export var Abs: string; export var Acos: string; export var Acosh: string; export var AdadeltaOptimizer: { new (learningRate: any, rho: any, epsilon3?: null): { learningRate: any; rho: any; epsilon: any; accumulatedGrads: any[]; accumulatedUpdates: any[]; applyGradients(variableGradients: any): void; dispose(): void; getWeights(): Promise<{ name: string; tensor: any; }[]>; setWeights(weightValues: any): Promise; getConfig(): { learningRate: any; rho: any; epsilon: any; }; minimize(f: any, returnCost: boolean | undefined, varList: any): any; readonly iterations: any; iterations_: any; incrementIterations(): void; computeGradients(f: any, varList: any): { value: any; grads: {}; }; saveIterations(): Promise<{ name: string; tensor: any; }>; extractIterations(weightValues: any): Promise; getClassName(): any; }; fromConfig(cls: any, config: any): any; className: string; }; export var AdagradOptimizer: { new (learningRate: any, initialAccumulatorValue?: number): { learningRate: any; initialAccumulatorValue: number; accumulatedGrads: any[]; applyGradients(variableGradients: any): void; dispose(): void; getWeights(): Promise<{ name: string; tensor: any; }[]>; setWeights(weightValues: any): Promise; getConfig(): { learningRate: any; initialAccumulatorValue: number; }; minimize(f: any, returnCost: boolean | undefined, varList: any): any; readonly iterations: any; iterations_: any; incrementIterations(): void; computeGradients(f: any, varList: any): { value: any; grads: {}; }; saveIterations(): Promise<{ name: string; tensor: any; }>; extractIterations(weightValues: any): Promise; getClassName(): any; }; fromConfig(cls: any, config: any): any; className: string; }; export var AdamOptimizer: { new (learningRate: any, beta1: any, beta2: any, epsilon3?: null): { learningRate: any; beta1: any; beta2: any; epsilon: any; accumulatedFirstMoment: any[]; accumulatedSecondMoment: any[]; accBeta1: any; accBeta2: any; applyGradients(variableGradients: any): void; dispose(): void; getWeights(): Promise<{ name: string; tensor: any; }[]>; setWeights(weightValues: any): Promise; getConfig(): { learningRate: any; beta1: any; beta2: any; epsilon: any; }; minimize(f: any, returnCost: boolean | undefined, varList: any): any; readonly iterations: any; iterations_: any; incrementIterations(): void; computeGradients(f: any, varList: any): { value: any; grads: {}; }; saveIterations(): Promise<{ name: string; tensor: any; }>; extractIterations(weightValues: any): Promise; getClassName(): any; }; fromConfig(cls: any, config: any): any; className: string; }; export var AdamaxOptimizer: { new (learningRate: any, beta1: any, beta2: any, epsilon3?: null, decay?: number): { learningRate: any; beta1: any; beta2: any; epsilon: any; decay: number; accumulatedFirstMoment: any[]; accumulatedWeightedInfNorm: any[]; iteration: any; accBeta1: any; applyGradients(variableGradients: any): void; dispose(): void; getWeights(): Promise; setWeights(weightValues: any): Promise; getConfig(): { learningRate: any; beta1: any; beta2: any; epsilon: any; decay: number; }; minimize(f: any, returnCost: boolean | undefined, varList: any): any; readonly iterations: any; iterations_: any; incrementIterations(): void; computeGradients(f: any, varList: any): { value: any; grads: {}; }; saveIterations(): Promise<{ name: string; tensor: any; }>; extractIterations(weightValues: any): Promise; getClassName(): any; }; fromConfig(cls: any, config: any): any; className: string; }; export var Add: string; export var AddN: string; export var All: string; export var Any: string; export var ArgMax: string; export var ArgMin: string; export var Asin: string; export var Asinh: string; export var Atan: string; export var Atan2: string; export var Atanh: string; export var AvgPool: string; export var AvgPool3D: string; export var AvgPool3DGrad: string; export var AvgPoolGrad: string; export var BackendWasm: { new (wasm: any): { wasm: any; dataIdNextNumber: number; dataIdMap: { backend: any; dataMover: any; data: WeakMap; dataIdsCount: number; get(dataId: any): any; set(dataId: any, value: any): void; has(dataId: any): boolean; delete(dataId: any): boolean; numDataIds(): number; }; write(values: any, shape: any, dtype: any): { id: number; }; numDataIds(): number; time(f: any): Promise<{ kernelMs: number; }>; move(dataId: any, values: any, shape: any, dtype: any, refCount: any): void; read(dataId: any): Promise; readSync(dataId: any): any; disposeData(dataId: any, force?: boolean): boolean; refCount(dataId: any): any; incRef(dataId: any): void; floatPrecision(): number; getMemoryOffset(dataId: any): any; dispose(): void; memory(): { unreliable: boolean; }; makeOutput(shape: any, dtype: any, memoryOffset: any): { dataId: { id: number; }; shape: any; dtype: any; }; typedArrayFromHeap({ shape, dtype, dataId }: { shape: any; dtype: any; dataId: any; }): Float32Array | Int32Array | Uint8Array; timerAvailable(): boolean; epsilon(): number; }; }; export var BatchMatMul: string; export var BatchToSpaceND: string; export var Bincount: string; export var BroadcastArgs: string; export var BroadcastTo: string; export var Callback: { new (...args: any[]): { model: { [x: string]: any; isTraining: boolean; summary(lineLength: any, positions: any, printFn?: { (...data: any[]): void; (message?: any, ...optionalParams: any[]): void; }): void; compile(args: any): void; loss: any; optimizer_: any; isOptimizerOwned: boolean | undefined; lossFunctions: any; feedOutputNames: any[] | undefined; feedOutputShapes: any[] | undefined; feedLossFns: any[] | undefined; metrics: any; metricsNames: string[] | undefined; metricsTensors: any[] | undefined; collectedTrainableWeights: any; checkTrainableWeightsConsistency(): void; evaluate(x: any, y: any, args?: {}): any; evaluateDataset(dataset: any, args: any): Promise; checkNumSamples(ins: any, batchSize: any, steps: any, stepsName?: string): any; execute(inputs: any, outputs: any): any; retrieveSymbolicTensors(symbolicTensorNames: any): any[]; predictLoop(ins: any, batchSize?: number, verbose?: boolean): any; predict(x: any, args?: {}): any; predictOnBatch(x: any): any; standardizeUserDataXY(x: any, y: any, checkBatchAxis: boolean | undefined, batchSize: any): any[]; standardizeUserData(x: any, y: any, sampleWeight: any, classWeight: any, checkBatchAxis: boolean | undefined, batchSize: any): Promise; testLoop(f: any, ins: any, batchSize: any, verbose: number | undefined, steps: any): any; getDedupedMetricsNames(): string[]; makeTrainFunction(): (data: any) => any[]; makeTestFunction(): void; testFunction: ((data: any) => any) | undefined; fit(x: any, y: any, args?: {}): Promise; fitDataset(dataset: any, args: any): Promise; trainOnBatch(x: any, y: any): Promise; getNamedWeights(config: any): { name: any; tensor: any; }[]; stopTraining: any; stopTraining_: any; optimizer: any; dispose(): any; getLossIdentifiers(): any; getMetricIdentifiers(): {}; getTrainingConfig(): { loss: any; metrics: {}; optimizer_config: { class_name: any; config: any; }; }; loadTrainingConfig(trainingConfig: any): void; save(handlerOrURL: any, config: any): Promise; setUserDefinedMetadata(userDefinedMetadata: any): void; userDefinedMetadata: any; getUserDefinedMetadata(): any; } | null; setModel(model2: any): void; validationData: any; setParams(params: any): void; params: any; onEpochBegin(epoch: any, logs: any): Promise; onEpochEnd(epoch: any, logs: any): Promise; onBatchBegin(batch: any, logs: any): Promise; onBatchEnd(batch: any, logs: any): Promise; onTrainBegin(logs: any): Promise; onTrainEnd(logs: