import Human from '../dist/human.esm.js'; const userConfig = { backend: 'wasm', async: false, warmup: 'none', debug: true, videoOptimized: false, face: { enabled: true, detector: { rotation: true, return: true }, mesh: { enabled: true }, embedding: { enabled: true }, iris: { enabled: false }, age: { enabled: false }, gender: { enabled: false }, emotion: { enabled: false }, description: { enabled: true }, }, hand: { enabled: false }, gesture: { enabled: false }, body: { enabled: false }, filter: { enabled: false, }, }; const human = new Human(userConfig); // new instance of human const all = []; // array that will hold all detected faces let db = []; // array that holds all known faces function log(...msg) { const dt = new Date(); const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`; // eslint-disable-next-line no-console console.log(ts, ...msg); } async function analyze(face) { // if we have face image tensor, enhance it and display it if (face.tensor) { const enhanced = human.enhance(face); // const desc = document.getElementById('desc'); // desc.innerText = `{"name":"unknown", "source":"${face.fileName}", "embedding":[${face.embedding}]},`; navigator.clipboard.writeText(`{"name":"unknown", "source":"${face.fileName}", "embedding":[${face.embedding}]},`); if (enhanced) { const c = document.getElementById('orig'); const squeeze = enhanced.squeeze().div(255); await human.tf.browser.toPixels(squeeze, c); enhanced.dispose(); squeeze.dispose(); const ctx = c.getContext('2d'); ctx.font = 'small-caps 0.4rem "Lato"'; ctx.fillStyle = 'rgba(255, 255, 255, 1)'; } } // loop through all canvases that contain faces const canvases = document.getElementsByClassName('face'); for (const canvas of canvases) { // calculate similarity from selected face to current one in the loop const current = all[canvas.tag.sample][canvas.tag.face]; const similarity = human.similarity(face.embedding, current.embedding, 2); // get best match const person = await human.match(current.embedding, db); // draw the canvas and similarity score canvas.title = similarity; await human.tf.browser.toPixels(current.tensor, canvas); const ctx = canvas.getContext('2d'); ctx.font = 'small-caps 1rem "Lato"'; ctx.fillStyle = 'rgba(0, 0, 0, 1)'; ctx.fillText(`${(100 * similarity).toFixed(1)}%`, 3, 23); ctx.fillStyle = 'rgba(255, 255, 255, 1)'; ctx.fillText(`${(100 * similarity).toFixed(1)}%`, 4, 24); ctx.font = 'small-caps 0.8rem "Lato"'; ctx.fillText(`${current.age}y ${(100 * current.genderConfidence).toFixed(1)}% ${current.gender}`, 4, canvas.height - 6); ctx.font = 'small-caps 1rem "Lato"'; if (person.similarity) ctx.fillText(`${(100 * person.similarity).toFixed(1)}% ${person.name}`, 4, canvas.height - 30); } // sort all faces by similarity const sorted = document.getElementById('faces'); [...sorted.children] .sort((a, b) => parseFloat(b.title) - parseFloat(a.title)) .forEach((canvas) => sorted.appendChild(canvas)); } async function faces(index, res, fileName) { all[index] = res.face; for (const i in res.face) { // log(res.face[i]); all[index][i].fileName = fileName; const canvas = document.createElement('canvas'); canvas.tag = { sample: index, face: i }; canvas.width = 200; canvas.height = 200; canvas.className = 'face'; // mouse click on any face canvas triggers analysis canvas.addEventListener('click', (evt) => { log('Select:', 'Image:', evt.target.tag.sample, 'Face:', evt.target.tag.face, all[evt.target.tag.sample][evt.target.tag.face]); analyze(all[evt.target.tag.sample][evt.target.tag.face]); }); // if we actually got face image tensor, draw canvas with that face if (res.face[i].tensor) { await human.tf.browser.toPixels(res.face[i].tensor, canvas); document.getElementById('faces').appendChild(canvas); const ctx = canvas.getContext('2d'); ctx.font = 'small-caps 0.8rem "Lato"'; ctx.fillStyle = 'rgba(255, 255, 255, 1)'; ctx.fillText(`${res.face[i].age}y ${(100 * res.face[i].genderConfidence).toFixed(1)}% ${res.face[i].gender}`, 4, canvas.height - 6); const person = await human.match(res.face[i].embedding, db); ctx.font = 'small-caps 1rem "Lato"'; if (person.similarity && person.similarity > 0.60) ctx.fillText(`${(100 * person.similarity).toFixed(1)}% ${person.name}`, 4, canvas.height - 30); } } } async function process(index, image) { return new Promise((resolve) => { const img = new Image(128, 128); img.onload = () => { // must wait until image is loaded human.detect(img).then(async (res) => { await faces(index, res, image); // then wait until image is analyzed log('Add image:', index + 1, image, 'faces:', res.face.length); document.getElementById('images').appendChild(img); // and finally we can add it resolve(true); }); }; img.title = image; img.src = encodeURI(image); }); } async function createDB() { log('Creating Faces DB...'); for (const image of all) { for (const face of image) db.push({ name: 'unknown', source: face.fileName, embedding: face.embedding }); } log(db); } async function main() { // pre-load human models await human.load(); // download db with known faces let res = await fetch('/demo/faces.json'); db = (res && res.ok) ? await res.json() : []; // enumerate all sample images in /assets res = await fetch('/assets'); let dir = (res && res.ok) ? await res.json() : []; let images = dir.filter((img) => (img.endsWith('.jpg') && img.includes('sample'))); // enumerate additional private test images in /private, not includded in git repository res = await fetch('/private/me'); dir = (res && res.ok) ? await res.json() : []; images = images.concat(dir.filter((img) => (img.endsWith('.jpg')))); // enumerate just possible error images, not includded in git repository // res = await fetch('/private/err'); // dir = (res && res.ok) ? await res.json() : []; // images = dir.filter((img) => (img.endsWith('.jpg'))); // download and analyze all images log('Enumerated:', images.length, 'images'); for (let i = 0; i < images.length; i++) await process(i, images[i]); // print stats const num = all.reduce((prev, cur) => prev += cur.length, 0); log('Extracted faces:', num, 'from images:', all.length); log(human.tf.engine().memory()); // if we didn't download db, generate it from current faces if (!db || db.length === 0) await createDB(); else log('Loaded Faces DB:', db.length); log('Ready'); } window.onload = main;