t),h=Math.max(0,(d-1)*r+o-n),f=Math.floor(p/2),m=p-f,g=Math.floor(h/2),y=h-g;c={top:f,bottom:m,left:g,right:y,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-a+1)/s),d=Math.ceil((n-o+1)/r);else if(typeof e=="object"){let p=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];c={top:p,bottom:h,left:f,right:m,type:p===0&&h===0&&f===0&&m===0?"VALID":"EXPLICIT"},u=Ki((t-a+p+h)/s+1,i),d=Ki((n-o+f+m)/r+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:d}}function yR(e,t,n,s,r,a,o,i,l,c,u){let d,p,h,f;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=mR([t,n,s,1],i,1,r,e,u);p=g[0],h=g[1],f=g[2]}else if(e==="same"){p=Math.ceil(t/r),h=Math.ceil(n/a),f=Math.ceil(s/o);let m=(p-1)*r+i-t,g=(h-1)*a+l-n,y=(f-1)*o+c-s,A=Math.floor(m/2),x=m-A,b=Math.floor(g/2),w=g-b,k=Math.floor(y/2),S=y-k;d={top:b,bottom:w,left:k,right:S,front:A,back:x,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},p=Math.ceil((t-i+1)/r),h=Math.ceil((n-l+1)/a),f=Math.ceil((s-c+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:p,outHeight:h,outWidth:f}}function Ki(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function wo(e){let[t,n,s]=nf(e);return t===1&&n===1&&s===1}function Nr(e,t){return wo(e)||wo(t)}function W3(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function AR(e,t){let s={x:_(e,"x","reshape","string_or_numeric")},r={shape:t};return B.runKernel(Ti,s,r)}var G=U({reshape_:AR});function xR(e,t,n,s,r){let a=_(e,"x","avgPool","float32"),o=1;M(Nr(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=G(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),r!=null&&M(mn(s),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=B.runKernel(Ia,c,u);return d=pe(d,a.dtype),l?G(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Ad=U({avgPool_:xR});function bR(e,t,n,s,r,a="NDHWC"){let o=_(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),M(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&M(mn(s),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=B.runKernel(Uc,c,u);return d=pe(d,i.dtype),l?G(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var t1=U({avgPool3d_:bR});function vR(e,t=0){M(e.length>=1,()=>"Pass at least one tensor to concat");let n=fd(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor with dtype ${a.dtype}. `)}),n.length===1)return lr(n[0]);let s=n,r={axis:t};return B.runKernel(ri,s,r)}var kt=U({concat_:vR});function wR(e){let n={x:_(e,"x","sigmoid")};return B.runKernel(ro,n)}var ss=U({sigmoid_:wR});function kR(e,t,n){let s=_(e,"x","slice","string_or_numeric");if(s.rank===0)throw new Error("Slicing scalar is not possible");let r={x:s},a={begin:t,size:n};return B.runKernel(Di,r,a)}var _e=U({slice_:kR});function IR(e){let n={x:_(e,"x","tanh")};return B.runKernel(co,n)}var Zi=U({tanh_:IR});function SR(e,t,n,s,r,a){let o=_(e,"forgetBias","basicLSTMCell"),i=_(t,"lstmKernel","basicLSTMCell"),l=_(n,"lstmBias","basicLSTMCell"),c=_(s,"data","basicLSTMCell"),u=_(r,"c","basicLSTMCell"),d=_(a,"h","basicLSTMCell"),p=kt([c,d],1),h=Ke(p,i),f=ue(h,l),m=f.shape[0],g=f.shape[1]/4,y=[m,g],A=_e(f,[0,0],y),x=_e(f,[0,g],y),b=_e(f,[0,g*2],y),w=_e(f,[0,g*3],y),k=ue(L(ss(A),Zi(x)),L(u,ss(ue(o,b)))),S=L(Zi(k),ss(w));return[k,S]}var CR=U({basicLSTMCell_:SR});function TR(e,t,n){let s=_(e,"x","batchToSpaceND"),r=t.reduce((i,l)=>i*l);M(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),M(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),M(s.shape[0]%r==0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let a={x:s},o={blockShape:t,crops:n};return B.runKernel(si,a,o)}var xd=U({batchToSpaceND_:TR});function NR(e){let t;return e.rank===0||e.rank===1?t=G(e,[1,1,1,e.size]):e.rank===2?t=G(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=G(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function ER(e,t,n,s,r,a){a==null&&(a=.001);let o=_(e,"x","batchNorm"),i=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),c;r!=null&&(c=_(r,"scale","batchNorm"));let u;s!=null&&(u=_(s,"offset","batchNorm")),M(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),M(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),M(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:NR(o),scale:c,offset:u,mean:i,variance:l},h={varianceEpsilon:a},f=B.runKernel(za,p,h);return G(f,o.shape)}var Yi=U({batchNorm_:ER});function RR(e,t,n,s,r,a){let o=_(e,"x","batchNorm"),i=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),c;r!=null&&(c=_(r,"scale","batchNorm"));let u;return s!=null&&(u=_(s,"offset","batchNorm")),M(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),M(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),M(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),Yi(o,i,l,u,c,a)}var V3=U({batchNorm2d_:RR});function $R(e,t,n,s,r,a){let o=_(e,"x","batchNorm"),i=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),c;r!=null&&(c=_(r,"scale","batchNorm"));let u;return s!=null&&(u=_(s,"offset","batchNorm")),M(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),M(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),M(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),Yi(o,i,l,u,c,a)}var U3=U({batchNorm3d_:$R});function DR(e,t,n,s,r,a){let o=_(e,"x","batchNorm"),i=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),c;r!=null&&(c=_(r,"scale","batchNorm"));let u;return s!=null&&(u=_(s,"offset","batchNorm")),M(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),M(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),M(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),Yi(o,i,l,u,c,a)}var G3=U({batchNorm4d_:DR});function _R(e,t,n){let s=_(e,"x","bincount"),r=_(t,"weights","bincount");M(s.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${s.dtype}`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(r.size===s.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${s.shape}, weights shape: ${r.shape}.`);let a={x:s,weights:r},o={size:n};return B.runKernel(fh,a,o)}var n1=U({bincount_:_R});function PR(e,t){let n=_(e,"s0","broadcastArgs","int32"),s=_(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(s.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${s.rank}`);let r={s0:n,s1:s};return B.runKernel(p2,r)}var H3=U({broadcastArgs_:PR});function FR(e,t){let n=_(e,"broadcastTo","x"),s=n.shape;if(t.some(c=>!(c>0)||c%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.lengthn.rank){let c=n.shape.slice();for(;c.length=0;c--)if(r[c]===t[c])a[c]=1;else if(n.shape[c]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);if(a.map((c,u)=>c>1?u:-1).filter(c=>c>=0).length===0)return lr(n);let i={x:n},l={reps:a};return B.runKernel(Kr,i,l)}var Nu=U({broadcastTo_:FR});function OR(e){let n={x:_(e,"x","ceil")};return B.runKernel(Ta,n)}var s1=U({ceil_:OR});function MR(e,t,n){let s=_(e,"x","clipByValue");M(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:s},a={clipValueMin:t,clipValueMax:n};return B.runKernel(Xr,r,a)}var rs=U({clipByValue_:MR});function zR(e){return kt(e,0)}var j3=U({concat1d_:zR});function LR(e,t){return kt(e,t)}var Eu=U({concat2d_:LR});function BR(e,t){return kt(e,t)}var q3=U({concat3d_:BR});function WR(e,t){return kt(e,t)}var X3=U({concat4d_:WR});function VR(e,t,n,s,r="NHWC",a=[1,1],o){let i=_(e,"x","conv2d"),l=_(t,"filter","conv2d"),c=i,u=!1;i.rank===3&&(u=!0,c=G(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),o!=null&&M(mn(s),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d=r==="NHWC"?c.shape[3]:c.shape[1];M(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),M(Nr(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let p={x:c,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=B.runKernel(Na,p,h);return u?G(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Qr=U({conv2d_:VR});function UR(e,t,n,s,r="NWC",a=1,o){let i=_(e,"x","conv1d"),l=_(t,"filter","conv1d"),c=i,u=!1;i.rank===2&&(u=!0,c=G(i,[1,i.shape[0],i.shape[1]])),M(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),M(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),o!=null&&M(mn(s),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),M(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),M(Nr(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),M(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=G(l,[1,l.shape[0],l.shape[1],l.shape[2]]),p=G(c,[c.shape[0],1,c.shape[1],c.shape[2]]),g=Qr(p,d,[1,n],s,"NHWC",[1,a],o);return u?G(g,[g.shape[2],g.shape[3]]):G(g,[g.shape[0],g.shape[2],g.shape[3]])}var sf=U({conv1d_:UR});function GR(e,t,n,s,r,a="NHWC",o){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,c=!1;t.rank===3&&(c=!0,l=G(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),M(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),M(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),M(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=a==="NHWC"?i[3]:i[1],d=a==="NHWC"?l.shape[3]:l.shape[1];M(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),M(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),o!=null&&M(mn(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let p={dy:l,filter:n},h={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,inputShape:i},f=B.runKernel(Ea,p,h);return c?G(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var r1=U({conv2DBackpropInput_:GR});function HR(e,t,n,s,r,a){let o=_(e,"x","conv2dTranspose"),i=_(t,"filter","conv2dTranspose");return r1(n,o,i,s,r,"NHWC",a)}var rf=U({conv2dTranspose_:HR});function jR(e,t,n,s,r="NDHWC",a=[1,1,1]){let o=_(e,"x","conv3d"),i=_(t,"filter","conv3d"),l=o,c=!1;o.rank===4&&(c=!0,l=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),M(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),M(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),M(Nr(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),M(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let u={x:l,filter:i},d={strides:n,pad:s,dataFormat:r,dilations:a},p=B.runKernel(jc,u,d);return c?G(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var a1=U({conv3d_:jR});function qR(e,t,n,s,r){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=G(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],c=o.shape[4];M(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),M(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),M(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),M(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),M(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:o,filter:n},d={pad:r,strides:s,inputShape:a},p=B.runKernel(yh,u,d);return i?G(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var K3=U({conv3DBackpropInput_:qR});function XR(e,t,n,s,r){let a=_(e,"x","conv3dTranspose"),o=_(t,"filter","conv3dTranspose");return K3(n,a,o,s,r)}var Z3=U({conv3dTranspose_:XR});function KR(e){let n={x:_(e,"x","cos")};return B.runKernel(Ra,n)}var bd=U({cos_:KR});function ZR(e){let n={x:_(e,"x","cosh")};return B.runKernel($a,n)}var af=U({cosh_:ZR});function YR(e,t=0,n=!1,s=!1){let a={x:_(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:s};return B.runKernel(ai,a,o)}var of=U({cumsum_:YR});function JR(e,t,n,s=!1){let r=_(e,"x","denseBincount"),a=_(t,"weights","denseBincount");M(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),M(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(a.size===r.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${a.shape}.`);let o={x:r,weights:a},i={size:n,binaryOutput:s};return B.runKernel(Ah,o,i)}var Y3=U({denseBincount_:JR});function QR(e,t,n="NHWC"){let s=_(e,"x","depthToSpace"),r=n==="NHWC"?s.shape[1]:s.shape[2],a=n==="NHWC"?s.shape[2]:s.shape[3],o=n==="NHWC"?s.shape[3]:s.shape[1];M(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${r} and ${t} for depthToSpace with input shape ${s.shape}`),M(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${a} and ${t} for depthToSpace with input shape ${s.shape}`),M(o%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${s.shape}`);let i={x:s},l={blockSize:t,dataFormat:n};return B.runKernel(ii,i,l)}var o1=U({depthToSpace_:QR});function e$(e,t,n,s,r="NHWC",a=[1,1],o){let i=_(e,"x","depthwiseConv2d"),l=_(t,"filter","depthwiseConv2d"),c=i,u=!1;i.rank===3&&(u=!0,c=G(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),M(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),o!=null&&M(mn(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d={x:c,filter:l},p={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},h=B.runKernel(Da,d,p);return u?G(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Ru=U({depthwiseConv2d_:e$});function t$(e){let n={x:_(e,"x","diag")};return B.runKernel(vh,n)}var n$=U({diag_:t$});function s$(e,t,n,s,r=[1,1],a="NHWC"){let o=_(e,"x","dilation2d"),i=_(t,"filter","dilation2d");M(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),M(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),M(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,c=!1;o.rank===3&&(l=G(o,[1,o.shape[0],o.shape[1],o.shape[2]]),c=!0);let u={x:l,filter:i},d={strides:n,pad:s,dilations:r},p=B.runKernel(qc,u,d);return c?G(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var i1=U({dilation2d_:s$});function r$(e,t){let n=e.length,s=[];for(let r=0;r1&&o===1&&s.unshift(a)}return s}function sn(e,t){let n=[];for(let s=0;s1)&&n.unshift(a)}return n}function Tt(e,t){let n=[],s=Math.max(e.length,t.length);for(let r=0;r`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);let r=n.rank===1?n.size:n.shape[1],a=s.rank===1?s.size:s.shape[0];if(M(r===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${a}.`),n.rank===1&&s.rank===1){let o=G(n,[1,-1]),i=G(s,[-1,1]),l=Ke(o,i);return G(l,[])}else if(n.rank===1&&s.rank===2){let o=G(n,[1,-1]),i=G(s,[s.shape[0],s.shape[1]]),l=Ke(o,i);return G(l,[l.size])}else if(n.rank===2&&s.rank===1){let o=G(s,[-1,1]),i=Ke(n,o);return G(i,[i.size])}else{let o=G(s,[s.shape[0],s.shape[1]]);return Ke(n,o)}}var J3=U({dot_:u$});function c$(e,...t){let n=t.map((r,a)=>_(r,`tensors${a}`,"einsum")),s={equation:e};return B.runKernel(Xc,n,s)}var Q3=U({einsum_:c$});function d$(e){let n={x:_(e,"x","elu")};return B.runKernel(Pa,n)}var $u=U({elu_:d$});function p$(e){let t=_(e,"x","erf");M(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=pe(t,"float32"));let n={x:t};return B.runKernel(nu,n)}var u1=U({erf_:p$});function h$(e){let n={x:_(e,"x","exp")};return B.runKernel(Fa,n)}var ys=U({exp_:h$});function f$(e,t=0){let n=_(e,"x","expandDims","string_or_numeric");M(t<=n.rank,()=>"Axis must be <= rank of the tensor");let s={input:n},r={dim:t};return B.runKernel(ui,s,r)}var qt=U({expandDims_:f$});function m$(e){let n={x:_(e,"x","expm1")};return B.runKernel(ci,n)}var c1=U({expm1_:m$});function g$(e,t){let n=_(e,"x","tile","string_or_numeric");M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let s={x:n},r={reps:t};return B.runKernel(Kr,s,r)}var Os=U({tile_:g$});function y$(e,t,n,s="float32"){t==null&&(t=e);let r=Ve([e,t],s),a=e<=t?e:t;for(let i=0;i`Error in localResponseNormalization: x must be rank 3 or 4 but got rank ${a.rank}.`),M(mn(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=G(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},c={depthRadius:t,bias:n,alpha:s,beta:r},u=B.runKernel(Yc,l,c);return i?G(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var h1=U({localResponseNormalization_:E$});function R$(e){let n={x:_(e,"x","log")};return B.runKernel(Wa,n)}var As=U({log_:R$});function $$(e){let n={x:_(e,"x","log1p")};return B.runKernel(iu,n)}var wd=U({log1p_:$$});function D$(e){return M(va(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let s=_(t,"x","tf.grad","string_or_numeric"),r=n!=null?_(n,"dy","tf.grad"):null;return B.tidy(()=>{let{value:a,grads:o}=B.gradients(()=>e(s),[s],r);return r!=null&&zn(a.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),cf(o),o[0]})}}function _$(e){return M(va(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{M(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let s=fd(t,"args","tf.grads","string_or_numeric"),r=n!=null?_(n,"dy","tf.grads"):null;return B.tidy(()=>{let{value:a,grads:o}=B.gradients(()=>e(...s),s,r);return r!=null&&zn(a.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),cf(o),o})}}function P$(e){return M(va(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{M(t instanceof Ze,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),M(n==null||n instanceof Ze,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:s,value:r}=B.gradients(()=>e(t),[t],n);return cf(s),{grad:s[0],value:r}}}function F$(e){return M(va(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{M(Array.isArray(t)&&t.every(r=>r instanceof Ze),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),M(n==null||n instanceof Ze,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let s=B.gradients(()=>e(...t),t,n);return n!=null&&zn(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),cf(s.grads),s}}function sv(e,t){M(va(e),()=>"The f passed in variableGrads(f) must be a function"),M(t==null||Array.isArray(t)&&t.every(c=>c instanceof dd),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in B.registeredVariables)t.push(B.registeredVariables[c])}let s=n?t.filter(c=>!c.trainable):null,r=t.length;t=t.filter(c=>c.trainable),M(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let a=!0,{value:o,grads:i}=B.gradients(e,t,null,a);M(i.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),M(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((c,u)=>{i[u]!=null&&(l[c.name]=i[u])}),s!=null&&s.forEach(c=>l[c.name]=null),{value:o,grads:l}}function Er(e){return B.customGrad(e)}function cf(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.`)}function O$(e){let n={x:_(e,"x","neg")};return B.runKernel(xi,n)}var _t=U({neg_:O$});function M$(e){let n={x:_(e,"x","softplus")};return B.runKernel(gu,n)}var Qi=U({softplus_:M$});function z$(e){let t=_(e,"x","logSigmoid");return Er(s=>({value:_t(Qi(_t(s))),gradFunc:o=>L(o,ss(_t(s)))}))(t)}var rv=U({logSigmoid_:z$});function L$(e,t=null,n=!1){let r={x:_(e,"x","max")},a={reductionIndices:t,keepDims:n};return B.runKernel(Va,r,a)}var Wn=U({max_:L$});function B$(e,t){let n=_(e,"a","sub"),s=_(t,"b","sub");[n,s]=zt(n,s);let r={a:n,b:s};return B.runKernel(uo,r)}var xe=U({sub_:B$});function W$(e,t=null,n=!1){let s=_(e,"x","sum");s.dtype==="bool"&&(s=pe(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return B.runKernel(oo,r,a)}var ke=U({sum_:W$});function V$(e,t=-1){let n=_(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Er((r,a)=>{let o=!0,i=Wn(r,t,!0),l=xe(r,i),c=xe(pe(l,"float32"),As(ke(ys(l),t,o)));return a([c]),{value:c,gradFunc:(d,p)=>{let[h]=p,f=!0,m=ys(h);return xe(d,L(ke(d,t,f),m))}}})(n)}var df=U({logSoftmax_:V$});function f1(e,t){for(let n=0;ne[a]);return[n,r]}function el(e,t){let n=t.map(s=>1);return av(e,n,t)}function U$(e,t,n){M(f1(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function iv(e,t){if(f1(e,t))return null;let n=[];for(let s=0;sn.push(s)),n}function m1(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function G$(e,t){let n=[];for(let s=t-e;s`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),M(Nr(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),r!=null&&M(mn(s),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=B.runKernel(Ga,c,u);return l?G(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Id=U({maxPool_:Z$});function Y$(e,t=[1,1,1],n,s,r,a="NDHWC"){let o=_(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),M(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&M(mn(s),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=B.runKernel(Jc,c,u);return l?G(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var y1=U({maxPool3d_:Y$});function J$(e,t,n,s,r=!1){let o={x:_(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:s,includeBatchInIndex:r},l=B.runKernel($h,o,i);return{result:l[0],indexes:l[1]}}var uv=U({maxPoolWithArgmax_:J$});function Q$(e,t){let n=_(e,"a","maximum"),s=_(t,"b","maximum");[n,s]=zt(n,s),n.dtype==="bool"&&(n=pe(n,"int32"),s=pe(s,"int32")),Tt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Ua,r)}var Rr=U({maximum_:Q$});function eD(e,t=null,n=!1){let r={x:_(e,"x","mean")},a={axis:t,keepDims:n};return B.runKernel(Ha,r,a)}var Lt=U({mean_:eD});function Xt(e,t="float32"){if(t==="complex64"){let s=Xt(e,"float32"),r=Xt(e,"float32");return Ao(s,r)}let n=dh(Ht(e),t);return B.makeTensor(n,e,t)}function xs(e,t="float32"){if(t==="complex64"){let s=xs(e,"float32"),r=Xt(e,"float32");return Ao(s,r)}let n=i2(Ht(e),t);return B.makeTensor(n,e,t)}function tD(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let s=_(e,"x","meshgrid",e instanceof Ze?e.dtype:"float32");if(t===void 0)return[s];let r=_(t,"y","meshgrid",t instanceof Ze?t.dtype:"float32"),a=Ht(s.shape),o=Ht(r.shape);return n==="xy"?(s=G(s,[1,-1]),r=G(r,[-1,1]),[Ke(xs([o,1],s.dtype),s),Ke(r,xs([1,a],r.dtype))]):(s=G(s,[-1,1]),r=G(r,[1,-1]),[Ke(s,xs([1,o],s.dtype)),Ke(xs([a,1],r.dtype),r)])}function nD(e,t=null,n=!1){let r={x:_(e,"x","min")},a={axis:t,keepDims:n};return B.runKernel(ja,r,a)}var Sd=U({min_:nD});function sD(e,t){let n=_(e,"a","minimum"),s=_(t,"b","minimum");[n,s]=zt(n,s),n.dtype==="bool"&&(n=pe(n,"int32"),s=pe(s,"int32")),Tt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(qa,r)}var Pu=U({minimum_:sD});function rD(e,t,n){M(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let s=_(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");M(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let i=0;i"Invalid number of paddings. Must be length of 2 each."),M(t[i][0]>=0&&t[i][0]<=s.shape[i]-r&&t[i][1]>=0&&t[i][1]<=s.shape[i]-r,()=>`Padding in dimension ${i} cannot be greater than or equal to ${s.shape[i]-r} or less than 0 for input of shape ${s.shape}`);let a={paddings:t,mode:n},o={x:s};return B.runKernel(Xa,o,a)}var A1=U({mirrorPad_:rD});function aD(e,t){let n=_(e,"a","mod"),s=_(t,"b","mod");[n,s]=zt(n,s);let r={a:n,b:s};return B.runKernel(uu,r)}var x1=U({mod_:aD});function oD(e){let t=_(e,"x","square"),n={};return B.runKernel("Square",{x:t},n)}var vt=U({square_:oD});function iD(e,t=null,n=!1){e=_(e,"x","moments");let s=Xs(t,e.shape),r=Lt(e,s,n),a=r.shape;n||(a=el(r.shape,s));let o=vt(xe(pe(e,"float32"),G(r,a))),i=Lt(o,s,n);return{mean:r,variance:i}}var hf=U({moments_:iD});function lD(e,t,n,s){let r=_(t,"data","multiRNNCell"),a=fd(n,"c","multiRNNCell"),o=fd(s,"h","multiRNNCell"),i=r,l=[];for(let d=0;d2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?G(r,[1,-1]):r},c={numSamples:t,seed:n,normalized:s},u=B.runKernel(Dh,l,c);return o===1?G(u,[u.size]):u}var cv=U({multinomial_:cD});function dD(e,t){let n=_(e,"a","notEqual","string_or_numeric"),s=_(t,"b","notEqual","string_or_numeric");[n,s]=zt(n,s),Tt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(bi,r)}var tl=U({notEqual_:dD});function pD(e){let n={x:_(e,"x","onesLike")};return B.runKernel(ki,n)}var bs=U({onesLike_:pD});function hD(e,t){let n=_(e,"v1","outerProduct"),s=_(t,"v2","outerProduct");M(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);let r=G(n,[-1,1]),a=G(s,[1,-1]);return Ke(r,a)}var fD=U({outerProduct_:hD});function mD(e,t,n=0){let s=_(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},a={x:s};return B.runKernel(Za,a,r)}var Ms=U({pad_:mD});function gD(e,t,n=0){return M(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Ms(e,[t],n)}var yD=U({pad1d_:gD});function AD(e,t,n=0){return M(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Ms(e,t,n)}var xD=U({pad2d_:AD});function bD(e,t,n=0){return M(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Ms(e,t,n)}var vD=U({pad3d_:bD});function wD(e,t,n=0){return M(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Ms(e,t,n)}var kD=U({pad4d_:wD});function ID(e,t,n){let s=_(e,"x","spaceToBatchND");M(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),M(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),M(s.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]==0:o,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:s},a={blockShape:t,paddings:n};return B.runKernel(Pi,r,a)}var Cd=U({spaceToBatchND_:ID});function SD(e,t,n,s,r,a){r==null&&(r=[1,1]),a==null&&(a=1),s===0&&(s="valid");let o=_(e,"x","maxPool"),i=o,l=!1;o.rank===3&&(l=!0,i=G(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(Nr(a,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${r}'`);let c=L3(i.shape,t,a,r,s),u=[c.dilationHeight,c.dilationWidth],d;s==="same"?d=TD([c.filterHeight,c.filterWidth],u):d=[[0,0],[0,0]];let p=u[0]===1&&u[1]===1,[h,f]=CD([c.inHeight,c.inWidth],u,d),m=p?s:"valid",g=p?i:Cd(i,u,h),A=(n==="avg"?()=>Ad(g,t,a,m):()=>Id(g,t,a,m))(),x=p?A:xd(A,u,f);return l?G(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function CD(e,t,n){let s=n.map(u=>u[0]),r=n.map(u=>u[1]),a=e.concat(s,r),o=t.map((u,d)=>(u-a[d]%u)%u),i=r.map((u,d)=>u+o[d]),l=t.map((u,d)=>[s[d],i[d]]),c=t.map((u,d)=>[0,o[d]]);return[l,c]}function TD(e,t){let s=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),r=s.map(o=>Math.floor(o/2)),a=s.map((o,i)=>o-r[i]);return s.map((o,i)=>[r[i],a[i]])}var dv=U({pool_:SD});function ND(e,t){let n=_(e,"base","pow"),s=_(t,"exp","pow");[n,s]=zt(n,s);let r={a:n,b:s};return B.runKernel(Ya,r)}var ea=U({pow_:ND});function ED(e,t){let n=_(e,"x","prelu"),s=_(t,"alpha","prelu"),r={x:n,alpha:s};return B.runKernel(Ja,r)}var Td=U({prelu_:ED});function RD(e,t=null,n=!1){let s=_(e,"x","prod");s.dtype==="bool"&&(s=pe(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return B.runKernel(Ci,r,a)}var ff=U({prod_:RD});function $D(e,t,n){let s=Ht(e),r=null;if(n==null||n==="float32")r=new Float32Array(s);else if(n==="int32")r=new Int32Array(s);else if(n==="bool")r=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let a=0;a=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*s*o,t=this.mean+this.stdDev*r*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},_D=class{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;let r=s||Math.random();this.randu=b1.alea(r.toString()),this.randn=new v1(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,r,a;for(;;){do s=this.randn.nextValue(),a=1+this.c*s;while(a<=0);if(a*=a*a,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),r=this.randu(),rthis.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=b1.alea(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function FD(e,t,n=1,s="float32",r){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);let a=new _D(t,n,s,r),o=Ve(e,s);for(let i=0;i`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),vs(t,0)}var HD=U({reverse1d_:GD});function jD(e,t){let n=_(e,"x","reverse");return M(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),vs(n,t)}var qD=U({reverse2d_:jD});function XD(e,t){let n=_(e,"x","reverse");return M(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),vs(n,t)}var KD=U({reverse3d_:XD});function ZD(e,t){let n=_(e,"x","reverse");return M(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),vs(n,t)}var YD=U({reverse4d_:ZD});function JD(e){let n={x:_(e,"x","round")};return B.runKernel(Ei,n)}var gf=U({round_:JD});function QD(e){let n={x:_(e,"x","rsqrt")};return B.runKernel(no,n)}var yf=U({rsqrt_:QD});function Ee(e,t){if((_n(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&_n(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return xo(e,[],[],t)}function e_(e){let n={x:_(e,"x","selu")};return B.runKernel(fu,n)}var Af=U({selu_:e_});function t_(e,t,n,s,r,a=[1,1],o="NHWC"){let i=_(e,"x","separableConv2d"),l=_(t,"depthwiseFilter","separableConv2d"),c=_(n,"pointwiseFilter","separableConv2d"),u=i,d=!1;if(i.rank===3&&(d=!0,u=G(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");M(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),M(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),M(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),M(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let p=l.shape[2],h=l.shape[3];M(c.shape[2]===p*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${p*h}, but got ${c.shape[2]}.`);let f=Ru(u,l,s,r,o,a),g=Qr(f,c,1,"valid",o);return d?G(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var k1=U({separableConv2d_:t_});async function n_(e,t){let n=_(e,"x","setdiff1d"),s=_(t,"y","setdiff1d");M(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),M(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),M(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);let r=await n.data(),a=await s.data(),o=new Set(a),i=0;for(let u=0;u`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),_e(s,[t],[n])}var vf=U({slice1d_:o_});function i_(e,t,n){let s=_(e,"x","slice2d");return M(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),_e(s,t,n)}var S1=U({slice2d_:i_});function l_(e,t,n){let s=_(e,"x","slice3d");return M(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),_e(s,t,n)}var Mu=U({slice3d_:l_});function u_(e,t,n){let s=_(e,"x","slice4d");return M(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),_e(s,t,n)}var Ed=U({slice4d_:u_});function c_(e,t=-1){let n=_(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let s={logits:n},r={dim:t};return B.runKernel(io,s,r)}var nl=U({softmax_:c_});function d_(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return B.runKernel(Sh,t)}var Rd=U({fft_:d_});function p_(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return B.runKernel(Ch,t)}var zu=U({ifft_:p_});function h_(e){let t=e.shape[e.shape.length-1],n=e.size/t,s;if(t<=2){let r=G(e,[n,t]);s=zu(r)}else{let r=[n,2*(t-1)],a=G(Nd(e),[n,t]),o=G(lf(e),[n,t]),i=vs(_e(a,[0,1],[n,t-2]),1),l=L(vs(_e(o,[0,1],[n,t-2]),1),Ee(-1)),c=kt([a,i],1),u=kt([o,l],1),d=G(Ao(c,u),[r[0],r[1]]);s=zu(d)}if(s=Nd(s),e.rank===3&&e.shape[0]!==0){let r=s,a=e.shape[0];s=G(s,[a,s.shape[0]/a,s.shape[1]]),r.dispose()}return s}var wf=U({irfft_:h_});function f_(e,t,n=0){let r={x:_(e,"x","split")},a={numOrSizeSplits:t,axis:n};return B.runKernel(Fi,r,a)}var xn=U({split_:f_});function m_(e,t){M(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],s=e.size/n,r;if(t!=null&&t0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,r=_e(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,r=kt([e,Xt(f)],e.shape.length-1),n=t}else r=e;let a=nt(r),o=G(Ao(r,a),[s,n]),i=Rd(o),l=Math.floor(n/2)+1,c=Nd(i),u=lf(i),d=xn(c,[l,n-l],c.shape.length-1),p=xn(u,[l,n-l],u.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,G(Ao(d[0],p[0]),h)}var $d=U({rfft_:m_});function g_(e){let n={x:_(e,"x","sqrt")};return B.runKernel(ao,n)}var Cn=U({sqrt_:g_});function y_(e,t){let n=_(e,"a","squaredDifference"),s=_(t,"b","squaredDifference");[n,s]=zt(n,s),Tt(n.shape,s.shape);let r={a:n,b:s},a={};return B.runKernel(lo,r,a)}var kf=U({squaredDifference_:y_});function A_(e,t){let n=_(e,"x","squeeze");return G(n,S5(n.shape,t).newShape)}var dt=U({squeeze_:A_});function x_(e,t=0){let n=fd(e,"tensors","stack","string_or_numeric");M(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&M(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let s=n,r={axis:t};return B.runKernel(Si,s,r)}var Tn=U({stack_:x_});function b_(e,t=0){let s={x:_(e,"x","step")},r={alpha:t};return B.runKernel(ho,s,r)}var Lu=U({step_:b_});function v_(e,t,n,s,r=0,a=0,o=0,i=0,l=0){let u={x:_(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:s,beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return B.runKernel(Oi,u,d)}var C1=U({stridedSlice_:v_});function w_(e){let n={x:_(e,"x","tan")};return B.runKernel(Mi,n)}var T1=U({tan_:w_});function Yt(e,t){ei(e);let n=Cr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return xo(e,null,n,t)}function dr(e,t,n){if(ei(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let s=Cr(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return xo(e,t,s,n)}function k_(e,t,n){if(ei(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let s=Cr(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return xo(e,t,s,n)}function I_(e,t,n){if(ei(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let s=Cr(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return xo(e,t,s,n)}function S_(e,t,n){if(ei(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let s=Cr(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,xo(e,t,s,n)}function C_(e,t=1,n=!0){let s=_(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=s.shape[s.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let a={x:s},o={k:t,sorted:n},[i,l]=B.runKernel(Au,a,o);return{values:i,indices:l}}var N1=U({topk_:C_});function T_(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new v1(t,n,s,!0,r),o=Ve(e,s);for(let i=0;i0,()=>"The input tensor must be at least 1D");let s={x:n},r={axis:t},[a,o]=B.runKernel(Wh,s,r);return{values:a,indices:o}}var Sf=U({unique_:N_});function E_(e,t,n){let s=_(e,"x","unsortedSegmentSum"),r=_(t,"segmentIds","unsortedSegmentSum","int32");M(mn(n),()=>"numSegments must be of dtype int");let a={x:s,segmentIds:r},o={numSegments:n};return B.runKernel(nd,a,o)}var E1=U({unsortedSegmentSum_:E_});function R_(e,t=0){let n=_(e,"x","unstack","string_or_numeric");M(t>=-n.shape.length&&t`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let s={value:n},r={axis:t};return B.runKernel(Li,s,r)}var Vn=U({unstack_:R_});function fv(e,t=!0,n,s){return B.makeVariable(e,t,n,s)}function mv(e,t){let n=[];for(let a=0;a0,()=>"mask cannot be scalar"),zn(i.slice(a,a+o),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=a;m"Shape mismatch in v and x");let l=Ee(1),c=xe(l,i),u=L(xe(o,a),c);if(r){M(s!=null,()=>"When using zeroDebias: true, step is required.");let d=_(s,"step","movingAverage");u=fe(u,xe(l,ea(i,d)))}return ue(a,u)}var O_=U({movingAverage_:F_});function M_(e,t,n){let s=_(e,"indices","scatterND","int32"),r=_(t,"updates","scatterND");L2(r,s,n);let a={indices:s,updates:r},o={shape:n};return B.runKernel(Ri,a,o)}var yv=U({scatterND_:M_});function z_(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function L_(e,t,n,s=0){let r=_(e,"sparseIndices","sparseToDense","int32"),a=_(t,"sparseValues","sparseToDense"),o=_(s,"defaultValue","sparseToDense",a.dtype);z_(r,a,n,o);let i={sparseIndices:r,sparseValues:a,defaultValue:o},l={outputShape:n};return B.runKernel(ed,i,l)}var $1=U({sparseToDense_:L_});function B_(e,t){let n=_(t,"indices","gatherND","int32"),r={params:_(e,"x","gatherND","string_or_numeric"),indices:n};return B.runKernel(hi,r)}var Av=U({gatherND_:B_});function W_(e,t){if(t==null)return e.shape.slice();if(jr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let s=0;s`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),M(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ze?r.clone():r;let a=W_(r,n),o=1-t,i=fe(_u(ue(Fu(a,0,1,"float32",s),o)),o);return L(r,i)}var xv=U({dropout_:V_});function bv(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function D1(e,t,n){let s=1-e%2,r=new Float32Array(e);for(let a=0;a1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),M(s.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${r.rank}`),zn(s.shape.slice(0,s.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=s.shape[s.shape.length-1];M(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await s.data(),i=await r.data(),[l,c]=[o.length/a,a],u=C5("bool",l);for(let d=0;dg.value-m.value),u[d]=0;for(let m=0;mq_,depthwiseConv2d:()=>Y_,matMul:()=>Q_});function H_(e,t,n,s,r,a="NHWC",o){let i=e;e.rank===3&&(i=G(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=G(t,[1,t.shape[0],t.shape[1],t.shape[2]])),M(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),M(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),M(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=a==="NHWC"?i.shape[3]:i.shape[1],u=a==="NHWC"?l.shape[3]:l.shape[1];M(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),M(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),o!=null&&M(mn(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d={x:i,dy:l},p={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,filterShape:n};return B.runKernel(mh,d,p)}var _1=U({conv2DBackpropFilter_:H_});function Tf(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return L(e,Lu(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Nf(e,t){let n=t,s=sn(e.shape,t.shape);return s.length>0&&(n=ke(n,s)),G(n,e.shape)}function Ef(e,t,n,s){if(t==="linear")return e;if(t==="relu")return cr(e);if(t==="elu")return $u(e);if(t==="relu6")return mf(e);if(t==="prelu")return Td(e,n);if(t==="leakyrelu")return vd(e,s);if(t==="sigmoid")return ss(e);throw new Error(`Unknown fused activation ${t}.`)}var Rf=(e,t)=>!(e>0)||t==="linear";function j_({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",Rf(B.state.gradientDepth,l)===!1){let w=Qr(e,t,n,s,r,a,o);return i!=null&&(w=ue(w,i)),Ef(w,l,c,u)}let d=_(e,"x","conv2d"),p=_(t,"filter","conv2d"),h=d,f=!1;d.rank===3&&(f=!0,h=G(d,[1,d.shape[0],d.shape[1],d.shape[2]])),M(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),M(p.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${p.rank}.`),o!=null&&M(mn(s),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),M(h.shape[3]===p.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${p.shape[2]}.`),M(Nr(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),M(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let m=yd(h.shape,p.shape,n,a,s,o),g;i!=null&&(g=_(i,"bias","fused conv2d"),[g]=zt(g,d),Tt(m.outShape,g.shape));let y;c!=null&&(y=_(c,"prelu weights","fused conv2d"));let A=(w,k)=>{let[S,N,$,F]=k,R=Tf(w,$,l);M(wo(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let D=r1(N.shape,R,S,n,s),T=_1(N,R,S.shape,n,s),O=[D,T];if(F!=null){let W=Nf(F,R);O.push(W)}return O},x={x:h,filter:p,bias:g,preluActivationWeights:y},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:u};return i==null?Er((k,S,N)=>{let $=B.runKernel(mo,x,b);return N([S,k,$]),f&&($=G($,[$.shape[1],$.shape[2],$.shape[3]])),{value:$,gradFunc:A}})(h,p):Er((k,S,N,$)=>{let F=B.runKernel(mo,x,b);return $([S,k,F,N]),f&&(F=G(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:A}})(h,p,g)}var q_=U({fusedConv2d_:j_});function X_(e,t,n,s,r,a=[1,1],o){let i=e;e.rank===3&&(i=G(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=G(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:i,dy:l},u={strides:s,pad:r,dimRoundingMode:o,dilations:a,filterShape:n};return B.runKernel(xh,c,u)}var vv=U({depthwiseConv2dNativeBackpropFilter_:X_});function K_(e,t,n,s,r,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=G(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:i,filter:n},u={strides:s,pad:r,dimRoundingMode:o,dilations:a,inputShape:e},d=B.runKernel(bh,c,u);return l?G(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var wv=U({depthwiseConv2dNativeBackpropInput_:K_});function Z_({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(Rf(B.state.gradientDepth,l)===!1){let w=Ru(e,t,n,s,r,a,o);return i!=null&&(w=ue(w,i)),Ef(w,l,c,u)}let d=_(e,"x","depthwiseConv2d"),p=_(t,"filter","depthwiseConv2d"),h=d,f=!1;d.rank===3&&(f=!0,h=G(d,[1,d.shape[0],d.shape[1],d.shape[2]])),M(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),M(p.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${p.rank}.`),M(h.shape[3]===p.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${p.shape[2]}.`),a==null&&(a=[1,1]),M(Nr(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),o!=null&&M(mn(s),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${o} but got pad ${s}.`);let m=yd(h.shape,p.shape,n,a,s,o,!0),g;i!=null&&(g=_(i,"bias","fused conv2d"),[g]=zt(g,d),Tt(m.outShape,g.shape));let y;c!=null&&(y=_(c,"prelu weights","fused depthwiseConv2d"));let A=(w,k)=>{M(wo(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[S,N,$,F]=k,R=Tf(w,$,l),D=wv(N.shape,R,S,n,s,a,o),T=vv(N,R,S.shape,n,s,a,o);if(F!=null){let O=Nf(g,R);return[D,T,O]}return[D,T]},x={x:h,filter:p,bias:g,preluActivationWeights:y},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:u};return i==null?Er((k,S,N)=>{let $=B.runKernel(go,x,b);return N([S,k,$]),f&&($=G($,[$.shape[1],$.shape[2],$.shape[3]])),{value:$,gradFunc:A}})(h,p):Er((k,S,N,$)=>{let F=B.runKernel(go,x,b);return $([S,k,F,N]),f&&(F=G(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:A}})(h,p,g)}var Y_=U({fusedDepthwiseConv2d_:Z_});function J_({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:r,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i}){if(Rf(B.state.gradientDepth,a)===!1){let F=Ke(e,t,n,s);return r!=null&&(F=ue(F,r)),Ef(F,a,o,i)}let l=_(e,"a","fused matMul"),c=_(t,"b","fused matMul");[l,c]=zt(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=s?c.shape[c.rank-1]:c.shape[c.rank-2],p=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=s?c.shape[c.rank-2]:c.shape[c.rank-1],f=l.shape.slice(0,-2),m=c.shape.slice(0,-2),g=Ht(f),y=Ht(m);M(l.rank>=2&&c.rank>=2&&l.rank===c.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${c.rank}.`),M(jr(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${c.shape} must match.`),M(u===d,()=>`Error in fused matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${s} must match.`);let A=l.shape.slice(0,-2).concat([p,h]),x=n?G(l,[g,u,p]):G(l,[g,p,u]),b=s?G(c,[y,h,d]):G(c,[y,d,h]),w;r!=null&&(w=_(r,"bias","fused matMul"),[w]=zt(w,l),Tt(A,w.shape));let k;o!=null&&(k=_(o,"prelu weights","fused matMul"));let S=(F,R)=>{let[D,T,O,W]=R,H=Tf(G(F,O.shape),O,a),z,X;if(!n&&!s?(z=Ke(H,T,!1,!0),X=Ke(D,H,!0,!1)):!n&&s?(z=Ke(H,T,!1,!1),X=Ke(H,D,!0,!1)):n&&!s?(z=Ke(T,H,!1,!0),X=Ke(D,H,!1,!1)):(z=Ke(T,H,!0,!0),X=Ke(H,D,!0,!0)),r!=null){let te=Nf(W,H);return[z,X,te]}else return[z,X]},N={a:x,b,bias:w,preluActivationWeights:k},$={transposeA:n,transposeB:s,activation:a,leakyreluAlpha:i};return r==null?Er((R,D,T)=>{let O=B.runKernel(fo,N,$);return T([R,D,O]),{value:G(O,A),gradFunc:S}})(x,b):Er((R,D,T,O)=>{let W=B.runKernel(fo,N,$);return O([R,D,W,T]),{value:G(W,A),gradFunc:S}})(x,b,w)}var Q_=U({fusedMatMul_:J_});function eP(e){return D1(e,.54,.46)}var tP=U({hammingWindow_:eP});function nP(e){return D1(e,.5,.5)}var kv=U({hannWindow_:nP});function sP(e,t,n,s=!1,r=0){let a=0,o=[];for(;a+t<=e.size;)o.push(_e(e,a,t)),a+=n;if(s)for(;a`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),M(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${i.shape}.`),M(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${i.shape}.`),M(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),M(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),M(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let u={image:o,boxes:i,boxInd:l},d={method:r,extrapolationValue:a,cropSize:s};return B.runKernel(oi,u,d)}var iP=U({cropAndResize_:oP});function lP(e){let t=_(e,"image","flipLeftRight","float32");M(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return B.runKernel(di,n,{})}var uP=U({flipLeftRight_:lP});function cP(e){let t=_(e,"image","grayscaleToRGB"),n=t.rank-1,s=t.shape[n];M(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),M(s===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${s}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,Os(t,r)}var dP=U({grayscaleToRGB_:cP});function pP(e,t,n=0,s=.5){let r=_(e,"image","rotateWithOffset","float32");M(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let a={image:r},o={radians:t,fillValue:n,center:s};return B.runKernel(Wi,a,o)}var hP=U({rotateWithOffset_:pP});function Bu(e,t,n,s,r,a){s==null&&(s=.5),r==null&&(r=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),M(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),M(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),M(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),M(t.rank===1,()=>"scores must be a 1D tensor"),M(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),M(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a}}function fP(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=_(e,"boxes","nonMaxSuppression"),o=_(t,"scores","nonMaxSuppression"),i=Bu(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:s,scoreThreshold:r};return B.runKernel(vi,{boxes:a,scores:o},l)}var mP=U({nonMaxSuppression_:fP});function gP(e,t,n){let s=yP(e,t,n),r=s<0?-(s+1):s;e.splice(r,0,t)}function yP(e,t,n){return xP(e,t,n||AP)}function AP(e,t){return e>t?1:e>>1);let i=n(t,e[a]);i>0?s=a+1:(r=a,o=!i)}return o?s:-s-1}function Sv(e,t,n,s,r){return P1(e,t,n,s,r,0)}function Cv(e,t,n,s,r,a){return P1(e,t,n,s,r,0,!1,a,!0)}function Tv(e,t,n,s,r,a){return P1(e,t,n,s,r,a,!0)}function P1(e,t,n,s,r,a,o=!1,i=!1,l=!1){let c=[];for(let g=0;gr&&c.push({score:t[g],boxIndex:g,suppressBeginIndex:0});c.sort(Nv);let u=a>0?-.5/a:0,d=[],p=[];for(;d.length0;){let g=c.pop(),{score:y,boxIndex:A,suppressBeginIndex:x}=g;if(y=x;--w){let k=bP(e,A,d[w]);if(k>=s){b=!0;break}if(g.score=g.score*vP(s,u,k),g.score<=r)break}g.suppressBeginIndex=d.length,b||(g.score===y?(d.push(A),p.push(g.score)):g.score>r&&gP(c,g,Nv))}let h=d.length,f=n-h;i&&f>0&&(d.push(...new Array(f).fill(0)),p.push(...new Array(f).fill(0)));let m={selectedIndices:d};return o&&(m.selectedScores=p),l&&(m.validOutputs=h),m}function bP(e,t,n){let s=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),a=Math.min(s[0],s[2]),o=Math.min(s[1],s[3]),i=Math.max(s[0],s[2]),l=Math.max(s[1],s[3]),c=Math.min(r[0],r[2]),u=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),p=Math.max(r[1],r[3]),h=(i-a)*(l-o),f=(d-c)*(p-u);if(h<=0||f<=0)return 0;let m=Math.max(a,c),g=Math.max(o,u),y=Math.min(i,d),A=Math.min(l,p),x=Math.max(y-m,0)*Math.max(A-g,0);return x/(h+f-x)}function vP(e,t,n){let s=Math.exp(t*n*n);return n<=e?s:0}function Nv(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function wP(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=_(e,"boxes","nonMaxSuppressionAsync"),o=_(t,"scores","nonMaxSuppressionAsync"),i=Bu(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),c=l[0],u=l[1],{selectedIndices:d}=Sv(c,u,n,s,r);return a!==e&&a.dispose(),o!==t&&o.dispose(),Yt(d,"int32")}var kP=wP;function IP(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=_(e,"boxes","nonMaxSuppression"),i=_(t,"scores","nonMaxSuppression"),l=Bu(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let c={boxes:o,scores:i},u={maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a},d=B.runKernel(wi,c,u);return{selectedIndices:d[0],selectedScores:d[1]}}var SP=U({nonMaxSuppressionWithScore_:IP});async function CP(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=_(e,"boxes","nonMaxSuppressionAsync"),i=_(t,"scores","nonMaxSuppressionAsync"),l=Bu(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let c=await Promise.all([o.data(),i.data()]),u=c[0],d=c[1],{selectedIndices:p,selectedScores:h}=Tv(u,d,n,s,r,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Yt(p,"int32"),selectedScores:Yt(h)}}var TP=CP;function NP(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=_(e,"boxes","nonMaxSuppression"),i=_(t,"scores","nonMaxSuppression"),l=Bu(o,i,n,s,r,null),c=l.maxOutputSize,u=l.iouThreshold,d=l.scoreThreshold,p={boxes:o,scores:i},h={maxOutputSize:c,iouThreshold:u,scoreThreshold:d,padToMaxOutputSize:a},f=B.runKernel(cu,p,h);return{selectedIndices:f[0],validOutputs:f[1]}}var EP=U({nonMaxSuppressionPadded_:NP});async function RP(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=_(e,"boxes","nonMaxSuppressionAsync"),i=_(t,"scores","nonMaxSuppressionAsync"),l=Bu(o,i,n,s,r,null),c=l.maxOutputSize,u=l.iouThreshold,d=l.scoreThreshold,[p,h]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=Cv(p,h,c,u,d,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Yt(f,"int32"),validOutputs:Ee(m,"int32")}}var $P=RP;function DP(e,t,n=!1,s=!1){let r=_(e,"images","resizeBilinear");M(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),M(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),M(s===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=G(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},c=B.runKernel(eo,i,l);return o?G(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Ev=U({resizeBilinear_:DP});function _P(e,t,n=!1,s=!1){let r=_(e,"images","resizeNearestNeighbor");M(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),M(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),M(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),M(s===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=G(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},c=B.runKernel(hu,i,l);return o?G(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Rv=U({resizeNearestNeighbor_:_P});function PP(e,t="binary",n=!1,s=.5){let r=_(e,"image","threshold"),a=.2989,o=.587,i=.114,l=r.shape[0]*r.shape[1],c=L(Yt([s]),255),u,d,p,h;if(M(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),M(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),M(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),M(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[u,d,p]=xn(r,[1,1,1],-1);let g=L(u,a),y=L(d,o),A=L(p,i);h=ue(ue(g,y),A)}else h=e;if(t==="otsu"){let g=n1(pe(gf(h),"int32"),jt([]),256);c=FP(g,l)}let f=n?Io(h,c):as(h,c);return pe(L(f,255),"int32")}function FP(e,t){let n=Yt([-1]),s=Yt([0]),r=Yt([0]),a,o,i,l,c,u;for(let d=0;d`Error in transform: image must be rank 4,but got rank ${o.rank}.`),M(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),M(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},c={interpolation:n,fillMode:s,fillValue:r,outputShape:a};return B.runKernel(zi,l,c)}var zP=U({transform_:MP});function LP(e,t,n){M(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),M(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let s=_(e,"a","bandPart");M(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);let r=s.shape,[a,o]=s.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=G(Ou(0,a,1,"int32"),[-1,1]),l=Ou(0,o,1,"int32"),c=xe(i,l),u=Zs(Io(c,Ee(+t,"int32")),ko(c,Ee(-n,"int32"))),d=Xt([a,o],s.dtype);return G(Tn(Vn(G(s,[-1,a,o])).map(p=>Pn(u,p,d))),r)}var BP=U({bandPart_:LP});function WP(e){let t;if(Array.isArray(e)){t=!1,M(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let a=1;a`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${r})`)}else t=!0,e=xn(e,e.shape[0],0).map(r=>dt(r,[0]));M(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],s=e;for(let r=0;r{let a=s[r];if(r>0)for(let o=0;o=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return $v(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),s=Vn(G(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],a=[];s.forEach(l=>{let[c,u]=$v(l,t);r.push(c),a.push(u)});let o=G(Tn(r,0),e.shape),i=G(Tn(a,0),e.shape);return[o,i]}}function $v(e,t=!1){return B.tidy(()=>{M(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],s=e.shape[1],r=d1(n),a=lr(e),o=dr([[1]],[1,1]),i=lr(o),l=n>=s?s:n;for(let c=0;c{let h=_e(a,[c,c],[n-c,1]),f=Cf(h),m=_e(a,[c,c],[1,1]),g=Pn(as(m,0),dr([[-1]]),dr([[1]])),y=xe(m,L(g,f)),A=fe(h,y);A.shape[0]===1?i=lr(o):i=kt([o,_e(A,[1,0],[A.shape[0]-1,A.shape[1]])],0);let x=_t(fe(Ke(g,y),f)),b=_e(a,[c,0],[n-c,s]),w=L(x,i),k=tt(i);if(c===0)a=xe(b,Ke(w,Ke(k,b)));else{let $=xe(b,Ke(w,Ke(k,b)));a=kt([_e(a,[0,0],[c,s]),$],0)}let S=tt(w),N=_e(r,[0,c],[n,r.shape[1]-c]);if(c===0)r=xe(N,Ke(Ke(N,i),S));else{let $=xe(N,Ke(Ke(N,i),S));r=kt([_e(r,[0,0],[n,c]),$],1)}return[i,a,r]}),ee([u,d,p])}return!t&&n>s&&(r=_e(r,[0,0],[n,s]),a=_e(a,[0,0],[s,s])),[r,a]})}var GP=U({qr_:UP}),Un;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Un||(Un={}));function HP(e,t,n=Un.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=_(t,"weights","computeWeightedLoss"));let a=r==null?s:L(s,r);if(n===Un.NONE)return a;if(n===Un.SUM)return ke(a);if(n===Un.MEAN){if(r==null)return Lt(a);{let o=s.size/r.size,i=fe(ke(a),ke(r));return o>1?fe(i,Ee(o)):i}}if(n===Un.SUM_BY_NONZERO_WEIGHTS){if(r==null)return fe(ke(a),Ee(s.size));{let o=L(r,xs(s.shape)),i=pe(ke(tl(o,Ee(0))),"float32");return fe(ke(a),i)}}throw Error(`Unknown reduction: ${n}`)}var ta=U({computeWeightedLoss_:HP});function jP(e,t,n,s=Un.SUM_BY_NONZERO_WEIGHTS){let r=_(e,"labels","absoluteDifference"),a=_(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=_(n,"weights","absoluteDifference")),zn(r.shape,a.shape,"Error in absoluteDifference: ");let i=Zt(xe(r,a));return ta(i,o,s)}var qP=U({absoluteDifference_:jP});function XP(e,t,n,s,r=Un.SUM_BY_NONZERO_WEIGHTS){let a=_(e,"labels","cosineDistance"),o=_(t,"predictions","cosineDistance"),i=null;s!=null&&(i=_(s,"weights","cosineDistance")),zn(a.shape,o.shape,"Error in cosineDistance: ");let l=Ee(1),c=xe(l,ke(L(a,o),n,!0));return ta(c,i,r)}var KP=U({cosineDistance_:XP});function ZP(e,t,n,s=Un.SUM_BY_NONZERO_WEIGHTS){let r=_(e,"labels","hingeLoss"),a=_(t,"predictions","hingeLoss"),o=null;n!=null&&(o=_(n,"weights","hingeLoss")),zn(r.shape,a.shape,"Error in hingeLoss: ");let i=Ee(1);r=xe(L(Ee(2),r),i);let l=cr(xe(i,L(r,a)));return ta(l,o,s)}var YP=U({hingeLoss_:ZP});function JP(e,t,n,s=1,r=Un.SUM_BY_NONZERO_WEIGHTS){let a=_(e,"labels","huberLoss"),o=_(t,"predictions","huberLoss"),i=null;n!=null&&(i=_(n,"weights","huberLoss")),zn(a.shape,o.shape,"Error in huberLoss: ");let l=Ee(s),c=Zt(xe(o,a)),u=Pu(c,l),d=xe(c,u),p=ue(L(Ee(.5),vt(u)),L(l,d));return ta(p,i,r)}var QP=U({huberLoss_:JP});function eF(e,t,n,s=1e-7,r=Un.SUM_BY_NONZERO_WEIGHTS){let a=_(e,"labels","logLoss"),o=_(t,"predictions","logLoss"),i=null;n!=null&&(i=_(n,"weights","logLoss")),zn(a.shape,o.shape,"Error in logLoss: ");let l=Ee(1),c=Ee(s),u=_t(L(a,As(ue(o,c)))),d=L(xe(l,a),As(ue(xe(l,o),c))),p=xe(u,d);return ta(p,i,r)}var tF=U({logLoss_:eF});function nF(e,t,n,s=Un.SUM_BY_NONZERO_WEIGHTS){let r=_(e,"labels","meanSquaredError"),a=_(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=_(n,"weights","meanSquaredError")),zn(r.shape,a.shape,"Error in meanSquaredError: ");let i=kf(r,a);return ta(i,o,s)}var sF=U({meanSquaredError_:nF});function rF(e,t){let n=_(e,"labels","sigmoidCrossEntropyWithLogits"),s=_(t,"logits","sigmoidCrossEntropyWithLogits");zn(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=cr(s),a=L(s,n),o=wd(ys(_t(Zt(s))));return ue(xe(r,a),o)}function aF(e,t,n,s=0,r=Un.SUM_BY_NONZERO_WEIGHTS){let a=_(e,"multiClassLabels","sigmoidCrossEntropy"),o=_(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=_(n,"weights","sigmoidCrossEntropy")),zn(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),s>0){let c=Ee(s),u=Ee(1),d=Ee(.5);a=ue(L(a,xe(u,c)),L(d,c))}let l=rF(a,o);return ta(l,i,r)}var oF=U({sigmoidCrossEntropy_:aF});function iF(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Er((r,a,o)=>{let l=g1(a,[n],!0),c=xe(pe(a,"float32"),l);o([r,c]);let u=_t(L(c,r));return{value:ke(u,[n]),gradFunc:(h,f)=>{let[m,g]=f,y=el(h.shape,[n]);return[L(G(h,y),xe(pe(m,"float32"),ys(g))),L(G(h,y),xe(ys(g),pe(m,"float32")))]}}})(e,t)}function lF(e,t,n,s=0,r=Un.SUM_BY_NONZERO_WEIGHTS){let a=_(e,"onehotLabels","softmaxCrossEntropy"),o=_(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=_(n,"weights","softmaxCrossEntropy")),zn(a.shape,o.shape,"Error in softmaxCrossEntropy: "),s>0){let c=Ee(s),u=Ee(1),d=Ee(a.shape[1]);a=ue(L(a,xe(u,c)),fe(c,d))}let l=iF(a,o);return ta(l,i,r)}var uF=U({softmaxCrossEntropy_:lF});function cF(e,t,n,s){let r=_(e,"indices","sparseFillEmptyRows"),a=_(t,"values","sparseFillEmptyRows"),o=_(n,"denseShape","sparseFillEmptyRows"),i=_(s,"defaultValue","sparseFillEmptyRows",a.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:r,values:a,denseShape:o,defaultValue:i},c=B.runKernel(Fh,l);return{outputIndices:c[0],outputValues:c[1],emptyRowIndicator:c[2],reverseIndexMap:c[3]}}var dF=U({sparseFillEmptyRows_:cF});function pF(e,t,n){let s=_(e,"inputIndices","sparseReshape"),r=_(t,"inputShape","sparseReshape"),a=_(n,"newShape","sparseReshape");if(s.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape ${s.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:s,inputShape:r,newShape:a},i=B.runKernel(Oh,o);return{outputIndices:i[0],outputShape:i[1]}}var hF=U({sparseReshape_:pF});function fF(e,t,n){let s=_(e,"data","sparseSegmentMean"),r=_(t,"indices","sparseSegmentMean"),a=_(n,"segmentIds","sparseSegmentMean");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape ${a.shape}`);let o={data:s,indices:r,segmentIds:a};return B.runKernel(Mh,o)}var mF=U({sparseSegmentMean_:fF});function gF(e,t,n){let s=_(e,"data","sparseSegmentSum"),r=_(t,"indices","sparseSegmentSum"),a=_(n,"segmentIds","sparseSegmentSum");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape ${a.shape}`);let o={data:s,indices:r,segmentIds:a};return B.runKernel(zh,o)}var yF=U({sparseSegmentSum_:gF});function AF(e,t,n,s,r,a,o,i){let l=_(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let c=_(t,"dataSplits","stringNGrams");if(c.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let u={separator:n,nGramWidths:s,leftPad:r,rightPad:a,padWidth:o,preserveShortSequences:i},d={data:l,dataSplits:c},p=B.runKernel(td,d,u);return{nGrams:p[0],nGramsSplits:p[1]}}var xF=U({stringNGrams_:AF});function bF(e,t,n=!0){let s=_(e,"input","stringSplit","string"),r=_(t,"delimiter","stringSplit","string");if(s.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${s.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let a={skipEmpty:n},o={input:s,delimiter:r},i=B.runKernel(Lh,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var vF=U({stringSplit_:bF});function wF(e,t){let n=_(e,"input","stringToHashBucketFast","string"),s={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return B.runKernel(Bh,r,s)}var kF=U({stringToHashBucketFast_:wF}),IF={fft:Rd,ifft:zu,rfft:$d,irfft:wf},SF={hammingWindow:tP,hannWindow:kv,frame:Iv,stft:aP},$e={flipLeftRight:uP,grayscaleToRGB:dP,resizeNearestNeighbor:Rv,resizeBilinear:Ev,rotateWithOffset:hP,cropAndResize:iP,nonMaxSuppression:mP,nonMaxSuppressionAsync:kP,nonMaxSuppressionWithScore:SP,nonMaxSuppressionWithScoreAsync:TP,nonMaxSuppressionPadded:EP,nonMaxSuppressionPaddedAsync:$P,threshold:OP,transform:zP},Dv={bandPart:BP,gramSchmidt:VP,qr:GP},CF={absoluteDifference:qP,computeWeightedLoss:ta,cosineDistance:KP,hingeLoss:YP,huberLoss:QP,logLoss:tF,meanSquaredError:sF,sigmoidCrossEntropy:oF,softmaxCrossEntropy:uF},Dd={sparseFillEmptyRows:dF,sparseReshape:hF,sparseSegmentMean:mF,sparseSegmentSum:yF},$f={stringNGrams:xF,stringSplit:vF,stringToHashBucketFast:kF},na=class extends _3{minimize(e,t=!1,n){let{value:s,grads:r}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:r[o.name]}));this.applyGradients(a)}else this.applyGradients(r);return ee(r),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return sv(e,t)}dispose(){this.iterations_!=null&&ee(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Ee(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(na,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Df=class extends na{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n],a=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:j(()=>nt(r).variable(a))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:j(()=>nt(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[s].variable,l=this.accumulatedUpdates[s].variable;j(()=>{let c=ue(L(i,this.rho),L(vt(o),1-this.rho)),u=L(fe(Cn(ue(l,this.epsilon)),Cn(ue(i,this.epsilon))),o),d=ue(L(l,this.rho),L(vt(u),1-this.rho));i.assign(c),l.assign(d);let p=ue(L(u,-this.learningRate),r);r.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(ee(this.accumulatedGrads.map(e=>e.variable)),ee(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Df.className="Adadelta";vo(Df);var _f=class extends na{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n];if(this.accumulatedGrads[s]==null){let i=!1;this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:j(()=>Du(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[s].variable;j(()=>{let i=ue(o,vt(a));o.assign(i);let l=ue(L(fe(a,Cn(ue(i,B.backend.epsilon()))),-this.learningRate),r);r.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&ee(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};_f.className="Adagrad";vo(_f);var Pf=class extends na{constructor(e,t,n,s=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],j(()=>{this.accBeta1=Ee(t).variable(),this.accBeta2=Ee(n).variable()}),s==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);j(()=>{let n=xe(1,this.accBeta1),s=xe(1,this.accBeta2);t.forEach((r,a)=>{let o=B.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:j(()=>nt(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${r}/v`,variable:j(()=>nt(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[a].variable,u=this.accumulatedSecondMoment[a].variable,d=ue(L(c,this.beta1),L(l,1-this.beta1)),p=ue(L(u,this.beta2),L(vt(l),1-this.beta2)),h=fe(d,n),f=fe(p,s);c.assign(d),u.assign(p);let m=ue(L(fe(h,ue(Cn(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(L(this.accBeta1,this.beta1)),this.accBeta2.assign(L(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&ee(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&ee(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),j(()=>{this.accBeta1.assign(ea(this.beta1,this.iterations_+1)),this.accBeta2.assign(ea(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Pf.className="Adam";vo(Pf);var Ff=class extends na{constructor(e,t,n,s=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],j(()=>{this.iteration=Ee(0).variable(),this.accBeta1=Ee(t).variable()}),s==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);j(()=>{let n=xe(1,this.accBeta1),s=fe(-this.learningRate,ue(L(this.iteration,this.decay),1));t.forEach((r,a)=>{let o=B.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:nt(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${r}/v`,variable:nt(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[a].variable,u=this.accumulatedWeightedInfNorm[a].variable,d=ue(L(c,this.beta1),L(l,1-this.beta1)),p=L(u,this.beta2),h=Zt(l),f=Rr(p,h);c.assign(d),u.assign(f);let m=ue(L(fe(s,n),fe(d,ue(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(ue(this.iteration,1)),this.accBeta1.assign(L(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&ee(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&ee(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Ff.className="Adamax";vo(Ff);var _d=class extends na{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=Array.isArray(e)?e[s].tensor:e[n];if(r==null)return;let a=B.registeredVariables[n];j(()=>{let o=ue(L(this.c,r),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=An(Ee(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};_d.className="SGD";vo(_d);var Of=class extends _d{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Ee(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n];if(this.accumulations[s]==null){let i=!1;this.accumulations[s]={originalName:`${n}/momentum`,variable:j(()=>nt(r).variable(i))}}let a=this.accumulations[s].variable,o=Array.isArray(e)?e[s].tensor:e[n];o!=null&&j(()=>{let i,l=ue(L(this.m,a),o);this.useNesterov?i=ue(L(this.c,ue(o,L(l,this.m))),r):i=ue(L(this.c,l),r),a.assign(l),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&ee(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Of.className="Momentum";vo(Of);var Mf=class extends na{constructor(e,t=.9,n=0,s=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,s==null&&(this.epsilon=B.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n],a=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:j(()=>nt(r).variable(a))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:j(()=>nt(r).variable(a))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:j(()=>nt(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[s].variable,l=this.accumulatedMoments[s].variable;j(()=>{let c=ue(L(i,this.decay),L(vt(o),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[s].variable,d=ue(L(u,this.decay),L(o,1-this.decay)),p=fe(L(o,this.learningRate),Cn(xe(c,ue(vt(d),this.epsilon)))),h=ue(L(l,this.momentum),p);i.assign(c),u.assign(d),l.assign(h);let f=xe(r,h);r.assign(f)}else{let u=ue(L(i,this.decay),L(vt(o),1-this.decay)),d=ue(L(l,this.momentum),fe(L(o,this.learningRate),Cn(ue(u,this.epsilon))));i.assign(u),l.assign(d);let p=xe(r,d);r.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&ee(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&ee(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&ee(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Mf.className="RMSProp";vo(Mf);var sl=class{static sgd(e){return new _d(e)}static momentum(e,t,n=!1){return new Of(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,r=!1){return new Mf(e,t,n,s,r)}static adam(e=.001,t=.9,n=.999,s=null){return new Pf(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new Df(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,r=0){return new Ff(e,t,n,s,r)}static adagrad(e,t=.1){return new _f(e,t)}},rl={sgd:sl.sgd,momentum:sl.momentum,adadelta:sl.adadelta,adagrad:sl.adagrad,rmsprop:sl.rmsprop,adamax:sl.adamax,adam:sl.adam},TF=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function zf(){return new Promise(e=>TF(()=>e()))}var E={};Le(E,{ERF_A1:()=>zF,ERF_A2:()=>LF,ERF_A3:()=>BF,ERF_A4:()=>WF,ERF_A5:()=>VF,ERF_P:()=>MF,PARALLELIZE_THRESHOLD:()=>F1,SELU_SCALE:()=>Pv,SELU_SCALEALPHA:()=>_v,applyActivation:()=>Ef,assertAndGetBroadcastShape:()=>Tt,assertAxesAreInnerMostDims:()=>U$,assertParamsConsistent:()=>NF,assignToTypedArray:()=>XF,axesAreInnerMostDims:()=>f1,calculateShapes:()=>v3,checkEinsumDimSizes:()=>eO,combineLocations:()=>av,complexWithEvenIndex:()=>HF,complexWithOddIndex:()=>jF,computeConv2DInfo:()=>yd,computeConv3DInfo:()=>B3,computeDefaultPad:()=>Q2,computeDilation2DInfo:()=>pR,computeOptimalWindowSize:()=>RF,computeOutAndReduceShapes:()=>ov,computeOutShape:()=>EF,computePool2DInfo:()=>L3,computePool3DInfo:()=>hR,convertConv2DDataFormat:()=>W3,decodeEinsumEquation:()=>JF,eitherStridesOrDilationsAreOne:()=>Nr,expandShapeToKeepDim:()=>el,exponent:()=>ZF,exponents:()=>KF,fromStringArrayToUint8:()=>uO,fromUint8ToStringArray:()=>lO,getAxesPermutation:()=>iv,getBroadcastDims:()=>r$,getComplexWithIndex:()=>qF,getEinsumComputePath:()=>tO,getEinsumPermutation:()=>QF,getFusedBiasGradient:()=>Nf,getFusedDyActivation:()=>Tf,getImageCenter:()=>$F,getInnerMostAxes:()=>G$,getPermuted:()=>_F,getReductionAxes:()=>sn,getReshaped:()=>DF,getReshapedPermuted:()=>PF,getSliceBeginCoords:()=>FF,getSliceSize:()=>OF,getUndoAxesPermutation:()=>m1,isIdentityPermutation:()=>nO,log:()=>WN,mergeRealAndImagArrays:()=>UF,prepareAndValidate:()=>b3,prepareSplitSize:()=>rO,segment_util:()=>Mv,shouldFuse:()=>Rf,slice_util:()=>yn,splitRealAndImagArrays:()=>GF,tupleValuesAreOne:()=>wo,upcastType:()=>Bn,validateInput:()=>L2,validateUpdateShape:()=>z2,warn:()=>Ir});function NF(e,t){let n=e[0].length;e.forEach((r,a)=>{M(r.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),M(t>=0&&t`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let s=e[0];e.forEach((r,a)=>{for(let o=0;o`Error in concat${n}D: Shape of tensors[${a}] (${r}) does not match the shape of the rest (${s}) along the non-concatenated axis ${a}.`)})}function EF(e,t){let n=e[0].slice();for(let s=1;s=t*2+1||o%2==1?a.push(o):r.push(o);s.push(...r),s.push(0),s.push(...a)}return s}function PF(e,t,n,s=!0){let r=[];s?r.push(e[0]/n):r.push(e[0]*n);for(let a=1;a/g,Fv=",",Ov="...";function JF(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(YF,"").length)/O1.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${O1}").`);let[s,r]=e.split(O1);M(s.indexOf(Ov)===-1,()=>`The ellipsis notation ("${Ov}") is not supported yet.`);let a=s.split(Fv),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let p=0;pf.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);i.indexOf(h)===-1&&i.push(h)}for(let p=0;pr!==-1),{permutationIndices:n,expandDims:s}}function eO(e,t,n){let s=new Array(e);for(let r=0;r`Expected dimension ${s[t[r][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function tO(e,t){let n=e,s=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let o=0;ot===n)}function sO(e,t){let n=[];for(let s=0;s"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);M(r<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}M(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}var Mv={};Le(Mv,{collectGatherOpShapeInfo:()=>iO,computeOutShape:()=>oO,segOpComputeOptimalWindowSize:()=>aO});function aO(e,t){let n=!1,s;for(e<=F1?(s=e,n=!0):s=ch(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=ch(e,s+1);return s}function oO(e,t,n){let s=[],r=e.length;for(let a=0;ar))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${s}`);if(s<0&&(s+=r),s>a)throw new Error(`batchDims (${s}) must be less than rank(x) ( ${a}).`);if(nHh(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function uO(e){return e.map(t=>id(t))}var Ys={};Le(Ys,{nonMaxSuppressionV3Impl:()=>Sv,nonMaxSuppressionV4Impl:()=>Cv,nonMaxSuppressionV5Impl:()=>Tv,whereImpl:()=>mv});var zv={kernelName:ni,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Lu(pe(n,"float32"),-1))}}},cO={kernelName:jl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=vt(pe(n,"float32")),r=Cn(xe(Ee(1),s));return _t(fe(e,r))}}}},dO={kernelName:ql,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Cn(xe(vt(pe(n,"float32")),1));return fe(e,s)}}}},pO={kernelName:qr,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Tt(n.shape,s.shape);return{a:()=>{let i=e,l=sn(n.shape,r);return l.length>0&&(i=ke(i,l)),G(i,n.shape)},b:()=>{let i=e,l=sn(s.shape,r);return l.length>0&&(i=ke(i,l)),G(i,s.shape)}}}},hO={kernelName:wa,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((s,r)=>{n[r]=()=>e.clone()}),n}},fO={kernelName:ka,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>nt(n)}}},mO={kernelName:Zl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>nt(n)}}},gO={kernelName:Yl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,Cn(xe(Ee(1),vt(pe(n,"float32")))))}}},yO={kernelName:Jl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Cn(ue(Ee(1),vt(pe(n,"float32"))));return fe(e,s)}}}},AO={kernelName:tu,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Tt(n.shape,s.shape);return{a:()=>{let i=ue(vt(n),vt(s)),l=L(e,fe(s,i)),c=sn(n.shape,r);return c.length>0&&(l=ke(l,c)),G(l,n.shape)},b:()=>{let i=ue(vt(n),vt(s)),l=_t(L(e,fe(n,i))),c=sn(s.shape,r);return c.length>0&&(l=ke(l,c)),G(l,s.shape)}}}},xO={kernelName:Ql,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ue(vt(pe(n,"float32")),1))}}},bO={kernelName:eu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,xe(Ee(1),vt(pe(n,"float32"))))}}};function vO(e,t,n,s,r,a){let o=_(e,"dy","avgPool3dGrad"),i=_(t,"input","avgPool3dGrad"),l=o,c=i,u=!1;i.rank===4&&(u=!0,l=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),c=G(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),M(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),a!=null&&M(mn(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let d={dy:l,input:c},p={filterSize:n,strides:s,pad:r,dimRoundingMode:a},h=B.runKernel(hh,d,p);return u?G(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var wO=U({avgPool3dGrad_:vO}),kO={kernelName:Uc,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>wO(e,s,r,a,o,i)}}};function IO(e,t,n,s,r){let a=_(e,"dy","avgPoolGrad"),o=_(t,"input","avgPoolGrad");M(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,l=a,c=!1;o.rank===3&&(c=!0,i=G(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=G(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),M(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let u={dy:l,input:i},d={filterSize:n,strides:s,pad:r},p=B.runKernel(ph,u,d);return c?G(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var SO=U({avgPoolGrad_:IO}),CO={kernelName:Ia,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o}=n;return{x:()=>SO(e,s,r,a,o)}}},TO={kernelName:Sa,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[s,r]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>Ke(e,r,!1,!0),b:()=>Ke(s,e,!0,!1)}:!a&&o?{a:()=>Ke(e,r,!1,!1),b:()=>Ke(e,s,!0,!1)}:a&&!o?{a:()=>Ke(r,e,!1,!0),b:()=>Ke(s,e,!1,!1)}:{a:()=>Ke(r,e,!0,!0),b:()=>Ke(e,s,!0,!0)}}},NO={kernelName:si,gradFunc:(e,t,n)=>{let{blockShape:s,crops:r}=n;return{x:()=>Cd(e,s,r)}}},EO={kernelName:M5,gradFunc:(e,t,n)=>{let s=n,r=s.inputShape,a=s.shape,o=Array.from(a);for(let l=r.length-1;l>=0;l--)if(r[l]===a[l])o[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${a}].`);let i=[];for(let l=0;l1&&i.push(l);return{x:()=>ke(e,i,!0)}}},RO={kernelName:Ca,gradFunc:e=>({x:()=>e.clone()})},$O={kernelName:Ta,gradFunc:e=>({x:()=>nt(e)})},DO={kernelName:Xr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{clipValueMin:r,clipValueMax:a}=n;return{x:()=>Pn(Zs(ko(s,r),Io(s,a)),e,nt(e))}}},_O={kernelName:Hc,inputsToSave:["x"],gradFunc:zv.gradFunc},PO={kernelName:ri,saveAllInputs:!0,gradFunc:(e,t,n)=>{let s=t.map(l=>l.shape),{axis:r}=n,a=Xs(r,t[0].shape)[0],o=s.map(l=>l[a]);return xn(e,o,a).map(l=>()=>l)}},FO={kernelName:Na,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{dilations:a,strides:o,pad:i,dataFormat:l}=n;return M(wo(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>r1(s.shape,e,r,o,i,l),filter:()=>_1(s,e,r.shape,o,i,l)}}},OO={kernelName:Ea,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:l}=n;return{dy:()=>Qr(e,r,a,o,i,1,l),filter:()=>_1(e,s,r.shape,a,o,i,l)}}};function MO(e,t,n,s,r){let a=e;e.rank===4&&(a=G(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=G(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),M(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),M(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),M(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),M(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),M(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},l={strides:s,pad:r,filterShape:n};return B.runKernel(gh,i,l)}var zO=U({conv3DBackpropFilter_:MO}),LO={kernelName:jc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a}=n;M(wo(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let[o,i]=t;return{x:()=>K3(o.shape,e,i,r,a),filter:()=>zO(o,e,i.shape,r,a)}}},BO={kernelName:Ra,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(_t(xf(pe(n,"float32"))),e)}}},WO={kernelName:$a,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(bf(pe(n,"float32")),e)}}},VO={kernelName:ai,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r,exclusive:a,reverse:o}=n;return{x:()=>{let i=iv([r],s.rank),l=of(e,r,a,!o);return i!=null&&(l=tt(l,i)),l}}}},UO={kernelName:Da,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a,dimRoundingMode:o}=n,i=s==null?[1,1]:s;M(wo(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,c]=t;return M(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),M(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),M(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),M(Nr(r,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'.`),o!=null&&M(mn(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`),{x:()=>wv(l.shape,e,c,r,a,i,o),filter:()=>vv(l,e,c.shape,r,a,i,o)}}},GO={kernelName:qc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,a={x:s,filter:r,dy:e},o={x:s,filter:r,dy:e};return{x:()=>B.runKernel(wh,a,n),filter:()=>B.runKernel(kh,o,n)}}},HO={kernelName:Pa,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,s={dy:e,y:n};return{x:()=>B.runKernel(Ih,s)}}},jO={kernelName:nu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=L(ys(_t(vt(n))),2/Math.sqrt(Math.PI));return{x:()=>L(e,s)}}},qO={kernelName:Fa,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,n)}}},XO={kernelName:ui,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>G(e,n.shape)}}},KO={kernelName:ci,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,ys(n))}}},ZO={kernelName:Oa,gradFunc:e=>({x:()=>nt(e)})},YO={kernelName:Ma,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Tt(n.shape,s.shape);return{a:()=>{let i=fe(e,pe(s,"float32")),l=sn(n.shape,r);return l.length>0?G(ke(i,l),n.shape):i},b:()=>{let i=L(e,pe(n,"float32")),l=sn(s.shape,r);l.length>0&&(i=G(ke(i,l),s.shape));let c=vt(s);return _t(fe(i,pe(c,"float32")))}}}},JO={kernelName:za,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:s}=n,[r,a,o,i]=t,l=i==null?Ee(1):i,c=sn(a.shape,r.shape),u=[];if(a.rank===1){for(let b=0;ba.rank===1?G(L(L(e,Os(G(h,[1,1,1,a.shape[0]]),u)),l),r.shape):G(L(L(e,h),l),r.shape),mean:()=>{let b=L(L(h,Ee(-1)),p);return a.rank===1&&(b=ke(b,c)),G(b,a.shape)},variance:()=>{let b=L(L(f,d),p);return a.rank===1&&(b=ke(b,c)),G(b,a.shape)},scale:()=>{let b=L(d,h),w=L(e,b);return a.rank===1&&(w=ke(w,c)),G(w,a.shape)},offset:()=>{let b=e;return a.rank===1&&(b=ke(b,c)),G(b,a.shape)}}}},QO={kernelName:pi,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[s,r]=t,{axis:a}=n,o=Xs(a,s.shape)[0];return{x:()=>{let l=s.shape,c=r.size,u=l.slice(0,o),d=u.length,p=l.slice(a,l.length).slice(1),h=p.length,f=Lv(0,d),m=Lv(d+1,d+1+h),g=Bv([u,[c],p]),y=G(e,g),A=G(r,[c]),x=Bv([[d],f,m]),b=tt(y,x),w=E1(b,A,s.shape[o]),k=m1(x);return w=tt(w,k),w},indices:()=>r}}};function Lv(e,t){let n=[];for(let s=e;s{let[n,s]=t;return{a:()=>nt(n),b:()=>nt(s)}}},tM={kernelName:Ba,gradFunc:e=>({x:()=>pe(e,"float32")})},nM={kernelName:ru,gradFunc:e=>({x:()=>nt(e)})},sM={kernelName:au,gradFunc:e=>({x:()=>nt(e)})},rM={kernelName:ou,gradFunc:e=>({x:()=>nt(e)})},aM={kernelName:mi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{alpha:r}=n,a=as(s,0);return{x:()=>Pn(a,e,L(e,r))}}},oM={kernelName:iu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ue(n,1))}}},iM={kernelName:Wa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,pe(n,"float32"))}}},lM={kernelName:z5,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n;return{logits:()=>{let a=!0,o=ys(s);return xe(e,L(ke(e,r,a),o))}}}};function uM(e,t,n,s=5,r=1,a=1,o=.5){let i={x:e,y:t,dy:n},l={depthRadius:s,bias:r,alpha:a,beta:o};return B.runKernel(Nh,i,l)}var cM=U({localResponseNormalizationBackprop_:uM}),dM={kernelName:Yc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{depthRadius:a,bias:o,alpha:i,beta:l}=n;return{x:()=>cM(s,r,e,a,o,i,l)}}};function Wv(e,t,n,s){return t.rankL(e,pe(gs(n,t),e.dtype))}}var Vv={kernelName:Va,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{reductionIndices:r}=s,a=t[0],o=t[1],i=Xs(r,a.shape),l=Wv(e,o,a,i);return{x:()=>l.x()}}},pM={kernelName:Ua,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>L(e,pe(ko(n,s),"float32")),b:()=>L(e,pe(uf(n,s),"float32"))}}};function hM(e,t,n,s,r,a,o){let i=_(e,"dy","maxPool3dGrad"),l=_(t,"input","maxPool3dGrad"),c=_(n,"output","maxPool3dGrad"),u=i,d=l,p=c,h=!1;l.rank===4&&(h=!0,u=G(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),d=G(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),p=G(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),M(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),M(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),M(p.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${p.rank}.`),o!=null&&M(mn(a),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let f={dy:u,input:d,output:p},m={filterSize:s,strides:r,pad:a,dimRoundingMode:o},g=B.runKernel(Rh,f,m);return h?G(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var fM=U({maxPool3dGrad_:hM}),mM={kernelName:Jc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=n;return{x:()=>fM(e,s,r,a,o,i,l)}}};function gM(e,t,n,s,r,a,o){let i=_(e,"dy","maxPoolGrad"),l=_(t,"input","maxPoolGrad"),c=_(n,"output","maxPoolGrad");M(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),M(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),M(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),o!=null&&M(mn(a),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let u={dy:i,input:l,output:c},d={filterSize:s,strides:r,pad:a,dimRoundingMode:o};return B.runKernel(Eh,u,d)}var yM=U({maxPoolGrad_:gM}),AM={kernelName:Ga,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>yM(e,s,r,a,o,i)}}},xM={kernelName:Ha,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=Xs(r,s.shape),i=ov(s.shape,a)[1],l=Ht(i);return{x:()=>{let u=s.shape.slice();a.forEach(h=>{u[h]=1});let d=G(e,u);return fe(L(d,xs(s.shape,"float32")),l)}}}},bM={kernelName:ja,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{axis:r}=s,[a,o]=t,i=Xs(r,a.shape),l=Wv(e,o,a,i);return{x:()=>l.x()}}},vM={kernelName:qa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>L(e,pe(Io(n,s),"float32")),b:()=>L(e,pe(as(n,s),"float32"))}}},wM={kernelName:Xa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>_e(e,a,s.shape)}}},kM={kernelName:uu,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Tt(n.shape,s.shape);return{a:()=>{let i=sn(n.shape,r);return i.length>0?G(ke(e,i),n.shape):e},b:()=>{let i=L(e,_t(_u(fe(n,s)))),l=sn(s.shape,r);return l.length>0?G(ke(i,l),s.shape):i}}}},IM={kernelName:Ka,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Tt(n.shape,s.shape);return{a:()=>{let i=L(e,pe(s,"float32")),l=sn(n.shape,r);return l.length>0?G(ke(i,l),n.shape):i},b:()=>{let i=L(e,pe(n,"float32")),l=sn(s.shape,r);return l.length>0?G(ke(i,l),s.shape):i}}}},SM={kernelName:xi,gradFunc:e=>({x:()=>_t(e)})},CM={kernelName:Ii,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Xt(n.shape,"float32")}}},TM={kernelName:ki,gradFunc:e=>({x:()=>nt(e)})},NM={kernelName:Si,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:s}=n;return Vn(e,s).map(a=>()=>a)}},Uv={kernelName:Za,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>_e(e,a,s.shape)}}},EM={kernelName:Ya,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,s,r]=t,a=n,o=s,i=Tt(a.shape,o.shape);return{a:()=>{let u=pe(o,"float32"),d=L(e,L(u,ea(a,xe(u,Ee(1))))),p=sn(a.shape,i);return p.length>0&&(d=ke(d,p)),G(d,a.shape)},b:()=>{let u=as(a,0),d=Pn(u,As(a),nt(a)),p=L(e,L(r,d)),h=sn(o.shape,i);return h.length>0&&(p=ke(p,h)),G(p,o.shape)}}}},RM={kernelName:Ja,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,s]=t,r=as(n,0);return{x:()=>Pn(r,e,L(e,s)),alpha:()=>{let a=Pn(r,nt(e),L(e,n)),o=sn(s.shape,e.shape);return o.length>0&&(a=ke(a,o)),G(a,s.shape)}}}},$M={kernelName:_a,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Tt(n.shape,s.shape);return{a:()=>{let i=fe(e,pe(s,"float32")),l=sn(n.shape,r);return l.length>0?G(ke(i,l),n.shape):i},b:()=>{let i=L(e,pe(n,"float32")),l=sn(s.shape,r);l.length>0&&(i=G(ke(i,l),s.shape));let c=vt(s);return _t(fe(i,pe(c,"float32")))}}}},DM={kernelName:pu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,_t(vt(n)))}}},_M={kernelName:to,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=L(Io(n,6),Lu(n));return{x:()=>L(e,pe(s,"float32"))}}},PM={kernelName:Qa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,pe(Lu(n),"float32"))}}},FM={kernelName:Ti,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>G(e,n.shape)}}},OM={kernelName:eo,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>B.runKernel(Ph,r,n)}}},MM={kernelName:hu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>B.runKernel(_h,r,n)}}},zM={kernelName:Ni,gradFunc:(e,t,n)=>{let{dims:s}=n,r=Xs(s,e.shape);return{x:()=>vs(e,r)}}},LM={kernelName:Ei,gradFunc:e=>({x:()=>nt(e)})},BM={kernelName:no,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_t(fe(e,L(ea(n,1.5),2)))}}},WM={kernelName:$i,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>pe(nt(n),"float32"),t:()=>L(e,pe(n,e.dtype)),e:()=>L(e,pe(kd(n),e.dtype))}}},VM={kernelName:fu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=as(n,Ee(0)),r=Ee(_v),a=Ee(Pv),o=L(e,a),i=L(L(e,r),ys(pe(n,"float32")));return Pn(s,o,i)}}}},UM={kernelName:ro,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(n,xe(Ee(1),n)))}}},GM={kernelName:mu,gradFunc:e=>({x:()=>nt(e)})},HM={kernelName:so,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(bd(pe(n,"float32")),e)}}},jM={kernelName:_i,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(af(pe(n,"float32")),e)}}},qM={kernelName:Di,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{begin:r,size:a}=n,o=s.shape,[i,l]=D3(s,r,a),c=[];for(let u=0;uMs(e,c)}}},XM={kernelName:io,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{dim:r}=n,a=!0,o=L(e,s);return{logits:()=>xe(o,L(ke(o,[r],a),s))}}},KM={kernelName:gu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,ss(n))}}},Gv={kernelName:Pi,gradFunc:(e,t,n)=>{let{blockShape:s,paddings:r}=n;return{x:()=>xd(e,s,r)}}},Hv={kernelName:Fi,gradFunc:(e,t,n)=>{let{axis:s}=n;return{x:()=>kt(e,s)}}},ZM={kernelName:ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,L(Cn(pe(n,"float32")),2))}}},YM={kernelName:yu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(pe(n,"float32"),2))}}},JM={kernelName:lo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Ee(2);return{a:()=>L(e,L(r,xe(n,s))),b:()=>L(e,L(r,xe(s,n)))}}},QM={kernelName:ho,gradFunc:e=>({x:()=>nt(e)})},ez={kernelName:uo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Tt(n.shape,s.shape);return{a:()=>{let i=e,l=sn(n.shape,r);return l.length>0&&(i=ke(i,l)),G(i,n.shape)},b:()=>{let i=e,l=sn(s.shape,r);return l.length>0&&(i=ke(i,l)),G(_t(i),s.shape)}}}},tz={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,r=s.shape.slice(),{axis:a}=n;Xs(a,s.shape).forEach(c=>{r[c]=1});let i=G(e,r),l=L(i,xs(s.shape,"float32"));return{x:()=>l}}},nz={kernelName:Mi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,vt(bd(n)))}}},sz={kernelName:co,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(xe(Ee(1),vt(n)),e)}}},rz={kernelName:Kr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{reps:r}=n;return{x:()=>{let o=nt(s);if(s.rank===1)for(let i=0;i{let s=n,{perm:r}=s,a=m1(r);return{x:()=>tt(e,a)}}},oz={kernelName:Li,gradFunc:(e,t,n)=>{let s=n,{axis:r}=s;return{value:()=>Tn(e,r)}}},iz={kernelName:nd,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>lz(e,n)}}};function lz(e,t){let n=Rr(t,nt(t)),s=Ji(e,n),r=ko(t,Ee(0,"int32")),a=s.rank-r.rank;for(let i=0;i({x:()=>nt(e)})},cz=[zv,cO,dO,pO,hO,fO,mO,gO,yO,AO,xO,bO,kO,CO,TO,NO,EO,RO,$O,DO,_O,PO,OO,FO,LO,BO,WO,VO,UO,GO,$M,HO,jO,qO,XO,KO,YO,ZO,JO,QO,eM,tM,nM,sM,rM,aM,oM,iM,lM,dM,Vv,Vv,pM,mM,AM,xM,bM,vM,wM,kM,IM,SM,CM,TM,NM,Uv,Uv,EM,RM,DM,_M,PM,FM,OM,MM,zM,LM,BM,WM,VM,UM,GM,HM,jM,qM,XM,KM,Gv,Gv,Hv,Hv,ZM,JM,YM,QM,ez,tz,nz,sz,rz,az,oz,iz,uz];for(let e of cz)L5(e);re().prototype.abs=function(){return this.throwIfDisposed(),Zt(this)};re().prototype.acos=function(){return this.throwIfDisposed(),H2(this)};re().prototype.acosh=function(){return this.throwIfDisposed(),j2(this)};re().prototype.add=function(e){return this.throwIfDisposed(),ue(this,e)};re().prototype.all=function(e,t){return this.throwIfDisposed(),tf(this,e,t)};re().prototype.any=function(e,t){return this.throwIfDisposed(),gd(this,e,t)};re().prototype.argMax=function(e){return this.throwIfDisposed(),Fs(this,e)};re().prototype.argMin=function(e){return this.throwIfDisposed(),q2(this,e)};re().prototype.asScalar=function(){return this.throwIfDisposed(),M(this.size===1,()=>"The array must have only 1 element."),G(this,[])};re().prototype.asType=function(e){return this.throwIfDisposed(),pe(this,e)};re().prototype.as1D=function(){return this.throwIfDisposed(),G(this,[this.size])};re().prototype.as2D=function(e,t){return this.throwIfDisposed(),G(this,[e,t])};re().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),G(this,[e,t,n])};re().prototype.as4D=function(e,t,n,s){return this.throwIfDisposed(),G(this,[e,t,n,s])};re().prototype.as5D=function(e,t,n,s,r){return this.throwIfDisposed(),G(this,[e,t,n,s,r])};re().prototype.asin=function(){return this.throwIfDisposed(),X2(this)};re().prototype.asinh=function(){return this.throwIfDisposed(),K2(this)};re().prototype.atan=function(){return this.throwIfDisposed(),Z2(this)};re().prototype.atan2=function(e){return this.throwIfDisposed(),Y2(this,e)};re().prototype.atanh=function(){return this.throwIfDisposed(),J2(this)};re().prototype.avgPool=function(e,t,n,s){return this.throwIfDisposed(),Ad(this,e,t,n,s)};re().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),xd(this,e,t)};re().prototype.batchNorm=function(e,t,n,s,r){return this.throwIfDisposed(),Yi(this,e,t,n,s,r)};re().prototype.broadcastTo=function(e){return this.throwIfDisposed(),Nu(this,e)};re().prototype.cast=function(e){return this.throwIfDisposed(),pe(this,e)};re().prototype.ceil=function(){return this.throwIfDisposed(),s1(this)};re().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),rs(this,e,t)};re().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Ze&&(e=[e]),kt([this,...e],t)};re().prototype.conv1d=function(e,t,n,s,r,a){return this.throwIfDisposed(),sf(this,e,t,n,s,r,a)};re().prototype.conv2dTranspose=function(e,t,n,s,r){return this.throwIfDisposed(),rf(this,e,t,n,s,r)};re().prototype.conv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),Qr(this,e,t,n,s,r,a)};re().prototype.cos=function(){return this.throwIfDisposed(),bd(this)};re().prototype.cosh=function(){return this.throwIfDisposed(),af(this)};re().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),of(this,e,t,n)};re().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),o1(this,e,t)};re().prototype.depthwiseConv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),Ru(this,e,t,n,s,r,a)};re().prototype.dilation2d=function(e,t,n,s,r){return this.throwIfDisposed(),i1(this,e,t,n,s,r)};re().prototype.divNoNan=function(e){return this.throwIfDisposed(),l1(this,e)};re().prototype.div=function(e){return this.throwIfDisposed(),fe(this,e)};re().prototype.dot=function(e){return this.throwIfDisposed(),J3(this,e)};re().prototype.elu=function(){return this.throwIfDisposed(),$u(this)};re().prototype.equal=function(e){return this.throwIfDisposed(),gs(this,e)};re().prototype.erf=function(){return this.throwIfDisposed(),u1(this)};re().prototype.exp=function(){return this.throwIfDisposed(),ys(this)};re().prototype.expandDims=function(e){return this.throwIfDisposed(),qt(this,e)};re().prototype.expm1=function(){return this.throwIfDisposed(),c1(this)};re().prototype.fft=function(){return this.throwIfDisposed(),Rd(this)};re().prototype.flatten=function(){return this.throwIfDisposed(),G(this,[this.size])};re().prototype.floor=function(){return this.throwIfDisposed(),_u(this)};re().prototype.floorDiv=function(e){return this.throwIfDisposed(),Qh(this,e)};re().prototype.gather=function(e,t){return this.throwIfDisposed(),Ji(this,e,t)};re().prototype.greaterEqual=function(e){return this.throwIfDisposed(),ko(this,e)};re().prototype.greater=function(e){return this.throwIfDisposed(),as(this,e)};re().prototype.ifft=function(){return this.throwIfDisposed(),zu(this)};re().prototype.irfft=function(){return this.throwIfDisposed(),wf(this)};re().prototype.isFinite=function(){return this.throwIfDisposed(),ev(this)};re().prototype.isInf=function(){return this.throwIfDisposed(),tv(this)};re().prototype.isNaN=function(){return this.throwIfDisposed(),p1(this)};re().prototype.leakyRelu=function(e){return this.throwIfDisposed(),vd(this,e)};re().prototype.lessEqual=function(e){return this.throwIfDisposed(),Io(this,e)};re().prototype.less=function(e){return this.throwIfDisposed(),uf(this,e)};re().prototype.localResponseNormalization=function(e,t,n,s){return this.throwIfDisposed(),h1(this,e,t,n,s)};re().prototype.logSigmoid=function(){return this.throwIfDisposed(),rv(this)};re().prototype.logSoftmax=function(e){return this.throwIfDisposed(),df(this,e)};re().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),g1(this,e,t)};re().prototype.log=function(){return this.throwIfDisposed(),As(this)};re().prototype.log1p=function(){return this.throwIfDisposed(),wd(this)};re().prototype.logicalAnd=function(e){return this.throwIfDisposed(),Zs(this,e)};re().prototype.logicalNot=function(){return this.throwIfDisposed(),kd(this)};re().prototype.logicalOr=function(e){return this.throwIfDisposed(),pf(this,e)};re().prototype.logicalXor=function(e){return this.throwIfDisposed(),lv(this,e)};re().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Ke(this,e,t,n)};re().prototype.maxPool=function(e,t,n,s){return this.throwIfDisposed(),Id(this,e,t,n,s)};re().prototype.max=function(e,t){return this.throwIfDisposed(),Wn(this,e,t)};re().prototype.maximum=function(e){return this.throwIfDisposed(),Rr(this,e)};re().prototype.mean=function(e,t){return this.throwIfDisposed(),Lt(this,e,t)};re().prototype.min=function(e,t){return this.throwIfDisposed(),Sd(this,e,t)};re().prototype.minimum=function(e){return this.throwIfDisposed(),Pu(this,e)};re().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),A1(this,e,t)};re().prototype.mod=function(e){return this.throwIfDisposed(),x1(this,e)};re().prototype.mul=function(e){return this.throwIfDisposed(),L(this,e)};re().prototype.neg=function(){return this.throwIfDisposed(),_t(this)};re().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Cf(this,e,t,n)};re().prototype.notEqual=function(e){return this.throwIfDisposed(),tl(this,e)};re().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),Su(this,e,t,n)};re().prototype.onesLike=function(){return this.throwIfDisposed(),bs(this)};re().prototype.pad=function(e,t){return this.throwIfDisposed(),Ms(this,e,t)};re().prototype.pool=function(e,t,n,s,r){return this.throwIfDisposed(),dv(this,e,t,n,s,r)};re().prototype.pow=function(e){return this.throwIfDisposed(),ea(this,e)};re().prototype.prelu=function(e){return this.throwIfDisposed(),Td(this,e)};re().prototype.prod=function(e,t){return this.throwIfDisposed(),ff(this,e,t)};re().prototype.reciprocal=function(){return this.throwIfDisposed(),w1(this)};re().prototype.relu=function(){return this.throwIfDisposed(),cr(this)};re().prototype.relu6=function(){return this.throwIfDisposed(),mf(this)};re().prototype.reshapeAs=function(e){return this.throwIfDisposed(),G(this,e.shape)};re().prototype.reshape=function(e){return this.throwIfDisposed(),G(this,e)};re().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),Ev(this,e,t,n)};re().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),Rv(this,e,t,n)};re().prototype.reverse=function(e){return this.throwIfDisposed(),vs(this,e)};re().prototype.rfft=function(){return this.throwIfDisposed(),$d(this)};re().prototype.round=function(){return this.throwIfDisposed(),gf(this)};re().prototype.rsqrt=function(){return this.throwIfDisposed(),yf(this)};re().prototype.selu=function(){return this.throwIfDisposed(),Af(this)};re().prototype.separableConv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),k1(this,e,t,n,s,r,a)};re().prototype.sigmoid=function(){return this.throwIfDisposed(),ss(this)};re().prototype.sign=function(){return this.throwIfDisposed(),I1(this)};re().prototype.sin=function(){return this.throwIfDisposed(),xf(this)};re().prototype.sinh=function(){return this.throwIfDisposed(),bf(this)};re().prototype.slice=function(e,t){return this.throwIfDisposed(),_e(this,e,t)};re().prototype.softmax=function(e){return this.throwIfDisposed(),nl(this,e)};re().prototype.softplus=function(){return this.throwIfDisposed(),Qi(this)};re().