any): Promise; }; }; export var CallbackList: { new (callbacks2: any, queueLength?: number): { callbacks: any; queueLength: number; append(callback: any): void; setParams(params: any): void; setModel(model2: any): void; onEpochBegin(epoch: any, logs: any): Promise; onEpochEnd(epoch: any, logs: any): Promise; onBatchBegin(batch: any, logs: any): Promise; onBatchEnd(batch: any, logs: any): Promise; onTrainBegin(logs: any): Promise; onTrainEnd(logs: any): Promise; }; }; export var Cast: string; export var Ceil: string; export var ClipByValue: string; export var Complex: string; export var ComplexAbs: string; export var Concat: string; export var Conv2D: string; export var Conv2DBackpropFilter: string; export var Conv2DBackpropInput: string; export var Conv3D: string; export var Conv3DBackpropFilterV2: string; export var Conv3DBackpropInputV2: string; export var Cos: string; export var Cosh: string; export var CropAndResize: string; export var Cumsum: string; export var CustomCallback: { new (args: any, yieldEvery: any): { currentEpoch: number; yieldEvery: any; maybeWait(epoch: any, batch: any, logs: any): Promise; trainBegin: any; trainEnd: any; epochBegin: any; epochEnd: any; batchBegin: any; batchEnd: any; yield: any; onEpochBegin(epoch: any, logs: any): Promise; onEpochEnd(epoch: any, logs: any): Promise; onBatchBegin(batch: any, logs: any): Promise; onBatchEnd(batch: any, logs: any): Promise; onTrainBegin(logs: any): Promise; onTrainEnd(logs: any): Promise; validationData: any; setParams(params: any): void; params: any; setModel(model2: any): void; }; }; export var DataStorage: { new (backend2: any, dataMover: any): { backend: any; dataMover: any; data: WeakMap; dataIdsCount: number; get(dataId: any): any; set(dataId: any, value: any): void; has(dataId: any): boolean; delete(dataId: any): boolean; numDataIds(): number; }; }; export var DenseBincount: string; export var DepthToSpace: string; export var DepthwiseConv2dNative: string; export var DepthwiseConv2dNativeBackpropFilter: string; export var DepthwiseConv2dNativeBackpropInput: string; export var Diag: string; export var Dilation2D: string; export var Dilation2DBackpropFilter: string; export var Dilation2DBackpropInput: string; export var ENV: any; export var EarlyStopping: { new (args: any): { monitor: any; minDelta: number; patience: any; verbose: any; mode: any; baseline: any; monitorFunc: typeof less2; onTrainBegin(logs: any): Promise; wait: number | undefined; stoppedEpoch: any; best: any; onEpochEnd(epoch: any, logs: any): Promise; onTrainEnd(logs: any): Promise; getMonitorValue(logs: any): any; model: { [x: string]: any; isTraining: boolean; summary(lineLength: any, positions: any, printFn?: { (...data: any[]): void; (message?: any, ...optionalParams: any[]): void; }): void; compile(args: any): void; loss: any; optimizer_: any; isOptimizerOwned: boolean | undefined; lossFunctions: any; feedOutputNames: any[] | undefined; feedOutputShapes: any[] | undefined; feedLossFns: any[] | undefined; metrics: any; metricsNames: string[] | undefined; metricsTensors: any[] | undefined; collectedTrainableWeights: any; checkTrainableWeightsConsistency(): void; evaluate(x: any, y: any, args?: {}): any; evaluateDataset(dataset: any, args: any): Promise; checkNumSamples(ins: any, batchSize: any, steps: any, stepsName?: string): any; execute(inputs: any, outputs: any): any; retrieveSymbolicTensors(symbolicTensorNames: any): any[]; predictLoop(ins: any, batchSize?: number, verbose?: boolean): any; predict(x: any, args?: {}): any; predictOnBatch(x: any): any; standardizeUserDataXY(x: any, y: any, checkBatchAxis: boolean | undefined, batchSize: any): any[]; standardizeUserData(x: any, y: any, sampleWeight: any, classWeight: any, checkBatchAxis: boolean | undefined, batchSize: any): Promise; testLoop(f: any, ins: any, batchSize: any, verbose: number | undefined, steps: any): any; getDedupedMetricsNames(): string[]; makeTrainFunction(): (data: any) => any[]; makeTestFunction(): void; testFunction: ((data: any) => any) | undefined; fit(x: any, y: any, args?: {}): Promise; fitDataset(dataset: any, args: any): Promise; trainOnBatch(x: any, y: any): Promise; getNamedWeights(config: any): { name: any; tensor: any; }[]; stopTraining: any; stopTraining_: any; optimizer: any; dispose(): any; getLossIdentifiers(): any; getMetricIdentifiers(): {}; getTrainingConfig(): { loss: any; metrics: {}; optimizer_config: { class_name: any; config: any; }; }; loadTrainingConfig(trainingConfig: any): void; save(handlerOrURL: any, config: any): Promise; setUserDefinedMetadata(userDefinedMetadata: any): void; userDefinedMetadata: any; getUserDefinedMetadata(): any; } | null; setModel(model2: any): void; validationData: any; setParams(params: any): void; params: any; onEpochBegin(epoch: any, logs: any): Promise; onBatchBegin(batch: any, logs: any): Promise; onBatchEnd(batch: any, logs: any): Promise; }; }; export var Einsum: string; export var Elu: string; export var EluGrad: string; export var Environment: { new (global2: any): { global: any; flags: {}; flagRegistry: {}; urlFlags: {}; getQueryParams: typeof getQueryParams; setPlatform(platformName: any, platform: any): void; platformName: any; platform: any; registerFlag(flagName: any, evaluationFn: any, setHook: any): void; getAsync(flagName: any): Promise; get(flagName: any): any; getNumber(flagName: any): any; getBool(flagName: any): any; getFlags(): {}; readonly features: {}; set(flagName: any, value: any): void; evaluateFlag(flagName: any): any; setFlags(flags: any): void; reset(): void; populateURLFlags(): void; }; }; export var Equal: string; export var Erf: string; export var Exp: string; export var ExpandDims: string; export var Expm1: string; export var FFT: string; export var Fill: string; export var FlipLeftRight: string; export var Floor: string; export var FloorDiv: string; export var FromPixels: string; export var FusedBatchNorm: string; export var FusedConv2D: string; export var FusedDepthwiseConv2D: string; export var GPGPUContext: { new (gl: any): { outputTexture: any; program: any; disposed: boolean; vertexAttrsAreBound: boolean; itemsToPoll: any[]; gl: any; textureFloatExtension: any; textureHalfFloatExtension: any; colorBufferFloatExtension: any; colorBufferHalfFloatExtension: any; vertexBuffer: any; indexBuffer: any; framebuffer: any; textureConfig: { internalFormatFloat: any; internalFormatHalfFloat: any; internalFormatPackedHalfFloat: any; internalFormatPackedFloat: any; textureFormatFloat: any; downloadTextureFormat: any; downloadUnpackNumChannels: number; defaultNumChannels: number; textureTypeHalfFloat: any; textureTypeFloat: any; }; readonly debug: any; dispose(): void; createFloat32MatrixTexture(rows: any, columns: any): any; createFloat16MatrixTexture(rows: any, columns: any): any; createUnsignedBytesMatrixTexture(rows: any, columns: any): any; uploadPixelDataToTexture(texture: any, pixels: any): void; uploadDenseMatrixToTexture(texture: any, width: any, height: any, data: any): void; createFloat16PackedMatrixTexture(rows: any, columns: any): any; createPackedMatrixTexture(rows: any, columns: any): any; deleteMatrixTexture(texture: any): void; downloadByteEncodedFloatMatrixFromOutputTexture(texture: any, rows: any, columns: any): any; downloadPackedMatrixFromBuffer(buffer2: any, batch: any, rows: any, columns: any, physicalRows: any, physicalCols: any): Float32Array; downloadFloat32MatrixFromBuffer(buffer2: any, size: any): Float32Array; createBufferFromTexture(texture: any, rows: any, columns: any): any; createAndWaitForFence(): Promise; createFence(gl: any): { query: any; isFencePassed: () => any; }; downloadMatrixFromPackedTexture(texture: any, physicalRows: any, physicalCols: any): any; createProgram(fragmentShaderSource: any): any; vertexShader: any; deleteProgram(program: any): void; setProgram(program: any): void; getUniformLocation(program: any, uniformName: any, shouldThrow?: boolean): any; getAttributeLocation(program: any, attribute: any): any; getUniformLocationNoThrow(program: any, uniformName: any): any; setInputMatrixTexture(inputMatrixTexture: any, uniformLocation: any, textureUnit: any): void; setOutputMatrixTexture(outputMatrixTexture: any, rows: any, columns: any): void; setOutputPackedMatrixTexture(outputPackedMatrixTexture: any, rows: any, columns: any): void; setOutputMatrixWriteRegion(startRow: any, numRows: any, startColumn: any, numColumns: any): void; setOutputPackedMatrixWriteRegion(startRow: any, numRows: any, startColumn: any, numColumns: any): void; debugValidate(): void; executeProgram(): void; blockUntilAllProgramsCompleted(): void; getQueryTimerExtension(): any; disjointQueryTimerExtension: any; getQueryTimerExtensionWebGL2(): any; getQueryTimerExtensionWebGL1(): any; beginQuery(): any; endQuery(): void; waitForQueryAndGetTime(query: any): Promise; getQueryTime(query: any, queryTimerVersion: any): number | null; isQueryAvailable(query: any, queryTimerVersion: any): any; disjoint: any; pollFence(fenceContext: any): Promise; pollItems(): void; addItemToPoll(isDoneFn: any, resolveFn: any): void; bindTextureToFrameBuffer(texture: any): void; unbindTextureToFrameBuffer(): void; downloadMatrixDriver(texture: any, downloadAndDecode: any): any; setOutputMatrixTextureDriver(outputMatrixTextureMaybePacked: any, width: any, height: any): void; setOutputMatrixWriteRegionDriver(x: any, y: any, width: any, height: any): void; throwIfDisposed(): void; throwIfNoProgram(): void; }; }; export var GatherNd: string; export var GatherV2: string; export var GraphModel: { new (modelUrl: any, loadOptions?: {}): { modelUrl: any; loadOptions: {}; version: string; resourceManager: { hashTableNameToHandle: {}; hashTableMap: {}; addHashTable(name: any, hashTable2: any): void; getHashTableHandleByName(name: any): any; getHashTableById(id: any): any; dispose(): void; }; readonly modelVersion: string; readonly inputNodes: any; readonly outputNodes: any; readonly inputs: any; readonly outputs: any; readonly weights: any; readonly metadata: any; readonly modelSignature: any; findIOHandler(): void; handler: any; load(): Promise; loadSync(artifacts: any): boolean; artifacts: any; signature: any; executor: { graph: any; parent: any; compiledMap: Map; _weightMap: {}; SEPERATOR: string; _functions: any; _functionExecutorMap: {}; _outputs: any; _inputs: any; _initNodes: any; _signature: any; readonly weightIds: any; readonly functionExecutorMap: any; weightMap: any; _weightIds: any[] | undefined; resourceManager: any; _resourceManager: any; readonly inputs: any; readonly outputs: any; readonly inputNodes: any; readonly outputNodes: any; readonly functions: {}; getCompilationKey(inputs: any, outputs: any): string; compile(inputs: any, outputs: any): any[]; execute(inputs: any, outputs: any): any; getFrozenTensorIds(tensorMap: any): Set; checkTensorForDisposal(nodeName: any, node: any, tensorMap: any, context: any, tensorsToKeep: any, outputNames: any, intermediateTensorConsumerCount: any): void; executeAsync(inputs: any, outputs: any): Promise; _executeAsync(inputs: any, outputs: any, isFunctionExecution?: boolean, tensorArrayMap?: {}, tensorListMap?: {}): Promise; executeFunctionAsync(inputs: any, tensorArrayMap: any, tensorListMap: any): Promise; executeWithControlFlow(inputs: any, context: any, outputNames: any, isFunctionExecution: any): Promise; processStack(inputNodes: any, stack2: any, context: any, tensorMap: any, added: any, tensorsToKeep: any, outputNames: any, intermediateTensorConsumerCount: any, usedNodes: any): any[]; processChildNodes(node: any, stack2: any, context: any, tensorMap: any, added: any, usedNodes: any): void; dispose(): void; checkInputShapeAndType(inputs: any): void; mapInputs(inputs: any): {}; checkInputs(inputs: any): void; mapOutputs(outputs: any): any; checkOutputs(outputs: any): void; } | undefined; initializer: { graph: any; parent: any; compiledMap: Map; _weightMap: {}; SEPERATOR: string; _functions: any; _functionExecutorMap: {}; _outputs: any; _inputs: any; _initNodes: any; _signature: any; readonly weightIds: any; readonly functionExecutorMap: any; weightMap: any; _weightIds: any[] | undefined; resourceManager: any; _resourceManager: any; readonly inputs: any; readonly outputs: any; readonly inputNodes: any; readonly outputNodes: any; readonly functions: {}; getCompilationKey(inputs: any, outputs: any): string; compile(inputs: any, outputs: any): any[]; execute(inputs: any, outputs: any): any; getFrozenTensorIds(tensorMap: any): Set; checkTensorForDisposal(nodeName: any, node: any, tensorMap: any, context: any, tensorsToKeep: any, outputNames: any, intermediateTensorConsumerCount: any): void; executeAsync(inputs: any, outputs: any): Promise; _executeAsync(inputs: any, outputs: any, isFunctionExecution?: boolean, tensorArrayMap?: {}, tensorListMap?: {}): Promise; executeFunctionAsync(inputs: any, tensorArrayMap: any, tensorListMap: any): Promise; executeWithControlFlow(inputs: any, context: any, outputNames: any, isFunctionExecution: any): Promise; processStack(inputNodes: any, stack2: any, context: any, tensorMap: any, added: any, tensorsToKeep: any, outputNames: any, intermediateTensorConsumerCount: any, usedNodes: any): any[]; processChildNodes(node: any, stack2: any, context: any, tensorMap: any, added: any, usedNodes: any): void; dispose(): void; checkInputShapeAndType(inputs: any): void; mapInputs(inputs: any): {}; checkInputs(inputs: any): void; mapOutputs(outputs: any): any; checkOutputs(outputs: any): void; } | undefined; save(handlerOrURL: any, config: any): Promise; predict(inputs: any, config: any): any; normalizeInputs(inputs: any): any; normalizeOutputs(outputs: any): any[]; execute(inputs: any, outputs: any): any; executeAsync(inputs: any, outputs: any): Promise; convertTensorMapToTensorsMap(map: any): {}; dispose(): void; }; }; export var Greater: string; export var GreaterEqual: string; export var History: { new (): { onTrainBegin(logs: any): Promise; epoch: any[] | undefined; history: {} | undefined; onEpochEnd(epoch: any, logs: any): Promise; syncData(): Promise; validationData: any; setParams(params: any): void; params: any; onEpochBegin(epoch: any, logs: any): Promise; onBatchBegin(batch: any, logs: any): Promise; onBatchEnd(batch: any, logs: any): Promise; onTrainEnd(logs: any): Promise; setModel(model2: any): void; }; }; export var IFFT: string; export var Identity: string; export var Imag: string; export var InputSpec: { new (args: any): { dtype: any; shape: any; ndim: any; maxNDim: any; minNDim: any; axes: any; }; }; export var IsFinite: string; export var IsInf: string; export var IsNan: string; export var KernelBackend: { new (): { refCount(dataId: any): void; incRef(dataId: any): void; timerAvailable(): boolean; time(f: any): void; read(dataId: any): void; readSync(dataId: any): void; numDataIds(): void; disposeData(dataId: any, force: any): void; write(values: any, shape: any, dtype: any): void; move(dataId: any, values: any, shape: any, dtype: any, refCount: any): void; memory(): void; floatPrecision(): void; epsilon(): number; dispose(): void; }; }; export