// https://github.com/TropComplique/FaceBoxes-tensorflow import { log } from '../util/util'; import * as tf from '../../dist/tfjs.esm.js'; import type { GraphModel, Tensor } from '../tfjs/types'; import type { Config } from '../config'; type Box = [number, number, number, number]; export class FaceBoxes { enlarge: number; model: GraphModel; config: Config; inputSize: 0; constructor(model, config: Config) { this.enlarge = 1.1; this.model = model; this.config = config; this.inputSize = model.inputs[0].shape ? model.inputs[0].shape[2] : 0; } async estimateFaces(input, config) { if (config) this.config = config; const results: Array<{ confidence: number, box: Box, boxRaw: Box, image: Tensor }> = []; const resizeT = tf.image.resizeBilinear(input, [this.inputSize, this.inputSize]); const castT = resizeT.toInt(); const [scoresT, boxesT, numT] = await this.model.executeAsync(castT) as Tensor[]; const scores = await scoresT.data(); const squeezeT = tf.squeeze(boxesT); const boxes = squeezeT.arraySync(); scoresT.dispose(); boxesT.dispose(); squeezeT.dispose(); numT.dispose(); castT.dispose(); resizeT.dispose(); for (const i in boxes) { if (scores[i] && scores[i] > (this.config.face?.detector?.minConfidence || 0.1)) { const crop = [boxes[i][0] / this.enlarge, boxes[i][1] / this.enlarge, boxes[i][2] * this.enlarge, boxes[i][3] * this.enlarge]; const boxRaw: Box = [crop[1], crop[0], (crop[3]) - (crop[1]), (crop[2]) - (crop[0])]; const box: Box = [ parseInt((boxRaw[0] * input.shape[2]).toString()), parseInt((boxRaw[1] * input.shape[1]).toString()), parseInt((boxRaw[2] * input.shape[2]).toString()), parseInt((boxRaw[3] * input.shape[1]).toString())]; const resized = tf.image.cropAndResize(input, [crop], [0], [this.inputSize, this.inputSize]); const image = tf.div(resized, [255]); resized.dispose(); results.push({ confidence: scores[i], box, boxRaw, image }); // add mesh, meshRaw, annotations, } } return results; } } export async function load(config) { const model = await tf.loadGraphModel(config.face.detector.modelPath); if (config.debug) log(`load model: ${config.face.detector.modelPath.match(/\/(.*)\./)[1]}`); const faceboxes = new FaceBoxes(model, config); if (config.face.mesh.enabled && config.debug) log(`load model: ${config.face.mesh.modelPath.match(/\/(.*)\./)[1]}`); if (config.face.iris.enabled && config.debug) log(`load model: ${config.face.iris.modelPath.match(/\/(.*)\./)[1]}`); return faceboxes; }