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Cd(this,e,t)};re().prototype.split=function(e,t){return this.throwIfDisposed(),xn(this,e,t)};re().prototype.sqrt=function(){return this.throwIfDisposed(),Cn(this)};re().prototype.square=function(){return this.throwIfDisposed(),vt(this)};re().prototype.squaredDifference=function(e){return this.throwIfDisposed(),kf(this,e)};re().prototype.squeeze=function(e){return this.throwIfDisposed(),dt(this,e)};re().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Ze?[this,e]:[this,...e];return Tn(n,t)};re().prototype.step=function(e){return this.throwIfDisposed(),Lu(this,e)};re().prototype.stridedSlice=function(e,t,n,s,r,a,o,i){return this.throwIfDisposed(),C1(this,e,t,n,s,r,a,o,i)};re().prototype.sub=function(e){return this.throwIfDisposed(),xe(this,e)};re().prototype.sum=function(e,t){return this.throwIfDisposed(),ke(this,e,t)};re().prototype.tan=function(){return this.throwIfDisposed(),T1(this)};re().prototype.tanh=function(){return this.throwIfDisposed(),Zi(this)};re().prototype.tile=function(e){return this.throwIfDisposed(),Os(this,e)};re().prototype.toBool=function(){return this.throwIfDisposed(),pe(this,"bool")};re().prototype.toFloat=function(){return this.throwIfDisposed(),pe(this,"float32")};re().prototype.toInt=function(){return this.throwIfDisposed(),pe(this,"int32")};re().prototype.topk=function(e,t){return this.throwIfDisposed(),N1(this,e,t)};re().prototype.transpose=function(e){return this.throwIfDisposed(),tt(this,e)};re().prototype.unique=function(e){return this.throwIfDisposed(),Sf(this,e)};re().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),E1(this,e,t)};re().prototype.unstack=function(e){return this.throwIfDisposed(),Vn(this,e)};re().prototype.where=function(e,t){return this.throwIfDisposed(),Pn(e,this,t)};re().prototype.zerosLike=function(){return this.throwIfDisposed(),nt(this)};var jv={};Le(jv,{maxNorm:()=>fz,minMaxNorm:()=>yz,nonNeg:()=>gz,unitNorm:()=>mz});var M1;function rn(){return M1==null&&(M1=Tr().epsilon()),M1}function pr(){return"channelsLast"}var sa=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,sa.prototype)}},hr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,hr.prototype)}},q=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,q.prototype)}},Ue=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ue.prototype)}},qv=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,qv.prototype)}};function al(e,t){if(Array.isArray(e)){let n=[];for(let s=0;sn.toUpperCase())}var Js={};function z1(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function L1(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>L1(t));else{let t=Object.keys(e);for(let n of t){let s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:L1(s))}}}function Pd(e,t={},n={},s="object",r=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in Js)o=Js[a];else if(o=t[a],o==null)throw new q(`Unknown ${s}: ${e}. This may be due to one of the following reasons: 1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. 2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new q(`${s}: Improper config format: ${JSON.stringify(a)}. 'className' and 'config' must set.`);let o=a.className,i,l;if(o in n?[i,l]=n[o]:o in Js?[i,l]=Js.className:o in t&&([i,l]=t[o]),i==null)throw new q(`Unknown ${s}: ${o}. This may be due to one of the following reasons: 1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. 2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let h of Object.keys(Js))c[h]=Js[h];for(let h of Object.keys(n))c[h]=n[h];let u=a.config;u.customObjects=c;let d=Object.assign({},Js);for(let h of Object.keys(n))Js[h]=n[h];L1(a.config);let p=l(i,a.config,n,r);return Js=Object.assign({},d),p}else{let c=Object.assign({},Js);for(let d of Object.keys(n))Js[d]=n[d];let u=new i(a.config);return Js=Object.assign({},c),u}}}function dz(e,t){return et?1:0}function Lf(e,t){return-1*dz(e,t)}function Co(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function pz(e){if(e==null)throw new q(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function il(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new q(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function B1(e,t,n=0,s=1/0){return $r(n>=0),$r(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(r=>typeof r===t)}function bn(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>bn(n,`element ${s+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${Kv(e)}.`)}function Kv(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>Kv(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function hz(e,t){let n=v.now(),s;return(...a)=>{let o=v.now();return o-nCn(ke(L(e,e),t,!0)))}var Fd=class extends de.Serializable{getConfig(){return{}}},V1=class extends Fd{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return j(()=>{let t=W1(e,this.axis),n=rs(t,0,this.maxValue);return L(e,fe(n,ue(rn(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};V1.className="MaxNorm";de.registerClass(V1);var U1=class extends Fd{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return j(()=>fe(e,ue(rn(),W1(e,this.axis))))}getConfig(){return{axis:this.axis}}};U1.className="UnitNorm";de.registerClass(U1);var G1=class extends Fd{apply(e){return cr(e)}};G1.className="NonNeg";de.registerClass(G1);var H1=class extends Fd{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return j(()=>{let t=W1(e,this.axis),n=ue(L(this.rate,rs(t,this.minValue,this.maxValue)),L(1-this.rate,t));return L(e,fe(n,ue(rn(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};H1.className="MinMaxNorm";de.registerClass(H1);var Yv={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function an(e){return z1(e)}function Jv(e,t={}){return Pd(e,de.SerializationMap.getMap().classNameMap,t,"constraint")}function on(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in Yv?Yv[e]:e,config:{}};return Jv(n)}else return e instanceof Fd?e:Jv(e)}function fz(e){return new V1(e)}function mz(e){return new U1(e)}function gz(){return new G1}function yz(e){return new H1(e)}var Qv={};Le(Qv,{constant:()=>Bz,glorotNormal:()=>qz,glorotUniform:()=>jz,heNormal:()=>Xz,heUniform:()=>Kz,identity:()=>Gz,leCunNormal:()=>Zz,leCunUniform:()=>Yz,ones:()=>Lz,orthogonal:()=>Jz,randomNormal:()=>Vz,randomUniform:()=>Wz,truncatedNormal:()=>Uz,varianceScaling:()=>Hz,zeros:()=>zz});var Az=["channelsFirst","channelsLast"],xz=["nearest","bilinear"],bz=["valid","same","causal"],vz=["max","avg"],wz=["sum","mul","concat","ave"],Wu=new Map;function Kt(e){il(Az,"DataFormat",e)}function kz(e){il(xz,"InterpolationFormat",e)}function zs(e){il(bz,"PaddingMode",e)}function ew(e){il(vz,"PoolMode",e)}var Od=[],tw="/";function ll(e,t){Od.push(e);try{let n=t();return Od.pop(),n}catch(n){throw Od.pop(),n}}function Iz(){return Od.length===0?"":Od.join(tw)+tw}function nw(e){if(!rw(e))throw new Error("Not a valid tensor name: '"+e+"'");return Iz()+e}function sw(e){if(!rw(e))throw new Error("Not a valid tensor name: '"+e+"'");Wu.has(e)||Wu.set(e,0);let t=Wu.get(e);if(Wu.set(e,Wu.get(e)+1),t>0){let n=`${e}_${t}`;return Wu.set(n,1),n}else return e}var Sz=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function rw(e){return!!e.match(Sz)}function Cz(e){return e===parseInt(e.toString(),10)}function To(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let r=t;rt&&(t=s)}return t}function fr(e,t){if(t{if(e.shape.length!==2)throw new q(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Md(e,1);return X1(n,[1,t,1])})}function Nz(e){let t=[To(e.shape)];return G(e,t)}function Ez(e){if(e.rank<=1)throw new q(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],To(e.shape,1)];return G(e,t)}function ul(e,t,n){return j(()=>{switch(e.rank){case 1:return vf(e,t,n);case 2:return S1(e,[t,0],[n,e.shape[1]]);case 3:return Mu(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return Ed(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return _e(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return _e(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new q(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function j1(e,t,n){return j(()=>{switch(e.rank){case 1:return vf(e,t,n);case 2:return S1(e,[0,t],[e.shape[0],n]);case 3:return Mu(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return Ed(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new q(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Wf(e,t,n,s){return j(()=>{switch(e.rank){case 1:return vf(e,t,n);case 2:switch(s){case 1:return ul(e,t,n);case 2:return j1(e,t,n);default:throw new q(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return ul(e,t,n);case 2:return Mu(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return j1(e,t,n);default:throw new q(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return ul(e,t,n);case 2:return Ed(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return Ed(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return j1(e,t,n);default:throw new q(`The axis is not within the rank of the tensor ${s}`)}default:throw new q(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function q1(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),kt(e,t)}function aw(e,t){switch(e.rank){case 1:return j3([e,t]);case 2:return Eu([e,t],0);case 3:return q3([e,t],0);case 4:return X3([e,t],0);default:throw new q(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function X1(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new q(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Os(e,t)}function Vf(e,t=0,n=1,s,r){return pv(e,t,n,s,r)}function Dr(e,t,n,s){if(e.rank<2||t.rank<2)throw new Ue(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(r!==a)throw new Ue(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,a=!1;return So.matMul({a:e,b:t,transposeA:r,transposeB:a,bias:s?K1(e.rank,s,pr()):null,activation:n})}else{let r=e.shape.slice(),a=r.pop();e=G(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),l=o.pop(),c=[...o,i],u=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=G(tt(t,u),[l,-1]);let d=[...r,...c],p=!1,h=!1;return G(So.matMul({a:e,b:t,transposeA:p,transposeB:h,bias:s?K1(e.rank,s,pr()):null,activation:n}),d)}}function ow(e,t,n){return j(()=>(Array.isArray(t)?t=Yt(t,"int32"):t=pe(t,"int32"),Ji(e,t,n)))}function zd(e){return L(e,e)}function K1(e,t,n){let s=t.shape;if(t.rank!==1&&t.rank!==e)throw new q(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?G(t,[1,s[0],1,1,1]):G(t,[1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?G(t,[1,1,1,1,s[0]]):G(t,[1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?G(t,[1,s[0],1,1]):G(t,[1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?G(t,[1,1,1,s[0]]):G(t,[1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?G(t,[1,s[0],1]):G(t,[1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?G(t,[1,1,s[0]]):G(t,[1].concat(s))}else if(e<3)return t;throw new q(`Unsupported input rank by biasAdd: ${t.rank}`)}function mr(e,t,n){return j(()=>(n==null&&(n=pr()),Kt(n),ue(e,K1(e.rank,t,n))))}function Rz(e,t=1){if(t!==1)throw new Ue(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return $u(e)}function $z(e){return j(()=>fe(e,ue(Zt(e),1)))}function iw(e,t,n,s){return j(()=>xv(e,t,n,s))}function Dz(e){return j(()=>{let t=ue(.5,L(.2,e));return rs(t,0,1)})}function Ld(e,t,n=!1){return n?e():t()}var _z=["fanIn","fanOut","fanAvg"],Pz=["normal","uniform","truncatedNormal"];function Fz(e){il(_z,"FanMode",e)}function Oz(e){il(Pz,"Distribution",e)}var Qs=class extends de.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Z1=class extends Qs{apply(e,t){return Xt(e,t)}};Z1.className="Zeros";de.registerClass(Z1);var Uf=class extends Qs{apply(e,t){return xs(e,t)}};Uf.className="Ones";de.registerClass(Uf);var Y1=class extends Qs{constructor(e){super();if(typeof e!="object")throw new q(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new q(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return j(()=>L(Ee(this.value),xs(e,t)))}getConfig(){return{value:this.value}}};Y1.className="Constant";de.registerClass(Y1);var J1=class extends Qs{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Fu(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};J1.className="RandomUniform";de.registerClass(J1);var Q1=class extends Qs{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ue(`randomNormal does not support dType ${t}.`);return Vf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Q1.className="RandomNormal";de.registerClass(Q1);var ey=class extends Qs{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ue(`truncatedNormal does not support dType ${t}.`);return If(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};ey.className="TruncatedNormal";de.registerClass(ey);var ty=class extends Qs{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return j(()=>{if(e.length!==2||e[0]!==e[1])throw new q("Identity matrix initializer can only be used for 2D square matrices.");return L(this.gain,d1(e[0]))})}getConfig(){return{gain:this.gain}}};ty.className="Identity";de.registerClass(ty);function Mz(e,t="channelsLast"){let n,s;if(Kt(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=To(e,2);n=e[1]*r,s=e[0]*r}else if(t==="channelsLast"){let r=To(e,0,e.length-2);n=e[e.length-2]*r,s=e[e.length-1]*r}}else{let r=To(e);n=Math.sqrt(r),s=Math.sqrt(r)}return[n,s]}var is=class extends Qs{constructor(e){super();if(e.scale<0)throw new q(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,Fz(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,Oz(this.distribution),this.seed=e.seed}apply(e,t){let n=Mz(e),s=n[0],r=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,s):this.mode==="fanOut"?a/=Math.max(1,r):a/=Math.max(1,(s+r)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ue(`${this.getClassName()} does not support dType ${t}.`);return If(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return Fu(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};is.className="VarianceScaling";de.registerClass(is);var Gf=class extends is{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return is.className}};Gf.className="GlorotUniform";de.registerClass(Gf);var Hf=class extends is{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return is.className}};Hf.className="GlorotNormal";de.registerClass(Hf);var jf=class extends is{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return is.className}};jf.className="HeNormal";de.registerClass(jf);var qf=class extends is{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return is.className}};qf.className="HeUniform";de.registerClass(qf);var Xf=class extends is{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return is.className}};Xf.className="LeCunNormal";de.registerClass(Xf);var Kf=class extends is{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return is.className}};Kf.className="LeCunNormal";de.registerClass(Kf);var ny=class extends Qs{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Ue("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return j(()=>{if(e.length<2)throw new Ue("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,s=Vf(n,0,1,"float32"),r=Dv.gramSchmidt(s);return e[0]>e[1]&&(r=tt(r)),L(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};ny.className="Orthogonal";de.registerClass(ny);var lw={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function uw(e,t={}){return Pd(e,de.SerializationMap.getMap().classNameMap,t,"initializer")}function Bt(e){return z1(e)}function Pt(e){if(typeof e=="string"){let t=e in lw?lw[e]:e;if(t==="GlorotNormal")return new Hf;if(t==="GlorotUniform")return new Gf;if(t==="HeNormal")return new jf;if(t==="HeUniform")return new qf;if(t==="LeCunNormal")return new Xf;if(t==="LeCunUniform")return new Kf;{let n={};return n.className=t,n.config={},uw(n)}}else return e instanceof Qs?e:uw(e)}function zz(){return new Z1}function Lz(){return new Uf}function Bz(e){return new Y1(e)}function Wz(e){return new J1(e)}function Vz(e){return new Q1(e)}function Uz(e){return new ey(e)}function Gz(e){return new ty(e)}function Hz(e){return new is(e)}function jz(e){return new Gf(e)}function qz(e){return new Hf(e)}function Xz(e){return new jf(e)}function Kz(e){return new qf(e)}function Zz(e){return new Xf(e)}function Yz(e){return new Kf(e)}function Jz(e){return new ny(e)}var cw={};Le(cw,{Layer:()=>at,RNN:()=>Fr,RNNCell:()=>Xd,activation:()=>PB,add:()=>UB,alphaDropout:()=>CW,average:()=>GB,averagePooling1d:()=>bA,averagePooling2d:()=>vA,averagePooling3d:()=>wA,avgPool1d:()=>QB,avgPool2d:()=>tW,avgPool3d:()=>sW,avgPooling1d:()=>eW,avgPooling2d:()=>nW,avgPooling3d:()=>rW,batchNormalization:()=>ZB,bidirectional:()=>AW,concatenate:()=>HB,conv1d:()=>SB,conv2d:()=>CB,conv2dTranspose:()=>TB,conv3d:()=>NB,conv3dTranspose:()=>EB,convLstm2d:()=>fW,convLstm2dCell:()=>mW,cropping2D:()=>$B,dense:()=>FB,depthwiseConv2d:()=>_B,dot:()=>KB,dropout:()=>OB,elu:()=>xB,embedding:()=>VB,flatten:()=>zB,gaussianDropout:()=>SW,gaussianNoise:()=>IW,globalAveragePooling1d:()=>aW,globalAveragePooling2d:()=>oW,globalMaxPool1d:()=>bW,globalMaxPool2d:()=>vW,globalMaxPooling1d:()=>xk,globalMaxPooling2d:()=>bk,gru:()=>lW,gruCell:()=>uW,input:()=>Uw,inputLayer:()=>AB,layerNormalization:()=>YB,leakyReLU:()=>vB,lstm:()=>cW,lstmCell:()=>dW,masking:()=>TW,maxPool1d:()=>wW,maxPool2d:()=>kW,maxPooling1d:()=>vk,maxPooling2d:()=>wk,maxPooling3d:()=>iW,maximum:()=>jB,minimum:()=>qB,multiply:()=>XB,permute:()=>WB,prelu:()=>wB,reLU:()=>bB,repeatVector:()=>LB,reshape:()=>BB,rnn:()=>gW,separableConv2d:()=>RB,simpleRNN:()=>pW,simpleRNNCell:()=>hW,softmax:()=>kB,spatialDropout1d:()=>MB,stackedRNNCells:()=>yW,thresholdedReLU:()=>IB,timeDistributed:()=>xW,upSampling2d:()=>DB,zeroPadding2d:()=>JB});var Qz=0;function dw(){return Qz++}var Zf={};function Yf(e=""){return e in Zf||(Zf[e]=0),Zf[e]+=1,e+Zf[e].toString()}function sy(e){return Array.isArray(e)&&Array.isArray(e[0])}function Jf(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function He(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new q(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function At(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new q(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Qf(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,r)=>s*r);return t}var pw="Variable",hw=class{constructor(e,t="float32",n=pw,s=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=dw(),n=n==null?pw:n,this.originalName=nw(n),this.name=sw(this.originalName),this.trainable_=s,this.constraint=r,this.val=fv(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),eL(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function eL(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function ry(e){return e.map(t=>t.read())}function ay(e){e.forEach(t=>{t[0].write(t[1])})}var Jt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},gr=class{constructor(e,t,n,s,r,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=r,this.outputTensorIndex=o,this.id=dw(),a!=null&&(this.originalName=nw(a),this.name=sw(this.originalName)),this.rank=t.length}},tL=0,em=class{constructor(e,t){this.callArgs=t,this.id=tL++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},nL=0,at=class extends de.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=nL++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=ra(n)+"_"+Yf(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new hr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new q(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return os(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return os(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new sa(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new sa(`Layer ${this.name} is not connected, no input to return.`);return os(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new sa(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new sa(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return os(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=Nt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=Nt(this.inputSpec);if(e.length!==t.length)throw new q(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;nr.maxNDim)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${a}`);if(r.minNDim!=null&&a=0?o[l]:o[o.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${o}.`)}}if(r.shape!=null)for(let o=0;o{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of Nt(e))a.push(o.shape);this.build(os(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let a=this.call(e,t),o=Nt(a),i=[];for(let l of o)n.indexOf(l)!==-1&&(l=l.clone()),i.push(l);if(a=os(i),this.activityRegularizer!=null)throw new Ue("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=sL(e),o=this.computeOutputShape(a),i,l=rL(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((c,u)=>new gr(l,c,this,Nt(e),t,this.name,u)):i=new gr(l,o,this,Nt(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new Ue("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new sa(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new sa(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new hr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Qf(this.weights)}build(e){this.built=!0}getWeights(e=!1){return ry(e?this.trainableWeights:this.weights)}setWeights(e){j(()=>{let t=this.weights;if(t.length!==e.length)throw new q(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],s=ry(t);for(let r=0;rr.apply(l.read())),a==null&&(a=!0),a?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=Nt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,r,a,o=null){let i=Nt(e);t=Nt(t),n=Nt(n),s=Nt(s),r=Jf(r),a=Jf(a);let l=[],c=[],u=[];for(let d of i)l.push(d.sourceLayer),c.push(d.nodeIndex),u.push(d.tensorIndex);new em({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:r,outputShapes:a},o);for(let d=0;de.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function sL(e){e=Nt(e);let t=[];for(let n of e)t.push(n.shape);return os(t)}function rL(e){return"float32"}function fw(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{let r=[];for(let a=0;a0){let r=await Promise.all(t);for(let a=0;aue(this.totals[s],L(r,n)));this.totals[s]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:j(()=>{let s=L(fe(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),An(t[n])}))}},xw=class extends Gu{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let a=this.history[r];for(let o=0;onew bw(s,t))}var er=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),er.checkForDuplicate(t),er.constructors[e]==null&&(er.constructors[e]=[]),er.constructors[e].push(t)}static checkForDuplicate(e){for(let t in er.constructors)er.constructors[+t].forEach(s=>{if(s===e)throw new q("Duplicate callback constructor.")})}static clear(){er.constructors={}}static createCallbacks(e){let t=[];for(let n in er.constructors){let s=+n;e>=s&&t.push(...er.constructors[s])}return t.map(n=>new n)}};er.constructors={};function ww(e,t,n,s,r,a,o,i,l){let c=new xw,u=[new oL,...er.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let d=new Aw(u);return d.setParams({epochs:n,initialEpoch:s,samples:r,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:l}),{callbackList:d,history:c}}function yr(e,t={},n=!1){return Pd(e,de.SerializationMap.getMap().classNameMap,t,"layer",n)}function tm(e,t){return j(()=>{e.dtype!=="float32"&&(e=pe(e,"float32"));let n=ke(zd(e),t,!0),s=Du(n.shape,rn()),r=Cn(Rr(n,s));return fe(e,r)})}function cl(e,t){return j(()=>Lt(zd(xe(t,e)),-1))}function nm(e,t){return j(()=>Lt(Zt(xe(t,e)),-1))}function Hu(e,t){return j(()=>{let n=xe(e,t),s=rs(Zt(e),rn(),Number.MAX_VALUE),r=Zt(fe(n,s));return L(100,Lt(r,-1))})}function iL(e,t){return j(()=>{let n=rs(t,rn(),Number.MAX_VALUE),s=As(ue(1,n)),r=rs(e,rn(),Number.MAX_VALUE),a=As(ue(1,r));return Lt(zd(xe(s,a)),-1)})}function lL(e,t){return j(()=>{let n=Rr(0,xe(1,L(e,t)));return Lt(zd(n),-1)})}function uL(e,t){return j(()=>{let n=Rr(0,xe(1,L(e,t)));return Lt(n,-1)})}function cL(e,t){return j(()=>{let n=ke(L(e,t),-1),s=Wn(L(xe(1,e),t),-1);return Rr(0,ue(1,xe(s,n)))})}function dL(e,t){return j(()=>{let n=Math.log(2),s=xe(t,e),r=xe(ue(s,Qi(L(-2,s))),n);return Lt(r,-1)})}function Bd(e,t,n=!1){return j(()=>{if(n)t=nl(t);else{let s=ke(t,t.shape.length-1,!0);t=fe(t,s)}return t=rs(t,rn(),1-rn()),_t(ke(L(pe(e,"float32"),As(t)),t.shape.length-1))})}function sm(e,t,n=!1){return j(()=>{let s=pe(_u(Nz(e)),"int32");t=rs(t,rn(),1-rn());let r=t.shape,a=G(Su(s,r[r.length-1]),r);return Bd(a,t,n)})}function pL(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new q(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return j(()=>{let n=cr(t),s=_t(Zt(t));return ue(xe(n,L(t,e)),wd(ys(s)))})}function rm(e,t){return j(()=>{let n;return n=rs(t,rn(),1-rn()),n=As(fe(n,xe(1,n))),Lt(pL(e,n),-1)})}function hL(e,t){return j(()=>{let n=rs(e,rn(),1),s=rs(t,rn(),1);return ke(L(e,As(fe(n,s))),-1)})}function fL(e,t){return j(()=>{let n=As(ue(rn(),t));return Lt(xe(t,L(e,n)),-1)})}function oy(e,t){return j(()=>{let n=tm(e,-1),s=tm(t,-1),r=L(n,s);return _t(ke(r,-1))})}var am={meanSquaredError:cl,meanAbsoluteError:nm,meanAbsolutePercentageError:Hu,meanSquaredLogarithmicError:iL,squaredHinge:lL,hinge:uL,categoricalHinge:cL,logcosh:dL,categoricalCrossentropy:Bd,sparseCategoricalCrossentropy:sm,binaryCrossentropy:rm,kullbackLeiblerDivergence:hL,poisson:fL,cosineProximity:oy};function iy(e){if(typeof e=="string"){if(e in am)return am[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new q(t)}else return e}function ly(e,t){return j(()=>{let n=L(.5,bs(t)),s=Bf(as(t,n),e.dtype);return Lt(gs(e,s),-1)})}function uy(e,t){return j(()=>Bf(gs(Fs(e,-1),Fs(t,-1)),"float32"))}function kw(e,t){return j(()=>pe(ke(Zs(gs(e,1),gs(t,1))),"float32"))}function mL(e,t){return j(()=>pe(ke(Zs(gs(e,1),gs(t,0))),"float32"))}function gL(e,t){return j(()=>pe(ke(Zs(gs(e,0),gs(t,1))),"float32"))}function Iw(e,t){return j(()=>{let n=kw(e,t),s=gL(e,t),r=ue(n,s);return pe(Pn(as(r,0),fe(n,r),0),"float32")})}function yL(e,t){return j(()=>{let n=kw(e,t),s=mL(e,t),r=ue(n,s);return pe(Pn(as(r,0),fe(n,r),0),"float32")})}function Sw(e,t){return rm(e,t)}function Cw(e,t){return e.rank===t.rank&&(e=dt(e,[e.rank-1])),t=Fs(t,-1),t.dtype!==e.dtype&&(t=pe(t,e.dtype)),pe(gs(e,t),"float32")}var AL=cl,xL=cl,bL=nm,vL=nm,wL=Hu,kL=Hu,cy=Bd,IL=oy,Tw=sm,om={binaryAccuracy:ly,categoricalAccuracy:uy,precision:Iw,categoricalCrossentropy:cy,sparseCategoricalCrossentropy:Tw,mse:AL,MSE:xL,mae:bL,MAE:vL,mape:wL,MAPE:kL,cosine:IL};function SL(e){if(typeof e=="string"&&e in om)return om[e];if(typeof e!="string"&&e!=null)return e;throw new q(`Unknown metric ${e}`)}function im(e){if($r(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(am))if(am[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(om))if(om[n]===e){t=n;break}return t!==void 0?t:e.name}}function CL(e){let t={Adagrad:()=>rl.adagrad(.01),Adadelta:()=>rl.adadelta(1,.95,rn()),Adam:()=>rl.adam(.001,.9,.999,rn()),Adamax:()=>rl.adamax(.002,.9,.999,rn(),0),RMSProp:()=>rl.rmsprop(.001,.9,0,rn()),SGD:()=>rl.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new q(`Unknown Optimizer ${e}`)}var Nw=1*1024*1024;function Ew(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!dy(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let s=JSON.stringify(e);s.length>Nw&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${Nw}.`)}}function dy(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!dy(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!dy(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function TL(e,t,n,s=console.log){let r=EL(e),a=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let o;if(!r){a.push("Receives inputs"),o=[];for(let u in e.nodesByDepth)o.push(...e.nodesByDepth[u])}s("_".repeat(t)),lm(a,n,s),s("=".repeat(t));let i=e.layers;for(let u=0;u1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}s.push(...r)}if(t)for(let r of e.layers){let a=!1;for(let o of r.inboundNodes)if(s.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function lm(e,t,n=console.log){let s="";for(let r=0;r0&&(s=s.slice(0,s.length-1)+" "),s+=e[r],s=s.slice(0,t[r]),s+=" ".repeat(t[r]-s.length);n(s)}function RL(e,t,n){let s;try{s=JSON.stringify(e.outputShape)}catch(i){s="multiple"}let r=e.name,a=e.getClassName(),o=[`${r} (${a})`,s,e.countParams().toString()];lm(o,t,n)}function $L(e,t,n,s){let r;try{r=JSON.stringify(e.outputShape)}catch(u){r="multiple"}let a=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let d=0;df.name),l=[],c=t.names();for(let f of i)c.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);s!=null&&(s.maxNumTensors=-1/0,s.minNumTensors=1/0);let u=i.join(",")+"|"+t.names().join(","),d,p;if(fy[u]==null){let f=_L(o,t);d=f.sorted,p=f.recipientCounts,fy[u]=d,$w[u]=p}d=fy[u],p={},r||Object.assign(p,$w[u]);let h=new dl(t);for(let f=0;fs.maxNumTensors&&(s.maxNumTensors=$),$0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){let r=Dw(e[0],t);n=r.sorted,s=r.recipientMap}else{let r=new Set;for(let a of e){let{sorted:o,recipientMap:i}=Dw(a,t);for(let l of o)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in i)s[l]==null&&(s[l]=new Set),i[l].forEach(c=>s[l].add(c))}}return{sorted:n,recipientCounts:PL(s)}}function PL(e){let t={};for(let n in e)t[n]=e[n].size;return t}function Dw(e,t){let n=new Set,s=[],r={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let l=o[o.length-1]===a.length-1;if(i.inputs.length===0||l)a.pop(),s.push(i),n.add(i.name),l&&o.pop();else{o.push(a.length-1);for(let c of i.inputs)r[c.name]==null&&(r[c.name]=new Set),r[c.name].add(i.name),!n.has(c.name)&&a.push(c)}}return{sorted:s,recipientMap:r}}function FL(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;sy.name)}`);Co(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let A=y.sourceLayer,x=y.nodeIndex,b=y.tensorIndex;this.outputLayers.push(A),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(b)}for(let y of this.inputs){let A=y.sourceLayer,x=y.nodeIndex,b=y.tensorIndex;$r(x===0,"input layer has >1 nodes"),$r(b===0,"input layer has >1 tensors"),this.inputLayers.push(A),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;yy.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},s={},r={},a={},o=[],i=(y,A,x,b,w,k)=>{(b==null||w==null||k==null)&&(b=y.sourceLayer,w=y.nodeIndex,k=y.tensorIndex);let S=b.inboundNodes[w];if(x.indexOf(S)!==-1)throw new hr(`The tensor ${y.name} at layer "${b.name}" is part of a cycle.`);if(A.indexOf(S)!==-1)return;this.containerNodes.add(_r.nodeKey(b,w)),b.id in a||(a[b.id]=Object.keys(a).length),x.indexOf(S)===-1&&x.push(S);let N=S.inboundLayers.length;for(let $=0;$=0;)x.splice(x.indexOf(S),1);o.push(S)},l=[],c=[];for(let y of this.outputs)i(y,l,c);let u=o.slice().reverse();for(let y of u){n[y.id]=y,y.id in t||(t[y.id]=0);let A=t[y.id],x=s[y.outboundLayer.id]==null?0:s[y.outboundLayer.id];A=Math.max(A,x),s[y.outboundLayer.id]=A,r[y.outboundLayer.id]=y.outboundLayer,t[y.id]=A;for(let b=0;bparseInt(y,10)).sort(Lf);this.layers=[];for(let y of h){let A=p[y];A.sort((x,b)=>{let w=a[x.id],k=a[b.id];return wk?1:0});for(let x of A)x instanceof _r&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=p,h=Object.keys(d).map(y=>parseInt(y,10)).sort(Lf);let f=this.inputs.slice(),m=[];for(let y of h)for(let A of d[y]){let x=A.outboundLayer;if(x!=null){for(let b of A.inputTensors)if(f.indexOf(b)===-1)throw new hr(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${x.name}". The following previous layers were accessed without issue: ${m}`);for(let b of A.outputTensors)f.push(b);m.push(x.name)}}this.nodesByDepth=d;let g=this.layers.map(y=>y.name);for(let y of g){let A=g.filter(x=>x===y).length;if(A!==1)throw new hr(`The name "${y}" is used ${A} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new em({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new q("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},s=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new q(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,s++}let r=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)r.push([n[o],e[a]]);else if(t)throw new q(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new q(`${a.length} of ${s} weights are not set: ${a}`)}ay(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${hy}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=py(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return j(()=>{e=Nt(e);let n=new dl;for(let s=0;s{e=Nt(e);let n;return t==null?n=al(null,e.length):n=Nt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Jf(e);if(t.length!==this.inputLayers.length)throw new q(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;oparseInt(o,10)).sort(Lf);if(s.length>1)for(let o of s){let i=this.nodesByDepth[o];for(let l of i){let c=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(c.id)!==-1)continue;let u=[];for(let f=0;fparseInt(i,10)).sort(Lf);for(let i of s){let l=this.nodesByDepth[i];for(let c of l){let u=c.outboundLayer,d=c.inputTensors,p=c.outputTensors,h=new Array;for(let f of d)f.id in n&&h.push(n[f.id]);if(h.length===d.length){let f={},m,g,y,A;if(c.callArgs!=null&&(f=c.callArgs),h.length===1){let[x,b]=h[0];f.mask==null&&(f.mask=b),y=Nt(u.call(x,f)),A=Nt(u.computeMask(x,b)),m=[x],g=[b]}else m=h.map(x=>x[0]),g=h.map(x=>x[1]),f.mask==null&&(f.mask=g),y=Nt(u.call(m,f)),A=Nt(u.computeMask(m,g));if(u.activityRegularizer)throw new Ue("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x{let e=[];for(let t of this.layers)for(let n=0;n0){let f=[];for(let m=0;m0&&m.apply(os(y),A)}function l(m){let g=m.name,y=yr(m,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(s),r[g]=y,m.inboundNodes.forEach(x=>{if(!(x instanceof Array))throw new q(`Corrupted configuration, expected array for nodeData: ${x}`);o(y,x)})}let c=t.name,u=t.layers;for(let m of u)l(m);for(;!pz(a);)for(let m of u){let g=r[m.name];if(g.name in a){let y=a[g.name];delete a[g.name];for(let A of y)i(g,A)}}let d=[],p=[],h=t.inputLayers;for(let m of h){let g=m[0],y=m[1],A=m[2];$r(g in r);let b=r[g].inboundNodes[y].outputTensors;d.push(b[A])}let f=t.outputLayers;for(let m of f){let g=m[0],y=m[1],A=m[2];$r(g in r);let b=r[g].inboundNodes[y].outputTensors;p.push(b[A])}return new e({inputs:d,outputs:p,name:c})}get stateful(){if(this._stateful)throw new q("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){j(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function OL(e,t,n){let s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(a=>{a in e?r.push(e[a]):r.push(null)}),r}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function _w(e,t){return OL(e,t,"classWeight")}async function Pw(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=j(()=>{if(e.shape.length===1)return lr(e);if(e.shape.length===2){if(e.shape[1]>1)return Fs(e,1);if(e.shape[1]===1)return G(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await r.data());ee(r);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),Yt(o,"float32")}else return null}function ML(e,t){return L(e,t)}var zL=32;function Fw(e,t){let n,s,r=t;n=r.xs,s=r.ys,v.assert(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=Ow("input",e.inputNames,n),o=Ow("output",e.outputNames,s),i=a[0].shape[0];v.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l`Batch size mismatch: input ${e.inputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let l=0;l`Batch size mismatch: output ${e.outputNames[l]} has ${o[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function Ow(e,t,n){if(n instanceof Ze)return[n];if(Array.isArray(n))return v.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let s=[];for(let r of t){if(n[r]==null)throw new q(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);s.push(n[r])}return s}}function LL(e){if(e.length===3)throw new Ue("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function BL(e,t,n){let s=n.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),v.assert(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),v.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,a,o;if(r)if(Mw(n.validationData))v.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=LL(n.validationData);a=g.xs,o=g.ys}let i=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;r?c=l.slice().concat(l.map(g=>"val_"+g)):c=l.slice();let u=vw(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:p,history:h}=ww(u,d,n.epochs,null,null,WL(t,n),null,r,c);p.setModel(e),e.history=h,await p.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f=n.batchesPerEpoch:x.done){if(r){let b;Mw(n.validationData)?b=Nt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=Nt(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?zL:n.validationBatchSize,verbose:0}));for(let w=0;w0)throw new Ue("Verbose mode is not implemented yet.");v.assert(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=VL(t)?t:await t.iterator(),i=0,l=0;for(;s?l{if(c.value){let{xs:u,ys:d}=Fw(e,c.value),p=u.concat(d),h=j(()=>r(p));if(ee(p),l===0)for(let m=0;mue(a[m],L(f,g))),l>0&&ee(y)}ee(h),i+=f,++l}return a}),c.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Ud(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>ul(s,t,n-t)):ul(e,t,n-t)}function gy(e,t){return j(()=>e==null?null:Array.isArray(e)?e.map(n=>gy(n,t)):ow(e,t.dtype==="int32"?t:pe(t,"int32")))}function yy(e,t){let n=[],s=0,r=null;for(;s=e&&(r=e),n.push([s,r]),s=r;return n}async function GL(e,t,n,s,r,a,o,i,l,c,u,d,p,h,f){r==null&&(r=32),a==null&&(a=1),u==null&&(u=!0),p==null&&(p=0);let m=!1;if(l!=null&&c!=null&&(m=!0),f!=null&&(m=!0,h==null))throw new q("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),y;g!=null&&(y=fr(0,g)),o==null&&(o=1);let{callbackList:A,history:x}=ww(i,o,a,p,g,h,r,m,d);A.setModel(e),e.history=x,await A.onTrainBegin(),e.stopTraining_=!1;for(let b=p;b{let F=S[N][0],R=S[N][1],D=ul(k,F,R-F);$.batch=N,$.size=R-F;let T=gy(n,D),O=t(T);for(let W=0;W0){if(f=!0,s.validationData.length===2)o=s.validationData[0],i=s.validationData[1];else throw s.validationData.length===3?new Ue("validationData including sample weights is not supported yet."):new q(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);let S=!0,N=await e.standardizeUserData(o,i,null,null,S,d);l=N[0],c=N[1],m=l.concat(c)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){f=!0;let S=Math.floor(r[0].shape[0]*(1-s.validationSplit)),N=r[0].shape[0];l=Ud(r,S,N),r=Ud(r,0,S),c=Ud(a,S,N),a=Ud(a,0,S),m=l.concat(c)}else s.validationSteps!=null&&(f=!0);let g=r.concat(a).concat(u);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),A=e.getDedupedMetricsNames(),x,b;f?(e.makeTestFunction(),x=e.testFunction,b=A.slice().concat(A.map(S=>"val_"+S))):(x=null,m=[],b=A.slice());let w=vw(s.callbacks,s.yieldEvery);return await GL(e,y,g,A,d,s.epochs,s.verbose,w,x,m,s.shuffle,b,s.initialEpoch,null,null)}finally{e.isTraining=!1,pl(r,t),pl(a,n),pl(l,o),pl(c,i),u!=null&&ee(u)}}function zw(e){let t=[];e instanceof Ze&&(e=[e]);for(let n=0;nn.push(r.id));else if(t!=null)for(let r in t){let a=t[r];n.push(a.id)}let s=[];if(e instanceof Ze)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&s.push(r)});else if(e!=null)for(let r in e){let a=e[r];n.indexOf(a.id)===-1&&s.push(a)}s.forEach(r=>{r.isDisposed||r.dispose()})}function jL(e){return e instanceof Ze}function Ay(e){return Array.isArray(e)}function Lw(e){return!jL(e)&&!Ay(e)}function Bw(e,t,n,s=!0,r=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(Ay(e)&&e.length>0)o=!0;else if(Lw(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new q(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(Lw(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new q(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(Ay(e)){if(e=e,e.length!==t.length)throw new q(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new q(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=zw(a),n!=null)for(let o=0;o=0&&c!==u)throw new q(`${r} expected a batch of elements where each example has shape [${n[o].slice(1,n[o].length)}] (i.e.,tensor shape [*,${n[o].slice(1,n[o].length)}]) but the ${r} received an input with ${i.shape[0]} examples, each with shape [${i.shape.slice(1,i.shape.length)}] (tensor shape [${i.shape}])`)}}return a}function qL(e,t,n){let s=Co(e.map(a=>a.shape[0]));s.sort();let r=Co(t.map(a=>a.shape[0]));if(r.sort(),s.length>1)throw new q(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(r.length>1)throw new q(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(s.length>0&&r.length>0&&!v.arraysEqual(s,r))throw new q(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${r[0]} target sample(s).`)}function XL(e,t,n){let s=[cl,rm,Bd];for(let r=0;r1)throw new q(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{let s=[];for(let r of t){let a=n.hasOwnProperty(r)?n[r]:[];Array.isArray(a)||(a=[a]),s.push(a)}return s}}var ZL="layers-model",aa=class extends _r{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new q("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");TL(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=CL(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof na))throw new q("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new q(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(iy(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new q(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>iy(o))}else{let a=iy(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a{for(let a=0;a1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let s=KL(e.metrics,this.outputNames),r=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};ll("metric",()=>{for(let a=0;a{let c="",u,d,p;for(let h of l){if(typeof h=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(h)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===rm?["accuracy","acc"].indexOf(h)!==-1?d=ly:["crossentropy","ce"].indexOf(h)!==-1&&(d=Sw):this.lossFunctions[a]===sm?["accuracy","acc"].indexOf(h)!==-1?d=Cw:["crossentropy","ce"].indexOf(h)!==-1&&(d=Tw):["accuracy","acc"].indexOf(h)!==-1?d=uy:["crossentropy","ce"].indexOf(h)!==-1&&(d=cy);let g;["accuracy","acc"].indexOf(h)!==-1?g="acc":["crossentropy","ce"].indexOf(h)!==-1&&(g="ce"),p=d,u=c+g}else p=SL(h),u=c+im(h);let f;ll(u,()=>{f=p}),r(a,u,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let s=n.batchSize==null?32:n.batchSize;my(s);let r=!0,a=this.standardizeUserDataXY(e,t,r,s);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,l=this.testLoop(i,o,s,n.verbose,n.steps);return os(l)}finally{pl(a[0],e),pl(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),UL(this,e,t)}checkNumSamples(e,t,n,s="steps"){let r;if(n!=null){if(r=null,t!=null)throw new q(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new q(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new q("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),s=n?t:[t],r=this.retrieveSymbolicTensors(s),a=new dl;if(e instanceof Ze&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new q(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;io.name);for(let o=0;o0){let s=[];throw t.forEach((r,a)=>{r==null&&s.push(e[a])}),new q(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return j(()=>{let s=this.checkNumSamples(e);if(n)throw new Ue("Verbose predictLoop() is not implemented yet.");let r=yy(s,t),a=this.outputs.map(o=>[]);for(let o=0;o{let l=r[o][0],c=r[o][1],u=Ud(e,l,c),d=[];if(Array.isArray(u))for(let h=0;ha[c].push(l));return os(a.map(o=>kt(o,0)))})}predict(e,t={}){let n=zw(e);Ww(n,this.inputNames,this.feedInputShapes,!1);try{let s=t.batchSize==null?32:t.batchSize;return my(s),this.predictLoop(n,s)}finally{pl(n,e)}}predictOnBatch(e){Ww(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new hr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let a=0;a0&&e[0].shape[0]%s!=0)throw new q(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,r=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,r,a);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(s!=null){let c=_w(s,this.outputNames);l=[];for(let u=0;u{let a=this.checkNumSamples(t,n,r,"steps"),o=[];if(s>0)throw new Ue("Verbose mode is not implemented yet.");if(r!=null)throw new Ue("steps mode in testLoop() is not implemented yet");{let i=yy(a,n),l=Yt(fr(0,a));for(let c=0;c1&&(r+=`_${Xv(e.slice(0,n),s)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let u=[];for(let f=0;f1&&f{h=ue(h,f)}),h},i=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(o,l,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>j(()=>{let t=[],n,s=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let l=0;lra(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let s of t)if(typeof n[s]=="string")e[s]=ra(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[ra(im(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>ra(im(e)));{let e={};for(let t in this.metrics)e[t]=ra(im(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Wd(e.optimizer_config),n=yr(t),s;if(typeof e.loss=="string")s=ol(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(a=>ol(a));else if(e.loss!=null){s={};for(let a in e.loss)s[a]=ol(e.loss[a])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(a=>ol(a));else if(e.metrics!=null){r={};for(let a in e.metrics)r[a]=ol(e.metrics[a])}this.compile({loss:s,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let l=ts.getSaveHandlers(e);if(l.length===0)throw new q(`Cannot find any save handlers for URL '${e}'`);if(l.length>1)throw new q(`Found more than one (${l.length}) save handlers for URL '${e}'`);e=l[0]}if(e.save==null)throw new q("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await ts.encodeWeights(this.getNamedWeights(t)),s=!1,r=null,o={modelTopology:this.toJSON(r,s),format:ZL,generatedBy:`TensorFlow.js tfjs-layers v${hy}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:c,specs:u}=await ts.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...u),n.data=ts.concatenateArrayBuffers([n.data,c])}if(this.userDefinedMetadata!=null){let l=!0;Ew(this.userDefinedMetadata,this.name,l),o.userDefinedMetadata=this.userDefinedMetadata}return o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){Ew(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};aa.className="Model";de.registerClass(aa);var Vw=class extends aa{};Vw.className="Functional";de.registerClass(Vw);async function YL(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let s=Wd(n),r=yr(s,t);if(e.weightsManifest!=null){let a=await ts.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(i=>i.originalName)),o={};for(let i of r.weights)o[i.originalName]=a[i.originalName];r.loadWeights(o),ee(a)}return r}async function JL(e,t){if(t==null&&(t={}),typeof e=="string"){let n=ts.getLoadHandlers(e,t);if(n.length===0)n.push(ts.browserHTTPRequest(e,t));else if(n.length>1)throw new q(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return QL(e,void 0,t)}async function QL(e,t,n){if(n==null&&(n={}),e.load==null)throw new q("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let s=await e.load(),r=s.modelTopology;r.model_config!=null&&(r=r.model_config);let a=n.strict==null?!0:n.strict,o=s.weightData!=null&&s.weightSpecs!=null&&a,i=yr(Wd(r),t,o),l=s.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),s.userDefinedMetadata!=null&&i.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new q("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=eB(s.weightData,s.weightSpecs);i.loadWeights(c,a),i.optimizer!=null&&u.length>0&&await i.optimizer.setWeights(u),ee(c),ee(u.map(d=>d.tensor))}return i}function eB(e,t){let n=ts.decodeWeights(e,t),s={},r=[];return t.forEach(a=>{a.group==="optimizer"?r.push({name:a.name,tensor:n[a.name]}):s[a.name]=n[a.name]}),{modelWeights:s,optimizerWeights:r}}var ju=class extends aa{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Yf("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new q(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof ju||e instanceof aa,n;if(t){if(n=e,n.outputs.length!==1)throw new q("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new q("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new q("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let s=mw({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new q(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new q("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=fw(this.outputs[0])}this.inboundNodes=[],new em({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:al(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{let s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(At(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new aa({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new hr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new hr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new hr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new hr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let r,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new q("Legacy serialization format not supported yet.");r=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof ju))throw new Ue(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of r){let c=yr(i,void 0,s);s&&c.setFastWeightInitDuringBuild(!0),o.add(c)}return o}set stopTraining(e){if(this.model==null)throw new q("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new q("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};ju.className="Sequential";de.registerClass(ju);function tB(e){return new aa(e)}function nB(e){return new ju(e)}function sB(e,t){return t==null&&(t={}),JL(e,t)}function Uw(e){return mw(e)}function rB(e,t){er.registerCallbackConstructor(e,t)}var ls=class extends de.Serializable{getConfig(){return{}}},Gw=class extends ls{apply(e,t=1){return Rz(e,t)}};Gw.className="elu";de.registerClass(Gw);var Hw=class extends ls{apply(e){return Af(e)}};Hw.className="selu";de.registerClass(Hw);var jw=class extends ls{apply(e){return cr(e)}};jw.className="relu";de.registerClass(jw);var qw=class extends ls{apply(e){return j(()=>Pu(6,cr(e)))}};qw.className="relu6";de.registerClass(qw);var Xw=class extends ls{apply(e){return e}};Xw.className="linear";de.registerClass(Xw);var Kw=class extends ls{apply(e){return ss(e)}};Kw.className="sigmoid";de.registerClass(Kw);var Zw=class extends ls{apply(e){return Dz(e)}};Zw.className="hardSigmoid";de.registerClass(Zw);var Yw=class extends ls{apply(e){return Qi(e)}};Yw.className="softplus";de.registerClass(Yw);var Jw=class extends ls{apply(e){return $z(e)}};Jw.className="softsign";de.registerClass(Jw);var Qw=class extends ls{apply(e){return Zi(e)}};Qw.className="tanh";de.registerClass(Qw);var xy=class extends ls{apply(e,t=-1){return nl(e,t)}};xy.className="softmax";de.registerClass(xy);var ek=class extends ls{apply(e,t=-1){return df(e,t)}};ek.className="logSoftmax";de.registerClass(ek);var tk=class extends ls{apply(e,t=1){return j(()=>L(ss(L(e,t)),e))}};tk.className="swish";de.registerClass(tk);var nk=class extends ls{apply(e){return j(()=>L(e,Zi(Qi(e))))}};nk.className="mish";de.registerClass(nk);function Ro(e){return e.getClassName()}function by(e,t={}){return Pd(e,de.SerializationMap.getMap().classNameMap,t,"activation")}function $o(e){if(e==null){let t={};return t.className="linear",t.config={},by(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},by(t)}else return e instanceof ls?e:by(e)}function vy(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var sk=class extends de.Serializable{},Gd=class extends sk{constructor(e){super();vy(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return j(()=>{let t=Xt([1]);return this.hasL1&&(t=ue(t,ke(L(this.l1,Zt(e))))),this.hasL2&&(t=ue(t,ke(L(this.l2,zd(e))))),G(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Gd.className="L1L2";de.registerClass(Gd);function aB(e){return vy(e),new Gd({l1:e!=null?e.l1:null,l2:0})}function oB(e){return vy(e),new Gd({l2:e!=null?e.l2:null,l1:0})}var rk={l1l2:"L1L2"};function It(e){return z1(e)}function ak(e,t={}){return Pd(e,de.SerializationMap.getMap().classNameMap,t,"regularizer")}function Ft(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in rk?rk[e]:e,config:{}};return ak(n)}else return e instanceof sk?e:ak(e)}var wy=class extends at{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=He(e);let n=cr(e);return this.maxValue!=null&&(n=rs(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};wy.className="ReLU";de.registerClass(wy);var ky=class extends at{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=He(e);return vd(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};ky.className="LeakyReLU";de.registerClass(ky);var Iy=class extends at{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Pt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Ft(e.alphaRegularizer),this.alphaConstraint=on(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new q(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=At(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let s=1;s(Kt(t),t==="channelsFirst"?tt(e,[0,2,3,1]):e))}function ok(e,t){return j(()=>(Kt(t),t==="channelsFirst"?tt(e,[0,2,3,4,1]):e))}function iB(e,t,n,s=1,r="valid",a,o=1){return j(()=>{if(a==null&&(a=pr()),Kt(a),e.shape.length!==3)throw new q(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new q(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new q(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=tt(e,[0,2,1])),r==="causal")throw new Ue("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=sf(e,t,s,r==="same"?"same":"valid","NWC",o);return n!=null&&(i=mr(i,n)),i})}function ik(e,t,n,s=[1,1],r="valid",a,o,i=null){return j(()=>{if(a==null&&(a=pr()),Kt(a),e.rank!==3&&e.rank!==4)throw new q(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new q(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=Ny(e,a);if(r==="causal")throw new Ue("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=So.conv2d({x:l,filter:t,strides:s,pad:r==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(l=tt(l,[0,3,1,2])),l})}function lB(e,t,n,s=[1,1,1],r="valid",a,o){return j(()=>{if(a==null&&(a=pr()),Kt(a),e.rank!==4&&e.rank!==5)throw new q(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new q(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=ok(e,a);if(r==="causal")throw new Ue("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=a1(i,t,s,r==="same"?"same":"valid","NDHWC",o),n!=null&&(i=mr(i,n)),a==="channelsFirst"&&(i=tt(i,[0,4,1,2,3])),i})}var Ey=class extends at{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Ey.verifyArgs(t),this.rank=e,bn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Ue(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=qu(t.kernelSize,e,"kernelSize"),this.strides=qu(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,zs(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Kt(this.dataFormat),this.activation=$o(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Pt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=on(t.biasConstraint),this.biasRegularizer=Ft(t.biasRegularizer),this.activityRegularizer=Ft(t.activityRegularizer),this.dilationRate=qu(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new q(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new q(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new q(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if($r("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!B1(e.kernelSize,"number",1,3))throw new q(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Ro(this.activation),useBias:this.useBias,biasInitializer:Bt(this.biasInitializer),biasRegularizer:It(this.biasRegularizer),activityRegularizer:It(this.activityRegularizer),biasConstraint:an(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Hd=class extends Ey{constructor(e,t){super(e,t);this.kernel=null,Hd.verifyArgs(t),this.filters=t.filters,bn(this.filters,"filters"),this.kernelInitializer=Pt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=on(t.kernelConstraint),this.kernelRegularizer=Ft(t.kernelRegularizer)}build(e){e=At(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return j(()=>{e=He(e);let n,s=this.bias==null?null:this.bias.read(),r=Zv(this.activation.getClassName());if(r!=null&&this.rank===2)n=ik(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=iB(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=ik(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=lB(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Ue("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=At(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r 0 but got ${JSON.stringify(e.filters)}`)}},jd=class extends Hd{constructor(e){super(2,e);jd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!B1(e.kernelSize,"number",1,2))throw new q(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};jd.className="Conv2D";de.registerClass(jd);var qd=class extends Hd{constructor(e){super(3,e);qd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new q(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};qd.className="Conv3D";de.registerClass(qd);var Ry=class extends jd{constructor(e){super(e);if(this.inputSpec=[new Jt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new q(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=At(e),e.length!==4)throw new q("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Jt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return j(()=>{let n=He(e);if(n.shape.length!==4)throw new q(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=s[a],l=s[o],c=this.kernelSize[0],u=this.kernelSize[1],d=this.strides[0],p=this.strides[1],h=Pr(i,d,c,this.padding),f=Pr(l,p,u,this.padding),m=[r,h,f,this.filters];this.dataFormat!=="channelsLast"&&(n=tt(n,[0,2,3,1]));let g=rf(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=tt(g,[0,3,1,2])),this.bias!=null&&(g=mr(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=At(e);let t=e.slice(),n,s,r;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3):(n=3,s=1,r=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[s]=Pr(t[s],i,a,this.padding),t[r]=Pr(t[r],l,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Ry.className="Conv2DTranspose";de.registerClass(Ry);var $y=class extends qd{constructor(e){super(e);if(this.inputSpec=[new Jt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new q(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=At(e),e.length!==5)throw new q("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Jt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return j(()=>{let n=He(e);if(n.shape.length!==5)throw new q(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let l=s[i],c=s[a],u=s[o],d=this.kernelSize[0],p=this.kernelSize[1],h=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],y=Pr(l,f,d,this.padding),A=Pr(c,m,p,this.padding),x=Pr(u,g,h,this.padding),b=[r,y,A,x,this.filters];this.dataFormat!=="channelsLast"&&(n=tt(n,[0,2,3,4,1]));let w=Z3(n,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(w=tt(w,[0,4,1,2,3])),this.bias!==null&&(w=mr(w,this.bias.read(),this.dataFormat)),this.activation!==null&&(w=this.activation.apply(w)),w})}computeOutputShape(e){e=At(e);let t=e.slice(),n,s,r,a;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3,a=4):(n=4,s=1,r=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],l=this.kernelSize[2],c=this.strides[0],u=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[s]=Pr(t[s],c,o,this.padding),t[r]=Pr(t[r],u,i,this.padding),t[a]=Pr(t[a],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};$y.className="Conv3DTranspose";de.registerClass($y);var lk=class extends Hd{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new q("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new q("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new q(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Pt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Ft(t.depthwiseRegularizer),this.depthwiseConstraint=on(t.depthwiseConstraint),this.pointwiseInitializer=Pt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Ft(t.pointwiseRegularizer),this.pointwiseConstraint=on(t.pointwiseConstraint)}build(e){if(e=At(e),e.length{e=He(e);let n;if(this.rank===1)throw new Ue("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=tt(e,[0,2,3,1])),n=k1(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=mr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=tt(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Bt(this.depthwiseInitializer),e.pointwiseInitializer=Bt(this.pointwiseInitializer),e.depthwiseRegularizer=It(this.depthwiseRegularizer),e.pointwiseRegularizer=It(this.pointwiseRegularizer),e.depthwiseConstraint=an(this.depthwiseConstraint),e.pointwiseConstraint=an(this.pointwiseConstraint),e}};lk.className="SeparableConv";var Dy=class extends lk{constructor(e){super(2,e)}};Dy.className="SeparableConv2D";de.registerClass(Dy);var um=class extends Hd{constructor(e){super(1,e);um.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!B1(e.kernelSize,"number",1,1))throw new q(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};um.className="Conv1D";de.registerClass(um);var _y=class extends at{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return j(()=>{if(e=He(e),this.dataFormat==="channelsLast"){let n=Wf(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Wf(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Wf(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Wf(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};_y.className="Cropping2D";de.registerClass(_y);var Py=class extends at{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Kt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,kz(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return j(()=>{let n=He(e),s=n.shape;if(this.dataFormat==="channelsFirst"){n=tt(n,[0,2,3,1]);let r=this.size[0]*s[2],a=this.size[1]*s[3],o=this.interpolation==="nearest"?$e.resizeNearestNeighbor(n,[r,a]):$e.resizeBilinear(n,[r,a]);return tt(o,[0,3,1,2])}else{let r=this.size[0]*s[1],a=this.size[1]*s[2];return this.interpolation==="nearest"?$e.resizeNearestNeighbor(n,[r,a]):$e.resizeBilinear(n,[r,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Py.className="UpSampling2D";de.registerClass(Py);function uB(e,t,n=[1,1],s="valid",r,a){return j(()=>{r==null&&(r=pr()),Kt(r);let o=Ny(e,r);if(e.rank!==4)throw new q(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new q(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=Ru(o,t,n,s==="same"?"same":"valid","NHWC",a),r==="channelsFirst"&&(o=tt(o,[0,3,1,2])),o})}var Fy=class extends Ey{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Pt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=on(e.depthwiseConstraint),this.depthwiseRegularizer=Ft(e.depthwiseRegularizer)}build(e){if(e=At(e),e.length<4)throw new q(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new q(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return j(()=>{e=He(e);let n=uB(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=mr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=At(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Ar(t,this.kernelSize[0],this.padding,this.strides[0]),a=Ar(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,r,a]:[e[0],r,a,s]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Bt(this.depthwiseInitializer),e.depthwiseRegularizer=It(this.depthwiseRegularizer),e.depthwiseConstraint=an(this.depthwiseRegularizer),e}};Fy.className="DepthwiseConv2D";de.registerClass(Fy);function uk(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new q("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(a){return a==null||Array.isArray(a)?a:[a]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function ck(e,t,n,s=!1,r,a,o=!1,i=!1){return j(()=>{let l=t.shape.length;if(l<3)throw new q(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(fr(2,l));if(t=tt(t,c),a!=null)throw new Ue("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=pe(pe(r,"bool"),"float32"),r.rank===l-1&&(r=qt(r,-1)),r=tt(r,c)),s&&(t=vs(t,0),r!=null&&(r=vs(r,0)));let u=[],d,p=n,h=t.shape[0],f=Vn(t),m;r!=null&&(m=Vn(r));for(let y=0;ye(A,p));if(r==null)d=x[0],p=x[1];else{let b=j(()=>{let w=m[y],k=xe(bs(w),w),S=ue(L(x[0],w),L(p[0],k)),N=p.map(($,F)=>ue(L(x[1][F],w),L($,k)));return{output:S,newStates:N}});d=b.output,p=b.newStates}i&&u.push(d)}let g;return i&&(g=Tn(u,1)),[d,g,p]})}var Fr=class extends at{constructor(e){super(e);let t;if(e.cell==null)throw new q("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new pm({cells:e.cell}):t=e.cell,t.stateSize==null)throw new q("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Jt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return fr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){sy(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){let r=[];for(let a of t)r.push([e[0],a]);return[s].concat(r)}else return s}computeMask(e,t){return j(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let s=this.states.map(r=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;no.shape[o.shape.length-1]),a))throw new q(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new Jt({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){j(()=>{if(!this.stateful)throw new sa("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new q("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Xt([n,s])):this.states_=[Xt([n,this.cell.stateSize])];else if(e==null)ee(this.states_),this.keptStates!=null&&(ee(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Xt([n,s])):this.states_[0]=Xt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new q(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):ee(this.states_);for(let s=0;sAn(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=uk(e,n,s,this.numConstants);e=r.inputs,n=r.initialState,s=r.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new Jt({shape:l.shape}));o=o.concat(this.stateSpec)}if(s!=null&&(t.constants=s,a=a.concat(s),this.numConstants=s.length),a[0]instanceof gr){let l=[e].concat(a),c=this.inputSpec.concat(o),u=this.inputSpec;this.inputSpec=c;let d=super.apply(l,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return j(()=>{let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;e=He(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==a)throw new q(`RNN Layer has ${a} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:s},l=ck((h,f)=>{let m=this.cell.call([h].concat(f),o);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),c=l[0],u=l[1],d=l[2];this.stateful&&this.resetStates(d,s);let p=this.returnSequences?u:c;return this.returnState?[p].concat(d):p})}getInitialState(e){return j(()=>{let t=Xt(e.shape);return t=ke(t,[1,2]),t=Md(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?X1(t,[1,n]):t):this.cell.stateSize>1?[X1(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Fr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let s=t.cell,r=yr(s,n);return new e(Object.assign(t,{cell:r}))}};Fr.className="RNN";de.registerClass(Fr);var Xd=class extends at{},cm=class extends Xd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,bn(this.units,"units"),this.activation=$o(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Ft(e.kernelRegularizer),this.recurrentRegularizer=Ft(e.recurrentRegularizer),this.biasRegularizer=Ft(e.biasRegularizer),this.kernelConstraint=on(e.kernelConstraint),this.recurrentConstraint=on(e.recurrentConstraint),this.biasConstraint=on(e.biasConstraint),this.dropout=Vu([1,No([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Vu([1,No([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=At(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return j(()=>{if(e=e,e.length!==2)throw new q(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let s=t.training==null?!1:t.training;0bs(e),rate:this.dropout,training:s})),0bs(n),rate:this.recurrentDropout,training:s}));let r,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?r=Dr(L(e,a),this.kernel.read()):r=Dr(e,this.kernel.read()),this.bias!=null&&(r=mr(r,this.bias.read())),o!=null&&(n=L(n,o));let i=ue(r,Dr(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ro(this.activation),useBias:this.useBias,kernelInitializer:Bt(this.kernelInitializer),recurrentInitializer:Bt(this.recurrentInitializer),biasInitializer:Bt(this.biasInitializer),kernelRegularizer:It(this.kernelRegularizer),recurrentRegularizer:It(this.recurrentRegularizer),biasRegularizer:It(this.biasRegularizer),activityRegularizer:It(this.activityRegularizer),kernelConstraint:an(this.kernelConstraint),recurrentConstraint:an(this.recurrentConstraint),biasConstraint:an(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};cm.className="SimpleRNNCell";de.registerClass(cm);var Oy=class extends Fr{constructor(e){e.cell=new cm(e);super(e)}call(e,t){return j(()=>{this.cell.dropoutMask!=null&&(ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return new e(t)}};Oy.className="SimpleRNN";de.registerClass(Oy);var dm=class extends Xd{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new q("GRUCell does not support reset_after parameter set to true.");this.units=e.units,bn(this.units,"units"),this.activation=$o(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=$o(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Ft(e.kernelRegularizer),this.recurrentRegularizer=Ft(e.recurrentRegularizer),this.biasRegularizer=Ft(e.biasRegularizer),this.kernelConstraint=on(e.kernelConstraint),this.recurrentConstraint=on(e.recurrentConstraint),this.biasConstraint=on(e.biasConstraint),this.dropout=Vu([1,No([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Vu([1,No([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=At(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return j(()=>{if(e=e,e.length!==2)throw new q(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,s=e[1];e=e[0],0bs(e),rate:this.dropout,training:n,count:3})),0bs(s),rate:this.recurrentDropout,training:n,count:3}));let r=this.dropoutMask,a=this.recurrentDropoutMask,o,i,l;0{this.cell.dropoutMask!=null&&(ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};My.className="GRU";de.registerClass(My);var Kd=class extends Xd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,bn(this.units,"units"),this.activation=$o(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=$o(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Ft(e.kernelRegularizer),this.recurrentRegularizer=Ft(e.recurrentRegularizer),this.biasRegularizer=Ft(e.biasRegularizer),this.kernelConstraint=on(e.kernelConstraint),this.recurrentConstraint=on(e.recurrentConstraint),this.biasConstraint=on(e.biasConstraint),this.dropout=Vu([1,No([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Vu([1,No([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=At(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,a=this.units;s=new(t=class extends Qs{apply(i,l){let c=r.apply([a]),u=new Uf().apply([a]),d=r.apply([a*2]);return aw(aw(c,u),d)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return j(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new q(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1],r=e[2];e=e[0],0bs(e),rate:this.dropout,training:n,count:4})),0bs(s),rate:this.recurrentDropout,training:n,count:4}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,l,c,u;0{this.cell.dropoutMask!=null&&(ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};zy.className="LSTM";de.registerClass(zy);var pm=class extends Xd{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return j(()=>{e=e;let n=e.slice(1),s=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?s.push(n.splice(0,o.stateSize.length)):s.push(n.splice(0,1));s.reverse();let r=[],a;for(let o=0;o{ll(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),s={cells:this.cells.map(t)};return Object.assign({},e,s)}static fromConfig(e,t,n={}){let s=[];for(let r of t.cells)s.push(yr(r,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return ry(e)}setWeights(e){let t=[];for(let n of this.cells){let s=n.weights.length,r=e.splice(s);for(let a=0;aiw(t(),n),o=()=>Ld(a,t,s);return!r||r<=1?An(o().clone()):Array(r).fill(void 0).map(o).map(l=>An(l.clone()))}var cB=function(e,t){var n={};for(var s in e)Object.prototype.hasOwnProperty.call(e,s)&&t.indexOf(s)<0&&(n[s]=e[s]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,s=Object.getOwnPropertySymbols(e);r{if(this.cell.dropoutMask!=null&&(ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new q("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return j(()=>{let{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)],a=Xt(r);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){j(()=>{if(!this.stateful)throw new sa("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)];if(n[0]==null)throw new q("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Xt(r)):this.states_=[Xt(r)];else if(e==null)ee(this.states_),this.keptStates!=null&&(ee(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Xt(r)):this.states_[0]=Xt(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new q(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):ee(this.states_);for(let o=0;oAn(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:s,padding:r,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",l=e[i?3:2],c=e[i?4:3],u=Ar(l,s[0],r,a[0],o[0]),d=Ar(c,s[1],r,a[1],o[1]);return[...e.slice(0,2),...i?[n,u,d]:[u,d,n]]}};dk.className="ConvRNN2D";var hm=class extends Kd{constructor(e){let{filters:t,kernelSize:n,strides:s,padding:r,dataFormat:a,dilationRate:o}=e;super(Object.assign({},e,{units:t}));this.filters=t,bn(this.filters,"filters"),this.kernelSize=qu(n,2,"kernelSize"),this.kernelSize.forEach(i=>bn(i,"kernelSize")),this.strides=qu(s||1,2,"strides"),this.strides.forEach(i=>bn(i,"strides")),this.padding=r||"valid",zs(this.padding),this.dataFormat=a||"channelsLast",Kt(this.dataFormat),this.dilationRate=qu(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>bn(i,"dilationRate"))}build(e){var t;e=At(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new q(`The channel dimension of the input should be defined. Found ${e[n]}`);let s=e[n],r=4,a=this.kernelSize.concat([s,this.filters*r]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;i=new(t=class extends Qs{apply(d,p){let h=l.apply([c]),f=xs([c]),m=l.apply([c*2]);return q1([h,f,m])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return j(()=>{if(e.length!==3)throw new q(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,s=e[0],r=e[1],a=e[2],o=4;0bs(s),rate:this.dropout,training:n,count:o}));let i=this.dropoutMask,l=(te,J,Q)=>!J||!J[Q]?te:L(J[Q],te),c=l(s,i,0),u=l(s,i,1),d=l(s,i,2),p=l(s,i,3);0bs(r),rate:this.recurrentDropout,training:n,count:o}));let h=this.recurrentDropoutMask,f=l(r,h,0),m=l(r,h,1),g=l(r,h,2),y=l(r,h,3),A=3,[x,b,w,k]=xn(this.kernel.read(),o,A),[S,N,$,F]=this.useBias?xn(this.bias.read(),o):[null,null,null,null];c=this.inputConv(c,x,S,this.padding),u=this.inputConv(u,b,N,this.padding),d=this.inputConv(d,w,$,this.padding),p=this.inputConv(p,k,F,this.padding);let[R,D,T,O]=xn(this.recurrentKernel.read(),o,A);f=this.recurrentConv(f,R),m=this.recurrentConv(m,D),g=this.recurrentConv(g,T),y=this.recurrentConv(y,O);let W=this.recurrentActivation.apply(ue(c,f)),H=this.recurrentActivation.apply(ue(u,m)),z=ue(L(H,a),L(W,this.activation.apply(ue(d,g)))),X=L(this.recurrentActivation.apply(ue(p,y)),this.activation.apply(z));return[X,X,z]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=cB(e,["units"]),s={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,s)}inputConv(e,t,n,s){let r=Qr(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?mr(r,n,this.dataFormat):r}recurrentConv(e,t){return Qr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};hm.className="ConvLSTM2DCell";de.registerClass(hm);var Ly=class extends dk{constructor(e){let t=new hm(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};Ly.className="ConvLSTM2D";de.registerClass(Ly);var fm=class extends at{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let s=0;s{this.invokeCallHook(e,t);let n=He(e);if(0iw(n,this.rate,r,this.seed),()=>n,s)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};fm.className="Dropout";de.registerClass(fm);var By=class extends fm{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};By.className="SpatialDropout1D";de.registerClass(By);var Wy=class extends at{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,bn(this.units,"units"),this.activation=$o(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=on(e.kernelConstraint),this.biasConstraint=on(e.biasConstraint),this.kernelRegularizer=Ft(e.kernelRegularizer),this.biasRegularizer=Ft(e.biasRegularizer),this.activityRegularizer=Ft(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=At(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=At(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=He(e),s=Zv(this.activation.getClassName()),r;return s!=null?r=Dr(n,this.kernel.read(),s,this.bias?this.bias.read():null):(r=Dr(n,this.kernel.read()),this.bias!=null&&(r=mr(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:Ro(this.activation),useBias:this.useBias,kernelInitializer:Bt(this.kernelInitializer),biasInitializer:Bt(this.biasInitializer),kernelRegularizer:It(this.kernelRegularizer),biasRegularizer:It(this.biasRegularizer),activityRegularizer:It(this.activityRegularizer),kernelConstraint:an(this.kernelConstraint),biasConstraint:an(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Wy.className="Dense";de.registerClass(Wy);var Vy=class extends at{constructor(e){e=e||{};super(e);this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=At(e);for(let t of e.slice(1))if(t==null)throw new q(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],To(e,1)]}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=He(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let s=[0];for(let r=2;r{this.invokeCallHook(e,t);let n=He(e);return this.activation.apply(n)})}getConfig(){let e={activation:Ro(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Uy.className="Activation";de.registerClass(Uy);var Gy=class extends at{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return j(()=>(e=He(e),Tz(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Gy.className="RepeatVector";de.registerClass(Gy);var Hy=class extends at{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t{this.invokeCallHook(e,t);let n=He(e),s=n.shape,r=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return G(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Hy.className="Reshape";de.registerClass(Hy);var jy=class extends at{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=fr(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Jt({ndim:this.dims.length+1})]}computeOutputShape(e){e=At(e);let t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return tt(He(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};jy.className="Permute";de.registerClass(jy);var qy=class extends at{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=He(e),s=-1;return gd(tl(n,this.maskValue),s)}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=He(e),s=-1,r=!0,a=gd(tl(n,this.maskValue),s,r);return L(n,pe(a,n.dtype))})}};qy.className="Masking";de.registerClass(qy);var Xy=class extends at{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(Nt(e.inputLength))}this.inputDim=e.inputDim,bn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,bn(this.outputDim,"outputDim"),this.embeddingsInitializer=Pt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Ft(e.embeddingsRegularizer),this.activityRegularizer=Ft(e.activityRegularizer),this.embeddingsConstraint=on(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return j(()=>this.maskZero?(e=He(e),tl(e,nt(e))):null)}computeOutputShape(e){if(e=At(e),this.inputLength==null)return[...e,this.outputDim];let t=Nt(this.inputLength);if(t.length!==e.length-1)throw new q(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s{this.invokeCallHook(e,t);let n=He(e);n.dtype!=="int32"&&(n=Bf(n,"int32"));let s=ow(this.embeddings.read(),G(n,[n.size]));return G(s,At(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Bt(this.embeddingsInitializer),embeddingsRegularizer:It(this.embeddingsRegularizer),activityRegularizer:It(this.activityRegularizer),embeddingsConstraint:an(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};Xy.className="Embedding";de.registerClass(Xy);var hl=class extends at{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Ue}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length1)throw new q(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;rr.length);e.indexOf(null)===-1&&Co(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return j(()=>{if(e=e,this.reshapeRequired){let n=[],s=e.map(r=>r.rank);if(s.indexOf(null)===-1){let r=No(s);for(let a of e){let o=a.rank;for(let i=0;i1){let c=fr(1,l).concat([0]);n.push(tt(i,c)),r=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(r){if(o==null){let i=a.shape,l=i.length,c=i[l-1],u=[c].concat(i.slice(0,i.length-1));a=G(tt(G(a,[-1,c]),[1,0]),u)}else if(o>1){let i=[o-1].concat(fr(0,o-1));a=tt(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s{if(t==null)return null;if(!Array.isArray(t))throw new q("`mask` should be an Array");if(!Array.isArray(e))throw new q("`inputs` should be an Array");if(t.length!==e.length)throw new q(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:qt(s,0));let n=t[0];for(let s=1;s{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0];for(let n=1;n{let t=e[0];for(let n=1;n1)throw new q("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return j(()=>q1(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new q("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[s]==null||r[s]==null){n[s]=null;break}n[s]+=r[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new q("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new q("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new q(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return j(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let s=[];for(let a=0;a3||t.shape.length>3)throw new Ue("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Ue("batchDot is not implemented for complex64-type Tensors yet.");let s=e.shape.length,r=t.shape.length;n==null&&(n=[s-1,r-2]);let a=n;return j(()=>{let o;if(s>r){o=s-r;let l=[];for(let c=0;cs){o=r-s;let l=[];for(let c=0;c0){let l;s>r?l=s+r-3:l=s-1;let c=[];for(let u=l;u"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Ue("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new q(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new q(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((r,a)=>Zd(r,e[a].shape.length)):s=[Zd(this.axes,t.shape.length),Zd(this.axes,n.shape.length)],this.normalize&&(t=tm(t,s[0]),n=tm(n,s[1])),dB(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Zd(this.axes,e.length),Zd(this.axes,t.length)],n}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Ue("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};tA.className="Dot";de.registerClass(tA);var nA=class extends at{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=He(e);return Ld(()=>ue(Vf(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};nA.className="GaussianNoise";de.registerClass(nA);var sA=class extends at{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=He(e);return this.rate>0&&this.rate<1?Ld(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return L(n,Vf(n.shape,1,r))},()=>n,t.training||!1):n})}};sA.className="GaussianDropout";de.registerClass(sA);var rA=class extends at{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||He(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return j(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Ld(()=>{let r=He(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,l=ko(Fu(n),this.rate);l=Bf(l,"float32");let c=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-c*i*this.rate,d=ue(L(r,l),L(ue(l,-1),i));return ue(L(d,c),u)},()=>He(e),t.training||!1)}return e})}};rA.className="AlphaDropout";de.registerClass(rA);function Yd(e,t,n,s,r,a=.001){let o;if(e.rank===2)o=V3(e,t,n,s,r,a);else if(e.rank===3)o=U3(e,t,n,s,r,a);else if(e.rank===4)o=G3(e,t,n,s,r,a);else throw new Ue(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function pB(e,t,n,s,r=.001){return j(()=>{let a=hf(e,s),o=a.mean,i=a.variance;return[Yd(e,o,i,n,t,r),o,i]})}function hB(e,t,n,s,r=.001){return j(()=>{let a=hf(e,s),o=a.mean,i=a.variance,l=[];for(let f of fr(0,e.rank))s.indexOf(f)!==-1?l.push(1):l.push(e.shape[f]);let c=G(o,l),u=G(i,l),d=t==null?null:G(t,l),p=n==null?null:G(n,l);return[Yd(e,c,u,p,d,r),o,i]})}function fB(e,t,n,s,r=.001){return v.arraysEqual(s.slice().sort(),fr(0,e.rank-1))?pB(e,t,n,s,r):hB(e,t,n,s,r)}var aA=class extends at{constructor(e){e==null&&(e={});super(e);this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Pt(e.betaInitializer||"zeros"),this.gammaInitializer=Pt(e.gammaInitializer||"ones"),this.movingMeanInitializer=Pt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Pt(e.movingVarianceInitializer||"ones"),this.betaConstraint=on(e.betaConstraint),this.gammaConstraint=on(e.gammaConstraint),this.betaRegularizer=Ft(e.betaRegularizer),this.gammaRegularizer=Ft(e.gammaRegularizer)}build(e){e=At(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new q(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Jt({ndim:e.length,axes:{[t]:n}})];let s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return j(()=>{let n=t.training==null?!1:t.training,s=He(e),r=s.shape,a=r.length,o=fr(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let l=al(1,a);l[i]=r[i];let c=o.slice();c.sort();let u=!v.arraysEqual(c,fr(0,a).slice(0,a-1)),d=()=>{if(u){let y=G(this.movingMean.read(),l),A=G(this.movingVariance.read(),l),x=this.center?G(this.beta.read(),l):null,b=this.scale?G(this.gamma.read(),l):null;return Yd(s,y,A,x,b,this.epsilon)}else return Yd(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[p,h,f]=fB(s,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(y,A,x)=>{j(()=>{let b=1-x,w=y.read(),k=L(xe(w,A),b);y.write(xe(w,k))})};return(()=>{m(this.movingMean,h,this.momentum),m(this.movingVariance,f,this.momentum)})(),p})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Bt(this.betaInitializer),gammaInitializer:Bt(this.gammaInitializer),movingMeanInitializer:Bt(this.movingMeanInitializer),movingVarianceInitializer:Bt(this.movingVarianceInitializer),betaRegularizer:It(this.betaRegularizer),gammaRegularizer:It(this.gammaRegularizer),betaConstraint:an(this.betaConstraint),gammaConstraint:an(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};aA.className="BatchNormalization";de.registerClass(aA);var oA=class extends at{constructor(e){e==null&&(e={});super(e);if(this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Pt(e.betaInitializer||"zeros"),this.gammaInitializer=Pt(e.gammaInitializer||"ones"),this.betaRegularizer=Ft(e.betaRegularizer),this.gammaRegularizer=Ft(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=At(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==Co(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){let n=He(e),s=n.shape,r=s.length;return j(()=>{let a=!0,{mean:o,variance:i}=hf(n,this.axis,a),l=al(1,r);for(let f of this.axis)l[f]=s[f];let c=f=>f!=null&&f.shape.length!==r&&this.axis!==[r-1]?G(f,l):f,u=c(this.gamma.read()),d=c(this.beta.read()),p=[],h=[];for(let f=0;f{if(e.rank!==4)throw new q(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new q("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=pr()),n!=="channelsLast"&&n!=="channelsFirst")throw new q(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],Ms(e,s)})}var iA=class extends at{constructor(e){e==null&&(e={});super(e);if(this.dataFormat=e.dataFormat==null?pr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new q(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new q(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new q(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Jt({ndim:4})]}computeOutputShape(e){e=At(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return j(()=>mB(He(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};iA.className="ZeroPadding2D";de.registerClass(iA);function mm(e,t,n,s,r,a){return j(()=>{Kt(r),ew(a),zs(s),n==null&&(n=[1,1]),s==null&&(s="valid"),r==null&&(r=pr()),a==null&&(a="max"),e=Ny(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=Id(e,t,n,i):o=Ad(e,t,n,i),r==="channelsFirst"&&(o=tt(o,[0,3,1,2])),o})}function pk(e,t,n,s,r,a){return j(()=>{Kt(r),ew(a),zs(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),r==null&&(r=pr()),a==null&&(a="max"),e=ok(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=y1(e,t,n,i):o=t1(e,t,n,i),r==="channelsFirst"&&(o=tt(o,[0,4,1,2,3])),o})}var hk=class extends at{constructor(e){e.poolSize==null&&(e.poolSize=2);super(e);if(typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new q(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(bn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new q(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);bn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,zs(this.padding),this.inputSpec=[new Jt({ndim:3})]}computeOutputShape(e){e=At(e);let t=Ar(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return j(()=>{this.invokeCallHook(e,t),e=Md(He(e),2);let n=this.poolingFunction(He(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return dt(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},lA=class extends hk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Kt(r),zs(s),mm(e,t,n,s,r,"max")}};lA.className="MaxPooling1D";de.registerClass(lA);var uA=class extends hk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Kt(r),zs(s),mm(e,t,n,s,r,"avg")}};uA.className="AveragePooling1D";de.registerClass(uA);var fk=class extends at{constructor(e){e.poolSize==null&&(e.poolSize=[2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new q(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];bn(this.poolSize,"poolSize"),bn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Kt(this.dataFormat),zs(this.padding),this.inputSpec=[new Jt({ndim:4})]}computeOutputShape(e){e=At(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Ar(t,this.poolSize[0],this.padding,this.strides[0]),n=Ar(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return j(()=>(this.invokeCallHook(e,t),this.poolingFunction(He(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},cA=class extends fk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Kt(r),zs(s),mm(e,t,n,s,r,"max")}};cA.className="MaxPooling2D";de.registerClass(cA);var dA=class extends fk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Kt(r),zs(s),mm(e,t,n,s,r,"avg")}};dA.className="AveragePooling2D";de.registerClass(dA);var mk=class extends at{constructor(e){e.poolSize==null&&(e.poolSize=[2,2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new q(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];bn(this.poolSize,"poolSize"),bn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Kt(this.dataFormat),zs(this.padding),this.inputSpec=[new Jt({ndim:5})]}computeOutputShape(e){e=At(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Ar(t,this.poolSize[0],this.padding,this.strides[0]),n=Ar(n,this.poolSize[1],this.padding,this.strides[1]),s=Ar(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return j(()=>(this.invokeCallHook(e,t),this.poolingFunction(He(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},pA=class extends mk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Kt(r),zs(s),pk(e,t,n,s,r,"max")}};pA.className="MaxPooling3D";de.registerClass(pA);var hA=class extends mk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Kt(r),zs(s),pk(e,t,n,s,r,"avg")}};hA.className="AveragePooling3D";de.registerClass(hA);var gk=class extends at{constructor(e){super(e);this.inputSpec=[new Jt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Ue}},fA=class extends gk{constructor(e){super(e||{})}call(e,t){return j(()=>{let n=He(e);return Lt(n,1)})}};fA.className="GlobalAveragePooling1D";de.registerClass(fA);var mA=class extends gk{constructor(e){super(e||{})}call(e,t){return j(()=>{let n=He(e);return Wn(n,1)})}};mA.className="GlobalMaxPooling1D";de.registerClass(mA);var yk=class extends at{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Kt(this.dataFormat),this.inputSpec=[new Jt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Ue}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},gA=class extends yk{call(e,t){return j(()=>{let n=He(e);return this.dataFormat==="channelsLast"?Lt(n,[1,2]):Lt(n,[2,3])})}};gA.className="GlobalAveragePooling2D";de.registerClass(gA);var yA=class extends yk{call(e,t){return j(()=>{let n=He(e);return this.dataFormat==="channelsLast"?Wn(n,[1,2]):Wn(n,[2,3])})}};yA.className="GlobalMaxPooling2D";de.registerClass(yA);var Ak=class extends at{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let s=t.layer,r=yr(s,n);delete t.layer;let a={layer:r};return Object.assign(a,t),new e(a)}},AA=class extends Ak{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=At(e),e.length<3)throw new q(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=At(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return j(()=>(e=He(e),ck((a,o)=>[He(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};AA.className="TimeDistributed";de.registerClass(AA);function gB(e){il(wz,"BidirectionalMergeMode",e)}var yB="concat",xA=class extends Ak{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=yr(n),t.goBackwards=t.goBackwards!==!0;let s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=yr(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?yB:e.mergeMode,gB(this.mergeMode),e.weights)throw new Ue("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):os(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=uk(e,n,s,this.numConstants);if(e=r.inputs,n=r.initialState,s=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let l=n.length;if(l%2>0)throw new q("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let c=n.map(u=>new Jt({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),o.push(...c)}if(s!=null)throw new Ue("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof gr;for(let l of a)if(l instanceof gr!