var LRN: string; export var LRNGrad: string; export var LayerVariable: { new (val: any, dtype?: string, name?: string, trainable?: boolean, constraint?: null): { dtype: string; shape: any; id: number; originalName: string; name: any; trainable_: boolean; constraint: any; val: any; read(): any; write(newVal: any): any; dispose(): void; assertNotDisposed(): void; trainable: boolean; }; }; export var LayersModel: { new (args: any): { [x: string]: any; isTraining: boolean; summary(lineLength: any, positions: any, printFn?: { (...data: any[]): void; (message?: any, ...optionalParams: any[]): void; }): void; compile(args: any): void; loss: any; optimizer_: any; isOptimizerOwned: boolean | undefined; lossFunctions: any; feedOutputNames: any[] | undefined; feedOutputShapes: any[] | undefined; feedLossFns: any[] | undefined; metrics: any; metricsNames: string[] | undefined; metricsTensors: any[] | undefined; collectedTrainableWeights: any; checkTrainableWeightsConsistency(): void; evaluate(x: any, y: any, args?: {}): any; evaluateDataset(dataset: any, args: any): Promise; checkNumSamples(ins: any, batchSize: any, steps: any, stepsName?: string): any; execute(inputs: any, outputs: any): any; retrieveSymbolicTensors(symbolicTensorNames: any): any[]; predictLoop(ins: any, batchSize?: number, verbose?: boolean): any; predict(x: any, args?: {}): any; predictOnBatch(x: any): any; standardizeUserDataXY(x: any, y: any, checkBatchAxis: boolean | undefined, batchSize: any): any[]; standardizeUserData(x: any, y: any, sampleWeight: any, classWeight: any, checkBatchAxis: boolean | undefined, batchSize: any): Promise; testLoop(f: any, ins: any, batchSize: any, verbose: number | undefined, steps: any): any; getDedupedMetricsNames(): string[]; makeTrainFunction(): (data: any) => any[]; makeTestFunction(): void; testFunction: ((data: any) => any) | undefined; fit(x: any, y: any, args?: {}): Promise; fitDataset(dataset: any, args: any): Promise; trainOnBatch(x: any, y: any): Promise; getNamedWeights(config: any): { name: any; tensor: any; }[]; stopTraining: any; stopTraining_: any; optimizer: any; dispose(): any; getLossIdentifiers(): any; getMetricIdentifiers(): {}; getTrainingConfig(): { loss: any; metrics: {}; optimizer_config: { class_name: any; config: any; }; }; loadTrainingConfig(trainingConfig: any): void; save(handlerOrURL: any, config: any): Promise; setUserDefinedMetadata(userDefinedMetadata: any): void; userDefinedMetadata: any; getUserDefinedMetadata(): any; }; [x: string]: any; className: string; }; export var LeakyRelu: string; export var Less: string; export var LessEqual: string; export var LinSpace: string; export var Log: string; export var Log1p: string; export var LogSoftmax: string; export var LogicalAnd: string; export var LogicalNot: string; export var LogicalOr: string; export var MathBackendCPU: { new (): { blockSize: number; firstUse: boolean; data: { backend: any; dataMover: any; data: WeakMap; dataIdsCount: number; get(dataId: any): any; set(dataId: any, value: any): void; has(dataId: any): boolean; delete(dataId: any): boolean; numDataIds(): number; }; nextDataId(): number; write(values: any, shape: any, dtype: any): { id: number; }; makeTensorInfo(shape: any, dtype: any, values: any): { dataId: { id: number; }; shape: any; dtype: any; }; refCount(dataId: any): any; incRef(dataId: any): void; decRef(dataId: any): void; move(dataId: any, values: any, shape: any, dtype: any, refCount: any): void; numDataIds(): number; read(dataId: any): Promise; readSync(dataId: any): any; bufferSync(t: any): { dtype: any; shape: any; size: any; values: any; strides: any[]; set(value: any, ...locs: any[]): void; get(...locs: any[]): any; locToIndex(locs: any): any; indexToLoc(index: any): any[]; readonly rank: any; toTensor(): any; }; makeOutput(values: any, shape: any, dtype: any): any; disposeData(dataId: any, force?: boolean): boolean; disposeIntermediateTensorInfo(tensorInfo: any): void; time(f: any): Promise<{ kernelMs: number; }>; memory(): { unreliable: boolean; reasons: string[]; }; where(condition: any): any; dispose(): void; floatPrecision(): number; epsilon(): number; timerAvailable(): boolean; }; nextDataId: number; }; export var MathBackendWebGL: { new (gpgpu: any): { pendingRead: WeakMap; pendingDisposal: WeakSet; dataRefCount: WeakMap; numBytesInGPU: number; uploadWaitMs: number; downloadWaitMs: number; lastGlFlushTime: number; warnedAboutMemory: boolean; pendingDeletes: number; disposed: boolean; binaryCache: any; gpgpu: any; canvas: any; gpgpuCreatedLocally: boolean; textureManager: { gpgpu: any; numUsedTextures: number; numFreeTextures: number; _numBytesAllocated: number; _numBytesFree: number; freeTextures: {}; logEnabled: boolean; usedTextures: {}; acquireTexture(shapeRC: any, usage: any, isPacked: any): any; releaseTexture(texture: any, shape: any, logicalTexType: any, isPacked: any): void; log(): void; readonly numBytesAllocated: number; readonly numBytesFree: number; getNumUsedTextures(): number; getNumFreeTextures(): number; dispose(): void; }; numMBBeforeWarning: number; texData: { backend: any; dataMover: any; data: WeakMap; dataIdsCount: number; get(dataId: any): any; set(dataId: any, value: any): void; has(dataId: any): boolean; delete(dataId: any): boolean; numDataIds(): number; }; nextDataId(): number; numDataIds(): number; write(values: any, shape: any, dtype: any): { id: number; }; refCount(dataId: any): any; incRef(dataId: any): void; decRef(dataId: any): void; move(dataId: any, values: any, shape: any, dtype: any, refCount: any): void; disposeIntermediateTensorInfo(tensorInfo: any): void; readSync(dataId: any): any; read(dataId: any): any; bufferSync(t: any): { dtype: any; shape: any; size: any; values: any; strides: any[]; set(value: any, ...locs: any[]): void; get(...locs: any[]): any; locToIndex(locs: any): any; indexToLoc(index: any): any[]; readonly rank: any; toTensor(): any; }; checkNumericalProblems(values: any): void; getValuesFromTexture(dataId: any): any; timerAvailable(): boolean; time(f: any): Promise<{ uploadWaitMs: number; downloadWaitMs: number; kernelMs: null; wallMs: null; }>; programTimersStack: any[] | null | undefined; activeTimers: any; memory(): { unreliable: boolean; numBytesInGPU: number; numBytesInGPUAllocated: number; numBytesInGPUFree: number; }; startTimer(): any; endTimer(query: any): any; getQueryTime(query: any): Promise; disposeData(dataId: any, force?: boolean): boolean; releaseGPUData(dataId: any): void; getTexture(dataId: any): any; getDataInfo(dataId: any): any; shouldExecuteOnCPU(inputs: any, sizeThreshold?: any): any; getGPGPUContext(): any; where(condition: any): any; packedUnaryOp(x: any, op2: any, dtype: any): any; abs(x: any): any; makeTensorInfo(shape: any, dtype: any, values: any): { dataId: { id: number; }; shape: any; dtype: any; }; makeOutput(shape: any, dtype: any, values: any): any; unpackTensor(input2: any): any; packTensor(input2: any): any; packedReshape(input2: any, afterShape: any): { dataId: any; shape: any; dtype: any; }; decode(dataId: any): { dtype: any; shape: any; dataId: any; }; runWebGLProgram(program: any, inputs: any, outputDtype: any, customUniformValues: any, preventEagerUnpackingOfOutput?: boolean): any; compileAndRun(program: any, inputs: any, outputDtype: any, customUniformValues: any, preventEagerUnpackingOfOutput?: boolean): any; getAndSaveBinary(key: any, getBinary: any): any; getTextureManager(): { gpgpu: any; numUsedTextures: number; numFreeTextures: number; _numBytesAllocated: number; _numBytesFree: number; freeTextures: {}; logEnabled: boolean; usedTextures: {}; acquireTexture(shapeRC: any, usage: any, isPacked: any): any; releaseTexture(texture: any, shape: any, logicalTexType: any, isPacked: any): void; log(): void; readonly numBytesAllocated: number; readonly numBytesFree: number; getNumUsedTextures(): number; getNumFreeTextures(): number; dispose(): void; }; dispose(): void; floatPrecision(): any; floatPrecisionValue: any; epsilon(): number; uploadToGPU(dataId: any): void; convertAndCacheOnCPU(dataId: any, float32Values: any): any; acquireTexture(texShape: any, texType: any, dtype: any, isPacked: any): any; computeBytes(shape: any, dtype: any): number; }; nextDataId: number; }; export var Max: string; export var MaxPool: string; export var MaxPool3D: string; export var MaxPool3DGrad: string; export var MaxPoolGrad: string; export var MaxPoolWithArgmax: string; export var Maximum: string; export var Mean: string; export var Min: string; export var Minimum: string; export var MirrorPad: string; export var Mod: string; export var MomentumOptimizer: { new (learningRate: any, momentum: any, useNesterov?: boolean): { learningRate: any; momentum: any; useNesterov: boolean; accumulations: any[]; m: any; applyGradients(variableGradients: any): void; dispose(): void; setMomentum(momentum: any): void; getWeights(): Promise<{ name: string; tensor: any; }[]>; setWeights(weightValues: any): Promise; getConfig(): { learningRate: any; momentum: any; useNesterov: boolean; }; setLearningRate(learningRate: any): void; c: any; minimize(f: any, returnCost: boolean | undefined, varList: any): any; readonly iterations: any; iterations_: any; incrementIterations(): void; computeGradients(f: any, varList: any): { value: any; grads: {}; }; saveIterations(): Promise<{ name: string; tensor: any; }>; extractIterations(weightValues: any): Promise; getClassName(): any; }; fromConfig(cls: any, config: any): any; className: string; }; export var Multinomial: string; export var Multiply: string; export var Neg: string; export var NonMaxSuppressionV3: string; export var NonMaxSuppressionV4: string; export var NonMaxSuppressionV5: string; export var NotEqual: string; export var OP_SCOPE_SUFFIX: string; export var OneHot: string; export var OnesLike: string; export var Optimizer: { new (): { minimize(f: any, returnCost: boolean | undefined, varList: any): any; readonly iterations: any; iterations_: any; incrementIterations(): void; computeGradients(f: any, varList: any): { value: any; grads: {}; }; dispose(): void; saveIterations(): Promise<{ name: string; tensor: any; }>; getWeights(): Promise; setWeights(weightValues: any): Promise; extractIterations(weightValues: any): Promise; getClassName(): any; }; fromConfig(cls: any, config: any): any; }; export var Pack: string; export var PadV2: string; export var Pool: string; export var Pow: string; export var Prelu: string; export var Prod: string; export var RMSPropOptimizer: { new (learningRate: any, decay?: number, momentum?: number, epsilon3?: null, centered?: boolean): { learningRate: any; decay: number; momentum: number; epsilon: any; accumulatedMeanSquares: any[]; accumulatedMoments: any[]; accumulatedMeanGrads: any[]; centered: boolean; applyGradients(variableGradients: any): void; dispose(): void; getWeights(): Promise<{ name: string; tensor: any; }[]>; setWeights(weightValues: any): Promise; getConfig(): { learningRate: any; decay: number; momentum: number; epsilon: any; centered: boolean; }; minimize(f: any, returnCost: boolean | undefined, varList: any): any; readonly iterations: any; iterations_: any; incrementIterations(): void; computeGradients(f: any, varList: any): { value: any; grads: {}; }; saveIterations(): Promise<{ name: string; tensor: any; }>; extractIterations(weightValues: any): Promise; getClassName(): any; }; fromConfig(cls: any, config: any): any; className: string; }; export var RNN: { new (args: any): { cell: any; returnSequences: any; returnState: any; goBackwards: any; _stateful: any; unroll: any; supportsMasking: boolean; inputSpec: { dtype: any; shape: any; ndim: any; maxNDim: any; minNDim: any; axes: any; }[]; stateSpec: any; states_: any; numConstants: any; keptStates: any[]; getStates(): any; setStates(states: any): void; computeOutputShape(inputShape: any): any[]; computeMask(inputs: any, mask: any): any; states: any; build(inputShape: any): void; resetStates(states: any, training?: boolean): void; apply(inputs: any, kwargs: any): any; call(inputs: any, kwargs: any): any; getInitialState(inputs: any): any; readonly trainableWeights: any; readonly nonTrainableWeights: any; setFastWeightInitDuringBuild(value: any): void; getConfig(): any; _callHook: any; _addedWeightNames: any[]; id: number; activityRegularizer: any; _trainableWeights: any[]; _nonTrainableWeights: any[]; _losses: any[]; _updates: any[]; _built: boolean; inboundNodes: any[]; outboundNodes: any[]; name: any; trainable_: any; batchInputShape: any; dtype: any; initialWeights: any; _refCount: number | null; fastWeightInitDuringBuild: boolean; getNodeAtIndex(nodeIndex: any, attrName: any): any; getInputAt(nodeIndex: any): any; getOutputAt(nodeIndex: any): any; readonly input: any; readonly output: any; readonly losses: any[]; calculateLosses(): any[]; readonly updates: any[]; built: boolean; trainable: any; readonly weights: any[]; readonly stateful: boolean; assertInputCompatibility(inputs: any): void; invokeCallHook(inputs: any, kwargs: any): void; setCallHook(callHook: any): void; clearCallHook(): void; warnOnIncompatibleInputShape(inputShape: any): void; readonly outputShape: any; countParams(): number; getWeights(trainableOnly?: boolean): any; setWeights(weights: any): void; addWeight(name: any, shape: any, dtype: any, initializer: any, regularizer: any, trainable: any, constraint: any): { dtype: string; shape: any; id: number; originalName: string; name: any; trainable_: boolean; constraint: any; val: any; read(): any; write(newVal: any): any; dispose(): void; assertNotDisposed(): void; trainable: boolean; }; addLoss(losses4: any): void; addInboundNode(inputTensors: any, outputTensors: any, inputMasks: any, outputMasks: any, inputShapes: any, outputShapes: any, kwargs?: null): void; disposeWeights(): number; assertNotDisposed(): void; dispose(): { refCountAfterDispose: number; numDisposedVariables: number; }; }; fromConfig(cls: any, config: any, customObjects?: {}): any; className: string; nodeKey(layer: any, nodeIndex: any): string; }; export var Range: string; export var Rank: any; export var Real: string; export var RealDiv: string; export var Reciprocal: string; export var Reduction: any; export var Relu: string; export var Relu6: string; export var Reshape: string; export var ResizeBilinear: string; export var ResizeBilinearGrad: string; export var ResizeNearestNeighbor: string; export var ResizeNearestNeighborGrad: string; export var Reverse: string; export var RotateWithOffset: string; export var Round: string; export var Rsqrt: string; export var SGDOptimizer: { new (learningRate: any): { learningRate: any; applyGradients(variableGradients: any): void; setLearningRate(learningRate: any): void; c: any; dispose(): void; getWeights(): Promise<{ name: string; tensor: any; }[]>; setWeights(weightValues: any): Promise; getConfig(): { learningRate: any; }; minimize(f: any, returnCost: boolean | undefined, varList: any): any; readonly iterations: any; iterations_: any; incrementIterations(): void; computeGradients(f: any, varList: any): { value: any; grads: {}; }; saveIterations(): Promise<{ name: string; tensor: any; }>; extractIterations(weightValues: any): Promise; getClassName(): any; }; fromConfig(cls: any, config: any): any; className: string; }; export var ScatterNd: string; export var Select: string; export var Selu: string; export var Sequential: any; export var Sigmoid: string; export var Sign: string; export var Sin: string; export var Sinh: string; export var Slice: string; export var Softmax: string; export var Softplus: string; export var SpaceToBatchND: string; export var SparseFillEmptyRows: string; export var SparseReshape: string; export var SparseSegmentMean: string; export var SparseSegmentSum: string; export var SparseToDense: string; export var SplitV: string; export var Sqrt: string; export var Square: string; export var SquaredDifference: string; export var Step: string; export var StridedSlice: string; export var StringNGrams: string; export var StringSplit: string; export var StringToHashBucketFast: string; export var Sub: string; export var Sum: string; export var SymbolicTensor: { new (dtype: any, shape: any, sourceLayer: any, inputs: any, callArgs: any, name: any, outputTensorIndex: any): { dtype: any; shape: any; sourceLayer: any; inputs: any; callArgs: any; outputTensorIndex: any; id: number; originalName: string | undefined; name: any; rank: any; }; }; export var Tan: string; export var Tanh: string; export var Tensor: { new (shape: any, dtype: any, dataId: any, id: any): { kept: boolean; isDisposedInternal: boolean; shape: any; dtype: any; size: any; strides: any[]; dataId: any; id: any; rankType: any; readonly rank: any; buffer(): Promise; bufferSync(): any; array(): Promise; arraySync(): any; data(): Promise; dataSync(): any; bytes(): Promise; dispose(): void; readonly isDisposed: boolean; throwIfDisposed(): void; print(verbose?: boolean): any; clone(): any; toString(verbose?: boolean): string; cast(dtype: any): any; variable(trainable: boolean | undefined, name: any, dtype: any): any; }; }; export var TensorBuffer: { new (shape: any, dtype: any, values: any): { dtype: any; shape: any; size: any; values: any; strides: any[]; set(value: any, ...locs: any[]): void; get(...locs: any[]): any; locToIndex(locs: any): any; indexToLoc(index: any): any[]; readonly rank: any; toTensor(): any; }; }; export var Tile: string; export var TopK: string; export var Transform: string; export var Transpose: string; export var Unique: string; export var Unpack: string; export var UnsortedSegmentSum: string; export var Variable: { new (initialValue: any, trainable: any, name: any, tensorId: any): { trainable: any; name: any; assign(newValue: any): void; dataId: any; dispose(): void; isDisposedInternal: boolean; kept: boolean; shape: any; dtype: any; size: any; strides: any[]; id: any; rankType: any; readonly rank: any; buffer(): Promise; bufferSync(): any; array(): Promise; arraySync(): any; data(): Promise; dataSync(): any; bytes(): Promise; readonly isDisposed: boolean; throwIfDisposed(): void; print(verbose?: boolean): any; clone(): any; toString(verbose?: boolean): string; cast(dtype: any): any; variable(trainable: boolean | undefined, name: any, dtype: any): any; }; }; export var ZerosLike: string; export var _FusedMatMul: string; export function abs(...args: any[]): any; export namespace abs { const name: string; } export function acos(...args: any[]): any; export namespace acos { } export function acosh(...args: any[]): any; export namespace acosh { } declare function add2(...args: any[]): any; declare namespace add2 { } export function addN(...args: any[]): any; export namespace addN { } export function all(...args: any[]): any; export namespace all { } export function any(...args: any[]): any; export namespace any { } export function argMax(...args: any[]): any; export namespace argMax { } export function argMin(...args: any[]): any; export namespace argMin { } export function asin(...args: any[]): any; export namespace asin { } export function asinh(...args: any[]): any; export namespace asinh { } export function atan(...args: any[]): any; export namespace atan { } export function atan2(...args: any[]): any; export namespace atan2 { } export function atanh(...args: any[]): any; export namespace atanh { } export function avgPool(...args: any[]): any; export namespace avgPool { } export function avgPool3d(...args: any[]): any; export namespace avgPool3d { } export function backend(): any; declare var backend_util_exports: {}; export function basicLSTMCell(...args: any[]): any; export namespace basicLSTMCell { } export function batchNorm(...args: any[]): any; export namespace batchNorm { } export function batchNorm2d(...args: any[]): any; export namespace batchNorm2d { } export function batchNorm3d(...args: any[]): any; export namespace batchNorm3d { } export function batchNorm4d(...args: any[]): any; export namespace batchNorm4d { } export function batchToSpaceND(...args: any[]): any; export namespace batchToSpaceND { } export function bincount(...args: any[]): any; export namespace bincount { } export function booleanMaskAsync(tensor2: any, mask: any, axis: any): Promise; export function broadcastArgs(...args: any[]): any; export namespace broadcastArgs { } export function broadcastTo(...args: any[]): any; export namespace broadcastTo { } declare var browser_exports: {}; export function buffer(shape: any, dtype: string | undefined, values: any): { dtype: any; shape: any; size: any; values: any; strides: any[]; set(value: any, ...locs: any[]): void; get(...locs: any[]): any; locToIndex(locs: any): any; indexToLoc(index: any): any[]; readonly rank: any; toTensor(): any; }; export namespace callbacks { export { earlyStopping }; } export function cast(...args: any[]): any; export namespace cast { } export function ceil(...args: any[]): any; export namespace ceil { } export function clipByValue(...args: any[]): any; export namespace clipByValue { } export function clone(...args: any[]): any; export namespace clone { } export function complex(...args: any[]): any; export namespace complex { } export function concat(...args: any[]): any; export namespace concat { } export function concat1d(...args: any[]): any; export namespace concat1d { } export function concat2d(...args: any[]): any; export namespace concat2d { } export function concat3d(...args: any[]): any; export namespace concat3d { } export function concat4d(...args: any[]): any; export namespace concat4d { } declare var exports_constraints_exports: {}; export function conv1d(...args: any[]): any; export namespace conv1d { } export function conv2d(...args: any[]): any; export namespace conv2d { } export function conv2dTranspose(...args: any[]): any; export namespace conv2dTranspose { } export function conv3d(...args: any[]): any; export namespace conv3d { } export function conv3dTranspose(...args: any[]): any; export namespace conv3dTranspose { } export function copyRegisteredKernels(registeredBackendName: any, newBackendName: any): void; export function cos(...args: any[]): any; export namespace cos { } export function cosh(...args: any[]): any; export namespace cosh { } export function cosineWindow(windowLength: any, a: any, b: any): any; export function cumsum(...args: any[]): any; export namespace cumsum { } export function customGrad(f: any): any; declare var dist_exports: {}; export function denseBincount(...args: any[]): any; export namespace denseBincount { } export function deprecationWarn(msg: any): void; export function depthToSpace(...args: any[]): any; export namespace depthToSpace { } export function