/** * BlazeFace, FaceMesh & Iris model implementation * * Based on: * - [**MediaPipe BlazeFace**](https://drive.google.com/file/d/1f39lSzU5Oq-j_OXgS67KfN5wNsoeAZ4V/view) * - Facial Spacial Geometry: [**MediaPipe FaceMesh**](https://drive.google.com/file/d/1VFC_wIpw4O7xBOiTgUldl79d9LA-LsnA/view) * - Eye Iris Details: [**MediaPipe Iris**](https://drive.google.com/file/d/1bsWbokp9AklH2ANjCfmjqEzzxO1CNbMu/view) */ import { log, join } from '../util/util'; import * as tf from '../../dist/tfjs.esm.js'; import * as blazeface from './blazeface'; import * as util from './facemeshutil'; import * as coords from './facemeshcoords'; import * as iris from './iris'; import type { GraphModel, Tensor } from '../tfjs/types'; import type { FaceResult, Point } from '../result'; import type { Config } from '../config'; import { env } from '../util/env'; type BoxCache = { startPoint: Point, endPoint: Point, landmarks: Array, confidence: number, faceConfidence?: number | undefined }; let boxCache: Array = []; let model: GraphModel | null = null; let inputSize = 0; let skipped = Number.MAX_SAFE_INTEGER; let detectedFaces = 0; export async function predict(input: Tensor, config: Config): Promise { if (!config.skipFrame || (((detectedFaces !== config.face.detector?.maxDetected) || !config.face.mesh?.enabled)) && (skipped > (config.face.detector?.skipFrames || 0))) { // reset cached boxes const newBoxes = await blazeface.getBoxes(input, config); // get results from blazeface detector boxCache = []; // empty cache for (const possible of newBoxes.boxes) { // extract data from detector const startPoint = await possible.box.startPoint.data() as unknown as Point; const endPoint = await possible.box.endPoint.data() as unknown as Point; const landmarks = await possible.landmarks.array() as Array; boxCache.push({ startPoint, endPoint, landmarks, confidence: possible.confidence }); } newBoxes.boxes.forEach((prediction) => tf.dispose([prediction.box.startPoint, prediction.box.endPoint, prediction.landmarks])); for (let i = 0; i < boxCache.length; i++) { // enlarge and squarify detected boxes const scaledBox = util.scaleBoxCoordinates({ startPoint: boxCache[i].startPoint, endPoint: boxCache[i].endPoint }, newBoxes.scaleFactor); const enlargedBox = util.enlargeBox(scaledBox); const squarifiedBox = util.squarifyBox(enlargedBox); boxCache[i] = { ...squarifiedBox, confidence: boxCache[i].confidence, landmarks: boxCache[i].landmarks }; } skipped = 0; } else { skipped++; } const faces: Array = []; const newBoxes: Array = []; let id = 0; for (let box of boxCache) { let angle = 0; let rotationMatrix; const face: FaceResult = { id: id++, mesh: [], meshRaw: [], box: [0, 0, 0, 0], boxRaw: [0, 0, 0, 0], score: 0, boxScore: 0, faceScore: 0, annotations: {}, }; if (config.face.detector?.rotation && config.face.mesh?.enabled && env.kernels.includes('rotatewithoffset')) { [angle, rotationMatrix, face.tensor] = util.correctFaceRotation(box, input, inputSize); } else { rotationMatrix = util.IDENTITY_MATRIX; const cut = util.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, input, config.face.mesh?.enabled ? [inputSize, inputSize] : [blazeface.size(), blazeface.size()]); face.tensor = tf.div(cut, 255); tf.dispose(cut); } face.boxScore = Math.round(100 * box.confidence) / 100; if (!config.face.mesh?.enabled) { // mesh not enabled, return resuts from detector only face.box = util.getClampedBox(box, input); face.boxRaw = util.getRawBox(box, input); face.score = Math.round(100 * box.confidence || 0) / 100; face.mesh = box.landmarks.map((pt) => [ ((box.startPoint[0] + box.endPoint[0])) / 