==i)throw new q("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let l=[e].concat(a),c=this.inputSpec.concat(o),u=this.inputSpec;this.inputSpec=c;let d=super.apply(l,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return j(()=>{let n=t.initialState,s,r;if(n==null)s=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),l=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let a;this.returnState&&(Array.isArray(s)&&(a=s.slice(1).concat(r.slice(1))),s=s[0],r=r[0]),this.returnSequences&&(r=vs(r,1));let o;return this.mergeMode==="concat"?o=q1([s,r]):this.mergeMode==="sum"?o=ue(s,r):this.mergeMode==="ave"?o=L(.5,ue(s,r)):this.mergeMode==="mul"?o=L(s,r):this.mergeMode==null&&(o=[s,r]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){ll(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),ll(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=yr(t.layer);if(delete t.layer,t.numConstants!=null)throw new Ue("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let s=t;return s.layer=n,new e(s)}};xA.className="Bidirectional";de.registerClass(xA);function AB(e){return new Uu(e)}function xB(e){return new Sy(e)}function bB(e){return new wy(e)}function vB(e){return new ky(e)}function wB(e){return new Iy(e)}function kB(e){return new Ty(e)}function IB(e){return new Cy(e)}function SB(e){return new um(e)}function CB(e){return new jd(e)}function TB(e){return new Ry(e)}function NB(e){return new qd(e)}function EB(e){return new $y(e)}function RB(e){return new Dy(e)}function $B(e){return new _y(e)}function DB(e){return new Py(e)}function _B(e){return new Fy(e)}function PB(e){return new Uy(e)}function FB(e){return new Wy(e)}function OB(e){return new fm(e)}function MB(e){return new By(e)}function zB(e){return new Vy(e)}function LB(e){return new Gy(e)}function BB(e){return new Hy(e)}function WB(e){return new jy(e)}function VB(e){return new Xy(e)}function UB(e){return new Ky(e)}function GB(e){return new Yy(e)}function HB(e){return new eA(e)}function jB(e){return new Jy(e)}function qB(e){return new Qy(e)}function XB(e){return new Zy(e)}function KB(e){return new tA(e)}function ZB(e){return new aA(e)}function YB(e){return new oA(e)}function JB(e){return new iA(e)}function bA(e){return new uA(e)}function QB(e){return bA(e)}function eW(e){return bA(e)}function vA(e){return new dA(e)}function tW(e){return vA(e)}function nW(e){return vA(e)}function wA(e){return new hA(e)}function sW(e){return wA(e)}function rW(e){return wA(e)}function aW(e){return new fA(e)}function oW(e){return new gA(e)}function xk(e){return new mA(e)}function bk(e){return new yA(e)}function vk(e){return new lA(e)}function wk(e){return new cA(e)}function iW(e){return new pA(e)}function lW(e){return new My(e)}function uW(e){return new dm(e)}function cW(e){return new zy(e)}function dW(e){return new Kd(e)}function pW(e){return new Oy(e)}function hW(e){return new cm(e)}function fW(e){return new Ly(e)}function mW(e){return new hm(e)}function gW(e){return new Fr(e)}function yW(e){return new pm(e)}function AW(e){return new xA(e)}function xW(e){return new AA(e)}var bW=xk,vW=bk,wW=vk,kW=wk;function IW(e){return new nA(e)}function SW(e){return new sA(e)}function CW(e){return new rA(e)}function TW(e){return new qy(e)}var kk={};Le(kk,{MAPE:()=>zW,MSE:()=>WW,binaryAccuracy:()=>NW,binaryCrossentropy:()=>EW,categoricalAccuracy:()=>$W,categoricalCrossentropy:()=>DW,cosineProximity:()=>FW,mape:()=>LW,meanAbsoluteError:()=>OW,meanAbsolutePercentageError:()=>MW,meanSquaredError:()=>BW,mse:()=>VW,precision:()=>_W,recall:()=>PW,sparseCategoricalAccuracy:()=>RW});function NW(e,t){return ly(e,t)}function EW(e,t){return Sw(e,t)}function RW(e,t){return Cw(e,t)}function $W(e,t){return uy(e,t)}function DW(e,t){return cy(e,t)}function _W(e,t){return Iw(e,t)}function PW(e,t){return yL(e,t)}function FW(e,t){return oy(e,t)}function OW(e,t){return nm(e,t)}function MW(e,t){return Hu(e,t)}function zW(e,t){return Hu(e,t)}function LW(e,t){return Hu(e,t)}function BW(e,t){return cl(e,t)}function WW(e,t){return cl(e,t)}function VW(e,t){return cl(e,t)}var Ik={};Le(Ik,{modelFromJSON:()=>YL});var Sk={};Le(Sk,{l1:()=>GW,l1l2:()=>UW,l2:()=>HW});function UW(e){return new Gd(e)}function GW(e){return aB(e)}function HW(e){return oB(e)}var Ck=class extends Gu{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof aa))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function gm(e,t){return et}var Nk=class extends Ck{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Ue("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=gm:this.mode==="max"?this.monitorFunc=Tk:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Tk:this.monitorFunc=gm,this.monitorFunc===gm&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===gm?1/0:-1/0}async onEpochEnd(e,t){await Eo(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function jW(e){return new Nk(e)}var qW={earlyStopping:jW},xr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(xr||(xr={}));var Ek;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(Ek||(Ek={}));var kA={};function XW(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};kA[e]=n}function Rk(e){return kA[e]}function KW(e){delete kA[e]}function I(e,t,n,s,r){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,l=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return Gn(t.inputNames[a.inputIndexStart],n,s,r);if(a.type==="tensors")return t.inputNames.slice(i,l).map(p=>Gn(p,n,s,r));let c=Gn(t.inputNames.slice(i)[0],n,s,r),u=c.dataSync();return a.type==="number"?u[0]:v.toNestedArray(c.shape,u)}let o=t.attrParams[e];return o&&o.value}function Gn(e,t,n,s){let[r,a]=ws(e);if(s!=null){let i=s.getHashTableHandleByName(r);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[ym(r,i)]);return o!==void 0?t[ym(r,o)][a]:void 0}function ZW(e,t,n){return t[ym(e,n.currentContextId)]}function oa(e,t){let[n,s,r]=ws(e);return[ym(n,t&&t.currentContextId),s,r]}function ym(e,t){return t?`${e}-${t}`:e}function ws(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],s=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,s]}function Am(e,t,n){let s=I("pad",e,t,n);if(s==="explicit"){s=I("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)r[a][0]=s[a*2],r[a][1]=s[a*2+1];return r}return s}function ia(e){return e.kept?e:lr(e)}var $k={};Le($k,{json:()=>YW});var YW=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Dk={};Le(Dk,{json:()=>JW});var JW=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],_k={};Le(_k,{json:()=>QW});var QW=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],Pk={};Le(Pk,{json:()=>eV});var eV=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],Fk={};Le(Fk,{json:()=>tV});var tV=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],Ok={};Le(Ok,{json:()=>nV});var nV=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Mk={};Le(Mk,{json:()=>sV});var sV=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],zk={};Le(zk,{json:()=>rV});var rV=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],Lk={};Le(Lk,{json:()=>aV});var aV=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],Bk={};Le(Bk,{json:()=>oV});var oV=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],Wk={};Le(Wk,{json:()=>iV});var iV=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Vk={};Le(Vk,{json:()=>lV});var lV=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],Uk={};Le(Uk,{json:()=>uV});var uV=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],Gk={};Le(Gk,{json:()=>cV});var cV=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],Hk={};Le(Hk,{json:()=>dV});var dV=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],jk={};Le(jk,{json:()=>pV});var pV=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],qk={};Le(qk,{json:()=>hV});var hV=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],Xk={};Le(Xk,{json:()=>fV});var fV=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],Kk={};Le(Kk,{json:()=>mV});var mV=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],Zk=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[$k,Dk,_k,Pk,Fk,Ok,Mk,zk,Lk,Bk,Wk,Vk,Uk,Gk,Hk,jk,qk,Xk,Kk],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){let n=e.node,s=[],r=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?s.push(f[m.name]):m.op==="Const"?r.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let d=Object.keys(o);d.forEach(f=>{let m=o[f];m.inputNames.forEach((g,y)=>{let[A,,x]=oa(g),b=o[A];if(b.outputs!=null){let w=b.outputs.indexOf(x);if(w!==-1){let k=`${A}:${w}`;m.inputNames[y]=k}}m.inputs.push(b),b.children.push(m)})}),Object.keys(u).length===0?d.forEach(f=>{let m=o[f];m.children.length===0&&l.push(m)}):Object.keys(u).forEach(f=>{let[m]=oa(f),g=o[m];g!=null&&(g.signatureKey=u[f],l.push(g))}),Object.keys(c).length>0?Object.keys(c).forEach(f=>{let[m]=oa(f),g=o[m];g&&(g.signatureKey=c[f],i.push(g))}):i=s;let p={};e.library!=null&&e.library.function!=null&&(p=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let h={nodes:o,inputs:i,outputs:l,weights:r,placeholders:s,signature:t,functions:p};return a.length>0&&(h.initNodes=a),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=Rk(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.substr(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,r)=>(s[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,r)=>{let a=r.type,o;switch(r.type){case"string":o=IA(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=IA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":o=DA(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=DA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":o=CA(e.attr,r.tfName,r.defaultValue||0),o===void 0&&!!r.tfDeprecatedName&&(o=CA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":o=$A(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=$A(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":o=SA(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=SA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":o=PA(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=PA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":o=RA(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=RA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":o=_A(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=_A(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":o=NA(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=NA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":o=EA(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=EA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":o=Jk(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Jk(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return s[r.name]={value:o,type:a},s},{})),n}mapFunction(e){let t=e.nodeDef,n=[],s=[],r={};t!=null&&(r=t.reduce((u,d)=>(u[d.name]=this.mapNode(d),d.op==="Const"&&s.push(u[d.name]),u),{}));let a=[],o=[];e.signature.inputArg.forEach(u=>{let[d]=oa(u.name),p={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:TA(u.type),type:"dtype"}},children:[]};p.signatureKey=u.name,a.push(p),r[d]=p}),Object.keys(r).forEach(u=>{let d=r[u];d.inputNames.forEach((p,h)=>{let[f,,m]=oa(p),g=r[f];if(g.outputs!=null){let y=g.outputs.indexOf(m);if(y!==-1){let A=`${f}:${y}`;d.inputNames[h]=A}}d.inputs.push(g),g.children.push(d)})});let l=e.ret;e.signature.outputArg.forEach(u=>{let[d,p]=oa(l[u.name]),h=r[d];h!=null&&(h.defaultOutput=p,o.push(h))});let c=this.mapArgsToSignature(e);return{nodes:r,inputs:a,outputs:o,weights:s,placeholders:n,signature:c}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function gV(e){let t=Z().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function Yk(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):gV(e);return t?n:n.toLowerCase()}function IA(e,t,n,s=!1){let r=e[t];return r!=null?Yk(r.s,s):n}function SA(e,t,n){let s=e[t];return s?s.b:n}function CA(e,t,n){let s=e[t]||{},r=s.i!=null?s.i:s.f!=null?s.f:n;return typeof r=="number"?r:parseInt(r,10)}function TA(e){switch(typeof e=="string"&&(e=xr[e]),e){case xr.DT_FLOAT:return"float32";case xr.DT_INT32:case xr.DT_INT64:case xr.DT_INT8:case xr.DT_UINT8:return"int32";case xr.DT_BOOL:return"bool";case xr.DT_DOUBLE:return"float32";case xr.DT_STRING:return"string";default:return null}}function Jk(e,t,n){let s=e[t];return s&&s.func?s.func.name:n}function NA(e,t,n){let s=e[t];return s&&s.type?TA(s.type):n}function EA(e,t,n){let s=e[t];return s&&s.list&&s.list.type?s.list.type.map(r=>TA(r)):n}function Qk(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function RA(e,t,n){let s=e[t];return s&&s.shape?Qk(s.shape):n}function $A(e,t,n){let s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function DA(e,t,n,s=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(a=>Yk(a,s)):n}function _A(e,t,n){let s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(r=>Qk(r)):n}function PA(e,t,n){let s=e[t];return s&&s.list&&s.list.b?s.list.b:n}var yV=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,r)=>(s[r]=this.getAttr(r),s),{}))}getInput(e){return Gn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return Gn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return CA(this.node.rawAttrs,e,t);if(n.s!=null)return IA(this.node.rawAttrs,e,t);if(n.b!=null)return SA(this.node.rawAttrs,e,t);if(n.shape!=null)return RA(this.node.rawAttrs,e,t);if(n.type!=null)return NA(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return $A(this.node.rawAttrs,e,t);if(n.list.s!=null)return DA(this.node.rawAttrs,e,t);if(n.list.shape!=null)return _A(this.node.rawAttrs,e,t);if(n.list.b!=null)return PA(this.node.rawAttrs,e,t);if(n.list.type!=null)return EA(this.node.rawAttrs,e,t)}return t}},AV=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[ue(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[ef(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[x1(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[L(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[fe(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[l1(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[Qh(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[xe(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[Pu(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[Rr(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[ea(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[kf(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},xV=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Zt(I("x",e,t,n))];case"Acos":return[H2(I("x",e,t,n))];case"Acosh":return[j2(I("x",e,t,n))];case"Asin":return[X2(I("x",e,t,n))];case"Asinh":return[K2(I("x",e,t,n))];case"Atan":return[Z2(I("x",e,t,n))];case"Atan2":return[Y2(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[J2(I("x",e,t,n))];case"Ceil":return[s1(I("x",e,t,n))];case"Complex":return[Ao(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[bd(I("x",e,t,n))];case"Cosh":return[af(I("x",e,t,n))];case"Elu":return[$u(I("x",e,t,n))];case"Erf":return[u1(I("x",e,t,n))];case"Exp":return[ys(I("x",e,t,n))];case"Expm1":return[c1(I("x",e,t,n))];case"Floor":return[_u(I("x",e,t,n))];case"Log":return[As(I("x",e,t,n))];case"Log1p":return[wd(I("x",e,t,n))];case"Imag":return[lf(I("x",e,t,n))];case"Neg":return[_t(I("x",e,t,n))];case"Reciprocal":return[w1(I("x",e,t,n))];case"Real":return[Nd(I("x",e,t,n))];case"Relu":return[cr(I("x",e,t,n))];case"Round":return[gf(I("x",e,t,n))];case"Selu":return[Af(I("x",e,t,n))];case"Sigmoid":return[ss(I("x",e,t,n))];case"Sin":return[xf(I("x",e,t,n))];case"Sign":return[I1(I("x",e,t,n))];case"Sinh":return[bf(I("x",e,t,n))];case"Softplus":return[Qi(I("x",e,t,n))];case"Sqrt":return[Cn(I("x",e,t,n))];case"Square":return[vt(I("x",e,t,n))];case"Tanh":return[Zi(I("x",e,t,n))];case"Tan":return[T1(I("x",e,t,n))];case"ClipByValue":return[rs(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[mf(I("x",e,t,n))];case"Rsqrt":return[yf(Gn(e.inputNames[0],t,n))];case"Prod":return[ff(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[vd(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[Td(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[p1(Gn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function tr(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let s=0;sn+` Shapes ${e} and ${t} must match`)}}}function e7(e){return!(typeof e=="number"||e.some(t=>t<0))}function Jd(e,t,n){let s=FA(e,n),r=!e7(s);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${s}`);if(r&&t.forEach(a=>{s=FA(a.shape,s)}),!e7(s))throw new Error(`Non-fully-defined elementShape: ${s}`);return s}function FA(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let s=0;s=0&&a>=0&&r!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[s]=r>=0?r:a}return n}var bV=class{constructor(e,t,n,s,r,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=r,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=Ee(0),An(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),tr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,An(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,Vn(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,s=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is ${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,a=[];j(()=>{t=G(t,[1,n,r]);for(let i=0;i{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);tr(t,r.shape,"TensorList shape mismatch: "),An(r)}),this.idTensor=Ee(0),this.maxNumElements=s,An(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Qd([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);tr(e,this.elementShape,"TensorList shape mismatch: ");let s=Jd(this.elementShape,this.tensors,e);return j(()=>{let r=this.tensors.map(a=>G(a,s));return Tn(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Jd(this.elementShape,this.tensors,e),s=this.tensors.pop();return tr(s.shape,e,"TensorList shape mismatch: "),G(s,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(tr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");An(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);tr(this.tensors[e].shape,t,"TensorList shape mismatch: ");let s=Jd(this.elementShape,this.tensors,t);return G(this.tensors[e],s)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);tr(this.elementShape,t.shape,"TensorList shape mismatch: "),An(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);tr(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let s=Jd(this.elementShape,this.tensors,n);return e.length===0?jt([],[0].concat(s)):j(()=>{let r=e.map(a=>G(this.tensors[a],s));return Tn(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);tr(this.elementShape,t,"TensorList shape mismatch: ");let n=Jd(this.elementShape,this.tensors,t);return this.size()===0?jt([],[0].concat(n)):j(()=>{let s=this.tensors.map(r=>G(r,n));return kt(s,0)})}};function vV(e,t,n){let s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);tr(r,t,"TensorList shape mismatch: ");let a=Vn(e);return new Qd(a,t,s)}function wV(e,t,n){return new Qd([],e,t,n)}function kV(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(s!=null&&s!==-1&&r>=s)throw new Error(`Max index must be < array size (${r} vs. ${s})`);let a=new Qd([],n,e.dtype,s),o=Vn(e,0);return t.forEach((i,l)=>{a.setItem(i,o[l])}),a}function IV(e,t,n){let s=0,r=t.map(u=>(s+=u,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is ${s}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=FA(a,n),i=s===0?0:e.size/s,l=j(()=>{let u=[];e=G(e,[1,s,i]);for(let d=0;d{switch(e.op){case"If":case"StatelessIf":{let s=I("thenBranch",e,t,n),r=I("elseBranch",e,t,n),a=I("cond",e,t,n),o=I("args",e,t,n);return(await a.data())[0]?n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let s=I("body",e,t,n),r=I("cond",e,t,n),a=I("args",e,t,n),o=await n.functionMap[r].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(u=>u.id),l=await o[0].data();o.forEach(u=>{!u.kept&&i.indexOf(u.id)===-1&&u.dispose()});let c=a;for(;l[0];){let u=c;c=await n.functionMap[s].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let d=c.map(h=>h.id);u.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let p=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await p[0].data(),p.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return c}case"LoopCond":{let s=I("pred",e,t,n);return[ia(s)]}case"Switch":{let s=I("pred",e,t,n),r=I("data",e,t,n);return r.kept||(r=ia(r)),(await s.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let s=e.inputNames.find(r=>Gn(r,t,n)!==void 0);if(s){let r=Gn(s,t,n);return[ia(r)]}return}case"Enter":{let s=I("frameName",e,t,n),r=I("tensor",e,t,n);return n.enterFrame(s),[ia(r)]}case"Exit":{let s=I("tensor",e,t,n);return n.exitFrame(),[ia(s)]}case"NextIteration":{let s=I("tensor",e,t,n);return n.nextIteration(),[ia(s)]}case"TensorArrayV3":{let s=I("size",e,t,n),r=I("dtype",e,t,n),a=I("elementShape",e,t,n),o=I("dynamicSize",e,t,n),i=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),c=I("name",e,t,n),u=new bV(c,r,s,a,l,o,i);return n.addTensorArray(u),[u.idTensor,Ee(1)]}case"TensorArrayWriteV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(s.id);return o.write(r,a),[o.idTensor]}case"TensorArrayReadV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n);return[n.getTensorArray(s.id).read(r)]}case"TensorArrayGatherV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("dtype",e,t,n);return[n.getTensorArray(s.id).gather(r,a)]}case"TensorArrayScatterV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(s.id);return o.scatter(r,a),[o.idTensor]}case"TensorArrayConcatV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id),a=I("dtype",e,t,n);return[r.concat(a)]}case"TensorArraySplitV3":{let s=I("tensorArrayId",e,t,n),r=I("tensor",e,t,n),a=I("lengths",e,t,n),o=n.getTensorArray(s.id);return o.split(a,r),[o.idTensor]}case"TensorArraySizeV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return[Ee(r.size(),"int32")]}case"TensorArrayCloseV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorList(s.id);return o.setItem(r,a),[o.idTensor]}case"TensorListGetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(s.id).getItem(r,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let s=I("indices",e,t,n),r=I("tensor",e,t,n),a=I("elementShape",e,t,n),o=I("numElements",e,t,n),i=kV(r,s,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let s=I("elementShape",e,t,n),r=I("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=I(a,e,t,n),i=wV(s,r,o);return n.addTensorList(i),[i.idTensor]}case"TensorListGather":{let s=I("tensorListId",e,t,n),r=I("indices",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(s.id).gather(r,o,a)]}case"TensorListStack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=I("numElements",e,t,n);return[n.getTensorList(s.id).stack(r,a,o)]}case"TensorListFromTensor":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=vV(s,r,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":{let s=I("tensorListId",e,t,n),r=n.getTensorList(s.id),a=I("dtype",e,t,n),o=I("elementShape",e,t,n);return[r.concat(a,o)]}case"TensorListPushBack":{let s=I("tensorListId",e,t,n),r=I("tensor",e,t,n),a=n.getTensorList(s.id);return a.pushBack(r),[a.idTensor]}case"TensorListPopBack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n);return[n.getTensorList(s.id).popBack(r,a)]}case"TensorListSplit":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("lengths",e,t,n),o=IV(s,a,r);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function t7(e,t,n){let[s,r]=I("fusedOps",e,t,n),a=s==="biasadd",o=!a,i=r==="prelu",l=s==="fusedbatchnorm",c=I("numArgs",e,t,n);if(a){if(i&&c!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&c!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let u=I("strides",e,t,n),d=Am(e,t,n),p=I("dataFormat",e,t,n).toUpperCase(),h=I("dilations",e,t,n),[f,m]=I("args",e,t,n);o&&(m=f,f=void 0);let g=I("leakyreluAlpha",e,t,n);return{stride:u,pad:d,dataFormat:p,dilations:h,biasArg:f,preluArg:m,activationFunc:r,leakyreluAlpha:g}}var CV=(e,t,n)=>{switch(e.op){case"Conv1D":{let s=I("stride",e,t,n),r=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilation",e,t,n);return[sf(I("x",e,t,n),I("filter",e,t,n),s,r,a,o)]}case"Conv2D":{let s=I("strides",e,t,n),r=Am(e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilations",e,t,n);return[Qr(I("x",e,t,n),I("filter",e,t,n),[s[1],s[2]],r,a,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:c,leakyreluAlpha:u}=t7(e,t,n);return[So.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:c,leakyreluAlpha:u}=t7(e,t,n);return[So.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let s=I("outputShape",e,t,n),r=I("strides",e,t,n),a=Am(e,t,n);return[rf(I("x",e,t,n),I("filter",e,t,n),s,[r[1],r[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let s=I("strides",e,t,n),r=Am(e,t,n),a=I("dilations",e,t,n),o=I("dataFormat",e,t,n).toUpperCase();return[Ru(I("input",e,t,n),I("filter",e,t,n),[s[1],s[2]],r,o,[a[1],a[2]])]}case"Conv3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilations",e,t,n);return[a1(I("x",e,t,n),I("filter",e,t,n),[s[1],s[2],s[3]],r,a,[o[1],o[2],o[3]])]}case"AvgPool":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[Ad(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPool":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[Id(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPoolWithArgmax":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n),o=I("includeBatchInIndex",e,t,n),{result:i,indexes:l}=uv(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r,o);return[i,l]}case"AvgPool3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[t1(I("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"MaxPool3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[y1(I("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"Dilation2D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("dilations",e,t,n),o=s[1],i=s[2],l=a[1],c=a[2];return[i1(I("x",e,t,n),I("filter",e,t,n),[o,i],r,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},TV=(e,t,n)=>{switch(e.op){case"Fill":{let s=I("shape",e,t,n),r=I("dtype",e,t,n),a=I("value",e,t,n);return[Du(s,a,r)]}case"LinSpace":{let s=I("start",e,t,n),r=I("stop",e,t,n),a=I("num",e,t,n);return[nv(s,r,a)]}case"Multinomial":{let s=I("logits",e,t,n),r=I("numSamples",e,t,n),a=I("seed",e,t,n);return[cv(s,r,a)]}case"OneHot":{let s=I("indices",e,t,n),r=I("depth",e,t,n),a=I("onValue",e,t,n),o=I("offValue",e,t,n);return[Su(s,r,a,o)]}case"Ones":return[xs(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[bs(I("x",e,t,n))];case"RandomUniform":return[Fu(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let s=I("start",e,t,n),r=I("stop",e,t,n),a=I("step",e,t,n);return[Ou(s,r,a,I("dtype",e,t,n))]}case"TruncatedNormal":{let s=I("shape",e,t,n),r=I("mean",e,t,n),a=I("stdDev",e,t,n),o=I("seed",e,t,n);return[If(s,r,a,I("dtype",e,t,n),o)]}case"Zeros":return[Xt(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[nt(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function OA(e,t,n){let s=I("boxes",e,t,n),r=I("scores",e,t,n),a=I("maxOutputSize",e,t,n),o=I("iouThreshold",e,t,n),i=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}}var NV=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}=OA(e,t,n),c=await $e.nonMaxSuppressionWithScoreAsync(s,r,a,o,i,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=OA(e,t,n),l=I("padToMaxOutputSize",e,t,n),c=await $e.nonMaxSuppressionPaddedAsync(s,r,a,o,i,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=OA(e,t,n);return[await $e.nonMaxSuppressionAsync(s,r,a,o,i)]}case"Where":{let s=pe(I("condition",e,t,n),"bool"),r=[await R1(s)];return s.dispose(),r}case"ListDiff":return hv(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},EV=(e,t,n)=>{switch(e.op){case"TopKV2":{let s=I("x",e,t,n),r=I("k",e,t,n),a=I("sorted",e,t,n),o=N1(s,r,a);return[o.values,o.indices]}case"Unique":{let s=I("x",e,t,n),r=Sf(s);return[r.values,r.indices]}case"UniqueV2":{let s=I("x",e,t,n),r=I("axis",e,t,n),a=Sf(s,r);return[a.values,a.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},RV=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let s=I("default",e,t,n);return[Gn(e.name,t,n)||s];case"Placeholder":return[Gn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=I("x",e,t,n);return[ia(c)]}case"IdentityN":return I("x",e,t,n).map(c=>ia(c));case"Snapshot":let r=I("x",e,t,n);return[ia(r)];case"Shape":return[Yt(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(c=>Yt(c.shape));case"Size":return[Ee(I("x",e,t,n).size,"int32")];case"Rank":return[Ee(I("x",e,t,n).rank,"int32")];case"NoOp":return[Ee(1)];case"Print":let a=I("x",e,t,n),o=I("data",e,t,n),i=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let c=0;ce.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Ee(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),j(()=>{let s=Vn(t),r=n.length,a=s.length;v.assert(r===a,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${a} elements.`);for(let o=0;o{let s=[];for(let r=0;r{switch(e.op){case"HashTable":case"HashTableV2":{let r=I("keyDType",e,t,n),a=I("valueDType",e,t,n),o=new $V(r,a);return s.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),o=I("values",e,t,n);return[await s.getHashTableById(r.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),o=I("defaultValue",e,t,n);return[await s.getHashTableById(r.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=I("tableHandle",e,t,n,s);return[s.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},_V=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let s=I("images",e,t,n),r=I("size",e,t,n),a=I("alignCorners",e,t,n),o=I("halfPixelCenters",e,t,n);return[$e.resizeBilinear(s,[r[0],r[1]],a,o)]}case"ResizeNearestNeighbor":{let s=I("images",e,t,n),r=I("size",e,t,n),a=I("alignCorners",e,t,n),o=I("halfPixelCenters",e,t,n);return[$e.resizeNearestNeighbor(s,[r[0],r[1]],a,o)]}case"CropAndResize":{let s=I("image",e,t,n),r=I("boxes",e,t,n),a=I("boxInd",e,t,n),o=I("cropSize",e,t,n),i=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[$e.cropAndResize(s,r,a,o,i,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},PV=(e,t,n)=>{switch(e.op){case"Equal":return[gs(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[tl(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[as(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[ko(I("a",e,t,n),I("b",e,t,n))];case"Less":return[uf(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[Io(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[Zs(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[kd(I("a",e,t,n))];case"LogicalOr":return[pf(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[Pn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},FV=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ke(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[Q3(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[tt(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[s,r]=I("fusedOps",e,t,n),a=s==="biasadd",o=r==="prelu",i=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(a){if(o&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=I("args",e,t,n);return[So.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:c,activation:r,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},OV=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Yi(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[Yi(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[h1(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[nl(I("x",e,t,n))];case"LogSoftmax":return[df(I("x",e,t,n))];case"SparseToDense":return[$1(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},MV=(e,t,n)=>{switch(e.op){case"Max":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Wn(I("x",e,t,n),o,i)]}case"Mean":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Lt(I("x",e,t,n),o,i)]}case"Min":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Sd(I("x",e,t,n),o,i)]}case"Sum":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[ke(I("x",e,t,n),o,i)]}case"All":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[tf(I("x",e,t,n),o,i)]}case"Any":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[gd(I("x",e,t,n),o,i)]}case"ArgMax":{let o=I("axis",e,t,n);return[Fs(I("x",e,t,n),o)]}case"ArgMin":{let o=I("axis",e,t,n);return[q2(I("x",e,t,n),o)]}case"Prod":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[ff(I("x",e,t,n),o,i)]}case"Cumsum":{let o=I("axis",e,t,n),i=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[of(I("x",e,t,n),o,i,l)]}case"Bincount":let s=I("x",e,t,n),r=I("weights",e,t,n),a=I("size",e,t,n);return[n1(s,r,a)];case"DenseBincount":{let o=I("x",e,t,n),i=I("weights",e,t,n),l=I("size",e,t,n),c=I("binaryOutput",e,t,n);return[Y3(o,i,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},zV=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let s=I("n",e,t,n),r=I("axis",e,t,n),a=I("tensors",e,t,n);return a=a.slice(0,s),[kt(a,r)]}case"Gather":{let s=I("x",e,t,n),r=I("indices",e,t,n);return[Ji(s,pe(r,"int32"),0)]}case"GatherV2":{let s=I("axis",e,t,n),r=I("batchDims",e,t,n),a=I("x",e,t,n),o=I("indices",e,t,n);return[Ji(a,pe(o,"int32"),s,r)]}case"Reverse":{let s=I("dims",e,t,n),r=[];for(let o=0;o{let s=I("axis",e,t,n),r=I("tensors",e,t,n),a=r[0].shape,o=dt(r[0]).shape,i=r.map(l=>{let c=v.arraysEqual(l.shape,a);if(!c&&!v.arraysEqual(dt(l).shape,o))throw new Error("the input tensors shape does not match");return c?l:G(l,a)});return[Tn(i,s)]});case"Unpack":{let s=I("axis",e,t,n),r=I("tensor",e,t,n);return Vn(r,s)}case"Tile":{let s=I("reps",e,t,n);return[Os(I("x",e,t,n),s)]}case"Split":case"SplitV":{let s=I("axis",e,t,n),r=I("numOrSizeSplits",e,t,n),a=I("x",e,t,n);return xn(a,r,s)}case"ScatterNd":{let s=I("indices",e,t,n),r=I("values",e,t,n),a=I("shape",e,t,n);return[yv(s,r,a)]}case"GatherNd":{let s=I("x",e,t,n),r=I("indices",e,t,n);return[Av(s,r)]}case"SparseToDense":{let s=I("sparseIndices",e,t,n),r=I("outputShape",e,t,n),a=I("sparseValues",e,t,n),o=I("defaultValue",e,t,n);return[$1(s,a,r,a.dtype===o.dtype?o:pe(o,a.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},LV=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:s,outputValues:r,emptyRowIndicator:a,reverseIndexMap:o}=Dd.sparseFillEmptyRows(I("indices",e,t,n),I("values",e,t,n),I("denseShape",e,t,n),I("defaultValue",e,t,n));return[s,r,a,o]}case"SparseReshape":{let{outputIndices:s,outputShape:r}=Dd.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[s,r]}case"SparseSegmentMean":return[Dd.sparseSegmentMean(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];case"SparseSegmentSum":return[Dd.sparseSegmentSum(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},BV=(e,t,n)=>{switch(e.op){case"FFT":return[Rd(I("x",e,t,n))];case"IFFT":return[zu(I("x",e,t,n))];case"RFFT":return[$d(I("x",e,t,n))];case"IRFFT":return[wf(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},WV=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:s,nGramsSplits:r}=$f.stringNGrams(I("data",e,t,n),I("dataSplits",e,t,n),I("separator",e,t,n),I("nGramWidths",e,t,n),I("leftPad",e,t,n),I("rightPad",e,t,n),I("padWidth",e,t,n),I("preserveShortSequences",e,t,n));return[s,r]}case"StringSplit":{let{indices:s,values:r,shape:a}=$f.stringSplit(I("input",e,t,n),I("delimiter",e,t,n),I("skipEmpty",e,t,n));return[s,r,a]}case"StringToHashBucketFast":return[$f.stringToHashBucketFast(I("input",e,t,n),I("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},VV=(e,t,n)=>{switch(e.op){case"Cast":return[pe(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let s=I("axis",e,t,n);return[qt(I("x",e,t,n),s)]}case"Squeeze":{let s=I("axis",e,t,n);return[dt(I("x",e,t,n),s)]}case"Reshape":return[G(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[A1(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[Ms(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let s=I("blockShape",e,t,n),r=I("paddings",e,t,n);return[Cd(I("x",e,t,n),s,r)]}case"BatchToSpaceND":{let s=I("blockShape",e,t,n),r=I("crops",e,t,n);return[xd(I("x",e,t,n),s,r)]}case"DepthToSpace":{let s=I("blockSize",e,t,n),r=I("dataFormat",e,t,n).toUpperCase();return[o1(I("x",e,t,n),s,r)]}case"BroadcastTo":return[Nu(I("x",e,t,n),I("shape",e,t,n))];case"BroadcastArgs":return[H3(I("s0",e,t,n),I("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function n7(e,t,n,s){let r=((a,o,i)=>{switch(a.category){case"arithmetic":return j(()=>AV(a,o,i));case"basic_math":return j(()=>xV(a,o,i));case"control":return SV(a,o,i);case"convolution":return j(()=>CV(a,o,i));case"creation":return j(()=>TV(a,o,i));case"dynamic":return NV(a,o,i);case"evaluation":return j(()=>EV(a,o,i));case"image":return j(()=>_V(a,o,i));case"graph":return j(()=>RV(a,o,i));case"logical":return j(()=>PV(a,o,i));case"matrices":return j(()=>FV(a,o,i));case"normalization":return j(()=>OV(a,o,i));case"reduction":return j(()=>MV(a,o,i));case"slice_join":return j(()=>zV(a,o,i));case"sparse":return j(()=>LV(a,o,i));case"spectral":return j(()=>BV(a,o,i));case"string":return j(()=>WV(a,o,i));case"transformation":return j(()=>VV(a,o,i));case"hash_table":return DV(a,o,i,s);case"custom":let l=Rk(a.op);if(l&&l.customExecutor)return l.customExecutor(new yV(a,o,i));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return v.isPromise(r)?r.then(a=>[].concat(a)):[].concat(r)}var s7=class{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;tt.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function r7(e,t,n,s){let r=new Set,a=[],o=null,i=null,l=new Set,c=Object.keys(e).map(p=>ws(p)[0]),u=[];s!=null&&(u=s.map(p=>ws(p.name)[0]));let d=[...t];for(;d.length>0;){let p=d.pop();if((a7(p)||qV(p)||XV(p))&&o==null&&(o=p,i=o.children.map(h=>h.name).filter(h=>r.has(h))),r.add(p.name),n[p.name]==null&&c.indexOf(p.name)===-1&&u.indexOf(p.name)===-1){if(p.inputs.length===0){a.push(p.name);continue}p.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:a,dynamicNode:o,syncInputs:i}}function UV(e,t,n){let{usedNodes:s,inputs:r}=n,a=[],o=Object.keys(r).map(u=>ws(u)[0]).map(u=>e.nodes[u]),i=e.initNodes;o.forEach(u=>{s.has(u.name)&&a.push(u)}),e.weights.forEach(u=>{s.has(u.name)&&a.push(u)}),i!=null&&i.forEach(u=>{s.has(u.name)&&a.push(u)});let l=new Set,c=[];for(;a.length>0;){let u=a.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(d=>{!l.has(d.name)&&s.has(d.name)&&d.inputs.every(p=>l.has(p.name))&&a.push(d)})}return c}var GV=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],HV=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],jV=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function a7(e){return GV.indexOf(e.op)>=0}function qV(e){return HV.indexOf(e.op)>=0}function XV(e){return jV.indexOf(e.op)>=0}var MA=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new MA(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),s=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){let n=r7(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:r,syncInputs:a}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(s.length>0){let o=t.map(l=>l.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${s}]`)}return UV(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let s=n.map(u=>this.graph.nodes[ws(u)[0]]),r=t.map(u=>ws(u)[0]),a=r.map(u=>this.graph.nodes[u]);a.length===0&&(a=this._outputs);let o=this.getCompilationKey(s,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let l={},c={};return j(()=>{let u=new s7(this.weightMap,l,c,this.functionExecutorMap),d=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,g]=ws(f),y=[];y[g]=e[f],d[m]=y});let p=this.getFrozenTensorIds(d),h={};for(let f=0;fGn(f,d,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,r,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let l=ZW(i.name,n,s);l!=null&&l.forEach(c=>{if(c&&!c.kept&&!r.has(c.id)){let u=o[c.id];u===1?(c.dispose(),delete o[c.id]):u!=null&&o[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,s={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let a=new s7(this.weightMap,s,r,this.functionExecutorMap),o=await this.executeWithControlFlow(e,a,t,n),i=t.map(d=>Gn(d,o,a)),l=i.map(d=>d.id),c=Object.keys(e).map(d=>e[d].id),u=new Set([...l,...c,...this.weightIds]);return Object.keys(o).forEach(d=>{o[d].forEach(h=>{h&&!h.kept&&!h.isDisposed&&!u.has(h.id)&&h.dispose()})}),this.parent==null&&a.dispose(u),i}async executeFunctionAsync(e,t,n){let s=e.reduce((r,a,o)=>(r[this.inputs[o].name]=a,r),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){let r=Object.keys(e),a=r.map(A=>this.graph.nodes[ws(A)[0]]),o=n.map(A=>ws(A)[0]),i=o.map(A=>this.graph.nodes[A]);i.length===0&&(i=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:d}=r7(e,i,this.weightMap,this._initNodes),p=[...a,...this.graph.weights,...this._initNodes||[]].map(A=>({node:A,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(A=>{let[x,b]=ws(A),w=[];w[b]=e[A],h[x]=w});let f={},m=this.getFrozenTensorIds(h),g={};for(;p.length>0;){let A=this.processStack(a,p,t,h,g,m,o,f,l);await Promise.all(A)}u==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=i.filter(A=>!a7(A)&&!Gn(A.name,h,t)).map(A=>A.name);if(y.length>0){let A="";throw u!=null&&(A=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${c}]. ${A}`)}return h}processStack(e,t,n,s,r,a,o,i,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let d="";if(u.node.op==="Enter"&&I("isConstant",u.node,s,n)&&([d]=oa(u.node.name,n)),s[u.node.name]==null){let p=n7(u.node,s,n,this._resourceManager);d||([d]=oa(u.node.name,n));let h=n.currentContext;v.isPromise(p)?c.push(p.then(f=>(s[d]=f,n.currentContext=h,this.checkTensorForDisposal(d,u.node,s,n,a,o,i),this.processChildNodes(u.node,t,n,s,r,l),f))):(s[d]=p,this.checkTensorForDisposal(d,u.node,s,n,a,o,i),this.processChildNodes(u.node,t,n,s,r,l))}else this.processChildNodes(u.node,t,n,s,r,l)}return c}processChildNodes(e,t,n,s,r,a){e.children.forEach(o=>{let[i]=oa(o.name,n);r[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(l=>!!Gn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(l=>!!Gn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[s]=ws(t),r=this.graph.nodes[s];if(r.attrParams.shape&&r.attrParams.shape.value){let a=r.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,l)=>a[l]===-1||a[l]===i);v.assert(o,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&v.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[s]=ws(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=ws(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},KV=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},ZV="?tfjs-format=file",YV="model.json",o7=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new KV}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=ts.browserHTTPRequest(e,this.loadOptions);else{let t=ts.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(ts.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let s=ts.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new MA(Zk.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=Zk.Instance.transformGraph(e.modelInitializer);this.initializer=new MA(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=ts.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ze)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function ot(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${YV}${ZV}`);let n=new o7(e,t);return await n.load(),n}var JV="3.9.0",i7={};Le(i7,{CSVDataset:()=>x7,Dataset:()=>Ku,FileDataSource:()=>C7,TextLineDataset:()=>g7,URLDataSource:()=>T7,array:()=>vU,csv:()=>DU,func:()=>_U,generator:()=>PU,microphone:()=>OU,version_data:()=>MU,webcam:()=>FU,zip:()=>wU});var QV=Qo(w5()),eU=Qo(w5());function tU(e,t){return xm(e,t)}function xm(e,t,n=new Map,s=new Set){if(e==null)return null;if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(Xu(e)){let a=Array.isArray(e)?[]:{};s.add(e);for(let o in e){let i=e[o],l=xm(i,t,n,s);a[o]=l}return s.delete(e),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function nU(e,t=u7){return l7(e,t)}function l7(e,t,n=new Set){let s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(Xu(s)){let a=Array.isArray(s)?[]:{};n.add(s);for(let o in s){let i=e.map(c=>c[o]),l=l7(i,t,n);a[o]=l}return n.delete(s),a}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return r.value}function u7(e){return e===null?null:Xu(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function c7(e,t){let n=new Map;xm(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(v.isPromise(a)){let o=await a;n.set(r,o)}}return xm(e,t,n)}function Xu(e){let t=!1;if(Z().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=k5();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ze)&&!(e instanceof Promise)&&!t)}function sU(e){return e==null||rU(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ze||v.isTypedArray(e)}function rU(e){return e===null||typeof e!="object"&&typeof e!="function"}function aU(e){return tU(e,oU)}function oU(e){return e instanceof Ze?{value:e.clone(),recurse:!1}:Xu(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var d7=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},zA=class extends d7{constructor(){super(zA.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;st===!0)}rowMajorBatch(e,t=!0){return new fU(this,e,t)}columnMajorBatch(e,t=!0,n=u7){return this.rowMajorBatch(e,t).map(r=>nU(r,n))}concatenate(e,t){return new f7(p7([this,e]),t)}take(e){return e<0||e==null?this:new hU(this,e)}skip(e){return e<0||e==null?this:new pU(this,e)}prefetch(e){return new m7(this,e)}shuffle(e,t){return new bU(this,e,t)}serial(){return new dU(this)}},uU=class extends vn{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:aU(e),done:!1}}},cU=class extends vn{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},dU=class extends vn{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},pU=class extends vn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++ Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},fU=class extends vn{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},mU=class extends vn{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;ee(e.value)}}},gU=class extends vn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=or.getTensorsInContainer(e.value),n=this.transform(e.value),s=or.getTensorsInContainer(n);for(let r of t)or.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},yU=class extends vn{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},h7=class extends vn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=or.getTensorsInContainer(e.value),n=await this.transform(e.value),s=or.getTensorsInContainer(n);for(let r of t)or.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},BA=class extends vn{constructor(){super();this.outputQueue=new zA,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},AU=class extends BA{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=or.getTensorsInContainer(e.value),n=this.transform(e.value),s=or.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)or.isTensorInList(r,s)||r.dispose();return!0}},f7=class extends vn{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},_o;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(_o||(_o={}));var xU=class extends vn{constructor(e,t=_o.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function s(a){return a instanceof vn?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await c7(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case _o.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case _o.SHORTEST:return{value:null,done:!0};case _o.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},m7=class extends vn{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new d7(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},bU=class extends m7{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=eU.alea(n||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Ku=class{constructor(){this.size=null}batch(e,t=!0){let n=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is ${e}`);let s;return this.size===1/0||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),ks(async()=>(await n.iterator()).columnMajorBatch(e,t,kU),s)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,ks(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,ks(async()=>(await t.iterator()).filter(s=>j(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return ks(async()=>(await t.iterator()).map(n=>j(()=>e(n))),this.size)}mapAsync(e){let t=this;return ks(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return ks(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,ks(async()=>{let s=LA(async()=>({value:await t.iterator(),done:!1}));return iU(s.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let s=this,r=QV.alea(t||v.now().toString());return ks(async()=>{let a=r.int32();return n&&(a+=r.int32()),(await s.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,ks(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Ku.MAX_BUFFER_SIZE=1e4;function ks(e,t=null){return new class extends Ku{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function vU(e){return ks(async()=>p7(e),e.length)}function wU(e){if(!Xu(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n{let n=await c7(e,s=>{if(s instanceof Ku)return{value:s.iterator(),recurse:!1};if(Xu(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return lU(n,_o.SHORTEST)},t)}function kU(e){if(e===null)return null;let t=e[0];return sU(t)?{value:IU(e),recurse:!1}:{value:null,recurse:!0}}function IU(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ze?Tn(e):jt(e)}var g7=class extends Ku{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(` `).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s))}},bm='"',ep=Symbol("out"),y7=Symbol("field"),vm=Symbol("quote"),WA=Symbol("quoteafterquote"),A7=Symbol("quoteinquote"),x7=class extends Ku{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new g7(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((s,r)=>(s[r]=s[r]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(v.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let s of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(s)===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},s={};for(let r=0;r14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(Z().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new b7(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(s=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,r)=>n.set(s,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(v.sizeFromShape(t));return n.set(e,n.length-e.length),jt(n,t)}},v7=class extends vn{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Yt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,a=(1-s)/2,o=r+n,i=s+a;this.cropBox=dr([a,r,i,o],[1,4])}else this.cropBox=dr([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(Z().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new v7(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Ks.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return j(()=>{let t=qt(pe(e,"float32"),0),n;n=$e.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let s=n.shape;return G(n,s.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},w7=class{},k7=class extends vn{split(e){return new SU(this,e)}},SU=class extends k7{constructor(e,t){super();this.upstream=e,this.impl=new CU(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},CU=class extends BA{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},TU=class extends vn{decodeUTF8(){return new NU(this)}},NU=class extends k7{constructor(e){super();this.upstream=e,this.impl=new EU(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},EU=class extends BA{constructor(e){super();if(this.upstream=e,Z().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=k5();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return Z().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},I7=class extends TU{constructor(e,t={}){super();this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(Z().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{let r=new FileReader;r.onload=o=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},r.onabort=o=>n(new Error("Aborted")),r.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,s);r.readAsArrayBuffer(a)}this.offset=s}),done:!1}}};async function RU(e,t={}){let n,s;typeof e=="string"?n=e:(n=e.url,s=$U(e));let r=await v.fetch(n,s);if(r.ok){let a=new Uint8Array(await r.arrayBuffer());return new I7(a,t)}else throw new Error(r.statusText)}var $U=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function S7(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var C7=class extends w7{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(S7(this.input)&&Z().get("IS_NODE")){let e=Vl("fs");this.input=e.readFileSync(this.input.substr(7))}return new I7(this.input,this.options)}},T7=class extends w7{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return S7(this.url)?new C7(this.url,this.fileOptions).iterator():RU(this.url,this.fileOptions)}};function DU(e,t={}){return new x7(new T7(e),t)}function _U(e){let t=LA(e);return ks(async()=>t)}function PU(e){return ks(async()=>{let t=await e();return LA(()=>t.next())})}async function FU(e,t){return v7.create(e,t)}async function OU(e){return b7.create(e)}var MU="3.9.0";function Ne(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var zU=Ys.whereImpl,VA=class extends Ul{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Bc(this,ns())}nextDataId(){return VA.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,Z().get("IS_NODE")&&E.warn(` ============================ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details. ============================`));let s={id:this.nextDataId()};return this.data.set(s,{values:e,dtype:n,refCount:1}),s}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,s,r){this.data.set(e,{values:t,dtype:s,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let s=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return E.mergeRealAndImagArrays(s,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>v.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ve(e.shape,e.dtype,n)}makeOutput(e,t,n){let s=this.write(e,t,n);return ns().makeTensorFromDataId(s,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Ne([e],"where");let t=this.readSync(e.dataId);return zU(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};VA.nextDataId=0;var UA={};Le(UA,{addImpl:()=>E7,bincountImpl:()=>HA,bincountReduceImpl:()=>R7,ceilImpl:()=>$7,concatImpl:()=>jA,equalImpl:()=>D7,expImpl:()=>P7,expm1Impl:()=>O7,floorImpl:()=>M7,gatherNdImpl:()=>z7,gatherV2Impl:()=>L7,greaterEqualImpl:()=>W7,greaterImpl:()=>B7,lessEqualImpl:()=>U7,lessImpl:()=>V7,linSpaceImpl:()=>G7,logImpl:()=>H7,maxImpl:()=>j7,maximumImpl:()=>q7,minimumImpl:()=>X7,multiplyImpl:()=>qA,negImpl:()=>K7,notEqualImpl:()=>Z7,prodImpl:()=>Y7,rangeImpl:()=>KA,rsqrtImpl:()=>J7,sigmoidImpl:()=>CG,simpleAbsImpl:()=>N7,sliceImpl:()=>Im,sparseFillEmptyRowsImpl:()=>eI,sparseReshapeImpl:()=>tI,sparseSegmentReductionImpl:()=>ZA,sqrtImpl:()=>EG,squaredDifferenceImpl:()=>nI,stridedSliceImpl:()=>sI,stringNGramsImpl:()=>rI,stringSplitImpl:()=>aI,stringToHashBucketFastImpl:()=>oI,subImpl:()=>iI,tileImpl:()=>lI,topKImpl:()=>cI,transposeImpl:()=>XA,uniqueImpl:()=>dI});function N7(e){let t=new Float32Array(e.length);for(let n=0;n{let{x:t}=e.inputs,n=e.backend;Ne(t,"abs");let s=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return s=N7(r),n.makeOutput(s,t.shape,"float32")},BU={kernelName:ni,backendName:"cpu",kernelFunc:LU};function Qt(e){return(t,n,s,r,a)=>{let o=E.assertAndGetBroadcastShape(t,n),i=o.length,l=v.computeStrides(o),c=v.sizeFromShape(o),u=v.getTypedArrayFromDType(a,c),d=t.length,p=n.length,h=v.computeStrides(t),f=v.computeStrides(n),m=E.getBroadcastDims(t,o),g=E.getBroadcastDims(n,o);if(m.length+g.length===0)for(let y=0;yx[S]=0);let b=v.locToIndex(x,d,h),w=A.slice(-p);g.forEach(S=>w[S]=0);let k=v.locToIndex(w,p,f);u[y]=e(s[b],r[k])}return[u,o]}}function Is(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=n.makeTensorInfo(s.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",o)},i}var WU={kernelName:Gc,backendName:"cpu",kernelFunc:Is};function wm(e,t,n="float32"){if(n==="complex64"){let r=wm(e,t,"float32"),a=wm(e,t,"float32");return Is({inputs:{real:r,imag:a},backend:e})}let s=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function Or(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var VU={kernelName:Ba,backendName:"cpu",kernelFunc:Or};function fl(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var UU={kernelName:Qc,backendName:"cpu",kernelFunc:fl};function Po(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Or({inputs:{x:r},backend:n});let o=wm(n,r.shape,r.dtype),i=Po({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Is({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=fl({inputs:{input:r},backend:n}),i=Po({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=Or({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(r.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(r.shape,"int32",i)}if(a==="bool"){let o=n.data.get(r.dataId).values,i=v.toTypedArray([0],r.dtype),[l,c]=Qt((u,d)=>u!==d?1:0)(r.shape,[],o,i,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var GU={kernelName:Ca,backendName:"cpu",kernelFunc:Po};function wn(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;Ne([o,i],e);let c=l.data.get(o.dataId).values,u=l.data.get(i.dataId).values,d=o.dtype==="string"?E.fromUint8ToStringArray(c):c,p=o.dtype==="string"?E.fromUint8ToStringArray(u):u,h=s||o.dtype,[f,m]=t(o.shape,i.shape,d,p,h);return l.makeTensorInfo(m,h,f)}:({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let c=Po({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),d=u.complexTensorInfos.real,p=u.complexTensorInfos.imag,h=l.data.get(d.dataId).values,f=l.data.get(p.dataId).values,m=Po({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),y=g.complexTensorInfos.real,A=g.complexTensorInfos.imag,x=l.data.get(y.dataId).values,b=l.data.get(A.dataId).values,[w,k,S]=n(o.shape,i.shape,h,f,x,b),N=l.makeTensorInfo(S,"float32",w),$=l.makeTensorInfo(S,"float32",k),F=Is({inputs:{real:N,imag:$},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(N),l.disposeIntermediateTensorInfo($),F}else{let c=l.data.get(o.dataId).values,u=l.data.get(i.dataId).values,d=s||o.dtype,[p,h]=t(o.shape,i.shape,c,u,d);return l.makeTensorInfo(h,d,p)}}}function GA(e){return(t,n,s,r,a,o)=>{let i=E.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(i),c=i.length,u=v.computeStrides(i),d=v.getTypedArrayFromDType("float32",l),p=v.getTypedArrayFromDType("float32",l),h=E.getBroadcastDims(t,i),f=E.getBroadcastDims(n,i),m=E.mergeRealAndImagArrays(s,r),g=E.mergeRealAndImagArrays(a,o),y=t.length,A=v.computeStrides(t),x=n.length,b=v.computeStrides(n);if(h.length+f.length===0)for(let w=0;wS[D]=0);let N=v.locToIndex(S,y,A),$=k.slice(-x);f.forEach(D=>$[D]=0);let F=v.locToIndex($,x,b),R=e(m[N*2],m[N*2+1],g[F*2],g[F*2+1]);d[w]=R.real,p[w]=R.imag}return[d,p,i]}}var E7=Qt((e,t)=>e+t),HU=GA((e,t,n,s)=>({real:e+n,imag:t+s})),tp=wn(qr,E7,HU),jU={kernelName:qr,backendName:"cpu",kernelFunc:tp};function HA(e,t,n,s,r){let a=v.sizeFromShape(s),o=v.makeZerosTypedArray(r,n);for(let i=0;i=r||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function R7(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],o=Ve([r,n],t.dtype);for(let i=0;i=n||(s?o.set(1,i,c):t.size>0?o.set(o.get(i,c)+t.get(i,l),i,c):o.set(o.get(i,c)+1,i,c))}return o}function Fo(e){return(t,n,s)=>{let r=v.getTypedArrayFromDType(n,t.length);for(let a=0;a{let{x:o}=s;if(Ne(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,c=v.sizeFromShape(o.shape),u=n||o.dtype,d=v.getArrayFromDType(u,c);for(let p=0;p{let{x:o}=s;if(Ne(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,c=n||o.dtype,u=t(l,c,r);return i.makeTensorInfo(o.shape,c,u)}}var $7=Fo(e=>Math.ceil(e)),qU=Zu(Ta,$7),XU={kernelName:Ta,backendName:"cpu",kernelFunc:qU};function jA(e,t,n,s){let r=v.getArrayFromDType(n,v.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(o=>{let i=v.sizeFromShape(o.shape);r.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?E.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let c=0;ce===t?1:0),_7=wn(li,D7,null,"bool"),KU={kernelName:li,backendName:"cpu",kernelFunc:_7},P7=Fo(e=>Math.exp(e)),F7=Zu(Fa,P7),ZU={kernelName:Fa,backendName:"cpu",kernelFunc:F7},O7=Fo(e=>Math.expm1(e)),YU=Zu(ci,O7),JU={kernelName:ci,backendName:"cpu",kernelFunc:YU},M7=Fo(e=>Math.floor(e)),QU=Zu(Oa,M7),eG={kernelName:Oa,backendName:"cpu",kernelFunc:QU};function z7(e,t,n,s,r,a,o,i,l){let c=Ve([s,a],n);for(let u=0;u=l/a)throw new Error(`Invalid indices: ${d} does not index into ${i}`);for(let h=0;he>t?1:0),tG=wn(fi,B7,null,"bool"),nG={kernelName:fi,backendName:"cpu",kernelFunc:tG},W7=Qt((e,t)=>e>=t?1:0),sG=wn(La,W7,null,"bool"),rG={kernelName:La,backendName:"cpu",kernelFunc:sG},V7=Qt((e,t)=>ee<=t?1:0),iG=wn(yi,U7,null,"bool"),lG={kernelName:yi,backendName:"cpu",kernelFunc:iG};function G7(e,t,n){let s=(t-e)/(n-1),r=v.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;aMath.log(e)),uG=Zu(Wa,H7),cG={kernelName:Wa,backendName:"cpu",kernelFunc:uG};function j7(e,t,n,s){let r=v.getTypedArrayFromDType(s,v.sizeFromShape(n));for(let a=0;ai)&&(i=c)}r[a]=i}return r}var q7=Qt((e,t)=>Math.max(e,t)),dG=wn(Ua,q7),pG={kernelName:Ua,backendName:"cpu",kernelFunc:dG},X7=Qt((e,t)=>Math.min(e,t)),hG=wn(qa,X7),fG={kernelName:qa,backendName:"cpu",kernelFunc:hG},qA=Qt((e,t)=>e*t),mG=GA((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),km=wn(Ka,qA,mG),gG={kernelName:Ka,backendName:"cpu",kernelFunc:km};function K7(e,t,n){let s=v.createScalarValue(-1,n);return qA([],t,s,e,n)}function yG(e){let{inputs:t,backend:n}=e,{x:s}=t;Ne(s,"neg");let r=n.data.get(s.dataId).values,[a,o]=K7(r,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,a)}var AG={kernelName:xi,backendName:"cpu",kernelFunc:yG},Z7=Qt((e,t)=>e!==t?1:0),xG=wn(bi,Z7,null,"bool"),bG={kernelName:bi,backendName:"cpu",kernelFunc:xG};function XA(e,t,n,s,r){let a=t.length,o=v.sizeFromShape(t),i=v.computeStrides(t),l=v.computeStrides(r),c=v.getTypedArrayFromDType(n,v.sizeFromShape(r));for(let u=0;un.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(y,g,f)}var kG={kernelName:Ci,backendName:"cpu",kernelFunc:wG};function KA(e,t,n,s){let r=e===t,a=e1;if(r||a||o)return v.makeZerosTypedArray(0,s);let i=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(i,s);t1/Math.sqrt(e)),IG=Zu(no,J7),SG={kernelName:no,backendName:"cpu",kernelFunc:IG},CG=Fo(e=>1/(1+Math.exp(-e))),Q7=xt(ro,e=>1/(1+Math.exp(-e))),TG={kernelName:ro,backendName:"cpu",kernelFunc:Q7};function Im(e,t,n,s,r){let a=yn.isSliceContinous(s,t,n),o=v.sizeFromShape(n),i=v.computeStrides(s);if(a){let d=yn.computeFlatOffset(t,i);return r==="string"?e.slice(d,d+o):e.subarray(d,d+o)}let l=r==="string"?E.fromUint8ToStringArray(e):e,c=Ve(s,r,l),u=Ve(n,r);for(let d=0;df+t[m]);u.set(c.get(...h),...p)}return r==="string"?E.fromStringArrayToUint8(u.values):u.values}function ml(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s;Ne(r,"slice");let[i,l]=yn.parseSliceParams(r,a,o);yn.assertParamsValid(r,i,l);let c=n.data.get(r.dataId).values,u=Im(c,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,u)}var NG={kernelName:Di,backendName:"cpu",kernelFunc:ml};function eI(e,t,n,s,r,a,o){let i=t[0],l=a[0],c=new Array(l),u=new Array(i),d=t[1];if(l===0){if(i!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but indices.shape[0] = ${i}`);let g=v.getArrayFromDType(n,0),y=v.getArrayFromDType(r,0);return[g,[0,d],y,c,u]}let p=!0,h=0,f=new Array(l).fill(0);for(let g=0;g=l)throw new Error(`indices(${g}, 0) is invalid: ${y} >= ${l}`);++f[y],p=p&&y>=h,h=y}let m=!0;for(let g=0;g0&&(f[g]+=f[g-1])}if(m&&p){let g=e,y=s;for(let A=0;A0){h[p-1]=1;for(let g=p-2;g>=0;--g)h[g]=h[g+1]*s[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*l[g+1]}let m=v.getArrayFromDType(n,o*i);for(let g=0;g0?r[i-1]+1:0;if(d<0)throw new Error("segment ids must be >= 0");let p=t.slice();p[0]=d;let h=p.reduce((x,b)=>x*b,1),f=v.getArrayFromDType(n,h);if(i===0)return d>0&&f.fill(o),[f,p];if(d<=0)throw new Error("segment ids must be >= 0");let m=0,g=1,y=0,A=r[m];for(;;){let x=0;if(g=x)throw new Error("segment ids are not increasing")}if(A<0||A>=d)throw new Error(`Segment id ${A} out of range [0, ${d}), possibly because segmentIds input is not sorted.`);A>y&&f.fill(o,y*c,A*c);for(let b=m;b=l[0])throw new Error(`Bad: indices[${b}] == ${s[b]} out of range [0, ${l[0]})`);for(let k=0;ki)break}return yMath.sqrt(e)),RG=xt(ao,e=>Math.sqrt(e)),$G={kernelName:ao,backendName:"cpu",kernelFunc:RG},nI=Qt((e,t)=>{let n=e-t;return n*n}),DG=wn(lo,nI),_G={kernelName:lo,backendName:"cpu",kernelFunc:DG};function sI(e,t,n,s){let r=Ve(e,t.dtype);for(let a=0;a0?0:o-i),p=0;p+=l*this.leftPad.length;for(let y=0;yy.forEach(A=>f[m++]=A);for(let y=0;y0){g(e[d+u-1]);for(let y=0;y0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l=i;if(c=c&&t[l]<=n,!c)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let r=s-1,a=v.getArrayFromDType("int32",s);if(n===0||s===0){let i=new Array(n);for(let l=0;l<=r;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=r;++i){let l=t[i]-t[i-1],c=0;this.nGramWidths.forEach(u=>{c+=this.getNumNGrams(l,u)}),this.preserveShort&&l>0&&c===0&&(c=1),a[i]=a[i-1]+c}let o=new Array(a[r]);for(let i=0;i{let d=t[i+1]-t[i],p=this.getNumNGrams(d,u);this.createNGrams(e,l,o,c,p,u),c+=p}),this.preserveShort&&c===a[i]){let u=t[i+1]-t[i];if(u===0)continue;let d=u+2*this.padWidth,p=1;this.createNGrams(e,l,o,c,p,d)}}return[o,a]}};function rI(e,t,n,s,r,a,o,i){return new PG(n,s,r,a,o,i).compute(e,t)}function FG(e,t,n,s){if(!e.length)return;if(t.length===0){for(let a=0;ae-t),OG=GA((e,t,n,s)=>({real:e-n,imag:t-s})),YA=wn(uo,iI,OG),MG={kernelName:uo,backendName:"cpu",kernelFunc:YA};function lI(e,t){let n=new Array(e.rank);for(let r=0;r{let n=t.value-e.value;return n===0?e.index-t.index:n};function uI(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let i=s-n+1,l=t-n+1,c=Math.log(i),u=.5*Math.exp(2*c/3),d=.5*Math.sqrt(c*u*(i-u)/i)*Math.sign(l-i/2),p=Math.max(n,Math.floor(t-l*u/i+d)),h=Math.min(s,Math.floor(t+(i-l)*u/i+d));uI(e,t,p,h)}let r=e[t],a=n,o=s;for(v.swap(e,n,t),np(e[s],r)>0&&v.swap(e,n,s);a0;)o=o-1}np(e[n],r)===0?v.swap(e,n,o):(o=o+1,v.swap(e,o,s)),o<=t&&(n=o+1),t<=o&&(s=o-1)}}function cI(e,t,n,s,r){let a=t[t.length-1],[o,i]=[e.length/a,a],l=v.getTypedArrayFromDType(n,o*s),c=v.getTypedArrayFromDType("int32",o*s);for(let d=0;df[x]={value:A,index:x}),s{for(let g=0;gnew VA,1);var pI=xt(Pa,e=>e>=0?e:Math.exp(e)-1),zG={kernelName:Pa,backendName:"cpu",kernelFunc:pI};function hI(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s;Ne([r],"leakyRelu");let o=v.sizeFromShape(r.shape),i=n.data.get(r.dataId).values,l=v.getTypedArrayFromDType("float32",o);for(let c=0;ce<0?t*e:e);function fI(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t;Ne([s,r],"prelu");let a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,[i,l]=BG(s.shape,r.shape,a,o,s.dtype);return n.makeTensorInfo(l,s.dtype,i)}var WG={kernelName:Ja,backendName:"cpu",kernelFunc:fI},mI=xt(Qa,e=>Math.max(0,e)),VG={kernelName:Qa,backendName:"cpu",kernelFunc:mI},gI=xt(to,e=>Math.min(Math.max(0,e),6)),UG={kernelName:to,backendName:"cpu",kernelFunc:gI};function JA(e,t,n,s,r){if(n==="linear")return Or({inputs:{x:t},backend:e});if(n==="relu")return mI({inputs:{x:t},backend:e});if(n==="elu")return pI({inputs:{x:t},backend:e});if(n==="relu6")return gI({inputs:{x:t},backend:e});if(n==="prelu")return fI({inputs:{x:t,alpha:s},backend:e});if(n==="leakyrelu")return hI({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return Q7({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function Et(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=v.sizeFromShape(r.shape),i=v.inferFromImplicitShape(a,o),l=v.sizeFromShape(i);v.assert(o===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let c=n.data.get(r.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,d=c.complexTensorInfos.imag;u.shape=i,d.shape=i}return{dataId:r.dataId,shape:i,dtype:r.dtype}}var GG={kernelName:Ti,backendName:"cpu",kernelFunc:Et};function yI(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;Ne([r,a],"matMul");let l=r.shape.length,c=a.shape.length,u=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[c-1]:a.shape[c-2],p=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[c-2]:a.shape[c-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=v.sizeFromShape(f),y=v.sizeFromShape(m),A=g===y||g===1||y===1;v.assert(l>=2&&c>=2&&A,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(g>y?r.shape.slice(0,-2):a.shape.slice(0,-2)).concat([p,h]);v.assert(u===d,()=>`Error in matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let w=o?[g,u,p]:[g,p,u],k=i?[y,h,d]:[y,d,h],S=Et({inputs:{x:r},backend:n,attrs:{shape:w}}),N=Et({inputs:{x:a},backend:n,attrs:{shape:k}}),$=o?S.shape[1]:S.shape[2],F=o?S.shape[2]:S.shape[1],R=i?N.shape[1]:N.shape[2],D=Math.max(g,y),T=n.data.get(S.dataId).values,O=n.data.get(N.dataId).values,W=v.computeStrides(S.shape),H=v.computeStrides(N.shape),[z,X,te]=o?[W[0],1,W[1]]:[W[0],W[1],1],[J,Q,ne]=i?[1,H[1],H[0]]:[H[1],1,H[0]],K=F*R,oe=Ve([D,F,R],S.dtype),ce=oe.values,he=n.blockSize;for(let Ae=0;AeMath.acos(e)),KG={kernelName:jl,backendName:"cpu",kernelFunc:XG},ZG=xt(ql,e=>Math.acosh(e)),YG={kernelName:ql,backendName:"cpu",kernelFunc:ZG};function JG(e){let{inputs:t,backend:n}=e,s=t;Ne(t,"addN");let r=s.map(i=>n.data.get(i.dataId).values),a=Ve(s[0].shape,s[0].dtype),o=a.values;for(let i=0;iA&&(A=w,x=b)}h[g]=x}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var aH={kernelName:ka,backendName:"cpu",kernelFunc:rH};function oH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Ne(r,"argMin");let o=v.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Ls({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],E.assertAxesAreInnerMostDims("argMin",o,l.shape.length);let[u,d]=E.computeOutAndReduceShapes(l.shape,o),p=v.sizeFromShape(u),h=v.makeZerosTypedArray(p,"int32"),f=v.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let g=0;gn.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var iH={kernelName:Zl,backendName:"cpu",kernelFunc:oH},lH=xt(Yl,e=>Math.asin(e)),uH={kernelName:Yl,backendName:"cpu",kernelFunc:lH},cH=xt(Jl,e=>Math.asinh(e)),dH={kernelName:Jl,backendName:"cpu",kernelFunc:cH},pH=xt(Ql,e=>Math.atan(e)),hH={kernelName:Ql,backendName:"cpu",kernelFunc:pH},fH=Qt((e,t)=>Math.atan2(e,t)),mH=wn(tu,fH),gH={kernelName:tu,backendName:"cpu",kernelFunc:mH},yH=xt(eu,e=>Math.atanh(e)),AH={kernelName:eu,backendName:"cpu",kernelFunc:yH};function QA(e,t,n,s,r,a){let o=r.strideHeight,i=r.strideWidth,l=r.dilationHeight,c=r.dilationWidth,u=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,h=r.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=Ve(r.outShape,n),g=m.values,y=r.outShape[1]*r.outShape[2]*r.outShape[3],A=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let b=0;bz?z=ce:a==="avg"&&(X+=ce,te++)}if(isNaN(z))break}let J=D+T*x+S;g[J]=a==="avg"?X/te:z}}}return m}function AI(e,t,n,s,r=!1,a=!1){let o=Ve(s.outShape,"int32"),i=s.strideHeight,l=s.strideWidth,c=s.dilationHeight,u=s.dilationWidth,d=s.effectiveFilterHeight,p=s.effectiveFilterWidth,h=s.padInfo.top,f=s.padInfo.left,m=Ve(t,n,e);for(let g=0;gF&&(F=H,r?R=a?((g*s.inHeight+D)*s.inWidth+O)*s.inChannels+y:(D*s.inWidth+O)*s.inChannels+y:R=T*p+W)}}o.set(R,g,A,k,y)}}return o}function xI(e,t,n,s,r,a){let o=r.strideDepth,i=r.strideHeight,l=r.strideWidth,c=r.dilationDepth,u=r.dilationHeight,d=r.dilationWidth,p=r.effectiveFilterDepth,h=r.effectiveFilterHeight,f=r.effectiveFilterWidth,m=r.padInfo.front,g=r.padInfo.top,y=r.padInfo.left,A=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Ve(r.outShape,n),b=x.values,w=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],k=r.outShape[2]*r.outShape[3]*r.outShape[4],S=r.outShape[3]*r.outShape[4],N=r.outShape[4];for(let $=0;$Se?Se=Je:a==="avg"&&(Ce+=Je,Oe++),isNaN(Se))break}if(isNaN(Se))break}if(isNaN(Se))break}let Ge=Ae+D;b[Ge]=a==="avg"?Ce/Oe:Se}}}}return x}function xH(e,t){let n=Ve(t.outShape,"int32"),s=t.strideDepth,r=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,d=t.effectiveFilterWidth,p=t.padInfo.front,h=t.padInfo.top,f=t.padInfo.left;for(let m=0;m=T&&(T=Q,O=H*u*d+X*u+J)}}}n.set(O,m,y,w,$,g)}}}return n}function bH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Ne(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;v.assert(E.eitherStridesOrDilationsAreOne(o,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,o,c,i,l),d;if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))d=Or({inputs:{x:r},backend:n});else{let p=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=QA(p,r.shape,r.dtype,h,u,"avg");d=n.makeTensorInfo(u.outShape,r.dtype,f.values)}return d}var vH={kernelName:Ia,backendName:"cpu",kernelFunc:bH};function wH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s;Ne(r,"avgPool3d");let u=E.computePool3DInfo(r.shape,a,o,1,i,l,c),d=n.data.get(r.dataId).values,p=xI(d,r.shape,r.dtype,v.computeStrides(r.shape),u,"avg");return n.makeTensorInfo(p.shape,"float32",p.values)}var kH={kernelName:Uc,backendName:"cpu",kernelFunc:wH};function IH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=s;Ne([r,a],"avgPool3DGrad");let u=E.computePool3DInfo(a.shape,o,i,1,l,c),d=u.strideDepth,p=u.strideHeight,h=u.strideWidth,f=u.filterDepth,m=u.filterHeight,g=u.filterWidth,y=u.dilationDepth,A=u.dilationHeight,x=u.dilationWidth,b=u.effectiveFilterDepth,w=u.effectiveFilterHeight,k=u.effectiveFilterWidth,S=b-1-u.padInfo.front,N=k-1-u.padInfo.left,$=w-1-u.padInfo.top,F=Ve(a.shape,"float32"),R=1/(f*m*g),D=n.bufferSync(r);for(let T=0;T=u.outDepth||Math.floor(K)!==K))for(let oe=0;oe=u.outHeight||Math.floor(ce)!==ce))for(let he=0;he=u.outWidth||Math.floor(Ae)!==Ae)continue;Q+=D.get(T,K,ce,Ae,O)}}}F.set(Q*R,T,W,H,z,O)}return n.makeTensorInfo(F.shape,F.dtype,F.values)}var SH={kernelName:hh,backendName:"cpu",kernelFunc:IH};function CH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;Ne([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:c}=s,u=E.computePool2DInfo(o.shape,i,l,1,c),d=u.strideHeight,p=u.strideWidth,h=u.filterHeight,f=u.filterWidth,m=u.dilationHeight,g=u.dilationWidth,y=u.effectiveFilterHeight,A=u.effectiveFilterWidth,x=A-1-u.padInfo.left,b=y-1-u.padInfo.top,w=Ve(o.shape,"float32"),k=1/(h*f),S=n.data.get(r.dataId).values,N=Ve(r.shape,"float32",S);for(let $=0;$=u.outHeight||Math.floor(z)!==z))for(let X=0;X=u.outWidth||Math.floor(te)!==te)continue;W+=N.get($,z,te,F)}}w.set(W*k,$,R,D,F)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var TH={kernelName:ph,backendName:"cpu",kernelFunc:CH};function NH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,scale:a,offset:o,mean:i,variance:l}=t;v.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Ne([r,i,l,a,o],"batchNorm");let{varianceEpsilon:c}=s;c==null&&(c=.001);let u=n.data.get(r.dataId).values,d=n.data.get(i.dataId).values,p=n.data.get(l.dataId).values,h=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(u.length),g=f.length,y=h.length,A=p.length,x=d.length,b=0,w=0,k=0,S=0;for(let N=0;N=g&&(b=0),w>=x&&(w=0),k>=y&&(k=0),S>=A&&(S=0);return n.makeTensorInfo(r.shape,r.dtype,m)}var EH={kernelName:za,backendName:"cpu",kernelFunc:NH};function RH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;Ne([r],"batchToSpaceND");let i=a.reduce((y,A)=>y*A),l=E.getReshaped(r.shape,a,i),c=E.getPermuted(l.length,a.length),u=E.getReshapedPermuted(r.shape,a,i),d=E.getSliceBeginCoords(o,a.length),p=E.getSliceSize(u,o,a.length),h=Et({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Ls({inputs:{x:h},backend:n,attrs:{perm:c}}),m=Et({inputs:{x:f},backend:n,attrs:{shape:u}}),g=ml({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var $H={kernelName:si,backendName:"cpu",kernelFunc:RH};function DH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,c=HA(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}var _H={kernelName:fh,backendName:"cpu",kernelFunc:DH};function PH(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=E.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var FH={kernelName:p2,backendName:"cpu",kernelFunc:PH},OH=xt(Xr,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e{let{x:t}=e.inputs,n=e.backend,s=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId),a=r.complexTensorInfos.real,o=r.complexTensorInfos.imag,i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values;for(let c=0;cm.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>v.sizeFromShape(m.shape)>0);if(i.length===1)return Or({inputs:{x:i[0]},backend:n});let l=i.map(m=>m.shape);if(E.assertParamsConsistent(l,a),i[0].dtype==="complex64"){let m=i.map(b=>fl({inputs:{input:b},backend:n})),g=i.map(b=>Yu({inputs:{input:b},backend:n})),y=Ju({inputs:m,backend:n,attrs:{axis:a}}),A=Ju({inputs:g,backend:n,attrs:{axis:a}}),x=Is({inputs:{real:y,imag:A},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),g.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(A),x}let c=i.map(m=>{let g=v.sizeFromShape(m.shape.slice(a));return Et({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),u=c.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=E.computeOutShape(c.map(m=>m.shape),1);let d=c[0].shape[0]===1,p=jA(u,o,t[0].dtype,d),h=E.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(h,t[0].dtype,p);return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var WH={kernelName:ri,backendName:"cpu",kernelFunc:Ju};function bI(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:c,dimRoundingMode:u}=s;Ne([r,a],"conv2d");let d=E.convertConv2DDataFormat(l),p=E.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!1,d),h=p.filterHeight,f=p.filterWidth,m=p.dilationHeight,g=p.dilationWidth,y=p.padInfo.left,A=p.padInfo.top,x=p.dataFormat==="channelsLast",b=new nn(p.outShape,r.dtype),w=v.computeStrides(r.shape),k=v.computeStrides(a.shape),S=w[0],N=x?w[1]:w[2],$=x?w[2]:1,F=x?1:w[1],R=b.strides[0],D=x?b.strides[1]:b.strides[2],T=x?b.strides[2]:1,O=x?1:b.strides[1],W=n.data.get(r.dataId).values,H=n.data.get(a.dataId).values,z=b.values;for(let X=0;X=p.inHeight)continue;let he=oe*k[0],Ae=te+ce*N;for(let Se=0;Se=p.inWidth)continue;let wt=he+Ge*k[1],mt=Ae+ze*$,gt=wt;for(let ht=0;ht=c.inDepth)continue;let X=H*$[0],te=R+z*N[1];for(let J=0;J=c.inHeight)continue;let ce=X+K*$[1],he=te+oe*N[2];for(let Ae=0;Ae=c.inWidth)continue;let ze=ce+Oe*$[2],wt=he+Ge*c.inChannels,mt=ze;for(let gt=0;gtMath.cos(e)),ej={kernelName:Ra,backendName:"cpu",kernelFunc:QH},tj=xt($a,e=>Math.cosh(e)),nj={kernelName:$a,backendName:"cpu",kernelFunc:tj};function sj(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:c}=s,[u,d,p,h]=r.shape,f=a.shape[0],[m,g]=i,y=Ve([f,m,g,h],"float32"),A=n.data.get(a.dataId).values,x=n.data.get(o.dataId).values,b=n.data.get(r.dataId).values,w=v.computeStrides(r.shape),k=v.computeStrides(y.shape);for(let S=0;S=u)continue;let O=m>1?(R-$)*(d-1)/(m-1):0,W=g>1?(D-F)*(p-1)/(g-1):0;for(let H=0;H1?$*(d-1)+H*O:.5*($+R)*(d-1);if(z<0||z>d-1){for(let X=0;X1?F*(p-1)+Q*W:.5*(F+D)*(p-1);if(ne<0||ne>p-1){for(let he=0;he1?F*(p-1)+X*W:.5*(F+D)*(p-1);if(te<0||te>p-1){for(let ne=0;ney+f-A-1:(y,A)=>y+A;for(let y=0;y`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`),v.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=r.shape[0],l=r.shape[1],c=r.shape[2],u=r.shape[3],d=l*a,p=c*a,h=u/(a*a),f=n.data.get(r.dataId).values,m=new Float32Array(i*d*p*h),g=0;for(let y=0;y`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${p}'`);let h=E.computeConv2DInfo(r.shape,a.shape,o,p,i,c,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:y,padInfo:A}=h,x=A.left,b=A.top,w=h.outChannels/h.inChannels,k=new nn(h.outShape,r.dtype),S=n.data.get(r.dataId).values,N=n.data.get(a.dataId).values,$=k.values;for(let F=0;F=h.inHeight)continue;let X=H*d[0],te=R+z*u[1];for(let J=0;J=h.inWidth)continue;let ce=X+K*d[1],he=te+oe*h.inChannels,Ae=Q,Se=ce;for(let Ce=0;Ce{let{x:s,filter:r}=e,{strides:a,pad:o,dilations:i}=n,l=t,c=l.data.get(s.dataId).values,u=s.shape.length,d=l.data.get(r.dataId).values,p=r.shape.length,{batchSize:h,inHeight:f,inWidth:m,inChannels:g,outHeight:y,outWidth:A,padInfo:x,strideHeight:b,strideWidth:w,filterHeight:k,filterWidth:S,dilationHeight:N,dilationWidth:$,outShape:F}=E.computeDilation2DInfo(s.shape,r.shape,a,o,"NHWC",i),R=v.sizeFromShape(F),D=F.length,T=v.getArrayFromDType(s.dtype,R);for(let W=0;W=0&&oe=0&&heQ&&(Q=Ce)}}}let ne=v.locToIndex([W,H,X,J],D,v.computeStrides(F));T[ne]=Q}}}return{dataId:l.write(v.toTypedArray(T,s.dtype),F,s.dtype),shape:F,dtype:s.dtype}}},xj={kernelName:kh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,c=t,u=v.toNestedArray(s.shape,c.data.get(s.dataId).values),d=v.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:y,padInfo:A,strideHeight:x,strideWidth:b,filterHeight:w,filterWidth:k,dilationHeight:S,dilationWidth:N,outShape:$}=E.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);v.assert(a.rank===$.length,()=>`Error in ${kh}, dy must have the same rank as output ${$.length}, but got ${a.rank}`);let F=v.toNestedArray($,c.data.get(a.dataId).values),R=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let T=0;T=0&&K=0&&cete&&(te=he,J=ne,Q=oe)}}}R[J][Q][X]+=F[T][O][H][X]}}}return{dataId:c.write(v.toTypedArray(R,s.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},bj={kernelName:wh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,c=t,u=v.toNestedArray(s.shape,c.data.get(s.dataId).values),d=v.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:y,padInfo:A,strideHeight:x,strideWidth:b,filterHeight:w,filterWidth:k,dilationHeight:S,dilationWidth:N,outShape:$}=E.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);v.assert(a.rank===$.length,()=>`Error in ${wh}, dy must have the same rank as output ${$.length}, but got ${a.rank}`);let F=v.toNestedArray($,c.data.get(a.dataId).values),R=v.makeZerosNestedTypedArray(s.shape,s.dtype);for(let T=0;T=0&&K=0&&cete&&(te=he,J=K,Q=ce)}}}R[T][J][Q][X]+=F[T][O][H][X]}}}return{dataId:c.write(v.toTypedArray(R,s.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}};function sp(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"sum");let i;r.dtype==="bool"?i=Po({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):i=Or({inputs:{x:r},backend:n});let l=i.shape.length,c=v.parseAxisParam(a,i.shape),u=E.getAxesPermutation(c,l),d=c,p=i;u!=null&&(p=Ls({inputs:{x:i},backend:n,attrs:{perm:u}}),d=E.getInnerMostAxes(d.length,l)),E.assertAxesAreInnerMostDims("sum",d,p.shape.length);let[h,f]=E.computeOutAndReduceShapes(p.shape,d),m=E.upcastType(p.dtype,"int32"),g=wm(n,h,m),y=v.sizeFromShape(f),A=n.data.get(g.dataId).values,x=n.data.get(p.dataId).values;for(let b=0;b=0&&(p=sp({inputs:{x:p},backend:n,attrs:{axis:c[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var kj={kernelName:Xc,backendName:"cpu",kernelFunc:wj};function Ij(e){let{inputs:t,backend:n}=e,{dy:s,y:r}=t;Ne([s,r],"eluGrad");let a=new Float32Array(v.sizeFromShape(r.shape)),o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values;for(let l=0;l=1?a[l]=i[l]:a[l]=i[l]*(c+1)}return n.makeTensorInfo(r.shape,"float32",a)}var Sj={kernelName:Ih,backendName:"cpu",kernelFunc:Ij},Cj=E.ERF_P,Tj=E.ERF_A1,Nj=E.ERF_A2,Ej=E.ERF_A3,Rj=E.ERF_A4,$j=E.ERF_A5,Dj=xt(nu,e=>{let t=Math.sign(e),n=Math.abs(e),s=1/(1+Cj*n);return t*(1-(((($j*s+Rj)*s+Ej)*s+Nj)*s+Tj)*s*Math.exp(-n*n))}),_j={kernelName:nu,backendName:"cpu",kernelFunc:Dj};function Sm(e){let{inputs:t,backend:n,attrs:s}=e,{input:r}=t,{dim:a}=s,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(v.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),Et({inputs:{x:r},backend:n,attrs:{shape:i}})}var Pj={kernelName:ui,backendName:"cpu",kernelFunc:Sm},Fj=Qt((e,t)=>e/t),ex=wn(_a,Fj),tx={kernelName:_a,backendName:"cpu",kernelFunc:ex};function wI(e,t,n){let s=e.shape,r=s[0],a=s[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,l=o.complexTensorInfos.imag,c=[r,a],u=v.sizeFromShape(c),d=v.getTypedArrayFromDType("float32",u),p=v.getTypedArrayFromDType("float32",u);for(let g=0;g{let{image:s}=e,r=n,a=v.getTypedArrayFromDType(s.dtype,v.sizeFromShape(s.shape)),[o,i,l,c]=s.shape,u=r.data.get(s.dataId).values;for(let p=0;p=0&&xMath.floor(e/t)),Hj=wn(Ma,Gj,null,"int32"),jj={kernelName:Ma,backendName:"cpu",kernelFunc:Hj};function qj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=bI({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=tp({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=JA(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var Xj={kernelName:mo,backendName:"cpu",kernelFunc:qj};function Kj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=vI({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=tp({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=JA(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var Zj={kernelName:go,backendName:"cpu",kernelFunc:Kj};function Yj(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=v.sizeFromShape(s.shape),o=r.shape,i=o[o.length-1],[l,c,u,d]=E.prepareAndValidate(s,r);if(c===0)return n.makeTensorInfo(l,s.dtype,[]);let p=n.data.get(r.dataId).values,h=n.bufferSync(s),f=z7(p,h,s.dtype,c,i,u,d,s.shape,a);return n.makeTensorInfo(l,s.dtype,f.values)}var Jj={kernelName:hi,backendName:"cpu",kernelFunc:Yj};function Qj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s;Ne([r,a],"gatherV2");let l=i;i==null&&(l=0);let c=v.sizeFromShape(a.shape),u=v.parseAxisParam(o,r.shape)[0],d=E.segment_util.collectGatherOpShapeInfo(r,a,u,l),p=Et({inputs:{x:r},backend:n,attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]}}),h=Et({inputs:{x:a},backend:n,attrs:{shape:[d.batchSize,c/d.batchSize]}}),f=[d.batchSize,d.outerSize,c/d.batchSize,d.sliceSize],m=n.bufferSync(h),g=n.bufferSync(p),y=L7(g,m,f);return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.makeTensorInfo(d.outputShape,y.dtype,y.values)}var eq={kernelName:pi,backendName:"cpu",kernelFunc:Qj};function tq(e){let{inputs:t,backend:n}=e,{input:s}=t,r=v.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=Et({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=wI(i,!0,n),c=Et({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var nq={kernelName:Ch,backendName:"cpu",kernelFunc:tq},sq=xt(ru,e=>Number.isFinite(e)?1:0,"bool"),rq={kernelName:ru,backendName:"cpu",kernelFunc:sq},aq=xt(au,e=>Math.abs(e)===1/0?1:0,"bool"),oq={kernelName:au,backendName:"cpu",kernelFunc:aq},iq=xt(ou,e=>Number.isNaN(e)?1:0,"bool"),lq={kernelName:ou,backendName:"cpu",kernelFunc:iq};function uq(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=G7(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var cq={kernelName:Th,backendName:"cpu",kernelFunc:uq},dq=xt(iu,e=>Math.log1p(e)),pq={kernelName:iu,backendName:"cpu",kernelFunc:dq},hq=Qt((e,t)=>e&&t),fq=wn(Ai,hq,null,"bool"),mq={kernelName:Ai,backendName:"cpu",kernelFunc:fq},gq=xt(lu,e=>e?0:1,"bool"),yq={kernelName:lu,backendName:"cpu",kernelFunc:gq},Aq=Qt((e,t)=>e||t),xq=wn(Zc,Aq,null,"bool"),bq={kernelName:Zc,backendName:"cpu",kernelFunc:xq};function vq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s;Ne(r,"LRN");let c=r.shape[3],u=c-1,d=n.data.get(r.dataId).values,p=v.sizeFromShape(r.shape),h=new Float32Array(p);function f(m){let g=m%c,y=m-g+Math.max(0,g-a),A=m-g+Math.min(g+a,u),x=0;for(;y<=A;y++){let b=d[y];x+=b*b}return x}for(let m=0;m`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,o,c,i,l),d;if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))d=Or({inputs:{x:r},backend:n});else{let p=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=QA(p,r.shape,r.dtype,h,u,"max");d=n.makeTensorInfo(u.outShape,r.dtype,f.values)}return d}var Tq={kernelName:Ga,backendName:"cpu",kernelFunc:Cq};function Nq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s;Ne(r,"maxPool3d");let u=E.computePool3DInfo(r.shape,a,o,1,i,l,c),d=n.data.get(r.dataId).values,p=xI(d,r.shape,r.dtype,v.computeStrides(r.shape),u,"max");return n.makeTensorInfo(p.shape,"float32",p.values)}var Eq={kernelName:Jc,backendName:"cpu",kernelFunc:Nq};function Rq(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=s;Ne([r,a],"maxPool3DGrad");let u=E.computePool3DInfo(a.shape,o,i,1,l,c),d=n.bufferSync(a),p=xH(d,u),h=u.strideDepth,f=u.strideHeight,m=u.strideWidth,g=u.dilationDepth,y=u.dilationHeight,A=u.dilationWidth,x=u.effectiveFilterDepth,b=u.effectiveFilterHeight,w=u.effectiveFilterWidth,k=x-1-u.padInfo.front,S=w-1-u.padInfo.left,N=b-1-u.padInfo.top,$=Ve(a.shape,"float32"),F=n.bufferSync(r);for(let R=0;R=u.outDepth||Math.floor(Q)!==Q))for(let ne=0;ne=u.outHeight||Math.floor(K)!==K))for(let oe=0;oe=u.outWidth||Math.floor(ce)!==ce)continue;let he=x*b*w-1-p.get(R,Q,K,ce,D),Ae=J*b*w+ne*w+oe,Se=he===Ae?1:0;if(Se===0)continue;te+=F.get(R,Q,K,ce,D)*Se}}}$.set(te,R,T,O,W,D)}return n.makeTensorInfo($.shape,$.dtype,$.values)}var $q={kernelName:Rh,backendName:"cpu",kernelFunc:Rq};function Dq(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;Ne([a,o],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:d}=s,p=E.computePool2DInfo(i.shape,l,c,1,u,d),h=n.data.get(i.dataId).values,f=Ve(p.outShape,i.dtype,AI(h,i.shape,i.dtype,p).values),m=p.strideHeight,g=p.strideWidth,y=p.dilationHeight,A=p.dilationWidth,x=p.effectiveFilterHeight,b=p.effectiveFilterWidth,w=b-1-p.padInfo.left,k=x-1-p.padInfo.top,S=Ve(i.shape,"float32"),N=n.data.get(r.dataId).values,$=Ve(r.shape,"float32",N);for(let F=0;F=p.outHeight||Math.floor(X)!==X))for(let te=0;te=p.outWidth||Math.floor(J)!==J)continue;let Q=x*b-1-f.get(F,X,J,R),ne=z*b+te,K=Q===ne?1:0;if(K===0)continue;H+=$.get(F,X,J,R)*K}}S.set(H,F,D,T,R)}return n.makeTensorInfo(S.shape,S.dtype,S.values)}var _q={kernelName:Eh,backendName:"cpu",kernelFunc:Dq};function Pq(e,t,n,s,r){let a=v.computeStrides(t),o=QA(e,t,n,a,r,"max"),i=AI(e,t,n,r,!0,s);return[o.values,i.values]}var Fq={kernelName:$h,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;Ne(s,"MaxPoolWithArgmax");let c=l.data.get(s.dataId).values,u=E.computePool2DInfo(s.shape,r,a,[1,1],o),[d,p]=Pq(c,s.shape,s.dtype,i,u),h=l.write(d,u.outShape,s.dtype),f=l.write(p,u.outShape,s.dtype);return[{dataId:h,shape:u.outShape,dtype:s.dtype},{dataId:f,shape:u.outShape,dtype:"int32"}]}};function Oq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=v.parseAxisParam(a,r.shape),c=E.computeOutAndReduceShapes(r.shape,i)[1],u=v.sizeFromShape(c),d=[],p=n.makeTensorInfo([],"float32",new Float32Array([u]));d.push(p);let h=Po({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});d.push(h);let f=ex({inputs:{a:h,b:p},backend:n});d.push(f);let m=sp({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return d.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var Mq={kernelName:Ha,backendName:"cpu",kernelFunc:Oq};function zq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"min");let i=v.parseAxisParam(a,r.shape),l=i,c=E.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=Ls({inputs:{x:r},backend:n,attrs:{perm:c}}),l=E.getInnerMostAxes(l.length,r.shape.length)),E.assertAxesAreInnerMostDims("min",l,u.shape.length);let[d,p]=E.computeOutAndReduceShapes(u.shape,l),h=v.sizeFromShape(p),f=v.makeZerosTypedArray(v.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let y=0;yx[0]+r.shape[b]+x[1]),l=a.map(x=>x[0]),c=a.map((x,b)=>x[0]+r.shape[b]),u=o==="reflect"?0:1,d=n.data.get(r.dataId).values,p=r.shape.length,h=v.computeStrides(r.shape),f=v.sizeFromShape(i),m=i.length,g=v.computeStrides(i),y=v.getTypedArrayFromDType(r.dtype,f);for(let x=0;x=c[k]&&(b[k]=(c[k]-1)*2-b[k]+u);b=b.map((k,S)=>k-l[S]);let w=v.locToIndex(b,p,h);y[x]=d[w]}return{dataId:n.write(y,i,r.dtype),shape:i,dtype:r.dtype}}var Wq={kernelName:Xa,backendName:"cpu",kernelFunc:Bq},Vq=Qt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),Uq=wn(uu,Vq),Gq={kernelName:uu,backendName:"cpu",kernelFunc:Uq},Hq=Qo(v5());function II(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=r.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let l=v.parseAxisParam([i],r.shape),c=kI({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=E.expandShapeToKeepDim(c.shape,l),d=Et({inputs:{x:c},backend:n,attrs:{shape:u}}),p=YA({inputs:{a:r,b:d},backend:n}),h=F7({inputs:{x:p},backend:n}),f=sp({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),m=Et({inputs:{x:f},backend:n,attrs:{shape:u}}),g=ex({inputs:{a:h,b:m},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var jq={kernelName:io,backendName:"cpu",kernelFunc:II};function qq(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s;Ne(r,"multinomial");let l=i?r:II({inputs:{logits:r},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],d=n.data.get(l.dataId).values,p=[c,a],h=v.makeZerosTypedArray(v.sizeFromShape(p),"int32");for(let f=0;f=0&&u[d]{v.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=Sm({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=Ju({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var lX={kernelName:Si,backendName:"cpu",kernelFunc:CI};function uX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;Ne(r,"pad");let i=a.map((A,x)=>A[0]+r.shape[x]+A[1]),l=a.map(A=>A[0]),c=n.data.get(r.dataId).values,u=v.sizeFromShape(r.shape),d=r.shape.length,p=v.computeStrides(r.shape),h=v.sizeFromShape(i),f=i.length,m=v.computeStrides(i),g=v.getTypedArrayFromDType(r.dtype,h);o!==0&&g.fill(o);for(let A=0;Ak+l[S]),w=v.locToIndex(b,f,m);g[w]=c[A]}return{dataId:n.write(g,i,r.dtype),shape:i,dtype:r.dtype}}var TI={kernelName:Za,backendName:"cpu",kernelFunc:uX},cX=Qt((e,t)=>Math.pow(e,t)),dX=wn(Ya,cX),pX={kernelName:Ya,backendName:"cpu",kernelFunc:dX};function hX(e){let{backend:t,attrs:n}=e,{start:s,stop:r,dtype:a,step:o}=n,i=KA(s,r,o,a);return t.makeTensorInfo([i.length],a,i)}var fX={kernelName:du,backendName:"cpu",kernelFunc:hX},mX=xt(pu,e=>1/e),gX={kernelName:pu,backendName:"cpu",kernelFunc:mX};function yX(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Ne(r,"resizeBilinear");let l=v.computeStrides(r.shape),[c,u]=i,[d,p,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(v.sizeFromShape([d,c,u,f])),y=[a&&c>1?p-1:p,a&&u>1?h-1:h],A=[a&&c>1?c-1:c,a&&u>1?u-1:u],x=0,b=y[0]/A[0],w=y[1]/A[1];for(let k=0;k1?c-1:c,o&&h>1?u-1:u],g=[o&&p>1?p-1:p,o&&h>1?h-1:h],y=m[0]/g[0],A=m[1]/g[1],x=n.data.get(a.dataId).values,b=0;for(let w=0;w1?p-1:p,a&&u>1?h-1:h],A=[a&&c>1?c-1:c,a&&u>1?u-1:u],x=y[0]/A[0],b=y[1]/A[1],w=0;for(let k=0;k1?u-1:u,o&&f>1?d-1:d],A=[o&&h>1?h-1:h,o&&f>1?f-1:f],x=y[0]/A[0],b=y[1]/A[1],w=1/x,k=1/b,S=Math.ceil(w)*2+2,N=Math.ceil(k)*2+2;for(let $=0;$=h)continue;let K=F+ne*l[1],oe=ne*x,ce=Math.min(u-1,o?Math.round(oe):Math.floor(oe));if(R===ce)for(let he=0;he=f)continue;let Se=K+Ae*l[2],Ce=Ae*b,Oe=Math.min(d-1,o?Math.round(Ce):Math.floor(Ce));W===Oe&&(J+=g[Se+te])}}m[H+te]=J}}}}return n.makeTensorInfo(r.shape,r.dtype,m)}var IX={kernelName:_h,backendName:"cpu",kernelFunc:kX};function SX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s;Ne(r,"reverse");let o=r.shape.length,i=v.parseAxisParam(a,r.shape);if(o===0)return Or({inputs:{x:r},backend:n});let l=new nn(r.shape,r.dtype),c=n.bufferSync(r);for(let u=0;up[h]=r.shape[h]-1-p[h]),l.set(c.get(...p),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var CX={kernelName:Ni,backendName:"cpu",kernelFunc:SX},TX={kernelName:Wi,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=v.getTypedArrayFromDType(s.dtype,v.sizeFromShape(s.shape)),[c,u,d,p]=s.shape,[h,f]=E.getImageCenter(o,u,d),m=255,g=Math.sin(r),y=Math.cos(r),A=i.data.get(s.dataId).values;for(let b=0;b=0&&O=0&&W{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),EX={kernelName:Ei,backendName:"cpu",kernelFunc:NX};function NI(e,t,n,s,r,a,o,i,l,c){let u=[s/r,r],d=e.values,p=t.values;if(s===0)return Ve(n,t.dtype);let h=Ve(u,t.dtype);h.values.fill(l);for(let f=0;f=s/r)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let y=0;y1||r.shape.length===1?1:v.sizeFromShape(r.shape.slice(1));for(let f=0;fe>=0?FX*e:PX*(Math.exp(e)-1)),MX={kernelName:fu,backendName:"cpu",kernelFunc:OX},zX=xt(mu,e=>e<0?