/** * Emotion model implementation * * [**Oarriaga**](https://github.com/oarriaga/face_classification) */ import { log, join, now } from '../util/util'; import type { Config } from '../config'; import type { GraphModel, Tensor } from '../tfjs/types'; import * as tf from '../../dist/tfjs.esm.js'; import { env } from '../util/env'; const annotations = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']; let model: GraphModel | null; // let last: Array<{ score: number, emotion: string }> = []; const last: Array> = []; let lastCount = 0; let lastTime = 0; let skipped = Number.MAX_SAFE_INTEGER; // tuning values const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale export async function load(config: Config): Promise { if (env.initial) model = null; if (!model) { model = await tf.loadGraphModel(join(config.modelBasePath, config.face.emotion?.modelPath || '')) as unknown as GraphModel; if (!model || !model['modelUrl']) log('load model failed:', config.face.emotion?.modelPath); else if (config.debug) log('load model:', model['modelUrl']); } else if (config.debug) log('cached model:', model['modelUrl']); return model; } export async function predict(image: Tensor, config: Config, idx, count) { if (!model) return null; if ((skipped < (config.face.emotion?.skipFrames || 0)) && ((config.face.emotion?.skipTime || 0) <= (now() - lastTime)) && config.skipFrame && (lastCount === count) && last[idx] && (last[idx].length > 0)) { skipped++; return last[idx]; } skipped = 0; return new Promise(async (resolve) => { const obj: Array<{ score: number, emotion: string }> = []; if (config.face.emotion?.enabled) { const resize = tf.image.resizeBilinear(image, [model?.inputs[0].shape ? model.inputs[0].shape[2] : 0, model?.inputs[0].shape ? model.inputs[0].shape[1] : 0], false); const [red, green, blue] = tf.split(resize, 3, 3); tf.dispose(resize); // weighted rgb to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html const redNorm = tf.mul(red, rgb[0]); const greenNorm = tf.mul(green, rgb[1]); const blueNorm = tf.mul(blue, rgb[2]); tf.dispose(red); tf.dispose(green); tf.dispose(blue); const grayscale = tf.addN([redNorm, greenNorm, blueNorm]); tf.dispose(redNorm); tf.dispose(greenNorm); tf.dispose(blueNorm); const normalize = tf.tidy(() => tf.mul(tf.sub(grayscale, 0.5), 2)); tf.dispose(grayscale); const emotionT = await model?.predict(normalize) as Tensor; // result is already in range 0..1, no need for additional activation lastTime = now(); const data = await emotionT.data(); tf.dispose(emotionT); for (let i = 0; i < data.length; i++) { if (data[i] > (config.face.emotion?.minConfidence || 0)) obj.push({ score: Math.min(0.99, Math.trunc(100 * data[i]) / 100), emotion: annotations[i] }); } obj.sort((a, b) => b.score - a.score); tf.dispose(normalize); } last[idx] = obj; lastCount = count; resolve(obj); }); }