import { Human } from '../dist/human.esm.js'; const config = { async: true, warmup: 'none', debug: true, cacheSensitivity: 0, object: { enabled: true }, }; const backends = ['wasm', 'humangl', 'webgl', 'webgpu']; const start = performance.now(); function str(long, ...msg) { if (!Array.isArray(msg)) return msg; let line = ''; for (const entry of msg) { if (typeof entry === 'object') line += ' ' + JSON.stringify(entry, null, long ? 2 : 0).replace(/"/g, '').replace(/,/g, ', ').replace(/:/g, ': '); else line += ' ' + entry; } return line + '\n'; } let last = new Date(); async function log(...msgs) { const dt = new Date(); const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`; const elap = (dt - last).toString().padStart(5, '0'); document.getElementById('log').innerHTML += ts + ' +' + elap + 'ms  ' + str(false, ...msgs); document.documentElement.scrollTop = document.documentElement.scrollHeight; console.log(ts, elap, ...msgs); // eslint-disable-line no-console last = dt; } async function detailed(...msgs) { const dt = new Date(); const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`; const elap = (dt - last).toString().padStart(5, '0'); document.getElementById('log').innerHTML += ts + ' +' + elap + 'ms  ' + str(true, ...msgs); document.documentElement.scrollTop = document.documentElement.scrollHeight; console.log(ts, elap, ...msgs); // eslint-disable-line no-console last = dt; } async function image(url) { const el = document.createElement('img'); el.id = 'image'; const loaded = new Promise((resolve) => { el.onload = () => resolve(true); }); el.src = url; await loaded; return el; } async function wait(time) { const waiting = new Promise((resolve) => { setTimeout(() => resolve(), time); }); await waiting; } function draw(canvas = null) { const c = document.getElementById('canvas'); const ctx = c.getContext('2d'); if (canvas) ctx.drawImage(canvas, 0, 0, c.width, c.height); else ctx.clearRect(0, 0, c.width, c.height); } async function events(event) { document.getElementById('events').innerText = `${Math.round(performance.now() - start)}ms Event: ${event}`; } async function main() { log('human tests'); let res; const human = new Human(config); await human.init(); human.events.addEventListener('warmup', () => events('warmup')); human.events.addEventListener('image', () => events('image')); human.events.addEventListener('detect', () => events('detect')); const timer = setInterval(() => { document.getElementById('state').innerText = `State: ${human.state}`; }, 10); log('version', human.version); log('tfjs', human.tf.version.tfjs); const env = JSON.parse(JSON.stringify(human.env)); env.kernels = human.env.kernels.length; detailed('environment', env); detailed('config', human.config); await human.load(); const models = Object.keys(human.models).map((model) => ({ name: model, loaded: (human.models[model] !== null) })); log('models', models); for (const backend of backends) { log(); log('test start:', backend); human.config.backend = backend; await human.init(); log('desired', backend, 'detected', human.tf.getBackend()); if (human.tf.getBackend() !== backend) { continue; } log('memory', human.tf.memory()); res = await human.validate(); log('validate', res); res = await human.warmup({ warmup: 'face' }); draw(res.canvas); log('warmup', 'face'); let img = await image('../../samples/in/ai-body.jpg'); const input = await human.image(img); log('input', input.tensor.shape); draw(res.canvas); res = await human.detect(input.tensor); log('detect'); human.next(); log('interpolate'); const persons = res.persons; log('persons'); log('summary', { persons: persons.length, face: res.face.length, body: res.body.length, hand: res.hand.length, object: res.object.length, gesture: res.gesture.length }); log('performance', human.performance); human.tf.dispose(input.tensor); draw(); img = await image('../../samples/in/ai-face.jpg'); for (const val of [0, 0.25, 0.5, 0.75, 10]) { human.performance = {}; const t0 = performance.now(); for (let i = 0; i < 10; i++) { res = await human.detect(img, { cacheSensitivity: val, filter: { pixelate: 5 * i }, object: { enabled: false } }); draw(res.canvas); } const t1 = performance.now(); log('benchmark', { time: Math.round((t1 - t0) / 10), cacheSensitivity: val, performance: human.performance }); await wait(10); } draw(); log('memory', human.tf.memory()); } clearInterval(timer); log(); log('tests complete'); } main();