-1:e>0?1:0),LX={kernelName:mu,backendName:"cpu",kernelFunc:zX},BX=xt(so,e=>Math.sin(e)),WX={kernelName:so,backendName:"cpu",kernelFunc:BX},VX=xt(_i,e=>Math.sinh(e)),UX={kernelName:_i,backendName:"cpu",kernelFunc:VX},GX=11920928955078125e-23,EI=Math.log(GX)+2,HX=xt(gu,e=>{let t=e>-EI,n=eNumber(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var ZX={kernelName:Fh,backendName:"cpu",kernelFunc:KX};function YX(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(r.dataId).values),i=n.data.get(s.dataId).values,l=Array.from(n.data.get(a.dataId).values),[c,u,d]=tI(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(u,s.dtype,c),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var JX={kernelName:Oh,backendName:"cpu",kernelFunc:YX};function QX(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape ${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[c,u]=ZA(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(u,s.dtype,c)}var eK={kernelName:Mh,backendName:"cpu",kernelFunc:QX};function tK(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape ${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[c,u]=ZA(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(u,s.dtype,c)}var nK={kernelName:zh,backendName:"cpu",kernelFunc:tK};function sK(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:c,sliceSize:u,strides:d,outputSize:p}=E.calculateShapes(a,r,i),h=!1,f=n.bufferSync(r),m=n.bufferSync(a),g=n.data.get(o.dataId).values[0],y=NI(f,m,i,p,u,c,l,d,g,h);return n.makeTensorInfo(i,y.dtype,y.values)}var rK={kernelName:ed,backendName:"cpu",kernelFunc:sK};function aK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=E.prepareSplitSize(r,a,i),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(d=>{let p=[...u];p[i]=d;let h=ml({inputs:{x:r},backend:n,attrs:{begin:c,size:p}});return c[i]+=d,h})}var oK={kernelName:Fi,backendName:"cpu",kernelFunc:aK},iK={kernelName:yu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t;Ne(n,"square");let r=s.data.get(n.dataId).values,a=new Float32Array(r.length);for(let i=0;i{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),uK={kernelName:ho,backendName:"cpu",kernelFunc:lK};function cK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s;Ne(r,"stridedSlice");let{nonStrided:h,$begin:f,$strides:m,size:g,newShape:y,outShape:A}=yn.sliceInfo(r.shape,a,o,i,l,c,u,d,p),x=Et({inputs:{x:r},backend:n,attrs:{shape:y}}),b;if(h){let k=ml({inputs:{x},backend:n,attrs:{begin:f,size:g}});b=Et({inputs:{x:k},backend:n,attrs:{shape:A}}),n.disposeIntermediateTensorInfo(k)}else if(A.some(k=>k===0))b=n.makeTensorInfo(A,r.dtype,[]);else{let k=n.bufferSync(x),S=sI(A,k,m,f);b=n.makeTensorInfo(S.shape,S.dtype,S.values)}let w=Et({inputs:{x:b},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),w}var dK={kernelName:Oi,backendName:"cpu",kernelFunc:cK};function pK(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:c}=s,{data:u,dataSplits:d}=t,p=n.data.get(u.dataId).values,h=n.data.get(d.dataId).values,[f,m]=rI(p,h,r,a,o,i,l,c);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var hK={kernelName:td,backendName:"cpu",kernelFunc:pK};function fK(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values[0],[c,u,d]=aI(i,l,r),p=u.length;return[n.makeTensorInfo([p,2],"int32",c),n.makeTensorInfo([p],"string",u),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var mK={kernelName:Lh,backendName:"cpu",kernelFunc:fK};function gK(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=oI(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var yK={kernelName:Bh,backendName:"cpu",kernelFunc:gK},AK=xt(Mi,e=>Math.tan(e)),xK={kernelName:Mi,backendName:"cpu",kernelFunc:AK},bK=xt(co,e=>Math.tanh(e)),vK={kernelName:co,backendName:"cpu",kernelFunc:bK};function wK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;Ne(r,"tile");let o=lI(n.bufferSync(r),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var kK={kernelName:Kr,backendName:"cpu",kernelFunc:wK};function IK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s;Ne(r,"topk");let i=n.data.get(r.dataId).values,[l,c]=cI(i,r.shape,r.dtype,a,o);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var SK={kernelName:Au,backendName:"cpu",kernelFunc:IK};function CK(e){let{inputs:t,attrs:n,backend:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=n,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],y=v.computeStrides(r.shape),A=y[0],x=y[1],b=y[2],w=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(g));w.fill(l);let k=s.data.get(r.dataId).values,S=s.data.get(a.dataId).values;for(let $=0;$t-1)if(t<=1)n=0;else{let s=2*t;n-=s*Math.trunc(n/s),n>=t&&(n=s-n-1)}return v.clamp(0,n,t-1)}function EK(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=t-1;n+=t*(Math.trunc(-n/s)+1)}else if(n>t-1)if(t<=1)n=0;else{let s=t-1;n-=t*Math.trunc(n/s)}return v.clamp(0,n,t-1)}function RK(e,t){return e}function $K(e,t){return v.clamp(0,e,t-1)}function rp(e,t,n,s,r,a,o,i,l,c,u){let d=o*s+i*r+l*a+c;return 0<=i&&in.disposeIntermediateTensorInfo(f)),h}var LK={kernelName:nd,backendName:"cpu",kernelFunc:zK},BK=[qG,BU,KG,YG,jU,QG,tH,sH,aH,iH,uH,dH,hH,gH,AH,vH,kH,SH,TH,HG,EH,$H,_H,FH,GU,XU,MH,WU,LH,WH,GH,jH,VH,ZH,JH,XH,ej,nj,rj,oj,lj,cj,dj,hj,mj,yj,Aj,bj,xj,tx,kj,zG,Sj,KU,_j,ZU,Pj,JU,Bj,Wj,Uj,eG,jj,Xj,Zj,Jj,eq,nG,rG,VU,nq,BH,rq,oq,lq,LG,oG,lG,cq,cG,pq,mq,yq,bq,wq,Iq,pG,Tq,Eq,$q,_q,Fq,Sq,Mq,Lq,fG,Wq,Gq,Xq,gG,AG,Yq,eX,sX,bG,aX,iX,lX,TI,pX,WG,kG,fX,UU,gX,VG,UG,GG,AX,bX,wX,IX,CX,TX,EX,SG,$X,_X,MX,TG,LX,WX,UX,NG,jq,jX,XX,ZX,JX,eK,nK,rK,oK,$G,iK,_G,uK,dK,hK,mK,yK,MG,vj,xK,vK,kK,SK,vG,TK,FK,MK,LK,oX];for(let e of BK)Yr(e);var $I={};Le($I,{assertNotComplex:()=>ec,bindCanvasToFramebuffer:()=>JK,bindColorTextureToFramebuffer:()=>Rm,bindTextureToProgramUniformSampler:()=>jI,bindTextureUnit:()=>UI,bindVertexBufferToProgramAttribute:()=>ox,callAndCheck:()=>Ie,canBeRepresented:()=>DI,createFragmentShader:()=>FI,createFramebuffer:()=>VI,createProgram:()=>OI,createStaticIndexBuffer:()=>LI,createStaticVertexBuffer:()=>zI,createTexture:()=>BI,createVertexShader:()=>PI,getBatchDim:()=>yl,getExtensionOrThrow:()=>ip,getFramebufferErrorMessage:()=>qI,getMaxTexturesInShader:()=>YI,getNumChannels:()=>ZK,getProgramUniformLocation:()=>HI,getProgramUniformLocationOrThrow:()=>GI,getRowsCols:()=>Al,getShapeAs3D:()=>$m,getTextureShapeFromLogicalShape:()=>KI,getWebGLDisjointQueryTimerVersion:()=>JI,getWebGLErrorMessage:()=>_I,getWebGLMaxTextureSize:()=>ZI,hasExtension:()=>Ws,isCapableOfRenderingToFloatTexture:()=>QI,isDownloadFloatTextureEnabled:()=>e4,isReshapeFree:()=>up,isWebGLFenceEnabled:()=>t4,isWebGLVersionEnabled:()=>lx,linkProgram:()=>MI,resetMaxTextureSize:()=>QK,resetMaxTexturesInShader:()=>eZ,unbindColorTextureFromFramebuffer:()=>ix,unbindTextureUnit:()=>YK,validateFramebuffer:()=>lp,validateProgram:()=>Em,validateTextureSize:()=>WI});var gl={},rx={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function Tm(e,t){gl[e]=t}function Mr(e){if(!(e in gl)){let n=VK(e);if(n!==null)gl[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=gl[e];return t.isContextLost()?(delete gl[e],Mr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),gl[e])}function WK(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function VK(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=WK(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete gl[e]},!1),e===1?t.getContext("webgl",rx)||t.getContext("experimental-webgl",rx):t.getContext("webgl2",rx)}var ap;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(ap||(ap={}));var Bs;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Bs||(Bs={}));var Nn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Nn||(Nn={}));function op(e,t){return[t,e]}function UK(e,t){return e*t}function Nm(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function Qu(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function GK(e,t){let[n,s]=Qu(e,t);return n*s*4}function ax(e,t){let n=e,s,r,a,o,i,l,c,u,d,p;return Z().getNumber("WEBGL_VERSION")===2?(s=n.R32F,r=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,c=4,u=1,d=n.HALF_FLOAT,p=n.FLOAT):(s=e.RGBA,r=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,c=4,u=4,d=t!=null?t.HALF_FLOAT_OES:null,p=e.FLOAT),l=e.RGBA,{internalFormatFloat:s,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:d,textureTypeFloat:p}}function Ie(e,t){let n=t();return Z().getBool("DEBUG")&&HK(e),n}function HK(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+_I(e,t))}var jK=596e-10,qK=65504;function DI(e){return!!(Z().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||jKe.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function PI(e,t){let n=la(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Ie(e,()=>e.shaderSource(n,t)),Ie(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function FI(e,t){let n=la(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Ie(e,()=>e.shaderSource(n,t)),Ie(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw KK(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var XK=/ERROR: [0-9]+:([0-9]+):/g;function KK(e,t){let n=XK.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let s=+n[1],r=e.split(` `),a=r.length.toString().length+2,o=r.map((d,p)=>v.rightPad((p+1).toString(),a)+d),i=0;for(let d=0;de.createProgram(),"Unable to create WebGLProgram.")}function MI(e,t){if(Ie(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function Em(e,t){if(Ie(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function zI(e,t){let n=la(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Ie(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function LI(e,t){let n=la(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),Ie(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function ZK(){return Z().getNumber("WEBGL_VERSION")===2?1:4}function BI(e){return la(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function WI(e,t){let n=Z().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){let s=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+r+".")}}function VI(e){return la(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function ox(e,t,n,s,r,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),Ie(e,()=>e.vertexAttribPointer(i,r,e.FLOAT,!1,a,o)),Ie(e,()=>e.enableVertexAttribArray(i)),!0)}function UI(e,t,n){XI(e,n),Ie(e,()=>e.activeTexture(e.TEXTURE0+n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function YK(e,t){XI(e,t),Ie(e,()=>e.activeTexture(e.TEXTURE0+t)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function GI(e,t,n){return la(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function HI(e,t,n){return e.getUniformLocation(t,n)}function jI(e,t,n,s){Ie(e,()=>UI(e,t,s)),Ie(e,()=>e.uniform1i(n,s))}function JK(e){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ie(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),Ie(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function Rm(e,t,n){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),Ie(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function ix(e,t){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),Ie(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function lp(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+qI(e,t))}function qI(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function la(e,t,n){let s=Ie(e,()=>t());if(s==null)throw new Error(n);return s}function XI(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(sn){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function yl(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function Al(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function $m(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[yl(e),...Al(e)]),t}function KI(e,t=!1){let n=Z().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,a)=>a>=e.length-2?v.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let s=v.sizeFromShape(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=yl(e),a=2,o=2;return e.length&&([a,o]=Al(e)),s=r*(a/2)*(o/2),v.sizeToSquarishShape(s).map(i=>i*2)}return v.sizeToSquarishShape(s)}function Dm(e){return e%2==0}function up(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s||Dm(n)&&Dm(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Dm(e[0])&&Dm(t[0])}var _m,Pm;function ZI(e){if(_m==null){let t=Mr(e);_m=t.getParameter(t.MAX_TEXTURE_SIZE)}return _m}function QK(){_m=null}function eZ(){Pm=null}function YI(e){if(Pm==null){let t=Mr(e);Pm=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Pm)}function JI(e){if(e===0)return 0;let t,n=Mr(e);return Ws(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Ws(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Ws(e,t){return e.getExtension(t)!=null}function lx(e){try{if(Mr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function QI(e){if(e===0)return!1;let t=Mr(e);if(e===1){if(!Ws(t,"OES_texture_float"))return!1}else if(!Ws(t,"EXT_color_buffer_float"))return!1;return ux(t)}function e4(e){if(e===0)return!1;let t=Mr(e);if(e===1){if(!Ws(t,"OES_texture_float")||!Ws(t,"WEBGL_color_buffer_float"))return!1}else{if(Ws(t,"EXT_color_buffer_float"))return ux(t);let s="EXT_color_buffer_half_float";if(Ws(t,s)){let r=t.getExtension(s);return tZ(t,r)}return!1}return ux(t)}function ux(e){let t=ax(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let s=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function tZ(e,t){let n=ax(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(o),i}function t4(e){return e!==2?!1:Mr(e).fenceSync!=null}function ec(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var De=Z();De.registerFlag("HAS_WEBGL",()=>De.getNumber("WEBGL_VERSION")>0);De.registerFlag("WEBGL_VERSION",()=>lx(2)?2:lx(1)?1:0);De.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);De.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>De.get("WEBGL_VERSION")===2);De.registerFlag("WEBGL_CPU_FORWARD",()=>!0);De.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);De.registerFlag("WEBGL_PACK",()=>De.getBool("HAS_WEBGL"));De.registerFlag("WEBGL_PACK_NORMALIZATION",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_CLIP",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_REDUCE",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_LAZILY_UNPACK",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_CONV_IM2COL",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>ZI(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>YI(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=De.getNumber("WEBGL_VERSION");return e===0?0:JI(e)});De.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>De.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!vu.isMobile());De.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>QI(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>De.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:De.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));De.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>e4(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_FENCE_API_ENABLED",()=>t4(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>De.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);De.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});De.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>vu.isMobile()&&De.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});De.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);De.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);De.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);De.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function Hn(){let e,t,n,s,r,a,o,i,l,c;return Z().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",r="texture",a="outputColor",o="out vec4 outputColor;",i=` bool isnan_custom(float val) { return (val > 0.0 || val < 0.0) ? false : val != 0.0; } bvec4 isnan_custom(vec4 val) { return bvec4(isnan_custom(val.x), isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w)); } #define isnan(value) isnan_custom(value) `,l="",c=` #define round(value) newRound(value) int newRound(float value) { return int(floor(value + 0.5)); } ivec4 newRound(vec4 value) { return ivec4(floor(value + vec4(0.5))); } `):(e="",t="attribute",n="varying",s="varying",r="texture2D",a="gl_FragColor",o="",i=` #define isnan(value) isnan_custom(value) bool isnan_custom(float val) { return (val > 0. || val < 1. || val == 0.) ? false : true; } bvec4 isnan_custom(vec4 val) { return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w)); } `,l=` uniform float INFINITY; bool isinf(float val) { return abs(val) == INFINITY; } bvec4 isinf(vec4 val) { return equal(abs(val), vec4(INFINITY)); } `,c=` int round(float value) { return int(floor(value + 0.5)); } ivec4 round(vec4 value) { return ivec4(floor(value + vec4(0.5))); } `),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:r,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:l,defineRound:c}}function xl(e,t,n="index"){let s=v.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / ${r}`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${r}`:`index -= ${e[a]} * ${r}`;return`${o}; ${i};`}).join("")}function Fm(e,t,n="index"){let s=v.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function nZ(e,t){let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function sZ(e,t,n="index"){let s=e.map((a,o)=>o),r=nZ(s,t);return r.map((a,o)=>{let i=`int ${e[o]} = ${n} / ${r[o]}`,l=o===r.length-1?`int ${e[o+1]} = ${n} - ${e[o]} * ${r[o]}`:`index -= ${e[o]} * ${r[o]}`;return`${i}; ${l};`}).join("")}function cx(e){let t=v.computeStrides(e).map(n=>n.toString());return` int getFlatIndex(ivec3 coords) { return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z; } `}function dx(){return` int getFlatIndex(ivec3 coords) { return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z; } `}var n4=` const float FLOAT_MAX = 1.70141184e38; const float FLOAT_MIN = 1.17549435e-38; lowp vec4 encode_float(highp float v) { if (isnan(v)) { return vec4(255, 255, 255, 255); } highp float av = abs(v); if(av < FLOAT_MIN) { return vec4(0.0, 0.0, 0.0, 0.0); } else if(v > FLOAT_MAX) { return vec4(0.0, 0.0, 128.0, 127.0) / 255.0; } else if(v < -FLOAT_MAX) { return vec4(0.0, 0.0, 128.0, 255.0) / 255.0; } highp vec4 c = vec4(0,0,0,0); highp float e = floor(log2(av)); highp float m = exp2(fract(log2(av))) - 1.0; c[2] = floor(128.0 * m); m -= c[2] / 128.0; c[1] = floor(32768.0 * m); m -= c[1] / 32768.0; c[0] = floor(8388608.0 * m); highp float ebias = e + 127.0; c[3] = floor(ebias / 2.0); ebias -= c[3] * 2.0; c[2] += floor(ebias) * 128.0; c[3] += 128.0 * step(0.0, -v); return c / 255.0; } `,{getBroadcastDims:s4}=E;function rZ(e,t,n){let s=[];if(e.forEach(h=>{let f=v.sizeFromShape(h.shapeInfo.logicalShape);if(h.shapeInfo.isUniform?s.push(`uniform float ${h.name}${f>1?`[${f}]`:""};`):(s.push(`uniform sampler2D ${h.name};`),s.push(`uniform int offset${h.name};`)),n.enableShapeUniforms){let{uniformShape:m}=px(n.packedInputs,h.shapeInfo.logicalShape,h.shapeInfo.texShape);switch(m.length){case 1:s.push(`uniform int ${h.name}Shape;`);break;case 2:s.push(`uniform ivec2 ${h.name}Shape;`);break;case 3:s.push(`uniform ivec3 ${h.name}Shape;`);break;case 4:s.push(`uniform ivec4 ${h.name}Shape;`);break;default:break}s.push(`uniform ivec2 ${h.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:s.push("uniform int outShape;");break;case 2:s.push("uniform ivec2 outShape;"),s.push("uniform int outShapeStrides;");break;case 3:s.push("uniform ivec3 outShape;"),s.push("uniform ivec2 outShapeStrides;");break;case 4:s.push("uniform ivec4 outShape;"),s.push("uniform ivec3 outShapeStrides;");break;default:break}s.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(h=>{s.push(`uniform ${h.type} ${h.name}${h.arrayIndex?`[${h.arrayIndex}]`:""};`)});let r=s.join(` `),a=e.map(h=>aZ(h,t,n.packedInputs,n.enableShapeUniforms)).join(` `),o=t.texShape,i=Hn(),l=lZ(i),c,u,d=dZ(i);return t.isPacked?(c=oZ(t.logicalShape,o,n.enableShapeUniforms),u=cZ(i)):(c=iZ(t.logicalShape,o,n.enableShapeUniforms),u=uZ(i)),n.packedInputs&&(d+=mZ),[d,l,u,r,c,a,n.userCode].join(` `)}function tc(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return TZ(e,t);case 1:return EZ(e,t);case 2:return $Z(e,t);case 3:return _Z(e,t);case 4:return FZ(e,t);case 5:return OZ(e);case 6:return MZ(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function r4(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return CZ(e);case 1:return NZ(e,t);case 2:return RZ(e,t);case 3:return DZ(e,t);default:return PZ(e,t)}}function aZ(e,t,n=!1,s){let r="";n?r+=r4(e,s):r+=tc(e,s);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?r+=zZ(e,t):r+=LZ(e,t)),r}function oZ(e,t,n){switch(e.length){case 0:return a4();case 1:return gZ(e,t,n);case 2:return IZ(e,t,n);case 3:return AZ(e,t,n);default:return bZ(e,t,n)}}function iZ(e,t,n){switch(e.length){case 0:return a4();case 1:return yZ(e,t,n);case 2:return SZ(e,t,n);case 3:return xZ(e,t,n);case 4:return vZ(e,t,n);case 5:return wZ(e,t);case 6:return kZ(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function lZ(e){return` float sampleTexture(sampler2D textureSampler, vec2 uv) { return ${e.texture2D}(textureSampler, uv).r; } `}function uZ(e){return` void setOutput(float val) { ${e.output} = vec4(val, 0, 0, 0); } `}function cZ(e){return` void setOutput(vec4 val) { ${e.output} = val; } `}function dZ(e){return`${e.version} precision highp float; precision highp int; precision highp sampler2D; ${e.varyingFs} vec2 resultUV; ${e.defineOutput} const vec2 halfCR = vec2(0.5, 0.5); struct ivec5 { int x; int y; int z; int w; int u; }; struct ivec6 { int x; int y; int z; int w; int u; int v; }; uniform float NAN; ${e.defineSpecialNaN} ${e.defineSpecialInf} ${e.defineRound} int imod(int x, int y) { return x - y * (x / y); } int idiv(int a, int b, float sign) { int res = a / b; int mod = imod(a, b); if (sign < 0. && mod != 0) { res -= 1; } return res; } //Based on the work of Dave Hoskins //https://www.shadertoy.com/view/4djSRW #define HASHSCALE1 443.8975 float random(float seed){ vec2 p = resultUV * seed; vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1); p3 += dot(p3, p3.yzx + 19.19); return fract((p3.x + p3.y) * p3.z); } ${pZ} ${hZ} ${fZ} `}var pZ=` vec2 uvFromFlat(int texNumR, int texNumC, int index) { int texR = index / texNumC; int texC = index - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } vec2 packedUVfrom1D(int texNumR, int texNumC, int index) { int texelIndex = index / 2; int texR = texelIndex / texNumC; int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } `,hZ=` vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR, int texNumC, int row, int col) { int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2); int texR = texelIndex / texNumC; int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } `,fZ=` vec2 packedUVfrom3D(int texNumR, int texNumC, int texelsInBatch, int texelsInLogicalRow, int b, int row, int col) { int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2); int texR = index / texNumC; int texC = index - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } `,mZ=` float getChannel(vec4 frag, vec2 innerDims) { vec2 modCoord = mod(innerDims, 2.); return modCoord.x == 0. ? (modCoord.y == 0. ? frag.r : frag.g) : (modCoord.y == 0. ? frag.b : frag.a); } float getChannel(vec4 frag, int dim) { float modCoord = mod(float(dim), 2.); return modCoord == 0. ? frag.r : frag.g; } `;function a4(){return` int getOutputCoords() { return 0; } `}function gZ(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?n?` int getOutputCoords() { return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0)); } `:` int getOutputCoords() { return 2 * int(resultUV.x * ${s[1]}.0); } `:s[1]===1?n?` int getOutputCoords() { return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0)); } `:` int getOutputCoords() { return 2 * int(resultUV.y * ${s[0]}.0); } `:n?` int getOutputCoords() { ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0)); ivec2 resTexRC = ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1])); return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y); } `:` int getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${s[0]}, ${s[1]})); return 2 * (resTexRC.x * ${s[1]} + resTexRC.y); } `}function yZ(e,t,n){return t[0]===1?n?` int getOutputCoords() { return int(resultUV.x * float(outTexShape[1])); } `:` int getOutputCoords() { return int(resultUV.x * ${t[1]}.0); } `:t[1]===1?n?` int getOutputCoords() { return int(resultUV.y * float(outTexShape[0])); } `:` int getOutputCoords() { return int(resultUV.y * ${t[0]}.0); } `:n?` int getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1])); return resTexRC.x * outTexShape[1] + resTexRC.y; } `:` int getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); return resTexRC.x * ${t[1]} + resTexRC.y; } `}function AZ(e,t,n){if(n)return` ivec3 getOutputCoords() { ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0)); int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0)); int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0)); ivec2 resTexRC = ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1])); int index = resTexRC.x * packedTexShape[1] + resTexRC.y; int b = index / texelsInBatch; index -= b * texelsInBatch; int r = 2 * (index / texelsInLogicalRow); int c = imod(index, texelsInLogicalRow) * 2; return ivec3(b, r, c); } `;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${s[0]}, ${s[1]})); int index = resTexRC.x * ${s[1]} + resTexRC.y; int b = index / ${a}; index -= b * ${a}; int r = 2 * (index / ${r}); int c = imod(index, ${r}) * 2; return ivec3(b, r, c); } `}function xZ(e,t,n){if(n)return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1])); int index = resTexRC.x * outTexShape[1] + resTexRC.y; ${Fm(["r","c","d"],e)} return ivec3(r, c, d); } `;let s=xl(["r","c","d"],e);return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); int index = resTexRC.x * ${t[1]} + resTexRC.y; ${s} return ivec3(r, c, d); } `}function bZ(e,t,n){if(n)return` ivec4 getOutputCoords() { ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0)); ivec2 resTexRC = ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1])); int index = resTexRC.x * packedTexShape[1] + resTexRC.y; int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0)); int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0)); int texelsInBatchN = texelsInBatch * outShape[1]; int b2 = index / texelsInBatchN; index -= b2 * texelsInBatchN; int b = index / texelsInBatch; index -= b * texelsInBatch; int r = 2 * (index / texelsInLogicalRow); int c = imod(index, texelsInLogicalRow) * 2; return ivec4(b2, b, r, c); } `;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),o=a,i="",l="b, r, c";for(let c=2;c=1?u="coords = 0;":u=i.map(A=>`coords.${d[A+c]} = 0;`).join(` `);let p="";o<2&&a>0?p="coords":p=e.shapeInfo.logicalShape.map((A,x)=>`coords.${d[x+c]}`).join(", ");let h="return outputValue;",m=v.sizeFromShape(e.shapeInfo.logicalShape)===1,y=v.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!y)h=` return vec4(outputValue.xy, outputValue.xy); `;else if(m&&!y)o===1?h=` return vec4(outputValue.x, outputValue.x, 0., 0.); `:h=` return vec4(outputValue.x); `;else if(i.length){let A=a-2,x=a-1;i.indexOf(A)>-1&&i.indexOf(x)>-1?h="return vec4(outputValue.x);":i.indexOf(A)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(x)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return` vec4 ${r}() { ${l} coords = getOutputCoords(); ${u} vec4 outputValue = get${s}(${p}); ${h} } `}function LZ(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(o,a))return` float ${r}() { return sampleTexture(${n}, resultUV); } `;let c=St(l),u=s4(e.shapeInfo.logicalShape,t.logicalShape),d=l-i,p,h=["x","y","z","w","u","v"];i===0?p="":l<2&&u.length>=1?p="coords = 0;":p=u.map(m=>`coords.${h[m+d]} = 0;`).join(` `);let f="";return l<2&&i>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${h[g+d]}`).join(", "),` float ${r}() { ${c} coords = getOutputCoords(); ${p} return get${s}(${f}); } `}function St(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function px(e,t,n){let{newShape:s,keptDims:r}=v.squeezeShape(t),a=t.length,o=e&&a===3&&t[0]===1,i=o?t.slice(1):s,l=!e&&a>1&&!v.arraysEqual(t,n)&&s.lengthe[n]).join(", ")}function BZ(e,t,n,s){let r=n.map((x,b)=>{let w={logicalShape:x.shape,texShape:x.isUniform?null:x.texData.texShape,isUniform:x.isUniform,isPacked:x.isUniform?!1:x.texData.isPacked,flatOffset:null};return x.texData!=null&&x.texData.slice!=null&&x.texData.slice.flatOffset>0&&(w.flatOffset=x.texData.slice.flatOffset),{name:t.variableNames[b],shapeInfo:w}}),a=r.map(x=>x.shapeInfo),o={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},i=rZ(r,o,t),l=e.createProgram(i),c=null,u=e.getUniformLocation(l,"NAN",!1);Z().getNumber("WEBGL_VERSION")===1&&(c=e.getUniformLocation(l,"INFINITY",!1));let d=!1,p={},h={},f={};for(let x=0;x{A[b]=e.getUniformLocation(l,x.name,d)}),{program:t,source:i,webGLProgram:l,uniformLocations:p,customUniformLocations:A,inShapeInfos:a,outShapeInfo:o,infLoc:c,nanLoc:u,inShapesLocations:h,inTexShapesLocations:f,outShapeLocation:m,outShapeStridesLocation:y,outTexShapeLocation:g}}function o4(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{let r=n.logicalShape,a=t[s],o=a.shape;if(!v.arraysEqual(r,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,l=a.isUniform?null:a.texData.texShape;if(!v.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function WZ(e,t,n,s,r){t.program.enableShapeUniforms||(o4(t.inShapeInfos,n),o4([t.outShapeInfo],[s]));let a=s.texData.texture,o=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(a,o[0],o[1]):e.setOutputMatrixTexture(a,o[0],o[1]),e.setProgram(t.webGLProgram),Z().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,c)=>{let u=t.program.variableNames[c],d=t.uniformLocations[u],p=t.uniformLocations[`offset${u}`],h=t.inShapesLocations[`${u}Shape`],f=t.inTexShapesLocations[`${u}TexShape`];if(h){let{uniformShape:m}=px(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(h,new Int32Array(m));break;case 2:e.gl.uniform2iv(h,new Int32Array(m));break;case 3:e.gl.uniform3iv(h,new Int32Array(m));break;case 4:e.gl.uniform4iv(h,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),d!=null){if(l.isUniform){if(v.sizeFromShape(l.shape)<2)e.gl.uniform1f(d,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(d,m)}return}l.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture,d,c)}});let i=t.outShapeLocation;if(i)switch(s.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(s.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(s.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(s.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(s.shape));break;default:break}if(t.outShapeStridesLocation){let l=v.computeStrides(s.shape);switch(s.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,s.texData.texShape[0],s.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,c)=>{let u=t.customUniformLocations[c],d=r[c];if(l.type==="float")e.gl.uniform1fv(u,d);else if(l.type==="vec2")e.gl.uniform2fv(u,d);else if(l.type==="vec3")e.gl.uniform3fv(u,d);else if(l.type==="vec4")e.gl.uniform4fv(u,d);else if(l.type==="int")e.gl.uniform1iv(u,d);else if(l.type==="ivec2")e.gl.uniform2iv(u,d);else if(l.type==="ivec3")e.gl.uniform3iv(u,d);else if(l.type==="ivec4")e.gl.uniform4iv(u,d);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function VZ(e,t,n){let s="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let l=o.texData.texShape,{useSqueezeShape:c,uniformShape:u,keptDims:d}=px(e.packedInputs,o.shape,l),p="",h="",f="";if(u.length===1&&e.packedInputs){let w=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];p=`${w[0]>1}_${w[1]>1}`}else if(u.length===2&&!e.packedInputs)h=`${u[0]>1}_${u[1]>1}`;else if(u.length>2&&!e.packedInputs){let w=v.computeStrides(u);f=`${w[0]===l[1]}_${w[w.length-1]===l[1]}`}let m=o.shape.length,g=u.length===2&&v.arraysEqual(o.shape,l),y=v.sizeFromShape(o.shape)===1,A=E.getBroadcastDims(o.shape,n.shape),x=!e.packedInputs&&m===n.shape.length&&v.arraysEqual(l,n.texData.texShape),b=e.packedInputs||u.length>2?"":`${l[0]>1}_${l[1]>1}`;s+=`${m}_${x}_${c?d:""}_${u.length}_${y}_${A}_${g}_${p}_${h}_${f}_${b}_${i}`}else{let l=o.isUniform?"uniform":o.texData.texShape;s+=`${o.shape}_${l}_${i}`}});let r=e.userCode,a=e.constructor.name;return a+="_"+s+"_"+r+`${Z().getNumber("WEBGL_VERSION")}`,a}function Vs(e){return Z().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var UZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=ap.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Hn();this.outputShape=e,this.enableShapeUniforms=Vs(this.outputShape.length),this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { ${this.enableShapeUniforms?Fm(["r","c","d"],e):xl(["r","c","d"],e)} return ivec3(r, c, d); } void main() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1])); int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y); vec4 result = vec4(0.); for (int i=0; i<4; i++) { int flatIndex = index + i; ivec3 rc = outCoordsFromFlatIndex(flatIndex); result[i] = getA(rc.x, rc.y, rc.z); } ${t.output} = result; } `}},GZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=ap.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Hn();this.outputShape=e,this.enableShapeUniforms=Vs(this.outputShape.length),this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { ${this.enableShapeUniforms?Fm(["r","c","d"],e):xl(["r","c","d"],e)} return ivec3(r, c, d); } void main() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1])); int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y); vec4 result = vec4(0.); for (int i=0; i<4; i++) { int flatIndex = index + i; ivec3 rc = outCoordsFromFlatIndex(flatIndex); result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z)); } ${t.output} = result; } `}},HZ=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Bs.DOWNLOAD;let t=Hn();this.outputShape=e,this.userCode=` ${n4} void main() { float x = getAAtOutCoords(); ${t.output} = encode_float(x); } `}},jZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Bs.DOWNLOAD;let t=Hn();this.outputShape=e,this.userCode=` ${n4} void main() { ivec3 coords = getOutputCoords(); float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z)); ${t.output} = encode_float(x); } `}},qZ=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=Hn();this.outputShape=e,this.enableShapeUniforms=Vs(this.outputShape.length);let s="result";t&&(s="floor(result * 255. + 0.5)"),this.userCode=` ${this.enableShapeUniforms?dx():cx(e)} void main() { ivec3 coords = getOutputCoords(); int flatIndex = getFlatIndex(coords); int offset = imod(flatIndex, 4); flatIndex = idiv(flatIndex, 4, 1.); int r = flatIndex / texShape[1]; int c = imod(flatIndex, texShape[1]); vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]); vec4 values = ${n.texture2D}(A, uv); float result; if(offset == 0) { result = values[0]; } else if(offset == 1) { result = values[1]; } else if(offset == 2) { result = values[2]; } else { result = values[3]; } ${n.output} = vec4(${s}, 0., 0., 0.); } `}},XZ=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=Hn();this.outputShape=e,this.enableShapeUniforms=Vs(this.outputShape.length);let s="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let o=0;o<=1;o++){let i=a*2+o;s+=` localCoords = coords; if(localCoords[2] + ${o} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) { localCoords[2] += ${o}; if (localCoords[1] + ${a} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) { localCoords[1] += ${a}; flatIndex = getFlatIndex(localCoords); offset = imod(flatIndex, 4); flatIndex = idiv(flatIndex, 4, 1.); int r = flatIndex / texShape[1]; int c = imod(flatIndex, texShape[1]); vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]); values = ${n.texture2D}(A, uv); if (offset == 0) { result[${i}] = values[0]; } else if (offset == 1) { result[${i}] = values[1]; } else if (offset == 2) { result[${i}] = values[2]; } else { result[${i}] = values[3]; } } } `}this.userCode=` ${this.enableShapeUniforms?dx():cx(e)} void main() { ivec3 coords = getOutputCoords(); vec4 result = vec4(0.); int flatIndex, r, c, offset; ivec3 localCoords; vec2 uv; vec4 values; ${s} ${n.output} = ${r}; } `}},i4={};Le(i4,{bindVertexProgramAttributeStreams:()=>g4,createBufferFromOutputTexture:()=>x4,createFloat16MatrixTexture:()=>p4,createFloat16PackedMatrixTexture:()=>m4,createFloat32MatrixTexture:()=>d4,createIndexBuffer:()=>c4,createPackedMatrixTexture:()=>f4,createUnsignedBytesMatrixTexture:()=>h4,createVertexBuffer:()=>u4,createVertexShader:()=>l4,downloadByteEncodedFloatMatrixFromOutputTexture:()=>v4,downloadFloat32MatrixFromBuffer:()=>b4,downloadMatrixFromPackedOutputTexture:()=>k4,downloadPackedMatrixFromBuffer:()=>w4,getInternalFormatForFloat16MatrixTexture:()=>fx,getInternalFormatForFloat16PackedMatrixTexture:()=>yx,getInternalFormatForFloat32MatrixTexture:()=>hx,getInternalFormatForPackedMatrixTexture:()=>gx,getInternalFormatForUnsignedBytesMatrixTexture:()=>mx,uploadDenseMatrixToTexture:()=>y4,uploadPixelDataToTexture:()=>A4});function l4(e){let t=Hn(),n=`${t.version} precision highp float; ${t.attribute} vec3 clipSpacePos; ${t.attribute} vec2 uv; ${t.varyingVs} vec2 resultUV; void main() { gl_Position = vec4(clipSpacePos, 1); resultUV = uv; }`;return PI(e,n)}function u4(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return zI(e,t)}function c4(e){let t=new Uint16Array([0,1,2,2,1,3]);return LI(e,t)}function cp(e,t,n,s,r,a){WI(t,n);let o=BI(e),i=e.TEXTURE_2D;return Ie(e,()=>e.bindTexture(i,o)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),Ie(e,()=>e.texImage2D(i,0,s,t,n,0,r,a,null)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null)),o}function hx(e){return e.internalFormatFloat}function d4(e,t,n,s){let[r,a]=op(t,n);return cp(e,r,a,hx(s),s.textureFormatFloat,e.FLOAT)}function fx(e){return e.internalFormatHalfFloat}function p4(e,t,n,s){let[r,a]=op(t,n);return cp(e,r,a,fx(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function mx(e){return e.downloadTextureFormat}function h4(e,t,n,s){let[r,a]=op(t,n);return cp(e,r,a,mx(s),e.RGBA,e.UNSIGNED_BYTE)}function gx(e){return e.internalFormatPackedFloat}function f4(e,t,n,s){let[r,a]=Qu(t,n);return cp(e,r,a,gx(s),e.RGBA,e.FLOAT)}function yx(e){return e.internalFormatPackedHalfFloat}function m4(e,t,n,s){let[r,a]=Qu(t,n);return cp(e,r,a,yx(s),e.RGBA,s.textureTypeHalfFloat)}function g4(e,t,n){let s=0,r=3*4,a=3*4+2*4;return Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),ox(e,t,"clipSpacePos",n,3,a,s)&&ox(e,t,"uv",n,2,a,r)}function y4(e,t,n,s,r,a){Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,l;r instanceof Uint8Array?(o=new Uint8Array(n*s*4),i=e.UNSIGNED_BYTE,l=e.RGBA):(o=new Float32Array(n*s*4),i=e.FLOAT,l=a.internalFormatPackedFloat),o.set(r),Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,s,0,e.RGBA,i,o)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function A4(e,t,n){Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function x4(e,t,n,s){let r=e.createBuffer();Ie(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let i=4*4*t*n;return Ie(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),Ie(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),Ie(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function b4(e,t,n){let s=e,r=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,r),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),r}function v4(e,t,n,s){let[r,a]=op(t,n),o=4,i=new Uint8Array(UK(t*n,o));return Ie(e,()=>e.readPixels(0,0,r,a,s.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function w4(e,t,n,s,r,a,o,i){let l=e,c=new Float32Array(GK(a,o));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function k4(e,t,n){let s=new Float32Array(t*n*4);return Ie(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}var Om=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=Z().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,Tm(t,e)):this.gl=Mr(t);let n="WEBGL_color_buffer_float",s="EXT_color_buffer_half_float";if(Z().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=ip(this.gl,r),Ws(this.gl,a))this.textureHalfFloatExtension=ip(this.gl,a);else if(Z().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Ws(this.gl,s))this.colorBufferHalfFloatExtension=ip(this.gl,s);else if(Z().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Ws(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Ws(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=u4(this.gl),this.indexBuffer=c4(this.gl),this.framebuffer=VI(this.gl),this.textureConfig=ax(this.gl,this.textureHalfFloatExtension)}get debug(){return Z().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Ie(e,()=>e.finish()),Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ie(e,()=>e.deleteFramebuffer(this.framebuffer)),Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Ie(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),d4(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),p4(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),h4(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),A4(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),y4(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),m4(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),f4(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(ix(this.gl,this.framebuffer),this.outputTexture=null),Ie(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>v4(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,r,a){return w4(this.gl,e,t,n,s,r,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return b4(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let s=x4(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(Z().getBool("WEBGL_FENCE_API_ENABLED")){let s=e,r=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=s.clientWaitSync(r,0,0);return a===s.ALREADY_SIGNALED||a===s.CONDITION_SATISFIED},t=r}else Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>k4(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=FI(t,e);this.vertexShader==null&&(this.vertexShader=l4(t));let s=OI(t);return Ie(t,()=>t.attachShader(s,this.vertexShader)),Ie(t,()=>t.attachShader(s,n)),MI(t,s),this.debug&&Em(t,s),this.vertexAttrsAreBound||(this.setProgram(s),this.vertexAttrsAreBound=g4(t,this.program,this.vertexBuffer)),s}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Ie(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Em(this.gl,this.program),Ie(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?GI(this.gl,e,t):HI(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Ie(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),jI(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[s,r]=Qu(t,n);this.setOutputMatrixTextureDriver(e,s,r)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Em(this.gl,this.program),lp(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Ie(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=ip(this.gl,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=KZ(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Rm(this.gl,e,this.framebuffer),this.debug&&lp(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Rm(this.gl,this.outputTexture,this.framebuffer),this.debug&&lp(this.gl)):ix(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let s=this.gl;Rm(s,e,this.framebuffer),this.debug&&lp(s),this.outputTexture=e,Ie(s,()=>s.viewport(0,0,t,n)),Ie(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function KZ(e){let t=0;for(;t`${e}.${n}`)}function jn(e,t){return t===1?[e]:T4(e,t)}function PY(e,t){if(e===1)return"rc";let n="";for(let s=0;s ${t[0]}`;let s="";for(let r=e-2;r= ${t[r]}`,r= ${t}; bool rEdge = rp1 >= ${n}; `}function LY(e,t){let n=e.length,s=OY(n,t);return n===1?`getA(rc), rc + 1 >= ${e[0]} ? 0. : getA(rc + 1), 0, 0`:`getA(${s[0]}), cEdge ? 0. : getA(${s[1]}), rEdge ? 0. : getA(${s[2]}), rEdge || cEdge ? 0. : getA(${s[3]})`}var N4=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=Vs(this.outputShape.length);let n="";for(let s=0;s<4;s++){let r="thisRC = rc;";s%2==1&&(r+="thisRC.z += 1;"),s>1&&(r+="thisRC.y += 1;"),n+=` ${r} ${s>0?"if(thisRC.y < rows && thisRC.z < cols){":""} int flatIndex = getFlatIndex(thisRC); ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex); vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z)); result[${s}] = getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims); ${s>0?"}":""} `}this.userCode=` ${BY(t,this.enableShapeUniforms)} ${this.enableShapeUniforms?dx():cx(e)} void main() { ivec3 rc = getOutputCoords(); vec4 result = vec4(0.); ivec3 thisRC; int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]}; int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]}; ${n} setOutput(result); } `}};function BY(e,t){return` ivec3 inputCoordsFromReshapedOutCoords(int index) { ${t?sZ(["r","c","d"],"inputShape"):xl(["r","c","d"],e)} return ivec3(r, c, d); } `}var WY=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let s=R4(t,n),r=$4(e,s,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let a=E4(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[r].shift();return this.usedTextures[r].push(i),i}let o;return s===Nn.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===Nn.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===Nn.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===Nn.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===Nn.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;let r=R4(n,s),a=$4(t,r,s);a in this.freeTextures||(this.freeTextures[a]=[]);let o=E4(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,s),i=Z().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let l=this.usedTextures[a],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function VY(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function E4(e,t,n,s,r){let a=UY(t,s),o;if(r){let[l,c]=Qu(e[0],e[1]);o=l*c}else{let[l,c]=op(e[0],e[1]);o=l*c}let i=VY(n,a);return o*i}function UY(e,t){switch(e){case Nn.PACKED_2X2_FLOAT32:return gx(t);case Nn.PACKED_2X2_FLOAT16:return yx(t);case Nn.UNPACKED_FLOAT32:return hx(t);case Nn.UNPACKED_FLOAT16:return fx(t);case Nn.PACKED_4X1_UNSIGNED_BYTE:return mx(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function GY(e){return Z().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?Nn.PACKED_2X2_FLOAT32:Nn.UNPACKED_FLOAT32:e?Nn.PACKED_2X2_FLOAT16:Nn.UNPACKED_FLOAT16}function R4(e,t){if(e===Bs.UPLOAD)return Nn.PACKED_2X2_FLOAT32;if(e===Bs.RENDER||e==null)return GY(t);if(e===Bs.DOWNLOAD||e===Bs.PIXELS)return Nn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function $4(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Oo=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=Vs(this.outputShape.length),this.userCode=` float unaryOperation(float x) { ${t} } void main() { float x = getAAtOutCoords(); float y = unaryOperation(x); setOutput(y); } `}},br="if (isnan(x)) return x;",HY="return x;",D4="return abs(x);",jY="return (x >= 0.0) ? x : (exp(x) - 1.0);",qY=br+` return (x < 0.0) ? 0.0 : x; `,XY=br+` return (x < 0.0) ? 0.0 : min(6.0, x); `,Mm="return x;",KY="return 1.0 / (1.0 + exp(-1.0 * x));",ZY="return x;",YY=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0); result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0); result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; `,JY=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,QY=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,eJ="return 1.0 / (1.0 + exp(-1.0 * x));",ac=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=Vs(this.outputShape.length),this.userCode=` vec4 unaryOperation(vec4 x) { ${t} } void main() { vec4 x = getAAtOutCoords(); vec4 y = unaryOperation(x); setOutput(y); } `}},tJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=jn("rc",t),s=St(t),r=PY(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=` void main() { ${s} rc = getOutputCoords(); vec4 packedInput = getA(${r}); setOutput(getChannel(packedInput, ${o})); } `}},nJ=Ys.whereImpl,sJ=1e-7,rJ=1e-4,zm={};function aJ(e){return e in zm||(zm[e]={}),zm[e]}var oJ=Z().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),iJ=600;function lJ(){return Z().global.screen==null?1024:Z().global.screen.height*Z().global.screen.width*window.devicePixelRatio*iJ/1024/1024}var oc=class extends Ul{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!Z().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Mr(Z().getNumber("WEBGL_VERSION"));this.binaryCache=aJ(Z().getNumber("WEBGL_VERSION")),this.gpgpu=new Om(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new WY(this.gpgpu),this.numMBBeforeWarning=lJ(),this.texData=new Bc(this,ns())}nextDataId(){return oc.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((Z().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||Z().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:Bs.UPLOAD,refCount:1}),s}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,s,r){if(Z().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:Bs.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:r,slice:a,shape:o,isPacked:i}=t;if(a!=null){let d;i?d=new ac(o,Mm):d=new Oo(o,Mm);let p=this.runWebGLProgram(d,[{dataId:e,shape:o,dtype:s}],s),h=this.readSync(p.dataId);return this.disposeIntermediateTensorInfo(p),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;let l=this.activeTimers!=null,c;l&&(c=v.now());let u;if(s==="complex64"){let d=this.readSync(r.real.dataId),p=this.readSync(r.imag.dataId);u=E.mergeRealAndImagArrays(d,p)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(f=>h.push(f))}let t=this.texData.get(e),{values:n,shape:s,slice:r,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(r!=null){let h;i?h=new ac(s,Mm):h=new Oo(s,Mm);let f=this.runWebGLProgram(h,[{dataId:e,shape:s,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(!Z().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&Z().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(a!=="complex64"&&Z().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let h=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(h.texture,...Nm(s))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(a==="complex64"){let h=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=h[0],m=h[1];u=E.mergeRealAndImagArrays(f,m)}else if(l==null)u=this.getValuesFromTexture(e);else{let h=v.sizeFromShape(s);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(c!=null&&this.disposeIntermediateTensorInfo(c),l!=null){let h=this.gpgpu.gl;Ie(h,()=>h.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,u),p=this.pendingRead.get(e);return this.pendingRead.delete(e),p.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&ns().removeDataId(e,this),this.pendingDeletes--),d}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>v.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ve(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t0}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=v.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(r);o.kernelMs=v.sum(i),o.getExtraProfileInfo=()=>i.map((l,c)=>({name:a[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:s,usage:r,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,l=this.dataRefCount.get(i);l>1?this.dataRefCount.set(i,l-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,r,a)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=oJ){return Z().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&v.sizeFromShape(n.shape)0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:s}=this.makeTensorInfo(e,t,n);return ns().makeTensorFromDataId(s,e,t,this)}unpackTensor(e){let t=new tJ(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new FY(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[yl(e.shape),...Al(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},r=[yl(t),...Al(t)],a=new N4(r,n),o=!0,i=[n],l=this.runWebGLProgram(a,[s],e.dtype,i,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:s,dtype:r}=t,a=$m(s),o,i=Nm(a);n?o=new GZ(a):o=new UZ(a);let l=!0,c=[i],u=this.runWebGLProgram(o,[{shape:a,dtype:r,dataId:e}],r,c,l);return{dtype:r,shape:s,dataId:u.dataId}}runWebGLProgram(e,t,n,s,r=!1){let a=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(a.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===ap.DENSE){let m=Nm(e.outputShape);o.texShape=m.map(g=>g*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),v.sizeFromShape(a.shape)===0)return o.values=v.getTypedArrayFromDType(a.dtype,0),a;let i=[],l=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(m.dataId);if(g.texture==null){if(!e.packedInputs&&v.sizeFromShape(m.shape)<=Z().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=m.shape)}else if(!!g.isPacked!=!!e.packedInputs)m=g.isPacked?this.unpackTensor(m):this.packTensor(m),i.push(m),g=this.texData.get(m.dataId);else if(g.isPacked&&!up(g.shape,m.shape)){let y=m,A=m.shape;m.shape=g.shape,m=this.packedReshape(m,A),i.push(m),g=this.texData.get(m.dataId),y.shape=A}return this.uploadToGPU(m.dataId),{shape:m.shape,texData:g,isUniform:!1}});this.uploadToGPU(a.dataId);let c={shape:a.shape,texData:o,isUniform:!1},u=VZ(e,l,c),d=this.getAndSaveBinary(u,()=>BZ(this.gpgpu,e,l,c)),p=this.activeTimers!=null,h;p&&(h=this.startTimer()),WZ(this.gpgpu,d,l,c,s),i.forEach(m=>this.disposeIntermediateTensorInfo(m)),p&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let f=Z().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let m=v.now();m-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=m)}if(!Z().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let m=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),m}return a}compileAndRun(e,t,n,s,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,s,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(Z().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=j(()=>{if(!Z().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=Z().getBool("DEBUG");Z().set("DEBUG",!1);let t=this.abs(Ee(1e-8)).dataSync()[0];if(Z().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?sJ:rJ}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:s,values:r,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let l=this.activeTimers!=null,c;l&&(c=v.now());let u=t.texShape;if(u==null&&(u=KI(n,i),t.texShape=u),r!=null){let d=$m(n),p,h=u[1],f=u[0],m=r instanceof Uint8Array;i?([h,f]=Qu(u[0],u[1]),p=new XZ(d,m)):p=new qZ(d,m);let g=this.makeTensorInfo([f,h],s);m?this.texData.get(g.dataId).usage=Bs.PIXELS:this.texData.get(g.dataId).usage=Bs.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId),h,f,r);let y=[[f,h]],A=!0,x=this.runWebGLProgram(p,[g],s,y,A),b=this.texData.get(x.dataId);t.texture=b.texture,t.texShape=b.texShape,t.isPacked=b.isPacked,t.usage=b.usage,this.disposeIntermediateTensorInfo(g),this.texData.delete(x.dataId),t.values=null,l&&(this.uploadWaitMs+=v.now()-c)}else{let d=this.acquireTexture(u,o,s,i);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=uJ(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}};oc.nextDataId=0;function uJ(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;snew oc,2);var dJ={forceHalfFloat:_4},P4=` if (isnan(a)) return a; if (isnan(b)) return b; `,ic=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=Vs(this.outputShape.length),this.userCode=` float binaryOperation(float a, float b) { ${e} } void main() { float a = getAAtOutCoords(); float b = getBAtOutCoords(); setOutput(binaryOperation(a, b)); } `}},Lm=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; `,dp=class{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=E.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=Vs(r);let a="";if(s)if(r===0||v.sizeFromShape(this.outputShape)===1)a=` result.y = 0.; result.z = 0.; result.w = 0.; `;else if(a=` ${St(r)} coords = getOutputCoords(); `,r===1)this.enableShapeUniforms?a+=` result.y = (coords + 1) >= outShape ? 0. : result.y; result.z = 0.; result.w = 0.; `:a+=` result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y; result.z = 0.; result.w = 0.; `;else{let i=jn("coords",r);this.enableShapeUniforms?a+=` bool nextRowOutOfBounds = (${i[r-2]} + 1) >= outShape[${r} - 2]; bool nextColOutOfBounds = (${i[r-1]} + 1) >= outShape[${r} - 1]; result.y = nextColOutOfBounds ? 0. : result.y; result.z = nextRowOutOfBounds ? 0. : result.z; result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w; `:a+=` bool nextRowOutOfBounds = (${i[r-2]} + 1) >= ${this.outputShape[r-2]}; bool nextColOutOfBounds = (${i[r-1]} + 1) >= ${this.outputShape[r-1]}; result.y = nextColOutOfBounds ? 0. : result.y; result.z = nextRowOutOfBounds ? 0. : result.z; result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w; `}this.userCode=` vec4 binaryOperation(vec4 a, vec4 b) { ${e} } void main() { vec4 a = getAAtOutCoords(); vec4 b = getBAtOutCoords(); vec4 result = binaryOperation(a, b); ${a} setOutput(result); } `}};function Ss(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var pJ={kernelName:Ba,backendName:"webgl",kernelFunc:Ss};function Mo(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.texData.get(a.dataId),i=Ss({inputs:{x:s},backend:n}),l=Ss({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var hJ={kernelName:Gc,backendName:"webgl",kernelFunc:Mo},F4="return (a < 0.) ? b * a : a;",O4=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); `;function fJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=n.makeTensorInfo([],"float32",v.createScalarValue(a,"float32")),i=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new dp(O4,r.shape,o.shape):new ic(F4,r.shape,o.shape),l=n.runWebGLProgram(i,[r,o],r.dtype);return n.disposeIntermediateTensorInfo(o),l}var mJ={kernelName:mi,backendName:"webgl",kernelFunc:fJ},M4="return (a < 0.) ? b * a : a;",z4=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); `;function gJ(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new dp(z4,s.shape,r.shape):new ic(M4,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)}var yJ={kernelName:Ja,backendName:"webgl",kernelFunc:gJ},L4="if (isnan(x)) return x;",AJ=` if (isnan(a)) return a; if (isnan(b)) return b; `,xJ=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; `;function ut({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:s}){return({inputs:r,backend:a})=>{let{x:o}=r,i=a,l=s||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let d=i.texData.get(o.dataId),p=n(d.values,l);return i.makeTensorInfo(o.shape,l,p)}let c=Z().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new ac(o.shape,t):u=new Oo(o.shape,e),i.runWebGLProgram(u,[o],l)}}function En({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:r,dtype:a}){return({inputs:o,backend:i})=>{let{a:l,b:c}=o,u=i;if(s&&l.dtype==="complex64"){let f=u.texData.get(l.dataId),m=u.texData.get(c.dataId),[g,y]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(x=>{let[b,w]=x,k={dataId:b.dataId,dtype:b.dtype,shape:l.shape},S={dataId:w.dataId,dtype:w.dtype,shape:c.shape},N=new ic(e,l.shape,c.shape);return u.runWebGLProgram(N,[k,S],Bn(b.dtype,w.dtype))}),A=Mo({inputs:{real:g,imag:y},backend:u});return u.disposeIntermediateTensorInfo(g),u.disposeIntermediateTensorInfo(y),A}let d=a||Bn(l.dtype,c.dtype);if((l.dtype==="string"||c.dtype==="string"||u.shouldExecuteOnCPU([l,c]))&&r!=null){let f=u.texData.get(l.dataId).values,m=u.texData.get(c.dataId).values,g=l.dtype==="string"?E.fromUint8ToStringArray(f):f,y=l.dtype==="string"?E.fromUint8ToStringArray(m):m,[A,x]=r(l.shape,c.shape,g,y,d),b=u.makeTensorInfo(x,d),w=u.texData.get(b.dataId);return w.values=A,b}let p=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return p?h=new dp(t,l.shape,c.shape,n):h=new ic(e,l.shape,c.shape),u.runWebGLProgram(h,[l,c],d)}}function Bm(e,t=!1){if(e==="linear")return t?ZY:HY;if(e==="relu")return t?JY:qY;if(e==="elu")return t?YY:jY;if(e==="relu6")return t?QY:XY;if(e==="prelu")return t?z4:M4;if(e==="leakyrelu")return t?O4:F4;if(e==="sigmoid")return t?eJ:KY;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var B4=class{constructor(e,t,n,s=!1,r=!1,a=!1,o=null,i=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=Vs(this.outputShape.length);let c=s?e[1]:e[2],u=Math.ceil(c/2),d=s?"i * 2, rc.y":"rc.y, i * 2",p=r?"rc.z, i * 2":"i * 2, rc.z",h=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";o&&(i?m=`vec4 activation(vec4 a) { vec4 b = getPreluActivationWeightsAtOutCoords(); ${o} }`:l?m=`vec4 activation(vec4 a) { vec4 b = getLeakyreluAlphaAtOutCoords(); ${o} }`:m=`vec4 activation(vec4 x) { ${o} }`,g="result = activation(result);");let y=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let A="rc.x",x="rc.x";e[0]`The new shape (${l}) has ${c} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let u=o.texData.get(r.dataId);return u.isPacked&&!up(r.shape,l)&&!(u.texture!==null&&up(u.shape,l))?vJ(r,l,o):(o.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var wJ={kernelName:Ti,backendName:"webgl",kernelFunc:be},G4=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o=Math.floor(n/4)*4,i=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${v.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";r%n>0&&(c=` if (inIdx < 0 || inIdx >= ${r}) { return 0.0; } `),this.userCode=` const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float getValue(int batch, int inIdx) { ${c} return getX(batch, inIdx); } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = outIdx * ${n}; float sumValue = 0.0; for (int i = 0; i < ${o}; i += 4) { int inIdx = inOffset + i; vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), getValue(batch, inIdx + 3) ); ${l} } int inIdx = inOffset + ${o}; if (${i===1}) { vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0); ${l} } else if (${i===2}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), 0.0, 0.0); ${l} } else if (${i===3}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), 0.0); ${l} } setOutput(sumValue); } `}},kJ=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,d=` if (${t==="sum"}) { sumValue += dot(values, ones); } else if (${t==="prod"}) { vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]); prodValue *= tmp[0] * tmp[1]; } else { minMaxValue = ${i}(values, minMaxValue); if (${t==="min"} || ${t==="max"}) { minMaxValue = ${i}(values, minMaxValue); bvec4 isNaN = isnan(values); if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) { minMaxValue = vec4(NAN); } } } `,p="vec4";t==="all"?(o="1.0",d=` bool reducedAllValue = all(values); float floatedReducedAllValue = float(reducedAllValue); allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0); `,p="bvec4"):t==="any"&&(o="0.0",d=` bool reducedAnyValue = any(values); float floatedReducedAnyValue = float(reducedAnyValue); anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0); `,p="bvec4");let h="";r%n>0&&(h=` if (inIdx < 0 || inIdx >= ${r}) { return initializationValue; } `),this.userCode=` const float initializationValue = ${o}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float getValue(int batch, int inIdx) { ${h} return getX(batch, inIdx); } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = outIdx * ${n}; vec4 minMaxValue = vec4(${o}); float prodValue = 1.0; float sumValue = 0.0; float allValue = 1.0; float anyValue = 0.0; for (int i = 0; i < ${c}; i += 4) { int inIdx = inOffset + i; ${p} values = ${p}( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), getValue(batch, inIdx + 3) ); ${d} } int inIdx = inOffset + ${c}; if (${u===1}) { ${p} values = ${p}( getValue(batch, inIdx), initializationValue, initializationValue, initializationValue ); ${d} } else if (${u===2}) { ${p} values = ${p}( getValue(batch, inIdx), getValue(batch, inIdx + 1), initializationValue, initializationValue ); ${d} } else if (${u===3}) { ${p} values = ${p}( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), initializationValue ); ${d} } setOutput(${l}); } `}};function IJ(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],s=E.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:s,outSize:Math.ceil(n/s)})}return t}function vl(e,t,n,s){let r=IJ(e.shape),a=e;for(let o=0;o6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let r=0;r6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let s=St(this.rank),r=T4("rc",this.rank),a=new Array(this.rank);for(let c=0;c=2&&u>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${g}).`);let w=(y>A?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([h,f]);v.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let k=n?[y,d,h]:[y,h,d],S=s?[A,f,p]:[A,p,f],N=be({inputs:{x:e},backend:r,attrs:{shape:k}}),$=be({inputs:{x:t},backend:r,attrs:{shape:S}}),F=[N,$],R=Math.max(y,A),D=n?N.shape[1]:N.shape[2],T=a!=null,O=o!=null,W=l==="leakyrelu",H=l!=null?Bm(l,!0):null,z=T||O||W||H!=null,X;if((h===1||f===1)&&D>H4&&z===!1){let J=N,Q=$;n&&(J=qn({inputs:{x:N},backend:r,attrs:{perm:[0,2,1]}}),F.push(J)),s&&(Q=qn({inputs:{x:$},backend:r,attrs:{perm:[0,2,1]}}),F.push(Q));let ne=f!==1,K=f===1,oe=J;ne&&(oe=be({inputs:{x:J},backend:r,attrs:{shape:[R,D,1]}}),F.push(oe));let ce=f===1?2:1,he=Q;K&&(he=be({inputs:{x:Q},backend:r,attrs:{shape:[R,1,D]}}),F.push(he));let Ae=xx({inputs:{a:oe,b:he},backend:r});X=Vm({inputs:{x:Ae},backend:r,attrs:{axis:ce,keepDims:!0}}),F.push(Ae)}else{let J=Bn(e.dtype,t.dtype),Q=new B4(k,S,[R,h,f],n,s,T,H,O,W),ne=[N,$];if(a!=null&&ne.push(a),O&&ne.push(o),W){let K=r.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));ne.push(K),F.push(K)}X=r.runWebGLProgram(Q,ne,J)}let te=be({inputs:{x:X},backend:r,attrs:{shape:w}});F.push(X);for(let J of F)r.disposeIntermediateTensorInfo(J);return te}function $J(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s;return Um({a:r,b:a,transposeA:l,transposeB:c,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:u})}var DJ={kernelName:fo,backendName:"webgl",kernelFunc:$J},j4="return abs(x);";function _J(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])&&s.dtype!=="complex64"){let a=n.texData.get(s.dataId),o=S4(a.values);return n.makeTensorInfo(s.shape,s.dtype,o)}let r;return Z().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new ac(s.shape,j4):r=new Oo(s.shape,j4),n.runWebGLProgram(r,[s],s.dtype)}var PJ={kernelName:ni,backendName:"webgl",kernelFunc:_J},FJ=br+` if (abs(x) > 1.) { return NAN; } return acos(x); `,OJ=ut({opSnippet:FJ}),MJ={kernelName:jl,backendName:"webgl",kernelFunc:OJ},zJ=br+` if (x < 1.0) return NAN; return log(x + sqrt(x * x - 1.0));`,LJ=ut({opSnippet:zJ}),BJ={kernelName:ql,backendName:"webgl",kernelFunc:LJ},q4="return a + b;",WJ=En({opSnippet:q4,packedOpSnippet:q4,supportsComplex:!0,cpuKernelImpl:ZZ}),VJ={kernelName:qr,backendName:"webgl",kernelFunc:WJ},UJ=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=` void main() { ${n.join(` `)} float result = ${s}; setOutput(result); } `}},GJ=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=` void main() { ${n.join(` `)} vec4 result = ${s}; setOutput(result); } `}};function Gm(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return Ss({inputs:{x:s[0]},backend:n});if(s.length>Z().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(s.length/2),c=Gm({inputs:s.slice(0,l),backend:n}),u=Gm({inputs:s.slice(l),backend:n});return Gm({inputs:[c,u],backend:n})}let r=s.map(l=>l.dtype).reduce((l,c)=>Bn(l,c)),a=s.map(l=>l.shape),i=Z().getBool("WEBGL_PACK")?new GJ(s[0].shape,a):new UJ(s[0].shape,a);return n.runWebGLProgram(i,s,r)}var HJ={kernelName:wa,backendName:"webgl",kernelFunc:Gm};function jJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=l,u=E.getAxesPermutation(c,i),d=r;u!=null&&(d=qn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,i)),E.assertAxesAreInnerMostDims("all",c,i);let[p,h]=E.computeOutAndReduceShapes(d.shape,c),f=v.sizeFromShape(h),m=be({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=vl(m,m.dtype,"all",n),y;if(o){let A=E.expandShapeToKeepDim(p,l);y=be({inputs:{x:g},backend:n,attrs:{shape:A}})}else y=be({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),y}var qJ={kernelName:Xl,backendName:"webgl",kernelFunc:jJ};function XJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=l,u=E.getAxesPermutation(c,i),d=r;u!=null&&(d=qn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,i)),E.assertAxesAreInnerMostDims("any",c,i);let[p,h]=E.computeOutAndReduceShapes(d.shape,c),f=v.sizeFromShape(h),m=be({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=vl(m,m.dtype,"any",n),y;if(o){let A=E.expandShapeToKeepDim(p,l);y=be({inputs:{x:g},backend:n,attrs:{shape:A}})}else y=be({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),y}var KJ={kernelName:Kl,backendName:"webgl",kernelFunc:XJ},ZJ=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:s,batchSize:r,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=` void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = outIdx * ${s}; int bestIndex = inOffset; float bestValue = getA(batch, bestIndex); for (int i = 0; i < ${s}; i++) { int inIdx = ${i}; float candidate = getA(batch, inIdx); if (candidate ${o} bestValue) { bestValue = candidate; bestIndex = inIdx; } } setOutput(float(bestIndex)); } `}},YJ=class{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],a=Math.ceil(r/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),s||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,l=St(i),c=jn("coords",i),u,d;if(a===1){d=i+1;let S=St(d);u=` ${S} sourceLocR = ${S}(${c.join()}, 0); ++${c[i-1]}; ${S} sourceLocG = ${S}(${c.join()}, 0); ++${c[i-2]}; ${S} sourceLocA = ${S}(${c.join()}, 0); --${c[i-1]}; ${S} sourceLocB = ${S}(${c.join()}, 0); --${c[i-2]};`}else d=i,u=` ${l} sourceLocR = coords; ++${c[i-1]}; ${l} sourceLocG = coords; ++${c[i-2]}; ${l} sourceLocA = coords; --${c[i-1]}; ${l} sourceLocB = coords; --${c[i-2]};`;let p=["x","y","z","w","u","v"].slice(0,d),h="."+p[d-1],f=p.map(S=>"int "+S),m=jn("sourceLocR",d-1).concat("inIdx.r"),g=jn("sourceLocG",d-1).concat("inIdx.g"),y=jn("sourceLocB",d-1).concat("inIdx.b"),A=jn("sourceLocA",d-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",b=s?"":` inIdx = round(vec4(getBestIndicesAChannel(${m.join()}), getBestIndicesAChannel(${g.join()}), getBestIndicesAChannel(${y.join()}), getBestIndicesAChannel(${A.join()})));`,w=`vec4( getAChannel(${m.join()}), hasNextCol ? getAChannel(${g.join()}) : 0., hasNextRow ? getAChannel(${y.join()}) : 0., hasNextRow && hasNextCol ? getAChannel(${A.join()}) : 0.)`,k=s?"":` float getBestIndicesAChannel(${f.join()}) { return getChannel(getBestIndicesA(${p.join()}), vec2(${p.slice(-2).join()})); }`;this.userCode=` float getAChannel(${f.join()}) { return getChannel(getA(${p.join()}), vec2(${p.slice(-2).join()})); } ${k} void main() { ${l} coords = getOutputCoords(); bool hasNextCol = ${c[i-1]} < ${o[i-1]-1}; bool hasNextRow = ${c[i-2]} < ${o[i-2]-1}; ${u} ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h}, sourceLocB${h}, sourceLocA${h}) * ${t}; ivec4 inIdx = srcIdx; vec4 bestIndex = vec4(inIdx); vec4 bestValue = ${w}; for (int i = 0; i < ${t}; i++) { inIdx = srcIdx; ${b} vec4 candidate = ${w}; bvec4 nan = isnan(candidate); bvec4 replace = bvec4( vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan))); bestValue = vec4(replace.x ? candidate.x : bestValue.x, replace.y ? candidate.y : bestValue.y, replace.z ? candidate.z : bestValue.z, replace.w ? candidate.w : bestValue.w); bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace)); srcIdx++; } setOutput(bestIndex); } `}};function X4(e,t,n,s=null){let r=t.shape[0],a=t.shape[1];s!=null&&(r=s.shape[0],a=s.shape[1]);let o=E.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:r,outSize:Math.ceil(a/o)},l=new ZJ(i,n,s==null),c=[t];s!=null&&c.push(s);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let d=X4(e,t,n,u);return e.disposeIntermediateTensorInfo(u),d}function K4(e,t,n,s=null){let r=s!=null?s.shape:t.shape,a=r[r.length-1],o=E.computeOptimalWindowSize(a),i=new YJ(r,o,n,s==null),l=s==null?[t]:[t,s],c=e.runWebGLProgram(i,l,"int32");if(c.shape.length===t.shape.length){let u=K4(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function Z4(e,t,n,s){let r=[n];if(E.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),r,t.shape.length),!Z().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],o=e.texData.get(t.dataId),i=o!==null&&o.isPacked,l=t;i&&(l=e.unpackTensor(t),a.push(l));let[c,u]=E.computeOutAndReduceShapes(l.shape,r),d=v.sizeFromShape(u),p=be({inputs:{x:l},backend:e,attrs:{shape:[-1,d]}});a.push(p);let h=X4(e,p,s);a.push(h);let f=be({inputs:{x:h},backend:e,attrs:{shape:c}});return a.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return K4(e,t,s)}function JJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=qn({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let u=Z4(n,l,o[0],"max");return c.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var QJ={kernelName:ka,backendName:"webgl",kernelFunc:JJ};function eQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=qn({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let u=Z4(n,l,o[0],"min");return c.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var tQ={kernelName:Zl,backendName:"webgl",kernelFunc:eQ},nQ=br+` if (abs(x) > 1.) { return NAN; } return asin(x); `,sQ=ut({opSnippet:nQ}),rQ={kernelName:Yl,backendName:"webgl",kernelFunc:sQ},aQ=br+"return log(x + sqrt(x * x + 1.0));",oQ=ut({opSnippet:aQ}),iQ={kernelName:Jl,backendName:"webgl",kernelFunc:oQ},lQ=br+` return atan(x); `,uQ=ut({opSnippet:lQ}),cQ={kernelName:Ql,backendName:"webgl",kernelFunc:uQ},dQ=AJ+` return atan(a, b); `,pQ=` vec4 result = atan(a, b); vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0)); `+xJ+` return result; `,hQ=En({opSnippet:dQ,packedOpSnippet:pQ}),fQ={kernelName:tu,backendName:"webgl",kernelFunc:hQ},mQ=br+` if ((x < -1.0) || (x > 1.0)) return NAN; return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,gQ=ut({opSnippet:mQ}),yQ={kernelName:eu,backendName:"webgl",kernelFunc:gQ},pp=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(f||(y="-1.0 / 1e-20"),n){let S=">=";this.userCode=` const ivec2 strides = ivec2(${o}, ${i}); const ivec2 pads = ivec2(${p}, ${h}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d = coords[3]; ivec2 xRCCorner = coords.yz * strides - pads; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // max/min x(?, ?, d) to get y(yR, yC, d). // ? = to be determined float minMaxValue = 0.0; float minMaxValueFound = 0.0; int minMaxPosition = 0; float avgValue = 0.0; for (int wR = 0; wR < ${u}; wR += ${l}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${d}; wC += ${c}) { int xC = xCCorner + wC; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float value = getX(batch, xR, xC, d); // If a min / max value has already been found, use it. If not, // use the current value. float currMinMaxValue = mix( value, minMaxValue, minMaxValueFound); if (value ${S} currMinMaxValue) { minMaxValue = value; minMaxValueFound = 1.0; minMaxPosition = ${s?r?m:g:`wR * ${d} + wC`}; } } } setOutput(float(minMaxPosition)); } `;return}let A="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let b=Math.floor(a/4)*4,w=a%4,k=` if (${f}) { avgValue += dot(values, ones); } else { minMaxValue = ${A}(values, minMaxValue); } `;this.userCode=` const ivec2 strides = ivec2(${o}, ${i}); const ivec2 pads = ivec2(${p}, ${h}); const float initializationValue = ${y}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float count = 0.0; float getValue(int batch, int xR, int xC, int d) { if (xC < 0 || xC >= ${e.inWidth}) { return initializationValue; } count += 1.0; return getX(batch, xR, xC, d); } void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d = coords[3]; ivec2 xRCCorner = coords.yz * strides - pads; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // max/min x(?, ?, d) to get y(yR, yC, d). // ? = to be determined vec4 minMaxValue = vec4(${y}); float avgValue = 0.0; count = 0.0; for (int wR = 0; wR < ${u}; wR += ${l}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${b}; wC += 4) { int xC = xCCorner + wC * ${c}; vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${c}, d), getValue(batch, xR, xC + 2 * ${c}, d), getValue(batch, xR, xC + 3 * ${c}, d) ); ${k} } int xC = xCCorner + ${b}; if (${w===1}) { vec4 values = vec4( getValue(batch, xR, xC, d), initializationValue, initializationValue, initializationValue ); ${k} } else if (${w===2}) { vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${c}, d), initializationValue, initializationValue ); ${k} } else if (${w===3}) { vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${c}, d), getValue(batch, xR, xC + 2 * ${c}, d), initializationValue ); ${k} } } setOutput(${x}); } `}},bx=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,d=e.dilationWidth,p=e.effectiveFilterDepth,h=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let A=t==="avg",x="0.0";if(A||(x="-1.0 / 1e-20"),n){let $=">=";this.userCode=` const ivec3 strides = ivec3(${o}, ${i}, ${l}); const ivec3 pads = ivec3(${m}, ${g}, ${y}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads; int xDCorner = xCorner.x; int xRCorner = xCorner.y; int xCCorner = xCorner.z; // max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch). // ? = to be determined float minMaxValue = 0.0; float minMaxValueFound = 0.0; int minMaxPosition = 0; for (int wD = 0; wD < ${p}; wD += ${c}) { int xD = xDCorner + wD; if (xD < 0 || xD >= ${e.inDepth}) { continue; } for (int wR = 0; wR < ${h}; wR += ${u}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${f}; wC += ${d}) { int xC = xCCorner + wC; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float value = getX(batch, xD, xR, xC, ch); // If a min / max value has already been found, use it. If not, // use the current value. float currMinMaxValue = mix( value, minMaxValue, minMaxValueFound); if (value ${$} currMinMaxValue) { minMaxValue = value; minMaxValueFound = 1.0; minMaxPosition = ${s?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${f} + wR * ${f} + wC`}; } } } } setOutput(float(minMaxPosition)); } `;return}let b="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let k=Math.floor(a/4)*4,S=a%4,N=` if (${A}) { avgValue += dot(values, ones); } else { minMaxValue = ${b}(values, minMaxValue); } `;this.userCode=` const ivec3 strides = ivec3(${o}, ${i}, ${l}); const ivec3 pads = ivec3(${m}, ${g}, ${y}); const float initializationValue = ${x}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float count = 0.0; float getValue(int batch, int xD, int xR, int xC, int ch) { if (xC < 0 || xC >= ${e.inWidth}) { return initializationValue; } count += 1.0; return getX(batch, xD, xR, xC, ch); } void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads; int xDCorner = xCorner.x; int xRCorner = xCorner.y; int xCCorner = xCorner.z; // max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch). // ? = to be determined vec4 minMaxValue = vec4(${x}); float avgValue = 0.0; count = 0.0; for (int wD = 0; wD < ${p}; wD += ${c}) { int xD = xDCorner + wD; if (xD < 0 || xD >= ${e.inDepth}) { continue; } for (int wR = 0; wR < ${h}; wR += ${u}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${k}; wC += 4) { int xC = xCCorner + wC * ${d}; vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${d}, ch), getValue(batch, xD, xR, xC + 2 * ${d}, ch), getValue(batch, xD, xR, xC + 3 * ${d}, ch) ); ${N} } int xC = xCCorner + ${k}; if (${S===1}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), initializationValue, initializationValue, initializationValue ); ${N} } else if (${S===2}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${d}, ch), initializationValue, initializationValue ); ${N} } else if (${S===3}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${d}, ch), getValue(batch, xD, xR, xC + 2 * ${d}, ch), initializationValue ); ${N} } } setOutput(${w}); } } `}};function AQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;ec(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;v.assert(E.eitherStridesOrDilationsAreOne(o,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,o,c,i,l);if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))return Ss({inputs:{x:r},backend:n});let d=new pp(u,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var xQ={kernelName:Ia,backendName:"webgl",kernelFunc:AQ};function bQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s,u=[1,1,1],d=E.computePool3DInfo(r.shape,a,o,u,i,l,c),p=new bx(d,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var vQ={kernelName:Uc,backendName:"webgl",kernelFunc:bQ},wQ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=i-1-e.padInfo.top,u=l-1-e.padInfo.left,d=1/(t*n);this.userCode=` const ivec2 pads = ivec2(${c}, ${u}); const float avgMultiplier = float(${d}); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 dyRCCorner = coords.yz - pads; int dyRCorner = dyRCCorner.x; int dyCCorner = dyRCCorner.y; // Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${i}; wR += ${a}) { float dyR = float(dyRCorner + wR) / ${s}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${l}; wC+= ${o}) { float dyC = float(dyCCorner + wC) / ${r}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(b, idyR, idyC, d); dotProd += dyValue * avgMultiplier; } } setOutput(dotProd); } `}},kQ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,d=e.effectiveFilterHeight,p=e.effectiveFilterWidth,h=u-1-e.padInfo.front,f=d-1-e.padInfo.top,m=p-1-e.padInfo.left,g=1/(t*n*s);this.userCode=` const ivec3 pads = ivec3(${h}, ${f}, ${m}); const float avgMultiplier = float(${g}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads; int dyDCorner = dyCorner.x; int dyRCorner = dyCorner.y; int dyCCorner = dyCorner.z; // Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get // dx(xD, xR, xC, ch). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wD = 0; wD < ${u}; wD += ${i}) { float dyD = float(dyDCorner + wD) / ${r}.0; if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) { continue; } int idyD = int(dyD); for (int wR = 0; wR < ${d}; wR += ${l}) { float dyR = float(dyRCorner + wR) / ${a}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${p}; wC += ${c}) { float dyC = float(dyCCorner + wC) / ${o}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(batch, idyD, idyR, idyC, ch); dotProd += dyValue * avgMultiplier; } } } setOutput(dotProd); } `}};function IQ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:c,dimRoundingMode:u}=s,d=[1,1,1],p=E.computePool3DInfo(o.shape,i,l,d,c,u),h=new kQ(p);return n.runWebGLProgram(h,[r],o.dtype)}var SQ={kernelName:hh,backendName:"webgl",kernelFunc:IQ};function CQ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;ec([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:c}=s,u=E.computePool2DInfo(o.shape,i,l,1,c),d=new wQ(u);return n.runWebGLProgram(d,[r],o.dtype)}var TQ={kernelName:ph,backendName:"webgl",kernelFunc:CQ};function NQ(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return Um({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var EQ={kernelName:Sa,backendName:"webgl",kernelFunc:NQ},RQ=class{constructor(e,t,n,s,r,a){this.outputShape=[],this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let o="0.0";s!=null&&(E.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` void main() { float x = getXAtOutCoords(); float mean = getMeanAtOutCoords(); float variance = getVarianceAtOutCoords(); float offset = ${o}; float scale = ${i}; float inv = scale * inversesqrt(variance + float(${a})); setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1))); } `}},$Q=class{constructor(e,t,n,s,r,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";s!=null&&(E.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` void main() { vec4 offset = ${o}; vec4 scale = ${i}; vec4 x = getXAtOutCoords(); vec4 mean = getMeanAtOutCoords(); vec4 variance = getVarianceAtOutCoords(); vec4 inv = scale * inversesqrt(variance + vec4(${a})); setOutput((x - mean) * inv + offset); } `}},DQ=({inputs:e,backend:t,attrs:n})=>{let{x:s,mean:r,variance:a,offset:o,scale:i}=e;v.assert(r.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[s,r,a],u=null;o!=null&&(u=o.shape,c.push(o));let d=null;i!=null&&(d=i.shape,c.push(i));let p=Z().getBool("WEBGL_PACK_NORMALIZATION")?new $Q(s.shape,r.shape,a.shape,u,d,l):new RQ(s.shape,r.shape,a.shape,u,d,l);return t.runWebGLProgram(p,c,c[0].dtype)},_Q={kernelName:za,backendName:"webgl",kernelFunc:DQ},PQ=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=St(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=FQ(this.rank),s,r=e.map((a,o)=>`sourceLoc.${vx[o]} = start[${o}] + coords.${vx[o]};`);s=` ${t} sourceLoc; ${t} coords = getOutputCoords(); ${r.join(` `)} `,this.userCode=` void main() { ${s} setOutput(getSource(${n})); } `}},vx=["x","y","z","w","u","v"];function FQ(e){if(e===1)return"sourceLoc";if(e<=6)return vx.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var OQ=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=St(this.rank),n=jn("coords",this.rank),s=jn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,a=`getChannel(getSource(${s.join()}), ${r})`,o=` result.x = ${a}; if (++${n[this.rank-1]} < ${e[this.rank-1]}) { ++${s[this.rank-1]}; result.y = ${a}; --${s[this.rank-1]}; } `,i=this.rank===1?"":` --${n[this.rank-1]}; if (++${n[this.rank-2]} < ${e[this.rank-2]}) { ++${s[this.rank-2]}; result.z = ${a}; if (++${n[this.rank-1]} < ${e[this.rank-1]}) { ++${s[this.rank-1]}; result.w = ${a}; } } `,l=this.rank<=4?`sourceLoc = coords + ${t}(${e.map((c,u)=>`start[${u}]`).join()});`:e.map((c,u)=>`${s[u]} = ${n[u]} + start[${u}];`).join(` `);this.userCode=` void main() { ${t} coords = getOutputCoords(); ${t} sourceLoc; ${l} vec4 result = vec4(0.); ${o} ${i} setOutput(result); } `}};function MQ(e,t,n,s){let r=s.texData.get(e.dataId),a=s.makeTensorInfo(n,e.dtype),o=s.texData.get(a.dataId);Object.assign(o,r),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=yn.computeFlatOffset(t,v.computeStrides(e.shape));r.slice&&(i+=r.slice.flatOffset),o.slice={flatOffset:i,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=s.dataRefCount.get(o.slice.origDataId)||1;return s.dataRefCount.set(o.slice.origDataId,l+1),a}function lc(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=yn.parseSliceParams(r,a,o);if(yn.assertParamsValid(r,i,l),v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),p=wY(d.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}let{isPacked:c}=n.texData.get(r.dataId),u=yn.isSliceContinous(r.shape,i,l);if(c||!u){let d=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new OQ(l):new PQ(l),p=[i];return n.runWebGLProgram(d,[r],r.dtype,p)}return n.uploadToGPU(r.dataId),MQ(r,i,l,n)}var zQ={kernelName:Di,backendName:"webgl",kernelFunc:lc},LQ=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((A,x)=>A*x),l=E.getReshaped(r.shape,a,i),c=E.getPermuted(l.length,a.length),u=E.getReshapedPermuted(r.shape,a,i),d=E.getSliceBeginCoords(o,a.length),p=E.getSliceSize(u,o,a.length),h=[],f=be({inputs:{x:r},backend:n,attrs:{shape:l}}),m=qn({inputs:{x:f},backend:n,attrs:{perm:c}}),g=be({inputs:{x:m},backend:n,attrs:{shape:u}}),y=lc({inputs:{x:g},backend:n,attrs:{begin:d,size:p}});return h.push(f),h.push(m),h.push(g),h.forEach(A=>n.disposeIntermediateTensorInfo(A)),y},BQ={kernelName:si,backendName:"webgl",kernelFunc:LQ};function WQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.readSync(r.dataId),l=n.readSync(a.dataId),c=I4(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}var VQ={kernelName:fh,backendName:"webgl",kernelFunc:WQ},UQ="return float(a != b);",Y4=En({opSnippet:UQ,cpuKernelImpl:yY,dtype:"bool"}),GQ={kernelName:bi,backendName:"webgl",kernelFunc:Y4};function hp(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return Ss({inputs:{x:r.complexTensorInfos.real},backend:n})}var HQ={kernelName:Qc,backendName:"webgl",kernelFunc:hp},jQ="return float(int(x));";function qQ(e,t){let n=new Oo(e.shape,jQ),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function wx(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Ss({inputs:{x:r},backend:n});let o=Xt(r.shape),i=wx({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Mo({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=hp({inputs:{input:r},backend:n}),i=wx({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=Ss({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return qQ(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),l=Y4({inputs:{a:r,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var XQ={kernelName:Ca,backendName:"webgl",kernelFunc:wx},J4="return ceil(x);",KQ=ut({opSnippet:J4,packedOpSnippet:J4,cpuKernelImpl:JZ}),ZQ={kernelName:Ta,backendName:"webgl",kernelFunc:KQ},YQ=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=` void main() { float value = getAAtOutCoords(); if (isnan(value)) { setOutput(value); return; } setOutput(clamp(value, minVal, maxVal)); } `}},JQ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=` void main() { vec4 value = getAAtOutCoords(); if (any(isnan(value))) { setOutput(value); return; } setOutput(clamp(value, vec4(minVal), vec4(maxVal))); } `}};function QQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i;Z().getBool("WEBGL_PACK_CLIP")?i=new JQ(r.shape):i=new YQ(r.shape);let l=[[a],[o]];return n.runWebGLProgram(i,[r],r.dtype,l)}var eee={kernelName:Xr,backendName:"webgl",kernelFunc:QQ},tee=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=` void main() { float re = abs(getRealAtOutCoords()); float im = abs(getImagAtOutCoords()); float mx = max(re, im); // sadly the length function in glsl is not underflow-safe // (at least not on Intel GPUs). So the safe solution is // to ensure underflow-safety in all cases. setOutput( mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx)) ); } `}};function Q4(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function nee(e){let{inputs:t,backend:n}=e,{x:s}=t,r=n.texData.get(s.dataId),a=new tee(s.shape),o=[Q4(s,r.complexTensorInfos.real),Q4(s,r.complexTensorInfos.imag)];return n.runWebGLProgram(a,o,o[0].dtype)}var see={kernelName:Hc,backendName:"webgl",kernelFunc:nee},ree=class{constructor(e){this.outputShape=[],this.outputShape=E.computeOutShape(e,1),this.variableNames=e.map((a,o)=>`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f= ${i[f-1]}) { return getChannel( getT${f}(${Hm(o,l,m)}), vec2(${Hm(c,l,m)})); }`}let p=i.length,h=i[i.length-1];d+=` return getChannel( getT${p}(${Hm(o,l,h)}), vec2(${Hm(c,l,h)}));`,this.userCode=` float getValue(${o.map(f=>"int "+f)}) { ${d} } void main() { ${r} coords = getOutputCoords(); vec4 result = vec4(getValue(${a}), 0., 0., 0.); ${a[s-1]} = ${a[s-1]} + 1; if (${a[s-1]} < ${n[s-1]}) { result.g = getValue(${a}); } ${a[s-2]} = ${a[s-2]} + 1; if (${a[s-2]} < ${n[s-2]}) { result.a = getValue(${a}); } ${a[s-1]} = ${a[s-1]} - 1; if (${a[s-2]} < ${n[s-2]} && ${a[s-1]} < ${n[s-1]}) { result.b = getValue(${a}); } setOutput(result); } `}};function Hm(e,t,n){let s=e.indexOf(t);return e.map((a,o)=>o===s?`${a} - ${n}`:a).join()}function jm(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return Ss({inputs:{x:r.complexTensorInfos.imag},backend:n})}var oee={kernelName:Kc,backendName:"webgl",kernelFunc:jm};function uc(e,t,n){let s=e[0].dtype;if(s==="complex64"){let u=e.map(m=>hp({inputs:{input:m},backend:n})),d=e.map(m=>jm({inputs:{input:m},backend:n})),p=uc(u,t,n),h=uc(d,t,n),f=Mo({inputs:{real:p,imag:h},backend:n});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),d.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let u=e.map(y=>{let A=v.sizeFromShape(y.shape.slice(t));return be({inputs:{x:y},backend:n,attrs:{shape:[-1,A]}})}),d=u.map(y=>({vals:n.readSync(y.dataId),shape:y.shape})),p=E.computeOutShape(u.map(y=>y.shape),1),h=u[0].shape[0]===1,f=QZ(d,p,s,h),m=E.computeOutShape(e.map(y=>y.shape),t),g=n.makeTensorInfo(m,s,f);return u.forEach(y=>n.disposeIntermediateTensorInfo(y)),g}if(e.length>Z().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),d=uc(e.slice(0,u),t,n),p=uc(e.slice(u),t,n),h=uc([d,p],t,n);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),h}if(Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new aee(e.map(d=>d.shape),t);return n.runWebGLProgram(u,e,s)}let{tensors2D:a,outShape:o}=iee(e,t,n),i=new ree(a.map(u=>u.shape)),l=n.runWebGLProgram(i,a,s);a.forEach(u=>n.disposeIntermediateTensorInfo(u));let c=be({inputs:{x:l},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(l),c}function iee(e,t,n){let s=E.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>be({inputs:{x:a},attrs:{shape:[-1,v.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:s}}function eS(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=E.computeOutShape(t.map(c=>c.