import { log } from '../helpers'; import * as tf from '../../dist/tfjs.esm.js'; import * as blazeface from './blazeface'; import * as facepipeline from './facepipeline'; import * as coords from './coords'; export class MediaPipeFaceMesh { facePipeline: any; config: any; constructor(blazeFace, blazeMeshModel, irisModel, config) { this.facePipeline = new facepipeline.Pipeline(blazeFace, blazeMeshModel, irisModel); this.config = config; } async estimateFaces(input, config): Promise<{ confidence, boxConfidence, faceConfidence, box, mesh, boxRaw, meshRaw, annotations, image }[]> { const predictions = await this.facePipeline.predict(input, config); const results: Array<{ confidence, boxConfidence, faceConfidence, box, mesh, boxRaw, meshRaw, annotations, image }> = []; for (const prediction of (predictions || [])) { if (prediction.isDisposedInternal) continue; // guard against disposed tensors on long running operations such as pause in middle of processing const mesh = prediction.coords ? prediction.coords.arraySync() : []; const meshRaw = mesh.map((pt) => [ pt[0] / input.shape[2], pt[1] / input.shape[1], pt[2] / this.facePipeline.meshSize, ]); const annotations = {}; if (mesh && mesh.length > 0) { for (const key of Object.keys(coords.MESH_ANNOTATIONS)) annotations[key] = coords.MESH_ANNOTATIONS[key].map((index) => mesh[index]); } const box = prediction.box ? [ Math.max(0, prediction.box.startPoint[0]), Math.max(0, prediction.box.startPoint[1]), Math.min(input.shape[2], prediction.box.endPoint[0]) - Math.max(0, prediction.box.startPoint[0]), Math.min(input.shape[1], prediction.box.endPoint[1]) - Math.max(0, prediction.box.startPoint[1]), ] : 0; const boxRaw = prediction.box ? [ prediction.box.startPoint[0] / input.shape[2], prediction.box.startPoint[1] / input.shape[1], (prediction.box.endPoint[0] - prediction.box.startPoint[0]) / input.shape[2], (prediction.box.endPoint[1] - prediction.box.startPoint[1]) / input.shape[1], ] : []; results.push({ confidence: prediction.faceConfidence || prediction.boxConfidence || 0, boxConfidence: prediction.boxConfidence, faceConfidence: prediction.faceConfidence, box, boxRaw, mesh, meshRaw, annotations, image: prediction.image ? prediction.image.clone() : null, }); if (prediction.coords) prediction.coords.dispose(); if (prediction.image) prediction.image.dispose(); } return results; } } let faceModels = [null, null, null]; export async function load(config): Promise { // @ts-ignore faceModels = await Promise.all([ (!faceModels[0] && config.face.enabled) ? blazeface.load(config) : null, (!faceModels[1] && config.face.mesh.enabled) ? tf.loadGraphModel(config.face.mesh.modelPath, { fromTFHub: config.face.mesh.modelPath.includes('tfhub.dev') }) : null, (!faceModels[2] && config.face.iris.enabled) ? tf.loadGraphModel(config.face.iris.modelPath, { fromTFHub: config.face.iris.modelPath.includes('tfhub.dev') }) : null, ]); const faceMesh = new MediaPipeFaceMesh(faceModels[0], faceModels[1], faceModels[2], config); if (config.face.mesh.enabled && config.debug) log(`load model: ${config.face.mesh.modelPath.match(/\/(.*)\./)[1]}`); if (config.face.iris.enabled && config.debug) log(`load model: ${config.face.iris.modelPath.match(/\/(.*)\./)[1]}`); return faceMesh; } export const triangulation = coords.TRI468; export const uvmap = coords.UV468;