2 + ((box.endPoint[0] + box.startPoint[0]) * pt[0] / blazeface.size()), ((box.startPoint[1] + box.endPoint[1])) / 2 + ((box.endPoint[1] + box.startPoint[1]) * pt[1] / blazeface.size()), ]); face.meshRaw = face.mesh.map((pt) => [pt[0] / (input.shape[2] || 0), pt[1] / (input.shape[1] || 0), (pt[2] || 0) / inputSize]); for (const key of Object.keys(coords.blazeFaceLandmarks)) face.annotations[key] = [face.mesh[coords.blazeFaceLandmarks[key]]]; // add annotations } else if (!model) { // mesh enabled, but not loaded if (config.debug) log('face mesh detection requested, but model is not loaded'); } else { // mesh enabled const [contours, confidence, contourCoords] = model.execute(face.tensor as Tensor) as Array; // first returned tensor represents facial contours which are already included in the coordinates. tf.dispose(contours); const faceConfidence = (await confidence.data())[0] as number; tf.dispose(confidence); const coordsReshaped = tf.reshape(contourCoords, [-1, 3]); let rawCoords = await coordsReshaped.array(); tf.dispose(contourCoords); tf.dispose(coordsReshaped); if (faceConfidence < (config.face.detector?.minConfidence || 1)) { box.confidence = faceConfidence; // reset confidence of cached box } else { if (config.face.iris?.enabled) rawCoords = await iris.augmentIris(rawCoords, face.tensor, config, inputSize); // augment results with iris face.mesh = util.transformRawCoords(rawCoords, box, angle, rotationMatrix, inputSize); // get processed mesh face.meshRaw = face.mesh.map((pt) => [pt[0] / (input.shape[2] || 0), pt[1] / (input.shape[1] || 0), (pt[2] || 0) / inputSize]); box = { ...util.enlargeBox(util.calculateLandmarksBoundingBox(face.mesh), 1.5), confidence: box.confidence }; // redefine box with mesh calculated one for (const key of Object.keys(coords.meshAnnotations)) face.annotations[key] = coords.meshAnnotations[key].map((index) => face.mesh[index]); // add annotations if (config.face.detector?.rotation && config.face.mesh.enabled && config.face.description?.enabled && env.kernels.includes('rotatewithoffset')) { // do rotation one more time with mesh keypoints if we want to return perfect image tf.dispose(face.tensor); // dispose so we can overwrite original face [angle, rotationMatrix, face.tensor] = util.correctFaceRotation(box, input, inputSize); } face.box = util.getClampedBox(box, input); // update detected box with box around the face mesh face.boxRaw = util.getRawBox(box, input); face.score = Math.round(100 * faceConfidence || 100 * box.confidence || 0) / 100; face.faceScore = Math.round(100 * faceConfidence) / 100; box = { ...util.squarifyBox(box), confidence: box.confidence, faceConfidence }; // updated stored cache values } } faces.push(face); newBoxes.push(box); } if (config.face.mesh?.enabled) boxCache = newBoxes.filter((a) => a.confidence > (config.face.detector?.minConfidence || 0)); // remove cache entries for detected boxes on low confidence detectedFaces = faces.length; return faces; } export async function load(config: Config): Promise { if (env.initial) model = null; if (!model) { model = await tf.loadGraphModel(join(config.modelBasePath, config.face.mesh?.modelPath || '')) as unknown as GraphModel; if (!model || !model['modelUrl']) log('load model failed:', config.body.modelPath); else if (config.debug) log('load model:', model['modelUrl']); } else if (config.debug) log('cached model:', model['modelUrl']); inputSize = model.inputs[0].shape ? model.inputs[0].shape[2] : 0; if (inputSize === -1) inputSize = 64; return model; } export const triangulation = coords.TRI468; export const uvmap = coords.UV468;