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(c=>v.sizeFromShape(c.shape)>0);if(i.length===1)return Ss({inputs:{x:i[0]},backend:n});let l=i.map(c=>c.shape);return E.assertParamsConsistent(l,a),uc(i,a,n)}var lee={kernelName:ri,backendName:"webgl",kernelFunc:eS},tS=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,y=m?2:3,A=m?3:1,x="",b="";n&&(s?x=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${n} }`:r?x=`float activation(float a) { float b = getLeakyreluAlphaAtOutCoords(); ${n} }`:x=` float activation(float x) { ${n} } `,b="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=` ${x} const ivec2 strides = ivec2(${i}, ${l}); const ivec2 pads = ivec2(${a}, ${o}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d2 = coords[${A}]; ivec2 xRCCorner = ivec2(coords[${g}], coords[${y}]) * strides - pads; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${d}; wR++) { int xR = xRCorner + wR * ${c}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${p}; wC++) { int xC = xCCorner + wC * ${u}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } for (int d1 = 0; d1 < ${h}; d1 += 4) { vec4 wValues = vec4( getW(wR, wC, d1, d2), getW(wR, wC, d1 + 1, d2), getW(wR, wC, d1 + 2, d2), getW(wR, wC, d1 + 3, d2) ); if (${m}) { vec4 xValues = vec4( getX(batch, xR, xC, d1), getX(batch, xR, xC, d1 + 1), getX(batch, xR, xC, d1 + 2), getX(batch, xR, xC, d1 + 3) ); dotProd += dot(xValues, wValues); } else { vec4 xValues = vec4( getX(batch, d1, xR, xC), getX(batch, d1 + 1, xR, xC), getX(batch, d1 + 2, xR, xC), getX(batch, d1 + 3, xR, xC) ); dotProd += dot(xValues, wValues); } } if (${f===1}) { if (${m}) { dotProd += getX(batch, xR, xC, ${h}) * getW(wR, wC, ${h}, d2); } else { dotProd += getX(batch, ${h}, xR, xC) * getW(wR, wC, ${h}, d2); } } else if (${f===2}) { vec2 wValues = vec2( getW(wR, wC, ${h}, d2), getW(wR, wC, ${h} + 1, d2) ); if (${m}) { vec2 xValues = vec2( getX(batch, xR, xC, ${h}), getX(batch, xR, xC, ${h} + 1) ); dotProd += dot(xValues, wValues); } else { vec2 xValues = vec2( getX(batch, ${h}, xR, xC), getX(batch, ${h} + 1, xR, xC) ); dotProd += dot(xValues, wValues); } } else if (${f===3}) { vec3 wValues = vec3( getW(wR, wC, ${h}, d2), getW(wR, wC, ${h} + 1, d2), getW(wR, wC, ${h} + 2, d2) ); if (${m}) { vec3 xValues = vec3( getX(batch, xR, xC, ${h}), getX(batch, xR, xC, ${h} + 1), getX(batch, xR, xC, ${h} + 2) ); dotProd += dot(xValues, wValues); } else { vec3 xValues = vec3( getX(batch, ${h}, xR, xC), getX(batch, ${h} + 1, xR, xC), getX(batch, ${h} + 2, xR, xC) ); dotProd += dot(xValues, wValues); } } } } float result = dotProd; ${w} ${b} setOutput(result); } `}},uee=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=` const ivec3 strides = ivec3(${r}, ${a}, ${o}); const ivec3 pads = ivec3(${t}, ${n}, ${s}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int d2 = coords.u; ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads; int xFCorner = xFRCCorner.x; int xRCorner = xFRCCorner.y; int xCCorner = xFRCCorner.z; // Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get // y(yF, yR, yC, d2). ? = to be determined. : = across all // values in that axis. float dotProd = 0.0; for (int wF = 0; wF < ${u}; wF++) { int xF = xFCorner + wF * ${i}; if (xF < 0 || xF >= ${e.inDepth}) { continue; } for (int wR = 0; wR < ${d}; wR++) { int xR = xRCorner + wR * ${l}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${p}; wC++) { int xC = xCCorner + wC * ${c}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } for (int d1 = 0; d1 < ${h}; d1 += 4) { vec4 xValues = vec4( getX(batch, xF, xR, xC, d1), getX(batch, xF, xR, xC, d1 + 1), getX(batch, xF, xR, xC, d1 + 2), getX(batch, xF, xR, xC, d1 + 3) ); vec4 wValues = vec4( getW(wF, wR, wC, d1, d2), getW(wF, wR, wC, d1 + 1, d2), getW(wF, wR, wC, d1 + 2, d2), getW(wF, wR, wC, d1 + 3, d2) ); dotProd += dot(xValues, wValues); } if (${f===1}) { dotProd += getX(batch, xF, xR, xC, ${h}) * getW(wF, wR, wC, ${h}, d2); } else if (${f===2}) { vec2 xValues = vec2( getX(batch, xF, xR, xC, ${h}), getX(batch, xF, xR, xC, ${h} + 1) ); vec2 wValues = vec2( getW(wF, wR, wC, ${h}, d2), getW(wF, wR, wC, ${h} + 1, d2) ); dotProd += dot(xValues, wValues); } else if (${f===3}) { vec3 xValues = vec3( getX(batch, xF, xR, xC, ${h}), getX(batch, xF, xR, xC, ${h} + 1), getX(batch, xF, xR, xC, ${h} + 2) ); vec3 wValues = vec3( getW(wF, wR, wC, ${h}, d2), getW(wF, wR, wC, ${h} + 1, d2), getW(wF, wR, wC, ${h} + 2, d2) ); dotProd += dot(xValues, wValues); } } } } setOutput(dotProd); } `}},cee=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=Vs(this.outputShape.length);let{dataFormat:n}=t,s=Hn(),r=n==="channelsLast",a=r?0:1,o=r?1:2,i=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,l="";for(let c=0;c<=1;c++)for(let u=0;u<=1;u++)l+=` blockIndex = rc.y + ${u}; pos = rc.x + ${c}; ${i} offsetY = int(blockIndex / outWidth) * stride[0] - pad[0]; d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow); if(d0 < inputShape[${a}] && d0 >= 0) { // Use custom imod instead mod. On Intel GPU, mod may generate // unexpected value. // https://github.com/tensorflow/tfjs/issues/5447 offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1]; d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) / inChannels); if(d1 < inputShape[${o}] && d1 >= 0) { ch = imod(pos, inChannels); if (${r}) { innerDims = vec2(d1, ch); result[${c*2+u}] = getChannel( getA(d0, int(innerDims.x), int(innerDims.y)), innerDims); } else { innerDims = vec2(d0, d1); result[${c*2+u}] = getChannel( getA(ch, int(innerDims.x), int(innerDims.y)), innerDims); } } } } `;this.userCode=` void main() { ivec2 rc = getOutputCoords(); vec4 result = vec4(0); int blockIndex, pos, offsetY, d0, offsetX, d1, ch; vec2 innerDims; ${l} ${s.output} = result; } `}};function nS({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,c=s.texData.get(e.dataId),u=n.inChannels,d=l[0]*l[1]*l[2],p=n.outChannels,h=n.dataFormat==="channelsLast",f=!1,m=!1,g,y=[];if(!((d===1||p===1)&&u>H4)&&c.isPacked&&h&&c.texture!=null&&l[2]%2!=0&&v.arraysEqual(c.shape.slice(-3),l.slice(-3))){let b=l[0]*l[1]*(l[2]+1),w={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},k=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,v.assert(up(c.shape,w.shape),()=>`packed reshape ${c.shape} to ${w.shape} isn't free`);let S=be({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(S);let N=Um({a:w,b:S,backend:s,transposeA:f,transposeB:m,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),$=s.texData.get(N.dataId);v.assert($.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=k,$.shape=n.outShape,g=Ss({inputs:{x:N},backend:s}),g.shape=n.outShape,y.push(N)}else{let b=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],w=be({inputs:{x:e},backend:s,attrs:{shape:[1,b,n.inChannels]}}),k=be({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),S=Um({a:w,b:k,transposeA:f,transposeB:m,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});g=be({inputs:{x:S},backend:s,attrs:{shape:n.outShape}}),y.push(w),y.push(k),y.push(S)}for(let b of y)s.disposeIntermediateTensorInfo(b);return g}function sS({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:d,outHeight:p,dataFormat:h}=n,f=h==="channelsLast",m=l*c*u,g=p*d,y=[m,g],A=!0,x=!1,b=[],w=be({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),k=be({inputs:{x:t},backend:s,attrs:{shape:[1,m,v.sizeFromShape(t.shape)/m]}});b.push(w),b.push(k);let S=new cee(y,n),N=[w.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],$=s.runWebGLProgram(S,[w],"float32",N),F=be({inputs:{x:$},backend:s,attrs:{shape:[1,y[0],y[1]]}});b.push($),b.push(F);let R=r!=null,D=a!=null,T=i==="leakyrelu",O=i?Bm(i,!0):null,W=new B4(F.shape,k.shape,[1,g,n.outChannels],A,x,R,O,D,T),H=[F,k];if(r&&H.push(r),D&&H.push(a),T){let J=s.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));H.push(J),b.push(J)}let z=s.runWebGLProgram(W,H,"float32"),X=f?[1,p,d,n.outChannels]:[1,n.outChannels,p,d],te=be({inputs:{x:z},backend:s,attrs:{shape:X}});b.push(z);for(let J of b)s.disposeIntermediateTensorInfo(J);return te}function dee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:c,dimRoundingMode:u}=s,d=E.convertConv2DDataFormat(l),p=E.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!1,d),h;if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))h=nS({x:r,filter:a,convInfo:p,backend:n});else if(Z().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=sS({x:r,filter:a,convInfo:p,backend:n});else{let m=new tS(p);h=n.runWebGLProgram(m,[r,a],"float32")}let f=be({inputs:{x:h},backend:n,attrs:{shape:p.outShape}});return n.disposeIntermediateTensorInfo(h),f}var pee={kernelName:Na,backendName:"webgl",kernelFunc:dee},hee=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; int wC = coords.y; int d1 = coords.z; int d2 = coords.w; // Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int b = 0; b < ${e.batchSize}; b++) { for (int yR = 0; yR < ${e.outHeight}; yR++) { int xR = wR + yR * ${t} - ${s}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int yC = 0; yC < ${e.outWidth}; yC++) { int xC = wC + yC * ${n} - ${r}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } if (${a}) { float dyValue = getDy(b, yR, yC, d2); float xValue = getX(b, xR, xC, d1); dotProd += (xValue * dyValue); } else { float dyValue = getDy(b, d2, yR, yC); float xValue = getX(b, d1, xR, xC); dotProd += (xValue * dyValue); } } } } setOutput(dotProd); } `}},fee=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=a?1:2,c=a?2:3,u=a?3:1;this.userCode=` const ivec2 pads = ivec2(${o}, ${i}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d1 = coords[${u}]; ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads; int dyRCorner = dyCorner.x; int dyCCorner = dyCorner.y; // Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${t}; wR++) { float dyR = float(dyRCorner + wR) / ${s}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); int wRPerm = ${t} - 1 - wR; for (int wC = 0; wC < ${n}; wC++) { float dyC = float(dyCCorner + wC) / ${r}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); int wCPerm = ${n} - 1 - wC; for (int d2 = 0; d2 < ${e.outChannels}; d2++) { if (${a}) { float xValue = getDy(batch, idyR, idyC, d2); float wValue = getW(wRPerm, wCPerm, d1, d2); dotProd += xValue * wValue; } else { float xValue = getDy(batch, d2, idyR, idyC); float wValue = getW(wRPerm, wCPerm, d1, d2); dotProd += xValue * wValue; } } } } setOutput(dotProd); } `}},mee=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=` void main() { ivec5 coords = getOutputCoords(); int wF = coords.x; int wR = coords.y; int wC = coords.z; int d1 = coords.w; int d2 = coords.u; float dotProd = 0.0; for (int b = 0; b < ${e.batchSize}; b++) { for (int yF = 0; yF < ${e.outDepth}; yF++) { int xF = wF + yF * ${t} - ${r}; if (xF < 0 || xF >= ${e.inDepth}) { continue; } for (int yR = 0; yR < ${e.outHeight}; yR++) { int xR = wR + yR * ${n} - ${a}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int yC = 0; yC < ${e.outWidth}; yC++) { int xC = wC + yC * ${s} - ${o}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float dyValue = getDy(b, yF, yR, yC, d2); float xValue = getX(b, xF, xR, xC, d1); dotProd += (xValue * dyValue); } } } } setOutput(dotProd); } `}},gee=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=s-1-e.padInfo.left;this.userCode=` const ivec3 pads = ivec3(${i}, ${l}, ${c}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int d1 = coords.u; ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads; int dyFCorner = dyCorner.x; int dyRCorner = dyCorner.y; int dyCCorner = dyCorner.z; float dotProd = 0.0; for (int wF = 0; wF < ${t}; wF++) { float dyF = float(dyFCorner + wF) / ${r}.0; if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) { continue; } int idyF = int(dyF); int wFPerm = ${t} - 1 - wF; for (int wR = 0; wR < ${n}; wR++) { float dyR = float(dyRCorner + wR) / ${a}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); int wRPerm = ${n} - 1 - wR; for (int wC = 0; wC < ${s}; wC++) { float dyC = float(dyCCorner + wC) / ${o}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); int wCPerm = ${s} - 1 - wC; for (int d2 = 0; d2 < ${e.outChannels}; d2++) { float xValue = getDy(batch, idyF, idyR, idyC, d2); float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2); dotProd += xValue * wValue; } } } } setOutput(dotProd); } `}};function yee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,filterShape:u}=s,d=E.convertConv2DDataFormat(l),p=E.computeConv2DInfo(r.shape,u,o,1,i,c,!1,d),h=new hee(p);return n.runWebGLProgram(h,[r,a],"float32")}var Aee={kernelName:mh,backendName:"webgl",kernelFunc:yee};function xee(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:c,dimRoundingMode:u}=s,d=E.convertConv2DDataFormat(c),p=E.computeConv2DInfo(o,a.shape,i,1,l,u,!1,d),h=new fee(p);return n.runWebGLProgram(h,[r,a],"float32")}var bee={kernelName:Ea,backendName:"webgl",kernelFunc:xee};function vee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,c=E.computeConv3DInfo(r.shape,a.shape,o,l,i),u=new uee(c);return n.runWebGLProgram(u,[r,a],"float32")}var wee={kernelName:jc,backendName:"webgl",kernelFunc:vee};function kee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s,c=E.computeConv3DInfo(r.shape,l,o,1,i),u=new mee(c);return n.runWebGLProgram(u,[r,a],"float32")}var Iee={kernelName:gh,backendName:"webgl",kernelFunc:kee};function See(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s,c=E.computeConv3DInfo(l,a.shape,i,1,o),u=new gee(c);return n.runWebGLProgram(u,[r,a],"float32")}var Cee={kernelName:yh,backendName:"webgl",kernelFunc:See},Tee=L4+` return cos(x); `,Nee=ut({opSnippet:Tee}),Eee={kernelName:Ra,backendName:"webgl",kernelFunc:Nee},Ree=` float e2x = exp(-x); return (e2x + 1.0 / e2x) / 2.0; `,$ee=ut({opSnippet:Ree}),Dee={kernelName:$a,backendName:"webgl",kernelFunc:$ee},_ee=class{constructor(e,t,n,s,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,l]=e,[c]=t,[u,d]=n;this.outputShape=[c,u,d,l];let p=s==="bilinear"?1:0,[h,f]=[`${o-1}.0`,`${i-1}.0`],[m,g,y]=u>1?[`${(o-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[A,x,b]=d>1?[`${(i-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=` const float height_ratio = float(${m}); const float width_ratio = float(${A}); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int y = coords[1]; int x = coords[2]; int d = coords[3]; // get box vals float y1 = getBoxes(b,0); float x1 = getBoxes(b,1); float y2 = getBoxes(b,2); float x2 = getBoxes(b,3); // get image in batch index int bInd = round(getBoxInd(b)); if(bInd < 0 || bInd >= ${a}) { return; } float height_scale = ${g}; float width_scale = ${x}; float in_y = ${y}; if( in_y < 0.0 || in_y > ${h} ) { setOutput(float(${r})); return; } float in_x = ${b}; if( in_x < 0.0 || in_x > ${f} ) { setOutput(float(${r})); return; } vec2 sourceFracIndexCR = vec2(in_x,in_y); if(${p} == 1) { // Compute the four integer indices. ivec2 sourceFloorCR = ivec2(sourceFracIndexCR); ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR)); float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d); float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d); float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d); float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d); vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR); float top = topLeft + (topRight - topLeft) * fracCR.x; float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x; float newValue = top + (bottom - top) * fracCR.y; setOutput(newValue); } else { // Compute the coordinators of nearest neighbor point. ivec2 sourceNearestCR = ivec2(floor( sourceFracIndexCR + vec2(0.5,0.5))); float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d); setOutput(newValue); } } `}},Pee=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:c}=s,u=new _ee(r.shape,a.shape,i,l,c);return n.runWebGLProgram(u,[r,a,o],"float32")},Fee={kernelName:oi,backendName:"webgl",kernelFunc:Pee},rS=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let s=e.length,r=t?"0.0":`getX(${aS(s,"coords")})`,a=e[e.length-1],o="",i="";t?(o=n?`end != ${a-1}`:"end != 0",i=n?"end + 1":"end - 1"):(o=n?`end + pow2 < ${a}`:"end >= pow2",i=n?"end + pow2":"end - pow2"),this.userCode=` void main() { ${St(s)} coords = getOutputCoords(); int end = ${oS(s,"coords")}; float val = ${r}; int pow2 = int(pow(2.0, index)); if (${o}) { int idx = ${i}; ${oS(s,"coords")} = idx; val += getX(${aS(s,"coords")}); } setOutput(val); } `}};function aS(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function oS(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Oee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length,c=E.getAxesPermutation([a],l),u=r;c!=null&&(u=qn({inputs:{x:r},backend:n,attrs:{perm:c}}));let d=E.getInnerMostAxes(1,l)[0];if(d!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${a}`);let p=u.shape[d],h=Ss({inputs:{x:u},backend:n});for(let f=0;f<=Math.ceil(Math.log2(p))-1;f++){let m=new rS(u.shape,!1,i),g=[[f]],y=h;h=n.runWebGLProgram(m,[h],h.dtype,g),n.disposeIntermediateTensorInfo(y)}if(o){let f=new rS(u.shape,o,i),m=h;h=n.runWebGLProgram(f,[h],h.dtype),n.disposeIntermediateTensorInfo(m)}if(c!=null){let f=E.getUndoAxesPermutation(c),m=qn({inputs:{x:h},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(u),m}return h}var Mee={kernelName:ai,backendName:"webgl",kernelFunc:Oee};function zee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.readSync(r.dataId),c=n.readSync(a.dataId),u=I4(l,c,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(a),u=YZ(l,c,o,i);return n.makeTensorInfo(u.shape,a.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var Lee={kernelName:Ah,backendName:"webgl",kernelFunc:zee},Bee=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int h = ${this.getHeightCoordString()}; int w = ${this.getWidthCoordString()}; int d = ${this.getDepthCoordString()}; int in_h = h / ${t}; int offset_h = imod(h, ${t}); int in_w = w / ${t}; int offset_w = imod(w, ${t}); int offset_d = (offset_h * ${t} + offset_w) * ${this.getOutputDepthSize()}; int in_d = d + offset_d; float result = ${this.getInputSamplingString()}; setOutput(result); } `}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Wee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;v.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],c=o==="NHWC"?r.shape[2]:r.shape[3],u=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=c*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=new Bee(f,a,o);return n.runWebGLProgram(m,[r],r.dtype)}var Vee={kernelName:ii,backendName:"webgl",kernelFunc:Wee},iS=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Vs(this.outputShape.length);let a=e.filterHeight,o=e.filterWidth,i=e.outChannels/e.inChannels,l="",c="";n&&(s?l=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${n} }`:r?l=`float activation(float a) { float b = getLeakyreluAlphaAtOutCoords(); ${n} }`:l=` float activation(float x) { ${n} } `,c="result = activation(result);");let u=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=` ${l} void main() { ivec4 coords = getOutputCoords(); int batch = coords.x; ivec2 xRCCorner = coords.yz * strides - pads; int d2 = coords.w; int d1 = d2 / ${i}; int q = d2 - d1 * ${i}; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; // TO DO(dsmilkov): Flatten the two for loops and vec4 the operations. for (int wR = 0; wR < ${a}; wR++) { int xR = xRCorner + wR * dilations[0]; if (xR < 0 || xR >= inDims[0]) { continue; } for (int wC = 0; wC < ${o}; wC++) { int xC = xCCorner + wC * dilations[1]; if (xC < 0 || xC >= inDims[1]) { continue; } float xVal = getX(batch, xR, xC, d1); float wVal = getW(wR, wC, d1, q); dotProd += xVal * wVal; } } float result = dotProd; ${u} ${c} setOutput(result); } `}},lS=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Vs(this.outputShape.length);let a=e.outChannels/e.inChannels,o=e.padInfo.left,i=e.strideWidth,l=e.dilationWidth,c=e.filterHeight,u=e.filterWidth,d=u,p=` int xR; int xC; int xCOffset; vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g=0 && xR < inDims[0]) { `;for(let y=0;y<(d+1)/2;y++){let A=y*2;if(p+=` xC = xCCorner + ${A*l}; `,i===1){if(A= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) { xTexelC${A} = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if (xCOffset + 1 >= inDims[1]) { xTexelC${A}.zw = vec2(0.0); } xTexelC${A}Ready = 1; } `,l===1&&A>0?p+=` xC${A} = vec4(xTexelC${A-2}.zw, xTexelC${A}.xy); `:p+=` xCOffset = xC + 1 - 2; if (xCOffset >= 0 && xCOffset < inDims[1]) { previous = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if (xCOffset + 1 >= inDims[1]) { previous.zw = vec2(0.0); } xC${A} = vec4(previous.zw, xTexelC${A}.xy); } else { xC${A} = vec4(0.0, 0.0, xTexelC${A}.xy); } `):p+=` if (xC >= 0 && xC < inDims[1] && xTexelC${A}Ready == 0) { xTexelC${A} = getX(batch, xR, xC, d1); if (xC + 1 >= inDims[1]) { xTexelC${A}.zw = vec2(0.0); } xTexelC${A}Ready = 1; } xC${A} = xTexelC${A}; `,A+1= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) { xTexelC${A+1} = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if (xCOffset + 1 >= inDims[1]) { xTexelC${A+1}.zw = vec2(0.0); } xTexelC${A+1}Ready = 1; } `,l>1&&(p+=` xCOffset -= 2; if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) { xTexelC${A} = getX(batch, xR, xCOffset, d1); xTexelC${A}Ready = 1; } `),p+=` xC${A+1} = vec4(xTexelC${A}.zw, xTexelC${A+1}.xy); `):x===1?p+=` xC${A+1} = xTexelC${A}; `:p+=` xCOffset = xC + ${x}; if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) { xTexelC${A+1} = getX(batch, xR, xCOffset, d1); if (xCOffset + 1 >= inDims[1]) { xTexelC${A+1}.zw = vec2(0.0); } xTexelC${A+1}Ready = 1; } xC${A+1} = xTexelC${A+1}; `}}else A= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) { xTexelC${A} = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if (xCOffset + 1 >= inDims[1]) { xTexelC${A}.zw = vec2(0.0); } xTexelC${A}Ready = 1; } if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${A+1}Ready == 0) { xTexelC${A+1} = getX(batch, xR, xC + 1, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if (xC + 2 >= inDims[1]) { xTexelC${A+1}.zw = vec2(0.0); } xTexelC${A+1}Ready = 1; } xC${A} = vec4(xTexelC${A}.zw, xTexelC${A+1}.zw); `,A+1= 0 && xCOffset < inDims[1]) { final = getX(batch, xR, xCOffset, d1); } xC${A+1} = vec4(xTexelC${A+1}.xy, final.xy); `)):(p+=` if(xC >= 0 && xC < inDims[1] && xTexelC${A}Ready == 0) { xTexelC${A} = getX(batch, xR, xC, d1); if (xC + 1 >= inDims[1]) { xTexelC${A}.zw = vec2(0.0); } xTexelC${A}Ready = 1; } xCOffset = xC + strides[1]; if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) { xTexelC${A+1} = getX(batch, xR, xCOffset, d1); if (xCOffset + 1 >= inDims[1]) { xTexelC${A+1}.zw = vec2(0.); } xTexelC${A+1}Ready = 1; } xC${A} = vec4( xTexelC${A}.xy, xTexelC${A+1}.xy); `,A+1`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let d=E.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!0),p;Z().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels==1?p=new lS(d):p=new iS(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(p,[r,a],"float32",h)}var Gee={kernelName:Da,backendName:"webgl",kernelFunc:Uee},Hee=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; int wC = coords.y; int d1 = coords.z; int dm = coords.w; int d2 = d1 * ${a} + dm; float dotProd = 0.0; // TO DO: Vec4 over the batch size for (int b = 0; b < ${e.batchSize}; b++) { for (int yR = 0; yR < ${e.outHeight}; yR++) { int xR = wR + yR * ${t} - ${s}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int yC = 0; yC < ${e.outWidth}; yC++) { int xC = wC + yC * ${n} - ${r}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float dyValue = getDy(b, yR, yC, d2); float xValue = getX(b, xR, xC, d1); dotProd += (xValue * dyValue); } } } setOutput(dotProd); } `}},jee=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=` const ivec2 pads = ivec2(${a}, ${o}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d1 = coords[3]; ivec2 dyCorner = coords.yz - pads; int dyRCorner = dyCorner.x; int dyCCorner = dyCorner.y; float dotProd = 0.0; for (int wR = 0; wR < ${t}; wR++) { float dyR = float(dyRCorner + wR) / ${s}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); int wRPerm = ${t} - 1 - wR; for (int wC = 0; wC < ${n}; wC++) { float dyC = float(dyCCorner + wC) / ${r}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); int wCPerm = ${n} - 1 - wC; // TO DO: Vec4 over the channelMul for (int dm = 0; dm < ${i}; dm++) { int d2 = d1 * ${i} + dm; float xValue = getDy(batch, idyR, idyC, d2); float wValue = getW(wRPerm, wCPerm, d1, dm); dotProd += xValue * wValue; } } } setOutput(dotProd); } `}};function qee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,filterShape:u}=s,d=E.computeConv2DInfo(r.shape,u,o,i,l,c,!0),p=new Hee(d);return n.runWebGLProgram(p,[r,a],"float32")}var Xee={kernelName:xh,backendName:"webgl",kernelFunc:qee};function Kee(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,inputShape:u}=s,d=E.computeConv2DInfo(u,a.shape,o,i,l,c,!0),p=new jee(d);return n.runWebGLProgram(p,[r,a],"float32")}var Zee={kernelName:bh,backendName:"webgl",kernelFunc:Kee},Yee=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=` void main() { ivec2 coords = getOutputCoords(); float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0; setOutput(val); } `}};function Jee(e){let{inputs:t,backend:n}=e,{x:s}=t,r=[...s.shape,...s.shape],a=v.sizeFromShape(s.shape),o=be({inputs:{x:s},backend:n,attrs:{shape:[a]}}),i=new Yee(a),l=n.runWebGLProgram(i,[o],o.dtype),c=be({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var Qee={kernelName:vh,backendName:"webgl",kernelFunc:Jee},ete=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:s,strideHeight:r,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:l,dilationWidth:c}=e,{top:u,left:d}=s;this.userCode=` const ivec2 strides = ivec2(${r}, ${a}); const ivec2 pads = ivec2(${u}, ${d}); const float neg_infinity = -3.4e38; void main() { ivec4 coords = getOutputCoords(); int batch = coords.x; int d1 = coords.w; ivec2 outTopLeftCorner = coords.yz * strides - pads; int hBeg = outTopLeftCorner.x; int wBeg = outTopLeftCorner.y; float curVal = neg_infinity; for (int h = 0; h < ${o}; h++) { int hIn = hBeg + h * ${l}; if (hIn >= 0 && hIn < ${t}) { for (int w = 0; w < ${i}; w++) { int wIn = wBeg + w * ${c}; if (wIn >= 0 && wIn < ${n}) { float xVal = getX(batch, hIn, wIn, d1); float wVal = getW(h, w, d1); float val = xVal + wVal; if (val > curVal) { curVal = val; } } } } } float result = curVal; setOutput(result); } `}};function tte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,c=E.computeDilation2DInfo(r.shape,a.shape,o,i,"NHWC",l),u,d=new ete(c);u=n.runWebGLProgram(d,[r,a],"float32");let p=be({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),p}var nte={kernelName:qc,backendName:"webgl",kernelFunc:tte};function ste(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=E.decodeEinsumEquation(r,a.length);E.checkEinsumDimSizes(o.length,l,a);let{path:c,steps:u}=E.getEinsumComputePath(i,l),d=u.length,p=null,h=o.length,f=[];for(let m=0;m=0&&(p=Vm({inputs:{x:p},backend:n,attrs:{axis:c[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var rte={kernelName:Xc,backendName:"webgl",kernelFunc:ste},ate="return (x >= 0.0) ? x : (exp(x) - 1.0);",ote=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0); result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0); result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; `,ite=ut({opSnippet:ate,packedOpSnippet:ote}),lte={kernelName:Pa,backendName:"webgl",kernelFunc:ite},ute="return (b >= 1.0) ? a : a * (b + 1.0);",cte=` vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.))); return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0)))); `,dte=e=>{let{inputs:t,backend:n}=e,{dy:s,y:r}=t,a=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new dp(cte,s.shape,r.shape):new ic(ute,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)},pte={kernelName:Ih,backendName:"webgl",kernelFunc:dte},hte=` return vec4(equal(a, b)); `,fte="return float(a == b);",mte=En({opSnippet:fte,packedOpSnippet:hte,dtype:"bool",cpuKernelImpl:eY}),gte={kernelName:li,backendName:"webgl",kernelFunc:mte},yte=` // Error function is calculated approximately with elementary function. // See "Handbook of Mathematical Functions with Formulas, // Graphs, and Mathematical Tables", Abramowitz and Stegun. float p = ${E.ERF_P}; float a1 = ${E.ERF_A1}; float a2 = ${E.ERF_A2}; float a3 = ${E.ERF_A3}; float a4 = ${E.ERF_A4}; float a5 = ${E.ERF_A5}; float sign = sign(x); x = abs(x); float t = 1.0 / (1.0 + p * x); return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x)); `,Ate=ut({opSnippet:yte}),xte={kernelName:nu,backendName:"webgl",kernelFunc:Ate},uS="return exp(x);",cS=ut({opSnippet:uS,packedOpSnippet:uS,cpuKernelImpl:tY}),bte={kernelName:Fa,backendName:"webgl",kernelFunc:cS};function kx(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(v.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),be({inputs:{x:a},backend:s,attrs:{shape:i}})}var vte={kernelName:ui,backendName:"webgl",kernelFunc:kx},dS="return exp(x) - 1.0;",wte=ut({opSnippet:dS,packedOpSnippet:dS,cpuKernelImpl:nY}),kte={kernelName:ci,backendName:"webgl",kernelFunc:wte},pS=class{constructor(e,t,n){this.variableNames=["real","imag"];let s=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${s}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=` const float exponentMultiplier = ${r}; float unaryOpComplex(float real, float expR, float imag, float expI) { ${o} } float mulMatDFT(int batch, int index) { float indexRatio = float(index) / float(${s}); float exponentMultiplierTimesIndexRatio = exponentMultiplier * indexRatio; float result = 0.0; for (int i = 0; i < ${s}; i++) { // x = (-2|2 * PI / N) * index * i; float x = exponentMultiplierTimesIndexRatio * float(i); float expR = cos(x); float expI = sin(x); float real = getReal(batch, i); float imag = getImag(batch, i); result += unaryOpComplex(real, expR, imag, expI) / ${a}; } return result; } void main() { ivec2 coords = getOutputCoords(); setOutput(mulMatDFT(coords[0], coords[1])); } `}};function hS(e,t,n){let s=n.texData.get(e.dataId),r=v.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=r/a,i=be({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),l=i.shape,c=new pS("real",l,t),u=new pS("imag",l,t),d=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:l},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:l}],p=n.runWebGLProgram(c,d,"float32"),h=n.runWebGLProgram(u,d,"float32"),f=Mo({inputs:{real:p,imag:h},backend:n});n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h);let m=be({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function Ite(e){let{inputs:t,backend:n}=e,{input:s}=t;return hS(s,!1,n)}var Ste={kernelName:Sh,backendName:"webgl",kernelFunc:Ite},Cte=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=` void main() { // Input can be obtained from uniform value. setOutput(value); } `}};function fp(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||v.inferDtype(r),a==="string"){let o=v.getArrayFromDType(a,v.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new Cte(s,r),i=[[r]];return t.runWebGLProgram(o,[],a,i)}}var Tte={kernelName:su,backendName:"webgl",kernelFunc:fp},Nte=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int x = coords[2]; int coordX = ${t} - x - 1; float outputValue; if(coordX >= 0 && coordX < ${t}) { outputValue = getImage(coords[0], coords[1], coordX, coords[3]); } else { outputValue = getImage(coords[0], coords[1], coords[2], coords[3]); } setOutput(outputValue); } `}},Ete={kernelName:di,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new Nte(n.shape);return s.runWebGLProgram(r,[n],n.dtype)}},fS="return floor(x);",Rte=ut({opSnippet:fS,packedOpSnippet:fS,cpuKernelImpl:sY}),$te={kernelName:Oa,backendName:"webgl",kernelFunc:Rte},Dte=` float s = sign(a) * sign(b); int ia = round(a); int ib = round(b); if (ib != 0) { // Windows (D3D) wants guaranteed non-zero int division at compile-time. return float(idiv(ia, ib, s)); } else { return NAN; } `,_te=` ivec4 ia = round(a); ivec4 ib = round(b); bvec4 cond = notEqual(ib, ivec4(0)); ivec4 result = ivec4(0); vec4 s = sign(a) * sign(b); // Windows (D3D) wants guaranteed non-zero int division at compile-time. if (cond[0]) { result[0] = idiv(ia[0], ib[0], s[0]); } if (cond[1]) { result[1] = idiv(ia[1], ib[1], s[1]); } if (cond[2]) { result[2] = idiv(ia[2], ib[2], s[2]); } if (cond[3]) { result[3] = idiv(ia[3], ib[3], s[3]); } return vec4(result); `,Pte=En({opSnippet:Dte,packedOpSnippet:_te,dtype:"int32"}),Fte={kernelName:Ma,backendName:"webgl",kernelFunc:Pte},Ote=class{constructor(e){this.variableNames=["A"];let t=Hn(),[n,s]=e;this.outputShape=e,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; int texC = coords[1]; int depth = coords[2]; vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}.0, ${n}.0); vec4 values = ${t.texture2D}(A, uv); float value; if (depth == 0) { value = values.r; } else if (depth == 1) { value = values.g; } else if (depth == 2) { value = values.b; } else if (depth == 3) { value = values.a; } setOutput(floor(value * 255.0 + 0.5)); } `}},Mte=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Hn(),[n,s]=e;this.outputShape=e,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; int texC = coords[1]; int depth = coords[2]; vec4 result = vec4(0.); for(int row=0; row<=1; row++) { for(int col=0; col<=1; col++) { texC = coords[1] + row; depth = coords[2] + col; vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}.0, ${n}.0); vec4 values = ${t.texture2D}(A, uv); float value; if (depth == 0) { value = values.r; } else if (depth == 1) { value = values.g; } else if (depth == 2) { value = values.b; } else if (depth == 3) { value = values.a; } result[row * 2 + col] = floor(value * 255.0 + 0.5); } } ${t.output} = result; } `}},zte={kernelName:sd,backendName:"webgl",kernelFunc:Lte},cc;function Lte(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s,o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,c]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],u=[c,l],d=[c,l,a];(i||o)&&(cc==null&&(cc=document.createElement("canvas").getContext("2d")),cc.canvas.width=l,cc.canvas.height=c,cc.drawImage(r,0,0,l,c),r=cc.canvas);let p=n.makeTensorInfo(u,"int32");n.texData.get(p.dataId).usage=Bs.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(p.dataId),r);let h=Z().getBool("WEBGL_PACK")?new Mte(d):new Ote(d),f=n.runWebGLProgram(h,[p],"int32");return n.disposeData(p.dataId),f}function Bte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=E.convertConv2DDataFormat(u),g=E.computeConv2DInfo(r.shape,a.shape,l,d,c,p,!1,m),y,A=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=nS({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else if(Z().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)y=sS({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else{let b=o!=null,w=i!=null,k=h==="leakyrelu",S=h?Bm(h,!1):null,N=new tS(g,b,S,w,k),$=[r,a];if(o&&$.push(o),i&&$.push(i),k){let F=n.makeTensorInfo([],"float32",v.createScalarValue(f,"float32"));$.push(F),A.push(F)}y=n.runWebGLProgram(N,$,"float32")}let x=be({inputs:{x:y},backend:n,attrs:{shape:g.outShape}});return A.push(y),A.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var Wte={kernelName:mo,backendName:"webgl",kernelFunc:Bte};function Vte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:d,activation:p,leakyreluAlpha:h}=s,f=[],m=u;m==null&&(m=[1,1]),v.assert(E.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let g=E.computeConv2DInfo(r.shape,a.shape,l,m,c,d,!0),y=Z().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,A=p?Bm(p,y):null,x=[r,a],b=o!=null,w=i!=null,k=p==="leakyrelu";if(b&&x.push(o),w&&x.push(i),k){let F=n.makeTensorInfo([],"float32",v.createScalarValue(h,"float32"));x.push(F),f.push(F)}let S;y?S=new lS(g,b,A,w,k):S=new iS(g,b,A,w,k);let N=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],$=n.runWebGLProgram(S,x,"float32",N);return f.forEach(F=>n.disposeIntermediateTensorInfo(F)),$}var Ute={kernelName:go,backendName:"webgl",kernelFunc:Vte},Gte=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let s=St(t.length),r=St(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=` ${s} strides = ${s}(${this.strides}); void main() { ${r} coords = getOutputCoords(); int flattenIndex = 0; for (int j = 0; j < ${this.sliceDim}; j++) { int index = round(getIndices(coords[0], j)); flattenIndex += index * ${a}; } setOutput(getX(flattenIndex, coords[1])); } `}};function Hte(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=v.sizeFromShape(s.shape),[l,c,u,d]=E.prepareAndValidate(s,r),p=be({inputs:{x:r},backend:n,attrs:{shape:[c,o]}}),h=be({inputs:{x:s},backend:n,attrs:{shape:[v.sizeFromShape(s.shape)/u,u]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let y=n.readSync(r.dataId),A=n.bufferSync(s),x=rY(y,A,s.dtype,c,o,u,d,s.shape,i);return n.makeTensorInfo(l,s.dtype,x.values)}let f=new Gte(o,d,[c,u]),m=n.runWebGLProgram(f,[h,p],h.dtype),g=be({inputs:{x:m},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),g}var jte={kernelName:hi,backendName:"webgl",kernelFunc:Hte},qte=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=St(this.rank),s=Xte(e,2);this.userCode=` void main() { ${n} resRC = getOutputCoords(); setOutput(getA(${s})); } `}};function Xte(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;rn.disposeIntermediateTensorInfo(w)),n.makeTensorInfo(c.outputShape,b.dtype,b.values)}let m=new qte(p.shape,f),g=n.runWebGLProgram(m,[p,h],p.dtype);d.push(g);let y=be({inputs:{x:g},backend:n,attrs:{shape:c.outputShape}});return d.forEach(A=>n.disposeIntermediateTensorInfo(A)),y}var Kte={kernelName:pi,backendName:"webgl",kernelFunc:mS},Zte="return float(a > b);",Yte=` return vec4(greaterThan(a, b)); `,Jte=En({opSnippet:Zte,packedOpSnippet:Yte,cpuKernelImpl:oY,dtype:"bool"}),Qte={kernelName:fi,backendName:"webgl",kernelFunc:Jte},ene="return float(a >= b);",tne=` return vec4(greaterThanEqual(a, b)); `,nne=En({opSnippet:ene,packedOpSnippet:tne,dtype:"bool",cpuKernelImpl:iY}),sne={kernelName:La,backendName:"webgl",kernelFunc:nne};function rne(e){let{inputs:t,backend:n}=e,{input:s}=t;return hS(s,!0,n)}var ane={kernelName:Ch,backendName:"webgl",kernelFunc:rne},one="return float(!isnan(x) && !isinf(x));",ine=ut({opSnippet:one,dtype:"bool"}),lne={kernelName:ru,backendName:"webgl",kernelFunc:ine},une="return float(isinf(x));",cne=ut({opSnippet:une,dtype:"bool"}),dne={kernelName:au,backendName:"webgl",kernelFunc:cne},pne="return float(isnan(x));",hne=ut({opSnippet:pne,dtype:"bool"}),fne={kernelName:ou,backendName:"webgl",kernelFunc:hne},mne="return float(a < b);",gne=` return vec4(lessThan(a, b)); `,yne=En({opSnippet:mne,packedOpSnippet:gne,cpuKernelImpl:lY,dtype:"bool"}),Ane={kernelName:gi,backendName:"webgl",kernelFunc:yne},xne="return float(a <= b);",bne=` return vec4(lessThanEqual(a, b)); `,vne=En({opSnippet:xne,packedOpSnippet:bne,cpuKernelImpl:uY,dtype:"bool"}),wne={kernelName:yi,backendName:"webgl",kernelFunc:vne};function kne(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=cY(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var Ine={kernelName:Th,backendName:"webgl",kernelFunc:kne},Sne=`if (x < 0.0) return NAN; return log(x);`,Cne=` vec4 result = log(x); vec4 isNaN = vec4(lessThan(x, vec4(0.0))); result.r = isNaN.r == 1.0 ? NAN : result.r; result.g = isNaN.g == 1.0 ? NAN : result.g; result.b = isNaN.b == 1.0 ? NAN : result.b; result.a = isNaN.a == 1.0 ? NAN : result.a; return result; `,Tne=ut({opSnippet:Sne,packedOpSnippet:Cne,cpuKernelImpl:dY}),Nne={kernelName:Wa,backendName:"webgl",kernelFunc:Tne},Ene="return log(1.0 + x);",Rne=ut({opSnippet:Ene}),$ne={kernelName:iu,backendName:"webgl",kernelFunc:Rne},Dne="return float(a >= 1.0 && b >= 1.0);",_ne=` return vec4( vec4(greaterThanEqual(a, vec4(1.0))) * vec4(greaterThanEqual(b, vec4(1.0)))); `,Pne=En({opSnippet:Dne,packedOpSnippet:_ne,dtype:"bool"}),Fne={kernelName:Ai,backendName:"webgl",kernelFunc:Pne},One="return float(!(x >= 1.0));",Mne=ut({opSnippet:One}),zne={kernelName:lu,backendName:"webgl",kernelFunc:Mne},Lne="return float(a >= 1.0 || b >= 1.0);",Bne=` return min( vec4(greaterThanEqual(a, vec4(1.0))) + vec4(greaterThanEqual(b, vec4(1.0))), vec4(1.0)); `,Wne=En({opSnippet:Lne,packedOpSnippet:Bne,dtype:"bool"}),Vne={kernelName:Zc,backendName:"webgl",kernelFunc:Wne},Une=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int r = coords[1]; int c = coords[2]; int d = coords[3]; float x = getX(b, r, c, d); float sum = 0.0; for (int j = -${a}; j <= ${a}; j++) { int idx = d + j; if (idx >= 0 && idx <= ${o}) { float z = getX(b, r, c, idx); sum += z * z; } } float val = x * ${i}; setOutput(val); } `}},Gne=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords.x; int r = coords.y; int c = coords.z; int d = coords.w; bool hasNextCol = d < ${this.outputShape[3]}; bool hasNextRow = c < ${this.outputShape[2]}; vec4 sum = vec4(0.); vec4 xFragAtOutputCoords = getX(b, r, c, d); vec4 xAtOutputCoords = vec4( getChannel(xFragAtOutputCoords, vec2(c, d)), hasNextCol ? getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0, hasNextRow ? getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0, (hasNextRow && hasNextCol) ? getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0 ); int firstChannel = d - ${a}; vec2 cache = vec2(0.); if(firstChannel >= 0){ vec4 firstChannelFrag = getX(b, r, c, firstChannel); cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel)); if(hasNextRow){ cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel)); } } ivec2 depth = ivec2(d, d + 1); for (int j = - ${a}; j <= ${a}; j++) { ivec2 idx = depth + j; bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0)); bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${o})); bool depthInRange = aboveLowerBound.x && belowUpperBound.x; bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y; if(depthInRange || depthPlusOneInRange){ vec4 z = vec4(0.); vec4 xFragAtCurrentDepth; z.xz = cache.xy; if(depthPlusOneInRange && hasNextCol){ xFragAtCurrentDepth = idx.y != d ? getX(b, r, c, idx.y) : xFragAtOutputCoords; z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y)); if(hasNextRow){ z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y)); } } cache.xy = z.yw; sum += z * z; } } vec4 result = xAtOutputCoords * ${i}; setOutput(result); } `}},Hne=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s,c=Z().getBool("WEBGL_PACK_NORMALIZATION")?new Gne(r.shape,a,o,i,l):new Une(r.shape,a,o,i,l);return n.runWebGLProgram(c,[r],r.dtype)},jne={kernelName:Yc,backendName:"webgl",kernelFunc:Hne},qne=class{constructor(e,t,n,s,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=r,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int r = coords[1]; int c = coords[2]; float result = 0.0; for (int d = 0; d < ${this.depth}; ++d) { int depthBegin = int(max(0.0, float(d - ${t}))); int depthEnd = int(min(float(${this.depth}), float(d + ${t} + 1))); const int MIN_DEPTH_BEGIN = 0; const int MAX_DEPTH_END = ${this.depth}; float norm = 0.0; for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) { if (k < depthBegin){ continue; } else if (k >= depthBegin && k < depthEnd) { norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k); } else { break; } } norm = float(${s}) * norm + float(${n}); for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){ if (k < depthBegin){ continue; } else if (k >= depthBegin && k < depthEnd){ float dyi = -2.0 * float(${s}) * float(${r}) * getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d) / norm; if (k == d) { dyi += pow(norm, -1.0 * ${r}); } if (k == coords[3]) { dyi *= getDy(b, r, c, d); result += dyi; } } else { break; } } } setOutput(result); } `}},Xne=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:c,beta:u}=s,d=new qne(r.shape,i,l,c,u);return n.runWebGLProgram(d,[r,a,o],r.dtype)},Kne={kernelName:Nh,backendName:"webgl",kernelFunc:Xne};function Zne(e,t,n,s){let r=v.sizeFromShape(t),o=v.sizeFromShape(e.shape)/r,i=be({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=vl(i,e.dtype,"max",s),c=be({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),c}function gS(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=l,u=E.getAxesPermutation(c,i),d=u!=null,p=n.shouldExecuteOnCPU([r]),h=r;if(d){if(p){let x=n.texData.get(h.dataId).values,b=new Array(i);for(let S=0;S`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,o,c,i,l);if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))return Ss({inputs:{x:r},backend:n});let d=new pp(u,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var sse={kernelName:Ga,backendName:"webgl",kernelFunc:nse};function rse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dataFormat:l,dimRoundingMode:c}=s,u=[1,1,1],d=E.computePool3DInfo(r.shape,a,o,u,i,c,l),p=new bx(d,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var ase={kernelName:Jc,backendName:"webgl",kernelFunc:rse},ose=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,r=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=r-1-e.padInfo.top,i=a-1-e.padInfo.left,l=r*a-1;this.userCode=` const ivec2 pads = ivec2(${o}, ${i}); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 dyRCCorner = coords.yz - pads; int dyRCorner = dyRCCorner.x; int dyCCorner = dyRCCorner.y; // Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${r}; wR += ${s}) { float dyR = float(dyRCorner + wR) / ${t}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${a}; wC++) { float dyC = float(dyCCorner + wC) / ${n}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(b, idyR, idyC, d); int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d)); // Get the current value, check it against the value from the // position matrix. int curPosValue = wR * ${a} + wC; float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0); dotProd += dyValue * mask; } } setOutput(dotProd); } `}},ise=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=i-1-e.padInfo.front,d=l-1-e.padInfo.top,p=c-1-e.padInfo.left,h=i*l*c-1;this.userCode=` const ivec3 pads = ivec3(${u}, ${d}, ${p}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads; int dyDCorner = dyCorner.x; int dyRCorner = dyCorner.y; int dyCCorner = dyCorner.z; // Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get // dx(xD, xR, xC, ch). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wD = 0; wD < ${i}; wD += ${r}) { float dyD = float(dyDCorner + wD) / ${t}.0; if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) { continue; } int idyD = int(dyD); for (int wR = 0; wR < ${l}; wR += ${a}) { float dyR = float(dyRCorner + wR) / ${n}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${c}; wC += ${o}) { float dyC = float(dyCCorner + wC) / ${s}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(batch, idyD, idyR, idyC, ch); int maxPosValue = ${h} - int(getMaxPos(batch, idyD, idyR, idyC, ch)); // Get the current value, check it against the value from the // position matrix. int curPosValue = wD * ${l} * ${c} + wR * ${c} + wC; float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0); dotProd += dyValue * mask; } } } setOutput(dotProd); } `}};function lse(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:c,dimRoundingMode:u}=s,d=[1,1,1],p=E.computePool3DInfo(o.shape,i,l,d,c,u),h=new bx(p,"max",!0),f=n.runWebGLProgram(h,[o],o.dtype),m=new ise(p),g=n.runWebGLProgram(m,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),g}var use={kernelName:Rh,backendName:"webgl",kernelFunc:lse};function cse(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;ec([a,o],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:d}=s,p=E.computePool2DInfo(i.shape,l,c,1,u,d),h=!0,f=new pp(p,"max",h),m=n.runWebGLProgram(f,[i],i.dtype),g=new ose(p),y=n.runWebGLProgram(g,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),y}var dse={kernelName:Eh,backendName:"webgl",kernelFunc:cse};function pse(e,t,n,s){let r=new pp(n,"max",!1),a=s.runWebGLProgram(r,[e],"float32");r=new pp(n,"max",!0,!0,t);let o=s.runWebGLProgram(r,[e],"float32");return[a,o]}var hse={kernelName:$h,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;v.assert(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);let c=[1,1];v.assert(E.eitherStridesOrDilationsAreOne(a,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${c}'`);let u=E.computePool2DInfo(s.shape,r,a,c,o),[d,p]=pse(s,i,u,l);return[d,p]}};function fse(e,t,n,s){let r=v.sizeFromShape(t),o=v.sizeFromShape(e.shape)/r,i=be({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=vl(i,"float32","mean",s),c=be({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),c}var mse={kernelName:Ha,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{keepDims:r,axis:a}=t,o=n,i=s.shape.length,l=v.parseAxisParam(a,s.shape),c=l,u=E.getAxesPermutation(c,i),d=u!=null,p=o.shouldExecuteOnCPU([s]),h=[],f=s;if(d){if(p){let b=o.texData.get(f.dataId).values,w=new Array(i);for(let N=0;Nc[0]+e[u]+c[1]);let s=e.length,r=St(s),a=t.map(c=>c[0]).join(","),o=t.map((c,u)=>c[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),l=n==="reflect"?0:1;if(s===1){this.userCode=` int start = ${a}; int end = ${o}; void main() { int outC = getOutputCoords(); if (outC < start) { outC = start * 2 - outC - ${l}; } else if(outC >= end) { outC = (end - 1) * 2 - outC + ${l}; } setOutput(getX(outC - start)); } `;return}this.userCode=` ${r} start = ${r}(${a}); ${r} end = ${r}(${o}); void main() { ${r} outC = getOutputCoords(); for (int i = 0; i < ${s}; i++) { if (outC[i] < start[i]) { outC[i] = start[i] * 2 - outC[i] - ${l}; } else if(outC[i] >= end[i]) { outC[i] = (end[i] - 1) * 2 - outC[i] + ${l}; } } ${r} coords = outC - start; setOutput(getX(${i})); } `}},kse=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,f)=>h[0]+e[f]+h[1]);let s=e.length,r=St(s),a=t.map(h=>h[0]).join(","),o=t.map((h,f)=>h[0]+e[f]).join(","),i=jn("rc",s),l=jn("source",s),c=`${i[s-1]} < ${this.outputShape[s-1]}`,u=s===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,p="";if(s===1){let h=` ${r} source = rc; if (source < start) { source = start * 2 - source - ${d}; } else if (source >= end) { source = (end - 1) * 2 - source + ${d}; } source -= start; `;p=` ${r} rc = outputLoc; ${h} result[0] = getChannel(getX(${l.join()}), ${u}); ${i[s-1]} += 1; if(${c}) { ${h} result[1] = getChannel(getX(${l.join()}), ${u}); } `}else{let h=` ${r} source = rc; ${r} lt = ${r}(lessThan(source, start)); ${r} gte = ${r}(greaterThanEqual(source, end)); ${r} orig = 1 - (lt + gte); source = orig * source + lt * (start * 2 - source - ${d}) + gte * ((end - 1) * 2 - source + ${d}); source -= start; `;p=` ${r} rc = outputLoc; ${h} result[0] = getChannel(getX(${l.join()}), ${u}); ${i[s-1]} += 1; if(${c}) { ${h} result[1] = getChannel(getX(${l.join()}), ${u}); } rc = outputLoc; ${i[s-2]} += 1; if(${i[s-2]} < ${this.outputShape[s-2]}) { ${h} result[2] = getChannel(getX(${l.join()}), ${u}); ${i[s-1]} += 1; if(${c}) { ${h} result[3] = getChannel(getX(${l.join()}), ${u}); } } `}this.userCode=` const ${r} start = ${r}(${a}); const ${r} end = ${r}(${o}); void main() { ${r} outputLoc = getOutputCoords(); vec4 result = vec4(0.); ${p} setOutput(result); } `}},Ise=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{paddings:r,mode:a}=n,o=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new kse(s.shape,r,a):new wse(s.shape,r,a);return t.runWebGLProgram(o,[s],s.dtype)},Sse={kernelName:Xa,backendName:"webgl",kernelFunc:Ise},Cse=`if (b == 0.0) return NAN; return mod(a, b);`,Tse=` vec4 result = mod(a, b); vec4 isNaN = vec4(equal(b, vec4(0.0))); `+Lm+` return result; `,Nse=En({opSnippet:Cse,packedOpSnippet:Tse}),Ese={kernelName:uu,backendName:"webgl",kernelFunc:Nse},Rse=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=` void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; float r = random(seed); float cdf = 0.0; for (int i = 0; i < ${t-1}; i++) { cdf += getProbs(batch, i); if (r < cdf) { setOutput(float(i)); return; } } // If no other event happened, last event happened. setOutput(float(${t-1})); } `}},$se=` if (a == b) { return 1.0; }; return a / b;`,Dse=` // vec4 one = vec4(equal(a, b)); // return one + (vec4(1.0) - one) * a / b; vec4 result = a / b; if(a.x == b.x) { result.x = 1.; } if(a.y == b.y) { result.y = 1.; } if(a.z == b.z) { result.z = 1.; } if(a.w == b.w) { result.w = 1.; } return result; `,yS=En({opSnippet:$se,packedOpSnippet:Dse,checkOutOfBounds:!0}),_se={kernelName:_a,backendName:"webgl",kernelFunc:yS},AS="return a - b;",xS=En({opSnippet:AS,packedOpSnippet:AS,supportsComplex:!0,cpuKernelImpl:RY}),Pse={kernelName:uo,backendName:"webgl",kernelFunc:xS};function bS(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=v.parseAxisParam([a],r.shape),i=gS({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=E.expandShapeToKeepDim(i.shape,o),c=be({inputs:{x:i},backend:n,attrs:{shape:l}}),u=xS({inputs:{a:r,b:c},backend:n}),d=cS({inputs:{x:u},backend:n}),p=Vm({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),h=be({inputs:{x:p},backend:n,attrs:{shape:l}}),f=yS({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}var Fse={kernelName:io,backendName:"webgl",kernelFunc:bS};function Ose(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s,l=i?r:bS({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),c=l.shape[0],u=l.shape[1],d=new Rse(c,u,a),p=[[o]],h=n.runWebGLProgram(d,[l],"int32",p);return i||n.disposeIntermediateTensorInfo(l),h}var Mse={kernelName:Dh,backendName:"webgl",kernelFunc:Ose},vS="return -x;";function zse(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.texData.get(s.dataId),[o,i]=gY(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r;return Z().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new ac(s.shape,vS):r=new Oo(s.shape,vS),n.runWebGLProgram(r,[s],s.dtype)}var Lse={kernelName:xi,backendName:"webgl",kernelFunc:zse},Bse=Ys.nonMaxSuppressionV3Impl;function Wse(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,c=n.readSync(r.dataId),u=n.readSync(a.dataId),{selectedIndices:d}=Bse(c,u,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var Vse={kernelName:vi,backendName:"webgl",kernelFunc:Wse},Use=Ys.nonMaxSuppressionV4Impl;function Gse(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:c}=s,u=n.readSync(r.dataId),d=n.readSync(a.dataId),{selectedIndices:p,validOutputs:h}=Use(u,d,o,i,l,c);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var Hse={kernelName:cu,backendName:"webgl",kernelFunc:Gse},jse=Ys.nonMaxSuppressionV5Impl;function qse(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:c}=s,u=n.readSync(r.dataId),d=n.readSync(a.dataId),p=o,h=i,f=l,m=c,{selectedIndices:g,selectedScores:y}=jse(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var Xse={kernelName:wi,backendName:"webgl",kernelFunc:qse},Kse=class{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=` void main() { ivec2 coords = getOutputCoords(); int index = round(getIndices(coords.x)); setOutput(mix(float(${s}), float(${n}), float(index == coords.y))); } `}},Zse=e=>{let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=v.sizeFromShape(r.shape),c=new Kse(l,a,o,i),u=be({inputs:{x:r},backend:n,attrs:{shape:[l]}}),d=n.runWebGLProgram(c,[u],r.dtype);n.disposeIntermediateTensorInfo(u);let p=[...r.shape,a],h=be({inputs:{x:d},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(d),h},Yse={kernelName:Ii,backendName:"webgl",kernelFunc:Zse};function qm(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=hp({inputs:{input:s},backend:n}),a=qm({inputs:{x:r},backend:n}),o=jm({inputs:{input:s},backend:n}),i=qm({inputs:{x:o},backend:n}),l=Mo({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return fp({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var Jse={kernelName:Bi,backendName:"webgl",kernelFunc:qm};function wS(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=hp({inputs:{input:s},backend:n}),a=wS({inputs:{x:r},backend:n}),o=jm({inputs:{input:s},backend:n}),i=qm({inputs:{x:o},backend:n}),l=Mo({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return fp({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var Qse={kernelName:ki,backendName:"webgl",kernelFunc:wS};function ere(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return kx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{v.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=kx({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=eS({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var tre={kernelName:Si,backendName:"webgl",kernelFunc:ere},nre=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let s=e.length,r=St(s),a=t.map(l=>l[0]).join(","),o=t.map((l,c)=>l[0]+e[c]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=` int start = ${a}; int end = ${o}; void main() { int outC = getOutputCoords(); if (outC < start || outC >= end) { setOutput(value); } else { setOutput(getX(outC - start)); } } `;return}this.userCode=` ${r} start = ${r}(${a}); ${r} end = ${r}(${o}); void main() { ${r} outC = getOutputCoords(); if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) { setOutput(value); } else { ${r} coords = outC - start; setOutput(getX(${i})); } } `}},sre=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let s=e.length,r=St(s),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=jn("rc",s),l=jn("source",s),c=`${i[s-1]} < ${this.outputShape[s-1]}`,u=s===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${i[s-1]} += 1; if(${c}) { `,s===1?"":`} rc = outputLoc; ${i[s-2]} += 1; if(${i[s-2]} < ${this.outputShape[s-2]}) {`,s===1?"":` ${i[s-1]} += 1; if(${c}) {`],p=s===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let f=0,m=s===1?2:4;f{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(v.sizeFromShape(r.shape)===0){let c=a.map((u,d)=>u[0]+r.shape[d]+u[1]);return fp({backend:n,attrs:{shape:c,value:o,dtype:r.dtype}})}let i=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new sre(r.shape,a,o):new nre(r.shape,a,o),l=[[o]];return n.runWebGLProgram(i,[r],r.dtype,l)},rre={kernelName:Za,backendName:"webgl",kernelFunc:kS},are=` if(a < 0.0 && floor(b) < b){ return NAN; } if (b == 0.0) { return 1.0; } return (round(mod(b, 2.0)) != 1) ? pow(abs(a), b) : sign(a) * pow(abs(a), b); `,ore=` // isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise. vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1))); vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1); vec4 result = multiplier * pow(abs(a), b); // Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS bvec4 isExpZero = equal(b, vec4(0.0)); result.r = isExpZero.r ? 1.0 : result.r; result.g = isExpZero.g ? 1.0 : result.g; result.b = isExpZero.b ? 1.0 : result.b; result.a = isExpZero.a ? 1.0 : result.a; vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b)); `+Lm+` return result; `,ire=En({opSnippet:are,packedOpSnippet:ore}),lre={kernelName:Ya,backendName:"webgl",kernelFunc:ire};function ure(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=[],c=v.parseAxisParam(a,r.shape),u=c,d=E.getAxesPermutation(u,i),p=r;d!=null&&(p=qn({inputs:{x:r},backend:n,attrs:{perm:d}}),u=E.getInnerMostAxes(u.length,i),l.push(p)),E.assertAxesAreInnerMostDims("prod",u,i);let h;if(n.shouldExecuteOnCPU([p])){let f=n.texData.get(p.dataId).values,{outVals:m,outShape:g,outDtype:y}=AY(p.shape,p.dtype,f,u);h=n.makeTensorInfo(g,y,m)}else{let[f,m]=E.computeOutAndReduceShapes(p.shape,u),g=v.sizeFromShape(m),y=be({inputs:{x:p},backend:n,attrs:{shape:[-1,g]}}),A=pd(r.dtype),x=vl(y,A,"prod",n);h=be({inputs:{x},backend:n,attrs:{shape:f}}),l.push(y),l.push(x)}if(o){l.push(h);let f=E.expandShapeToKeepDim(h.shape,c);h=be({inputs:{x:h},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var cre={kernelName:Ci,backendName:"webgl",kernelFunc:ure},IS=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=xY(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},dre={kernelName:du,backendName:"webgl",kernelFunc:IS},pre="return 1.0 / x;",hre=ut({opSnippet:pre}),fre={kernelName:pu,backendName:"webgl",kernelFunc:hre},mre=br+` return (x < 0.0) ? 0.0 : x; `,gre=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,yre=ut({opSnippet:mre,packedOpSnippet:gre}),Are={kernelName:Qa,backendName:"webgl",kernelFunc:yre},xre=br+` return (x < 0.0) ? 0.0 : min(6.0, x); `,bre=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,vre=ut({opSnippet:xre,packedOpSnippet:bre}),wre={kernelName:to,backendName:"webgl",kernelFunc:vre},kre=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${c[0]/u[0]}, ${c[1]/u[1]}); const vec2 inputShapeRC = vec2(${o}.0, ${i}.0); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 yRC = coords.yz; // Fractional source index. vec2 sourceFracIndexRC = ${d}; // Compute the four integer indices. ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0))); ivec2 sourceCeilRC = ivec2( min(inputShapeRC - 1.0, ceil(sourceFracIndexRC))); float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d); float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d); float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d); float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d); vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC); float top = topLeft + (topRight - topLeft) * fracRC.y; float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y; float newValue = top + (bottom - top) * fracRC.x; setOutput(newValue); } `}},Ire=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec3 effectiveInputOverOutputRatioRC = vec3( ${c[0]/u[0]}, ${c[1]/u[1]}, ${c[1]/u[1]}); const vec3 inputShapeRC = vec3(${o}.0, ${i}.0, ${i}.0); float getAValue(int b, int r, int c, int d) { return getChannel(getA(b, r, c, d), vec2(c, d)); } void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; // Calculate values for next column in yRC.z. ivec3 yRC = coords.yzz + ivec3(0, 0, 1); // Fractional source index. vec3 sourceFracIndexRC = ${d}; // Compute the four integer indices. ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0))); ivec3 sourceCeilRC = ivec3( min(inputShapeRC - 1.0, ceil(sourceFracIndexRC))); // Should we calculate next column and row elements in 2x2 packed cell. bool hasNextCol = d < ${l-1}; bool hasNextRow = coords.z < ${n-1}; // In parallel, construct four corners for all four components in // packed 2x2 cell. vec4 topLeft = vec4( getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d), hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0); vec4 bottomLeft = vec4( getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d), hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0); vec4 topRight = vec4( getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d), hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0); vec4 bottomRight = vec4( getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d), hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0); vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC); vec4 top = mix(topLeft, topRight, fracRC.yyzz); vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz); vec4 newValue = mix(top, bottom, fracRC.x); setOutput(newValue); } `}};function Sre(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,u=Z().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Ire(r.shape,l,c,a,o):new kre(r.shape,l,c,a,o);return n.runWebGLProgram(u,[r],"float32")}var Cre={kernelName:eo,backendName:"webgl",kernelFunc:Sre},Tre=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],c=i[0]/l[0],u=i[1]/l[1],d=1/c,p=1/u,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; int r = coords[1]; int c = coords[2]; float accumulator = 0.0; const float heightScale = float(${c}); const float widthScale = float(${u}); const float invHeightScale = float(${d}); const float invWidthScale = float(${p}); const int winHeight = int(${h}); const int winWidth = int(${f}); // Compute bounds for where in dy we will look float startRLerp = floor(float(r) * invHeightScale); int startDyR = int(startRLerp - float(winHeight / 2)); float startCLerp = floor(float(c) * invWidthScale); int startDyC = int(startCLerp - float(winWidth / 2)); // Loop over dy for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) { int dyR = dyROffset + startDyR; // Guard against the window exceeding the bounds of dy if (dyR < 0 || dyR >= ${a}) { continue; } for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) { int dyC = dyCOffset + startDyC; // Guard against the window exceeding the bounds of dy if (dyC < 0 || dyC >= ${o}) { continue; } float dxR = float(dyR) * heightScale; int topDxRIndex = int(floor(dxR)); int bottomDxRIndex = int(min(ceil(dxR), ${s-1}.0)); float dxRLerp = dxR - float(topDxRIndex); float inverseDxRLerp = 1.0 - dxRLerp; float dxC = float(dyC) * widthScale; int leftDxCIndex = int(floor(dxC)); int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0)); float dxCLerp = dxC - float(leftDxCIndex); float inverseDxCLerp = 1.0 - dxCLerp; if (r == topDxRIndex && c == leftDxCIndex) { // topLeft accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp; } if (r == topDxRIndex && c == rightDxCIndex) { // topRight accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp; } if (r == bottomDxRIndex && c == leftDxCIndex) { // bottomLeft accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp; } if (r == bottomDxRIndex && c == rightDxCIndex) { // bottomRight accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp; } } } // End loop over dy setOutput(accumulator); } `}};function Nre(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new Tre(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Ere={kernelName:Ph,backendName:"webgl",kernelFunc:Nre},Rre=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",p;r?p="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${c[0]/u[0]}, ${c[1]/u[1]}); const vec2 inputShapeRC = vec2(${o}.0, ${i}.0); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 yRC = coords.yz; // Fractional source index. vec2 sourceFracIndexRC = ${p}; // Compute the coordinators of nearest neighbor point. ivec2 sourceNearestRC = ivec2( min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d}))); float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d); setOutput(newValue); } `}},$re=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",p;r?p="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec3 effectiveInputOverOutputRatioRC = vec3( ${c[0]/u[0]}, ${c[1]/u[1]}, ${c[1]/u[1]}); const vec3 inputShapeRC = vec3(${o}.0, ${i}.0, ${i}.0); float getAValue(int b, int r, int c, int d) { return getChannel(getA(b, r, c, d), vec2(c, d)); } void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; // Calculate values for next column in yRC.z. ivec3 yRC = coords.yzz + ivec3(0, 0, 1); // Fractional source index. vec3 sourceFracIndexRC = ${p}; // Compute the coordinators of nearest neighbor point. ivec3 sourceNearestRC = ivec3( min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d}))); // Should we calculate next column and row elements in 2x2 packed cell. bool hasNextCol = d < ${l-1}; bool hasNextRow = coords.z < ${n-1}; vec4 newValue = vec4( getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d), hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0); setOutput(newValue); } `}};function Dre(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,u=Z().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new $re(r.shape,l,c,a,o):new Rre(r.shape,l,c,a,o);return n.runWebGLProgram(u,[r],r.dtype)}var _re={kernelName:hu,backendName:"webgl",kernelFunc:Dre},Pre=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],c=i[0]/l[0],u=i[1]/l[1],d=1/c,p=1/u,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; int r = coords[1]; int c = coords[2]; float accumulator = 0.0; const float heightScale = float(${c}); const float widthScale = float(${u}); const float invHeightScale = float(${d}); const float invWidthScale = float(${p}); const int winHeight = int(${h}); const int winWidth = int(${f}); // Compute bounds for where in dy we will look float startRLerp = floor(float(r) * invHeightScale); int startDyR = int(floor(startRLerp - float(winHeight / 2))); float startCLerp = floor(float(c) * invWidthScale); int startDyC = int(floor(startCLerp - float(winWidth / 2))); // Loop over dy for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) { int dyR = dyROffset + startDyR; // Guard against the window exceeding the bounds of dy if (dyR < 0 || dyR >= ${a}) { continue; } for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) { int dyC = dyCOffset + startDyC; // Guard against the window exceeding the bounds of dy if (dyC < 0 || dyC >= ${o}) { continue; } float sourceFracRow = float(${i[0]}) * (float(dyR) / float(${l[0]})); float sourceFracCol = float(${i[1]}) * (float(dyC) / float(${l[1]})); int sourceNearestRow = int(min( float(int(${s}) - 1), ${n} ? float(round(sourceFracRow)) : float(floor(sourceFracRow)))); int sourceNearestCol = int(min( float(int(${r}) - 1), ${n} ? float(round(sourceFracCol)) : float(floor(sourceFracCol)))); if (r == sourceNearestRow && c == sourceNearestCol) { accumulator += getDy(b, dyR, dyC, d); } } } // End loop over dy setOutput(accumulator); } `}};function Fre(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new Pre(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Ore={kernelName:_h,backendName:"webgl",kernelFunc:Fre},Mre=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=` void main() { int coord = getOutputCoords(); setOutput(getX(${e[0]} - coord - 1)); } `;return}let s=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,r=e.map((o,i)=>s(i)).join(","),a=St(n);this.userCode=` void main() { ${a} coords = getOutputCoords(); setOutput(getX(${r})); } `}},zre=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let s=jn("rc",n),r=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,o=St(n);n===1?this.userCode=` void main(){ int rc = getOutputCoords(); vec4 result = vec4(0.); result.r = getChannel(getX(${e[0]} - rc - 1), ${e[0]} - rc - 1); if(${r}){ result.g = getChannel(getX(${e[0]} - (rc + 1) - 1), ${e[0]} - (rc + 1) - 1); } setOutput(result); } `:this.userCode=` void main() { ${o} rc = getOutputCoords(); vec4 result = vec4(0.); result.r = ${i(s.slice())}; if(${r}){ result.g = ${l(s.slice())}; } if(${a}) { result.b = ${c(s.slice())}; if(${r}) { result.a = ${u(s.slice())}; } } setOutput(result); } `;function i(h){return d(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function c(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function u(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let f=e.map((y,A)=>p(A,h)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function p(h,f){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${f[h]} - 1`:`${f[h]}`}}};function Lre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=r.shape.length,i=v.parseAxisParam(a,r.shape);if(o===0)return Ss({inputs:{x:r},backend:n});let l=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new zre(r.shape,i):new Mre(r.shape,i);return n.runWebGLProgram(l,[r],r.dtype)}var Bre={kernelName:Ni,backendName:"webgl",kernelFunc:Lre},Wre=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],s=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=` vec3 fill = vec3(${t.join(",")}); float outputValue = fill[coords[3]];`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int x = coords[2]; int y = coords[1]; float coordXFloat = (float(x) - params[0]) * params[3] - (float(y) - params[1]) * params[2]; float coordYFloat = (float(x) - params[0]) * params[2] + (float(y) - params[1]) * params[3]; int coordX = int(round(coordXFloat + params[0])); int coordY = int(round(coordYFloat + params[1])); ${r} if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${n}) { outputValue = getImage(coords[0], coordY, coordX, coords[3]); } setOutput(outputValue); } `}},Vre={kernelName:Wi,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new Wre(s.shape,a),[c,u]=E.getImageCenter(o,s.shape[1],s.shape[2]),d=[[c,u,Math.sin(r),Math.cos(r)]];return i.runWebGLProgram(l,[s],s.dtype,d)}},Ure=` // OpenGL ES does not support round function. // The algorithm is based on banker's rounding. float base = floor(x); if ((x - base) < 0.5) { return floor(x); } else if ((x - base) > 0.5) { return ceil(x); } else { if (mod(base, 2.0) == 0.0) { return base; } else { return base + 1.0; } } `,Gre=ut({opSnippet:Ure}),Hre={kernelName:Ei,backendName:"webgl",kernelFunc:Gre},jre="return inversesqrt(x);",qre=ut({opSnippet:jre,cpuKernelImpl:bY}),Xre={kernelName:no,backendName:"webgl",kernelFunc:qre},SS=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=St(r.length),l=St(a.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,d="";s===1?d="i":s===2&&(d="i, coords[1]");let p=`getUpdates(${d})`,h=t>1?"strides[j]":"strides";this.userCode=` ${i} strides = ${i}(${r}); void main() { ${l} coords = getOutputCoords(); float sum = 0.0; bool found = false; for (int i = 0; i < ${e}; i++) { int flattenedIndex = 0; for (int j = 0; j < ${t}; j++) { int index = round(${u}); flattenedIndex += index * ${h}; } if (flattenedIndex == coords[0]) { sum += ${p}; found = true; } } setOutput(mix(getDefaultValue(), sum, float(found))); } `}};function Kre(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:c,strides:u,outputSize:d}=E.calculateShapes(a,r,o),p=[d/c,c];if(d===0)return n.makeTensorInfo(o,r.dtype);let h=be({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=be({inputs:{x:a},backend:n,attrs:{shape:[l,c]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new SS(l,i,h.shape.length,f.shape.length,u,p),y=n.runWebGLProgram(g,[f,h,m],f.dtype),A=be({inputs:{x:y},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(m),A}var Zre={kernelName:Ri,backendName:"webgl",kernelFunc:Kre},Yre=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let s,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",s="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],l=[];for(let c=0;c= 1.0) { setOutput(getA(${r})); } else { setOutput(getB(${r})); } } `}};function Jre(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new Yre(s.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(o,[s,r,a],Bn(r.dtype,a.dtype))}var Qre={kernelName:$i,backendName:"webgl",kernelFunc:Jre},eae=` // Stable and Attracting Fixed Point (0, 1) for Normalized Weights. // see: https://arxiv.org/abs/1706.02515 float scaleAlpha = ${E.SELU_SCALEALPHA}; float scale = ${E.SELU_SCALE}; return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0); `,tae=ut({opSnippet:eae}),nae={kernelName:fu,backendName:"webgl",kernelFunc:tae},CS="return 1.0 / (1.0 + exp(-1.0 * x));",sae=ut({opSnippet:CS,packedOpSnippet:CS,cpuKernelImpl:vY}),rae={kernelName:ro,backendName:"webgl",kernelFunc:sae},aae=` if (isnan(x)) { return 0.0; } return sign(x); `,oae=ut({opSnippet:aae}),iae={kernelName:mu,backendName:"webgl",kernelFunc:oae},lae=L4+` return sin(x); `,uae=ut({opSnippet:lae}),cae={kernelName:so,backendName:"webgl",kernelFunc:uae},dae=` float e2x = exp(x); return (e2x - 1.0 / e2x) / 2.0; `,pae=ut({opSnippet:dae}),hae={kernelName:_i,backendName:"webgl",kernelFunc:pae},fae=` float epsilon = 1.1920928955078125e-7; float threshold = log(epsilon) + 2.0; bool too_large = x > -threshold; bool too_small = x < threshold; float result; float exp_x = exp(x); if (too_large){ result = x; } else if (too_small){ result = exp_x; } else{ result = log(exp_x + 1.0); } return result; `,mae=ut({opSnippet:fae}),gae={kernelName:gu,backendName:"webgl",kernelFunc:mae},yae=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((y,A)=>y*A),l=[[0,0]];l.push(...o);for(let y=1+a.length;yn.disposeIntermediateTensorInfo(y)),g},Aae={kernelName:Pi,backendName:"webgl",kernelFunc:yae};function xae(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw: ${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw: ${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw: ${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw: ${o.shape}`);let i=n.readSync(s.dataId),l=n.readSync(r.dataId),c=n.readSync(a.dataId),u=n.readSync(o.dataId)[0],[d,p,h,f,m]=kY(i,s.shape,s.dtype,l,r.dtype,c,u);return[n.makeTensorInfo(p,s.dtype,d),n.makeTensorInfo([p[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var bae={kernelName:Fh,backendName:"webgl",kernelFunc:xae};function vae(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(r.dataId)),i=n.readSync(s.dataId),l=Array.from(n.readSync(a.dataId)),[c,u,d]=IY(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(u,s.dtype,c),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var wae={kernelName:Oh,backendName:"webgl",kernelFunc:vae};function kae(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape ${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[c,u]=C4(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(u,s.dtype,c)}var Iae={kernelName:Mh,backendName:"webgl",kernelFunc:kae};function Sae(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape ${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[c,u]=C4(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(u,s.dtype,c)}var Cae={kernelName:zh,backendName:"webgl",kernelFunc:Sae};function Tae(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:c,strides:u,outputSize:d}=E.calculateShapes(a,r,i),p=!1,h=new SS(c,l,r.shape.length,a.shape.length,u,[d,1],p),f=n.runWebGLProgram(h,[a,r,o],a.dtype),m=be({inputs:{x:f},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(f),m}var Nae={kernelName:ed,backendName:"webgl",kernelFunc:Tae};function Eae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=E.prepareSplitSize(r,a,i),c=r.shape.length,u=new Array(c).fill(0),d=r.shape.slice();return l.map(p=>{let h=[...d];h[i]=p;let f=lc({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[i]+=p,f})}var Rae={kernelName:Fi,backendName:"webgl",kernelFunc:Eae},TS="return sqrt(x);",$ae=ut({opSnippet:TS,packedOpSnippet:TS,cpuKernelImpl:SY}),Dae={kernelName:ao,backendName:"webgl",kernelFunc:$ae},_ae="return x * x;",Pae=ut({opSnippet:_ae}),Fae={kernelName:yu,backendName:"webgl",kernelFunc:Pae},NS="return (a - b) * (a - b);",Oae=En({opSnippet:NS,packedOpSnippet:NS}),Mae={kernelName:lo,backendName:"webgl",kernelFunc:Oae};function zae({inputs:e,attrs:t,backend:n}){let{x:s}=e,r=br+` return x > 0.0 ? 1.0 : float(${t.alpha}); `,a=new Oo(s.shape,r);return n.runWebGLProgram(a,[s],s.dtype)}var Lae={kernelName:ho,backendName:"webgl",kernelFunc:zae},Bae=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let s=n.length,r=St(n.length),a=St(n.length),o="";if(s===1)o="coords * strides + begin";else{let i=0;o=n.map((l,c)=>(i++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${i-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=` ${r} begin = ${r}(${e}); ${r} strides = ${r}(${t}); void main() { ${a} coords = getOutputCoords(); setOutput(getX(${o})); } `}};function Wae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s,{nonStrided:h,$begin:f,$strides:m,size:g,newShape:y,outShape:A}=yn.sliceInfo(r.shape,a,o,i,l,c,u,d,p),x=be({inputs:{x:r},backend:n,attrs:{shape:y}}),b;if(h){let k=lc({inputs:{x},backend:n,attrs:{begin:f,size:g}});b=be({inputs:{x:k},backend:n,attrs:{shape:A}}),n.disposeIntermediateTensorInfo(k)}else if(A.some(k=>k===0))b=n.makeTensorInfo(A,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let N=n.texData.get(x.dataId).values,$=Ve(x.shape,x.dtype,N),F=CY(A,$,m,f);b=n.makeTensorInfo(A,x.dtype,F.values)}else{let S=new Bae(f,m,A);b=n.runWebGLProgram(S,[x],x.dtype)}let w=be({inputs:{x:b},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),w}var Vae={kernelName:Oi,backendName:"webgl",kernelFunc:Wae};function Uae(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:c}=s,{data:u,dataSplits:d}=t,p=n.readSync(u.dataId),h=n.readSync(d.dataId),[f,m]=TY(p,h,r,a,o,i,l,c);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var Gae={kernelName:td,backendName:"webgl",kernelFunc:Uae};function Hae(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),l=n.readSync(o.dataId)[0],[c,u,d]=NY(i,l,r),p=u.length;return[n.makeTensorInfo([p,2],"int32",c),n.makeTensorInfo([p],"string",u),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var jae={kernelName:Lh,backendName:"webgl",kernelFunc:Hae};function qae(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=EY(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var Xae={kernelName:Bh,backendName:"webgl",kernelFunc:qae},Kae="return tan(x);",Zae=ut({opSnippet:Kae}),Yae={kernelName:Mi,backendName:"webgl",kernelFunc:Zae},Jae=` float e2x = exp(-2.0 * abs(x)); return sign(x) * (1.0 - e2x) / (1.0 + e2x); `,Qae=ut({opSnippet:Jae}),eoe={kernelName:co,backendName:"webgl",kernelFunc:Qae},toe=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let r=0;r5){let l=n.readSync(r.dataId),c=r.dtype==="string"?l.map(p=>v.decodeString(p)):l,u=Ve(r.shape,r.dtype,c),d=$Y(u,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new toe(r.shape,a);return n.runWebGLProgram(o,[r],r.dtype)}var soe={kernelName:Kr,backendName:"webgl",kernelFunc:ES},roe=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=` void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int elemIdx = coords[1]; // We compare elements pair-wise within a group of size 2 * inc. // The comparing rule for each group alternates between ascending // and descending. Within each group, we compare each pair at // positions i and i+inc. To decide whether an element at position i // is x0 or x1, we mod it by 2 * inc, if the result is smaller than // inc, it is in the first half of the group, we denote it as x0, // otherwise we denote it as x1. // For example, as shown in the Bitonic top K paper referenced above, // Figure5(a) shows that element[1] is in the // second half of the group when group size is 2, but it is in the // first half of the group when group size is 4. bool isFirstInPair = imod(elemIdx, 2 * inc) < inc; int i = isFirstInPair ? elemIdx : elemIdx - inc; int i0 = firstPass == 1 ? i : int(getIndices(batch, i)); int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc)); float x0 = i0 < n ? getX(batch, i0) : negativeInf; float x1 = i1 < n ? getX(batch, i1) : negativeInf; // Denotes which direction indices are in (ascending or descending). bool reverse = imod(elemIdx, 2 * dir) >= dir; bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0); if (reverse == isGreater) { // Elements in opposite order of direction int iTemp = i0; i0 = i1; i1 = iTemp; } if (isFirstInPair) { setOutput(float(i0)); } else { setOutput(float(i1)); } } `}},aoe=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=` void main() { // Takes max of indices (0, k), (1, k + 1), (2, k + 2) ... ivec2 coords = getOutputCoords(); int batch = coords[0]; int elemIdx = coords[1]; // The output size is half of the previous size. // If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4), // we only need to output the indices at positions |, the indices at // positions _ can be thrown away, see Figure5(b) After Phase 2 // (Merge phase) in the Bitonic Top K paper referenced above. // For example, the paper shows we only need to output the orange bars. // The output sequence should look like this | | | | | | | |. // Because the sequence is halved, to map the output index back // to the previous sequence to find the corresponding value, // we need to double the index. When we double the index, // we basically interpolate a position, so 2i looks like // | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position // of each 2k positions by - elemIdx % k. E.g. for output at // index 4,5,6,7, we want to get the corresponding element at // original index 8,9,10,11, for output at index 8,9,10,11, // we want to get the corresponding element at original index // 16,17,18,19, so on and so forth. int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k)); int i0 = firstPass == 1 ? i : int(getIndices(batch, i)); int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k)); float x0 = getX(batch, i0); float x1 = i1 < n ? getX(batch, i1) : x0; setOutput(x0 >= x1 ? float(i0) : float(i1)); } `}};function wl(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function RS(e){let t=1;for(;tl){let F=n.readSync(r.dataId),[R,D]=DY(F,c,r.dtype,a,o);return[n.makeTensorInfo(R.shape,R.dtype,R.values),n.makeTensorInfo(D.shape,D.dtype,D.values)]}if(a===0)return c[c.length-1]=0,[n.makeTensorInfo(c,r.dtype,[]),n.makeTensorInfo(c,"int32",[])];if(u===1)return[r,fp({attrs:{shape:c,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),p=d!==null&&d.isPacked,h=p?n.unpackTensor(r):r,m=v.sizeFromShape(c)/u,g=be({inputs:{x:h},attrs:{shape:[m,u]},backend:n});p&&wl(n,h);let y=RS(a),A=RS(u),x=null,b=()=>x===null?[g,g]:[g,x],w=(F,R,D)=>{let T=b(),O=new roe(D),H=[[u],[x===null?1:0],[Number.NEGATIVE_INFINITY],[F],[R]],z=x;x=n.runWebGLProgram(O,T,"int32",H),wl(n,z)};for(let F=1;F=1;D/=2)w(R,D,[m,A])}for(let F=A;F>y;F/=2){let R=b(),D=new aoe([m,F/2]),O=[[u],[x===null?1:0],[y]],W=x;x=n.runWebGLProgram(D,R,"int32",O),wl(n,W);let H=y/2,z=H*2;for(let X=H;X>=1;X/=2)w(z,X,x.shape)}let k=x;x=lc({inputs:{x},backend:n,attrs:{begin:0,size:[m,a]}}),wl(n,k);let S=mS({inputs:{x:g,indices:x},backend:n,attrs:{axis:1,batchDims:1}});wl(n,g);let N=c.slice(0,-1);N.push(a),k=x,x=be({inputs:{x},attrs:{shape:N},backend:n}),wl(n,k);let $=S;return S=be({inputs:{x:S},attrs:{shape:N},backend:n}),wl(n,$),[S,x]}var ioe={kernelName:Au,backendName:"webgl",kernelFunc:ooe},loe=class{constructor(e,t,n,s,r,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(s){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=` float mapCoord(float outCoord, float len) { float inCoord = outCoord; if(${i} == 2) { if (inCoord < 0.0) { if (len <= 1.0) { inCoord = 0.0; } else { float sz2 = 2.0 * len; if (inCoord < sz2) { inCoord = sz2 * float(int(float(-inCoord / sz2))) + inCoord; } inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0; } } else if (inCoord > len - 1.0) { if (len <= 1.0) { inCoord = 0.0; } else { float sz2 = 2.0 * len; inCoord -= sz2 * float(int(float(inCoord / sz2))); if (inCoord >= len) { inCoord = sz2 - inCoord - 1.0; } } } return clamp(inCoord, 0.0, len - 1.0); } else if (${i} == 3) { if (inCoord < 0.0) { if (len <= 1.0) { inCoord = 0.0; } else { float sz = len - 1.0; inCoord += len * (float(int(float(-inCoord / sz))) + 1.0); } } else if (inCoord > len - 1.0) { if (len <= 1.0) { inCoord = 0.0; } else { float sz = len - 1.0; inCoord -= len * float(int(float(inCoord / sz))); } } return clamp(inCoord, 0.0, len - 1.0); } else if (${i} == 4) { return clamp(outCoord, 0.0, len - 1.0); } else { return outCoord; } } float readWithFillValue(int batch, int coordY, int coordX, int channel) { float outputValue; if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) { outputValue = getImage(batch, coordY, coordX, channel); } else { outputValue = float(${r}); } return outputValue; } void main() { ivec4 coords = getOutputCoords(); float outputValue; int batch = coords[0]; int x = coords[2]; int y = coords[1]; int channel = coords[3]; float xf = float(x); float yf = float(y); float a1 = getTransforms(batch, 0); float a2 = getTransforms(batch, 1); float a3 = getTransforms(batch, 2); float b1 = getTransforms(batch, 3); float b2 = getTransforms(batch, 4); float b3 = getTransforms(batch, 5); float c1 = getTransforms(batch, 6); float c2 = getTransforms(batch, 7); float projection = c1 * xf + c2 * yf + 1.0; if (projection == 0.0) { outputValue = float(${r}); } else { float inX = (a1 * xf + a2 * yf + a3) / projection; float inY = (b1 * xf + b2 * yf + b3) / projection; float mapX = mapCoord(inX, float(${t})); float mapY = mapCoord(inY, float(${e})); if (${o} == 1) { int coordY = int(round(mapY)); int coordX = int(round(mapX)); outputValue = readWithFillValue(batch, coordY, coordX, channel); } else { float yFloor = floor(mapY); float xFloor = floor(mapX); float yCeil = yFloor + 1.0; float xCeil = xFloor + 1.0; float valueYFloor = (xCeil - mapX) * readWithFillValue(batch, int(yFloor), int(xFloor), channel) + (mapX - xFloor) * readWithFillValue(batch, int(yFloor), int(xCeil), channel); float valueYCeil = (xCeil - mapX) * readWithFillValue(batch, int(yCeil), int(xFloor), channel) + (mapX - xFloor) * readWithFillValue(batch, int(yCeil), int(xCeil), channel); outputValue = (yCeil - mapY) * valueYFloor + (mapY - yFloor) * valueYCeil; } } setOutput(outputValue); } `}};function uoe(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=s,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],y=new loe(d,p,o,i,l,g);return n.runWebGLProgram(y,[r,a],"float32")}var coe={kernelName:zi,backendName:"webgl",kernelFunc:uoe};function doe(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;ec(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=s.readSync(a.dataId),{outputValues:i,outputShape:l,indices:c}=_Y(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([c.length],"int32",c)]}var poe={kernelName:Wh,backendName:"webgl",kernelFunc:doe};function hoe(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],c=new Array(i-1),u=0;for(let m=0;mn.disposeIntermediateTensorInfo(m)),f}var foe={kernelName:Li,backendName:"webgl",kernelFunc:hoe},moe=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,s=e.batchSize,r=e.inSize,a=e.numSegments,o=a*Math.ceil(r/n);this.outputShape=[s,o];let i="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,d=` sumValue += dot(values, segFilter); `,p="";r%n>0&&(p=` if (inIdx < 0 || inIdx >= ${r}) { return initializationValue; } `);let h="";r%n>0&&(h=` if (inIdx < 0 || inIdx >= ${r}) { return -1.0; } `),this.userCode=` const float initializationValue = ${i}; float getValue(int batch, int inIdx) { ${p} return getX(batch, inIdx); } float getSegmentIdAtIndex(int inIdx) { ${h} return getSegmentIds(inIdx); } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = int(floor(float(outIdx) / float( ${a})) * float(${n})); int currentSeg = int(mod(float(outIdx), float(${a}))); float sumValue = 0.0; for (int i = 0; i < ${c}; i += 4) { int inIdx = inOffset + i; vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), getValue(batch, inIdx + 3) ); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0 ); ${d} } int inIdx = inOffset + ${c}; if (${u===1}) { vec4 values = vec4( getValue(batch, inIdx), initializationValue, initializationValue, initializationValue ); int inIdxSeg = int(getSegmentIdAtIndex(inIdx)); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, 0, 0, 0 ); ${d} } else if (${u===2}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), initializationValue, initializationValue ); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0, 0, 0 ); ${d} } else if (${u===3}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), initializationValue ); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0, 0 ); ${d} } setOutput(${l}); } `}};function goe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s,i=r.shape.length,l=[],c=0,u=E.getAxesPermutation([c],i),d=r;u!=null&&(d=qn({inputs:{x:r},backend:n,attrs:{perm:u}}),l.push(d),c=E.getInnerMostAxes(1,i)[0]);let p=E.segment_util.computeOutShape(d.shape,c,o),h=v.sizeFromShape([d.shape[c]]),f=be({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});l.push(f);let m=pd(r.dtype),g=(b,w,k,S,N)=>{let $=b.shape[0],F=b.shape[1],R=E.segment_util.segOpComputeOptimalWindowSize(F,N),D={windowSize:R,inSize:F,batchSize:$,numSegments:N},T=new moe(D,w),O=n.compileAndRun(T,[b,k],S);if(l.push(O),O.shape[1]===N)return O;let W=IS({backend:n,attrs:{start:0,stop:N,step:1,dtype:"float32"}}),H=ES({inputs:{x:W},backend:n,attrs:{reps:[F/R]}});return l.push(W),l.push(H),g(O,w,H,S,N)},y=g(f,"unsortedSegmentSum",a,m,o),A=be({inputs:{x:y},backend:n,attrs:{shape:p}}),x=A;if(u!=null){l.push(A);let b=E.getUndoAxesPermutation(u);x=qn({inputs:{x},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var yoe={kernelName:nd,backendName:"webgl",kernelFunc:goe},Aoe=[jne,Kne,DJ,PJ,MJ,BJ,VJ,HJ,qJ,KJ,QJ,tQ,rQ,iQ,fQ,cQ,yQ,vQ,xQ,SQ,TQ,EQ,_Q,BQ,VQ,XQ,ZQ,eee,see,hJ,lee,Aee,bee,pee,Iee,Cee,wee,Eee,Dee,Fee,Mee,Lee,Vee,Xee,Zee,Gee,Qee,nte,rte,lte,pte,gte,xte,bte,vte,kte,Ste,Tte,Ete,$te,Fte,zte,Wte,Ute,jte,Kte,Qte,sne,pJ,ane,oee,lne,dne,fne,mJ,Ane,wne,Ine,$ne,Nne,Fne,zne,Vne,Yne,ase,sse,use,dse,hse,tse,mse,yse,vse,Sse,Ese,Mse,bJ,Lse,Vse,Hse,Xse,GQ,Yse,Qse,tre,rre,lre,yJ,cre,dre,HQ,_se,fre,wre,Are,wJ,Cre,Ere,_re,Ore,Bre,Vre,Hre,Xre,Zre,Qre,nae,rae,iae,cae,hae,zQ,Fse,gae,Aae,bae,wae,Iae,Cae,Nae,Rae,Dae,Fae,Mae,Lae,Vae,Gae,jae,Xae,Pse,EJ,Yae,eoe,soe,ioe,coe,RJ,poe,foe,yoe,Jse];for(let e of Aoe)Yr(e);var us;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(us||(us={}));var mp;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(mp||(mp={}));var $S;function xoe(e){$S=e.wasm.cwrap(fo,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function boe(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s,p=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let N=n.dataIdMap.get(o.dataId);if(N.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${N.shape.length}.`);f=N.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,g=mp[u];if(g==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],A=c?a.shape[1]:a.shape[2],x=r.shape[0],b=n.makeOutput([x,y,A],r.dtype),w=n.dataIdMap.get(b.dataId).id,k=new Uint8Array(new Int32Array(r.shape).buffer),S=new Uint8Array(new Int32Array(a.shape).buffer);return $S(p,k,r.shape.length,h,S,a.shape.length,l,c,g,f,m,d||0,w),b}var voe={kernelName:fo,backendName:"wasm",setupFunc:xoe,kernelFunc:boe};function Rn(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number"])}function s(r){let{backend:a,inputs:{x:o}}=r,i=a.dataIdMap.get(o.dataId).id,l=a.makeOutput(o.shape,o.dtype),c=a.dataIdMap.get(l.dataId).id;return v.sizeFromShape(l.shape)===0||t(i,c),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:s}}var woe=Rn(ni);function Xn(e,t,n){let s;function r(o){s=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:l}=o,{a:c,b:u}=l,d=i.dataIdMap.get(c.dataId).id,p=i.dataIdMap.get(u.dataId).id,h=n!=null?n:c.dtype,f=E.assertAndGetBroadcastShape(c.shape,u.shape),m=i.makeOutput(f,h);if(v.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(c.shape).buffer),y=new Uint8Array(new Int32Array(u.shape).buffer),A=i.dataIdMap.get(m.dataId).id,x=()=>s(d,g,c.shape.length,p,y,u.shape.length,us[c.dtype],A);if(t&&c.dtype==="float32")return x(),m;let b=E.getBroadcastDims(c.shape,f),w=E.getBroadcastDims(u.shape,f),k=b.every((N,$)=>N===$),S=w.every((N,$)=>N===$);if(k&&S)return x(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:a}}var koe=!0,Ioe=Xn(qr,koe),DS;function Soe(e){DS=e.wasm.cwrap(wa,null,["array","number","number","number"])}function Coe(e){let{inputs:t,backend:n}=e,s=n.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(s.shape)===0)return s;let r=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(r).buffer),o=n.dataIdMap.get(s.dataId).id;return DS(a,r.length,us[s.dtype],o),s}var Toe={kernelName:wa,backendName:"wasm",setupFunc:Soe,kernelFunc:Coe};function Xm(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(s).set(r),s}var Noe={kernelName:Ba,backendName:"wasm",kernelFunc:Xm},_S;function Eoe(e){_S=e.wasm.cwrap(po,null,["number","array","number","number","number","array","number"])}function dc(e){let{inputs:t,backend:n,attrs:s}=e,[r,a]=$oe(t.x.shape,s.perm),o=!0;for(let f=0;f=r&&(a===-1||s[a]>s[o])&&(a=o);s[a]=r}return[n,s]}var Doe={kernelName:po,backendName:"wasm",kernelFunc:dc,setupFunc:Eoe};function zo(e,t,n){let s=e.shape,r=e.shape.length,a=v.parseAxisParam(t,s),o=a,i=E.getAxesPermutation(o,r),l=null,c=!1;if(i!