/** * Image enhancements */ import * as tf from '../../dist/tfjs.esm.js'; import type { Tensor } from '../exports'; export async function histogramEqualization(inputImage: Tensor): Promise { // const maxValue = 254; // using 255 results in values slightly larger than 1 due to math rounding errors const squeeze = inputImage.shape.length === 4 ? tf.squeeze(inputImage) : inputImage; const channels = tf.split(squeeze, 3, 2); const min: Tensor[] = [tf.min(channels[0]), tf.min(channels[1]), tf.min(channels[2])]; const max: Tensor[] = [tf.max(channels[0]), tf.max(channels[1]), tf.max(channels[2])]; const absMax = await Promise.all(max.map((channel) => channel.data())); const maxValue = 0.99 * Math.max(absMax[0][0], absMax[1][0], absMax[2][0]); const sub = [tf.sub(channels[0], min[0]), tf.sub(channels[1], min[1]), tf.sub(channels[2], min[2])]; const range = [tf.sub(max[0], min[0]), tf.sub(max[1], min[1]), tf.sub(max[2], min[2])]; const fact = [tf.div(maxValue, range[0]), tf.div(maxValue, range[1]), tf.div(maxValue, range[2])]; const enh = [tf.mul(sub[0], fact[0]), tf.mul(sub[1], fact[1]), tf.mul(sub[2], fact[2])]; const rgb = tf.stack([enh[0], enh[1], enh[2]], 2); const reshape = tf.reshape(rgb, [1, squeeze.shape[0], squeeze.shape[1], 3]); tf.dispose([...channels, ...min, ...max, ...sub, ...range, ...fact, ...enh, rgb, squeeze]); return reshape as Tensor; // output shape is [1, height, width, 3] }