/** * Human demo for NodeJS * Unsupported sample of using external utility ffmpeg to capture to decode video input and process it using Human * * Uses ffmpeg to process video input and output stream of motion jpeg images which are then parsed for frame start/end markers by pipe2jpeg * Each frame triggers an event with jpeg buffer that then can be decoded and passed to human for processing * If you want process at specific intervals, set output fps to some value * If you want to process an input stream, set real-time flag and set input as required * * Note that [pipe2jpeg](https://www.npmjs.com/package/pipe2jpeg) is not part of Human dependencies and should be installed manually * Working version of `ffmpeg` must be present on the system */ const process = require('process'); const spawn = require('child_process').spawn; const log = require('@vladmandic/pilogger'); // eslint-disable-line node/no-unpublished-require // in nodejs environments tfjs-node is required to be loaded before human // const tf = require('@tensorflow/tfjs-node'); // eslint-disable-line node/no-unpublished-require // const human = require('@vladmandic/human'); // use this when human is installed as module (majority of use cases) const Pipe2Jpeg = require('pipe2jpeg'); // eslint-disable-line node/no-missing-require, import/no-unresolved // const human = require('@vladmandic/human'); // use this when human is installed as module (majority of use cases) const Human = require('../../dist/human.node.js'); // use this when using human in dev mode let count = 0; // counter let busy = false; // busy flag let inputFile = './test.mp4'; if (process.argv.length === 3) inputFile = process.argv[2]; const humanConfig = { modelBasePath: 'file://models/', debug: false, async: true, filter: { enabled: false }, face: { enabled: true, detector: { enabled: true, rotation: false }, mesh: { enabled: true }, iris: { enabled: true }, description: { enabled: true }, emotion: { enabled: true }, }, hand: { enabled: false }, body: { enabled: false }, object: { enabled: false }, }; const human = new Human.Human(humanConfig); const pipe2jpeg = new Pipe2Jpeg(); const ffmpegParams = [ '-loglevel', 'quiet', // input // '-re', // optional process video in real-time not as fast as possible '-i', `${inputFile}`, // input file // output '-an', // drop audio '-c:v', 'mjpeg', // use motion jpeg as output encoder '-pix_fmt', 'yuvj422p', // typical for mp4, may need different settings for some videos '-f', 'image2pipe', // pipe images as output // '-vf', 'fps=5,scale=800:600', // optional video filter, do anything here such as process at fixed 5fps or resize to specific resulution 'pipe:1', // output to unix pipe that is then captured by pipe2jpeg ]; async function detect(jpegBuffer) { if (busy) return; // skip processing if busy busy = true; const tensor = human.tf.node.decodeJpeg(jpegBuffer, 3); // decode jpeg buffer to raw tensor const res = await human.detect(tensor); human.tf.dispose(tensor); // must dispose tensor // start custom processing here log.data('frame', { frame: ++count, size: jpegBuffer.length, shape: tensor.shape, face: res?.face?.length, body: res?.body?.length, hand: res?.hand?.length, gesture: res?.gesture?.length }); if (res?.face?.[0]) log.data('person', { score: [res.face[0].boxScore, res.face[0].faceScore], age: res.face[0].age || 0, gender: [res.face[0].genderScore || 0, res.face[0].gender], emotion: res.face[0].emotion?.[0] }); // at the of processing mark loop as not busy so it can process next frame busy = false; } async function main() { log.header(); await human.tf.ready(); // pre-load models log.info({ human: human.version, tf: human.tf.version_core }); log.info({ input: inputFile }); pipe2jpeg.on('data', (jpegBuffer) => detect(jpegBuffer)); const ffmpeg = spawn('ffmpeg', ffmpegParams, { stdio: ['ignore', 'pipe', 'ignore'] }); ffmpeg.on('error', (error) => log.error('ffmpeg error:', error)); ffmpeg.on('exit', (code, signal) => log.info('ffmpeg exit', code, signal)); ffmpeg.stdout.pipe(pipe2jpeg); } main();