=null){let u=new Array(r);for(let h=0;h`new shape: ${o}, old shape: ${s.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var Hoe={kernelName:Ti,backendName:"wasm",kernelFunc:cs},zS;function joe(e){zS=e.wasm.cwrap(Sa,null,["number","array","number","number","array","number","number","number","number"])}function qoe(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,c=a.shape.length,u=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[c-1]:a.shape[c-2],p=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[c-2]:a.shape[c-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=v.sizeFromShape(f),y=v.sizeFromShape(m),A=g===y||g===1||y===1;v.assert(l>=2&&c>=2&&A,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(g>y?r.shape.slice(0,-2):a.shape.slice(0,-2)).concat([p,h]);v.assert(u===d,()=>`Error in matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let w=o?[g,u,p]:[g,p,u],k=i?[y,h,d]:[y,d,h],S=cs({inputs:{x:r},backend:n,attrs:{shape:w}}),N=cs({inputs:{x:a},backend:n,attrs:{shape:k}}),$=n.dataIdMap.get(S.dataId).id,F=n.dataIdMap.get(N.dataId).id,R=o?S.shape[2]:S.shape[1],D=i?N.shape[1]:N.shape[2],T=Math.max(g,y),O=n.makeOutput([T,R,D],S.dtype),W=n.dataIdMap.get(O.dataId).id,H=new Uint8Array(new Int32Array(S.shape).buffer),z=new Uint8Array(new Int32Array(N.shape).buffer);return zS($,H,S.shape.length,F,z,N.shape.length,o,i,W),n.disposeData(S.dataId),n.disposeData(N.dataId),O.shape=b,O}var Xoe={kernelName:Sa,backendName:"wasm",setupFunc:joe,kernelFunc:qoe};function gp(e){let{inputs:{x:t},attrs:{begin:n,size:s},backend:r}=e,[a,o]=yn.parseSliceParams(t,n,s),i=yn.isSliceContinous(t.shape,a,o),l=r.readSync(t.dataId),c=r.makeOutput(o,t.dtype),u=v.computeStrides(t.shape),d=r.dataIdMap.get(c.dataId);if(i){let f=yn.computeFlatOffset(a,u);return t.dtype==="string"?d.stringBytes=l.slice(f,f+v.sizeFromShape(o)):r.typedArrayFromHeap(c).set(l.subarray(f,f+v.sizeFromShape(o))),c}if(t.dtype==="string"){let f=Im(l,a,o,t.shape,t.dtype);return d.stringBytes=f,c}let p=r.typedArrayFromHeap(c),h=t.shape.length;if(h===2)Koe(l,u[0],p,a,o);else if(h===3)Zoe(l,u[0],u[1],p,a,o);else if(h===4)Yoe(l,u[0],u[1],u[2],p,a,o);else{let f=Im(l,a,o,t.shape,t.dtype);p.set(f)}return c}function Koe(e,t,n,s,r){let a=0,o=s[0],i=s[1],l=o+r[0];for(let c=o;cy*A),l=E.getReshaped(r.shape,a,i),c=E.getPermuted(l.length,a.length),u=E.getReshapedPermuted(r.shape,a,i),d=E.getSliceBeginCoords(o,a.length),p=E.getSliceSize(u,o,a.length),h=cs({inputs:{x:r},backend:n,attrs:{shape:l}}),f=dc({inputs:{x:h},backend:n,attrs:{perm:c}}),m=cs({inputs:{x:f},backend:n,attrs:{shape:u}}),g=gp({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(h.dataId),g}var eie={kernelName:si,backendName:"wasm",kernelFunc:Qoe};function Km(e){let{inputs:{x:t},attrs:{dtype:n},backend:s}=e,r=s.makeOutput(t.shape,n),a=s.typedArrayFromHeap(t);return s.typedArrayFromHeap(r).set(a),r}var tie={kernelName:Ca,backendName:"wasm",kernelFunc:Km},nie=Rn(Ta),LS;function sie(e){LS=e.wasm.cwrap(Xr,null,["number","number","number","number"])}function rie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(l.dataId).id;return LS(i,a,o,c),l}var aie={kernelName:Xr,backendName:"wasm",setupFunc:sie,kernelFunc:rie};function BS(e){let{inputs:t,backend:n}=e,s=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=E.computeOutShape(t.map(h=>h.shape),s),a=t.filter(h=>v.sizeFromShape(h.shape)>0);if(a.length===1)return Xm({inputs:{x:a[0]},backend:n});let o=n.makeOutput(r,t[0].dtype);if(v.sizeFromShape(r)===0)return o;let i=a.map(h=>h.shape);if(E.assertParamsConsistent(i,s),a[0].dtype==="string"){let h=a.map(x=>{let b=v.sizeFromShape(x.shape.slice(s));return cs({inputs:{x},backend:n,attrs:{shape:[-1,b]}})}),f=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=E.computeOutShape(h.map(x=>x.shape),1);let m=h[0].shape[0]===1,g=jA(f,r,t[0].dtype,m),y=E.computeOutShape(a.map(x=>x.shape),s);o.shape=y;let A=n.dataIdMap.get(o.dataId);return A.stringBytes=E.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),o}let l=v.sizeFromShape(a[0].shape.slice(0,s)),c=0,u=a.map(h=>{let f=v.sizeFromShape(h.shape.slice(s));return c+=f,f}),d=a.map(h=>n.typedArrayFromHeap(h)),p=n.typedArrayFromHeap(o);for(let h=0;h`cumsum does not support ${r.dtype} tensors in the WASM backend`);let c=E.getAxesPermutation([a],l),u=r;c!==null&&(u=dc({inputs:{x:r},attrs:{perm:c},backend:n}));let d=E.getInnerMostAxes(1,l)[0];E.assertAxesAreInnerMostDims("cumsum",[d],l);let p=n.makeOutput(u.shape,u.dtype),h=u.shape[d],f=n.dataIdMap.get(u.dataId).id,m=n.dataIdMap.get(p.dataId).id;GS(f,o?1:0,i?1:0,h,m,us[r.dtype]);let g=p;if(c!==null){let y=E.getUndoAxesPermutation(c);g=dc({inputs:{x:p},attrs:{perm:y},backend:n}),n.disposeData(u.dataId),n.disposeData(p.dataId)}return g}var bie={kernelName:ai,backendName:"wasm",setupFunc:Aie,kernelFunc:xie},HS;function vie(e){HS=e.wasm.cwrap(ii,null,["number","number","number","array","number","array","array","number","number"])}function wie(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{blockSize:a,dataFormat:o}=s;v.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],c=o==="NHWC"?r.shape[2]:r.shape[3],u=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=c*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=t.makeOutput(f,"float32"),y=t.dataIdMap.get(r.dataId).id,A=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),x=new Uint8Array(new Int32Array(f).buffer),b=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer),w=t.dataIdMap.get(m.dataId).id;return HS(y,a,o==="NHWC"?1:0,A,r.shape.length-1,x,b,f.length,w),m}var kie={kernelName:ii,backendName:"wasm",setupFunc:vie,kernelFunc:wie},jS;function Iie(e){jS=e.wasm.cwrap(Da,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Sie(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:d}=n,p=c==null?[1,1]:c,h=E.computeConv2DInfo(r.shape,a.shape,l,p,u,d,!0),f=h.filterHeight,m=h.filterWidth,g=h.padInfo.top,y=h.padInfo.right,A=h.padInfo.bottom,x=h.padInfo.left,b=h.dilationHeight,w=h.dilationWidth,k=h.strideHeight,S=h.strideWidth,N=h.inChannels,$=h.outChannels,F=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let R=s.makeOutput(h.outShape,"float32"),D=s.dataIdMap.get(R.dataId).id;return jS(o,r.shape[0],r.shape[1],r.shape[2],i,f,m,g,y,A,x,F,b,w,k,S,N,$,D),R}var Cie={kernelName:Da,backendName:"wasm",setupFunc:Iie,kernelFunc:Sie},Tie=Rn(Pa),Nie=!1,Eie=Xn(li,Nie,"bool"),Rie=Rn(Fa);function Sx(e){let{inputs:t,attrs:n,backend:s}=e,{input:r}=t,{dim:a}=n,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(v.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),cs({inputs:{x:r},backend:s,attrs:{shape:i}})}var $ie={kernelName:ui,backendName:"wasm",kernelFunc:Sx};function qS(e){let{attrs:{shape:t,value:n,dtype:s},backend:r}=e,a=r.makeOutput(t,s);return r.typedArrayFromHeap(a).fill(n),a}var Die={kernelName:su,backendName:"wasm",kernelFunc:qS},XS;function _ie(e){XS=e.wasm.cwrap(di,null,["number","number","number","number","number","number"])}function Pie(e){let{inputs:t,backend:n}=e,{image:s}=t,r=n.makeOutput(s.shape,s.dtype),a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,[i,l,c,u]=s.shape;return XS(a,i,l,c,u,o),r}var Fie={kernelName:di,backendName:"wasm",kernelFunc:Pie,setupFunc:_ie},Oie=Rn(Oa),Mie=!1,zie=Xn(Ma,Mie),KS;function Lie(e){KS=e.wasm.cwrap(za,null,["number","number","number","number","number","number","number"])}function Bie(e){let{backend:t,inputs:n,attrs:s}=e,{varianceEpsilon:r}=s,{x:a,mean:o,variance:i,offset:l,scale:c}=n,u=t.dataIdMap.get(a.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(i.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,f=c!=null?t.dataIdMap.get(c.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(v.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return KS(u,d,p,h,f,r,g),m}var Wie={kernelName:za,backendName:"wasm",setupFunc:Lie,kernelFunc:Bie},ZS;function Vie(e){ZS=e.wasm.cwrap(mo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Uie(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=E.computeConv2DInfo(r.shape,a.shape,l,u,c,p),g=mp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=s.dataIdMap.get(r.dataId).id,A=s.dataIdMap.get(a.dataId).id,x=m.outChannels,b=0;if(o!=null){let K=s.dataIdMap.get(o.dataId);if(K.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${K.shape.length}.`);if(K.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${K.shape}) does not match the number of output channels (${x})`);b=K.id}let w=m.filterHeight,k=m.filterWidth,S=m.padInfo.top,N=m.padInfo.right,$=m.padInfo.bottom,F=m.padInfo.left,R=m.dilationHeight,D=m.dilationWidth,T=m.strideHeight,O=m.strideWidth,W=m.inChannels,H=m.padInfo.type==="SAME"?1:0,z=m.batchSize,X=m.inHeight,te=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let J=s.makeOutput(m.outShape,"float32"),Q=s.dataIdMap.get(J.dataId).id,ne=i==null?0:s.dataIdMap.get(i.dataId).id;return ZS(y,z,X,te,A,w,k,b,S,N,$,F,H,R,D,T,O,W,x,g,ne,f||0,Q),J}var Gie={kernelName:mo,backendName:"wasm",setupFunc:Vie,kernelFunc:Uie},YS;function Hie(e){YS=e.wasm.cwrap(go,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function jie(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=E.computeConv2DInfo(r.shape,a.shape,l,u,c,p,!0),g=mp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=s.dataIdMap.get(r.dataId).id,A=s.dataIdMap.get(a.dataId).id,x=m.outChannels,b=0;if(o!=null){let K=s.dataIdMap.get(o.dataId);if(K.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${K.shape.length}.`);if(K.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${K.shape}) does not match the number of output channels (${x})`);b=K.id}let w=m.filterHeight,k=m.filterWidth,S=m.padInfo.top,N=m.padInfo.right,$=m.padInfo.bottom,F=m.padInfo.left,R=m.dilationHeight,D=m.dilationWidth,T=m.strideHeight,O=m.strideWidth,W=m.inChannels,H=m.padInfo.type==="SAME"?1:0,z=m.batchSize,X=m.inHeight,te=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let J=s.makeOutput(m.outShape,"float32"),Q=s.dataIdMap.get(J.dataId).id,ne=i==null?0:s.dataIdMap.get(i.dataId).id;return YS(y,z,X,te,A,w,k,b,S,N,$,F,H,R,D,T,O,W,x,g,ne,f||0,Q),J}var qie={kernelName:go,backendName:"wasm",setupFunc:Hie,kernelFunc:jie},JS;function Xie(e){JS=e.wasm.cwrap(hi,null,["number","number","number","number","number","number","array","number"])}function Kie(e){let{backend:t,inputs:n}=e,{params:s,indices:r}=n,[a,o,i,l]=O2.prepareAndValidate(s,r),c=t.makeOutput(a,s.dtype);if(o===0)return c;let u=r.shape,d=u[u.length-1],h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),y=t.dataIdMap.get(c.dataId).id;return JS(h,us[s.dtype],m,o,d,i,g,y),c}var Zie={kernelName:hi,backendName:"wasm",setupFunc:Xie,kernelFunc:Kie},QS;function Yie(e){QS=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function Jie(e){let{backend:t,inputs:n,attrs:s}=e,{x:r,indices:a}=n,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],c=E.segment_util.collectGatherOpShapeInfo(r,a,l,i),u=cs({inputs:{x:r},attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]},backend:t}),d=v.sizeFromShape(a.shape),p=cs({inputs:{x:a},attrs:{shape:[c.batchSize,d/c.batchSize]},backend:t}),h=[c.batchSize,c.outerSize,d/c.batchSize,c.sliceSize],f=t.makeOutput(h,r.dtype);if(v.sizeFromShape(r.shape)===0)return f;let m=u.shape.length-1,y=t.dataIdMap.get(u.dataId).id,x=t.dataIdMap.get(p.dataId).id,b=t.dataIdMap.get(f.dataId).id,w=new Uint8Array(new Int32Array(v.computeStrides(u.shape)).buffer),k=new Uint8Array(new Int32Array(v.computeStrides(h)).buffer);return QS(y,us[r.dtype],w,m,x,c.batchSize,k,b),t.disposeData(u.dataId),t.disposeData(p.dataId),f.shape=c.outputShape,f}var Qie={kernelName:pi,backendName:"wasm",setupFunc:Yie,kernelFunc:Jie},ele=!1,tle=Xn(fi,ele,"bool"),nle=!1,sle=Xn(La,nle,"bool"),eC;function rle(e){eC=e.wasm.cwrap(mi,null,["number","number","number"])}function ale(e){let{inputs:{x:t},attrs:{alpha:n},backend:s}=e,r=s.dataIdMap.get(t.dataId).id,a=s.makeOutput(t.shape,t.dtype);if(v.sizeFromShape(t.shape)!==0){let o=s.dataIdMap.get(a.dataId).id;eC(r,n,o)}return a}var ole={kernelName:mi,backendName:"wasm",setupFunc:rle,kernelFunc:ale},ile=!1,lle=Xn(gi,ile,"bool"),ule=!1,cle=Xn(yi,ule,"bool"),dle=Rn(Wa),ple=!1,hle=Xn(Ai,ple,"bool"),tC;function fle(e){tC=e.wasm.cwrap(Va,null,["number, number, number"])}function mle(e){let{backend:t,inputs:n,attrs:s}=e,{reductionIndices:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=zo(o,r,t);if(h){let x=t.dataIdMap.get(u.dataId).id;c=u,l=x}let f=c.shape.length;E.assertAxesAreInnerMostDims("max",d,f);let[m,g]=E.computeOutAndReduceShapes(c.shape,d),y=v.sizeFromShape(g),A=t.makeOutput(m,o.dtype);if(v.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;tC(l,y,x)}if(h&&t.disposeData(u.dataId),a){let x=E.expandShapeToKeepDim(A.shape,p);A.shape=x}return A}var gle={kernelName:Va,backendName:"wasm",setupFunc:fle,kernelFunc:mle},yle=!1,Ale=Xn(Ua,yle),nC;function xle(e){nC=e.wasm.cwrap(Ga,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ble(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=n,u=E.computePool2DInfo(r.shape,o,i,1,l,c),d=u.filterHeight,p=u.filterWidth,h=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,g=u.padInfo.left,y=u.dilationHeight,A=u.dilationWidth,x=u.strideHeight,b=u.strideWidth,w=u.inChannels,k=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let S=s.makeOutput(u.outShape,"float32"),N=s.dataIdMap.get(S.dataId).id;return nC(a,r.shape[0],r.shape[1],r.shape[2],d,p,h,f,m,g,y,A,x,b,w,k,N),S}var vle={kernelName:Ga,backendName:"wasm",setupFunc:xle,kernelFunc:ble},sC;function wle(e){sC=e.wasm.cwrap(Ha,null,["number, number, number"])}function kle(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=zo(o,r,t),f=d;if(h){let b=t.dataIdMap.get(u.dataId).id;b!==i&&(c=u,l=b,f=E.getInnerMostAxes(f.length,c.shape.length))}E.assertAxesAreInnerMostDims("mean",f,c.shape.length);let[m,g]=E.computeOutAndReduceShapes(c.shape,f),y=v.sizeFromShape(g),A=c;c.dtype!=="float32"&&(A=Km({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(A.dataId).id);let x=t.makeOutput(m,"float32");if(v.sizeFromShape(c.shape)!==0){let b=t.dataIdMap.get(x.dataId).id;sC(l,y,b)}if(h&&t.disposeData(u.dataId),a){let b=E.expandShapeToKeepDim(x.shape,p);x.shape=b}return c.dtype!=="float32"&&t.disposeData(A.dataId),x}var Ile={kernelName:Ha,backendName:"wasm",setupFunc:wle,kernelFunc:kle},rC;function Sle(e){rC=e.wasm.cwrap(ja,null,["number, number, number"])}function Cle(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=zo(o,r,t);if(h){let x=t.dataIdMap.get(u.dataId).id;x!==i&&(c=u,l=x)}let f=c.shape.length;E.assertAxesAreInnerMostDims("min",d,f);let[m,g]=E.computeOutAndReduceShapes(c.shape,d),y=v.sizeFromShape(g),A=t.makeOutput(m,c.dtype);if(v.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;rC(l,y,x)}if(h&&t.disposeData(u.dataId),a){let x=E.expandShapeToKeepDim(A.shape,p);A.shape=x}return A}var Tle={kernelName:ja,backendName:"wasm",setupFunc:Sle,kernelFunc:Cle},Nle=!1,Ele=Xn(qa,Nle),Cx;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(Cx||(Cx={}));var aC;function Rle(e){aC=e.wasm.cwrap(Xa,null,["number","array","number","number","array","array","number","number"])}function $le(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,mode:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=s.map(f=>f[0]),d=s.map(f=>f[1]),p=new Uint8Array(new Int32Array(u).buffer),h=new Uint8Array(new Int32Array(d).buffer);return aC(o,c,t.shape.length,us[t.dtype],p,h,Cx[r],l),i}var Dle={kernelName:Xa,backendName:"wasm",kernelFunc:$le,setupFunc:Rle},_le=!0,Ple=Xn(Ka,_le),Fle=Rn(xi);function Tx(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),s=n[0],r=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:s,selectedSize:r,pSelectedScores:a,pValidOutputs:o}}var oC;function Ole(e){oC=e.wasm.cwrap(vi,"number",["number","number","number","number","number"])}function Mle(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o}=s,{boxes:i,scores:l}=n,c=t.dataIdMap.get(i.dataId).id,u=t.dataIdMap.get(l.dataId).id,d=oC(c,u,a,r,o),{pSelectedIndices:p,selectedSize:h,pSelectedScores:f,pValidOutputs:m}=Tx(t,d);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([h],"int32",p)}var zle={kernelName:vi,backendName:"wasm",setupFunc:Ole,kernelFunc:Mle},iC;function Lle(e){iC=e.wasm.cwrap(cu,"number",["number","number","number","number","number","bool"])}function Ble(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=s,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(c.dataId).id,p=iC(u,d,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Tx(t,p);t.wasm._free(m);let y=t.makeOutput([f],"int32",h),A=t.makeOutput([],"int32",g);return[y,A]}var Wle={kernelName:cu,backendName:"wasm",setupFunc:Lle,kernelFunc:Ble},lC;function Vle(e){lC=e.wasm.cwrap(wi,"number",["number","number","number","number","number","number"])}function Ule(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=s,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(c.dataId).id,p=lC(u,d,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Tx(t,p);t.wasm._free(g);let y=t.makeOutput([f],"int32",h),A=t.makeOutput([f],"float32",m);return[y,A]}var Gle={kernelName:wi,backendName:"wasm",setupFunc:Vle,kernelFunc:Ule},Hle=!1,jle=Xn(bi,Hle,"bool"),uC;function qle(e){uC=e.wasm.cwrap(Ii,null,["number","number","number","number","number"])}function Xle(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=n.makeOutput([...r.shape,a],"int32"),c=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(r.dataId).id;return uC(d,a,o,i,c),l}var Kle={kernelName:Ii,backendName:"wasm",setupFunc:qle,kernelFunc:Xle};function Zle(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(1),s}var Yle={kernelName:ki,backendName:"wasm",kernelFunc:Zle};function Jle(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Sx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{v.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=Sx({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=BS({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeData(u.dataId)),c}var Qle={kernelName:Si,backendName:"wasm",kernelFunc:Jle},cC;function eue(e){cC=e.wasm.cwrap(Za,null,["number","array","number","number","array","array","number","number"])}function tue(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,constantValue:r}}=e,a=s.map((m,g)=>m[0]+t.shape[g]+m[1]);if(v.sizeFromShape(t.shape)===0)return qS({backend:n,attrs:{shape:a,value:r,dtype:t.dtype}});let o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),c=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=s.map(m=>m[0]),p=s.map(m=>m[1]),h=new Uint8Array(new Int32Array(d).buffer),f=new Uint8Array(new Int32Array(p).buffer);return cC(o,u,t.shape.length,us[t.dtype],h,f,r,c),i}var dC={kernelName:Za,backendName:"wasm",kernelFunc:tue,setupFunc:eue},nue=!1,sue=Xn(Ya,nue),pC;function rue(e){pC=e.wasm.cwrap(Ja,null,["number","number","number"])}function aue(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,i=n.makeOutput(s.shape,"float32"),l=n.dataIdMap.get(i.dataId).id;return pC(a,o,l),i}var oue={kernelName:Ja,backendName:"wasm",setupFunc:rue,kernelFunc:aue},hC;function iue(e){hC=e.wasm.cwrap(Ci,null,["number","number","number","number"])}function lue(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=zo(o,r,t),f=d;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==i&&(c=u,l=x,f=E.getInnerMostAxes(f.length,c.shape.length))}E.assertAxesAreInnerMostDims("prod",f,c.shape.length);let[m,g]=E.computeOutAndReduceShapes(c.shape,f),y=v.sizeFromShape(g),A=t.makeOutput(m,c.dtype);if(v.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;hC(l,y,us[A.dtype],x)}if(h&&t.disposeData(u.dataId),a){let x=E.expandShapeToKeepDim(A.shape,p);A.shape=x}return A}var uue={kernelName:Ci,backendName:"wasm",setupFunc:iue,kernelFunc:lue},cue=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=KA(s,r,a,o),l=t.makeOutput([i.length],o);return t.typedArrayFromHeap(l).set(i),l},due={kernelName:du,backendName:"wasm",kernelFunc:cue},pue=!0,hue=Xn(_a,pue),fue=Rn(Qa),mue=Rn(to),fC;function gue(e){fC=e.wasm.cwrap(eo,null,["number","number","number","number","number","number","number","number","number","number"])}function yue(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,[u,d,p,h]=r.shape,f=[u,l,c,h],m=t.dataIdMap.get(r.dataId),g;m.dtype!=="float32"&&(g=Km({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let y=m.id,A=t.makeOutput(f,"float32");if(v.sizeFromShape(r.shape)===0)return A;let x=t.dataIdMap.get(A.dataId).id;return fC(y,u,d,p,h,l,c,a?1:0,o?1:0,x),g!=null&&t.disposeData(g.dataId),A}var Aue={kernelName:eo,backendName:"wasm",setupFunc:gue,kernelFunc:yue},mC;function xue(e){mC=e.wasm.cwrap(Ni,null,["number","array","number","array","number","number"])}function bue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=v.parseAxisParam(a,r.shape);if(r.shape.length===0)return Xm({inputs:{x:r},backend:n});let i=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(o).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);mC(l,u,o.length,d,r.shape.length,c);let p=cs({inputs:{x:i},attrs:{shape:r.shape},backend:n});return n.disposeData(i.dataId),p}var vue={kernelName:Ni,backendName:"wasm",kernelFunc:bue,setupFunc:xue},gC;function wue(e){gC=e.wasm.cwrap(Wi,null,["number","number","number","number","number","number","number","number","array","number","number"])}function kue(e){let{inputs:t,backend:n,attrs:s}=e,{image:r}=t,{radians:a,fillValue:o,center:i}=s,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(l.dataId).id,[d,p,h,f]=r.shape,[m,g]=E.getImageCenter(i,p,h),y=o===0,A=255,x=typeof o=="number"?[o,o,o,y?0:A]:[...o,A],b=new Uint8Array(new Int32Array(x).buffer);return gC(c,d,p,h,f,a,m,g,b,x.length,u),l}var Iue={kernelName:Wi,backendName:"wasm",kernelFunc:kue,setupFunc:wue},Sue=Rn(Ei),Cue=Rn(no),yC;function Tue(e){yC=e.wasm.cwrap(Ri,null,["number","number","number","number","number","number","array","number","number"])}function Nue(e){let{backend:t,inputs:n,attrs:s}=e,{indices:r,updates:a}=n,{shape:o}=s,i=t.makeOutput(o,a.dtype);if(v.sizeFromShape(o)===0)return i;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:d,outputSize:p}=M2.calculateShapes(a,r,o),f=t.dataIdMap.get(r.dataId).id,g=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(d).buffer),A=t.dataIdMap.get(i.dataId).id;return yC(f,g,us[a.dtype],l,c,u,y,p,A),i}var Eue={kernelName:Ri,backendName:"wasm",setupFunc:Tue,kernelFunc:Nue},AC;function Rue(e){AC=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function $ue(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(a.dataId).id,c=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(c.dataId).id,d=s.shape.length,p=r.shape.length,h=d===0||d>1||p===1?1:v.sizeFromShape(r.shape.slice(1));return AC(o,i,l,h,u),c}var Due={kernelName:$i,backendName:"wasm",kernelFunc:$ue,setupFunc:Rue},xC;function _ue(e){xC=e.wasm.cwrap(ro,null,["number","number"])}function Pue(e){let{backend:t,inputs:{x:n}}=e,s=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(r.dataId).id;return v.sizeFromShape(r.shape)===0||xC(s,a),r}var Fue={kernelName:"Sigmoid",backendName:"wasm",setupFunc:_ue,kernelFunc:Pue},Oue=Rn(so),bC;function Mue(e){bC=e.wasm.cwrap(io,null,["number","number","number","number"])}function zue(e){let{backend:t,inputs:{logits:n},attrs:{dim:s}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[s],l=v.sizeFromShape(n.shape)/i;return v.sizeFromShape(a.shape)===0||bC(r,o,i,l),a}var Lue={kernelName:io,backendName:"wasm",setupFunc:Mue,kernelFunc:zue};function Bue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s,i=v.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k{let p=[...u];p[i]=d;let h=gp({inputs:{x:r},attrs:{begin:c,size:p},backend:s});return c[i]+=d,h})}var Uue={kernelName:Fi,backendName:"wasm",kernelFunc:Vue},Gue=Rn(ao),Hue=Rn(yu),jue=!0,que=Xn(lo,jue),vC;function Xue(e){vC=e.wasm.cwrap(ho,null,["number","number","number"])}function Kue(e){let{backend:t,inputs:n,attrs:s}=e,{alpha:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),l=t.dataIdMap.get(i.dataId).id;return vC(o,r,l),i}var Zue={kernelName:ho,backendName:"wasm",setupFunc:Xue,kernelFunc:Kue},wC;function Yue(e){wC=e.wasm.cwrap(Oi,null,["number","array","number","array","array","array","array","array","number","number"])}function Jue(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{begin:a,end:o,strides:i}=s;i==null&&(i=new Array(a.length));let{beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s,h=E.slice_util.maskToAxes(u);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&d!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&p!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=r.shape.length-a.length,m=E.slice_util.maskToAxes(d),g=r.shape.slice();m.forEach(R=>{a[R]=0,o[R]=1,g.splice(R,0,1)});let y=cs({inputs:{x:r},attrs:{shape:g},backend:t}),{begin:A,end:x,strides:b}=E.slice_util.getNormalizedAxes(y.shape,h,f,a,o,i,l,c,u);a=A,o=x,i=b;let w=E.slice_util.maskToAxes(p);w.forEach(R=>{o[R]=a[R]+1,i[R]=1});let k=E.slice_util.computeOutShape(a,o,i),S=k.filter((R,D)=>w.indexOf(D)===-1);if(i.every(R=>R===1)){let R=gp({inputs:{x:y},attrs:{begin:a,size:k},backend:t});t.disposeData(y.dataId);let D=cs({inputs:{x:R},attrs:{shape:S},backend:t});return t.disposeData(R.dataId),D}let $=t.makeOutput(S,"float32");if(!S.some(R=>R===0)){let R=t.dataIdMap.get(y.dataId).id,D=new Uint8Array(new Int32Array(v.computeStrides(y.shape)).buffer),T=new Uint8Array(new Int32Array(a).buffer),O=new Uint8Array(new Int32Array(o).buffer),W=new Uint8Array(new Int32Array(i).buffer),H=new Uint8Array(new Int32Array(S).buffer),z=new Uint8Array(new Int32Array(v.computeStrides(S)).buffer),X=t.dataIdMap.get($.dataId).id;wC(R,D,y.shape.length,T,O,W,H,z,S.length,X)}t.disposeData(y.dataId);let F=cs({inputs:{x:$},attrs:{shape:S},backend:t});return t.disposeData($.dataId),F}var Que={kernelName:Oi,backendName:"wasm",setupFunc:Yue,kernelFunc:Jue},ece=!0,tce=Xn(uo,ece),kC;function nce(e){kC=e.wasm.cwrap(oo,null,["number, number, number"])}function sce(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=zo(o,r,t),f=d;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==i&&(c=u,l=x,f=E.getInnerMostAxes(f.length,c.shape.length))}E.assertAxesAreInnerMostDims("sum",f,c.shape.length);let[m,g]=E.computeOutAndReduceShapes(c.shape,f),y=v.sizeFromShape(g),A=t.makeOutput(m,c.dtype);if(v.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;kC(l,y,x)}if(h&&t.disposeData(u.dataId),a){let x=E.expandShapeToKeepDim(A.shape,p);A.shape=x}return A}var rce={kernelName:oo,backendName:"wasm",setupFunc:nce,kernelFunc:sce},ace=Rn(Mi),oce=Rn(co),IC;function ice(e){IC=e.wasm.cwrap(Kr,null,["number","array","number","array","number","number"])}function lce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,a=n.dataIdMap.get(r.dataId).id,{reps:o}=s,i=new Array(r.shape.length);for(let p=0;p{let{x:s}=e,{k:r,sorted:a}=n,o=t.dataIdMap.get(s.dataId).id,i=new Uint8Array(new Int32Array(s.shape).buffer),l=s.shape.slice();l[l.length-1]=r;let c=t.makeOutput(l,s.dtype),u=t.dataIdMap.get(c.dataId).id,d=t.makeOutput(l,"int32"),p=t.dataIdMap.get(d.dataId).id;return SC(o,i,s.shape.length,us[s.dtype],r,a,u,p),[c,d]},pce={kernelName:Au,backendName:"wasm",setupFunc:cce,kernelFunc:dce},CC;function hce(e){CC=e.wasm.cwrap(zi,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function fce(e){let{backend:t,inputs:n,attrs:s}=e,{image:r,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=s,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],y=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),A=t.makeOutput(g,r.dtype),x=t.dataIdMap.get(A.dataId).id,w=t.dataIdMap.get(r.dataId).id,S=t.dataIdMap.get(a.dataId).id,N=o==="nearest"?1:2,$;switch(i){case"constant":$=1;break;case"reflect":$=2;break;case"wrap":$=3;break;case"nearest":$=4;break;default:$=1;break}return CC(w,S,a.shape[0]>1,u,f,m,h,p,d,y,r.shape.length-1,N,$,l,x),A}var mce={kernelName:zi,backendName:"wasm",setupFunc:hce,kernelFunc:fce};function gce(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape[a],i=r.shape.length,l=new Array(i-1),c=0;for(let h=0;h({dataId:h,dtype:f,shape:l}))}var yce={kernelName:Li,backendName:"wasm",kernelFunc:gce};function Ace(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(0),s}var xce={kernelName:Bi,backendName:"wasm",kernelFunc:Ace},bce=[woe,Ioe,Toe,Foe,zoe,Woe,Goe,Xoe,eie,tie,nie,aie,oie,uie,pie,hie,fie,yie,bie,kie,Cie,Tie,Eie,Rie,$ie,Die,Fie,Oie,zie,voe,Wie,Gie,qie,Zie,Qie,tle,sle,Noe,ole,lle,cle,dle,hle,gle,Ale,vle,Ile,Tle,Ele,Dle,Ple,Fle,zle,Wle,Gle,jle,Kle,Yle,Qle,dC,sue,oue,uue,due,hue,fue,mue,Hoe,Aue,vue,Iue,Cue,Sue,Eue,Due,Fue,Oue,Joe,Lue,Wue,Uue,Gue,Hue,que,Zue,Que,tce,rce,ace,oce,uce,pce,mce,Doe,yce,xce];for(let e of bce)Yr(e);var Nx=Z();Nx.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Nx.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Nx.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var TC=Qo(wN()),vce='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',wce=Qo(kN()),NC=class extends Ul{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Bc(this,ns())}write(e,t,n){let s={id:this.dataIdNextNumber++};return this.move(s,e,t,n,1),s}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,n,s,r){let a=this.dataIdNextNumber++;if(s==="string"){let c=t;this.dataIdMap.set(e,{id:a,stringBytes:c,shape:n,dtype:s,memoryOffset:null,refCount:r});return}let o=v.sizeFromShape(n),i=o*v.bytesPerElement(s),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:l,shape:n,dtype:s,refCount:r}),this.wasm.tfjs.registerTensor(a,o,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:s,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let a=this.wasm.HEAPU8.slice(t,t+v.sizeFromShape(s)*v.bytesPerElement(n));return Sce(a.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let s;if(n==null)s=this.write(null,e,t);else{let r=this.dataIdNextNumber++;s={id:r},this.dataIdMap.set(s,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,a,n)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let s=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),a=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(s,r,a);case"int32":return new Int32Array(s,r,a);case"bool":return new Uint8Array(s,r,a);default:throw new Error(`Unknown dtype ${t}`)}}};function kce(e){return(t,n)=>(v.fetch(e,{credentials:"same-origin"}).then(s=>{s.ok||t.env.a(`failed to load wasm binary file at '${e}'`),s.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(a=>{n(a.instance,a.module)})})}),{})}function EC(e,t,n){if(Zm!=null)return Zm;let s="tfjs-backend-wasm.wasm";return e&&t?s="tfjs-backend-wasm-threaded-simd.wasm":e&&(s="tfjs-backend-wasm-simd.wasm"),Ap!=null&&Ap[s]!=null?Ap[s]:n+s}async function Ice(){let[e,t]=await Promise.all([Z().getAsync("WASM_HAS_SIMD_SUPPORT"),Z().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,s)=>{let r={};r.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let c=vce,u=new Blob([c],{type:"application/javascript"});return URL.createObjectURL(u)}return i.endsWith(".wasm")?EC(e,t,yp!=null?yp:l):l+i},Ex&&(r.instantiateWasm=kce(EC(e,t,yp!=null?yp:"")));let a=!1;r.onAbort=()=>{if(a||xp)return;xp=!0,s({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&Zm==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+TC.default.toString()],{type:"text/javascript"}),o=(0,TC.default)(r)):o=(0,wce.default)(r),o.then(i=>{a=!0,xp=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},n({wasm:i})})})}function Sce(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Cce=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Zm=null,yp=null,Ap={},xp=!1,Ex=!1;function Tce(e,t=!1){if(U2("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),xp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Zm=e,Ex=t}function RC(e,t=!1){if(xp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")yp=e;else{Ap=e;let n=Cce.filter(s=>Ap[s]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Ex=t}var Nce="3.9.0",Ece=2;Xi("wasm",async()=>{let{wasm:e}=await Ice();return new NC(e)},Ece);var zr=Z();zr.registerFlag("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE",()=>15);zr.registerFlag("WEBGPU_CPU_FORWARD",()=>!0);zr.registerFlag("WEBGPU_MATMUL_WORK_PER_THREAD",()=>4);zr.registerFlag("WEBGPU_USE_NAIVE_CONV2D",()=>!1);zr.registerFlag("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE",()=>!1);zr.registerFlag("WEBGPU_CONV_SEPARATE_IM2COL_SHADER",()=>!1);zr.registerFlag("WEBGPU_USE_LOW_POWER_GPU",()=>!1);zr.registerFlag("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e3);zr.registerFlag("WEBGPU_USE_PROFILE_TOOL",()=>!1);zr.registerFlag("WEBGPU_USE_IMPORT",()=>!1);function Rce(e,t){if(Math.max(...e)>3)throw new Error("Cannot symbolically compute strides for rank > 4 tensor.");let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function ln(e){if(e<=1)return"i32";if(e===2)return"vec2";if(e===3)return"vec3";if(e===4)return"vec4";throw Error(`GPU for rank ${e} is not yet supported`)}function Ym(e,t){return e==="float32"?t?"vec4":"f32":e==="int32"||e==="bool"?t?"vec4":"i32":e}function je(){return` let index = getGlobalIndex(globalId, localId); `}function Me(){return` [[stage(compute), workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)]] fn main([[builtin(local_invocation_id)]] localId : vec3, [[builtin(global_invocation_id)]] globalId : vec3) `}function $ce(e,t,n,s=!1){let r=` let workGroupSizeX = ${n.workGroupSize[0]}u; let workGroupSizeY = ${n.workGroupSize[1]}u; let workGroupSizeZ = ${n.workGroupSize[2]}u;`;if(s===!0){let h=_C(t.shape),f=` [[block]] struct Matrix0 { numbers: array<${Ym(t.dtype,n.isVec4)}>; }; [[block]] struct Uniform { size : i32; numChannels : i32; outShapeStrides : vec2; dispatchSize : vec3; }; [[group(0), binding(0)]] var result : Matrix0; [[group(0), binding(2)]] var uniforms: Uniform; `;return[$C,f,r,DC,h,n.getUserCode()].join(` `)}let a=[],o="[[block]] struct Uniforms { NAN : f32; ";n.variableNames.forEach((h,f)=>{o+=`${h.charAt(0).toLowerCase()+h.slice(1)}Shape : ${ln(e[f].shape.length)}; `}),o+=`outShape : ${ln(t.shape.length)} ; `;let i=t.shape.length-1;o+=` outShapeStrides: ${ln(i)}; `,n.size!=null&&(o+="size : i32; "),o+="dispatchSize : vec3; ",n.uniforms&&(o+=n.uniforms),o+="};",a.push(o),a.push(` [[block]] struct Matrix0 { numbers: array<${Ym(t.dtype,n.isVec4)}>; }; [[group(0), binding(0)]] var result : Matrix0; `),n.variableNames.forEach((h,f)=>{a.push(` [[block]] struct Matrix${1+f} { numbers: array<${Ym(e[f].dtype,n.isVec4)}>; }; [[group(0), binding(${1+f})]] var ${h} : Matrix${1+f}; `)}),o!==""&&a.push(` [[group(0), binding(${1+n.variableNames.length})]] var uniforms : Uniforms; `),a.push(r);let[l,c]=Oce(t.shape,n.dispatchLayout),u=_C(t.shape),d=[$C,a.join(` `),DC,u,l,Dce(t.shape,t.dtype,n.isVec4)];if(c===t.shape.length){let h=e.map(f=>_ce(f,t.shape,n.isVec4,n.dispatchLayout.x.length===t.shape.length)).join(` `);d.push(h)}return d.push(n.getUserCode()),d.join(` `)}var $C=` fn idiv(a: i32, b: i32, sign: f32) -> i32 { var res: i32 = a / b; let mod: i32 = a % b; if (sign < 0. && mod != 0) { res = res - 1; } return res; } fn isNanCustom(val : f32) -> bool { if (val > 0.0) { return false; } if (val < 0.0) { return false; } if (val == 0.0) { return false; } return true; } fn isNanCustomVec4F32(val : vec4) -> vec4 { var res = vec4 (0.0); for (var i = 0u; i < 4u; i = i + 1u) { if (isNanCustom(val[i])) { res[i] = 1.0; } else { res[i] = 0.0; } } return res; } // Checks whether coordinates lie within the bounds of the shape. fn coordsInBounds4D(coord : vec4, shape : vec4) -> bool { return all(coord >= vec4(0)) && all(coord < shape); } fn coordsInBounds3D(coord : vec3, shape : vec3) -> bool { return all(coord >= vec3(0)) && all(coord < shape); } fn coordsInBounds2D(coord : vec2, shape : vec2) -> bool { return all(coord >= vec2(0)) && all(coord < shape); } `,DC=` fn getFlatIndex1D(coord : i32, shape : i32) -> i32 { return coord; } fn getFlatIndex2D(coords : vec2, shape : vec2) -> i32 { return i32(dot(vec2(coords), vec2(f32(shape.y), 1.0))); } fn getFlatIndex3D(coords : vec3, shape : vec3) -> i32 { return i32(dot(vec3(coords), vec3(f32(shape.y) * f32(shape.z), f32(shape.z), 1.0))); } fn getFlatIndex4D(coords : vec4, shape : vec4) -> i32 { return i32(dot(vec4(coords), vec4( f32(shape.y) * f32(shape.z) * f32(shape.w), f32(shape.z) * f32(shape.w), f32(shape.w), 1.0))); } // Only used when the y/z dimension of workgroup size is 1. fn getGlobalIndex(globalId : vec3, localId : vec3) -> i32 { if (uniforms.dispatchSize.y == 1u && uniforms.dispatchSize.z == 1u) { return i32(globalId.x); } let localInvocationIndex = localId.z * workGroupSizeX * workGroupSizeY + localId.y * workGroupSizeX + localId.x; let workGroupID = (globalId - localId)/vec3( workGroupSizeX, workGroupSizeY, workGroupSizeZ); return i32((workGroupID.z * uniforms.dispatchSize.x * uniforms.dispatchSize.y + workGroupID.y * uniforms.dispatchSize.x + workGroupID.x) * (workGroupSizeX * workGroupSizeY * workGroupSizeZ) + localInvocationIndex); } `;function Dce(e,t,n){let s=e.length,r=Ym(t,n),a;if(n?a=`fn setOutputFlat(flatIndex : i32, value : vec4) { result.numbers[flatIndex] = ${r}(value); } fn setOutputFlatI32(flatIndex : i32, value : vec4) { result.numbers[flatIndex] = ${r}(value); }`:a=`fn setOutputFlat(flatIndex : i32, value : f32) { result.numbers[flatIndex] = ${r}(value); } fn setOutputFlatI32(flatIndex : i32, value : i32) { result.numbers[flatIndex] = ${r}(value); }`,s>=2){switch(s){case 2:a+=` fn getOutputFlatIndex(coords : vec2) -> i32 { return i32(dot(vec2(coords), vec2(f32(uniforms.outShapeStrides), 1.0))); } `;break;case 3:a+=` fn getOutputFlatIndex(coords : vec3) -> i32 { return i32(dot(vec3(coords), vec3(f32(uniforms.outShapeStrides.x), f32(uniforms.outShapeStrides.y), 1.0))); } `;break;case 4:a+=` fn getOutputFlatIndex(coords : vec4) -> i32 { return i32(dot(vec4(coords), vec4( f32(uniforms.outShapeStrides.x), f32(uniforms.outShapeStrides.y), f32(uniforms.outShapeStrides.z), 1.0))); } `;break;default:v.assert(!1,()=>`Unsupported ${s}D shape`);break}let o=["d0","d1","d2","d3"].slice(0,s),i=ln(s);n?a+=` fn setOutput(${o.map(l=>`${l} : i32`).join(", ")}, value : vec4) { let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")})); setOutputFlat(flatIndex / 4, value); } fn setOutputI32(${o.map(l=>`${l} : i32`).join(", ")}, value : vec4) { let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")})); setOutputFlatI32(flatIndex / 4, value); } `:a+=` fn setOutput(${o.map(l=>`${l} : i32`).join(", ")}, value : f32) { let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")})); setOutputFlat(flatIndex, value); } fn setOutputI32(${o.map(l=>`${l} : i32`).join(", ")}, value : i32) { let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")})); setOutputFlatI32(flatIndex, value); } `}return a}function _ce(e,t,n,s){let r=Pce(e,n);return e.shape.length<=t.length&&(r+=Fce(e,t,n,s)),r}function Pce(e,t){let n=e.name,s=e.shape.length,r=ln(s),a="get"+n.charAt(0).toUpperCase()+n.slice(1),o=["d0","d1","d2","d3"].slice(0,s),i=o.map(u=>`${u} : i32`).join(", ");if(s<1)return t?` fn ${a}() -> vec4 { return vec4(${n}.numbers[0]); } `:` fn ${a}() ->f32 { return f32(${n}.numbers[0]); } `;let l=`uniforms.${n.charAt(0).toLowerCase()+n.slice(1)}Shape`,c=`${s}D`;return s===0&&(c="1D"),t?` fn ${a}(${i}) -> vec4 { return vec4(${n}.numbers[getFlatIndex${c}(${r}(${o.join(",")}), ${l}) / 4]); } `:` fn ${a}(${i}) -> f32 { return f32(${n}.numbers[getFlatIndex${c}(${r}(${o.join(",")}), ${l})]); } `}function Fce(e,t,n,s){let r=e.name,a=r.charAt(0).toUpperCase()+r.slice(1),o="get"+a+"AtOutCoords",i=e.shape.length,l=t.length,c=ln(l);if(v.arraysEqual(e.shape,t)&&s)return n?` fn ${o}ByGlobalId(globalId : vec3, globalIndex : i32) -> vec4 { return vec4(${r}.numbers[globalIndex]); } fn ${o}ByCoords(coords : ${c}) -> vec4 { return vec4(${r}.numbers[${l>1?"getOutputFlatIndex(coords)":"coords"} / 4]); } `:` fn ${o}ByGlobalId(globalId : vec3, globalIndex : i32) -> f32 { return f32(${r}.numbers[globalIndex]); } fn ${o}ByCoords(coords : ${c}) -> f32 { return f32(${r}.numbers[${l>1?"getOutputFlatIndex(coords)":"coords"}]); } `;let u=E.getBroadcastDims(e.shape,t),d=l-i,p="";if(i===0)return n?` fn ${o}ByGlobalId(globalId : vec3, globalIndex : i32) -> vec4 { return get${a}(); } fn ${o}ByCoords(coords : ${c}) -> vec4 { return get${a}(); } `:` fn ${o}ByGlobalId(globalId : vec3, globalIndex : i32) -> f32{ return get${a}(); } fn ${o}ByCoords(coords : ${c}) -> f32{ return get${a}(); } `;l<2&&u.length>=1?p="coords = 0;":p=u.map(g=>`coords[${g+d}] = 0;`).join(` `);let h="";if(l<2&&i>0)h="coords";else if(l>1){let g=ln(i),y=e.shape.map((A,x)=>`coords[${x+d}]`).join(", ");h=`${g}(${y})`}else h="coords";let f=`uniforms.${r.charAt(0).toLowerCase()+r.slice(1)}Shape`,m=`${i}D`;return n?` fn ${o}ByGlobalId(globalId : vec3, globalIndex : i32) -> vec4 { var coords = getOutputCoords(globalId, globalIndex); ${p} return ${r}.numbers[getFlatIndex${m}(${h}, ${f}) / 4]; } fn ${o}ByCoords(coordsIn : ${c}) -> vec4 { var coords = coordsIn; ${p} return ${r}.numbers[getFlatIndex${m}(${h}, ${f}) / 4]; } `:` fn ${o}ByGlobalId(globalId : vec3, globalIndex : i32) -> f32 { var coords = getOutputCoords(globalId, globalIndex); ${p} return f32(${r}.numbers[getFlatIndex${m}(${h}, ${f})]); } fn ${o}ByCoords(coordsIn : ${c}) -> f32 { var coords = coordsIn; ${p} return f32(${r}.numbers[getFlatIndex${m}(${h}, ${f})]); } `}function Oce(e,t){let{x:n,y:s=[],z:r=[]}=t,a=e.length;if(n.length===a)return[`fn getOutputCoords(globalId : vec3, globalIndex : i32) -> ${ln(a)}{ return getCoordsFromFlatIndex(i32(globalIndex)); } `,a];let o="",i=[n,s,r],l=0;for(let p=0;p, globalIndex : i32) -> ${u} { ${o} `;return c.length===0?d+=`return ${u}(0); }`:d+=`return ${u}(${c.join(",")}); }`,[d,l]}function _C(e){let t=e.length;if(t<=1)return"fn getCoordsFromFlatIndex(index : i32) -> i32 { return index; }";let n=v.computeStrides(e),s=ln(t),r=[];for(let o=0;o vec2 { let d0 = index / uniforms.outShapeStrides; let d1 = index - d0 * uniforms.outShapeStrides; return vec2(d0, d1); }`;let a="var index2 = index;"+n.map((o,i)=>{let l=`let ${r[i]} = index2 / uniforms.outShapeStrides[${i}]`,c=i===n.length-1?`let ${r[i+1]} = index2 - ${r[i]} * uniforms.outShapeStrides[${i}]`:`index2 = index2 - ${r[i]} * uniforms.outShapeStrides[${i}]`;return`${l}; ${c};`}).join("");return` fn getCoordsFromFlatIndex(index : i32) -> ${s} { ${a} return ${s}(${r.join(",")}); } `}var PC={};Le(PC,{ArrayBufferToTypedArray:()=>FC,GPUBytesPerElement:()=>_x,computeDispatch:()=>Be,computeWorkGroupSizeForConv2d:()=>Rx,computeWorkGroupSizeForMatMul:()=>$x,computeWorkPerThreadForConv2d:()=>Dx,flatDispatchLayout:()=>it,isWebGPUSupported:()=>Px,tilesFitEvenlyIntoShape:()=>ua});var pc=65535,kl=e=>{let t=1;for(let n=0;nn%e[s]==0)}function Be(e,t,n=[1,1,1],s=[1,1,1]){let[r,a,o]=[Math.ceil(kl(e.x.map(l=>t[l]))/(n[0]*s[0])),e.y?Math.ceil(kl(e.y.map(l=>t[l]))/(n[1]*s[1])):1,e.z?Math.ceil(kl(e.z.map(l=>t[l]))/(n[2]*s[2])):1];if(r<=pc&&a<=pc&&o<=pc)return[r,a,o];v.assert(r>pc&&e.y===void 0&&e.z===void 0,()=>"Dispatch size exceeds WebGPU limits in Y or Z dimension.");let i=Math.ceil(Math.sqrt(r));return i>pc?(i=Math.ceil(Math.cbrt(r)),v.assert(i<=pc,()=>"Total dispatch size exceeds WebGPU maximum."),[i,i,i]):[i,i,1]}function Rx(e,t){let n=kl(e.x.map(r=>t[r])),s=kl(e.y.map(r=>t[r]));return n<=4?[4,16,1]:s<=4?[16,4,1]:[16,16,1]}function $x(e,t,n){return e===1?[32,1,1]:n===1?[1,32,1]:[8,8,1]}function Dx(e,t){let n=kl(e.x.map(r=>t[r])),s=kl(e.y.map(r=>t[r]));return n<=4?[1,2,1]:s<=4?[2,1,1]:[2,2,1]}function it(e){return{x:e.map((t,n)=>n)}}function _x(e){if(e==="float32"||e==="int32"||e==="bool"||e==="string")return 4;if(e==="complex64")return 8;throw new Error(`Unknown dtype ${e}`)}function FC(e,t){if(t==="float32")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"||t==="string"){let n=new Int32Array(e),s=new ArrayBuffer(n.length),r=new Uint8Array(s);for(let a=0;a(a >= vec4(1.0)) * vec4(b >= vec4(1.0)));`,nde=` if (isNanCustom(a)) { return a; } if (isNanCustom(b)) { return b; } `,OC=` if (isNaN.r > 0.) { resultTemp.r = uniforms.NAN; } if (isNaN.g > 0.) { resultTemp.g = uniforms.NAN; } if (isNaN.b > 0.) { resultTemp.b = uniforms.NAN; } if (isNaN.a > 0.) { resultTemp.a = uniforms.NAN; } `,sde=` let s = sign(a) * sign(b); let ia = i32(round(a)); let ib = i32(round(b)); return f32(idiv(ia, ib, s)); `,rde=` let ia = vec4(round(a)); let ib = vec4(round(b)); let cond = ib != vec4(0); var resultTemp = vec4(0); let s = sign(a) * sign(b); // Windows (D3D) wants guaranteed non-zero int division at compile-time. if (cond[0]) { resultTemp[0] = idiv(ia[0], ib[0], s[0]); } if (cond[1]) { resultTemp[1] = idiv(ia[1], ib[1], s[1]); } if (cond[2]) { resultTemp[2] = idiv(ia[2], ib[2], s[2]); } if (cond[3]) { resultTemp[3] = idiv(ia[3], ib[3], s[3]); } return vec4(resultTemp); `,ade="return f32(a != b);",ode="return vec4(a != b);",ide=` if(a < 0.0 && floor(b) < b) { return uniforms.NAN; } if (b == 0.0) { return 1.0; } if (round(abs(b) % 2.0) != 1.0) { return pow(abs(a), b); } return sign(a) * pow(abs(a), b); `,lde=` let isModRound1Bool = vec4(round(abs(b) % vec4(2.0))) == vec4(1); let isModRound1 = vec4(isModRound1Bool); let multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1); var resultTemp = multiplier * pow(abs(a), b); // Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS let isExpZero = b == vec4(0.0); if (isExpZero.r) { resultTemp.r = 1.0; } if (isExpZero.g) { resultTemp.g = 1.0; } if (isExpZero.b) { resultTemp.b = 1.0; } if (isExpZero.a) { resultTemp.a = 1.0; } let isNaN = vec4(a < vec4(0.0)) * vec4(floor(b) < b); ${OC} return resultTemp; `,ude="if (a < 0.0) { return b * a; } return a;",cde=` let aLessThanZero = vec4(a < vec4(0.0)); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); `;function MC(e,t){let n=t?OC:nde;return t?` var resultTemp = vec4(${e}(a, b)); let isNaN = min(vec4(isNanCustomVec4F32(a)) + vec4(isNanCustomVec4F32(b)), vec4(1.0)); `+n+` return resultTemp; `:n+` return ${e}(a, b); `}function bp(e,t){switch(e){case qe.MUL:return Wce;case qe.ADD:return Mce;case qe.SUB:return Uce;case qe.DIV:return Bce;case qe.EQUAL:return t?Hce:Gce;case qe.GREATER:return t?qce:jce;case qe.GREATER_EQUAL:return t?Kce:Xce;case qe.LESS:return t?Yce:Zce;case qe.LESS_EQUAL:return t?Qce:Jce;case qe.LOGICAL_AND:return t?tde:ede;case qe.NOT_EQUAL:return t?ode:ade;case qe.SQUARED_DIFFERENCE:return Vce;case qe.INT_DIV:return t?rde:sde;case qe.PRELU:return t?cde:ude;case qe.MAX:return MC("max",t);case qe.MIN:return MC("min",t);case qe.POW:return t?lde:ide;case qe.COMPLEX_MULTIPLY_REAL:return zce;case qe.COMPLEX_MULTIPLY_IMAG:return Lce;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var Fe;(function(e){e[e.ABS=0]="ABS",e[e.CEIL=1]="CEIL",e[e.COS=2]="COS",e[e.COSH=3]="COSH",e[e.ELU=4]="ELU",e[e.EXP=5]="EXP",e[e.EXPM1=6]="EXPM1",e[e.FLOOR=7]="FLOOR",e[e.LINEAR=8]="LINEAR",e[e.LOG=9]="LOG",e[e.LOGICAL_NOT=10]="LOGICAL_NOT",e[e.NEG=11]="NEG",e[e.PRELU=12]="PRELU",e[e.RELU=13]="RELU",e[e.RELU6=14]="RELU6",e[e.RSQRT=15]="RSQRT",e[e.SIN=16]="SIN",e[e.SINH=17]="SINH",e[e.SIGMOID=18]="SIGMOID",e[e.SQRT=19]="SQRT",e[e.SQUARE=20]="SQUARE",e[e.TANH=21]="TANH",e[e.TO_INT=22]="TO_INT"})(Fe||(Fe={}));var dde="return abs(a);",pde="return ceil(a);",hde="return cos(a);",fde=` let e2x = exp(-a); return (e2x + 1.0 / e2x) / 2.0; `,mde="return exp(a) - 1.0;",gde="if (a >= 0.0) { return a; } return (exp(a) - 1.0);",yde=` var resFloat = exp(a) - vec4(1.0); if (a.r >= 0.0) { resFloat.r = a.r; } if (a.g >= 0.0) { resFloat.g = a.g; } if (a.b >= 0.0) { resFloat.b = a.b; } if (a.a >= 0.0) { resFloat.a = a.a; } return resFloat; `,Ade="return exp(a);",xde="return floor(a);",bde="return a;",vde=`if (a < 0.0) { return 1.0/0.0; } return log(a);`,wde="return f32(!(a >= 1.0));",kde="return -a;",Ide="return (a < 0.0) ? b * a : a;",Sde="return max(a, 0.0);",Cde="return clamp(a, 0.0, 6.0);",Tde="return clamp(a, vec4(0.0, 0.0, 0.0, 0.0), vec4(6.0, 6.0, 6.0, 6.0));",Nde=` var resFloat = a * vec4(a >= vec4(0.0)); let isNaN = isNan(a); if (isNaN.r) { resFloat.r = a.r; } if (isNaN.g) { resFloat.g = a.g; } if (isNaN.b) { resFloat.b = a.b; } if (isNaN.a) { resFloat.a = a.a; } return resFloat; `,Ede="return 1.0/sqrt(a);",Rde="return 1.0 / (1.0 + exp(-1.0 * a));",$de="return sin(a);",Dde=` let e2x = exp(a); return (e2x - 1.0 / e2x) / 2.0; `,_de="return sqrt(a);",Pde="return a * a;",Fde=` let e2x = exp(-2.0 * abs(a)); return sign(a) * (1.0 - e2x) / (1.0 + e2x); `,Ode="return f32(i32((a)));";function hc(e,t){switch(e){case Fe.ABS:return dde;case Fe.COS:return hde;case Fe.COSH:return fde;case Fe.CEIL:return pde;case Fe.ELU:return t?yde:gde;case Fe.EXP:return Ade;case Fe.EXPM1:return mde;case Fe.FLOOR:return xde;case Fe.LINEAR:return bde;case Fe.LOG:return vde;case Fe.LOGICAL_NOT:return wde;case Fe.NEG:return kde;case Fe.PRELU:return Ide;case Fe.RELU:return t?Nde:Sde;case Fe.RELU6:return t?Tde:Cde;case Fe.RSQRT:return Ede;case Fe.SIGMOID:return Rde;case Fe.SIN:return $de;case Fe.SINH:return Dde;case Fe.SQRT:return _de;case Fe.SQUARE:return Pde;case Fe.TANH:return Fde;case Fe.TO_INT:return Ode;default:throw new Error(`BinaryType ${e} is not implemented!`)}}function Lo(e,t=!1){if(e===null)return null;if(e==="linear")return hc(Fe.LINEAR);if(e==="relu")return hc(Fe.RELU,t);if(e==="elu")return hc(Fe.ELU,t);if(e==="relu6")return hc(Fe.RELU6,t);if(e==="prelu")return bp(qe.PRELU,t);if(e==="sigmoid")return hc(Fe.SIGMOID);throw new Error(`Activation ${e} has not been implemented for the WebGPU backend.`)}function zC(e,t){let n={RowPerThread:e[1],ColPerThread:e[0],TileAOuter:t[1]*e[1],TileBOuter:t[0]*e[0],TileInner:t[0]*e[0]};return` var mm_Asub : array, ${n.TileInner/n.ColPerThread}>, ${n.TileAOuter}>; var mm_Bsub : array, ${n.TileBOuter/n.ColPerThread}>, ${n.TileInner}>; let RowPerThread = ${n.RowPerThread}; let ColPerThread = ${n.ColPerThread}; // only support ColPerThread = 4 let TileAOuter = ${n.TileAOuter}; let TileBOuter = ${n.TileBOuter}; let TileInner = ${n.TileInner}; ${Me()} { let tileRow = i32(localId.y) * RowPerThread; let tileCol = i32(localId.x); let globalRow = i32(globalId.y) * RowPerThread; let globalCol = i32(globalId.x); let numTiles = (uniforms.dimInner - 1) / TileInner + 1; var acc: array, ${n.RowPerThread}>; var ACached : vec4; var BCached : array, 4>; // Loop over shared dimension. var globalColA = tileCol; let RowPerThreadB = TileInner / ${t[1]}; let tileRowB = i32(localId.y) * RowPerThreadB; for (var t = 0; t < numTiles; t = t + 1) { // Load one tile of A into local memory. for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) { let inputRow = tileRow + innerRow; let inputCol = tileCol; mm_Asub[inputRow][inputCol] = mm_readA(globalRow + innerRow, globalColA, globalId); } globalColA = globalColA + TileInner / ColPerThread; // Load one tile of B into local memory. for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) { let inputRow = tileRowB + innerRow; let inputCol = tileCol; mm_Bsub[inputRow][inputCol] = mm_readB(t * TileInner + inputRow, globalCol, globalId); } workgroupBarrier(); // Compute acc values for a single thread. for (var k = 0; k < TileInner / ColPerThread; k = k + 1) { BCached[0] = mm_Bsub[k * ColPerThread][tileCol]; BCached[1] = mm_Bsub[k * ColPerThread + 1][tileCol]; BCached[2] = mm_Bsub[k * ColPerThread + 2][tileCol]; BCached[3] = mm_Bsub[k * ColPerThread + 3][tileCol]; for (var i = 0; i < RowPerThread; i = i + 1) { ACached = mm_Asub[tileRow + i][k]; acc[i] = BCached[0] * ACached.x + acc[i]; acc[i] = BCached[1] * ACached.y + acc[i]; acc[i] = BCached[2] * ACached.z + acc[i]; acc[i] = BCached[3] * ACached.w + acc[i]; } } workgroupBarrier(); } for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) { mm_write(globalRow + innerRow, globalCol, acc[innerRow], globalId); } }`}function Mde(e){return` var mm_Asub : array, ${e[0]}>; let tileSize = ${e[0]*4}; ${Me()} { let tileCol = i32(localId.x); let globalCol = i32(globalId.x); let globalRow = i32(globalId.y); let numTiles = (uniforms.dimInner - 1) / tileSize + 1; // Without this initialization strange values show up in acc. var acc = vec4(0.0); // Loop over shared dimension. for (var t = 0; t < numTiles; t = t + 1) { // Load one tile of A into local memory. let colA = t * tileSize / 4 + tileCol; mm_Asub[tileCol] = mm_readA(globalRow, colA, globalId); workgroupBarrier(); // Compute acc values for a single thread. for (var k = 0; k < tileSize / 4; k = k + 1) { let rowB = t * tileSize + k * 4; let BCached0 = mm_readB(rowB, globalCol, globalId); let BCached1 = mm_readB(rowB + 1, globalCol, globalId); let BCached2 = mm_readB(rowB + 2, globalCol, globalId); let BCached3 = mm_readB(rowB + 3, globalCol, globalId); let ACached = mm_Asub[k]; acc = acc + BCached0 * ACached.x; acc = acc + BCached1 * ACached.y; acc = acc + BCached2 * ACached.z; acc = acc + BCached3 * ACached.w; } workgroupBarrier(); } if (globalRow < uniforms.dimAOuter && globalCol < uniforms.dimBOuter) { mm_write(globalRow, globalCol, acc, globalId); } } `}var zde=class{constructor(e,t,n,s=null,r=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[16,16,1],this.isVec4=!0,this.vecSize=4,this.outputShape=t,this.workGroupSize=$x(t[1],e[2],t[2]),this.dispatchLayout={x:[2],y:[1],z:[0]},t[1]===1&&(n=1),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.vecSize,n,1]);let o=s!=null,i=a!=null;o&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),this.workPerThread=n,this.aShape=e,this.addBias=o,this.activation=r,this.hasPreluActivationWeights=i,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`matMulPackedVec4_${n}_${this.activation}_${this.fitA}_${this.fitB}_${this.outputShape[1]>1}`}getShapeFit(){let e=this.aShape[2],t=this.outputShape[2],n=[this.outputShape[0],e,t],s=this.workGroupSize[1]*this.workPerThread,r=this.workGroupSize[0]*this.vecSize,a=r,o=[s,a],i=[a,r];return[ua(o,this.aShape.slice(1)),ua(i,n.slice(1))]}getUserCode(){let e=this.fitA?"return A.numbers[batch * batchASize + row * uniforms.dimInner / 4 + col]":`if (coordsInBounds2D(vec2(row, col * 4), vec2(uniforms.dimAOuter, uniforms.dimInner))) { return A.numbers[batch * batchASize + row * uniforms.dimInner / 4 + col]; } return vec4(0.0)`,t=this.fitB?"return B.numbers[batch * batchBSize + row * uniforms.dimBOuter / 4 + col]":`if(coordsInBounds2D(vec2(row, col * 4), vec2(uniforms.dimInner, uniforms.dimBOuter))) { return B.numbers[batch * batchBSize + row * uniforms.dimBOuter / 4 + col]; } return vec4(0.0)`,n="",s="";if(this.activation){let o=Lo(this.activation,this.isVec4);this.hasPreluActivationWeights?n=`fn activation(a : vec4, outCoord : vec3) -> vec4 { let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord); ${o} }`:n=` fn activation(a : vec4, outCoord : vec3) -> vec4 { ${o} }`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return` ${n} fn mm_readA(row : i32, col : i32, globalId : vec3) -> vec4 { let batchASize = uniforms.aShape[1] * uniforms.aShape[2] / ${this.vecSize}; let batch = i32(globalId.z); ${e}; } fn mm_readB(row : i32, col : i32, globalId : vec3) -> vec4 { let batchBSize = uniforms.bShape[1] * uniforms.bShape[2] / ${this.vecSize}; let batch = i32(globalId.z); ${t}; } fn mm_write(row : i32, col : i32, valueIn : vec4, globalId : vec3) { if (row < uniforms.aShape[1] && col * 4 < uniforms.bShape[2]) { var value = valueIn; let batch = i32(globalId.z); let outCoord = vec3(batch, row, col * 4); ${r} ${s} setOutput(outCoord[0], outCoord[1], outCoord[2], value); } } ${this.outputShape[1]>1?zC([this.vecSize,this.workPerThread,1],this.workGroupSize):Mde(this.workGroupSize)} `}};function Fx(e,t){let n=t[1]*e[1],s=t[0]*e[0],r=n>s?n:s;return` var mm_Asub : array, ${n}>; var mm_Bsub : array, ${r}>; ${Me()} { let tileRow = i32(localId.y) * ${e[1]}; let tileCol = i32(localId.x) * ${e[0]}; let globalRow = i32(globalId.y) * ${e[1]}; let globalCol = i32(globalId.x) * ${e[0]}; let numTiles = (uniforms.dimInner - 1) / ${r} + 1; var acc : array, ${e[1]}>; var ACached : f32; var BCached : array; // Without this initialization strange values show up in acc. for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) { for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) { acc[innerRow][innerCol] = 0.0; } } let ColPerThreadA = ${r} / ${t[0]}; let tileColA = i32(localId.x) * ColPerThreadA; let RowPerThreadB = ${r} / ${t[1]}; let tileRowB = i32(localId.y) * RowPerThreadB; // Loop over shared dimension. for (var t = 0; t < numTiles; t = t + 1) { // Load one tile of A into local memory. for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) { for (var innerCol = 0; innerCol < ColPerThreadA; innerCol = innerCol + 1) { let inputRow = tileRow + innerRow; let inputCol = tileColA + innerCol; mm_Asub[inputRow][inputCol] = mm_readA( globalRow + innerRow, t * ${r} + inputCol, globalId); } } // Load one tile of B into local memory. for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) { for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) { let inputRow = tileRowB + innerRow; let inputCol = tileCol + innerCol; mm_Bsub[inputRow][inputCol] = mm_readB( t * ${r} + inputRow, globalCol + innerCol, globalId); } } workgroupBarrier(); // Compute acc values for a single thread. for (var k = 0; k < ${r}; k = k + 1) { for (var inner = 0; inner < ${e[0]}; inner = inner + 1) { BCached[inner] = mm_Bsub[k][tileCol + inner]; } for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) { ACached = mm_Asub[tileRow + innerRow][k]; for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) { acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol]; } } } workgroupBarrier(); } for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) { for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) { if ((globalCol + innerCol) < uniforms.dimBOuter && (globalRow + innerRow) < uniforms.dimAOuter) { mm_write(globalRow + innerRow, globalCol + innerCol, acc[innerRow][innerCol], globalId); } } } } `}function Lde(e){return` let TileSize = ${e[0]*4}; var mm_Asub : array, ${e[0]}>; ${Me()} { let tileCol = i32(localId.x); let globalCol = i32(globalId.x); let globalRow = i32(globalId.y); let numTiles = (uniforms.dimInner - 1) / TileSize + 1; // Without this initialization strange values show up in acc. var acc = 0.0; // Loop over shared dimension. for (var t = 0; t < numTiles; t = t + 1) { // Load one tile of A into local memory. let colA = t * TileSize + tileCol * 4; mm_Asub[tileCol] = vec4(mm_readA(globalRow, colA, globalId), mm_readA(globalRow, colA + 1, globalId), mm_readA(globalRow, colA + 2, globalId), mm_readA(globalRow, colA + 3, globalId)); workgroupBarrier(); // Compute acc values for a single thread. for (var k = 0; k < TileSize / 4; k = k + 1) { let rowB = t * TileSize + k * 4; let BCached = vec4(mm_readB(rowB, globalCol, globalId), mm_readB(rowB + 1, globalCol, globalId), mm_readB(rowB + 2, globalCol, globalId), mm_readB(rowB + 3, globalCol, globalId)); let ACached = mm_Asub[k]; acc = acc + dot(ACached, BCached); } workgroupBarrier(); } if (globalRow < uniforms.dimAOuter && globalCol < uniforms.dimBOuter) { mm_write(globalRow, globalCol, acc, globalId); } } `}var LC=class{constructor(e,t,n,s=!1,r=!1,a=null,o=null,i=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[16,16,1],this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]};let l=s?e[1]:e[2];this.workGroupSize=$x(t[1],l,t[2]),(t[1]===1||t[2]===1)&&(n=1),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]),v.arraysEqual(this.dispatch,[1,1,1])&&(n=1,this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]));let c=a!=null,u=i!=null;c&&this.variableNames.push("bias"),u&&this.variableNames.push("preluActivationWeights"),this.workPerThread=n,this.aShape=e,this.transposeA=s,this.transposeB=r,this.addBias=c,this.activation=o,this.hasPreluActivationWeights=u;let d=this.outputShape[2],p=this.transposeB?[this.outputShape[0],d,l]:[this.outputShape[0],l,d];[this.fitA,this.fitB]=this.getShapeFit(p),this.shaderKey=`matMulPacked_${this.workPerThread}_${s}_${r}_${this.activation}_${this.fitA}_${this.fitB}_${this.outputShape[1]>1}`}getShapeFit(e){let t=this.workGroupSize[1]*this.workPerThread,n=this.workGroupSize[0]*this.workPerThread,s=t>n?t:n;this.outputShape[1]===1&&(s*=4),v.assert(s%this.workGroupSize[0]==0&&s%this.workGroupSize[1]==0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let r=[t,s],a=[s,n];return[ua(r,this.aShape.slice(1)),ua(a,e.slice(1))]}getUserCode(){let e;this.transposeA===!1?e=this.fitA?"return A.numbers[batch * batchASize + row * uniforms.dimInner + col];":`if(coordsInBounds2D(vec2(row, col), vec2(uniforms.dimAOuter, uniforms.dimInner))) { return A.numbers[batch * batchASize + row * uniforms.dimInner + col]; } return 0.0;`:e=this.fitA?"return A.numbers[batch * batchASize + col * uniforms.dimAOuter + row];":`if(coordsInBounds2D(vec2(row, col), vec2(uniforms.dimAOuter, uniforms.dimInner))) { return A.numbers[batch* batchASize + col * uniforms.dimAOuter + row]; } return 0.0;`;let t;this.transposeB===!1?t=this.fitB?"return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2(row, col), vec2(uniforms.dimInner, uniforms.dimBOuter))) { return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col]; } return 0.0;`:t=this.fitB?"return B.numbers[batch * batchBSize + col * uniforms.dimInner + row];":`if(coordsInBounds2D(vec2(row, col), vec2(uniforms.dimInner, uniforms.dimBOuter))) { return B.numbers[batch * batchBSize + col * uniforms.dimInner + row]; } return 0.0;`;let n="",s="";if(this.activation){let o=Lo(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3) -> f32 { let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord); ${o} }`:n=` fn activation(a : f32, outCoord : vec3) -> f32 { ${o} } `,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return` ${n} fn mm_readA(row : i32, col : i32, globalId : vec3) -> f32 { let batchASize = uniforms.aShape[1] * uniforms.aShape[2]; let batch = i32(globalId.z); ${e} } fn mm_readB(row : i32, col : i32, globalId : vec3) -> f32 { let batch = i32(globalId.z); let batchBSize = uniforms.bShape[1] * uniforms.bShape[2]; ${t} } fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3) { var value = valueIn; let batch = i32(globalId.z); let outCoord = vec3(batch, row, col); ${r} ${s} setOutput(batch, row, col, value); } ${this.outputShape[1]>1?Fx([this.workPerThread,this.workPerThread,1],this.workGroupSize):Lde(this.workGroupSize)} `}};function Bde(e){let t=e[1]/2,n=e[0],s=t>n?t:n;return` var mm_Asub1 : array, ${t}>; var mm_Bsub1 : array, ${s}>; var mm_Asub2 : array, ${t}>; var mm_Bsub2 : array, ${s}>; // If the output size is small for matrix multiplication, avoid to use vec4 // and handle some elements per thread to optimally utilize the ALU. // Introduces two shared memory buffers, some logical threads could handle // arithmetic operations and others handle IO operations between barrier api, // makes ALUs and load/store units work simultaneously, could improves // the performance. ${Me()} { let tileRow = i32(localId.y); let tileCol = i32(localId.x); let globalRow = i32(globalId.y); let globalCol = i32(globalId.x); // uniforms.dimInner should be greater than 0. let numTiles = (uniforms.dimInner - 1) / ${s} + 1; var acc = 0.0; var globalColA = tileCol; var globalRowB = tileRow; for (var t = 0; t < numTiles; t = t + 1) { if (t == 0) { if (tileRow < ${t}) { // Load one tile of A and B into local memory. // globalRow is always greater than or equal tileRow. mm_Asub1[tileRow][tileCol] = mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId); globalColA = globalColA + ${s}; mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId); globalRowB = globalRowB + ${s}; } } else { if (tileRow < ${t}) { // Load one tile of A and B into local memory. // globalRow is always greater than or equal tileRow. mm_Asub1[tileRow][tileCol] = mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId); globalColA = globalColA + ${s}; mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId); globalRowB = globalRowB + ${s}; } else { // Compute acc values for a single thread. for (var k = 0; k < ${s}; k = k + 1) { let subRow = tileRow - ${t}; if (subRow < 0) { continue; } acc = acc + mm_Asub2[subRow][k] * mm_Bsub2[k][tileCol]; } } } workgroupBarrier(); if (t != 0) { t = t + 1; } if (t < numTiles) { if (tileRow < ${t}) { // Load one tile of A and B into local memory. // globalRow is always greater than or equal tileRow. mm_Asub2[tileRow][tileCol] = mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId); globalColA = globalColA + ${s}; mm_Bsub2[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId); globalRowB = globalRowB + ${s}; } else { // Compute acc values for a single thread. for (var k = 0; k < ${s}; k = k + 1) { let subRow = tileRow - ${t}; if (subRow < 0) { continue; } acc = acc + mm_Asub1[subRow][k] * mm_Bsub1[k][tileCol]; } } } workgroupBarrier(); } let writeCol = (globalRow - tileRow) / 2 + tileRow - ${t}; if (tileRow >= ${t} && writeCol >= 0) { mm_write(writeCol, globalCol, acc, globalId); } } `}var Wde=class{constructor(e,t,n,s=null,r=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[8,16,1],v.assert(e[1]<=16||t[2]<=16,()=>"This program can be only used when A width or B Height are small"),this.outputShape=n,this.dispatchLayout={x:[2],y:[1],z:[0]},this.dispatch=[Math.ceil(n[2]/this.workGroupSize[0]),Math.ceil(n[1]*2/this.workGroupSize[1]),n[0]];let o=s!=null;o&&this.variableNames.push("bias");let i=a!=null;i&&this.variableNames.push("preluActivationWeights"),this.addBias=o,this.activation=r,this.hasPreluActivationWeights=i,this.shaderKey=`matMulSmallOutputSize_${this.activation}`}getUserCode(){let e=`if (coordsInBounds2D(vec2(row, col), vec2(uniforms.dimAOuter, uniforms.dimInner))) { return A.numbers[batch * batchASize + row * uniforms.dimInner + col]; } return 0.0;`,t=`if (coordsInBounds2D(vec2(row, col), vec2(uniforms.dimInner, uniforms.dimBOuter))) { return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col]; } return 0.0;`,n="",s="";if(this.activation){let o=Lo(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3) -> f32 { let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord); ${o} }`:n=`fn activation(a : f32, outCoord : vec3) -> f32 { ${o} }`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return` ${n} fn mm_readA(row : i32, col : i32, globalId : vec3) -> f32 { let batchASize = uniforms.aShape[1] * uniforms.aShape[2]; let batch = i32(globalId.z); ${e} } fn mm_readB(row : i32, col : i32, globalId : vec3) -> f32 { let batch = i32(globalId.z); let batchBSize = uniforms.bShape[1] * uniforms.bShape[2]; ${t} } fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3) { if (coordsInBounds2D(vec2(row, col), vec2(uniforms.dimAOuter, uniforms.dimBOuter))) { let batch = i32(globalId.z); let outCoord = vec3(batch, row, col); var value = valueIn; ${r} ${s} setOutput(batch, row, col, value); } } ${Bde(this.workGroupSize)} `}};function st(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=v.sizeFromShape(s.shape),o=v.inferFromImplicitShape(r,a),i=v.sizeFromShape(o);return v.assert(a===i,()=>`The new shape (${o}) has ${i} elements and the old shape (${s.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var Vde={kernelName:Ti,backendName:"webgpu",kernelFunc:st};function Ox({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let c=e.shape.length,u=t.shape.length,d=n?e.shape[c-2]:e.shape[c-1],p=s?t.shape[u-1]:t.shape[u-2],h=n?e.shape[c-1]:e.shape[c-2],f=s?t.shape[u-2]:t.shape[u-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=v.sizeFromShape(m),A=v.sizeFromShape(g),x=y===A||y===1||A===1;v.assert(c>=2&&u>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${g}).`);let w=(y>A?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([h,f]);v.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let k=n?[y,d,h]:[y,h,d],S=s?[A,f,p]:[A,p,f],N=st({inputs:{x:e},backend:r,attrs:{shape:k}}),$=st({inputs:{x:t},backend:r,attrs:{shape:S}}),F=[N,$],R=Math.max(y,A),D=d%4==0&&f%4==0&&!n&&!s&&f>=32,T;!n&&!s&&(h<=16&&(f<=512||p>=2*f)||f<=16&&(h<=512||d>=2*h))?T=new Wde(k,S,[R,h,f],a,l,o):D?T=new zde(k,[R,h,f],Z().get("WEBGPU_MATMUL_WORK_PER_THREAD"),a,l,o):T=new LC(k,[R,h,f],Z().get("WEBGPU_MATMUL_WORK_PER_THREAD"),n,s,a,l,o);let O=[N,$];a&&O.push(a),o&&O.push(o);let W=[{type:"int32",data:[h]},{type:"int32",data:[f]},{type:"int32",data:[d]}],H=r.runWebGPUProgram(T,O,e.dtype,W),z=st({inputs:{x:H},backend:r,attrs:{shape:w}});F.push(H);for(let X of F)r.disposeData(X.dataId);return z}function Ude(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s;return Ox({a:r,b:a,transposeA:l,transposeB:c,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:u})}var Gde={kernelName:fo,backendName:"webgpu",kernelFunc:Ude},BC=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.workGroupSize=[128,1,1],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binaryOpComplex_${e}`,this.op=e,this.size=v.sizeFromShape(this.outputShape)}getUserCode(){return` fn binaryOpComplex( areal : f32, aimag : f32, breal : f32, bimag : f32) -> f32 { ${bp(this.op,!1)} } ${Me()} { ${je()} if(index < uniforms.size) { let areal = getARealAtOutCoordsByGlobalId(globalId, index); let aimag = getAImagAtOutCoordsByGlobalId(globalId, index); let breal = getBRealAtOutCoordsByGlobalId(globalId, index); let bimag = getBImagAtOutCoordsByGlobalId(globalId, index); setOutputFlat(index, binaryOpComplex(areal, aimag, breal, bimag)); } } `}},Hde=class{constructor(e,t,n,s){this.variableNames=["A","B"];let r=256;this.workGroupSize=[r,1,1],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.dispatchLayout=it(this.outputShape),this.lastDimensionSize=s?n[0]:t[0],this.lastDimensionSize<256?this.workPerThread=1:this.lastDimensionSize<512?this.workPerThread=2:this.workPerThread=4,this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.useSharedMemoryWithB=s,this.op=e,this.size=v.sizeFromShape(this.outputShape),this.sizeFit=this.size%(this.workGroupSize[0]*this.workPerThread)==0,this.shaderKey=`binaryShared_${e}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}_${this.sizeFit}`}getUserCode(){let e=this.lastDimensionSize>1?`coords[${this.outputShape.length-1}]`:"0",t=this.useSharedMemoryWithB?`let a = getAAtOutCoordsByCoords(coords); let b = sharedBuf[${e}];`:`let a = sharedBuf[${e}]; let b = getBAtOutCoordsByCoords(coords);`,n=this.sizeFit?`let coords = getCoordsFromFlatIndex(flatIndex); ${t} setOutputFlat(flatIndex, binaryOperation(a, b));`:`if(flatIndex < uniforms.size) { let coords = getCoordsFromFlatIndex(flatIndex); ${t} setOutputFlat(flatIndex, binaryOperation(a, b)); }`;return` fn binaryOperation(a : f32, b : f32) -> f32 { ${bp(this.op,!1)} } var sharedBuf : array; ${Me()} { ${je()} // Fill in the shared memory buffer. Here we need a loop to make sure // that all data in A|B are uploaded when |sharedMemorySize| is larger // than work group size. for(var localIndex = i32(localId.x); localIndex < ${this.lastDimensionSize}; localIndex = localIndex + ${this.workGroupSize[0]}) { sharedBuf[localIndex] = f32(${this.useSharedMemoryWithB?"B":"A"}.numbers[localIndex]); } workgroupBarrier(); for(var i = 0; i < ${this.workPerThread}; i = i + 1) { let flatIndex = index * ${this.workPerThread} + i; ${n} } } `}},jde=class{constructor(e,t,n){this.variableNames=["A","B"],this.workPerThread=4,this.isVec4=!0;let s=128;this.workGroupSize=[s,1,1],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.op=e,this.fitShape=this.size%this.workGroupSize[0]==0,this.shaderKey=`binaryVec4_${e}_${this.fitShape}`,this.size=v.sizeFromShape(this.outputShape)/this.workPerThread}getUserCode(){let e,n=`fn binaryOperation(a : vec4, b : vec4) -> vec4 { ${bp(this.op,this.isVec4)} }`;return this.fitShape?e=` ${n} ${Me()} { ${je()} let a = vec4(A.numbers[index]); let b = vec4(B.numbers[index]); setOutputFlat(index, binaryOperation(a, b)); } `:e=` ${n} ${Me()} { ${je()} if (index < uniforms.size) { let a = vec4(A.numbers[index]); let b = vec4(B.numbers[index]); setOutputFlat(index, binaryOperation(a, b)); } } `,e}},WC=class{constructor(e,t,n){this.variableNames=["A","B"];let s=128;this.workGroupSize=[s,1,1],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.dispatchLayout=it(this.outputShape),this.size=v.sizeFromShape(this.outputShape),this.sizeFit=this.size%s==0,this.shapesFit=v.arraysEqual(t,n)&&this.sizeFit,this.workPerThread=this.sizeFit||this.shapesFit?1:2,this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey=`binary_${e}_${this.sizeFit}_${this.shapesFit}`,this.op=e}getUserCode(){let e,n=` fn binaryOperation(a : f32, b : f32) -> f32 { ${bp(this.op,!1)} }`;return this.shapesFit?e=` ${n} ${Me()} { ${je()} let a = f32(A[index]); let b = f32(B[index]); setOutputFlat(index, binaryOperation(a, b)); } `:this.sizeFit?e=` ${n} ${Me()} { ${je()} let coords = getCoordsFromFlatIndex(index); let a = getAAtOutCoordsByCoords(coords); let b = getBAtOutCoordsByCoords(coords); setOutputFlat(index, binaryOperation(a, b)); } `:e=` ${n} ${Me()} { ${je()} for (var i = 0; i < ${this.workPerThread}; i = i + 1 ) { let flatIndex = index * ${this.workPerThread} + i; if(flatIndex < uniforms.size) { let coords = getCoordsFromFlatIndex(flatIndex); let a = getAAtOutCoordsByCoords(coords); let b = getBAtOutCoordsByCoords(coords); setOutputFlat(flatIndex, binaryOperation(a, b)); } } } `,e}};function VC(e,t,n){if(v.arraysEqual(t,n)&&v.sizeFromShape(t)%4==0)return new jde(e,t,n);let r=t.length===1&&n.length>1&&t[0]<1024,a=n.length===1&&t.length>1&&n[0]<1024;return r||a?new Hde(e,t,n,a):new WC(e,t,n)}function nr(e){let{inputs:t}=e,{x:n}=t;return e.backend.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var qde={kernelName:Ba,backendName:"webgpu",kernelFunc:nr};function fc(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.tensorMap.get(a.dataId),i=nr({inputs:{x:s},backend:n}),l=nr({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var Xde={kernelName:Gc,backendName:"webgpu",kernelFunc:fc},Jm=class{constructor(e,t){this.variableNames=["A"];let n=128;this.workGroupSize=[n,1,1],this.outputShape=e,this.size=v.sizeFromShape(this.outputShape),this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.op=t,this.shaderKey=`unary_${t}`}getUserCode(){return` fn unaryOperation(a : f32) -> f32 { ${hc(this.op,!1)} } ${Me()} { ${je()} if (index < uniforms.size) { let a = getAAtOutCoordsByGlobalId(globalId, index); setOutputFlat(index, unaryOperation(a)); } } `}};function $n({opType:e,cpuKernelImpl:t,dtype:n}){return({inputs:s,backend:r})=>{let{x:a}=s,o=r,i=n||a.dtype;if(o.shouldExecuteOnCPU([a])&&t!=null){let c=o.tensorMap.get(a.dataId),u=t(c.values,i);return o.makeTensorInfo(a.shape,i,u)}let l=new Jm(a.shape,e);return o.runWebGPUProgram(l,[a],i)}}function Kn({opSnippet:e,cpuKernelImpl:t,supportsComplex:n=!1,dtype:s}){return({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(n&&o.dtype==="complex64"){let d=l.tensorMap.get(o.dataId),p=l.tensorMap.get(i.dataId),h,f;if(e!==qe.MUL)[h,f]=[[d.complexTensorInfos.real,p.complexTensorInfos.real],[d.complexTensorInfos.imag,p.complexTensorInfos.imag]].map(g=>{let[y,A]=g,x={dataId:y.dataId,dtype:y.dtype,shape:o.shape},b={dataId:A.dataId,dtype:A.dtype,shape:i.shape},w=VC(e,o.shape,i.shape);return l.runWebGPUProgram(w,[x,b],Bn(y.dtype,A.dtype))});else{let g=new BC(qe.COMPLEX_MULTIPLY_REAL,o.shape,i.shape),y=new BC(qe.COMPLEX_MULTIPLY_IMAG,o.shape,i.shape),A=[{dataId:d.complexTensorInfos.real.dataId,dtype:d.complexTensorInfos.real.dtype,shape:o.shape},{dataId:d.complexTensorInfos.imag.dataId,dtype:d.complexTensorInfos.imag.dtype,shape:o.shape},{dataId:p.complexTensorInfos.real.dataId,dtype:p.complexTensorInfos.real.dtype,shape:i.shape},{dataId:p.complexTensorInfos.imag.dataId,dtype:p.complexTensorInfos.imag.dtype,shape:i.shape}];h=l.runWebGPUProgram(g,A,"float32"),f=l.runWebGPUProgram(y,A,"float32")}let m=fc({inputs:{real:h,imag:f},backend:l});return l.disposeData(h.dataId),l.disposeData(f.dataId),m}let c=s||Bn(o.dtype,i.dtype);if((o.dtype==="string"||i.dtype==="string"||l.shouldExecuteOnCPU([o,i]))&&t!=null){let d=l.tensorMap.get(o.dataId).values,p=l.tensorMap.get(i.dataId).values,h=o.dtype==="string"?E.fromUint8ToStringArray(d):d,f=o.dtype==="string"?E.fromUint8ToStringArray(p):p,[m,g]=t(o.shape,i.shape,h,f,c);return l.makeTensorInfo(g,c,m)}let u=VC(e,o.shape,i.shape);return l.runWebGPUProgram(u,[o,i],c)}}var{addImpl:Kde,ceilImpl:Zde,concatImpl:Yde,equalImpl:Jde,expImpl:Qde,expm1Impl:epe,floorImpl:tpe,gatherNdImpl:npe,gatherV2Impl:spe,greaterEqualImpl:rpe,greaterImpl:ape,lessEqualImpl:ope,lessImpl:ipe,logImpl:lpe,maxImpl:upe,maximumImpl:cpe,minimumImpl:dpe,multiplyImpl:ppe,negImpl:hpe,notEqualImpl:fpe,prodImpl:mpe,rangeImpl:gpe,rsqrtImpl:ype,simpleAbsImpl:Ape,sliceImpl:xpe,stridedSliceImpl:bpe,stringNGramsImpl:vpe,subImpl:wpe,tileImpl:kpe,transposeImpl:Ipe,uniqueImpl:Sge}=UA,Spe=$n({opType:Fe.ABS,cpuKernelImpl:Ape}),Cpe={kernelName:ni,backendName:"webgpu",kernelFunc:Spe},Tpe=Kn({opSnippet:qe.ADD,cpuKernelImpl:Kde,supportsComplex:!0}),Npe={kernelName:qr,backendName:"webgpu",kernelFunc:Tpe},Epe=class{constructor(e){this.workPerThread=4,this.workGroupSize=[64,1,1],this.outputShape=e[0],this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="addN",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=[];this.variableNames.forEach(s=>{e.push(`let v${s} = get${s}AtOutCoordsByCoords(coords);`)});let t=this.variableNames.map(s=>`v${s}`).join(" + ");return` ${Me()} { ${je()} for (var i = 0; i < ${this.workPerThread}; i = i + 1) { let flatIndex = index * ${this.workPerThread} + i; if (flatIndex < uniforms.size) { let coords = getCoordsFromFlatIndex(flatIndex); ${e.join(` `)} setOutputFlat(flatIndex, ${t}); } } } `}};function Rpe(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return nr({inputs:{x:s[0]},backend:n});let r=s.map(i=>i.dtype).reduce((i,l)=>Bn(i,l)),a=s.map(i=>i.shape),o=new Epe(a);return n.runWebGPUProgram(o,s,r)}var $pe={kernelName:wa,backendName:"webgpu",kernelFunc:Rpe},UC=class{constructor(e,t,n){this.variableNames=["x"],this.uniforms="axis : i32;";let s=[t];E.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),s,e.length),this.op=n==="min"?"<":">";let[r,a]=E.computeOutAndReduceShapes(e,s);this.outputShape=r.length===0?[1]:r;let o=v.sizeFromShape(a);this.reductionFactor=2;let i=256,l=Math.min(Math.ceil(o/this.reductionFactor),i);this.workGroupSize=[l,1,1],this.dispatchLayout={x:[],y:this.outputShape.map((c,u)=>u)},this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.inputShape=e,this.shaderKey=`argMinMax${this.op}`}getUserCode(){let e=this.workGroupSize[0]>1,t=` var xBestIndices : array; var xBestValues : array; `,n=` xBestIndices[localId.x] = bestIndex; xBestValues[localId.x] = bestValue; for(var currentSize = WorkGroupSize; currentSize > 1; currentSize = DIV_CEIL(currentSize, ${this.reductionFactor})) { workgroupBarrier(); for (var w = 0; w < ${this.reductionFactor}; w = w + 1) { let i = i32(localId.x) * ${this.reductionFactor} + w; if (i < currentSize) { let candidateIndex = xBestIndices[i]; let candidate = xBestValues[i]; if(candidate ${this.op} bestValue && !isNanCustom(candidate)) { bestValue = candidate; bestIndex = candidateIndex; } } } xBestIndices[localId.x] = bestIndex; xBestValues[localId.x] = bestValue; } if (localId.x == 0u) { setOutputFlatI32(flatOutputIndex, i32(bestIndex)); } `,s=ln(this.outputShape.length),r=(i,l)=>this.outputShape.length===1?i:`${i}[${l}]`,a=i=>this.inputShape.length===1?"uniforms.xShape":`uniforms.xShape[${i}]`;return` fn DIV_CEIL(a : i32, b : i32) -> i32 { return ((a - 1) / b + 1); } let WorkGroupSize = ${this.workGroupSize[0]}; ${e?t:""} // In order to get a flattened index into the input tensor, we need to // add back the index along the reduced dimension to |outputCoords|. // This function outputs the offset to the first value along // |axis| and the stride to get the next value of the input along |axis|. fn getInputCoordInfo(globalId : vec3, globalIndex : i32) -> vec2{ let outputCoords : ${s} = getOutputCoords(globalId, globalIndex); var i = ${this.outputShape.length-1}; var stride = 1; var inputStride = 1; var offset = 0; for (var r = 1; r <= ${this.inputShape.length}; r = r + 1) { let length = ${a(`${this.inputShape.length} - r`)}; if (${this.inputShape.length} - r == uniforms.axis) { inputStride = stride; } else { offset = offset + ${r("outputCoords","i")} * stride; i = i - 1; } stride = stride * length; } return vec2(offset, inputStride); } fn getInputIndex(coordInfo : vec2, index : i32) -> i32{ return coordInfo[0] + coordInfo[1] * index; } ${Me()} { ${je()} let coordInfo = getInputCoordInfo(globalId, index); var bestIndex = 0; var bestValue = x.numbers[getInputIndex(coordInfo, bestIndex)]; let Length = ${a("uniforms.axis")}; let WorkPerThread = DIV_CEIL(Length, WorkGroupSize); for (var w = 0; w < WorkPerThread; w = w + 1) { let i = i32(globalId.x) * WorkPerThread + w; if (i < Length) { let candidate = x.numbers[getInputIndex(coordInfo, i)]; if (candidate ${this.op} bestValue && !isNanCustom(f32(candidate))) { bestValue = candidate; bestIndex = i; } } } let flatOutputIndex = i32(globalId.y); ${e?n:"setOutputFlatI32(flatOutputIndex, bestIndex);"} } `}},Dpe=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[16,16,1];let n=new Array(e.length);for(let s=0;s tile : array, ${this.workGroupSize[0]}>; ${Me()} { ${je()} let workGroupID = (globalId - localId)/vec3(${this.workGroupSize[0]}u, ${this.workGroupSize[1]}u, ${this.workGroupSize[2]}u); var x = i32(workGroupID.x) * TILE_DIM + i32(localId.x); var y = i32(workGroupID.y) * TILE_DIM + i32(localId.y); let width = uniforms.outShape[0]; let height = uniforms.outShape[1]; if (x < width && y < height) { tile[localId.y][localId.x] = A.numbers[y * width + x]; } workgroupBarrier(); x = i32(workGroupID.y) * TILE_DIM + i32(localId.x); y = i32(workGroupID.x) * TILE_DIM + i32(localId.y); if (x < height && y < width) { setOutputFlat((y * height + x), tile[localId.x] [localId.y]); } } `}},_pe=class{constructor(e,t){this.variableNames=["A"],this.workPerThread=4,this.workGroupSize=[64,1,1];let n=new Array(e.length);for(let s=0;s4)throw Error(`Transpose for rank ${t} is not yet supported`);let n=new Array(t);for(let s=0;sn.disposeData(h.dataId)),p}var Mpe={kernelName:ka,backendName:"webgpu",kernelFunc:Ope};function zpe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Il({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let u=new UC(l.shape,o[0],"min"),d=[{type:"int32",data:[o[0]]}],p=n.runWebGPUProgram(u,[l],"int32",d);return c.forEach(h=>n.disposeData(h.dataId)),p}var Lpe={kernelName:Zl,backendName:"webgpu",kernelFunc:zpe},GC=class{constructor(e,t){this.variableNames=["x"],this.uniforms="stride : vec2; pad : vec2; dilation : vec2; convDims : vec2; filterDims : vec2;",this.workGroupSize=[128,1,1],this.outputShape=e.outShape,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`pool2D_${t}`,this.poolType=t}getUserCode(){let e="resultValue = max(value, resultValue);";this.poolType==="avg"&&(e="resultValue = resultValue + value; count = count + 1.0;");let t="resultValue";return this.poolType==="avg"&&(t="resultValue / count"),` ${Me()} { ${je()} let coords = getOutputCoords(globalId, index); if (coordsInBounds4D(coords, uniforms.outShape)) { let batch = coords[0]; let xRCCorner = vec2(coords.yz) * uniforms.stride - uniforms.pad; let xRCorner = xRCCorner.x; let xCCorner = xRCCorner.y; var resultValue = ${this.poolType==="avg"?"0.0":"-1.0 / pow(10.0, -20.0)"}; var count = 0.0; for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + uniforms.dilation.x) { let xR = xRCorner + wR; if (xR < 0 || xR >= uniforms.convDims.x) { continue; } for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + uniforms.dilation.y) { let xC = xCCorner + wC; if (xC < 0 || xC >= uniforms.convDims.y) { continue; } let value = getX(batch, xR, xC, coords[3]); ${e} } } setOutput(batch, coords[1], coords[2], coords[3], ${t}); } } `}},HC=class{constructor(e){this.variableNames=["x"],this.uniforms="stride : vec2;",this.workGroupSize=[256,1,1],this.outputShape=e.outShape,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="poolWithFilterSizeEqualsOne"}getUserCode(){return` ${Me()} { ${je()} let coords = getOutputCoords(globalId, index); let batch = coords[0]; let d = coords[3]; if (all(coords < uniforms.outShape)) { let xRCCorner = coords.yz * uniforms.stride; let xRCorner = xRCCorner.x; let xCCorner = xRCCorner.y; let value = getX(batch, xRCorner, xCCorner, d); setOutput(batch, coords[1], coords[2], d, value); } } `}};function Bpe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1,u=E.computePool2DInfo(r.shape,a,o,c,i,l);if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))return nr({inputs:{x:r},backend:n});let d,p=[{type:"int32",data:[u.strideHeight,u.strideWidth]}];return u.filterHeight===1&&u.filterWidth===1?d=new HC(u):(d=new GC(u,"avg"),p.push({type:"int32",data:[u.padInfo.top,u.padInfo.left]},{type:"int32",data:[u.dilationHeight,u.dilationWidth]},{type:"int32",data:[u.inHeight,u.inWidth]},{type:"int32",data:[u.effectiveFilterHeight,u.effectiveFilterWidth]})),n.runWebGPUProgram(d,[r],r.dtype,p)}var Wpe={kernelName:Ia,backendName:"webgpu",kernelFunc:Bpe};function Vpe(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return Ox({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var Upe={kernelName:Sa,backendName:"webgpu",kernelFunc:Vpe},Gpe=class{constructor(e,t){this.variableNames=["source"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.outputShape=t,this.rank=t.length,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.start=e,this.uniforms=`start : ${ln(e.length)}; `,this.shaderKey="slice",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=ln(this.rank),t=Hpe(this.rank),n;return this.start.length===1?n=this.outputShape.map((r,a)=>"sourceLoc = uniforms.start + coords;"):n=this.outputShape.map((r,a)=>`sourceLoc.${Mx[a]} = uniforms.start[${a}] + coords.${Mx[a]};`),` ${Me()} { ${je()} if (index < uniforms.size) { var sourceLoc : ${e}; let coords = getOutputCoords(globalId, index); ${n.join(` `)} setOutputFlat(index, getSource(${t})); } } `}},Mx=["x","y","z","w","u","v"];function Hpe(e){if(e===1)return"sourceLoc";if(e<=6)return Mx.slice(0,e).map(t=>`sourceLoc.${t}`).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}function vp(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=yn.parseSliceParams(r,a,o);if(yn.assertParamsValid(r,i,l),n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.tensorMap.get(r.dataId),p=xpe(d.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}if(v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);let c=new Gpe(i,l),u=[{type:"int32",data:i}];return n.runWebGPUProgram(c,[r],r.dtype,u)}var jpe={kernelName:Di,backendName:"webgpu",kernelFunc:vp},qpe=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((A,x)=>A*x),l=E.getReshaped(r.shape,a,i),c=E.getPermuted(l.length,a.length),u=E.getReshapedPermuted(r.shape,a,i),d=E.getSliceBeginCoords(o,a.length),p=E.getSliceSize(u,o,a.length),h=[],f=st({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Il({inputs:{x:f},backend:n,attrs:{perm:c}}),g=st({inputs:{x:m},backend:n,attrs:{shape:u}}),y=vp({inputs:{x:g},backend:n,attrs:{begin:d,size:p}});return h.push(f),h.push(m),h.push(g),h.forEach(A=>n.disposeData(A.dataId)),y},Xpe={kernelName:si,backendName:"webgpu",kernelFunc:qpe},jC=Kn({opSnippet:qe.NOT_EQUAL,dtype:"bool",cpuKernelImpl:fpe}),Kpe={kernelName:bi,backendName:"webgpu",kernelFunc:jC};function wp(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return nr({inputs:{x:r.complexTensorInfos.real},backend:n})}var Zpe={kernelName:Qc,backendName:"webgpu",kernelFunc:wp};function Ype(e,t){let n=new Jm(e.shape,Fe.TO_INT),s=t.runWebGPUProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function zx(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return nr({inputs:{x:r},backend:n});let o=Xt(r.shape),i=zx({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=fc({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeData(i.dataId),l}if(r.dtype==="complex64"){let o=wp({inputs:{input:r},backend:n}),i=zx({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeData(o.dataId),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=nr({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return Ype(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),l=jC({inputs:{a:r,b:o},backend:n});return n.disposeData(o.dataId),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var Jpe={kernelName:Ca,backendName:"webgpu",kernelFunc:zx},Qpe=$n({opType:Fe.CEIL,cpuKernelImpl:Zde}),ehe={kernelName:Ta,backendName:"webgpu",kernelFunc:Qpe},the=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32; maxVal : f32;",this.workPerThread=4,this.workGroupSize=[64,1,1],this.isVec4=!0,this.outputShape=e,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="clipVec4",this.size=v.sizeFromShape(this.outputShape)/4}getUserCode(){return` ${Me()} { ${je()} if(index < uniforms.size) { let value = getAAtOutCoordsByGlobalId(globalId, index); var clampedValue : vec4; for (var i = 0; i < 4; i = i + 1) { if (isNanCustom(value[i])) { clampedValue[i] = value[i]; } else { clampedValue[i] = clamp(value[i], uniforms.minVal, uniforms.maxVal); } } setOutputFlat(index, clampedValue); } } `}},nhe=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32; maxVal : f32;",this.workGroupSize=[64,1,1],this.outputShape=e,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="clip",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){return` ${Me()} { ${je()} if(index < uniforms.size) { let value = getAAtOutCoordsByGlobalId(globalId, index); if (isNanCustom(value)) { setOutputFlat(index, value); return; } setOutputFlat(index, clamp(value, uniforms.minVal, uniforms.maxVal)); } } `}};function she(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i,l=[{type:"float32",data:[a]},{type:"float32",data:[o]}];return v.sizeFromShape(r.shape)%4==0?i=new the(r.shape):i=new nhe(r.shape),n.runWebGPUProgram(i,[r],r.dtype,l)}var rhe={kernelName:Xr,backendName:"webgpu",kernelFunc:she},ahe=class{constructor(e){this.workPerThread=4,this.workGroupSize=[64,1,1],this.outputShape=E.computeOutShape(e,1),this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shapes=e,this.shaderKey=`concat${e}`,this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=new Array(this.shapes.length-1),t=[];if(e.length>0){e[0]=this.shapes[0][1];for(let a=1;awp({inputs:{input:m},backend:n})),d=e.map(m=>Qm({inputs:{input:m},backend:n})),p=Lx(u,t,n),h=Lx(d,t,n),f=fc({inputs:{real:p,imag:h},backend:n});return u.forEach(m=>n.disposeData(m.dataId)),d.forEach(m=>n.disposeData(m.dataId)),n.disposeData(p.dataId),n.disposeData(h.dataId),f}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let u=e.map(y=>{let A=v.sizeFromShape(y.shape.slice(t));return st({inputs:{x:y},backend:n,attrs:{shape:[-1,A]}})}),d=u.map(y=>({vals:n.readSync(y.dataId),shape:y.shape})),p=E.computeOutShape(u.map(y=>y.shape),1),h=u[0].shape[0]===1,f=Yde(d,p,s,h),m=E.computeOutShape(e.map(y=>y.shape),t),g=n.makeTensorInfo(m,s,f);return u.forEach(y=>n.disposeData(y.dataId)),g}let{tensors2D:a,outShape:o}=ihe(e,t,n),i=new ahe(a.map(u=>u.shape)),l=n.runWebGPUProgram(i,a,a[0].dtype);a.forEach(u=>n.disposeData(u.dataId));let c=st({inputs:{x:l},backend:n,attrs:{shape:o}});return n.disposeData(l.dataId),c}function ihe(e,t,n){let s=E.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>st({inputs:{x:a},backend:n,attrs:{shape:[v.sizeFromShape(a.shape.slice(0,t)),v.sizeFromShape(a.shape.slice(t))]}})),outShape:s}}function qC(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=E.computeOutShape(t.map(c=>c.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(c=>v.sizeFromShape(c.shape)>0);if(i.length===1)return nr({inputs:{x:i[0]},backend:n});let l=i.map(c=>c.shape);return E.assertParamsConsistent(l,a),Lx(i,a,n)}var lhe={kernelName:ri,backendName:"webgpu",kernelFunc:qC},uhe=class{constructor(e,t){this.variableNames=["A"],this.uniforms=`pad : vec2; stride : vec2; dilation : vec2; outWidth : i32; itemsPerBlockRow : i32; inChannels : i32;`,this.workPerThread=4,this.workGroupSize=[64,1,1],this.outputShape=e,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.isChannelsLast=t,this.shaderKey=`im2col_${this.isChannelsLast}`,this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=this.isChannelsLast?0:1,t=this.isChannelsLast?1:2;return` ${Me()} { ${je()} for(var i = 0; i<${this.workPerThread}; i = i + 1) { let flatIndex = index * ${this.workPerThread} + i; let rc = getCoordsFromFlatIndex(flatIndex); if(flatIndex < uniforms.size) { let blockIndex = rc[0]; let pos = rc[1]; let offsetY = blockIndex / uniforms.outWidth * uniforms.stride[1] - uniforms.pad[1]; let d0 = offsetY + uniforms.dilation[1] * pos / uniforms.itemsPerBlockRow; var value = 0.0; if(d0 < uniforms.aShape[${e}] && d0 >= 0) { let offsetX = (blockIndex % uniforms.outWidth) * uniforms.stride[0] - uniforms.pad[0]; let d1 = offsetX + uniforms.dilation[0] * ((pos % uniforms.itemsPerBlockRow) / uniforms.inChannels); let ch = pos % uniforms.inChannels; if(d1 < uniforms.aShape[${t}] && d1 >= 0) { value = getA(d0, d1, ch); } } setOutputFlat(flatIndex, value); } } } `}};function XC({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,c=n.dataFormat==="channelsLast",u=!1,d=!1,p=c?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],h=st({inputs:{x:e},backend:s,attrs:{shape:[1,p,n.inChannels]}}),f=st({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),m=Ox({a:h,b:f,transposeA:u,transposeB:d,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),g=st({inputs:{x:m},backend:s,attrs:{shape:n.outShape}});return s.disposeData(h.dataId),s.disposeData(f.dataId),s.disposeData(m.dataId),g}function che({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:c,inChannels:u,strideWidth:d,strideHeight:p,padInfo:h,outWidth:f,outHeight:m,dilationWidth:g,dilationHeight:y,dataFormat:A}=n,x=A==="channelsLast",b=l*c*u,w=m*f,k=[w,b],S=!1,N=!1,$=[],F=st({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),R=st({inputs:{x:t},backend:s,attrs:{shape:[1,b,-1]}});$.push(F),$.push(R);let D=new uhe(k,x),T=[{type:"int32",data:[h.left,h.top]},{type:"int32",data:[d,p]},{type:"int32",data:[g,y]},{type:"int32",data:[f]},{type:"int32",data:[u*l]},{type:"int32",data:[u]}],O=s.runWebGPUProgram(D,[F],F.dtype,T),W=st({inputs:{x:O},backend:s,attrs:{shape:[1,k[0],k[1]]}});$.push(O),$.push(W);let H=[1,k[0],k[1]],z=new LC(H,[1,w,n.outChannels],Z().get("WEBGPU_MATMUL_WORK_PER_THREAD"),S,N),X=H[1],te=H[2],J=n.outChannels,Q=[{type:"int32",data:[X]},{type:"int32",data:[J]},{type:"int32",data:[te]}],ne=s.runWebGPUProgram(z,[W,R],W.dtype,Q),K=x?[1,m,f,n.outChannels]:[1,n.outChannels,m,f],oe=st({inputs:{x:ne},backend:s,attrs:{shape:K}});$.push(ne);for(let ce of $)s.disposeData(ce.dataId);return oe}var KC=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.uniforms=`filterDims : vec2; pad : vec2; stride : vec2; dilation : vec2; dimAOuter : i32; dimBOuter : i32; dimInner : i32;`,this.isVec4=!0,this.outputShape=e.outShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=[8,8,1];let a=[4,4,1];this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,a),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,this.hasLeakyreluAlpha=r,this.addBias&&this.variableNames.push("bias"),this.hasPreluActivationWeights&&this.variableNames.push("preluActivationWeights"),this.hasLeakyreluAlpha&&this.variableNames.push("leakyreluAlpha"),[this.fitA,this.fitB]=this.getShapeFit(a),this.shaderKey=`conv2DMMVec4_${this.activation}_${this.fitA}_${this.fitB}`}getShapeFit(e){let t=this.workGroupSize[1]*e[1],n=this.workGroupSize[0]*e[0],s=n,r=[t,s],a=[s,n],o=this.outputShape[1]*this.outputShape[2],i=this.outputShape[3],l=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[ua(r,[o,l]),ua(a,[l,i])]}getSampleAWithRemainder(e){return`let flatIndex${e} = getFlatIndex4D(coord, uniforms.xShape); let divBy4Remainder${e} = flatIndex${e} % 4; let divBy4Index${e} = flatIndex${e} / 4; let curData${e} = x.numbers[divBy4Index${e}]; if (divBy4Remainder${e} == 0) { temp = curData${e}; } else { // TODO: This could end up being a redundant load with another one in // the same shader invocation. Perhaps there's an opportunity for // optimization let nextData${e} = x.numbers[divBy4Index${e} + 1]; if (divBy4Remainder${e} == 1) { temp = vec4(curData${e}.yzw, nextData${e}.x); } elseif (divBy4Remainder${e} == 2) { temp = vec4(curData${e}.zw, nextData${e}.xy); } elseif (divBy4Remainder${e} == 3) { temp = vec4(curData${e}.w, nextData${e}.xyz); } } `}getUserCode(){let t=zC([4,4,1],this.workGroupSize),r=`let outRow = r / uniforms.outShape[2]; let outCol = r % uniforms.outShape[2]; let WRow = c / (uniforms.filterDims[1] * uniforms.xShape[3]); let WCol = c / uniforms.xShape[3] % uniforms.filterDims[1]; let inChCoord = c % uniforms.xShape[3]; var coord = vec4( batch, outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0], outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1], inChCoord); var resData = vec4(0.0); ${this.convInfo.inChannels%4===0?`// The bounds checking is always needed since we use it to pad zero for // the 'same' padding type. if (coordsInBounds4D(coord, uniforms.xShape)) { resData = x.numbers[getFlatIndex4D(coord, uniforms.xShape) / 4]; } else { resData = vec4(0.0); }`:`var temp = vec4(0.0); ${this.getSampleAWithRemainder(1)} resData = temp; if (WCol == (uniforms.filterDims[1] - 1)) { coord = vec4( coord.x, coord.y + 1, coord.z + 1 - uniforms.filterDims[1], 0); ${this.getSampleAWithRemainder(2)} if (inChCoord == 0) { resData = vec4(resData.xyz, temp.x); } elseif (inChCoord == 1) { resData = vec4(resData.xy, temp.xy); } else { resData = vec4(resData.x, temp.xyz); } } `} return resData;`,a=this.fitA?`${r}`:`if (r < uniforms.dimAOuter && c < uniforms.dimInner) { ${r} } return vec4(0.0); `,o=this.fitB?"return W.numbers[row * uniforms.dimBOuter / 4 + col];":`if(coordsInBounds2D(vec2(row, col * 4), vec2(uniforms.dimInner, uniforms.dimBOuter))) { return W.numbers[row * uniforms.dimBOuter / 4 + col]; } return vec4(0.0); `,i="",l="";if(this.activation){let d=Lo(this.activation,this.isVec4);if(this.hasPreluActivationWeights)i=`fn activation(a : vec4, outCoord : vec4) -> vec4 { let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord); ${d} }`;else{if(this.hasLeakyreluAlpha)throw i=`fn activation(a: vec4) -> vec4 { let b = getLeakyreluAlphaAtOutCoords(); ${d} }`,new Error("Leakyrelu is not supported.");i=` fn activation(a : vec4, outCoord : vec4) -> vec4 { ${d} }`}l="value = activation(value, outCoord);"}let c=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return` ${i} fn mm_readA(row : i32, col : i32, globalId : vec3) -> vec4 { let r = row; let c = col * 4; var batch = i32(globalId.z); ${a} } fn mm_readB(row : i32, col : i32, globalId : vec3) -> vec4 { ${o} } fn mm_write(row : i32, col : i32, valueInput : vec4, globalId : vec3) { var batch = i32(globalId.z); var value = valueInput; if (row < uniforms.dimAOuter && col * 4 < uniforms.dimBOuter) { let outCoord = vec4( batch, row / uniforms.outShape[2], row % uniforms.outShape[2], col * 4); ${c} ${l} setOutput(outCoord[0], outCoord[1], outCoord[2], outCoord[3], value); } } ${t} `}},ZC=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2; pad : vec2; stride : vec2; dilation : vec2; dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.outputShape=e.outShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=Rx(this.dispatchLayout,this.outputShape),this.elementsPerThread=Dx(this.dispatchLayout,this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`conv2DMM_${this.elementsPerThread}_${this.activation}_${this.fitA}_${this.fitB}`}getShapeFit(){let e=this.workGroupSize[1]*this.elementsPerThread[1],t=this.workGroupSize[0]*this.elementsPerThread[0],n=e>t?e:t;v.assert(n%this.workGroupSize[0]==0&&n%this.workGroupSize[1]==0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let s=[e,n],r=[n,t],a=this.outputShape[1]*this.outputShape[2],o=this.outputShape[3],i=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[ua(s,[a,i]),ua(r,[i,o])]}getUserCode(){let e=Fx(this.elementsPerThread,this.workGroupSize),t=` let outRow = row / uniforms.outShape[2]; let outCol = row % uniforms.outShape[2]; let WRow = col / (uniforms.filterDims[1] * uniforms.xShape[3]); let WCol = col / uniforms.xShape[3] % uniforms.filterDims[1]; let coord = vec4( batch, outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0], outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1], col % uniforms.xShape[3]); // The bounds checking is always needed since we use it to pad zero for the // 'same' padding type. if(coordsInBounds4D(coord, uniforms.xShape)) { return x.numbers[getFlatIndex4D(coord, uniforms.xShape)]; } return 0.0;`,n=this.fitA?`${t}`:`if (row < uniforms.dimAOuter && col < uniforms.dimInner) { ${t} } return 0.0; `,s=this.fitB?"return W.numbers[row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2(row, col), vec2(uniforms.dimInner, uniforms.dimBOuter))) { return W.numbers[row * uniforms.dimBOuter + col]; } return 0.0; `,r="",a="";if(this.activation){let l=Lo(this.activation,!1);this.hasPreluActivationWeights?r=`fn activation(a: f32, outCoord : vec4) -> f32 { let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord); ${l} }`:r=` fn activation(a : f32, outCoord : vec4) -> f32 { ${l} } `,a="value = activation(value, outCoord);"}let o=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return` ${r} fn mm_readA(row : i32, col : i32, globalId : vec3) -> f32 { var batch = i32(globalId.z); ${n} } fn mm_readB(row : i32, col : i32, globalId : vec3) -> f32 { ${s} } fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3) { var batch = i32(globalId.z); var value = valueInput; let outCoord = vec4( batch, row / uniforms.outShape[2], row % uniforms.outShape[2], col); ${o} ${a} result.numbers[getFlatIndex4D(outCoord, uniforms.outShape)] = value; } ${e} `}},YC=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2; pad : vec2; stride : vec2; dilation : vec2;",this.workGroupSize=[128,1,1],this.outputShape=e.outShape,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,this.shaderKey=`conv2DNaive_${this.activation}`}getUserCode(){let e="",t="";if(this.activation){let r=Lo(this.activation);this.hasPreluActivationWeights?e=`fn activation(a : f32, outCoord : vec4) -> f32{ let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord); ${r} }`:e=` fn activation(a : f32, outCoord : vec4) -> f32{ ${r} } `,t="value = activation(value, outCoord);"}let n=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return` ${e} fn readInp(batch : i32, row : i32, col : i32, chan : i32) -> f32 { let coord = vec4(batch, row, col, chan); if(coordsInBounds4D(coord, uniforms.xShape)) { return getX(batch, row, col, chan); } return 0.0; } fn readFilt(row : i32, col : i32, xChannel : i32, outChannel : i32) -> f32{ let coord = vec4(row, col, xChannel, outChannel); if(coordsInBounds4D(coord, uniforms.wShape)) { return getW(row, col, xChannel, outChannel); } return 0.0; } fn writeResult(batch : i32, row : i32, col : i32, chan : i32, value : f32) { let coord = vec4(batch, row, col, chan); if (coordsInBounds4D(coord, uniforms.outShape)) { ${n} ${t} setOutput(batch, row, col, chan, value); } } ${Me()} { ${je()} let coords = getOutputCoords(globalId, index); let batch = coords[0]; let outChannel = coords[3]; var acc = 0.0; for (var row = 0; row < uniforms.filterDims[0]; row = row + 1) { for (var col = 0; col < uniforms.filterDims[1]; col = col + 1) { for (var xChannel = 0; xChannel < uniforms.xShape[3]; xChannel = xChannel + 1) { let coordRow = coords[1] * uniforms.stride[0] + uniforms.dilation[0] * row - uniforms.pad[0]; let coordCol = coords[2] * uniforms.stride[1] + uniforms.dilation[1] * col - uniforms.pad[1]; let v = readInp(batch, coordRow, coordCol, xChannel); let f = readFilt(row, col, xChannel, outChannel); acc = acc + v * f; } } } writeResult(batch, coords[1], coords[2], outChannel, acc); } `}};function dhe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:c,dimRoundingMode:u}=n,d=E.convertConv2DDataFormat(l),p=E.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!1,d);if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))return XC({x:r,filter:a,convInfo:p,backend:s});if(Z().getBool("WEBGPU_CONV_SEPARATE_IM2COL_SHADER")&&r.shape[0]===1)return che({x:r,filter:a,convInfo:p,backend:s});let h,f=[p.padInfo.top,p.padInfo.left],m=[{type:"int32",data:[p.filterHeight,p.filterWidth]},{type:"int32",data:[...f]},{type:"int32",data:[p.strideHeight,p.strideWidth]},{type:"int32",data:[p.dilationHeight,p.dilationWidth]}],g=Z().getBool("WEBGPU_USE_NAIVE_CONV2D");if(g?h=new YC(p):(p.inChannels%4==0||p.inChannels===3&&p.padInfo.type==="VALID")&&p.outChannels%4==0&&p.outChannels>=64?h=new KC(p):h=new ZC(p),!g){let y=p.outShape[1]*p.outShape[2],A=p.outShape[3],x=p.filterHeight*p.filterWidth*p.inShape[3];m.push({type:"int32",data:[y]},{type:"int32",data:[A]},{type:"int32",data:[x]})}return s.runWebGPUProgram(h,[r,a],r.dtype,m)}var phe={kernelName:Na,backendName:"webgpu",kernelFunc:dhe},hhe=class{constructor(e){this.variableNames=["x","W"],this.uniforms="filterDims : vec2; pads : vec2; stride : vec2; outBackprop : vec4; dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.outputShape=e.inShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=Rx(this.dispatchLayout,this.outputShape),this.elementsPerThread=Dx(this.dispatchLayout,this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.shaderKey=`conv2DDerInputMM_${this.elementsPerThread}`}getUserCode(){return` fn mm_readA(row : i32, col : i32, globalId : vec3) -> f32 { var batch = i32(globalId.z); if (row < uniforms.dimAOuter && col < uniforms.dimInner) { let outRow = row / uniforms.outShape[2]; let outCol = row % uniforms.outShape[2]; let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]); let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1]; let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]); let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]); if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) { return 0.0; } if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) { return 0.0; } let coord = vec4( batch, i32(xR), i32(xC), col % uniforms.outBackprop[3]); return x.numbers[getFlatIndex4D(coord, uniforms.xShape)]; } return 0.0; } fn mm_readB(row : i32, col : i32, globalId : vec3) -> f32 { let coordX = uniforms.filterDims.x - 1 - row / (uniforms.filterDims[1] * uniforms.outBackprop[3]); let coordY = uniforms.filterDims.y - 1 - (row / uniforms.outBackprop[3]) % uniforms.filterDims[1]; if (row < uniforms.dimInner && col < uniforms.dimBOuter && coordX >= 0 && coordY >= 0) { let coord = vec4(coordX, coordY, col, row % uniforms.outBackprop[3]); return W.numbers[getFlatIndex4D(coord, uniforms.wShape)]; } return 0.0; } fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3) { var batch = i32(globalId.z); var value = valueInput; let outCoord = vec4( batch, row / uniforms.outShape[2], row % uniforms.outShape[2], col); result.numbers[getFlatIndex4D(outCoord, uniforms.outShape)] = value; } ${Fx(this.elementsPerThread,this.workGroupSize)} `}},fhe=class{constructor(e){this.variableNames=["dy","W"],this.uniforms="filterDims : vec2; pads : vec2; stride : vec2; outBackprop : vec4;",this.workGroupSize=[64,1,1],this.outputShape=e.inShape,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",this.shaderKey=`conv2DDerInput_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?1:2,t=this.isChannelsLast?2:3,n=this.isChannelsLast?3:1;return` ${Me()} { ${je()} let coords = getOutputCoords(globalId, index); if (coordsInBounds4D(coords, uniforms.outShape)) { let batch = coords[0]; let d1 = coords[${n}]; let dyCorner = vec2(coords[${e}]), coords[${t}]) - uniforms.pads; let dyRCorner = dyCorner.x; let dyCCorner = dyCorner.y; // Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1). // ? = to be determined. : = across all values in that axis. var dotProd = 0.0; for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + 1) { let dyR = (f32(dyRCorner) + f32(wR)) / f32(uniforms.stride.x); let wRPerm = uniforms.filterDims.x - 1 - wR; if (dyR < 0.0 || dyR >= f32(uniforms.outBackprop[1]) || fract(dyR) > 0.0 || wRPerm < 0) { continue; } let idyR = dyR; for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + 1) { let dyC = (f32(dyCCorner) + f32(wC)) / f32(uniforms.stride.y); let wCPerm = uniforms.filterDims.y - 1 - wC; if (dyC < 0.0 || dyC >= f32(uniforms.outBackprop[2]) || fract(dyC) > 0.0 || wCPerm < 0) { continue; } let idyC = dyC; for (var d2 = 0; d2 < uniforms.outBackprop[3]; d2 = d2 + 1) { if (${this.isChannelsLast}) { let xValue = getDy(batch, idyR, idyC, d2); let wValue = getW(wRPerm, wCPerm, d1, d2); dotProd = dotProd + xValue * wValue; } else { let xValue = getDy(batch, d2, idyR, idyC); let wValue = getW(wRPerm, wCPerm, d1, d2); dotProd = dotProd + xValue * wValue; } } } } setOutput(coords[0], coords[1], coords[2], coords[3], dotProd); } } `}};function mhe(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:c,dimRoundingMode:u}=s,d=E.convertConv2DDataFormat(c),p=E.computeConv2DInfo(o,a.shape,i,1,l,u,!1,d),h=[{type:"int32",data:[p.filterHeight,p.filterWidth]},{type:"int32",data:[p.filterHeight-1-p.padInfo.top,p.filterWidth-1-p.padInfo.left]},{type:"int32",data:[p.strideHeight,p.strideWidth]},{type:"int32",data:[p.batchSize,p.outHeight,p.outWidth,p.outChannels]}],f;if(Z().getBool("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE"))f=new fhe(p);else{f=new hhe(p);let m=p.inShape[1]*p.inShape[2],g=p.inShape[3],y=p.filterHeight*p.filterWidth*p.outChannels;h.push({type:"uint32",data:[m]},{type:"uint32",data:[g]},{type:"uint32",data:[y]})}return n.runWebGPUProgram(f,[r,a],"float32",h)}var ghe={kernelName:Ea,backendName:"webgpu",kernelFunc:mhe},yhe=$n({opType:Fe.COS}),Ahe={kernelName:Ra,backendName:"webgpu",kernelFunc:yhe},xhe=$n({opType:Fe.COSH}),bhe={kernelName:$a,backendName:"webgpu",kernelFunc:xhe},vhe=class{constructor(e,t,n,s){this.variableNames=["Image","Boxes","BoxInd"],this.uniforms="extrapolationValue : f32;",this.workGroupSize=[64,1,1];let[r]=t;this.outputShape=[r,n[0],n[1],e],this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.methodId=s==="bilinear"?1:0,this.cropHeightBiggerThan1=this.outputShape[1]>1,this.cropWidthBiggerThan1=this.outputShape[2]>1,this.shaderKey=`cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`}getUserCode(){let[e,t]=["f32(uniforms.imageShape[1] - 1)","f32(uniforms.imageShape[2] - 1)"],[n,s,r]=this.cropHeightBiggerThan1?[`(${e} / f32(uniforms.outShape[1] - 1))`,"(y2-y1) * height_ratio",`y1*${e} + f32(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${e}`],[a,o,i]=this.cropWidthBiggerThan1?[`(${t} / f32(uniforms.outShape[2] - 1))`,"(x2-x1) * width_ratio",`x1*${t} + f32(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${t}`];return` fn writeResult(coords : vec4, value : f32) { if (coordsInBounds4D(coords, uniforms.outShape)) { setOutput(coords[0], coords[1], coords[2], coords[3], value); } } ${Me()} { ${je()} let height_ratio = f32(${n}); let width_ratio = f32(${a}); let coords = getOutputCoords(globalId, index); let b = coords[0]; let y = coords[1]; let x = coords[2]; let d = coords[3]; // get box vals let y1 = getBoxes(b, 0); let x1 = getBoxes(b, 1); let y2 = getBoxes(b, 2); let x2 = getBoxes(b, 3); // get image in batch index let bInd = i32(round(getBoxInd(b))); if(bInd < 0 || bInd >= uniforms.outShape[0]) { return; } let height_scale = ${s}; let width_scale = ${o}; let in_y = ${r}; if( in_y < 0.0 || in_y > ${e} ) { writeResult(coords, uniforms.extrapolationValue); return; } let in_x = ${i}; if( in_x < 0.0 || in_x > ${t} ) { writeResult(coords, uniforms.extrapolationValue); return; } let sourceFracIndexCR = vec2(in_x,in_y); if(${this.methodId} == 1) { // Compute the four integer indices. let sourceFloorCR = vec2(sourceFracIndexCR); let sourceCeilCR = vec2(ceil(sourceFracIndexCR)); let topLeft = getImage(bInd, sourceFloorCR.y, sourceFloorCR.x, d); let bottomLeft = getImage(bInd, sourceCeilCR.y, sourceFloorCR.x, d); let topRight = getImage(bInd, sourceFloorCR.y, sourceCeilCR.x, d); let bottomRight = getImage(bInd, sourceCeilCR.y, sourceCeilCR.x, d); let fracCR = sourceFracIndexCR - vec2(sourceFloorCR); let top = topLeft + (topRight - topLeft) * fracCR.x; let bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x; let newValue = top + (bottom - top) * fracCR.y; writeResult(coords, newValue); } else { // Compute the coordinators of nearest neighbor point. let sourceNearestCR = vec2(floor( sourceFracIndexCR + vec2(0.5,0.5))); let newValue = getImage( bInd, sourceNearestCR.y, sourceNearestCR.x, d); writeResult(coords,newValue); } } `}},whe=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:c}=s,u=new vhe(r.shape[3],a.shape,i,l),d=[{type:"float32",data:[c]}];return n.runWebGPUProgram(u,[r,a,o],"float32",d)},khe={kernelName:oi,backendName:"webgpu",kernelFunc:whe},Ihe=class{constructor(e,t){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.uniforms="blockSize : i32;",this.outputShape=e,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`depthToSpace_${t}`,this.size=v.sizeFromShape(this.outputShape),this.dataFormat=t}getUserCode(){return` ${Me()} { ${je()} if (index < uniforms.size) { let coords = getOutputCoords(globalId, index); let b = coords[0]; let h = ${this.getHeightCoordString()}; let w = ${this.getWidthCoordString()}; let d = ${this.getDepthCoordString()}; let in_h = h / uniforms.blockSize; let offset_h = h % uniforms.blockSize; let in_w = w / uniforms.blockSize; let offset_w = w % uniforms.blockSize; let offset_d = (offset_h * uniforms.blockSize + offset_w) * ${this.getOutputDepthSize()}; let in_d = d + offset_d; let rlt = ${this.getInputSamplingString()}; setOutputFlat(index, rlt); } }`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?"uniforms.outShape[3]":"uniforms.outShape[1]"}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function She(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],c=o==="NHWC"?r.shape[2]:r.shape[3],u=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=c*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=[{type:"int32",data:[a]}],g=new Ihe(f,o);return n.runWebGPUProgram(g,[r],r.dtype,m)}var Che={kernelName:ii,backendName:"webgpu",kernelFunc:She},JC=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2; stride : vec2; dilation : vec2; inDims : vec2;",this.workGroupSize=[4,4,4],this.isVec4=!0,this.outputShape=e.outShape,this.dispatchLayout={x:[0,1],y:[2],z:[3]},this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,4,4]),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwise3x3_${n}`}getUserCode(){let e="",t="";if(this.activation){let r=Lo(this.activation,this.isVec4);this.hasPreluActivation?e=`fn activation(a : vec4, globalId : vec3, globalIndex : i32) -> vec4 { let b = getPreluActivationWeightsAtOutCoordsByGlobalId(globalId, globalIndex); ${r} }`:e=` fn activation(a : vec4, globalId : vec3, globalIndex : i32) -> vec4 { ${r} } `,t="dotProd[i] = activation(dotProd[i], globalId, index);"}let n=this.addBias?"dotProd[i] = dotProd[i] + getBiasAtOutCoordsByCoords(coords);":"";return` ${e} ${Me()} { ${je()} let batch = 0; let r = i32(globalId.x); let c = i32(globalId.y) * 4; let d2 = i32(globalId.z) * 4; let xRCCorner = vec2(r, c) * uniforms.stride - uniforms.pad; let d1 = d2; let q = 0; let xRCorner = xRCCorner.x; let xCCorner = xRCCorner.y; var wVals : array, 9>; wVals[0] = getW(0, 0, d1, q); wVals[1] = getW(0, 1, d1, q); wVals[2] = getW(0, 2, d1, q); wVals[3] = getW(1, 0, d1, q); wVals[4] = getW(1, 1, d1, q); wVals[5] = getW(1, 2, d1, q); wVals[6] = getW(2, 0, d1, q); wVals[7] = getW(2, 1, d1, q); wVals[8] = getW(2, 2, d1, q); var xVals : array, 6>, 3>; for (var wR = 0; wR < 3; wR = wR + 1) { let xR = xRCorner + wR * uniforms.dilation[0]; for (var wC = 0; wC < 6; wC = wC + 1) { let xC = xCCorner + wC * uniforms.dilation[1]; if (xR < 0 || xR >= uniforms.inDims[0] || xC < 0 || xC >= uniforms.inDims[1]) { xVals[wR][wC] = vec4(0.0); } else { xVals[wR][wC] = getX(batch, xR, xC, d1); } } } var dotProd : array, 4>; dotProd[0] = vec4(0.0); dotProd[1] = vec4(0.0); dotProd[2] = vec4(0.0); dotProd[3] = vec4(0.0); for (var wR = 0; wR < 3; wR = wR + 1) { for (var wC = 0; wC < 3; wC = wC + 1) { let indexW = wR * 3 + wC; dotProd[0] = dotProd[0] + xVals[wR][0 + wC] * wVals[indexW]; dotProd[1] = dotProd[1] + xVals[wR][1 + wC] * wVals[indexW]; dotProd[2] = dotProd[2] + xVals[wR][2 + wC] * wVals[indexW]; dotProd[3] = dotProd[3] + xVals[wR][3 + wC] * wVals[indexW]; } } for (var i = 0; i < 4; i = i + 1) { let coords = vec4(batch, r, c + i, d2); if (coordsInBounds4D(coords, uniforms.outShape)) { ${n} ${t} setOutput(coords[0], coords[1], coords[2], coords[3], dotProd[i]); } } } `}},QC=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2; stride : vec2; dilation : vec2; inDims : vec2;",this.workGroupSize=[256,1,1],this.outputShape=e.outShape,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwise_${this.convInfo.filterHeight}_${this.convInfo.filterWidth}_${this.activation}_${this.convInfo.outChannels/this.convInfo.inChannels}`}getUserCode(){let e=this.convInfo.outChannels/this.convInfo.inChannels,t="",n="";if(this.activation){let a=Lo(this.activation,!1);this.hasPreluActivation?t=`fn activation(a : f32, globalId : vec3, index : i32) -> f32 { let b = getPreluActivationWeightsAtOutCoordsByGlobalId(globalId, index); ${a} }`:t=` fn activation(a : f32, globalId : vec3, index : i32) -> f32 { ${a} } `,n="dotProd = activation(dotProd, globalId, index);"}let s=this.addBias?"dotProd = dotProd + getBiasAtOutCoordsByGlobalId(globalId, index);":"";return` ${t} fn writeResult(batch : i32, row : i32, col : i32, chan : i32, value : f32) { let coord = vec4(batch, row, col, chan); if (coordsInBounds4D(coord, uniforms.outShape)) { setOutput(batch, row, col, chan, value); } } ${Me()} { ${je()} let coords = getOutputCoords(globalId, index); let batch = coords[0]; let xRCCorner = vec2(coords.yz) * uniforms.stride - uniforms.pad; let d2 = coords[3]; let d1 = d2 / ${e}; let q = d2 - d1 * ${e}; let inputRowStart = xRCCorner.x; let inputColStart = xRCCorner.y; let inputRowEnd = inputRowStart + ${this.convInfo.filterHeight} * uniforms.dilation[0]; let inputColEnd = inputColStart + ${this.convInfo.filterWidth} * uniforms.dilation[1]; // Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2). // ? = to be determined. : = across all values in that axis. var dotProd = 0.0; // Extract if checking out of for loop for performance. if (inputRowStart >= 0 && inputColStart >= 0 && inputRowEnd < uniforms.inDims[0] && inputColEnd < uniforms.inDims[1]) { // Here using a constant value |this.convInfo.filterHeight| instead // of uniform value is in order to loop unrolling. for (var wR = 0; wR < ${this.convInfo.filterHeight}; wR = wR + 1) { let xR = inputRowStart + wR * uniforms.dilation[0]; for (var wC = 0; wC < ${this.convInfo.filterWidth}; wC = wC + 1) { let xC = inputColStart + wC * uniforms.dilation[1]; let xVal = getX(batch, xR, xC, d1); let wVal = getW(wR, wC, d1, q); dotProd = dotProd + xVal * wVal; } } } else { for (var wR = 0; wR < ${this.convInfo.filterHeight}; wR = wR + 1) { let xR = inputRowStart + wR * uniforms.dilation[0]; if (xR < 0 || xR >= uniforms.inDims[0]) { continue; } for (var wC = 0; wC < ${this.convInfo.filterWidth}; wC = wC + 1) { let xC = inputColStart + wC * uniforms.dilation[1]; if (xC < 0 || xC >= uniforms.inDims[1]) { continue; } let xVal = getX(batch, xR, xC, d1); let wVal = getW(wR, wC, d1, q); dotProd = dotProd + xVal * wVal; } } } ${s} ${n} writeResult(batch, coords[1], coords[2], d2, dotProd); } `}};function The(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:c}=s,u=l;u==null&&(u=[1,1]);let d=E.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!0),p;d.batchSize===1&&d.inHeight===d.outHeight&&d.inWidth===d.outWidth&&d.strideHeight===1&&d.strideWidth===1&&d.filterHeight===d.filterWidth&&d.inChannels===d.outChannels&&d.filterHeight===3&&d.inChannels%4==0?p=new JC(d):p=new QC(d);let h=[{type:"int32",data:[d.padInfo.top,d.padInfo.left]},{type:"int32",data:[d.strideHeight,d.strideWidth]},{type:"int32",data:[d.dilationHeight,d.dilationWidth]},{type:"int32",data:[d.inHeight,d.inWidth]}];return n.runWebGPUProgram(p,[r,a],r.dtype,h)}var Nhe={kernelName:Da,backendName:"webgpu",kernelFunc:The},e6=Kn({opSnippet:qe.MUL,cpuKernelImpl:ppe,supportsComplex:!0}),Ehe={kernelName:Ka,backendName:"webgpu",kernelFunc:e6},Rhe=class{constructor(e,t,n){this.variableNames=["x"],this.uniforms="reduceSize : i32;",this.inputShape=[e.batchSize,e.inSize];let[s]=E.computeOutAndReduceShapes(this.inputShape,[1]);this.outputShape=s.length===0?[1]:s,this.reductionFactor=2;let r=256,a=Math.min(Math.ceil(e.inSize/this.reductionFactor),r);this.workGroupSize=[a,1,1],this.dispatchLayout={x:[],y:this.outputShape.map((o,i)=>i)},this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.reduceType=t,this.shaderKey=`reduce_${t}_${n}`}getUserCode(){let e=this.workGroupSize[0]>1,t="",n="0.0";this.reduceType==="min"||this.reduceType==="max"?(t=` if (isNanCustom(candidate)) { bestValue = uniforms.NAN; } elseif (candidate ${this.reduceType==="min"?"<":">"} bestValue) { bestValue = candidate; }`,n="f32(x.numbers[offset])"):this.reduceType==="sum"||this.reduceType==="mean"?t=" bestValue = bestValue + candidate; ":this.reduceType==="prod"&&(t=" bestValue = bestValue * candidate; ",n="1.0");let s=this.reduceType==="mean"?"setOutputFlat(flatOutputIndex, bestValue / f32(uniforms.reduceSize));":"setOutputFlat(flatOutputIndex, bestValue);",r=` var xBestValues : array; `,a=` xBestValues[localId.x] = bestValue; ${this.reduceType==="sum"||this.reduceType==="mean"||this.reduceType==="prod"?`bestValue = ${n};`:" "} var currentSize = WorkGroupSize; for(; currentSize > 1;) { workgroupBarrier(); for (var w = 0; w < ${this.reductionFactor}; w = w + 1) { let i = i32(localId.x) * ${this.reductionFactor} + w; if (i < currentSize) { let candidate = xBestValues[i]; ${t} } } workgroupBarrier(); xBestValues[localId.x] = bestValue; currentSize = DIV_CEIL(currentSize, ${this.reductionFactor}); ${this.reduceType==="sum"||this.reduceType==="mean"||this.reduceType==="prod"?`if(currentSize > 1) { bestValue = ${n}; }`:""} } if (localId.x == 0u) { ${s} } `;return` fn DIV_CEIL(a : i32, b : i32) -> i32 { return ((a - 1) / b + 1); } let WorkGroupSize = ${this.workGroupSize[0]}; ${e?r:""} fn getOffset(globalId : vec3, index : i32) -> i32 { let outputCoords = getOutputCoords(globalId, index); let offset = ${this.outputShape.length===1?"outputCoords":"outputCoords[0]"} * uniforms.reduceSize; return offset; } ${Me()} { ${je()} let offset= getOffset(globalId, index); var bestValue = ${n}; let Length = uniforms.reduceSize; let WorkPerThread = DIV_CEIL(Length, WorkGroupSize); for (var w = 0; w < WorkPerThread; w = w + 1) { let i = i32(globalId.x) * WorkPerThread + w; if (i < Length) { let candidate = f32(x.numbers[offset + i]); ${t} } } let flatOutputIndex = i32(globalId.y); ${e?a:s} } `}};function kp(e,t,n,s,r){let a=e.shape.length,o=[],i=v.parseAxisParam(t,e.shape),l=i,c=E.getAxesPermutation(l,a),u=e;c!=null&&(u=Il({inputs:{x:e},attrs:{perm:c},backend:r}),l=E.getInnerMostAxes(l.length,a),o.push(u)),E.assertAxesAreInnerMostDims(s,l,a);let[d,p]=E.computeOutAndReduceShapes(u.shape,l),h=d;n&&(h=E.expandShapeToKeepDim(d,i));let f;if((s==="max"||s==="prod")&&r.shouldExecuteOnCPU([u])){let m=r.tensorMap.get(u.dataId).values;switch(s){case"max":let g=upe(m,v.sizeFromShape(p),h,e.dtype);f=r.makeTensorInfo(h,e.dtype,g);break;case"prod":let{outVals:y,outShape:A,outDtype:x}=mpe(u.shape,u.dtype,m,l);f=r.makeTensorInfo(A,x,y);break;default:throw new Error(`${s} CPU implementation is not yet supported.`)}}else{let m=v.sizeFromShape(p),y=v.sizeFromShape(u.shape)/m,A={windowSize:m,inSize:m,batchSize:y,outSize:1},x=s==="mean"?"float32":pd(e.dtype),b=[{type:"int32",data:[m]}],w=new Rhe(A,s,x),k=r.runWebGPUProgram(w,[u],x,b);o.push(k),f=st({inputs:{x:k},attrs:{shape:h},backend:r})}return o.forEach(m=>r.disposeData(m.dataId)),f}function Bx(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return kp(r,a,o,"sum",n)}var $he={kernelName:oo,backendName:"webgpu",kernelFunc:Bx};function Dhe(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=E.decodeEinsumEquation(r,a.length);E.checkEinsumDimSizes(o.length,l,a);let{path:c,steps:u}=E.getEinsumComputePath(i,l),d=u.length,p=null,h=o.length,f=[];for(let m=0;m=0&&(p=Bx({inputs:{x:p},backend:n,attrs:{axis:c[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeData(m.dataId);return p}var _he={kernelName:Xc,backendName:"webgpu",kernelFunc:Dhe},Phe=$n({opType:Fe.ELU}),Fhe={kernelName:Pa,backendName:"webgpu",kernelFunc:Phe},Ohe=Kn({opSnippet:qe.EQUAL,dtype:"bool",cpuKernelImpl:Jde}),Mhe={kernelName:li,backendName:"webgpu",kernelFunc:Ohe},t6=$n({opType:Fe.EXP,cpuKernelImpl:Qde,dtype:"float32"}),zhe={kernelName:Fa,backendName:"webgpu",kernelFunc:t6};function Wx(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(v.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),st({inputs:{x:a},backend:s,attrs:{shape:i}})}var Lhe={kernelName:ui,backendName:"webgpu",kernelFunc:Wx},Bhe=$n({opType:Fe.EXPM1,cpuKernelImpl:epe}),Whe={kernelName:ci,backendName:"webgpu",kernelFunc:Bhe},Vhe=class{constructor(e){this.variableNames=[],this.outputShape=[],this.uniforms="value : f32;",this.workPerThread=4,this.workGroupSize=[16,1,1],this.outputShape=e,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="fill",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){return` ${Me()} { ${je()} for (var i = 0; i < ${this.workPerThread}; i = i + 1) { let flatIndex = index * ${this.workPerThread} + i; if (flatIndex < uniforms.size) { setOutputFlat(flatIndex, uniforms.value); } } } `}};function e0(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||v.inferDtype(r),a==="string"){let o=v.getArrayFromDType(a,v.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new Vhe(s),i=[{type:"float32",data:[r]}];return t.runWebGPUProgram(o,[],a,i)}}var Uhe={kernelName:su,backendName:"webgpu",kernelFunc:e0},Ghe=class{constructor(e){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.outputShape=e,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="flipLeftRight",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){return` ${Me()} { ${je()} if (index < uniforms.size) { let coords = getOutputCoords(globalId, index); let coordX = uniforms.xShape[2] - coords[2] - 1; let outputValue = getX(coords[0], coords[1], coordX, coords[3]); setOutputFlat(index, outputValue); } } `}},Hhe={kernelName:di,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new Ghe(n.shape);return s.runWebGPUProgram(r,[n],n.dtype)}},jhe=$n({opType:Fe.FLOOR,cpuKernelImpl:tpe}),qhe={kernelName:Oa,backendName:"webgpu",kernelFunc:jhe},Xhe=Kn({opSnippet:qe.INT_DIV,dtype:"int32"}),Khe={kernelName:Ma,backendName:"webgpu",kernelFunc:Xhe},Zhe=(e,t,n,s,r)=>{let a=[s,...n];return r&&a.push(r),e.createBindGroup({layout:t,entries:a.map((o,i)=>({binding:i,resource:o}))})},n6=(e,t,n,s,r,a=!1)=>{let o={dtype:r.dtype,shape:r.shape},i=$ce(s,o,t,a),l=e.createShaderModule({code:i});return e.createComputePipeline({layout:n,compute:{module:l,entryPoint:"main"}})};function s6(e,t,n,s="",r=""){return(e.workGroupSize?e.workGroupSize.join(","):"")+t.map(o=>o.length).join(",")+n.join(",")+e.variableNames.join(",")+s+r+e.shaderKey}function r6(e){let{externalImage:t,backend:n,attrs:s,outShape:r,useImport:a}=e,{numChannels:o}=s,i=v.sizeFromShape(r),l=v.computeStrides(r),c=n.makeTensorInfo(r,"int32"),u=n.getFromPixelsProgram(a?"import":"copyExternal");u.updateOutputShape(r);let d=[c.shape],p=[c.dtype,a?"import":"copyExternal"],h=s6(u,d,p),f=u.getLayout(n.device),m=n.getAndSavePipeline(h,()=>n6(n.device,u,f.pipelineLayout,[],c,!0));u.setPipeline(m),a||n.queue.copyExternalImageToTexture({source:t,origin:{x:0,y:0}},{texture:u.makeInputTexture(n.device,r[1],r[0])},[r[1],r[0]]);let g=n.tensorMap.get(c.dataId);g.bufferInfo.buffer=n.acquireBuffer(g.bufferInfo.byteSize);let y=[i,o,...l,...u.dispatch];u.setUniform(n.device,y);let A;if(a){let x={source:t};A=n.device.importExternalTexture(x)}else A=u.inputTexture.createView();return n.runFromPixelsProgram(u,g.bufferInfo.buffer,f,A,c.dataId),c}var Yhe={kernelName:sd,backendName:"webgpu",kernelFunc:Jhe},mc;function Jhe(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s;if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,l=typeof HTMLCanvasElement!="undefined"&&r instanceof HTMLCanvasElement,c=typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap,[u,d]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],p=[d,u,a];if(Z().getBool("WEBGPU_USE_IMPORT")&&o)return r6({externalImage:r,backend:n,attrs:s,outShape:p,useImport:!0});if((o||i)&&(mc==null&&(mc=document.createElement("canvas").getContext("2d")),mc.canvas.width=u,mc.canvas.height=d,mc.drawImage(r,0,0,u,d),r=mc.canvas),c||l||o||i)return r6({externalImage:r,backend:n,attrs:s,outShape:p,useImport:!1});let h=r.data,f=h;if(a!=null&&a!==4){f=new Uint8Array(r.width*r.height*a);let y=h.length,A=0;for(let x=0;x(xValue, -meanValue, offsetValue), vec3(inv, inv, 1.0))); } `}},efe={kernelName:za,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s,scale:r,offset:a,mean:o,variance:i}=e,{varianceEpsilon:l}=t,c=n,u=[s,o,i],d=null;a!=null&&(d=a.shape,u.push(a));let p=null;r!=null&&(p=r.shape,u.push(r));let h=new Qhe(s.shape,o.shape,i.shape,d,p),f=[{type:"float32",data:[l]}];return c.runWebGPUProgram(h,u,s.dtype,f)}};function tfe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=E.convertConv2DDataFormat(u),g=E.computeConv2DInfo(r.shape,a.shape,l,d,c,p,!1,m),y=o!=null,A=i!=null,x;if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))return XC({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});let b=Z().getBool("WEBGPU_USE_NAIVE_CONV2D"),w=g.inChannels%4==0&&g.outChannels%4==0,k=[g.padInfo.top,g.padInfo.left],S=[{type:"int32",data:[g.filterHeight,g.filterWidth]},{type:"int32",data:[...k]},{type:"int32",data:[g.strideHeight,g.strideWidth]},{type:"int32",data:[g.dilationHeight,g.dilationWidth]}];if(b)x=new YC(g,y,h,A);else{w?x=new KC(g,y,h,A):x=new ZC(g,y,h,A);let $=g.outShape[1]*g.outShape[2],F=g.outShape[3],R=g.filterHeight*g.filterWidth*g.inShape[3];S.push({type:"int32",data:[$]},{type:"int32",data:[F]},{type:"int32",data:[R]})}let N=[r,a];return y&&N.push(o),A&&N.push(i),n.runWebGPUProgram(x,N,r.dtype,S)}var nfe={kernelName:mo,backendName:"webgpu",kernelFunc:tfe};function sfe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:d,activation:p}=s,h=u;h==null&&(h=[1,1]),v.assert(E.eitherStridesOrDilationsAreOne(l,h),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${h}'`);let f=E.computeConv2DInfo(r.shape,a.shape,l,h,c,d,!0),m=[r,a],g=o!=null,y=i!=null;g&&m.push(o),y&&m.push(i);let A;f.batchSize===1&&f.inHeight===f.outHeight&&f.inWidth===f.outWidth&&f.strideHeight===1&&f.strideWidth===1&&f.filterHeight===f.filterWidth&&f.inChannels===f.outChannels&&f.filterHeight===3&&f.inChannels%4==0?A=new JC(f,g,p,y):A=new QC(f,g,p,y);let x=[{type:"int32",data:[f.padInfo.top,f.padInfo.left]},{type:"int32",data:[f.strideHeight,f.strideWidth]},{type:"int32",data:[f.dilationHeight,f.dilationWidth]},{type:"int32",data:[f.inHeight,f.inWidth]}];return n.runWebGPUProgram(A,m,"float32",x)}var rfe={kernelName:go,backendName:"webgpu",kernelFunc:sfe},afe=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.outputShape=t,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`gathernd_${e}`,this.size=v.sizeFromShape(this.outputShape),this.sliceDim=e,this.uniforms=`sliceDim : i32; strides : ${ln(e)};`}getUserCode(){let e;return this.sliceDim>1?e="uniforms.strides[j]":e="uniforms.strides",` ${Me()} { ${je()} let coords = getOutputCoords(globalId, index); var flattenIndex = 0; for (var j = 0; j < uniforms.sliceDim; j = j + 1) { let indexTemp = i32(round(getIndices(coords[0], j))); let strideNum = ${e}; flattenIndex = flattenIndex + indexTemp * strideNum; } if (index < uniforms.size) { setOutputFlat(index, getA(flattenIndex, coords[1])); } } `}};function ofe(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=v.sizeFromShape(s.shape),[l,c,u,d]=E.prepareAndValidate(s,r),p=st({inputs:{x:r},backend:n,attrs:{shape:[c,o]}}),h=st({inputs:{x:s},backend:n,attrs:{shape:[v.sizeFromShape(s.shape)/u,u]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let A=n.readSync(r.dataId),x=n.bufferSync(s),b=npe(A,x,s.dtype,c,o,u,d,s.shape,i);return n.makeTensorInfo(l,s.dtype,b.values)}let f=new afe(o,[c,u]),m=[{type:"int32",data:[o]},{type:"int32",data:d}],g=n.runWebGPUProgram(f,[h,p],h.dtype,m),y=st({inputs:{x:g},backend:n,attrs:{shape:l}});return n.disposeData(p.dataId),n.disposeData(h.dataId),n.disposeData(g.dataId),y}var ife={kernelName:hi,backendName:"webgpu",kernelFunc:ofe},lfe=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.outputShape=e.slice(),this.aShape=e,this.outputShape=t,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="gather",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=ufe(this.aShape,"i32");return` ${Me()} { ${je()} let resRC = getOutputCoords(globalId, index); if (index < uniforms.size) { setOutputFlat(index, getA(${e})); } } `}};function ufe(e,t="int"){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r=0,()=>`GatherV2: the index value ${w} is not in [0, ${u-1}]`)}let d=E.segment_util.collectGatherOpShapeInfo(r,a,l,i),p=v.sizeFromShape(a.shape),h=[],f=st({inputs:{x:r},backend:n,attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]}}),m=st({inputs:{x:a},backend:n,attrs:{shape:[d.batchSize,p/d.batchSize]}});h.push(f),h.push(m);let g=[d.batchSize,d.outerSize,p/d.batchSize,d.sliceSize];if(n.shouldExecuteOnCPU([r,a])){let w=n.tensorMap.get(m.dataId).values,k=Ve(m.shape,m.dtype,w),N=n.tensorMap.get(f.dataId).values,$=Ve(f.shape,f.dtype,N),F=spe($,k,g);return h.forEach(R=>n.disposeData(R.dataId)),n.makeTensorInfo(d.outputShape,F.dtype,F.values)}let y=new lfe(f.shape,g),A=n.runWebGPUProgram(y,[f,m],f.dtype);h.push(A);let x=st({inputs:{x:A},backend:n,attrs:{shape:d.outputShape}});return h.forEach(b=>n.disposeData(b.dataId)),x}var dfe={kernelName:pi,backendName:"webgpu",kernelFunc:cfe},pfe=Kn({opSnippet:qe.GREATER,cpuKernelImpl:ape,dtype:"bool"}),hfe={kernelName:fi,backendName:"webgpu",kernelFunc:pfe},ffe=Kn({opSnippet:qe.GREATER_EQUAL,dtype:"bool",cpuKernelImpl:rpe}),mfe={kernelName:La,backendName:"webgpu",kernelFunc:ffe},gfe=Kn({opSnippet:qe.LESS,dtype:"bool",cpuKernelImpl:ipe}),yfe={kernelName:gi,backendName:"webgpu",kernelFunc:gfe},Afe=Kn({opSnippet:qe.LESS_EQUAL,dtype:"bool",cpuKernelImpl:ope}),xfe={kernelName:yi,backendName:"webgpu",kernelFunc:Afe},bfe=$n({opType:Fe.LOG,cpuKernelImpl:lpe}),vfe={kernelName:Wa,backendName:"webgpu",kernelFunc:bfe},wfe=Kn({opSnippet:qe.LOGICAL_AND,dtype:"bool"}),kfe={kernelName:Ai,backendName:"webgpu",kernelFunc:wfe},Ife=$n({opType:Fe.LOGICAL_NOT}),Sfe={kernelName:lu,backendName:"webgpu",kernelFunc:Ife};function a6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s;return kp(r,a,o,"max",n)}var Cfe={kernelName:Va,backendName:"webgpu",kernelFunc:a6},Tfe=Kn({opSnippet:qe.MAX,cpuKernelImpl:cpe}),Nfe={kernelName:Ua,backendName:"webgpu",kernelFunc:Tfe};function Efe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1,u=E.computePool2DInfo(r.shape,a,o,c,i,l),d,p=[];if(u.filterHeight===1&&u.filterWidth===1){if(v.arraysEqual(u.inShape,u.outShape))return nr({inputs:{x:r},backend:n});d=new HC(u),p.push({type:"int32",data:[u.strideHeight,u.strideWidth]})}else d=new GC(u,"max"),p.push({type:"int32",data:[u.strideHeight,u.strideWidth]},{type:"int32",data:[u.padInfo.top,u.padInfo.left]},{type:"int32",data:[u.dilationHeight,u.dilationWidth]},{type:"int32",data:[u.inHeight,u.inWidth]},{type:"int32",data:[u.effectiveFilterHeight,u.effectiveFilterWidth]});return n.runWebGPUProgram(d,[r],r.dtype,p)}var Rfe={kernelName:Ga,backendName:"webgpu",kernelFunc:Efe};function $fe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{keepDims:a,axis:o}=s;return kp(r,o,a,"mean",n)}var Dfe={kernelName:Ha,backendName:"webgpu",kernelFunc:$fe};function _fe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return kp(r,a,o,"min",n)}var Pfe={kernelName:ja,backendName:"webgpu",kernelFunc:_fe},Ffe=Kn({opSnippet:qe.MIN,cpuKernelImpl:dpe}),Ofe={kernelName:qa,backendName:"webgpu",kernelFunc:Ffe},Mfe=class{constructor(e,t,n){this.uniforms="",this.variableNames=["x"],this.workGroupSize=[64,1,1],this.outputShape=t.map((s,r)=>s[0]+e[r]+s[1]),this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.xShape=e,t.map((s,r)=>{this.uniforms+=` pad${r} : vec2;`}),this.offset=n==="reflect"?0:1,this.shaderKey=`mirrorPad_${n}`,this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=this.xShape.length,t=this.xShape.map((l,c)=>`uniforms.pad${c}[0]`).join(","),n=this.xShape.map((l,c)=>`uniforms.pad${c}[0] + uniforms.xShape${e>1?`[${c}]`:""}`).join(","),s=e===1?"start":"start[i]",r=e===1?"end":"end[i]",a=e===1?"outC":"outC[i]",o=ln(e),i=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return` ${Me()} { ${je()} let start = ${o}(${t}); let end = ${o}(${n}); var outC = getOutputCoords(globalId, index); if (index < uniforms.size) { for (var i = 0; i < ${e}; i = i + 1) { if (${a} < ${s}) { ${a} = ${s} * 2 - ${a} - ${this.offset}; } elseif(${a} >= ${r}) { ${a} = (${r} - 1) * 2 - ${a} + ${this.offset}; } } let coords = outC - start; setOutputFlat(index, getX(${i})); } } `}},zfe={kernelName:Xa,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{paddings:r,mode:a}=t,o=n,i=r.map(u=>({type:"int32",data:[u[0],u[1]]})),l=new Mfe(s.shape,r,a);return o.runWebGPUProgram(l,[s],s.dtype,i)}};function Lfe(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.tensorMap.get(s.dataId),[o,i]=hpe(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r=new Jm(s.shape,Fe.NEG);return n.runWebGPUProgram(r,[s],s.dtype)}var Bfe={kernelName:xi,backendName:"webgpu",kernelFunc:Lfe};function Wfe(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,c=n.readSync(r.dataId),u=n.readSync(a.dataId),{selectedIndices:d}=Ys.nonMaxSuppressionV3Impl(c,u,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var Vfe={kernelName:vi,backendName:"webgpu",kernelFunc:Wfe};function Ufe(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:c}=s,u=n.readSync(r.dataId),d=n.readSync(a.dataId),p=o,h=i,f=l,m=c,{selectedIndices:g,selectedScores:y}=Ys.nonMaxSuppressionV5Impl(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var Gfe={kernelName:wi,backendName:"webgpu",kernelFunc:Ufe};function t0(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=wp({inputs:{input:s},backend:n}),a=t0({inputs:{x:r},backend:n}),o=Qm({inputs:{input:s},backend:n}),i=t0({inputs:{x:o},backend:n}),l=fc({inputs:{real:a,imag:i},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),l}else return e0({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var Hfe={kernelName:Bi,backendName:"webgpu",kernelFunc:t0};function o6(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=wp({inputs:{input:s},backend:n}),a=o6({inputs:{x:r},backend:n}),o=Qm({inputs:{input:s},backend:n}),i=t0({inputs:{x:o},backend:n}),l=fc({inputs:{real:a,imag:i},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),l}else return e0({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var jfe={kernelName:ki,backendName:"webgpu",kernelFunc:o6};function qfe(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Wx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{v.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=Wx({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=qC({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeData(u.dataId)),c}var Xfe={kernelName:Si,backendName:"webgpu",kernelFunc:qfe},Kfe=class{constructor(e,t){this.variableNames=["x"],this.uniforms="constantValue : f32;",this.workGroupSize=[64,1,1],this.outputShape=t.map((n,s)=>n[0]+e[s]+n[1]),this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),t.map((n,s)=>{this.uniforms+=` pad${s} : vec2;`}),this.xShape=e,this.shaderKey="pad",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=this.xShape.length,t=ln(e),n=this.xShape.map((u,d)=>`uniforms.pad${d}[0]`).join(","),s=this.xShape.map((u,d)=>`uniforms.pad${d}[0] + uniforms.xShape${e>1?`[${d}]`:""}`).join(","),r=e>1?`${t}(${n})`:`${n}`,a=e>1?`${t}(${s})`:`${s}`,o=e>1?"any(outC < start)":"outC < start",i=e>1?"any(outC >= end)":"outC >= end",l=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return` ${Me()} { ${je()} let start = ${r}; let end = ${a}; if (index < uniforms.size) { let outC = getOutputCoords(globalId, index); if (${o} || ${i}) { setOutputFlat(index, uniforms.constantValue); } else { let coords = outC - start; setOutputFlat(index, getX(${l})); } } } `}},i6=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(a.every(c=>v.arraysEqual(c,[0,0])))return nr({inputs:{x:r},backend:n});if(v.sizeFromShape(r.shape)===0){let c=a.map((u,d)=>u[0]+r.shape[d]+u[1]);return e0({backend:n,attrs:{shape:c,value:o,dtype:r.dtype}})}let i=[{type:"float32",data:[o]}];a.map(c=>i.push({type:"int32",data:[c[0],c[1]]}));let l=new Kfe(r.shape,a);return n.runWebGPUProgram(l,[r],r.dtype,i)},Zfe={kernelName:Za,backendName:"webgpu",kernelFunc:i6},Yfe=Kn({opSnippet:qe.POW}),Jfe={kernelName:Ya,backendName:"webgpu",kernelFunc:Yfe};function Qfe(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=new WC(qe.PRELU,s.shape,r.shape);return n.runWebGPUProgram(a,[s,r],"float32")}var eme={kernelName:Ja,backendName:"webgpu",kernelFunc:Qfe};function tme(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return kp(r,a,o,"prod",n)}var nme={kernelName:Ci,backendName:"webgpu",kernelFunc:tme},sme=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=gpe(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},rme={kernelName:du,backendName:"webgpu",kernelFunc:sme},l6=Kn({opSnippet:qe.DIV}),ame={kernelName:_a,backendName:"webgpu",kernelFunc:l6},ome=$n({opType:Fe.RELU}),ime={kernelName:Qa,backendName:"webgpu",kernelFunc:ome},lme=$n({opType:Fe.RELU6}),ume={kernelName:to,backendName:"webgpu",kernelFunc:lme},cme=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.alignCorners=s,this.halfPixelCenters=r,this.shaderKey=`resizeBilinear_${s}_${r}_${this.outputShape[1]>1}_${this.outputShape[2]>1}`}getUserCode(){let e=this.alignCorners&&this.outputShape[1]>1,t=this.alignCorners&&this.outputShape[2]>1;return` ${Me()} { ${je()} let coords = getOutputCoords(globalId, index); if (all(coords < uniforms.outShape)) { let b = coords[0]; let d = coords[3]; let rc = coords.yz; let effectiveInSize = vec2( ${e?"f32(uniforms.xShape.y) - 1.0":"f32(uniforms.xShape.y)"}, ${t?"f32(uniforms.xShape.z) - 1.0":"f32(uniforms.xShape.z)"}); let effectiveOutSize = vec2( ${e?"f32(uniforms.outShape.y) - 1.0":"f32(uniforms.outShape.y)"}, ${t?"f32(uniforms.outShape.z) - 1.0":"f32(uniforms.outShape.z)"}); let effectiveInputOverOutputRatioRC = effectiveInSize / effectiveOutSize; // Fractional source index let sourceFracIndexRC = ${this.halfPixelCenters?"(vec2(rc) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":"vec2(rc) * effectiveInputOverOutputRatioRC"}; // Compute the four integer indices. let sourceFloorRC = vec2(sourceFracIndexRC); let sourceCeilRC = vec2( min(vec2(uniforms.xShape.yz) - vec2(1.0), ceil(sourceFracIndexRC))); let topLeft = getX(b, sourceFloorRC.x, sourceFloorRC.y, d); let bottomLeft = getX(b, sourceCeilRC.x, sourceFloorRC.y, d); let topRight = getX(b, sourceFloorRC.x, sourceCeilRC.y, d); let bottomRight = getX(b, sourceCeilRC.x, sourceCeilRC.y, d); let fracRC = sourceFracIndexRC - vec2(sourceFloorRC); let top = topLeft + (topRight - topLeft) * fracRC.y; let bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y; let newValue = top + (bottom - top) * fracRC.x; setOutput(b, coords[1], coords[2], d, newValue); } } `}};function dme(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,size:o,halfPixelCenters:i}=s,[l,c]=o,u=new cme(r.shape,l,c,a,i);return n.runWebGPUProgram(u,[r],"float32")}var pme={kernelName:eo,backendName:"webgpu",kernelFunc:dme},hme=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.alignCorners=s,this.halfPixelCenters=r,this.shaderKey=`resizeNearest_${s}_${this.outputShape[1]>1}_${this.outputShape[2]>1}_${r}`}getUserCode(){let e=this.alignCorners?"0.5":"0.0",t;this.halfPixelCenters?t="max((vec2(rc) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":t="vec2(rc) * effectiveInputOverOutputRatioRC";let n=this.alignCorners&&this.outputShape[1]>1,s=this.alignCorners&&this.outputShape[2]>1;return` ${Me()} { ${je()} let coords = getOutputCoords(globalId, index); if (all(coords < uniforms.outShape)) { let b = coords[0]; let d = coords[3]; let rc = coords.yz; let effectiveInSize = vec2( ${n?"f32(uniforms.xShape.y) - 1.0":"f32(uniforms.xShape.y)"}, ${s?"f32(uniforms.xShape.z) - 1.0":"f32(uniforms.xShape.z)"}); let effectiveOutSize = vec2( ${n?"f32(uniforms.outShape.y) - 1.0":"f32(uniforms.outShape.y)"}, ${s?"f32(uniforms.outShape.z) - 1.0":"f32(uniforms.outShape.z)"}); let effectiveInputOverOutputRatioRC = effectiveInSize / effectiveOutSize; // Fractional source index let sourceFracIndexRC = ${t}; // Compute the coordinators of nearest neighbor point. let inputShapeRC = vec2(f32(uniforms.xShape.y), f32(uniforms.xShape.z)); let sourceNearestRC = vec2( min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${e}))); let newValue = getX(b, sourceNearestRC.x, sourceNearestRC.y, d); setOutput(b, coords[1], coords[2], d, newValue); } } `}};function fme(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,u=new hme(r.shape,l,c,a,o);return n.runWebGPUProgram(u,[r],r.dtype)}var mme={kernelName:hu,backendName:"webgpu",kernelFunc:fme},gme=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.outputShape=e,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`centerX : f32; centerY : f32; sinRadians : f32; cosRadians : f32;`,this.shaderKey="rotate",this.size=v.sizeFromShape(this.outputShape),this.outputShape=e,typeof t=="number"?(this.uniforms+=" fillValue : f32;",this.fillSnippet="var outputValue = uniforms.fillValue;",this.shaderKey+="_float"):(this.uniforms+=" fillValue : vec3;",this.fillSnippet="var outputValue = uniforms.fillValue[coords[3]];",this.shaderKey+="_vec3")}getUserCode(){return` ${Me()} { ${je()} if (index < uniforms.size) { let coords = getOutputCoords(globalId, index); let coordXFloat = (f32(coords[2]) - uniforms.centerX) * uniforms.cosRadians - (f32(coords[1]) - uniforms.centerY) * uniforms.sinRadians; let coordYFloat = (f32(coords[2]) - uniforms.centerX) * uniforms.sinRadians + (f32(coords[1]) - uniforms.centerY) * uniforms.cosRadians; let coordX = i32(round(coordXFloat + uniforms.centerX)); let coordY = i32(round(coordYFloat + uniforms.centerY)); ${this.fillSnippet} if(coordX >= 0 && coordX < uniforms.xShape[2] && coordY >= 0 && coordY < uniforms.xShape[1]) { outputValue = getX(coords[0], coordY, coordX, coords[3]); } setOutputFlat(index, outputValue); } } `}},yme={kernelName:Wi,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new gme(s.shape,a),[c,u]=E.getImageCenter(o,s.shape[1],s.shape[2]),d=[{type:"float32",data:[c]},{type:"float32",data:[u]},{type:"float32",data:[Math.sin(r)]},{type:"float32",data:[Math.cos(r)]}];return typeof a=="number"?d.push({type:"float32",data:[Number.parseFloat(a.toFixed(2))]}):d.push({type:"float32",data:a}),i.runWebGPUProgram(l,[s],s.dtype,d)}},Ame=$n({opType:Fe.RSQRT,cpuKernelImpl:ype}),xme={kernelName:no,backendName:"webgpu",kernelFunc:Ame},u6=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.workGroupSize=[64,1,1],this.workPerThread=4,this.outputShape=a,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let i=t>1;this.shaderKey=`scatter_${n}_${s}_${i}`,this.size=v.sizeFromShape(this.outputShape);let l=ln(r.length);this.uniforms=`updateSize : i32; sliceDim : i32; strides: ${l};`;let c="";n===1?c="i":n===2&&(c="i, j"),this.indicesSnippet=`getIndices(${c})`;let u="";s===1?u="i":s===2&&(u="i, coords[1]"),this.updatesSnippet=`getUpdates(${u})`,this.strideString=i?"uniforms.strides[j]":"uniforms.strides"}getUserCode(){return` ${Me()} { ${je()} let globalIndex = index * ${this.workPerThread}; if (globalIndex < uniforms.size) { var sum = vec4(0.0); var found = vec4(false); for (var i = 0; i < uniforms.updateSize; i = i + 1) { var flattenedIndex = 0; for (var j = 0; j < uniforms.sliceDim; j = j + 1) { let indexInside = i32(round(${this.indicesSnippet})); flattenedIndex = flattenedIndex + indexInside * ${this.strideString}; } for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) { let curIndex = globalIndex + innerIndex; let coords = getCoordsFromFlatIndex(curIndex); if (flattenedIndex == coords[0]) { sum[innerIndex] = sum[innerIndex] + ${this.updatesSnippet}; found[innerIndex] = true; } } } for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) { let curIndex = globalIndex + innerIndex; if (curIndex < uniforms.size) { setOutputFlat(curIndex, mix(getDefaultValue(), sum[innerIndex], f32(found[innerIndex]))); } } } }`}};function bme(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:c,strides:u,outputSize:d}=E.calculateShapes(a,r,o),p=[d/c,c];if(d===0)return n.makeTensorInfo(o,r.dtype);let h=st({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=st({inputs:{x:a},backend:n,attrs:{shape:[l,c]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=[{type:"int32",data:[l]},{type:"int32",data:[i]},{type:"int32",data:u}],y=new u6(l,i,h.shape.length,f.shape.length,u,p),A=n.runWebGPUProgram(y,[f,h,m],f.dtype,g),x=st({inputs:{x:A},backend:n,attrs:{shape:o}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(A.dataId),n.disposeData(m.dataId),x}var vme={kernelName:Ri,backendName:"webgpu",kernelFunc:bme},wme=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.workGroupSize=[64,1,1],this.outputShape=t,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.cRank=e,this.rank=n,this.shaderKey="select",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e,t;if(this.rank>4)throw Error(`Where for rank ${this.rank} is not yet supported`);if(this.rank===1)t="resRC",e="resRC";else{let s=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[],a=[];for(let o=0;o= 1.0) { setOutputFlat(index, getA(${t})); } else { setOutputFlat(index, getB(${t})); } } } `}};function kme(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new wme(s.shape.length,r.shape,r.shape.length);return n.runWebGPUProgram(o,[s,r,a],Bn(r.dtype,a.dtype))}var Ime={kernelName:$i,backendName:"webgpu",kernelFunc:kme},Sme=$n({opType:Fe.SIGMOID}),Cme={kernelName:ro,backendName:"webgpu",kernelFunc:Sme},Tme=$n({opType:Fe.SIN}),Nme={kernelName:so,backendName:"webgpu",kernelFunc:Tme},Eme=$n({opType:Fe.SINH}),Rme={kernelName:_i,backendName:"webgpu",kernelFunc:Eme},c6=Kn({opSnippet:qe.SUB,cpuKernelImpl:wpe,supportsComplex:!0}),$me={kernelName:uo,backendName:"webgpu",kernelFunc:c6};function Dme(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=v.parseAxisParam([a],r.shape),i=a6({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=E.expandShapeToKeepDim(i.shape,o),c=st({inputs:{x:i},backend:n,attrs:{shape:l}}),u=c6({inputs:{a:r,b:c},backend:n}),d=t6({inputs:{x:u},backend:n}),p=Bx({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),h=st({inputs:{x:p},backend:n,attrs:{shape:l}}),f=l6({inputs:{a:d,b:h},backend:n});return n.disposeData(i.dataId),n.disposeData(c.dataId),n.disposeData(u.dataId),n.disposeData(d.dataId),n.disposeData(p.dataId),n.disposeData(h.dataId),f}var _me={kernelName:io,backendName:"webgpu",kernelFunc:Dme},Pme=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((y,A)=>y*A),l=[[0,0]];l.push(...o);for(let y=1+a.length;yn.disposeData(y.dataId)),g},Fme={kernelName:Pi,backendName:"webgpu",kernelFunc:Pme};function Ome(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:c,strides:u,outputSize:d}=E.calculateShapes(a,r,i),p=!1,h=[{type:"int32",data:[c]},{type:"int32",data:[l]},{type:"int32",data:u}],f=new u6(c,l,r.shape.length,a.shape.length,u,[d,1],p),m=n.runWebGPUProgram(f,[a,r,o],a.dtype,h),g=st({inputs:{x:m},backend:n,attrs:{shape:i}});return n.disposeData(m.dataId),g}var Mme={kernelName:ed,backendName:"webgpu",kernelFunc:Ome};function zme(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=E.prepareSplitSize(r,a,i),c=r.shape.length,u=new Array(c).fill(0),d=r.shape.slice();return l.map(p=>{let h=[...d];h[i]=p;let f=vp({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[i]+=p,f})}var Lme={kernelName:Fi,backendName:"webgpu",kernelFunc:zme},Bme=$n({opType:Fe.SQRT}),Wme={kernelName:ao,backendName:"webgpu",kernelFunc:Bme},Vme={kernelName:yu,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t,r=new Jm(n.shape,Fe.SQUARE);return s.runWebGPUProgram(r,[n],n.dtype)}},Ume=Kn({opSnippet:qe.SQUARED_DIFFERENCE}),Gme={kernelName:lo,backendName:"webgpu",kernelFunc:Ume},Hme=class{constructor(e){this.variableNames=["x"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.outputShape=e,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let t=ln(this.outputShape.length);this.uniforms=`begin : ${t}; strides : ${t}; `,this.shaderKey="stridedSlice",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=this.outputShape.length,t="";if(e===1)t="coords * uniforms.strides + uniforms.begin";else{let s=0;t=this.outputShape.map((r,a)=>(s++,this.outputShape.length===1?`coords * uniforms.strides[${a}] + uniforms.begin[${a}]`:`coords[${s-1}] * uniforms.strides[${a}] + uniforms.begin[${a}]`)).join(",")}return` ${Me()} { ${je()} if (index < uniforms.size) { let coords = getOutputCoords(globalId, index); setOutputFlat(index, getX(${t})); } } `}};function jme(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s,{nonStrided:h,$begin:f,$strides:m,size:g,newShape:y,outShape:A}=yn.sliceInfo(r.shape,a,o,i,l,c,u,d,p),x=st({inputs:{x:r},backend:n,attrs:{shape:y}}),b;if(h){let k=vp({inputs:{x},backend:n,attrs:{begin:f,size:g}});b=st({inputs:{x:k},backend:n,attrs:{shape:A}}),n.disposeData(k.dataId)}else if(A.some(k=>k===0))b=n.makeTensorInfo(A,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let N=n.tensorMap.get(x.dataId).values,$=Ve(x.shape,x.dtype,N),F=bpe(A,$,m,f);b=n.makeTensorInfo(A,x.dtype,F.values)}else{let S=new Hme(A),N=[{type:"int32",data:f},{type:"int32",data:m}];b=n.runWebGPUProgram(S,[x],x.dtype,N)}let w=st({inputs:{x:b},backend:n,attrs:{shape:A}});return n.disposeData(x.dataId),n.disposeData(b.dataId),w}var qme={kernelName:Oi,backendName:"webgpu",kernelFunc:jme};function Xme(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:c}=s,{data:u,dataSplits:d}=t,p=n.readSync(u.dataId),h=n.readSync(d.dataId),[f,m]=vpe(p,h,r,a,o,i,l,c);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var Kme={kernelName:td,backendName:"webgpu",kernelFunc:Xme},Zme=$n({opType:Fe.TANH}),Yme={kernelName:co,backendName:"webgpu",kernelFunc:Zme},Jme=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[64,1,1];let n=new Array(e.length);for(let s=0;s=5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`(resRC % ${t}aShape)`;let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r=5){let l=n.readSync(r.dataId),c=r.dtype==="string"?l.map(p=>v.decodeString(p)):l,u=Ve(r.shape,r.dtype,c),d=kpe(u,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new Jme(r.shape,a);return n.runWebGPUProgram(o,[r],r.dtype)}var t0e={kernelName:Kr,backendName:"webgpu",kernelFunc:e0e},n0e=class{constructor(e){this.variableNames=["Image","Transforms"],this.uniforms="interpolationModeId : i32; fillModeId : i32; fillValue : f32;",this.workGroupSize=[64,1,1],this.outputShape=e,this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="transform"}getUserCode(){return` fn mapCoord(outCoord : f32, len : f32) -> f32{ var inCoord = outCoord; if(uniforms.fillModeId == 2) { if (inCoord < 0.0) { if (len <= 1.0) { inCoord = 0.0; } else { let sz2 = 2.0 * len; if (inCoord < sz2) { inCoord = sz2 * f32(i32(f32(-inCoord / sz2))) + inCoord; } if (inCoord < -len) { inCoord = inCoord + sz2; } else { inCoord = -inCoord - 1.0; } } } elseif (inCoord > len - 1.0) { if (len <= 1.0) { inCoord = 0.0; } else { let sz2 = 2.0 * len; inCoord = inCoord - sz2 * f32(i32(f32(inCoord / sz2))); if (inCoord >= len) { inCoord = sz2 - inCoord - 1.0; } } } return clamp(inCoord, 0.0, len - 1.0); } elseif (uniforms.fillModeId == 3) { if (inCoord < 0.0) { if (len <= 1.0) { inCoord = 0.0; } else { let sz = len - 1.0; inCoord = inCoord + len * (f32(i32(f32(-inCoord / sz))) + 1.0); } } elseif (inCoord > len - 1.0) { if (len <= 1.0) { inCoord = 0.0; } else { let sz = len - 1.0; inCoord = inCoord - len * f32(i32(f32(inCoord / sz))); } } return clamp(inCoord, 0.0, len - 1.0); } elseif (uniforms.fillModeId == 4) { return clamp(outCoord, 0.0, len - 1.0); } return outCoord; } fn readWithFillValue(batch : i32, coordY : i32, coordX : i32, channel : i32) -> f32 { var outputValue : f32; if (0 <= coordY && coordY < uniforms.imageShape[1] && 0 <= coordX && coordX < uniforms.imageShape[2]) { outputValue = getImage(batch, coordY, coordX, channel); } else { outputValue = uniforms.fillValue; } return outputValue; } ${Me()} { ${je()} let coords = getOutputCoords(globalId, index); if (coordsInBounds4D(coords, uniforms.outShape)) { var outputValue : f32; let batch = coords[0]; let x = coords[2]; let y = coords[1]; let channel = coords[3]; let xf = f32(x); let yf = f32(y); let a1 = getTransforms(batch, 0); let a2 = getTransforms(batch, 1); let a3 = getTransforms(batch, 2); let b1 = getTransforms(batch, 3); let b2 = getTransforms(batch, 4); let b3 = getTransforms(batch, 5); let c1 = getTransforms(batch, 6); let c2 = getTransforms(batch, 7); let projection = c1 * xf + c2 * yf + 1.0; if (projection == 0.0) { outputValue = uniforms.fillValue; } else { let inX = (a1 * xf + a2 * yf + a3) / projection; let inY = (b1 * xf + b2 * yf + b3) / projection; let mapX = mapCoord(inX, f32(uniforms.imageShape[2])); let mapY = mapCoord(inY, f32(uniforms.imageShape[1])); if (uniforms.interpolationModeId == 1) { let coordY = i32(round(mapY)); let coordX = i32(round(mapX)); outputValue = readWithFillValue(batch, coordY, coordX, channel); } else { let yFloor = floor(mapY); let xFloor = floor(mapX); let yCeil = yFloor + 1.0; let xCeil = xFloor + 1.0; let valueYFloor = (xCeil - mapX) * readWithFillValue(batch, i32(yFloor), i32(xFloor), channel) + (mapX - xFloor) * readWithFillValue(batch, i32(yFloor), i32(xCeil), channel); let valueYCeil = (xCeil - mapX) * readWithFillValue(batch, i32(yCeil), i32(xFloor), channel) + (mapX - xFloor) * readWithFillValue(batch, i32(yCeil), i32(xCeil), channel); outputValue = (yCeil - mapY) * valueYFloor + (mapY - yFloor) * valueYCeil; } } setOutput(coords[0], coords[1], coords[2], coords[3], outputValue); } } `}};function s0e(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=s,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],y=new n0e(g),A=o==="nearest"?1:2,x;switch(i){case"constant":x=1;break;case"reflect":x=2;break;case"wrap":x=3;break;case"nearest":x=4;break;default:x=1;break}let b=[{type:"int32",data:[A]},{type:"int32",data:[x]},{type:"float32",data:[l]}];return n.runWebGPUProgram(y,[r,a],"float32",b)}var r0e={kernelName:zi,backendName:"webgpu",kernelFunc:s0e};function a0e(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],c=new Array(i-1),u=0;for(let m=0;mn.disposeData(m.dataId)),f}var o0e={kernelName:Li,backendName:"webgpu",kernelFunc:a0e},i0e=[Gde,Cpe,Npe,$pe,Mpe,Lpe,Wpe,Upe,Xpe,Jpe,ehe,rhe,Xde,lhe,phe,ghe,Ahe,bhe,khe,Che,Nhe,_he,Fhe,Mhe,Lhe,zhe,Whe,Uhe,Hhe,Yhe,qhe,Khe,efe,nfe,rfe,ife,dfe,hfe,mfe,qde,ohe,yfe,xfe,vfe,kfe,Sfe,Cfe,Nfe,Rfe,Dfe,Pfe,Ofe,zfe,Ehe,Bfe,Vfe,Gfe,Kpe,jfe,Xfe,Zfe,eme,nme,Jfe,rme,Zpe,ame,ime,ume,Vde,pme,mme,yme,xme,vme,Ime,Cme,Nme,Rme,jpe,qme,Kme,_me,Fme,Lme,Mme,Wme,Vme,Gme,$me,$he,Yme,t0e,r0e,Fpe,o0e,Hfe];for(let e of i0e)Yr(e);var l0e=class{constructor(e){this.device=e,this.numUsedBuffers=0,this.numFreeBuffers=0,this.freeBuffers=new Map,this.usedBuffers=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireBuffer(e,t){let n=d6(e,t);if(this.freeBuffers.has(n)||this.freeBuffers.set(n,[]),this.usedBuffers.has(n)||this.usedBuffers.set(n,[]),this.numBytesUsed+=e,this.numUsedBuffers++,this.freeBuffers.get(n).length>0){this.numFreeBuffers--;let r=this.freeBuffers.get(n).shift();return this.usedBuffers.get(n).push(r),r}this.numBytesAllocated+=e;let s=this.device.createBuffer({size:e,usage:t});return this.usedBuffers.get(n).push(s),s}releaseBuffer(e,t,n){if(this.freeBuffers==null)return;let s=d6(t,n);this.freeBuffers.has(s)||this.freeBuffers.set(s,[]),this.freeBuffers.get(s).push(e),this.numFreeBuffers++,this.numUsedBuffers--;let r=this.usedBuffers.get(s),a=r.indexOf(e);if(a<0)throw new Error("Cannot release a buffer that was never provided by this buffer manager");r.splice(a,1),this.numBytesUsed-=t}getNumUsedBuffers(){return this.numUsedBuffers}getNumFreeBuffers(){return this.numFreeBuffers}reset(){this.freeBuffers=new Map,this.usedBuffers=new Map,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0}dispose(){this.freeBuffers==null&&this.usedBuffers==null||(this.freeBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.usedBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.freeBuffers=null,this.usedBuffers=null,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0)}};function d6(e,t){return`${e}_${t}`}var p6=class{constructor(){this.outputShape=[0],this.variableNames=[],this.workGroupSize=[256,1,1],this.lastUniformData=[],this.inputTexture=null,this.layout=null,this.lastPixelSize={width:0,height:0},this.disposed=!1,this.shaderKey="fromPixels",this.useImport=!1}updateOutputShape(e){v.arraysEqual(this.outputShape,e)||(this.outputShape=e,this.workPerThread=e[2],this.dispatchLayout=it(this.outputShape),this.dispatch=Be(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]))}makeFromPixelsSource(){let e=this.useImport?"textureLoad(src, vec2(coords.yx));":"textureLoad(src, vec2(coords.yx), 0)";return` [[binding(1), group(0)]] var src: ${this.useImport?"texture_external":"texture_2d"}; ${Me()} { ${je()} let flatIndexBase = index * uniforms.numChannels; let coords = getCoordsFromFlatIndex(flatIndexBase); let values = ${e}; for (var i = 0; i < uniforms.numChannels; i = i + 1) { let flatIndex = flatIndexBase + i; if (flatIndex < uniforms.size) { result.numbers[flatIndex] = i32(floor(255.0 * values[i])); } } } `}getUserCode(){return this.makeFromPixelsSource()}setPipeline(e){this.pipeline=e}setUniform(e,t){if(!this.uniform){let n=e.createBuffer({size:t.length*4,usage:GPUBufferUsage.UNIFORM|GPUBufferUsage.COPY_DST});this.uniform=n}!t||t.length===this.lastUniformData.length&&t.every((n,s)=>n===this.lastUniformData[s])||(e.queue.writeBuffer(this.uniform,0,new Uint32Array(t)),this.lastUniformData=t)}makeInputTexture(e,t,n){return(!this.inputTexture||this.lastPixelSize.width!==t||this.lastPixelSize.height!==n)&&(this.inputTexture&&this.inputTexture.destroy(),this.inputTexture=e.createTexture({size:[t,n],format:"rgba8unorm",usage:GPUTextureUsage.COPY_DST|GPUTextureUsage.RENDER_ATTACHMENT|GPUTextureUsage.TEXTURE_BINDING}),this.lastPixelSize.width=t,this.lastPixelSize.height=n),this.inputTexture}dispose(){this.disposed||(this.uniform&&this.uniform.destroy(),this.inputTexture&&this.inputTexture.destroy(),this.disposed=!0)}getLayout(e){return this.layout===null&&(this.layout=this.createTextureLayout(e)),this.layout}createTextureLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),t.push({binding:1,visibility:GPUShaderStage.COMPUTE,texture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let n=e.createBindGroupLayout({entries:t}),s=e.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}},u0e=class extends p6{constructor(){super(...arguments);this.layout=null,this.useImport=!0}getUserCode(){return this.makeFromPixelsSource()}getLayout(e){return this.layout===null&&(this.layout=this.createTextureImportLayout(e)),this.layout}createTextureImportLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),t.push({binding:1,visibility:GPUShaderStage.COMPUTE,externalTexture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let n=e.createBindGroupLayout({entries:t}),s=e.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}},c0e=Z().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"),n0=class extends Ul{constructor(e,t=!1){super();if(this.commandQueueOwnedIds=new WeakSet,this.tensorDisposalQueue=[],this.uniformDisposalQueue=[],this.disposed=!1,this.uploadWaitMs=0,this.downloadWaitMs=0,this.dispatchNumberInEncoder=0,!Px())throw new Error("WebGPU is not supported on this device");this.layoutCache={},this.pipelineCache={},this.device=e,this.queue=e.queue,this.currentCommandEncoder=null,this.currentComputePass=null,this.supportTimeQuery=t,this.bufferManager=new l0e(this.device),this.tensorMap=new Bc(this,ns()),this.supportTimeQuery&&(this.querySet=this.device.createQuerySet({type:"timestamp",count:2})),Z().getBool("WEBGPU_USE_PROFILE_TOOL")&&(this.dummyCanvas=document.createElement("canvas"),this.dummyCanvas.width=1,this.dummyCanvas.height=1,this.dummyContext=this.dummyCanvas.getContext("webgpu"),this.dummyContext.configure({device:e,format:"bgra8unorm"}),document.body.appendChild(this.dummyCanvas))}nextDataId(){return n0.nextDataId++}floatPrecision(){return 32}defaultGpuBufferUsage(){return GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC|GPUBufferUsage.COPY_DST}flushDisposalQueue(){this.tensorDisposalQueue.forEach(e=>{this.maybeReleaseBuffer(e),this.tensorMap.delete(e)}),this.uniformDisposalQueue.forEach(e=>this.bufferManager.releaseBuffer(e.buffer,e.byteSize,e.usage)),this.tensorDisposalQueue=[],this.uniformDisposalQueue=[]}disposeData(e,t=!1){if(this.tensorMap.has(e)){let n=this.tensorMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;if(this.commandQueueOwnedIds.has(e))return this.tensorDisposalQueue.push(e),!1;this.maybeReleaseBuffer(e);let{complexTensorInfos:s}=this.tensorMap.get(e);s!=null&&(this.disposeData(s.real.dataId,!0),this.disposeData(s.imag.dataId,!0)),this.tensorMap.delete(e)}return!0}memory(){return{numBytesInGPU:this.bufferManager.numBytesUsed,numBytesAllocatedInGPU:this.bufferManager.numBytesAllocated,unreliable:!1}}getBufferManager(){return this.bufferManager}acquireBuffer(e,t=this.defaultGpuBufferUsage()){return this.bufferManager.acquireBuffer(e,t)}maybeReleaseBuffer(e){let t=this.tensorMap.get(e);t!=null&&t.bufferInfo.buffer!=null&&(this.bufferManager.releaseBuffer(t.bufferInfo.buffer,t.bufferInfo.byteSize,t.bufferInfo.usage),t.bufferInfo.buffer=null)}refCount(e){return this.tensorMap.has(e)?this.tensorMap.get(e).refCount:0}incRef(e){let t=this.tensorMap.get(e);t.refCount++}decRef(e){if(this.tensorMap.has(e)){let t=this.tensorMap.get(e);t.refCount--}}write(e,t,n){if(n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()},r=v.sizeFromShape(t)*_x(n);return n==="bool"&&e instanceof Uint8Array&&(e=Int32Array.from(e)),this.tensorMap.set(s,{dtype:n,values:e,bufferInfo:{byteSize:r,usage:this.defaultGpuBufferUsage()},refCount:1}),s}move(e,t,n,s,r){if(s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a=v.sizeFromShape(n)*_x(s);this.tensorMap.set(e,{dtype:s,values:t,bufferInfo:{byteSize:a,usage:this.defaultGpuBufferUsage()},refCount:r})}submitQueue(){this.ensureComputePassEnded(),this.queue.submit([this.currentCommandEncoder.finish()]),this.currentCommandEncoder=null,this.dispatchNumberInEncoder=0,this.commandQueueOwnedIds=new WeakSet,this.flushDisposalQueue()}getBuffer(e){return this.uploadToGPU(e),this.tensorMap.get(e).bufferInfo.buffer}getFromPixelsProgram(e){switch(e){case"copyExternal":return this.fromPixelProgram||(this.fromPixelProgram=new p6),this.fromPixelProgram;case"import":return this.fromPixelImportProgram||(this.fromPixelImportProgram=new u0e),this.fromPixelImportProgram;default:v.assert(!1,()=>"Unsupported fromPixels shape");return}}ensureCommandEncoderReady(){this.currentCommandEncoder||(this.currentCommandEncoder=this.device.createCommandEncoder())}ensureComputePassEnded(){this.currentComputePass&&(this.currentComputePass.endPass(),this.currentComputePass=null)}getComputePass(){return this.currentComputePass||(this.currentComputePass=this.currentCommandEncoder.beginComputePass()),this.currentComputePass}async getBufferData(e){if(e.values!=null)return e.values;let t=this.acquireBuffer(e.bufferInfo.byteSize,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(e.bufferInfo.buffer,0,t,0,e.bufferInfo.byteSize),this.submitQueue(),await t.mapAsync(GPUMapMode.READ);let n=t.getMappedRange().slice(0);return t.unmap(),t!=null&&this.bufferManager.releaseBuffer(t,e.bufferInfo.byteSize,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ),Z().getBool("WEBGPU_USE_PROFILE_TOOL")&&(v.assert(this.dummyContext!==void 0,()=>"Fail to get context for profiling tool"),this.dummyContext.getCurrentTexture()),n}convertAndCacheOnCPU(e,t){let n=this.tensorMap.get(e);return this.maybeReleaseBuffer(e),n.values=t,n.values}readSync(e){let t=this.tensorMap.get(e),{values:n}=t;if(n==null)throw new Error("WebGPU readSync is only available for CPU-resident tensors.");return n}async read(e){if(!this.tensorMap.has(e))throw new Error(`Tensor ${e} was not registered!`);let t=this.tensorMap.get(e),{values:n}=t;if(n!=null)return this.convertAndCacheOnCPU(e,n);let s;if(t.dtype==="complex64"){let r=await Promise.all([this.read(t.complexTensorInfos.real.dataId),this.read(t.complexTensorInfos.imag.dataId)]),a=r[0],o=r[1];s=E.mergeRealAndImagArrays(a,o)}else{let r=await this.getBufferData(t);s=FC(r,t.dtype)}return this.convertAndCacheOnCPU(e,s),s}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>v.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ve(e.shape,e.dtype,n)}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),a=v.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null},i=await Promise.all(r);return o.kernelMs=v.sum(i),o.getExtraProfileInfo=()=>i.map((l,c)=>({name:a[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", "),this.uploadWaitMs=0,this.downloadWaitMs=0,o}getAndSavePipeline(e,t){return e in this.pipelineCache||(this.pipelineCache[e]=t()),this.pipelineCache[e]}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}tensorToBinding(e){if(!e)return null;let t=this.tensorMap.get(e.dataId);return{offset:0,size:t.bufferInfo.byteSize,buffer:t.bufferInfo.buffer}}async getQueryTime(e){return this.supportTimeQuery?this.getTimeFromQuerySet(e):0}uploadToGPU(e){let t=this.tensorMap.get(e);t.bufferInfo.buffer==null&&(t.bufferInfo.buffer=this.acquireBuffer(t.bufferInfo.byteSize),t.values&&this.queue.writeBuffer(t.bufferInfo.buffer,0,t.values))}makeUniformsDataView(e){let t=this.acquireBuffer(e.byteLength,GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM);return this.queue.writeBuffer(t,0,e),{offset:0,size:e.byteLength,buffer:t}}arrayToDataView(e,t){let n=4,s=new DataView(new ArrayBuffer(t*n)),r=0;return e.forEach(a=>{let o=a.data;if(a.type!=="int32"&&a.type!=="float32"&&a.type!=="uint32")throw new Error(`${a.type} not supported!`);a.type==="int32"?o.forEach(i=>{s.setInt32(r*n,i,!0),r++}):a.type==="uint32"?o.forEach(i=>{s.setUint32(r*n,i,!0),r++}):o.forEach(i=>{s.setFloat32(r*n,i,!0),r++})}),s}computePadding(e){let t=0,n=0,s=0,r=[];return e.forEach((a,o)=>{a.data.length===0&&(a.data=[1]);let i;switch(a.data.length){case 0:i=1;break;case 1:i=1;break;case 2:i=2;break;case 3:i=4;break;case 4:i=4;break;default:v.assert(!1,()=>`Unsupported ${a.data.length}D shape`)}n=Math.ceil(t/i)*i-t;for(let l=0;l$.shape),l="int32";i.map($=>{o.push({type:l,data:$})});let c=v.computeStrides(r.shape);o.push({type:l,data:c}),e.size!=null&&o.push({type:l,data:[e.size]}),o.push({type:"uint32",data:e.dispatch}),s&&(o=[...o,...s]);let u=null,d=this.computePadding(o),p=d.byteLength;u=this.makeUniformsDataView(d);let h=t.map(($,F)=>{if($.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");return this.uploadToGPU($.dataId),{dtype:this.tensorMap.get($.dataId).dtype,shape:$.shape,name:e.variableNames[F]}});this.uploadToGPU(r.dataId);let f=h.map($=>$.dtype).concat(r.dtype),m=h.map($=>E.getBroadcastDims($.shape,r.shape)),g=h.map($=>v.arraysEqual($.shape,r.shape)).join("_"),y=m.map($=>$.join("_")).join(";"),A=s6(e,i,f,y,g),{bindGroupLayout:x,pipelineLayout:b}=this.getCachedOrCreateLayout(e.variableNames.length),w=this.getAndSavePipeline(A,()=>n6(this.device,e,b,h,r)),k=this.activeTimers!=null,S=Zhe(this.device,x,t.map($=>this.tensorToBinding($)),this.tensorToBinding(r),u);this.ensureCommandEncoderReady();let N=this.getComputePass();if(k&&this.supportTimeQuery&&N.writeTimestamp(this.querySet,0),N.setPipeline(w),N.setBindGroup(0,S),N.dispatch(e.dispatch[0],e.dispatch[1],e.dispatch[2]),k&&this.supportTimeQuery&&N.writeTimestamp(this.querySet,1),this.dispatchNumberInEncoder++,t.forEach($=>{this.commandQueueOwnedIds.add($.dataId)}),this.commandQueueOwnedIds.add(r.dataId),u){let $={byteSize:p,usage:GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM,buffer:u.buffer};this.uniformDisposalQueue.push($)}return Z().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),k&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),r}runFromPixelsProgram(e,t,n,s,r){let a=this.device.createBindGroup({layout:n.bindGroupLayout,entries:[{binding:0,resource:{buffer:t}},{binding:1,resource:s},{binding:2,resource:{buffer:e.uniform}}]});this.ensureCommandEncoderReady();let o=this.getComputePass(),i=this.activeTimers!=null;i&&this.supportTimeQuery&&o.writeTimestamp(this.querySet,0),o.setPipeline(e.pipeline),o.setBindGroup(0,a),o.dispatch(e.dispatch[0],e.dispatch[1],e.dispatch[2]),i&&this.supportTimeQuery&&o.writeTimestamp(this.querySet,1),this.commandQueueOwnedIds.add(r),this.submitQueue(),i&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)})}async getTimeFromQuerySet(e){let t=this.acquireBuffer(16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),n=this.acquireBuffer(16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.resolveQuerySet(e,0,2,t,0),this.currentCommandEncoder.copyBufferToBuffer(t,0,n,0,16),this.submitQueue(),await n.mapAsync(GPUMapMode.READ);let s=new BigUint64Array(n.getMappedRange()),r=Number(s[1]-s[0]);return n.unmap(),this.bufferManager.releaseBuffer(n,16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST),this.bufferManager.releaseBuffer(t,16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),r/1e6}shouldExecuteOnCPU(e,t=c0e){return Z().getBool("WEBGPU_CPU_FORWARD")&&e.every(n=>this.tensorMap.get(n.dataId).bufferInfo.buffer==null&&v.sizeFromShape(n.shape)n0,webgpu_util:()=>PC});vu.isBrowser()&&Px()&&Xi("webgpu",async()=>{Z().set("CHECK_COMPUTATION_FOR_ERRORS",!1);let e={powerPreference:Z().get("WEBGPU_USE_LOW_POWER_GPU")?"low-power":"high-performance"},t=await navigator.gpu.requestAdapter(e),n={},s=t.features.has("timestamp-query");s?n={requiredFeatures:["timestamp-query"]}:console.warn("This device doesn't support timestamp-query extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Or zero will shown for the kernel time when profiling mode isenabled. Using performance.now is not workable for webgpu sinceit doesn't support synchronously to read data from GPU.");let r=await t.requestDevice(n);return new n0(r,s)},3);var d0e="3.9.0",p0e="3.9.0",h0e="3.9.0",f0e="3.9.0",m0e="3.9.0",g0e="3.9.0",y0e="3.9.0",A0e="3.9.0",x0e={tfjs:d0e,"tfjs-core":p0e,"tfjs-data":h0e,"tfjs-layers":f0e,"tfjs-converter":m0e,"tfjs-backend-cpu":g0e,"tfjs-backend-webgl":y0e,"tfjs-backend-wasm":A0e};var Vx="2.3.5";var f6=` precision highp float; attribute vec2 pos; attribute vec2 uv; varying vec2 vUv; uniform float flipY; void main(void) { vUv = uv; gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.); } `;var m6=` precision highp float; varying vec2 vUv; uniform sampler2D texture; uniform float m[20]; void main(void) { vec4 c = texture2D(texture, vUv); gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4]; gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9]; gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14]; gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19]; } `,g6=` precision highp float; varying vec2 vUv; uniform sampler2D texture; uniform float m[20]; void main(void) { vec4 c = texture2D(texture, vUv); gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4]; gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9]; gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14]; gl_FragColor.a = c.a; } `,y6=` precision highp float; varying vec2 vUv; uniform vec2 size; uniform sampler2D texture; vec2 pixelate(vec2 coord, vec2 size) { return floor( coord / size ) * size; } void main(void) { gl_FragColor = vec4(0.0); vec2 coord = pixelate(vUv, size); gl_FragColor += texture2D(texture, coord); } `,A6=` precision highp float; varying vec2 vUv; uniform sampler2D texture; uniform vec2 px; void main(void) { gl_FragColor = vec4(0.0); gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265; gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794; gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053; gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718; gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933; gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105; gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121; gl_FragColor += texture2D(texture, vUv )*0.159576912161; gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121; gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105; gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933; gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718; gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053; gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794; gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265; } `,x6=` precision highp float; varying vec2 vUv; uniform sampler2D texture; uniform vec2 px; uniform float m[9]; void main(void) { vec4 c11 = texture2D(texture, vUv - px); // top left vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y)); // top center vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y)); // top right vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) ); // mid left vec4 c22 = texture2D(texture, vUv); // mid center vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) ); // mid right vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) ); // bottom left vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) ); // bottom center vec4 c33 = texture2D(texture, vUv + px ); // bottom right gl_FragColor = c11 * m[0] + c12 * m[1] + c22 * m[2] + c21 * m[3] + c22 * m[4] + c23 * m[5] + c31 * m[6] + c32 * m[7] + c33 * m[8]; gl_FragColor.a = c22.a; } `;var Ux=(e,t,n)=>{let s=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(s,(r,a)=>(n[a]=0,r))},b6=class{constructor(t,n,s){ve(this,"uniform",{});ve(this,"attribute",{});ve(this,"gl");ve(this,"id");ve(this,"compile",(t,n)=>{let s=this.gl.createShader(n);if(this.gl.shaderSource(s,t),this.gl.compileShader(s),!this.gl.getShaderParameter(s,this.gl.COMPILE_STATUS))throw new Error(`filter: gl compile failed: ${this.gl.getShaderInfoLog(s)}`);return s});this.gl=t;let r=this.compile(n,this.gl.VERTEX_SHADER),a=this.compile(s,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),this.gl.attachShader(this.id,r),this.gl.attachShader(this.id,a),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS))throw new Error(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)}`);this.gl.useProgram(this.id),Ux(n,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=this.gl.getAttribLocation(this.id,o);Ux(n,"uniform",this.uniform),Ux(s,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=this.gl.getUniformLocation(this.id,o)}};function v6(e={}){let t=0,n=null,s=!1,r=-1,a=[null,null],o=[],i=null,l=null,c=e.canvas||typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(100,100):document.createElement("canvas"),u={},d={INTERMEDIATE:1},p=c.getContext("webgl");if(!p)throw new Error("filter: cannot get webgl context");function h(x,b){if(!(x===c.width&&b===c.height)){if(c.width=x,c.height=b,!i){let w=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);i=p.createBuffer(),p.bindBuffer(p.ARRAY_BUFFER,i),p.bufferData(p.ARRAY_BUFFER,w,p.STATIC_DRAW),p.pixelStorei(p.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}p.viewport(0,0,c.width,c.height),a=[null,null]}}function f(x,b){let w=p.createFramebuffer();p.bindFramebuffer(p.FRAMEBUFFER,w);let k=p.createRenderbuffer();p.bindRenderbuffer(p.RENDERBUFFER,k);let S=p.createTexture();return p.bindTexture(p.TEXTURE_2D,S),p.texImage2D(p.TEXTURE_2D,0,p.RGBA,x,b,0,p.RGBA,p.UNSIGNED_BYTE,null),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MAG_FILTER,p.LINEAR),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MIN_FILTER,p.LINEAR),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_S,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_T,p.CLAMP_TO_EDGE),p.framebufferTexture2D(p.FRAMEBUFFER,p.COLOR_ATTACHMENT0,p.TEXTURE_2D,S,0),p.bindTexture(p.TEXTURE_2D,null),p.bindFramebuffer(p.FRAMEBUFFER,null),{fbo:w,texture:S}}function m(x){return a[x]=a[x]||f(c.width,c.height),a[x]}function g(x=0){var S,N;if(!l)return;let b=null,w=null,k=!1;t===0?b=n:b=((S=m(r))==null?void 0:S.texture)||null,t++,s&&!(x&d.INTERMEDIATE)?(w=null,k=t%2==0):(r=(r+1)%2,w=((N=m(r))==null?void 0:N.fbo)||null),p.bindTexture(p.TEXTURE_2D,b),p.bindFramebuffer(p.FRAMEBUFFER,w),p.uniform1f(l.uniform.flipY,k?-1:1),p.drawArrays(p.TRIANGLES,0,6)}function y(x){if(u[x])return l=u[x],p.useProgram((l==null?void 0:l.id)||null),l;l=new b6(p,f6,x);let b=Float32Array.BYTES_PER_ELEMENT,w=4*b;return p.enableVertexAttribArray(l.attribute.pos),p.vertexAttribPointer(l.attribute.pos,2,p.FLOAT,!1,w,0*b),p.enableVertexAttribArray(l.attribute.uv),p.vertexAttribPointer(l.attribute.uv,2,p.FLOAT,!1,w,2*b),u[x]=l,l}let A={colorMatrix:x=>{let b=new Float32Array(x);b[4]/=255,b[9]/=255,b[14]/=255,b[19]/=255;let w=b[18]===1&&b[3]===0&&b[8]===0&&b[13]===0&&b[15]===0&&b[16]===0&&b[17]===0&&b[19]===0?g6:m6,k=y(w);p.uniform1fv(k==null?void 0:k.uniform.m,b),g()},brightness:x=>{let b=(x||0)+1;A.colorMatrix([b,0,0,0,0,0,b,0,0,0,0,0,b,0,0,0,0,0,1,0])},saturation:x=>{let b=(x||0)*2/3+1,w=(b-1)*-.5;A.colorMatrix([b,w,w,0,0,w,b,w,0,0,w,w,b,0,0,0,0,0,1,0])},desaturate:()=>{A.saturation(-1)},contrast:x=>{let b=(x||0)+1,w=-128*(b-1);A.colorMatrix([b,0,0,0,w,0,b,0,0,w,0,0,b,0,w,0,0,0,1,0])},negative:()=>{A.contrast(-2)},hue:x=>{x=(x||0)/180*Math.PI;let b=Math.cos(x),w=Math.sin(x),k=.213,S=.715,N=.072;A.colorMatrix([k+b*(1-k)+w*-k,S+b*-S+w*-S,N+b*-N+w*(1-N),0,0,k+b*-k+w*.143,S+b*(1-S)+w*.14,N+b*-N+w*-.283,0,0,k+b*-k+w*-(1-k),S+b*-S+w*S,N+b*(1-N)+w*N,0,0,0,0,0,1,0])},desaturateLuminance:()=>{A.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{A.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{A.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{A.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{A.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{A.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{A.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{A.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:x=>{let b=new Float32Array(x),w=1/c.width,k=1/c.height,S=y(x6);p.uniform1fv(S==null?void 0:S.uniform.m,b),p.uniform2f(S==null?void 0:S.uniform.px,w,k),g()},detectEdges:()=>{A.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{A.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{A.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:x=>{let b=x||1;A.convolution.call(this,[0,-1*b,0,-1*b,1+4*b,-1*b,0,-1*b,0])},emboss:x=>{let b=x||1;A.convolution.call(this,[-2*b,-1*b,0,-1*b,1,1*b,0,1*b,2*b])},blur:x=>{let b=x/7/c.width,w=x/7/c.height,k=y(A6);p.uniform2f(k==null?void 0:k.uniform.px,0,w),g(d.INTERMEDIATE),p.uniform2f(k==null?void 0:k.uniform.px,b,0),g()},pixelate:x=>{let b=x/c.width,w=x/c.height,k=y(y6);p.uniform2f(k==null?void 0:k.uniform.size,b,w),g()}};this.add=function(x){let b=Array.prototype.slice.call(arguments,1),w=A[x];o.push({func:w,args:b})},this.reset=function(){o=[]},this.get=function(){return o},this.apply=function(x){h(x.width,x.height),t=0,n||(n=p.createTexture()),p.bindTexture(p.TEXTURE_2D,n),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_S,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_T,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MIN_FILTER,p.NEAREST),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MAG_FILTER,p.NEAREST),p.texImage2D(p.TEXTURE_2D,0,p.RGBA,p.RGBA,p.UNSIGNED_BYTE,x);for(let b=0;bs.kernelName.toLowerCase())}async function s0(){if(ie.browser=typeof navigator!="undefined",ie.node=typeof process!="undefined",ie.tfjs.version=Zh,ie.offscreen=typeof ie.offscreen=="undefined"?typeof OffscreenCanvas!="undefined":ie.offscreen,typeof navigator!="undefined"){let e=navigator.userAgent.match(/\(([^()]+)\)/g);if(e&&e[0]){let t=e[0].match(/\(([^()]+)\)/g);ie.platform=t&&t[0]?t[0].replace(/\(|\)/g,""):"",ie.agent=navigator.userAgent.replace(e[0],""),ie.platform[1]&&(ie.agent=ie.agent.replace(e[1],"")),ie.agent=ie.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(ie.platform=`${process.platform} ${process.arch}`,ie.agent=`NodeJS ${process.version}`);ie.worker=ie.browser&&ie.offscreen?typeof WorkerGlobalScope!="undefined":void 0,await v0e()}async function w6(e){ie=fn(ie,e)}var r0=2048,pt=null,Gt=null,Bo=null,Ot;function Cs(e,t){let n;if(ie.browser)if(ie.offscreen)n=new OffscreenCanvas(e,t);else{if(typeof document=="undefined")throw new Error("attempted to run in web worker but offscreenCanvas is not supported");n=document.createElement("canvas"),n.width=e,n.height=t}else typeof ie.Canvas!="undefined"?n=new ie.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(n=new globalThis.Canvas(e,t));return n}function Gx(e,t){let n=t||Cs(e.width,e.height);return n.getContext("2d").drawImage(e,0,0),n}function gc(e,t,n=!0){if(!e)return t.debug&&ae("input is missing"),{tensor:null,canvas:null};if(!(e instanceof Ze)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof ie.Canvas!="undefined"&&e instanceof ie.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input type is not recognized");if(e instanceof Ze){if(e.isDisposedInternal)throw new Error("input tensor is disposed");if(!e.shape||e.shape.length!==4||e.shape[0]!==1||e.shape[3]!==3)throw new Error(`input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);return{tensor:lr(e),canvas:t.filter.return?Gt:null}}else{if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&ae("input stream is not ready"),{tensor:null,canvas:pt};let s=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!s||!r)return t.debug&&ae("cannot determine input dimensions"),{tensor:null,canvas:pt};let a=s,o=r;if(a>r0&&(a=r0,o=Math.trunc(a*r/s)),o>r0&&(o=r0,a=Math.trunc(o*s/r)),(t.filter.width||0)>0?a=t.filter.width:(t.filter.height||0)>0&&(a=s*((t.filter.height||0)/r)),(t.filter.height||0)>0?o=t.filter.height:(t.filter.width||0)>0&&(o=r*((t.filter.width||0)/s)),!a||!o)throw new Error("input cannot determine dimension");(!pt||(pt==null?void 0:pt.width)!==a||(pt==null?void 0:pt.height)!==o)&&(pt=Cs(a,o));let i=pt.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?i.putImageData(e,0,0):t.filter.flip&&typeof i.translate!="undefined"?(i.translate(s,0),i.scale(-1,1),i.drawImage(e,0,0,s,r,0,0,pt==null?void 0:pt.width,pt==null?void 0:pt.height),i.setTransform(1,0,0,1,0,0)):i.drawImage(e,0,0,s,r,0,0,pt==null?void 0:pt.width,pt==null?void 0:pt.height),(!Gt||pt.width!==Gt.width||(pt==null?void 0:pt.height)!==(Gt==null?void 0:Gt.height))&&(Gt=Cs(pt.width,pt.height)),t.filter.enabled&&ie.webgl.supported){if(Ot||(Ot=ie.browser?new v6({canvas:Gt}):null),ie.filter=!!Ot,!Ot)return{tensor:null,canvas:pt};Ot.reset(),t.filter.brightness!==0&&Ot.add("brightness",t.filter.brightness),t.filter.contrast!==0&&Ot.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&Ot.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&Ot.add("blur",t.filter.blur),t.filter.saturation!==0&&Ot.add("saturation",t.filter.saturation),t.filter.hue!==0&&Ot.add("hue",t.filter.hue),t.filter.negative&&Ot.add("negative"),t.filter.sepia&&Ot.add("sepia"),t.filter.vintage&&Ot.add("brownie"),t.filter.sepia&&Ot.add("sepia"),t.filter.kodachrome&&Ot.add("kodachrome"),t.filter.technicolor&&Ot.add("technicolor"),t.filter.polaroid&&Ot.add("polaroid"),t.filter.pixelate!==0&&Ot.add("pixelate",t.filter.pixelate),Ot.get()>0?Gt=Ot.apply(pt):Gt=Ot.draw(pt)}else Gx(pt,Gt),Ot&&(Ot=null),ie.filter=!!Ot;if(!n)return{tensor:null,canvas:Gt};if(!Gt)throw new Error("cannot create output canvas");let l,c=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(ie.browser&&Ks)l=Ks?Ks.fromPixels(e):null;else{c=e.data.length/e.height/e.width;let p=new Uint8Array(e.data.buffer);l=jt(p,[e.height,e.width,c],"int32")}else if((!Bo||Gt.width!==Bo.width||(Gt==null?void 0:Gt.height)!==(Bo==null?void 0:Bo.height))&&(Bo=Cs(Gt.width,Gt.height)),Ks&&ie.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=Ks.fromPixels(Gt):(Bo=Gx(Gt),l=Ks.fromPixels(Bo));else{let f=Gx(Gt).getContext("2d").getImageData(0,0,a,o);c=f.data.length/a/o;let m=new Uint8Array(f.data.buffer);l=jt(m,[a,o,c])}if(c===4){let p=Mu(l,[0,0,0],[-1,-1,3]);ee(l),l=p}if(!l)throw new Error("cannot create tensor from input");let u=pe(l,"float32"),d=qt(u,0);return ee([l,u]),{tensor:d,canvas:t.filter.return?Gt:null}}}var Hx=0,jx=1,qx=0,w0e=async e=>{let t=48,n=$e.resizeBilinear(e,[Math.trunc((e.shape[1]||1)/t),Math.trunc((e.shape[2]||1)/t)]),s=async()=>{let o=ke(n),i=await o.data();return ee(o),i[0]},r=async()=>{let o=await n.data(),i=0;for(let l=0;l10*e.cacheSensitivity?0:s,r=r&&jx>0,r}var Wo;var Vge=Number.MAX_SAFE_INTEGER;async function I6(e){return ie.initial&&(Wo=null),Wo?e.debug&&ae("cached model:",Wo.modelUrl):(Wo=await ot(lt(e.modelBasePath,e.face.agegenderrace.modelPath)),!Wo||!Wo.modelUrl?ae("load model failed:",e.face.agegenderrace.modelPath):e.debug&&ae("load model:",Wo.modelUrl)),Wo}var un,a0=[],Xx=Number.MAX_SAFE_INTEGER,S6=0;async function C6(e){var t,n;return ie.initial&&(un=null),un?e.debug&&ae("cached model:",un.modelUrl):(un=await ot(lt(e.modelBasePath,((t=e.face.antispoof)==null?void 0:t.modelPath)||"")),!un||!un.modelUrl?ae("load model failed:",(n=e.face.antispoof)==null?void 0:n.modelPath):e.debug&&ae("load model:",un.modelUrl)),un}async function Kx(e,t,n,s){var r;return un?Xx<(((r=t.face.antispoof)==null?void 0:r.skipFrames)||0)&&t.skipFrame&&S6===s&&a0[n]?(Xx++,a0[n]):(Xx=0,new Promise(async a=>{let o=$e.resizeBilinear(e,[(un==null?void 0:un.inputs[0].shape)?un.inputs[0].shape[2]:0,(un==null?void 0:un.inputs[0].shape)?un.inputs[0].shape[1]:0],!1),i=un==null?void 0:un.predict(o),l=(await i.data())[0];a0[n]=Math.round(100*l)/100,S6=s,ee([o,i]),a(a0[n])})):null}var Lr={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},Zx={count:468,mouth:13,symmetryLine:[13,Lr.midwayBetweenEyes[0]]},Ip={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},Yx=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],Sp=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],Cl=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var k0e=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],I0e=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],S0e=[33,133,362,263,1,78,308],Xge=k0e.map(e=>Sp[e]),Kge=I0e.map(e=>Sp[e]),Zge=S0e.map(e=>Sp[e]);var T6=e=>({startPoint:_e(e,[0,0],[-1,2]),endPoint:_e(e,[0,2],[-1,2])});var Cp=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],o0=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2],Jx=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],Qx=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],N6=(e,t)=>{let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:s}},eb=(e,t,n)=>{let s=t.shape[1],r=t.shape[2];return $e.cropAndResize(t,[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]],[0],n)},Tp=(e,t=1.5)=>{let n=o0(e),s=Cp(e),r=[t*s[0]/2,t*s[1]/2];return{startPoint:[n[0]-r[0],n[1]-r[1]],endPoint:[n[0]+r[0],n[1]+r[1]],landmarks:e.landmarks}},Np=e=>{let t=o0(e),n=Cp(e),s=Math.max(...n)/2;return{startPoint:[Math.round(t[0]-s),Math.round(t[1]-s)],endPoint:[Math.round(t[0]+s),Math.round(t[1]+s)],landmarks:e.landmarks}},i0=e=>{let t=e.map(s=>s[0]),n=e.map(s=>s[1]);return{startPoint:[Math.min(...t),Math.min(...n)],endPoint:[Math.max(...t),Math.max(...n)],landmarks:e}},l0=[[1,0,0],[0,1,0],[0,0,1]],C0e=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),T0e=(e,t)=>C0e(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var E6=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],Tl=(e,t)=>{let n=0;for(let s=0;s{let n=[];for(let s=0;s{let n=[],s=e.length;for(let r=0;r{let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=E6(t[0],t[1]),o=R6(a,r),i=E6(-t[0],-t[1]);return R6(o,i)},E0e=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-Tl(t[0],n),-Tl(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]},R0e=(e,t)=>[Tl(e,t[0]),Tl(e,t[1])];function D6(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let s=0;s[a[0]/r*(d[0]-r/2),a[1]/r*(d[1]-r/2),d[2]||0]),i=n!==0?$6(n,[0,0]):l0,l=n!==0?o.map(d=>[...R0e(d,i),d[2]]):o,c=n!==0?E0e(s):l0,u=[...o0({startPoint:t.startPoint,endPoint:t.endPoint}),1];return l.map(d=>[Math.round(d[0]+Tl(u,c[0])),Math.round(d[1]+Tl(u,c[1])),Math.round(d[2]||0)])}function tb(e,t,n){let s=e.landmarks.length>=Zx.count?Zx.symmetryLine:Ip.symmetryLine,r=T0e(e.landmarks[s[0]],e.landmarks[s[1]]),a=o0({startPoint:e.startPoint,endPoint:e.endPoint}),o=[a[0]/t.shape[2],a[1]/t.shape[1]],i=$e.rotateWithOffset(t,r,0,o),l=$6(-r,a),c=eb({startPoint:e.startPoint,endPoint:e.endPoint},i,[n,n]),u=fe(c,255);return ee(c),ee(i),[r,l,u]}var P6=6,Us,nb=[],F6=null,Gs=0,Ep=()=>Gs;async function O6(e){var t,n;return ie.initial&&(Us=null),Us?e.debug&&ae("cached model:",Us.modelUrl):(Us=await ot(lt(e.modelBasePath,((t=e.face.detector)==null?void 0:t.modelPath)||"")),!Us||!Us.modelUrl?ae("load model failed:",(n=e.face.detector)==null?void 0:n.modelPath):e.debug&&ae("load model:",Us.modelUrl)),Gs=Us.inputs[0].shape?Us.inputs[0].shape[2]:0,Gs===-1&&(Gs=64),nb=D6(Gs),F6=dr(nb),Us}function $0e(e){let t=_e(e,[0,1],[-1,2]),n=ue(t,F6),s=_e(e,[0,3],[-1,2]),r=fe(s,Gs),a=fe(n,Gs),o=fe(r,2),i=xe(a,o),l=ue(a,o),c=L(i,Gs),u=L(l,Gs);return Eu([c,u],1)}async function M6(e,t){var c,u,d,p;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return{boxes:[]};let[n,s,r]=j(()=>{let h=$e.resizeBilinear(e,[Gs,Gs]),f=xe(fe(h,127.5),.5),m=Us==null?void 0:Us.execute(f),g;if(Array.isArray(m)){let b=m.sort((N,$)=>N.size-$.size),w=kt([b[0],b[2]],2),k=kt([b[1],b[3]],2),S=kt([k,w],1);g=dt(S,0)}else g=dt(m);let y=$0e(g),A=_e(g,[0,0],[-1,1]),x=dt(ss(A));return[g,y,x]}),a=await $e.nonMaxSuppressionAsync(s,r,((c=t.face.detector)==null?void 0:c.maxDetected)||0,((u=t.face.detector)==null?void 0:u.iouThreshold)||0,((d=t.face.detector)==null?void 0:d.minConfidence)||0),o=await a.array();ee(a);let i=[],l=await r.data();for(let h=0;h(((p=t.face.detector)==null?void 0:p.minConfidence)||0)){let m=_e(s,[o[h],0],[1,-1]),g=j(()=>G(dt(_e(n,[o[h],P6-1],[1,-1])),[P6,-1]));i.push({box:T6(m),landmarks:g,anchor:nb[o[h]],confidence:f}),ee(m)}}return ee(n),ee(s),ee(r),{boxes:i,scaleFactor:[e.shape[2]/Gs,e.shape[1]/Gs]}}var ab={};Fc(ab,{connected:()=>rb,kpt:()=>sb});var sb=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftThumb","leftHand","rightThumb","rightHand"],rb={leftLeg:["leftHip","leftKnee","leftAnkle","leftHeel","leftFoot"],rightLeg:["rightHip","rightKnee","rightAnkle","rightHeel","rightFoot"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist","leftPalm"],rightArm:["rightShoulder","rightElbow","rightWrist","rightPalm"],leftHand:[],rightHand:[],head:[]};var z6={initial:!0},cn=[null,null],Vo=[[0,0],[0,0]],ob=Number.MAX_SAFE_INTEGER,ib,u0=null,Uo=[[0,0],[0,0],[0,0],[0,0]];async function L6(e){var t,n,s;if(z6.initial&&(cn[0]=null),!cn[0]&&((t=e.body.detector)==null?void 0:t.modelPath)){cn[0]=await ot(lt(e.modelBasePath,((n=e.body.detector)==null?void 0:n.modelPath)||""));let r=Object.values(cn[0].modelSignature.inputs);Vo[0][0]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[1].size):0,Vo[0][1]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[2].size):0,!cn[0]||!cn[0].modelUrl?ae("load model failed:",(s=e.body.detector)==null?void 0:s.modelPath):e.debug&&ae("load model:",cn[0].modelUrl)}else e.debug&&cn[0]&&ae("cached model:",cn[0].modelUrl);return cn[0]}async function B6(e){var t;if(z6.initial&&(cn[1]=null),cn[1])e.debug&&ae("cached model:",cn[1].modelUrl);else{cn[1]=await ot(lt(e.modelBasePath,e.body.modelPath||""));let n=Object.values(cn[1].modelSignature.inputs);Vo[1][0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,Vo[1][1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0,((t=e.body.modelPath)==null?void 0:t.includes("lite"))?ib=["ld_3d","output_segmentation","output_heatmap","world_3d","output_poseflag"]:ib=["Identity","Identity_2","Identity_3","Identity_4","Identity_1"],!cn[1]||!cn[1].modelUrl?ae("load model failed:",e.body.modelPath):e.debug&&ae("load model:",cn[1].modelUrl)}return cn[1]}function D0e(e,t){let n=e.map(o=>o.position[0]),s=e.map(o=>o.position[1]),r=[Math.min(...n),Math.min(...s),Math.max(...n)-Math.min(...n),Math.max(...s)-Math.min(...s)],a=[r[0]/t[0],r[1]/t[1],r[2]/t[0],r[3]/t[1]];return{keypointsBox:r,keypointsBoxRaw:a}}async function _0e(e){let t={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;Uo=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],t.pad=Ms(e,Uo),t.resize=$e.resizeBilinear(t.pad,[Vo[1][0],Vo[1][1]]);let n=fe(t.resize,255);return Object.keys(t).forEach(s=>ee(t[s])),n}function P0e(e,t){for(let n of e)n.position=[n.position[0]*(t[0]+Uo[2][0]+Uo[2][1])/t[0]-Uo[2][0],n.position[1]*(t[1]+Uo[1][0]+Uo[1][1])/t[1]-Uo[1][0],n.position[2]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1],n.position[2]];return e}var W6=e=>1-1/(1+Math.exp(e));async function F0e(e,t,n){var h;let s={};s.input=await _0e(e),[s.ld,s.segmentation,s.heatmap,s.world,s.poseflag]=await((h=cn[1])==null?void 0:h.execute(s.input,ib));let r=(await s.poseflag.data())[0],a=Math.max(0,(r-.8)/(1-.8)),o=await s.ld.data(),i=[],l=5;for(let f=0;fee(s[f]));let d={};for(let[f,m]of Object.entries(rb)){let g=[];for(let y=0;yb.part===m[y]),x=c.find(b=>b.part===m[y+1]);A&&x&&A.score>(t.body.minConfidence||0)&&x.score>(t.body.minConfidence||0)&&g.push([A.position,x.position])}d[f]=g}return{id:0,score:Math.trunc(100*a)/100,box:u.keypointsBox,boxRaw:u.keypointsBoxRaw,keypoints:c,annotations:d}}async function lb(e,t){let n=[e.shape[2]||0,e.shape[1]||0];return ob<(t.body.skipFrames||0)&&t.skipFrame&&u0!==null?ob++:(u0=await F0e(e,t,n),ob=0),u0?[u0]:[]}var yc=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var sr,Nl=0,c0=[],ub=Number.MAX_SAFE_INTEGER;async function V6(e){if(ie.initial&&(sr=null),sr)e.debug&&ae("cached model:",sr.modelUrl);else{Ac(["floormod"],e),sr=await ot(lt(e.modelBasePath,e.object.modelPath||""));let t=Object.values(sr.modelSignature.inputs);Nl=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0,!sr||!sr.modelUrl?ae("load model failed:",e.object.modelPath):e.debug&&ae("load model:",sr.modelUrl)}return sr}async function O0e(e,t,n){if(!e)return[];let s=[],r=await e.array(),a=dt(e);ee(e);let o=xn(a,6,1);ee(a);let i=Tn([o[1],o[0],o[3],o[2]],1),l=dt(i);ee(i);let c=dt(o[4]),u=dt(o[5]);o.forEach(f=>ee(f));let d=await $e.nonMaxSuppressionAsync(l,c,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence);ee(l),ee(c),ee(u);let p=await d.data();ee(d);let h=0;for(let f of p){let m=Math.trunc(100*r[0][f][4])/100,g=r[0][f][5],y=yc[g].label,[A,x]=[r[0][f][0]/Nl,r[0][f][1]/Nl],b=[A,x,r[0][f][2]/Nl-A,r[0][f][3]/Nl-x],w=[Math.trunc(b[0]*t[0]),Math.trunc(b[1]*t[1]),Math.trunc(b[2]*t[0]),Math.trunc(b[3]*t[1])];s.push({id:h++,score:m,class:g,label:y,box:w,boxRaw:b})}return s}async function cb(e,t){return ub<(t.object.skipFrames||0)&&t.skipFrame&&c0.length>0?(ub++,c0):(ub=0,!ie.kernels.includes("mod")||!ie.kernels.includes("sparsetodense")?c0:new Promise(async n=>{let s=[e.shape[2],e.shape[1]],r=$e.resizeBilinear(e,[Nl,Nl]),a=t.object.enabled?sr==null?void 0:sr.execute(r,["tower_0/detections"]):null;ee(r);let o=await O0e(a,s,t);c0=o,n(o)}))}var hb={};Fc(hb,{connected:()=>pb,kpt:()=>db});var db=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],pb={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var dn,Zn={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},fb=Number.MAX_SAFE_INTEGER;async function mb(e){return ie.initial&&(dn=null),dn?e.debug&&ae("cached model:",dn.modelUrl):(dn=await ot(lt(e.modelBasePath,e.body.modelPath||"")),!dn||!dn.modelUrl?ae("load model failed:",e.body.modelPath):e.debug&&ae("load model:",dn.modelUrl)),dn}function M0e(e,t){let[n,s]=e.shape;return j(()=>{let r=(i,l)=>xe(i,L(fe(i,Ee(l,"int32")),Ee(l,"int32"))),a=G(e,[s*n]),o=Wn(a,0).dataSync()[0];if(o>t){let i=Fs(a,0),l=r(i,n).dataSync()[0],c=fe(i,Ee(n,"int32")).dataSync()[0];return[l,c,o]}return[0,0,o]})}async function gb(e,t){var n;return fb<(((n=t.body)==null?void 0:n.skipFrames)||0)&&t.skipFrame&&Object.keys(Zn.keypoints).length>0?(fb++,[Zn]):(fb=0,new Promise(async s=>{var u;let r=j(()=>{if(!(dn==null?void 0:dn.inputs[0].shape))return null;let d=$e.resizeBilinear(e,[dn.inputs[0].shape[2],dn.inputs[0].shape[1]],!1);return L(d,2).sub(1)}),a;if(t.body.enabled&&(a=await(dn==null?void 0:dn.predict(r))),ee(r),a){Zn.keypoints.length=0;let d=a.squeeze();ee(a);let p=d.unstack(2);ee(d);for(let h=0;h(((u=t.body)==null?void 0:u.minConfidence)||0)&&Zn.keypoints.push({score:Math.round(100*g)/100,part:db[h],positionRaw:[f/dn.inputs[0].shape[2],m/dn.inputs[0].shape[1]],position:[Math.round(e.shape[2]*f/dn.inputs[0].shape[2]),Math.round(e.shape[1]*m/dn.inputs[0].shape[1])]})}p.forEach(h=>ee(h))}Zn.score=Zn.keypoints.reduce((d,p)=>p.score>d?p.score:d,0);let o=Zn.keypoints.map(d=>d.position[0]),i=Zn.keypoints.map(d=>d.position[1]);Zn.box=[Math.min(...o),Math.min(...i),Math.max(...o)-Math.min(...o),Math.max(...i)-Math.min(...i)];let l=Zn.keypoints.map(d=>d.positionRaw[0]),c=Zn.keypoints.map(d=>d.positionRaw[1]);Zn.boxRaw=[Math.min(...l),Math.min(...c),Math.max(...l)-Math.min(...l),Math.max(...c)-Math.min(...c)];for(let[d,p]of Object.entries(pb)){let h=[];for(let f=0;fy.part===p[f]),g=Zn.keypoints.find(y=>y.part===p[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}Zn.annotations[d]=h}s([Zn])}))}var z0e=["angry","disgust","fear","happy","sad","surprise","neutral"],pn,d0=[],U6=0,yb=Number.MAX_SAFE_INTEGER,Ab=[.2989,.587,.114];async function G6(e){var t,n;return ie.initial&&(pn=null),pn?e.debug&&ae("cached model:",pn.modelUrl):(pn=await ot(lt(e.modelBasePath,((t=e.face.emotion)==null?void 0:t.modelPath)||"")),!pn||!pn.modelUrl?ae("load model failed:",(n=e.face.emotion)==null?void 0:n.modelPath):e.debug&&ae("load model:",pn.modelUrl)),pn}async function xb(e,t,n,s){var r;return pn?yb<(((r=t.face.emotion)==null?void 0:r.skipFrames)||0)&&t.skipFrame&&U6===s&&d0[n]&&d0[n].length>0?(yb++,d0[n]):(yb=0,new Promise(async a=>{var g,y;let o=$e.resizeBilinear(e,[(pn==null?void 0:pn.inputs[0].shape)?pn.inputs[0].shape[2]:0,(pn==null?void 0:pn.inputs[0].shape)?pn.inputs[0].shape[1]:0],!1),[i,l,c]=xn(o,3,3);ee(o);let u=L(i,Ab[0]),d=L(l,Ab[1]),p=L(c,Ab[2]);ee(i),ee(l),ee(c);let h=ef([u,d,p]);ee(u),ee(d),ee(p);let f=j(()=>L(xe(h,.5),2));ee(h);let m=[];if((g=t.face.emotion)==null?void 0:g.enabled){let A=await(pn==null?void 0:pn.predict(f)),x=await A.data();ee(A);for(let b=0;b(((y=t.face.emotion)==null?void 0:y.minConfidence)||0)&&m.push({score:Math.min(.99,Math.trunc(100*x[b])/100),emotion:z0e[b]});m.sort((b,w)=>w.score-b.score)}ee(f),d0[n]=m,U6=s,a(m)})):null}var rr,Go=0,L0e=2.3,bb=Lr.leftEyeLower0,vb=Lr.rightEyeLower0,xc={leftBounds:[bb[0],bb[bb.length-1]],rightBounds:[vb[0],vb[vb.length-1]]},bc={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function H6(e){var t,n;return ie.initial&&(rr=null),rr?e.debug&&ae("cached model:",rr.modelUrl):(rr=await ot(lt(e.modelBasePath,((t=e.face.iris)==null?void 0:t.modelPath)||"")),!rr||!rr.modelUrl?ae("load model failed:",(n=e.face.iris)==null?void 0:n.modelPath):e.debug&&ae("load model:",rr.modelUrl)),Go=rr.inputs[0].shape?rr.inputs[0].shape[2]:0,Go===-1&&(Go=64),rr}function p0(e,t,n,s){for(let r=0;r{let t=e[xc.leftBounds[0]][2],n=e[xc.rightBounds[0]][2];return t-n},j6=(e,t,n,s,r=!1,a)=>{let o=Np(Tp(i0([e[n],e[s]]),L0e)),i=Cp(o),l=$e.cropAndResize(t,[[o.startPoint[1]/a,o.startPoint[0]/a,o.endPoint[1]/a,o.endPoint[0]/a]],[0],[Go,Go]);if(r&&ie.kernels.includes("flipleftright")){let c=$e.flipLeftRight(l);ee(l),l=c}return{box:o,boxSize:i,crop:l}},q6=(e,t,n,s=!1)=>{let r=[];for(let a=0;a{let s=e[Lr[`${n}EyeUpper0`][bc.upperCenter]][2],r=e[Lr[`${n}EyeLower0`][bc.lowerCenter]][2],a=(s+r)/2;return t.map((o,i)=>{let l=a;return i===2?l=s:i===4&&(l=r),[o[0],o[1],l]})};async function K6(e,t,n,s){if(!rr)return n.debug&&ae("face mesh iris detection requested, but model is not loaded"),e;let{box:r,boxSize:a,crop:o}=j6(e,t,xc.leftBounds[0],xc.leftBounds[1],!0,s),{box:i,boxSize:l,crop:c}=j6(e,t,xc.rightBounds[0],xc.rightBounds[1],!0,s),u=kt([o,c]);ee(o),ee(c);let d=rr.predict(u);ee(u);let p=await d.data();ee(d);let h=p.slice(0,bc.numCoordinates*3),{rawCoords:f,iris:m}=q6(h,r,a,!0),g=p.slice(bc.numCoordinates*3),{rawCoords:y,iris:A}=q6(g,i,l),x=B0e(e);Math.abs(x)<30?(p0(e,f,"left",null),p0(e,y,"right",null)):x<1?p0(e,f,"left",["EyeUpper0","EyeLower0"]):p0(e,y,"right",["EyeUpper0","EyeLower0"]);let b=X6(e,m,"left"),w=X6(e,A,"right");return e.concat(b).concat(w)}var Br=[],ar=null,vr=0,wb=Number.MAX_SAFE_INTEGER,Z6=0;async function Y6(e,t){var a,o,i,l,c,u,d,p,h,f,m,g;if(!t.skipFrame||(Z6!==((a=t.face.detector)==null?void 0:a.maxDetected)||!((o=t.face.mesh)==null?void 0:o.enabled))&&wb>(((i=t.face.detector)==null?void 0:i.skipFrames)||0)){let y=await M6(e,t);Br=[];for(let A of y.boxes){let x=await A.box.startPoint.data(),b=await A.box.endPoint.data(),w=await A.landmarks.array();Br.push({startPoint:x,endPoint:b,landmarks:w,confidence:A.confidence})}y.boxes.forEach(A=>ee([A.box.startPoint,A.box.endPoint,A.landmarks]));for(let A=0;A[R[0]/(e.shape[2]||0),R[1]/(e.shape[1]||0),(R[2]||0)/vr]),y={...Tp(i0(b.mesh),1.5),confidence:y.confidence};for(let R of Object.keys(Lr))b.annotations[R]=Lr[R].map(D=>b.mesh[D]);((f=t.face.detector)==null?void 0:f.rotation)&&t.face.mesh.enabled&&((m=t.face.description)==null?void 0:m.enabled)&&ie.kernels.includes("rotatewithoffset")&&(ee(b.tensor),[A,x,b.tensor]=tb(y,e,vr)),b.box=Jx(y,e),b.boxRaw=Qx(y,e),b.score=Math.round(100*N||100*y.confidence||0)/100,b.faceScore=Math.round(100*N)/100,y={...Np(y),confidence:y.confidence,faceConfidence:N}}}else{b.box=Jx(y,e),b.boxRaw=Qx(y,e),b.score=Math.round(100*y.confidence||0)/100,b.mesh=y.landmarks.map(w=>[(y.startPoint[0]+y.endPoint[0])/2+(y.endPoint[0]+y.startPoint[0])*w[0]/Ep(),(y.startPoint[1]+y.endPoint[1])/2+(y.endPoint[1]+y.startPoint[1])*w[1]/Ep()]),b.meshRaw=b.mesh.map(w=>[w[0]/(e.shape[2]||0),w[1]/(e.shape[1]||0),(w[2]||0)/vr]);for(let w of Object.keys(Ip))b.annotations[w]=[b.mesh[Ip[w]]]}n.push(b),s.push(y)}return((g=t.face.mesh)==null?void 0:g.enabled)&&(Br=s.filter(y=>{var A;return y.confidence>(((A=t.face.detector)==null?void 0:A.minConfidence)||0)})),Z6=n.length,n}async function J6(e){var t,n;return ie.initial&&(ar=null),ar?e.debug&&ae("cached model:",ar.modelUrl):(ar=await ot(lt(e.modelBasePath,((t=e.face.mesh)==null?void 0:t.modelPath)||"")),!ar||!ar.modelUrl?ae("load model failed:",(n=e.face.mesh)==null?void 0:n.modelPath):e.debug&&ae("load model:",ar.modelUrl)),vr=ar.inputs[0].shape?ar.inputs[0].shape[2]:0,vr===-1&&(vr=64),ar}var Q6=Cl,e8=Sp;var Yn,h0=[],t8=0,kb=Number.MAX_SAFE_INTEGER;async function n8(e){var n,s;let t=lt(e.modelBasePath,((n=e.face.description)==null?void 0:n.modelPath)||"");return ie.initial&&(Yn=null),Yn?e.debug&&ae("cached model:",t):(Yn=await ot(t),Yn?e.debug&&ae("load model:",t):ae("load model failed:",((s=e.face.description)==null?void 0:s.modelPath)||"")),Yn}function Ib(e){return j(()=>{let n=e.image||e.tensor||e;if(!(n instanceof Ze))return null;let s=[[.05,.15,.85,.85]];if(!(Yn==null?void 0:Yn.inputs[0].shape))return null;let r=n.shape.length===3?$e.cropAndResize(qt(n,0),s,[0],[Yn.inputs[0].shape[2],Yn.inputs[0].shape[1]]):$e.cropAndResize(n,s,[0],[Yn.inputs[0].shape[2],Yn.inputs[0].shape[1]]);return L(r,255)})}async function Sb(e,t,n,s){var r,a,o;return Yn?kb<(((r=t.face.description)==null?void 0:r.skipFrames)||0)&&t.skipFrame&&t8===s&&((a=h0[n])==null?void 0:a.age)&&((o=h0[n])==null?void 0:o.age)>0?(kb++,h0[n]):(kb=0,new Promise(async i=>{var d,p;let l=Ib(e),c,u={age:0,gender:"unknown",genderScore:0,descriptor:[]};if(((d=t.face.description)==null?void 0:d.enabled)&&(c=await(Yn==null?void 0:Yn.predict(l))),ee(l),c){let h=await c.find(b=>b.shape[1]===1).data(),f=Math.trunc(200*Math.abs(h[0]-.5))/100;f>(((p=t.face.description)==null?void 0:p.minConfidence)||0)&&(u.gender=h[0]<=.5?"female":"male",u.genderScore=Math.min(.99,f));let m=Fs(c.find(b=>b.shape[1]===100),1),g=(await m.data())[0];ee(m);let y=await c.find(b=>b.shape[1]===100).data();u.age=Math.round(y[g-1]>y[g+1]?10*g-100*y[g-1]:10*g+100*y[g+1])/10;let x=await c.find(b=>b.shape[1]===1024).data();u.descriptor=[...x],c.forEach(b=>ee(b))}h0[n]=u,t8=s,i(u)})):null}function f0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Rp(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function s8(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return $e.cropAndResize(t,a,[0],n)}function r8(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(a=>[a[0]*t[0],a[1]*t[1]]);return{startPoint:n,endPoint:s,palmLandmarks:r,confidence:e.confidence}}function m0(e,t=1.5){let n=Rp(e),s=f0(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function g0(e){let t=Rp(e),n=f0(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],o=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}var a8=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var Cb=class{constructor(t){ve(this,"model");ve(this,"anchors");ve(this,"anchorsTensor");ve(this,"inputSize");ve(this,"inputSizeTensor");ve(this,"doubleInputSizeTensor");this.model=t,this.anchors=a8.map(n=>[n.x,n.y]),this.anchorsTensor=dr(this.anchors),this.inputSize=this.model&&this.model.inputs&&this.model.inputs[0].shape?this.model.inputs[0].shape[2]:0,this.inputSizeTensor=Yt([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Yt([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){return j(()=>{let n=_e(t,[0,0],[-1,2]),s=_e(t,[0,2],[-1,2]),r=ue(fe(n,this.inputSizeTensor),this.anchorsTensor),a=fe(s,this.doubleInputSizeTensor),o=L(xe(r,a),this.inputSizeTensor),i=L(ue(r,a),this.inputSizeTensor);return Eu([o,i],1)})}normalizeLandmarks(t,n){return j(()=>{let s=ue(fe(G(t,[-1,7,2]),this.inputSizeTensor),this.anchors[n]);return L(s,this.inputSizeTensor)})}async getBoxes(t,n){let s={};s.batched=this.model.predict(t),s.predictions=dt(s.batched),s.scores=j(()=>dt(ss(_e(s.predictions,[0,0],[-1,1]))));let r=await s.scores.data();s.boxes=_e(s.predictions,[0,1],[-1,4]),s.norm=this.normalizeBoxes(s.boxes),s.nms=await $e.nonMaxSuppressionAsync(s.norm,s.scores,3*n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence);let a=await s.nms.array(),o=[];for(let i of a){let l=_e(s.norm,[i,0],[1,-1]),c=j(()=>G(this.normalizeLandmarks(_e(s.predictions,[i,5],[1,14]),i),[-1,2]));o.push({box:l,palmLandmarks:c,confidence:r[i]})}for(let i of Object.keys(s))ee(s[i]);return o}async estimateHandBounds(t,n){let s=t.shape[1],r=t.shape[2],a=j(()=>xe(fe($e.resizeBilinear(t,[this.inputSize,this.inputSize]),127.5),1)),o=await this.getBoxes(a,n);ee(a);let i=[];if(!o||o.length===0)return i;for(let l of o){let c=await l.box.data(),u=c.slice(0,2),d=c.slice(2,4),p=await l.palmLandmarks.array();ee(l.box),ee(l.palmLandmarks),i.push(r8({startPoint:u,endPoint:d,palmLandmarks:p,confidence:l.confidence},[r/this.inputSize,s/this.inputSize]))}return i}};function W0e(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function o8(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return W0e(n)}var i8=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function Ho(e,t){let n=0;for(let s=0;so[0]),s=t.map(o=>o[1]),r=[Math.min(...n),Math.min(...s)],a=[Math.max(...n),Math.max(...s)];return{startPoint:r,endPoint:a}}getBoxForPalmLandmarks(t,n){let s=t.map(a=>Nb([...a,1],n)),r=this.calculateLandmarksBoundingBox(s);return m0(g0(r),U0e)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),s=m0(g0(n),c8);s.palmLandmarks=[];for(let r=0;r[o[0]*(h[0]-this.inputSize/2),o[1]*(h[1]-this.inputSize/2),o[2]*h[2]]),l=Tb(s,[0,0]),c=i.map(h=>[...Nb(h,l),h[2]]),u=u8(r),d=[...Rp(n),1],p=[Ho(d,u[0]),Ho(d,u[1])];return c.map(h=>[Math.trunc(h[0]+p[0]),Math.trunc(h[1]+p[1]),Math.trunc(h[2])])}async estimateHands(t,n){let s=!1,r;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.skipFrame)&&(r=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.skipFrame&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(s=!0));let a=[];for(let o=0;o=n.hand.minConfidence/4){let x=G(y,[-1,3]),b=await x.array();ee(y),ee(x);let w=this.transformRawCoords(b,h,l,p),k=this.getBoxForHandLandmarks(w);this.storedBoxes[o]={...k,confidence:A};let S={landmarks:w,confidence:A,boxConfidence:i.confidence,fingerConfidence:A,box:{topLeft:k.startPoint,bottomRight:k.endPoint}};a.push(S)}else this.storedBoxes[o]=null;ee(y)}else{let l=m0(g0(i),c8),c={confidence:i.confidence,boxConfidence:i.confidence,fingerConfidence:0,box:{topLeft:l.startPoint,bottomRight:l.endPoint},landmarks:[]};a.push(c)}}return this.storedBoxes=this.storedBoxes.filter(o=>o!==null),this.detectedHands=a.length,a.length>n.hand.maxDetected&&(a.length=n.hand.maxDetected),a}};var Qe={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>Qe.nameMapping[e],getPoints:e=>Qe.pointsMapping[e]},ds={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>ds.nameMapping[e]},Ye={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>Ye.nameMapping[e]},y0=class{constructor(t){ve(this,"name");ve(this,"curls");ve(this,"directions");ve(this,"weights");ve(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}addCurl(t,n,s){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([n,s])}addDirection(t,n,s){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([n,s])}setWeight(t,n){this.weights[t]=n;let s=this.weights.reduce((r,a)=>r+a,0);this.weightsRelative=this.weights.map(r=>r*5/s)}matchAgainst(t,n){let s=0;for(let r in t){let a=t[r],o=this.curls[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}for(let r in n){let a=n[r],o=this.directions[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}return s/10}};var jo=new y0("thumbs up");jo.addCurl(Qe.thumb,ds.none,1);jo.addDirection(Qe.thumb,Ye.verticalUp,1);jo.addDirection(Qe.thumb,Ye.diagonalUpLeft,.25);jo.addDirection(Qe.thumb,Ye.diagonalUpRight,.25);for(let e of[Qe.index,Qe.middle,Qe.ring,Qe.pinky])jo.addCurl(e,ds.full,1),jo.addDirection(e,Ye.horizontalLeft,1),jo.addDirection(e,Ye.horizontalRight,1);var en=new y0("victory");en.addCurl(Qe.thumb,ds.half,.5);en.addCurl(Qe.thumb,ds.none,.5);en.addDirection(Qe.thumb,Ye.verticalUp,1);en.addDirection(Qe.thumb,Ye.diagonalUpLeft,1);en.addCurl(Qe.index,ds.none,1);en.addDirection(Qe.index,Ye.verticalUp,.75);en.addDirection(Qe.index,Ye.diagonalUpLeft,1);en.addCurl(Qe.middle,ds.none,1);en.addDirection(Qe.middle,Ye.verticalUp,1);en.addDirection(Qe.middle,Ye.diagonalUpLeft,.75);en.addCurl(Qe.ring,ds.full,1);en.addDirection(Qe.ring,Ye.verticalUp,.2);en.addDirection(Qe.ring,Ye.diagonalUpLeft,1);en.addDirection(Qe.ring,Ye.horizontalLeft,.2);en.addCurl(Qe.pinky,ds.full,1);en.addDirection(Qe.pinky,Ye.verticalUp,.2);en.addDirection(Qe.pinky,Ye.diagonalUpLeft,1);en.addDirection(Qe.pinky,Ye.horizontalLeft,.2);en.setWeight(Qe.index,2);en.setWeight(Qe.middle,2);var p8=[jo,en];var j0e=.7,El={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function h8(e,t,n,s){let r=(t-s)/(e-n),a=Math.atan(r)*180/Math.PI;return a<=0?a=-a:a>0&&(a=180-a),a}function f8(e,t){if(!e||!t)return[0,0];let n=h8(e[0],e[1],t[0],t[1]);if(e.length===2)return n;let s=h8(e[1],e[2],t[1],t[2]);return[n,s]}function m8(e,t=1){let n=0,s=0,r=0;return e>=75&&e<=105?n=1*t:e>=25&&e<=155?s=1*t:r=1*t,[n,s,r]}function q0e(e,t,n){let s=e[0]-t[0],r=e[0]-n[0],a=t[0]-n[0],o=e[1]-t[1],i=e[1]-n[1],l=t[1]-n[1],c=e[2]-t[2],u=e[2]-n[2],d=t[2]-n[2],p=Math.sqrt(s*s+o*o+c*c),h=Math.sqrt(r*r+i*i+u*u),f=Math.sqrt(a*a+l*l+d*d),m=(f*f+p*p-h*h)/(2*f*p);m>1?m=1:m<-1&&(m=-1);let g=Math.acos(m);g=57.2958*g%180;let y;return g>El.NO_CURL_START_LIMIT?y=ds.none:g>El.HALF_CURL_START_LIMIT?y=ds.half:y=ds.full,y}function g8(e,t,n,s){let r;return s===Math.abs(e)?e>0?r=Ye.horizontalLeft:r=Ye.horizontalRight:s===Math.abs(t)?t>0?r=Ye.horizontalLeft:r=Ye.horizontalRight:n>0?r=Ye.horizontalLeft:r=Ye.horizontalRight,r}function y8(e,t,n,s){let r;return s===Math.abs(e)?e<0?r=Ye.verticalDown:r=Ye.verticalUp:s===Math.abs(t)?t<0?r=Ye.verticalDown:r=Ye.verticalUp:n<0?r=Ye.verticalDown:r=Ye.verticalUp,r}function X0e(e,t,n,s,r,a,o,i){let l,c=y8(e,t,n,s),u=g8(r,a,o,i);return c===Ye.verticalUp?u===Ye.horizontalLeft?l=Ye.diagonalUpLeft:l=Ye.diagonalUpRight:u===Ye.horizontalLeft?l=Ye.diagonalDownLeft:l=Ye.diagonalDownRight,l}function K0e(e,t,n,s){let r=e[0]-t[0],a=e[0]-n[0],o=t[0]-n[0],i=e[1]-t[1],l=e[1]-n[1],c=t[1]-n[1],u=Math.max(Math.abs(r),Math.abs(a),Math.abs(o)),d=Math.max(Math.abs(i),Math.abs(l),Math.abs(c)),p=0,h=0,f=0,m=d/(u+1e-5);m>1.5?p+=El.DISTANCE_VOTE_POWER:m>.66?h+=El.DISTANCE_VOTE_POWER:f+=El.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+i*i),y=Math.sqrt(a*a+l*l),A=Math.sqrt(o*o+c*c),x=Math.max(g,y,A),b=e[0],w=e[1],k=n[0],S=n[1];x===g?(k=n[0],S=n[1]):x===A&&(b=t[0],w=t[1]);let F=f8([b,w],[k,S]),R=m8(F,El.TOTAL_ANGLE_VOTE_POWER);p+=R[0],h+=R[1],f+=R[2];for(let T of s){let O=m8(T,El.SINGLE_ANGLE_VOTE_POWER);p+=O[0],h+=O[1],f+=O[2]}let D;return p===Math.max(p,h,f)?D=y8(l,i,c,d):f===Math.max(h,f)?D=g8(a,r,o,u):D=X0e(l,i,c,d,a,r,o,u),D}function A8(e){let t=[],n=[],s=[],r=[];if(!e)return{curls:s,directions:r};for(let a of Qe.all){let o=Qe.getPoints(a),i=[],l=[];for(let c of o){let u=e[c[0]],d=e[c[1]],p=f8(u,d),h=p[0],f=p[1];i.push(h),l.push(f)}t.push(i),n.push(l)}for(let a of Qe.all){let o=a===Qe.thumb?1:0,i=Qe.getPoints(a),l=e[i[o][0]],c=e[i[o+1][1]],u=e[i[3][1]],d=q0e(l,c,u),p=K0e(l,c,u,t[a].slice(o));s[a]=d,r[a]=p}return{curls:s,directions:r}}function A0(e){if(!e||e.length===0)return null;let t=A8(e),n={};for(let s of Qe.all)n[Qe.getName(s)]={curl:ds.getName(t.curls[s]),direction:Ye.getName(t.directions[s])};return n}function x8(e){let t=[];if(!e||e.length===0)return t;let n=A8(e);for(let s of p8){let r=s.matchAgainst(n.curls,n.directions);r>=j0e&&t.push({name:s.name,confidence:r})}return t}var b8={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},ca,da,v8;async function Rb(e,t){let n=await v8.estimateHands(e,t);if(!n)return[];let s=[];for(let r=0;rn[r].landmarks[d]);let o=n[r].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(o&&o.length>0){for(let u of o)u[0]i[2]&&(i[2]=u[0]),u[1]>i[3]&&(i[3]=u[1]);i[2]-=i[0],i[3]-=i[1],l=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],l=[n[r].box.topLeft[0]/(e.shape[2]||0),n[r].box.topLeft[1]/(e.shape[1]||0),(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/(e.shape[2]||0),(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/(e.shape[1]||0)];let c=A0(o);s.push({id:r,score:Math.round(100*n[r].confidence)/100,boxScore:Math.round(100*n[r].boxConfidence)/100,fingerScore:Math.round(100*n[r].fingerConfidence)/100,label:"hand",box:i,boxRaw:l,keypoints:o,annotations:a,landmarks:c})}return s}async function $b(e){var n,s,r,a,o,i;ie.initial&&(ca=null,da=null),!ca||!da?([ca,da]=await Promise.all([e.hand.enabled?ot(lt(e.modelBasePath,((n=e.hand.detector)==null?void 0:n.modelPath)||""),{fromTFHub:(((s=e.hand.detector)==null?void 0:s.modelPath)||"").includes("tfhub.dev")}):null,e.hand.landmarks?ot(lt(e.modelBasePath,((r=e.hand.skeleton)==null?void 0:r.modelPath)||""),{fromTFHub:(((a=e.hand.skeleton)==null?void 0:a.modelPath)||"").includes("tfhub.dev")}):null]),e.hand.enabled&&(!ca||!ca.modelUrl?ae("load model failed:",((o=e.hand.detector)==null?void 0:o.modelPath)||""):e.debug&&ae("load model:",ca.modelUrl),!da||!da.modelUrl?ae("load model failed:",((i=e.hand.skeleton)==null?void 0:i.modelPath)||""):e.debug&&ae("load model:",da.modelUrl))):(e.debug&&ae("cached model:",ca.modelUrl),e.debug&&ae("cached model:",da.modelUrl));let t=new Cb(ca);return v8=new Eb(t,da),[ca,da]}function $p(e,t=[1,1]){let n=[e.map(i=>i[0]),e.map(i=>i[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[s[0],s[1],r[0]-s[0],r[1]-s[1]],o=[a[0]/t[0],a[1]/t[1],a[2]/t[0],a[3]/t[1]];return{box:a,boxRaw:o}}function w8(e,t=[1,1]){let n=[e.map(c=>c[0]),e.map(c=>c[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[(s[0]+r[0])/2,(s[1]+r[1])/2],o=Math.max(a[0]-s[0],a[1]-s[1],-a[0]+r[0],-a[1]+r[1]),i=[Math.trunc(a[0]-o),Math.trunc(a[1]-o),Math.trunc(2*o),Math.trunc(2*o)],l=[i[0]/t[0],i[1]/t[1],i[2]/t[0],i[3]/t[1]];return{box:i,boxRaw:l}}function x0(e,t){let n=[e[2]*t,e[3]*t];return[e[0]-(n[0]-e[2])/2,e[1]-(n[1]-e[3])/2,n[0],n[1]]}function Db(e){return[Math.max(0,e[1]),Math.max(0,e[0]),Math.min(1,e[3]+e[1]),Math.min(1,e[2]+e[0])]}var Rt=[null,null],Z0e=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],qo=[[0,0],[0,0]],Y0e=["hand","fist","pinch","point","face","tip","pinchtip"],k8=4,I8=1.6,J0e=512,Q0e=1.4,b0=0,Xo=[0,0],Dn={boxes:[],hands:[]},S8={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]};async function C8(e){var t,n;if(ie.initial&&(Rt[0]=null),Rt[0])e.debug&&ae("cached model:",Rt[0].modelUrl);else{Ac(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),Rt[0]=await ot(lt(e.modelBasePath,((t=e.hand.detector)==null?void 0:t.modelPath)||""));let s=Object.values(Rt[0].modelSignature.inputs);qo[0][0]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[1].size):0,qo[0][1]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[2].size):0,!Rt[0]||!Rt[0].modelUrl?ae("load model failed:",(n=e.hand.detector)==null?void 0:n.modelPath):e.debug&&ae("load model:",Rt[0].modelUrl)}return Rt[0]}async function T8(e){var t,n;if(ie.initial&&(Rt[1]=null),Rt[1])e.debug&&ae("cached model:",Rt[1].modelUrl);else{Rt[1]=await ot(lt(e.modelBasePath,((t=e.hand.skeleton)==null?void 0:t.modelPath)||""));let s=Object.values(Rt[1].modelSignature.inputs);qo[1][0]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[1].size):0,qo[1][1]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[2].size):0,!Rt[1]||!Rt[1].modelUrl?ae("load model failed:",(n=e.hand.skeleton)==null?void 0:n.modelPath):e.debug&&ae("load model:",Rt[1].modelUrl)}return Rt[1]}async function ege(e,t){let n=[];if(!e||!Rt[0])return n;let s={},r=(e.shape[2]||1)/(e.shape[1]||1),a=Math.min(Math.round((e.shape[1]||0)/8)*8,J0e),o=Math.round(a*r/8)*8;s.resize=$e.resizeBilinear(e,[a,o]),s.cast=pe(s.resize,"int32"),[s.rawScores,s.rawBoxes]=await Rt[0].executeAsync(s.cast,Z0e),s.boxes=dt(s.rawBoxes,[0,2]),s.scores=dt(s.rawScores,[0]);let i=Vn(s.scores,1);ee(i[k8]),i.splice(k8,1),s.filtered=Tn(i,1),ee(i),s.max=Wn(s.filtered,1),s.argmax=Fs(s.filtered,1);let l=0;s.nms=await $e.nonMaxSuppressionAsync(s.boxes,s.max,t.hand.maxDetected,t.hand.iouThreshold,t.hand.minConfidence);let c=await s.nms.data(),u=await s.max.data(),d=await s.argmax.data();for(let p of Array.from(c)){let h=_e(s.boxes,p,1),f=await h.data();ee(h);let m=[f[1],f[0],f[3]-f[1],f[2]-f[0]],g=x0(m,Q0e),y=Db(g),A=[Math.trunc(m[0]*Xo[0]),Math.trunc(m[1]*Xo[1]),Math.trunc(m[2]*Xo[0]),Math.trunc(m[3]*Xo[1])],x=u[p],b=Y0e[d[p]],w={id:l++,score:x,box:A,boxRaw:g,boxCrop:y,label:b};n.push(w)}return Object.keys(s).forEach(p=>ee(s[p])),n.sort((p,h)=>h.score-p.score),n.length>(t.hand.maxDetected||1)&&(n.length=t.hand.maxDetected||1),n}async function _b(e,t,n){let s={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&Rt[1]&&n.hand.landmarks&&t.score>(n.hand.minConfidence||0)){let r={};r.crop=$e.cropAndResize(e,[t.boxCrop],[0],[qo[1][0],qo[1][1]],"bilinear"),r.cast=pe(r.crop,"float32"),r.div=fe(r.cast,255),[r.score,r.keypoints]=Rt[1].execute(r.div);let a=(await r.score.data())[0],o=(100-Math.trunc(100/(1+Math.exp(a))))/100;if(o>=(n.hand.minConfidence||0)){s.fingerScore=o,r.reshaped=G(r.keypoints,[-1,3]);let c=(await r.reshaped.array()).map(u=>[u[0]/qo[1][1],u[1]/qo[1][0],u[2]||0]).map(u=>[u[0]*t.boxRaw[2],u[1]*t.boxRaw[3],u[2]||0]);s.keypoints=c.map(u=>[Xo[0]*(u[0]+t.boxRaw[0]),Xo[1]*(u[1]+t.boxRaw[1]),u[2]||0]),s.landmarks=A0(s.keypoints);for(let u of Object.keys(S8))s.annotations[u]=S8[u].map(d=>s.landmarks&&s.keypoints[d]?s.keypoints[d]:null)}Object.keys(r).forEach(i=>ee(r[i]))}return s}async function Pb(e,t){var n,s;return!Rt[0]||!Rt[1]||!((n=Rt[0])==null?void 0:n.inputs[0].shape)||!((s=Rt[1])==null?void 0:s.inputs[0].shape)?[]:(Xo=[e.shape[2]||0,e.shape[1]||0],b0++,t.skipFrame&&b0<=(t.hand.skipFrames||0)?Dn.hands:new Promise(async r=>{t.skipFrame&&Dn.hands.length===t.hand.maxDetected?Dn.hands=await Promise.all(Dn.boxes.map(o=>_b(e,o,t))):t.skipFrame&&b0<3*(t.hand.skipFrames||0)&&Dn.hands.length>0?Dn.hands=await Promise.all(Dn.boxes.map(o=>_b(e,o,t))):(Dn.boxes=await ege(e,t),Dn.hands=await Promise.all(Dn.boxes.map(o=>_b(e,o,t))),b0=0);let a=[...Dn.boxes];if(Dn.boxes.length=0,t.cacheSensitivity>0)for(let o=0;o.05&&i.box[3]/(e.shape[1]||1)>.05&&Dn.hands[o].fingerScore&&Dn.hands[o].fingerScore>(t.hand.minConfidence||0)){let l=x0(i.box,I8),c=x0(i.boxRaw,I8),u=Db(c);Dn.boxes.push({...a[o],box:l,boxRaw:c,boxCrop:u})}}r(Dn.hands)}))}var zb={};Fc(zb,{connected:()=>w0,horizontal:()=>Fb,kpt:()=>v0,relative:()=>Mb,vertical:()=>Ob});var v0=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],Fb=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],Ob=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],Mb=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],w0={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var N8=.005,Ts={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function Lb(e){for(let t of Fb){let n=e.keypoints.findIndex(r=>r.part===t[0]),s=e.keypoints.findIndex(r=>r.part===t[1]);if(e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[0]r&&r.part===t[0]),s=e.keypoints.findIndex(r=>r&&r.part===t[1]);e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[1]c&&c.part===t[0]),r=e.keypoints.findIndex(c=>c&&c.part===t[1]),a=e.keypoints.findIndex(c=>c&&c.part===n[0]),o=e.keypoints.findIndex(c=>c&&c.part===n[1]);if(!e.keypoints[a]||!e.keypoints[o])continue;let i=e.keypoints[s]?[Math.abs(e.keypoints[a].position[0]-e.keypoints[s].position[0]),Math.abs(e.keypoints[o].position[0]-e.keypoints[s].position[0])]:[0,0],l=e.keypoints[r]?[Math.abs(e.keypoints[o].position[0]-e.keypoints[r].position[0]),Math.abs(e.keypoints[a].position[0]-e.keypoints[r].position[0])]:[0,0];if(i[0]>i[1]||l[0]>l[1]){let c=e.keypoints[s];e.keypoints[s]=e.keypoints[r],e.keypoints[r]=c}}}function E8(e){for(let t=0;te.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],n.pad=Ms(e,Ts.padding),n.resize=$e.resizeBilinear(n.pad,[t,t]);let s=pe(n.resize,"int32");return Object.keys(n).forEach(r=>ee(n[r])),s}function $8(e,t){e.keypoints=e.keypoints.filter(s=>s&&s.position);for(let s of e.keypoints)s.position=[s.position[0]*(t[0]+Ts.padding[2][0]+Ts.padding[2][1])/t[0]-Ts.padding[2][0],s.position[1]*(t[1]+Ts.padding[1][0]+Ts.padding[1][1])/t[1]-Ts.padding[1][0]],s.positionRaw=[s.position[0]/t[0],s.position[1]/t[1]];let n=$p(e.keypoints.map(s=>s.position),t);return e.box=n.box,e.boxRaw=n.boxRaw,e}var Fn,k0=0,Bb=Number.MAX_SAFE_INTEGER,Dp={boxes:[],bodies:[]};async function D8(e){return ie.initial&&(Fn=null),Fn?e.debug&&ae("cached model:",Fn.modelUrl):(Ac(["size"],e),Fn=await ot(lt(e.modelBasePath,e.body.modelPath||"")),!Fn||!Fn.modelUrl?ae("load model failed:",e.body.modelPath):e.debug&&ae("load model:",Fn.modelUrl)),k0=Fn.inputs[0].shape?Fn.inputs[0].shape[2]:0,k0===-1&&(k0=256),Fn}async function tge(e,t,n,s){let r=e[0][0],a=[],o=0;for(let d=0;dt.body.minConfidence){let p=[(s[3]-s[1])*r[d][1]+s[1],(s[2]-s[0])*r[d][0]+s[0]];a.push({score:Math.round(100*o)/100,part:v0[d],positionRaw:p,position:[Math.round((n.shape[2]||0)*p[0]),Math.round((n.shape[1]||0)*p[1])]})}o=a.reduce((d,p)=>p.score>d?p.score:d,0);let i=[],l=$p(a.map(d=>d.position),[n.shape[2],n.shape[1]]),c={};for(let[d,p]of Object.entries(w0)){let h=[];for(let f=0;fy.part===p[f]),g=a.find(y=>y.part===p[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}c[d]=h}let u={id:0,score:o,box:l.box,boxRaw:l.boxRaw,keypoints:a,annotations:c};return Lb(u),i.push(u),i}async function nge(e,t,n,s){let r=[];for(let a=0;at.body.minConfidence){let l=[];for(let p=0;p<17;p++){let h=o[3*p+2];if(h>t.body.minConfidence){let f=[(s[3]-s[1])*o[3*p+1]+s[1],(s[2]-s[0])*o[3*p+0]+s[0]];l.push({part:v0[p],score:Math.round(100*h)/100,positionRaw:f,position:[Math.round((n.shape[2]||0)*f[0]),Math.round((n.shape[1]||0)*f[1])]})}}let c=$p(l.map(p=>p.position),[n.shape[2],n.shape[1]]),u={};for(let[p,h]of Object.entries(w0)){let f=[];for(let m=0;mA.part===h[m]),y=l.find(A=>A.part===h[m+1]);g&&y&&g.score>(t.body.minConfidence||0)&&y.score>(t.body.minConfidence||0)&&f.push([g.position,y.position])}u[p]=f}let d={id:a,score:i,box:c.box,boxRaw:c.boxRaw,keypoints:[...l],annotations:u};Lb(d),r.push(d)}}return r.sort((a,o)=>o.score-a.score),r.length>t.body.maxDetected&&(r.length=t.body.maxDetected),r}async function Wb(e,t){return!Fn||!(Fn==null?void 0:Fn.inputs[0].shape)?[]:(t.skipFrame||(Dp.boxes.length=0),Bb++,t.skipFrame&&Bb<=(t.body.skipFrames||0)?Dp.bodies:new Promise(async n=>{let s={};Bb=0,s.input=R8(e,k0),s.res=await(Fn==null?void 0:Fn.predict(s.input));let r=await s.res.array();Dp.bodies=s.res.shape[2]===17?await tge(r,t,e,[0,0,1,1]):await nge(r,t,e,[0,0,1,1]);for(let a of Dp.bodies)$8(a,[e.shape[2]||1,e.shape[1]||1]),E8(a.keypoints);Object.keys(s).forEach(a=>ee(s[a])),n(Dp.bodies)}))}var Ns,I0=[],Vb=Number.MAX_SAFE_INTEGER,S0=2.5;async function _8(e){if(!Ns||ie.initial){Ns=await ot(lt(e.modelBasePath,e.object.modelPath||""));let t=Object.values(Ns.modelSignature.inputs);if(Ns.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!Ns.inputSize)throw new Error(`cannot determine model inputSize: ${e.object.modelPath}`);!Ns||!Ns.modelUrl?ae("load model failed:",e.object.modelPath):e.debug&&ae("load model:",Ns.modelUrl)}else e.debug&&ae("cached model:",Ns.modelUrl);return Ns}async function sge(e,t,n,s){let r=0,a=[];for(let c of[1,2,4])j(async()=>{var g,y;let u=c*13,d=(g=e.find(A=>A.shape[1]===u**2&&A.shape[2]===yc.length))==null?void 0:g.squeeze(),p=(y=e.find(A=>A.shape[1]===u**2&&A.shape[2]s.object.minConfidence&&x!==61){let w=(.5+Math.trunc(A%u))/u,k=(.5+Math.trunc(A/u))/u,S=f[A].map(W=>W*(u/c/t)),[N,$]=[w-S0/c*S[0],k-S0/c*S[1]],[F,R]=[w+S0/c*S[2]-N,k+S0/c*S[3]-$],D=[N,$,F,R];D=D.map(W=>Math.max(0,Math.min(W,1)));let T=[D[0]*n[0],D[1]*n[1],D[2]*n[0],D[3]*n[1]],O={id:r++,score:Math.round(100*b)/100,class:x+1,label:yc[x].label,box:T.map(W=>Math.trunc(W)),boxRaw:D};a.push(O)}}});e.forEach(c=>ee(c));let o=a.map(c=>[c.boxRaw[1],c.boxRaw[0],c.boxRaw[3],c.boxRaw[2]]),i=a.map(c=>c.score),l=[];if(o&&o.length>0){let c=await $e.nonMaxSuppressionAsync(o,i,s.object.maxDetected,s.object.iouThreshold,s.object.minConfidence);l=await c.data(),ee(c)}return a=a.filter((c,u)=>l.includes(u)).sort((c,u)=>u.score-c.score),a}async function Ub(e,t){return Vb<(t.object.skipFrames||0)&&t.skipFrame&&I0.length>0?(Vb++,I0):(Vb=0,!ie.kernels.includes("mod")||!ie.kernels.includes("sparsetodense")?I0:new Promise(async n=>{let s=[e.shape[2],e.shape[1]],r=$e.resizeBilinear(e,[Ns.inputSize,Ns.inputSize],!1),a=fe(r,255),o=a.transpose([0,3,1,2]);ee(a),ee(r);let i;t.object.enabled&&(i=await Ns.predict(o)),ee(o);let l=await sge(i,Ns.inputSize,s,t);I0=l,n(l)}))}var _p=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],rge=_p.length,Pp=_p.reduce((e,t,n)=>(e[t]=n,e),{}),age=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],W1e=age.map(([e,t])=>[Pp[e],Pp[t]]),P8=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function F8(e){let t=e.reduce(({maxX:n,maxY:s,minX:r,minY:a},{position:{x:o,y:i}})=>({maxX:Math.max(n,o),maxY:Math.max(s,i),minX:Math.min(r,o),minY:Math.min(a,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function O8(e,[t,n],[s,r]){let a=t/s,o=n/r,i=(c,u)=>({id:u,score:c.score,boxRaw:[c.box[0]/r,c.box[1]/s,c.box[2]/r,c.box[3]/s],box:[Math.trunc(c.box[0]*o),Math.trunc(c.box[1]*a),Math.trunc(c.box[2]*o),Math.trunc(c.box[3]*a)],keypoints:c.keypoints.map(({score:d,part:p,position:h})=>({score:d,part:p,position:[Math.trunc(h.x*o),Math.trunc(h.y*a)],positionRaw:[h.x/s,h.y/s]}))});return e.map((c,u)=>i(c,u))}var Gb=class{constructor(t,n){ve(this,"priorityQueue");ve(this,"numberOfElements");ve(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(nn?n:e}function M8(e,t,n,s){let r=n-e,a=s-t;return r*r+a*a}function Xb(e,t){return{x:e.x+t.x,y:e.y+t.y}}var Es,oge=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],C0=1,vc=16,ige=50**2;function z8(e,t,n,s,r,a,o=2){let i=y=>({y:a.get(y.y,y.x,e),x:a.get(y.y,y.x,a.shape[2]/2+e)}),l=(y,A,x)=>({y:qb(Math.round(y.y/vc),0,A-1),x:qb(Math.round(y.x/vc),0,x-1)}),[c,u]=s.shape,d=l(t.position,c,u),p=i(d),f=Xb(t.position,p);for(let y=0;y[Pp[p],Pp[h]]),o=a.map(([,p])=>p),i=a.map(([p])=>p),l=t.shape[2],c=o.length,u=new Array(l),d=jb(e.part,vc,n);u[e.part.id]={score:e.score,part:_p[e.part.id],position:d};for(let p=c-1;p>=0;--p){let h=o[p],f=i[p];u[h]&&!u[f]&&(u[f]=z8(p,u[h],f,t,n,r))}for(let p=0;pt){i=!1;break}if(!i)break}return i}function cge(e,t){let[n,s,r]=t.shape,a=new Gb(n*s*r,({score:o})=>o);for(let o=0;o{var o;let a=(o=r[s])==null?void 0:o.position;return a?M8(n,t,a.y,a.x)<=ige:!1})}function dge(e,t){return t.reduce((s,{position:r,score:a},o)=>(L8(e,r,o)||(s+=a),s),0)/t.length}function pge(e,t,n,s,r,a){let o=[],i=cge(a,t);for(;o.lengthh.score>a);let d=dge(o,u),p=F8(u);d>a&&o.push({keypoints:u,box:p,score:Math.round(100*d)/100})}return o}async function Kb(e,t){let n=j(()=>{if(!Es.inputs[0].shape)return[];let o=$e.resizeBilinear(e,[Es.inputs[0].shape[2],Es.inputs[0].shape[1]]),i=xe(fe(pe(o,"float32"),127.5),1),c=Es.execute(i,oge).map(u=>dt(u,[0]));return c[1]=c[1].sigmoid(),c}),s=await Promise.all(n.map(o=>o.buffer()));for(let o of n)ee(o);let r=await pge(s[0],s[1],s[2],s[3],t.body.maxDetected,t.body.minConfidence);return Es.inputs[0].shape?O8(r,[e.shape[1],e.shape[2]],[Es.inputs[0].shape[2],Es.inputs[0].shape[1]]):[]}async function B8(e){return!Es||ie.initial?(Es=await ot(lt(e.modelBasePath,e.body.modelPath||"")),!Es||!Es.modelUrl?ae("load model failed:",e.body.modelPath):e.debug&&ae("load model:",Es.modelUrl)):e.debug&&ae("cached model:",Es.modelUrl),Es}var Hs,Zb=!1;async function Yb(e){return!Hs||ie.initial?(Hs=await ot(lt(e.modelBasePath,e.segmentation.modelPath||"")),!Hs||!Hs.modelUrl?ae("load model failed:",e.segmentation.modelPath):e.debug&&ae("load model:",Hs.modelUrl)):e.debug&&ae("cached model:",Hs.modelUrl),Hs}async function W8(e,t,n){var m,g;if(Zb)return{data:[],canvas:null,alpha:null};Zb=!0,Hs||await Yb(n);let s=gc(e,n),r=((m=s.canvas)==null?void 0:m.width)||0,a=((g=s.canvas)==null?void 0:g.height)||0;if(!s.tensor)return{data:[],canvas:null,alpha:null};let o={};o.resize=$e.resizeBilinear(s.tensor,[Hs.inputs[0].shape?Hs.inputs[0].shape[1]:0,Hs.inputs[0].shape?Hs.inputs[0].shape[2]:0],!1),ee(s.tensor),o.norm=fe(o.resize,255),o.res=Hs.predict(o.norm),o.squeeze=dt(o.res,0),o.squeeze.shape[2]===2?(o.softmax=nl(o.squeeze),[o.bg,o.fg]=Vn(o.softmax,2),o.expand=qt(o.fg,2),o.pad=qt(o.expand,0),o.crop=$e.cropAndResize(o.pad,[[0,0,.5,.5]],[0],[r,a]),o.data=dt(o.crop,0)):o.data=$e.resizeBilinear(o.squeeze,[a,r]);let i=Array.from(await o.data.data());if(ie.node&&!ie.Canvas&&typeof ImageData=="undefined")return n.debug&&ae("canvas support missing"),Object.keys(o).forEach(y=>ee(o[y])),{data:i,canvas:null,alpha:null};let l=Cs(r,a);await Ks.toPixels(o.data,l);let c=l.getContext("2d");n.segmentation.blur&&n.segmentation.blur>0&&(c.filter=`blur(${n.segmentation.blur}px)`);let u=c.getImageData(0,0,r,a),d=Cs(r,a),p=d.getContext("2d");s.canvas&&p.drawImage(s.canvas,0,0),p.globalCompositeOperation="darken",n.segmentation.blur&&n.segmentation.blur>0&&(p.filter=`blur(${n.segmentation.blur}px)`),p.drawImage(l,0,0),p.globalCompositeOperation="source-over",p.filter="none";let h=p.getImageData(0,0,r,a);for(let y=0;yee(o[y])),Zb=!1,{data:i,canvas:f||d,alpha:l}}var Fp=class{constructor(){ve(this,"age",null);ve(this,"agegenderrace",null);ve(this,"blazeposedetect",null);ve(this,"blazepose",null);ve(this,"centernet",null);ve(this,"efficientpose",null);ve(this,"embedding",null);ve(this,"emotion",null);ve(this,"facedetect",null);ve(this,"faceiris",null);ve(this,"facemesh",null);ve(this,"faceres",null);ve(this,"gender",null);ve(this,"handpose",null);ve(this,"handskeleton",null);ve(this,"handtrack",null);ve(this,"movenet",null);ve(this,"nanodet",null);ve(this,"posenet",null);ve(this,"segmentation",null);ve(this,"antispoof",null)}};function Jb(e){for(let t of Object.keys(e.models))e.models[t]=null}async function V8(e){var t,n,s,r,a,o,i,l,c,u,d,p,h,f,m,g,y,A,x,b,w,k,S,N,$,F,R,D,T,O,W;ie.initial&&Jb(e),e.config.hand.enabled&&(!e.models.handpose&&((n=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:n.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await $b(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((r=(s=e.config.hand.detector)==null?void 0:s.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await $b(e.config))),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=O6(e.config)),e.config.face.enabled&&((a=e.config.face.mesh)==null?void 0:a.enabled)&&!e.models.facemesh&&(e.models.facemesh=J6(e.config)),e.config.face.enabled&&((o=e.config.face.iris)==null?void 0:o.enabled)&&!e.models.faceiris&&(e.models.faceiris=H6(e.config)),e.config.face.enabled&&((i=e.config.face.antispoof)==null?void 0:i.enabled)&&!e.models.antispoof&&(e.models.antispoof=C6(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((c=(l=e.config.hand.detector)==null?void 0:l.modelPath)==null?void 0:c.includes("handtrack"))&&(e.models.handtrack=C8(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&((d=(u=e.config.hand.detector)==null?void 0:u.modelPath)==null?void 0:d.includes("handtrack"))&&(e.models.handskeleton=T8(e.config)),e.config.body.enabled&&!e.models.posenet&&((h=(p=e.config.body)==null?void 0:p.modelPath)==null?void 0:h.includes("posenet"))&&(e.models.posenet=B8(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((m=(f=e.config.body)==null?void 0:f.modelPath)==null?void 0:m.includes("efficientpose"))&&(e.models.efficientpose=mb(e.config)),e.config.body.enabled&&!e.models.blazepose&&((y=(g=e.config.body)==null?void 0:g.modelPath)==null?void 0:y.includes("blazepose"))&&(e.models.blazepose=B6(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&((A=e.config.body.detector)==null?void 0:A.modelPath)&&((b=(x=e.config.body)==null?void 0:x.modelPath)==null?void 0:b.includes("blazepose"))&&(e.models.blazeposedetect=L6(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((k=(w=e.config.body)==null?void 0:w.modelPath)==null?void 0:k.includes("efficientpose"))&&(e.models.efficientpose=mb(e.config)),e.config.body.enabled&&!e.models.movenet&&((N=(S=e.config.body)==null?void 0:S.modelPath)==null?void 0:N.includes("movenet"))&&(e.models.movenet=D8(e.config)),e.config.object.enabled&&!e.models.nanodet&&((F=($=e.config.object)==null?void 0:$.modelPath)==null?void 0:F.includes("nanodet"))&&(e.models.nanodet=_8(e.config)),e.config.object.enabled&&!e.models.centernet&&((D=(R=e.config.object)==null?void 0:R.modelPath)==null?void 0:D.includes("centernet"))&&(e.models.centernet=V6(e.config)),e.config.face.enabled&&((T=e.config.face.emotion)==null?void 0:T.enabled)&&!e.models.emotion&&(e.models.emotion=G6(e.config)),e.config.face.enabled&&((O=e.config.face.description)==null?void 0:O.enabled)&&!e.models.faceres&&(e.models.faceres=n8(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=Yb(e.config)),e.config.face.enabled&&((W=e.config.face.agegenderrace)==null?void 0:W.enabled)&&!e.models.agegenderrace&&(e.models.agegenderrace=I6(e.config));for await(let H of Object.keys(e.models))e.models[H]&&typeof e.models[H]!="undefined"&&(e.models[H]=await e.models[H])}async function U8(e){let t=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"];for(let n of Object.keys(e.models))if(e.models[n]){let s=[];Array.isArray(e.models[n])?s=e.models[n].filter(r=>r!==null).map(r=>r&&r.executor?r:r.model):s=[e.models[n]];for(let r of s){if(!r){e.config.debug&&ae("model marked as loaded but not defined:",n);continue}let a=[],o=r==null?void 0:r.executor;if(o&&o.graph.nodes)for(let l of Object.values(o.graph.nodes)){let c=l.op.toLowerCase();a.includes(c)||a.push(c)}else!o&&e.config.debug&&ae("model signature not determined:",n);let i=[];for(let l of a)!t.includes(l)&&!e.env.kernels.includes(l)&&!e.env.kernels.includes(l.replace("_",""))&&!e.env.kernels.includes(l.replace("native",""))&&!e.env.kernels.includes(l.replace("v2",""))&&i.push(l);i.length>0&&e.config.debug&&ae("model validation:",n,i)}}}var Wt={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function hge(){let e=Wt.gl;!e||(Wt.extensions=e.getSupportedExtensions())}async function G8(e){var t;if(e.config.backend==="humangl"&&(Wt.name in ns().registry&&(!Wt.gl||!Wt.gl.getParameter(Wt.gl.VERSION))&&(ae("error: humangl backend invalid context"),Jb(e)),!G2(Wt.name))){try{Wt.canvas=await Cs(100,100)}catch(s){ae("error: cannot create canvas:",s);return}try{Wt.gl=(t=Wt.canvas)==null?void 0:t.getContext("webgl2",Wt.webGLattr),Wt.canvas&&(Wt.canvas.addEventListener("webglcontextlost",async s=>{throw ae("error: humangl:",s.type),ae("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("browser webgl error")}),Wt.canvas.addEventListener("webglcontextrestored",s=>{ae("error: humangl context restored:",s)}),Wt.canvas.addEventListener("webglcontextcreationerror",s=>{ae("error: humangl context create:",s)}))}catch(s){ae("error: cannot get WebGL context:",s);return}try{Tm(2,Wt.gl)}catch(s){ae("error: cannot set WebGL context:",s);return}try{let s=new Om(Wt.gl);Xi(Wt.name,()=>new oc(s),Wt.priority)}catch(s){ae("error: cannot register WebGL backend:",s);return}try{Zr("webgl").forEach(r=>{let a={...r,backendName:Wt.name};Yr(a)})}catch(s){ae("error: cannot update WebGL backend registration:",s);return}let n=Tr().getGPGPUContext?Tr().getGPGPUContext().gl:null;if(n)ae(`humangl webgl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`);else{ae("error: no current gl context:",n,Wt.gl);return}try{ms.set("WEBGL_VERSION",2)}catch(s){ae("error: cannot set WebGL backend flags:",s);return}hge(),ae("backend registered:",Wt.name)}}async function T0(e,t=!1){if(e.state="backend",t||ie.initial||e.config.backend&&e.config.backend.length>0&&ur()!==e.config.backend){let n=We();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&ae("running inside web worker"),ie.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&ae("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),ie.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&ae(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),ie.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")ae("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let r=await navigator.gpu.requestAdapter();e.config.debug&&ae("enumerated webgpu adapter:",r)}e.config.backend==="humangl"&&await G8(e);let s=Object.keys(ns().registryFactory);if(e.config.debug&&ae("available backends:",s),s.includes(e.config.backend)||(ae(`error: backend ${e.config.backend} not found in registry`),e.config.backend=ie.node?"tensorflow":"webgl",e.config.debug&&ae(`override: setting backend ${e.config.backend}`)),e.config.debug&&ae("setting backend:",e.config.backend),e.config.backend==="wasm"){if(e.config.debug&&ae("wasm path:",e.config.wasmPath),typeof(Sl==null?void 0:Sl.setWasmPaths)!="undefined")await RC(e.config.wasmPath);else throw new Error("wasm backend is not loaded");let r=await Z().getAsync("WASM_HAS_SIMD_SUPPORT"),a=await Z().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");e.config.debug&&ae(`wasm execution: ${r?"SIMD":"no SIMD"} ${a?"multithreaded":"singlethreaded"}`),e.config.debug&&!r&&ae("warning: wasm simd support is not enabled")}try{await z3(e.config.backend),await Jh()}catch(r){return ae("error: cannot set backend:",e.config.backend,r),!1}}if(ur()==="humangl"&&(ms.set("CHECK_COMPUTATION_FOR_ERRORS",!1),ms.set("WEBGL_CPU_FORWARD",!0),ms.set("WEBGL_PACK_DEPTHWISECONV",!1),ms.set("WEBGL_USE_SHAPES_UNIFORMS",!0),ms.set("CPU_HANDOFF_SIZE_THRESHOLD",256),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(ae("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),ms.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),Tr().getGPGPUContext)){let s=await Tr().getGPGPUContext().gl;e.config.debug&&ae(`gl version:${s.getParameter(s.VERSION)} renderer:${s.getParameter(s.RENDERER)}`)}ur()==="webgpu"&&(ms.set("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD",512),ms.set("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE",0),ms.set("WEBGPU_CPU_FORWARD",!0)),M3(),await Jh(),e.performance.backend=Math.trunc(We()-n),e.config.backend=ur(),s0(),e.env=ie}return!0}function Ac(e,t){for(let n of e){let s={kernelName:n,backendName:t.backend,kernelFunc:()=>{t.debug&&ae("kernelFunc",n,t.backend)}};Yr(s)}ie.kernels=Zr(ur()).map(n=>n.kernelName.toLowerCase())}var pa={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 14px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!0},Rl=e=>{if(e&&e.getContext)return e.getContext("2d");throw new Error("invalid canvas")},wc=e=>Math.round(e*180/Math.PI);function Qb(e,t,n,s=0,r){e.fillStyle=r.useDepth&&s?`rgba(${127.5+2*s}, ${127.5-2*s}, 255, 0.3)`:r.color,e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function Op(e,t,n,s,r,a){if(e.beginPath(),a.useCurves){let o=(t+t+s)/2,i=(n+n+r)/2;e.ellipse(o,i,s/2,r/2,0,0,2*Math.PI)}else e.lineWidth=a.lineWidth,e.moveTo(t+a.roundRect,n),e.lineTo(t+s-a.roundRect,n),e.quadraticCurveTo(t+s,n,t+s,n+a.roundRect),e.lineTo(t+s,n+r-a.roundRect),e.quadraticCurveTo(t+s,n+r,t+s-a.roundRect,n+r),e.lineTo(t+a.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-a.roundRect),e.lineTo(t,n+a.roundRect),e.quadraticCurveTo(t,n,t+a.roundRect,n),e.closePath();e.stroke()}function H8(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let s of t){let r=s[2]||0;e.strokeStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.lineTo(s[0],Math.round(s[1]))}e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function fge(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){H8(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let s=0;s1&&l[1].length>0){let c=i[1]>0?`#${i[1]}`:"",u=`${i[0]} ${c}: ${l[1]}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(u,8,2+a*s.lineHeight)),r.fillStyle=s.labelColor,r.fillText(u,6,0+a*s.lineHeight),a+=1}}}async function t5(e,t,n){var a,o,i,l,c;let s=fn(pa,n);if(!t||!e)return;let r=Rl(e);for(let u of t){r.font=s.font,r.strokeStyle=s.color,r.fillStyle=s.color,s.drawBoxes&&Op(r,u.box[0],u.box[1],u.box[2],u.box[3],s);let d=[];if(d.push(`face: ${Math.trunc(100*u.score)}%`),u.genderScore&&d.push(`${u.gender||""} ${Math.trunc(100*u.genderScore)}%`),u.age&&d.push(`age: ${u.age||""}`),u.iris&&d.push(`distance: ${u.iris}`),u.real&&d.push(`Real: ${Math.trunc(100*u.real)}%`),u.emotion&&u.emotion.length>0){let p=u.emotion.map(h=>`${Math.trunc(100*h.score)}% ${h.emotion}`);p.length>3&&(p.length=3),d.push(p.join(" "))}u.rotation&&u.rotation.angle&&u.rotation.gaze&&(u.rotation.angle.roll&&d.push(`roll: ${wc(u.rotation.angle.roll)}\xB0 yaw:${wc(u.rotation.angle.yaw)}\xB0 pitch:${wc(u.rotation.angle.pitch)}\xB0`),u.rotation.gaze.bearing&&d.push(`gaze: ${wc(u.rotation.gaze.bearing)}\xB0`)),d.length===0&&d.push("face"),r.fillStyle=s.color;for(let p=d.length-1;p>=0;p--){let h=Math.max(u.box[0],0),f=p*s.lineHeight+u.box[1];s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(d[p],h+5,f+16)),r.fillStyle=s.labelColor,r.fillText(d[p],h+4,f+15)}if(r.lineWidth=1,u.mesh&&u.mesh.length>0){if(s.drawPoints)for(let p of u.mesh)Qb(r,p[0],p[1],p[2],s);if(s.drawPolygons){if(r.lineWidth=1,u.mesh.length>450)for(let p=0;pu.mesh[f]);H8(r,h,s)}if(u.annotations&&u.annotations.leftEyeIris&&u.annotations.leftEyeIris[0]){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let p=Math.abs(u.annotations.leftEyeIris[3][0]-u.annotations.leftEyeIris[1][0])/2,h=Math.abs(u.annotations.leftEyeIris[4][1]-u.annotations.leftEyeIris[2][1])/2;r.ellipse(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1],p,h,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(u.annotations&&u.annotations.rightEyeIris&&u.annotations.rightEyeIris[0]){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let p=Math.abs(u.annotations.rightEyeIris[3][0]-u.annotations.rightEyeIris[1][0])/2,h=Math.abs(u.annotations.rightEyeIris[4][1]-u.annotations.rightEyeIris[2][1])/2;r.ellipse(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1],p,h,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(s.drawGaze&&((a=u.rotation)==null?void 0:a.angle)){r.strokeStyle="pink";let p=u.box[0]+u.box[2]/2-u.box[3]*wc(u.rotation.angle.yaw)/90,h=u.box[1]+u.box[3]/2+u.box[2]*wc(u.rotation.angle.pitch)/90,f=new Path2D(` M ${u.box[0]+u.box[2]/2} ${u.box[1]} C ${p} ${u.box[1]}, ${p} ${u.box[1]+u.box[3]}, ${u.box[0]+u.box[2]/2} ${u.box[1]+u.box[3]} `),m=new Path2D(` M ${u.box[0]} ${u.box[1]+u.box[3]/2} C ${u.box[0]} ${h}, ${u.box[0]+u.box[2]} ${h}, ${u.box[0]+u.box[2]} ${u.box[1]+u.box[3]/2} `);r.stroke(m),r.stroke(f)}if(s.drawGaze&&((i=(o=u.rotation)==null?void 0:o.gaze)==null?void 0:i.strength)&&((c=(l=u.rotation)==null?void 0:l.gaze)==null?void 0:c.bearing)&&u.annotations.leftEyeIris&&u.annotations.rightEyeIris&&u.annotations.leftEyeIris[0]&&u.annotations.rightEyeIris[0]){r.strokeStyle="pink",r.fillStyle="pink";let p=[u.annotations.leftEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.leftEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];j8(r,[u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1]],[p[0],p[1]],4);let h=[u.annotations.rightEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.rightEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];j8(r,[u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1]],[h[0],h[1]],4)}}}}}async function n5(e,t,n){var a;let s=fn(pa,n);if(!t||!e)return;let r=Rl(e);r.lineJoin="round";for(let o=0;o0)for(let o of a.keypoints)r.fillStyle=s.useDepth?`rgba(${127.5+2*(o[2]||0)}, ${127.5-2*(o[2]||0)}, 255, 0.5)`:s.color,Qb(r,o[0],o[1],0,s);if(s.drawLabels&&a.annotations){let o=(i,l)=>{!i||i.length===0||!i[0]||(r.fillStyle=s.useDepth?`rgba(${127.5+2*i[i.length-1][2]}, ${127.5-2*i[i.length-1][2]}, 255, 0.5)`:s.color,r.fillText(l,i[i.length-1][0]+4,i[i.length-1][1]+4))};r.font=s.font,o(a.annotations.index,"index"),o(a.annotations.middle,"middle"),o(a.annotations.ring,"ring"),o(a.annotations.pinky,"pinky"),o(a.annotations.thumb,"thumb"),o(a.annotations.palm,"palm")}if(s.drawPolygons&&a.annotations){let o=i=>{if(!(!i||i.length===0||!i[0]))for(let l=0;l0?l-1:0][0],i[l>0?l-1:0][1]),r.lineTo(i[l][0],i[l][1]),r.stroke()};r.lineWidth=s.lineWidth,o(a.annotations.index),o(a.annotations.middle),o(a.annotations.ring),o(a.annotations.pinky),o(a.annotations.thumb)}}}async function r5(e,t,n){let s=fn(pa,n);if(!t||!e)return;let r=Rl(e);r.lineJoin="round",r.font=s.font;for(let a of t)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,Op(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels){let o=`${a.label} ${Math.round(100*a.score)}%`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(o,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])}r.stroke()}}async function q8(e,t,n){let s=fn(pa,n);if(!t||!e)return;let r=Rl(e);r.lineJoin="round",r.font=s.font;for(let a=0;a{let t=(d,p)=>Math.atan2(d[1]-p[1],d[0]-p[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],s=1,r=e.mesh[33][2]>e.mesh[263][2],a=r?e.mesh[473]:e.mesh[468],o=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(o[0]-a[0])/i[0]-n[0],s*(a[1]-o[1])/i[1]-n[1]],c=Math.sqrt(l[0]**2+l[1]**2);return c=Math.min(c,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:c}},Z8=(e,t)=>{let n=g=>{let y=Math.sqrt(g[0]*g[0]+g[1]*g[1]+g[2]*g[2]);return g[0]/=y,g[1]/=y,g[2]/=y,g},s=(g,y)=>{let A=g[0]-y[0],x=g[1]-y[1],b=g[2]-y[2];return[A,x,b]},r=(g,y)=>{let A=g[1]*y[2]-g[2]*y[1],x=g[2]*y[0]-g[0]*y[2],b=g[0]*y[1]-g[1]*y[0];return[A,x,b]},a=g=>{let[y,A,x,b,w,k,S,N,$]=g,F,R,D;return b<1?b>-1?(D=Math.asin(b),R=Math.atan2(-S,y),F=Math.atan2(-k,w)):(D=-Math.PI/2,R=-Math.atan2(N,$),F=0):(D=Math.PI/2,R=Math.atan2(N,$),F=0),isNaN(F)&&(F=0),isNaN(R)&&(R=0),isNaN(D)&&(D=0),{pitch:2*-F,yaw:2*-R,roll:2*-D}},o=g=>{let y=(x,b,w,k)=>Math.atan2(k-b,w-x);return{pitch:y(g[10][1],g[10][2],g[152][1],g[152][2]),yaw:y(g[33][0],g[33][2],g[263][0],g[263][2]),roll:y(g[33][0],g[33][1],g[263][0],g[263][1])}},i=e.meshRaw;if(!i||i.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let l=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,c=[i[10],i[152],i[234],i[454]].map(g=>[g[0]*t[0]/l,g[1]*t[1]/l,g[2]]),u=n(s(c[1],c[0])),d=n(s(c[3],c[2])),p=n(r(d,u));d=r(u,p);let h=[d[0],d[1],d[2],u[0],u[1],u[2],p[0],p[1],p[2]],f=a(h),m=i.length===478?mge(e):{bearing:0,strength:0};return{angle:f,matrix:h,gaze:m}};var a5=async(e,t)=>{var p,h,f,m;let n,s,r,a,o,i,l,c,u=[];e.state="run:face",n=We();let d=await Y6(t,e.config);if(e.performance.face=Math.trunc(We()-n),!t.shape||t.shape.length!==4)return[];if(!d)return[];for(let g=0;g0&&d[g].annotations.rightEyeIris.length>0&&d[g].annotations.leftEyeIris[0]!==null&&d[g].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(d[g].annotations.leftEyeIris[3][0]-d[g].annotations.leftEyeIris[1][0]),Math.abs(d[g].annotations.rightEyeIris[4][1]-d[g].annotations.rightEyeIris[2][1]))/t.shape[2]:0,x=e.config.face.detector.return?dt(d[g].tensor):null;ee(d[g].tensor),d[g].tensor&&delete d[g].tensor,u.push({...d[g],id:g,age:c.age,gender:c.gender,genderScore:c.genderScore,embedding:c.descriptor,emotion:o,real:l,iris:A!==0?Math.trunc(500/A/11.7)/100:0,rotation:y,tensor:x}),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),u};var Y8=e=>{if(!e)return[];let t=[];for(let n=0;nl.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),a=e[n].keypoints.find(l=>l.part==="nose");a&&s&&r&&s.position[1]l.part==="leftShoulder"),i=e[n].keypoints.find(l=>l.part==="rightShoulder");o&&i&&t.push({body:n,gesture:`leaning ${o.position[1]>i.position[1]?"left":"right"}`})}return t},J8=e=>{if(!e)return[];let t=[];for(let n=0;n450){let s=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(s)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${s<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let o=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));o>10&&t.push({face:n,gesture:`mouth ${Math.trunc(o)}% open`});let i=e[n].mesh[152][2];Math.abs(i)>10&&t.push({face:n,gesture:`head ${i<0?"up":"down"}`})}return t},Q8=e=>{if(!e)return[];let t=[];for(let n=0;n.06||d>.06)&&(c=!1),p>.06&&t.push({iris:n,gesture:"looking right"}),d>.06&&t.push({iris:n,gesture:"looking left"});let h=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].box[3],f=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].box[3];(f<.01||h<.01||f>.022||h>.022)&&(c=!1),(f<.01||h<.01)&&t.push({iris:n,gesture:"looking down"}),(f>.022||h>.022)&&t.push({iris:n,gesture:"looking up"}),c&&t.push({iris:n,gesture:"looking center"})}return t},eT=e=>{if(!e)return[];let t=[];for(let n=0;n0){let r=s.reduce((o,i)=>o.position[2]o.position[1]((r-1)*Pe.body[z].box[oe]+K)/r),te=e.body[z].boxRaw.map((K,oe)=>((r-1)*Pe.body[z].boxRaw[oe]+K)/r),J=e.body[z].keypoints.map((K,oe)=>({score:K.score,part:K.part,position:[Pe.body[z].keypoints[oe]?((r-1)*Pe.body[z].keypoints[oe].position[0]+K.position[0])/r:K.position[0],Pe.body[z].keypoints[oe]?((r-1)*Pe.body[z].keypoints[oe].position[1]+K.position[1])/r:K.position[1]],positionRaw:[Pe.body[z].keypoints[oe]?((r-1)*Pe.body[z].keypoints[oe].positionRaw[0]+K.positionRaw[0])/r:K.position[0],Pe.body[z].keypoints[oe]?((r-1)*Pe.body[z].keypoints[oe].positionRaw[1]+K.positionRaw[1])/r:K.position[1]]})),Q={},ne={connected:{}};((i=(o=t.body)==null?void 0:o.modelPath)==null?void 0:i.includes("efficientpose"))?ne=hb:((c=(l=t.body)==null?void 0:l.modelPath)==null?void 0:c.includes("blazepose"))?ne=ab:((d=(u=t.body)==null?void 0:u.modelPath)==null?void 0:d.includes("movenet"))&&(ne=zb);for(let[K,oe]of Object.entries(ne.connected)){let ce=[];for(let he=0;heCe.part===oe[he]),Se=J.find(Ce=>Ce.part===oe[he+1]);Ae&&Se&&Ae.score>(t.body.minConfidence||0)&&Se.score>(t.body.minConfidence||0)&&ce.push([Ae.position,Se.position])}Q[K]=ce}Pe.body[z]={...e.body[z],box:X,boxRaw:te,keypoints:J,annotations:Q}}if(!Pe.hand||e.hand.length!==Pe.hand.length)Pe.hand=JSON.parse(JSON.stringify(e.hand));else for(let z=0;z((r-1)*Pe.hand[z].box[K]+ne)/r),te=e.hand[z].boxRaw.map((ne,K)=>((r-1)*Pe.hand[z].boxRaw[K]+ne)/r);Pe.hand[z].keypoints.length!==e.hand[z].keypoints.length&&(Pe.hand[z].keypoints=e.hand[z].keypoints);let J=e.hand[z].keypoints&&e.hand[z].keypoints.length>0?e.hand[z].keypoints.map((ne,K)=>ne.map((oe,ce)=>((r-1)*(Pe.hand[z].keypoints[K][ce]||1)+(oe||0))/r)):[],Q={};if(Object.keys(Pe.hand[z].annotations).length!==Object.keys(e.hand[z].annotations).length)Pe.hand[z].annotations=e.hand[z].annotations,Q=Pe.hand[z].annotations;else if(e.hand[z].annotations)for(let ne of Object.keys(e.hand[z].annotations))Q[ne]=e.hand[z].annotations[ne]&&e.hand[z].annotations[ne][0]?e.hand[z].annotations[ne].map((K,oe)=>K.map((ce,he)=>((r-1)*Pe.hand[z].annotations[ne][oe][he]+ce)/r)):null;Pe.hand[z]={...e.hand[z],box:X,boxRaw:te,keypoints:J,annotations:Q}}if(!Pe.face||e.face.length!==Pe.face.length)Pe.face=JSON.parse(JSON.stringify(e.face));else for(let z=0;z((r-1)*Pe.face[z].box[ne]+Q)/r),te=e.face[z].boxRaw.map((Q,ne)=>((r-1)*Pe.face[z].boxRaw[ne]+Q)/r),J={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};J.matrix=(p=e.face[z].rotation)==null?void 0:p.matrix,J.angle={roll:((r-1)*(((f=(h=Pe.face[z].rotation)==null?void 0:h.angle)==null?void 0:f.roll)||0)+(((g=(m=e.face[z].rotation)==null?void 0:m.angle)==null?void 0:g.roll)||0))/r,yaw:((r-1)*(((A=(y=Pe.face[z].rotation)==null?void 0:y.angle)==null?void 0:A.yaw)||0)+(((b=(x=e.face[z].rotation)==null?void 0:x.angle)==null?void 0:b.yaw)||0))/r,pitch:((r-1)*(((k=(w=Pe.face[z].rotation)==null?void 0:w.angle)==null?void 0:k.pitch)||0)+(((N=(S=e.face[z].rotation)==null?void 0:S.angle)==null?void 0:N.pitch)||0))/r},J.gaze={bearing:((r-1)*(((F=($=Pe.face[z].rotation)==null?void 0:$.gaze)==null?void 0:F.bearing)||0)+(((D=(R=e.face[z].rotation)==null?void 0:R.gaze)==null?void 0:D.bearing)||0))/r,strength:((r-1)*(((O=(T=Pe.face[z].rotation)==null?void 0:T.gaze)==null?void 0:O.strength)||0)+(((H=(W=e.face[z].rotation)==null?void 0:W.gaze)==null?void 0:H.strength)||0))/r},Pe.face[z]={...e.face[z],rotation:J,box:X,boxRaw:te}}if(!Pe.object||e.object.length!==Pe.object.length)Pe.object=JSON.parse(JSON.stringify(e.object));else for(let z=0;z((r-1)*Pe.object[z].box[Q]+J)/r),te=e.object[z].boxRaw.map((J,Q)=>((r-1)*Pe.object[z].boxRaw[Q]+J)/r);Pe.object[z]={...e.object[z],box:X,boxRaw:te}}if(e.persons){let z=e.persons;if(!Pe.persons||z.length!==Pe.persons.length)Pe.persons=JSON.parse(JSON.stringify(z));else for(let X=0;X((r-1)*Pe.persons[X].box[J]+te)/r)}e.gesture&&(Pe.gesture=e.gesture);let a=We();return e.performance&&(Pe.performance={...e.performance,interpolate:Math.round(a-n)}),Pe}function N0(e,t,n={order:2}){let s=0;for(let r=0;rO.box[0]&&S.box[0]O.box[1]&&S.box[1]+S.box[3]N.body.box[0]&&O.box[0]+O.box[2]N.body.box[1]&&O.box[1]+O.box[3]N.body.box[0]&&O.box[1]+O.box[3]>N.body.box[1]&&O.box[1]+O.box[3]{O&&O.length===4&&($.push(O[0],O[0]+O[2]),F.push(O[1],O[1]+O[3]))};R((y=N.face)==null?void 0:y.box),R((A=N.body)==null?void 0:A.box),R((b=(x=N.hands)==null?void 0:x.left)==null?void 0:b.box),R((k=(w=N.hands)==null?void 0:w.right)==null?void 0:k.box);let D=Math.min(...$),T=Math.min(...F);N.box=[D,T,Math.max(...$)-D,Math.max(...F)-T],r&&r[1]&&r[2]&&(N.boxRaw=[N.box[0]/r[2],N.box[1]/r[1],N.box[2]/r[2],N.box[3]/r[1]]),o.push(N)}return o}var E0=` /9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1 tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/ AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z 5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9 zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6 8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6 GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4 HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD 1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX +BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3 GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0 nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8 87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681 ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF 63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2 ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4 /wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5 rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru /DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1 jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk 4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6 wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP 1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1 H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ 1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe 5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69 MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn 0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb 0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz 9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu 6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd 9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8 VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+ 5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh 05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ 5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8 1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4 B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA 3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn 3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx 1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6 f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup 6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM 350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0 /AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt 4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1 8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3 ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,R0=` /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj +s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp +alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2 ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67 d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/ Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+ r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc 0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w +PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4 Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6 rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ 9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/ /OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6 jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN +SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX 12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf 0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4 ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6 tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+ fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9 lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV 5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/ +bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0 77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8 5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8 to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/ w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS 34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn 26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf 3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q 6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN 3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8 2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc 1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK 0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9 dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218 8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1 axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/ tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1 izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2 crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4 OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2 r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz +THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095 YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE 9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8 mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6 Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3 6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1 Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0 5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1 mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO 1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7 ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T +PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+ O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1 +UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY 36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY 3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr 1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z 1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+ n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O 8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0 Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8 8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1 lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+ oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm 9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2 +To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37 O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1 L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4 izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt 1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12 CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh 5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3 6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9 XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr 79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223 2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p 7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7 x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz 5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2 IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1 vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0 ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm 6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22 gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX 6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn 1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u 7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O 8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx 5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm 2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9 RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8 cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF 0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK 66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9 XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK 7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI 3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m 1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9 8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8 elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL +Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl 5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q 7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv 6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa 0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/ AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5 6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX 0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK 3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0 vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2 O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz 0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O 1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi 0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY 5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L /tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3 Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ 3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI 6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/ AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ 92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp +0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0 vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP 8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3 7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P 0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG 0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv 9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1 rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+ x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4 5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2 H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF +NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN 3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi /j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00 +FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2 M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp 5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL /Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3 GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4 qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2 rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc 3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3 Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h 2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7 cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7 mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu 9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1 8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5 PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX 6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2 JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI 6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5 K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7 Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ 2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4 eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7 piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61 rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2 f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2 SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/ 2Q==`;async function gge(e){let t=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(o=>o.blob()),n,s;switch(e.config.warmup){case"face":n=await t(E0);break;case"body":case"full":n=await t(R0);break;default:n=null}if(n){let r=await createImageBitmap(n);s=await e.detect(r,e.config),r.close()}return s}async function yge(e){return new Promise(t=>{let n;switch(e.config.warmup){case"face":n="data:image/jpeg;base64,"+E0;break;case"full":case"body":n="data:image/jpeg;base64,"+R0;break;default:n=null}let s;typeof Image!="undefined"?s=new Image:ie.Image&&(s=new ie.Image),s.onload=async()=>{let r=Cs(s.naturalWidth,s.naturalHeight);if(!r)ae("Warmup: Canvas not found"),t({});else{let a=r.getContext("2d");a&&a.drawImage(s,0,0);let o=await e.image(r),i=await e.detect(o.tensor,e.config);t(i)}},n?s.src=n:t(null)})}async function Age(e){let t=r=>Buffer.from(r,"base64"),n;if(e.config.warmup==="face"&&(n=t(E0)),(e.config.warmup==="body"||e.config.warmup==="full")&&(n=t(R0)),!n)return null;let s;if(typeof void 0!="undefined"){let r=(void 0).decodeJpeg(n),a=r.expandDims(0);e.tf.dispose(r),s=await e.detect(a,e.config),e.tf.dispose(a)}else e.config.debug&&ae("Warmup tfjs-node not loaded");return s}async function aT(e,t){let n=We();if(e.state="warmup",t&&(e.config=fn(e.config,t)),!e.config.warmup||e.config.warmup==="none")return{error:"null"};let s;return new Promise(async r=>{typeof createImageBitmap=="function"?s=await gge(e):typeof Image!="undefined"||ie.Canvas!==void 0?s=await yge(e):s=await Age(e);let a=We();e.config.debug&&ae("Warmup",e.config.warmup,Math.round(a-n),"ms"),e.emit("warmup"),r(s)})}var kc,Mp,zp,$0,iT=class{constructor(t){ve(this,"version");ve(this,"config");ve(this,"result");ve(this,"state");ve(this,"process");ve(this,"tf");ve(this,"env");ve(this,"draw");ve(this,"models");ve(this,"events");ve(this,"faceTriangulation");ve(this,"faceUVMap");ve(this,"performance");Mc(this,kc,void 0);Mc(this,Mp,void 0);Mc(this,zp,void 0);ve(this,"gl");ve(this,"analyze",(...t)=>{if(!Oc(this,Mp))return;let n=this.tf.engine().state.numTensors,s=Oc(this,kc);zc(this,kc,n);let r=n-s;r!==0&&ae(...t,r)});Mc(this,$0,t=>{if(!Oc(this,zp))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof Ze))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});ve(this,"similarity",nT);ve(this,"distance",N0);ve(this,"match",sT);ve(this,"emit",t=>{var n;this.events&&this.events.dispatchEvent&&((n=this.events)==null||n.dispatchEvent(new Event(t)))});s0(),this.env=ie,xa.wasmPath=`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${Zh}/dist/`,xa.modelBasePath=this.env.browser?"../models/":"file://models/",xa.backend=this.env.browser?"humangl":"tensorflow",this.version=Vx,Object.defineProperty(this,"version",{value:Vx}),this.config=JSON.parse(JSON.stringify(xa)),Object.seal(this.config),t&&(this.config=fn(this.config,t)),this.tf=Sl,this.state="idle",zc(this,kc,0),zc(this,Mp,!1),zc(this,zp,!1),this.performance={backend:0,load:0,image:0,frames:0,cached:0,changed:0,total:0,draw:0},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new Fp,this.draw={options:pa,canvas:(n,s)=>X8(n,s),face:(n,s,r)=>t5(n,s,r),body:(n,s,r)=>n5(n,s,r),hand:(n,s,r)=>s5(n,s,r),gesture:(n,s,r)=>e5(n,s,r),object:(n,s,r)=>r5(n,s,r),person:(n,s,r)=>q8(n,s,r),all:(n,s,r)=>K8(n,s,r)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[]},this.process={tensor:null,canvas:null},this.faceTriangulation=Q6,this.faceUVMap=e8,this.gl=Wt,this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(xa)),this.config.backend=t}validate(t){return a2(xa,t||this.config)}now(){return We()}image(t,n=!0){return gc(t,this.config,n)}async segmentation(t,n){return W8(t,n,this.config)}enhance(t){return Ib(t)}async init(){await T0(this,!0),await this.tf.ready(),w6(this.env)}async load(t){this.state="load";let n=We(),s=Object.values(this.models).filter(o=>o).length;t&&(this.config=fn(this.config,t)),ie.initial&&(this.config.debug&&ae(`version: ${this.version}`),this.config.debug&&ae(`tfjs version: ${this.tf.version_core}`),await T0(this)||ae("error: backend check failed"),await Jh(),this.env.browser&&(this.config.debug&&ae("configuration:",this.config),this.config.debug&&ae("tf flags:",this.tf.ENV.flags))),await V8(this),ie.initial&&this.config.debug&&ae("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),ie.initial=!1,Object.values(this.models).filter(o=>o).length!==s&&(await U8(this),this.emit("load"));let a=Math.trunc(We()-n);a>(this.performance.load||0)&&(this.performance.load=a)}next(t=this.result){return tT(t,this.config)}async warmup(t){return aT(this,t)}async detect(t,n){return this.state="detect",new Promise(async s=>{var y,A,x,b,w,k,S,N,$,F,R,D,T,O,W,H,z,X,te,J,Q,ne;this.state="config";let r,a;this.config=fn(this.config,n),this.state="check";let o=Oc(this,$0).call(this,t);o&&(ae(o,t),s({error:o}));let i=We();await T0(this),await this.load(),r=We(),this.state="image";let l=gc(t,this.config);if(this.process=l,this.performance.image=Math.trunc(We()-r),this.analyze("Get Image:"),!l.tensor){this.config.debug&&ae("could not convert input to tensor"),s({error:"could not convert input to tensor"});return}this.emit("image"),r=We(),this.config.skipFrame=await k6(this.config,l.tensor),this.performance.frames||(this.performance.frames=0),this.performance.cached||(this.performance.cached=0),this.performance.frames++,this.config.skipFrame&&this.performance.cached++,this.performance.changed=Math.trunc(We()-r),this.analyze("Check Changed:");let c=[],u=[],d=[],p=[];this.state="detect:face",this.config.async?(c=this.config.face.enabled?a5(this,l.tensor):[],this.performance.face&&delete this.performance.face):(r=We(),c=this.config.face.enabled?await a5(this,l.tensor):[],a=Math.trunc(We()-r),a>0&&(this.performance.face=a)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(c=await c),this.analyze("Start Body:"),this.state="detect:body";let h=this.config.body.maxDetected===-1?fn(this.config,{body:{maxDetected:this.config.face.enabled?1*c.length:1}}):this.config;this.config.async?(((y=this.config.body.modelPath)==null?void 0:y.includes("posenet"))?u=this.config.body.enabled?Kb(l.tensor,h):[]:((A=this.config.body.modelPath)==null?void 0:A.includes("blazepose"))?u=this.config.body.enabled?lb(l.tensor,h):[]:((x=this.config.body.modelPath)==null?void 0:x.includes("efficientpose"))?u=this.config.body.enabled?gb(l.tensor,h):[]:((b=this.config.body.modelPath)==null?void 0:b.includes("movenet"))&&(u=this.config.body.enabled?Wb(l.tensor,h):[]),this.performance.body&&delete this.performance.body):(r=We(),((w=this.config.body.modelPath)==null?void 0:w.includes("posenet"))?u=this.config.body.enabled?await Kb(l.tensor,h):[]:((k=this.config.body.modelPath)==null?void 0:k.includes("blazepose"))?u=this.config.body.enabled?await lb(l.tensor,h):[]:((S=this.config.body.modelPath)==null?void 0:S.includes("efficientpose"))?u=this.config.body.enabled?await gb(l.tensor,h):[]:((N=this.config.body.modelPath)==null?void 0:N.includes("movenet"))&&(u=this.config.body.enabled?await Wb(l.tensor,h):[]),a=Math.trunc(We()-r),a>0&&(this.performance.body=a)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let f=this.config.hand.maxDetected===-1?fn(this.config,{hand:{maxDetected:this.config.face.enabled?2*c.length:1}}):this.config;this.config.async?(((F=($=this.config.hand.detector)==null?void 0:$.modelPath)==null?void 0:F.includes("handdetect"))?d=this.config.hand.enabled?Rb(l.tensor,f):[]:((D=(R=this.config.hand.detector)==null?void 0:R.modelPath)==null?void 0:D.includes("handtrack"))&&(d=this.config.hand.enabled?Pb(l.tensor,f):[]),this.performance.hand&&delete this.performance.hand):(r=We(),((O=(T=this.config.hand.detector)==null?void 0:T.modelPath)==null?void 0:O.includes("handdetect"))?d=this.config.hand.enabled?await Rb(l.tensor,f):[]:((H=(W=this.config.hand.detector)==null?void 0:W.modelPath)==null?void 0:H.includes("handtrack"))&&(d=this.config.hand.enabled?await Pb(l.tensor,f):[]),a=Math.trunc(We()-r),a>0&&(this.performance.hand=a)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?(((z=this.config.object.modelPath)==null?void 0:z.includes("nanodet"))?p=this.config.object.enabled?Ub(l.tensor,this.config):[]:((X=this.config.object.modelPath)==null?void 0:X.includes("centernet"))&&(p=this.config.object.enabled?cb(l.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(r=We(),((te=this.config.object.modelPath)==null?void 0:te.includes("nanodet"))?p=this.config.object.enabled?await Ub(l.tensor,this.config):[]:((J=this.config.object.modelPath)==null?void 0:J.includes("centernet"))&&(p=this.config.object.enabled?await cb(l.tensor,this.config):[]),a=Math.trunc(We()-r),a>0&&(this.performance.object=a)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([c,u,d,p]=await Promise.all([c,u,d,p])),this.state="detect:gesture";let m=[];this.config.gesture.enabled&&(r=We(),m=[...J8(c),...Y8(u),...eT(d),...Q8(c)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=Math.trunc(We()-r)),this.performance.total=Math.trunc(We()-i);let g=((ne=(Q=this.process)==null?void 0:Q.tensor)==null?void 0:ne.shape)||[];this.result={face:c,body:u,hand:d,gesture:m,object:p,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),get persons(){return rT(c,u,d,m,g)}},ee(l.tensor),this.emit("detect"),this.state="idle",s(this.result)})}};kc=new WeakMap,Mp=new WeakMap,zp=new WeakMap,$0=new WeakMap;return xge;})(); /** * @license * Copyright 2017 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2018 Google LLC * * Use of this source code is governed by an MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT. * ============================================================================= */ /** * @license * Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * ============================================================================= */ /** * @license * Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2019 Google LLC * * Use of this source code is governed by an MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT. * ============================================================================= */ /** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * ============================================================================= */ /** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2020 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2020 Google LLC * * Use of this source code is governed by an MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT. * ============================================================================= */ /** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use backend file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the License); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2021 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2021 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2021 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the License); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** @license See the LICENSE file. */