depthwiseConv2d(...args: any[]): any; export namespace depthwiseConv2d { } export function deregisterOp(name: any): void; declare var device_util_exports: {}; export function diag(...args: any[]): any; export namespace diag { } export function dilation2d(...args: any[]): any; export namespace dilation2d { } export function disableDeprecationWarnings(): void; export function dispose(container: any): void; export function disposeVariables(): void; export function div(...args: any[]): any; export namespace div { } export function divNoNan(...args: any[]): any; export namespace divNoNan { } export function dot(...args: any[]): any; export namespace dot { } export function dropout(...args: any[]): any; export namespace dropout { } export function einsum(...args: any[]): any; export namespace einsum { } export function elu(...args: any[]): any; export namespace elu { } export function enableDebugMode(): void; export function enableProdMode(): void; export function enclosingPowerOfTwo(value: any): number; export function engine(): any; export function env(): any; export function equal(...args: any[]): any; export namespace equal { } export function erf(...args: any[]): any; export namespace erf { } export function exp(...args: any[]): any; export namespace exp { } export function expandDims(...args: any[]): any; export namespace expandDims { } export function expm1(...args: any[]): any; export namespace expm1 { } export function eye(...args: any[]): any; export namespace eye { } export function fft(...args: any[]): any; export namespace fft { } export function fill(shape: any, value: any, dtype: any): any; export function findBackend(name: any): any; export function findBackendFactory(name: any): any; export function floor(...args: any[]): any; export namespace floor { } export function floorDiv(...args: any[]): any; export namespace floorDiv { } export function forceHalfFloat(): void; declare var fused_ops_exports: {}; export function gather(...args: any[]): any; export namespace gather { } export function gatherND(...args: any[]): any; export namespace gatherND { } declare var gather_nd_util_exports: {}; export function getBackend(): any; export function getGradient(kernelName: any): any; export function getKernel(kernelName: any, backendName: any): any; export function getKernelsForBackend(backendName: any): any[]; declare var gpgpu_util_exports: {}; export function grad(f: any): (x: any, dy: any) => any; export function grads(f: any): (args: any, dy: any) => any; export function greater(...args: any[]): any; export namespace greater { } export function greaterEqual(...args: any[]): any; export namespace greaterEqual { } export function ifft(...args: any[]): any; export namespace ifft { } export function imag(...args: any[]): any; export namespace imag { } export namespace image { export { flipLeftRight }; export { grayscaleToRGB }; export { resizeNearestNeighbor }; export { resizeBilinear }; export { rotateWithOffset }; export { cropAndResize }; export { nonMaxSuppression }; export { nonMaxSuppressionAsync }; export { nonMaxSuppressionWithScore }; export { nonMaxSuppressionWithScoreAsync }; export { nonMaxSuppressionPadded }; export { nonMaxSuppressionPaddedAsync }; export { threshold }; export { transform }; } export function inTopKAsync(predictions: any, targets: any, k?: number): Promise; declare var exports_initializers_exports: {}; export function input(config: any): any; declare var io_exports: {}; export function irfft(...args: any[]): any; export namespace irfft { } declare function isFinite2(...args: any[]): any; declare namespace isFinite2 { } export function isInf(...args: any[]): any; export namespace isInf { } declare function isNaN2(...args: any[]): any; declare namespace isNaN2 { } export function keep(result: any): any; declare var kernel_impls_exports: {}; declare var exports_layers_exports: {}; export function leakyRelu(...args: any[]): any; export namespace leakyRelu { } export function less(...args: any[]): any; export namespace less { } export function lessEqual(...args: any[]): any; export namespace lessEqual { } export namespace linalg { export { bandPart }; export { gramSchmidt }; export { qr }; } export function linspace(start: any, stop: any, num: any): any; export function loadGraphModel(modelUrl: any, options?: {}): Promise<{ modelUrl: any; loadOptions: {}; version: string; resourceManager: { hashTableNameToHandle: {}; hashTableMap: {}; addHashTable(name: any, hashTable2: any): void; getHashTableHandleByName(name: any): any; getHashTableById(id: any): any; dispose(): void; }; readonly modelVersion: string; readonly inputNodes: any; readonly outputNodes: any; readonly inputs: any; readonly outputs: any; readonly weights: any; readonly metadata: any; readonly modelSignature: any; findIOHandler(): void; handler: any; load(): Promise; loadSync(artifacts: any): boolean; artifacts: any; signature: any; executor: { graph: any; parent: any; compiledMap: Map; _weightMap: {}; SEPERATOR: string; _functions: any; _functionExecutorMap: {}; _outputs: any; _inputs: any; _initNodes: any; _signature: any; readonly weightIds: any; readonly functionExecutorMap: any; weightMap: any; _weightIds: any[] | undefined; resourceManager: any; _resourceManager: any; readonly inputs: any; readonly outputs: any; readonly inputNodes: any; readonly outputNodes: any; readonly functions: {}; getCompilationKey(inputs: any, outputs: any): string; compile(inputs: any, outputs: any): any[]; execute(inputs: any, outputs: any): any; getFrozenTensorIds(tensorMap: any): Set; checkTensorForDisposal(nodeName: any, node: any, tensorMap: any, context: any, tensorsToKeep: any, outputNames: any, intermediateTensorConsumerCount: any): void; executeAsync(inputs: any, outputs: any): Promise; _executeAsync(inputs: any, outputs: any, isFunctionExecution?: boolean, tensorArrayMap?: {}, tensorListMap?: {}): Promise; executeFunctionAsync(inputs: any, tensorArrayMap: any, tensorListMap: any): Promise; executeWithControlFlow(inputs: any, context: any, outputNames: any, isFunctionExecution: any): Promise; processStack(inputNodes: any, stack2: any, context: any, tensorMap: any, added: any, tensorsToKeep: any, outputNames: any, intermediateTensorConsumerCount: any, usedNodes: any): any[]; processChildNodes(node: any, stack2: any, context: any, tensorMap: any, added: any, usedNodes: any): void; dispose(): void; checkInputShapeAndType(inputs: any): void; mapInputs(inputs: any): {}; checkInputs(inputs: any): void; mapOutputs(outputs: any): any; checkOutputs(outputs: any): void; } | undefined; initializer: { graph: any; parent: any; compiledMap: Map; _weightMap: {}; SEPERATOR: string; _functions: any; _functionExecutorMap: {}; _outputs: any; _inputs: any; _initNodes: any; _signature: any; readonly weightIds: any; readonly functionExecutorMap: any; weightMap: any; _weightIds: any[] | undefined; resourceManager: any; _resourceManager: any; readonly inputs: any; readonly outputs: any; readonly inputNodes: any; readonly outputNodes: any; readonly functions: {}; getCompilationKey(inputs: any, outputs: any): string; compile(inputs: any, outputs: any): any[]; execute(inputs: any, outputs: any): any; getFrozenTensorIds(tensorMap: any): Set; checkTensorForDisposal(nodeName: any, node: any, tensorMap: any, context: any, tensorsToKeep: any, outputNames: any, intermediateTensorConsumerCount: any): void; executeAsync(inputs: any, outputs: any): Promise; _executeAsync(inputs: any, outputs: any, isFunctionExecution?: boolean, tensorArrayMap?: {}, tensorListMap?: {}): Promise; executeFunctionAsync(inputs: any, tensorArrayMap: any, tensorListMap: any): Promise; executeWithControlFlow(inputs: any, context: any, outputNames: any, isFunctionExecution: any): Promise; processStack(inputNodes: any, stack2: any, context: any, tensorMap: any, added: any, tensorsToKeep: any, outputNames: any, intermediateTensorConsumerCount: any, usedNodes: any): any[]; processChildNodes(node: any, stack2: any, context: any, tensorMap: any, added: any, usedNodes: any): void; dispose(): void; checkInputShapeAndType(inputs: any): void; mapInputs(inputs: any): {}; checkInputs(inputs: any): void; mapOutputs(outputs: any): any; checkOutputs(outputs: any): void; } | undefined; save(handlerOrURL: any, config: any): Promise; predict(inputs: any, config: any): any; normalizeInputs(inputs: any): any; normalizeOutputs(outputs: any): any[]; execute(inputs: any, outputs: any): any; executeAsync(inputs: any, outputs: any): Promise; convertTensorMapToTensorsMap(map: any): {}; dispose(): void; }>; export function loadLayersModel(pathOrIOHandler: any, options: any): Promise; export function localResponseNormalization(...args: any[]): any; export namespace localResponseNormalization { } declare function log5(...args: any[]): any; declare namespace log5 { } export function log1p(...args: any[]): any; export namespace log1p { } export function logSigmoid(...args: any[]): any; export namespace logSigmoid { } export function logSoftmax(...args: any[]): any; export namespace logSoftmax { } export function logSumExp(...args: any[]): any; export namespace logSumExp { } export function logicalAnd(...args: any[]): any; export namespace logicalAnd { } export function logicalNot(...args: any[]): any; export namespace logicalNot { } export function logicalOr(...args: any[]): any; export namespace logicalOr { } export function logicalXor(...args: any[]): any; export namespace logicalXor { } export namespace losses { export { absoluteDifference }; export { computeWeightedLoss }; export { cosineDistance }; export { hingeLoss }; export { huberLoss }; export { logLoss }; export { meanSquaredError }; export { sigmoidCrossEntropy }; export { softmaxCrossEntropy }; } export function matMul(...args: any[]): any; export namespace matMul { } declare var math_exports: {}; export function max(...args: any[]): any; export namespace max { } export function maxPool(...args: any[]): any; export namespace maxPool { } export function maxPool3d(...args: any[]): any; export namespace maxPool3d { } export function maxPoolWithArgmax(...args: any[]): any; export namespace maxPoolWithArgmax { } export function maximum(...args: any[]): any; export namespace maximum { } export function mean(...args: any[]): any; export namespace mean { } export function memory(): any; export function meshgrid(x: any, y: any, { indexing }?: { indexing?: string | undefined; }): any[]; declare var exports_metrics_exports: {}; export function min(...args: any[]): any; export namespace min { } export function minimum(...args: any[]): any; export namespace minimum { } export function mirrorPad(...args: any[]): any; export namespace mirrorPad { } export function mod(...args: any[]): any; export namespace mod { } export function model(args: any): { [x: string]: any; isTraining: boolean; summary(lineLength: any, positions: any, printFn?: { (...data: any[]): void; (message?: any, ...optionalParams: any[]): void; }): void; compile(args: any): void; loss: any; optimizer_: any; isOptimizerOwned: boolean | undefined; lossFunctions: any; feedOutputNames: any[] | undefined; feedOutputShapes: any[] | undefined; feedLossFns: any[] | undefined; metrics: any; metricsNames: string[] | undefined; metricsTensors: any[] | undefined; collectedTrainableWeights: any; checkTrainableWeightsConsistency(): void; evaluate(x: any, y: any, args?: {}): any; evaluateDataset(dataset: any, args: any): Promise; checkNumSamples(ins: any, batchSize: any, steps: any, stepsName?: string): any; execute(inputs: any, outputs: any): any; retrieveSymbolicTensors(symbolicTensorNames: any): any[]; predictLoop(ins: any, batchSize?: number, verbose?: boolean): any; predict(x: any, args?: {}): any; predictOnBatch(x: any): any; standardizeUserDataXY(x: any, y: any, checkBatchAxis: boolean | undefined, batchSize: any): any[]; standardizeUserData(x: any, y: any, sampleWeight: any, classWeight: any, checkBatchAxis: boolean | undefined, batchSize: any): Promise; testLoop(f: any, ins: any, batchSize: any, verbose: number | undefined, steps: any): any; getDedupedMetricsNames(): string[]; makeTrainFunction(): (data: any) => any[]; makeTestFunction(): void; testFunction: ((data: any) => any) | undefined; fit(x: any, y: any, args?: {}): Promise; fitDataset(dataset: any, args: any): Promise; trainOnBatch(x: any, y: any): Promise; getNamedWeights(config: any): { name: any; tensor: any; }[]; stopTraining: any; stopTraining_: any; optimizer: any; dispose(): any; getLossIdentifiers(): any; getMetricIdentifiers(): {}; getTrainingConfig(): { loss: any; metrics: {}; optimizer_config: { class_name: any; config: any; }; }; loadTrainingConfig(trainingConfig: any): void; save(handlerOrURL: any, config: any): Promise; setUserDefinedMetadata(userDefinedMetadata: any): void; userDefinedMetadata: any; getUserDefinedMetadata(): any; }; declare var exports_models_exports: {}; export function moments(...args: any[]): any; export namespace moments { } export function movingAverage(...args: any[]): any; export namespace movingAverage { } export function mul(...args: any[]): any; export namespace mul { } export function multiRNNCell(...args: any[]): any; export namespace multiRNNCell { } export function multinomial(...args: any[]): any; export namespace multinomial { } export function neg(...args: any[]): any; export namespace neg { } export function nextFrame(): Promise; export function norm(...args: any[]): any; export namespace norm { } export function notEqual(...args: any[]): any; export namespace notEqual { } export function oneHot(...args: any[]): any; export namespace oneHot { } declare function ones2(shape: any, dtype?: string): any; export function onesLike(...args: any[]): any; export namespace onesLike { } export function op(f: any): { (...args: any[]): any; readonly name: string; }; export function outerProduct(...args: any[]): any; export namespace outerProduct { } export function pad(...args: any[]): any; export namespace pad { } export function pad1d(...args: any[]): any; export namespace pad1d { } export function pad2d(...args: any[]): any; export namespace pad2d { } export function pad3d(...args: any[]): any; export namespace pad3d { } export function pad4d(...args: any[]): any; export namespace pad4d { } export function pool(...args: any[]): any; export namespace pool { } export function pow(...args: any[]): any; export namespace pow { } export function prelu(...args: any[]): any; export namespace prelu { } declare function print2(x: any, verbose?: boolean): void; export function prod(...args: any[]): any; export namespace prod { } export function profile(f: any): any; export function rand(...args: any[]): any; export namespace rand { } export function randomGamma(...args: any[]): any; export namespace randomGamma { } export function randomNormal(...args: any[]): any; export namespace randomNormal { } export function randomUniform(...args: any[]): any; export namespace randomUniform { } export function range(start: any, stop: any, step5?: number, dtype?: string): any; export function ready(): any; export function real(...args: any[]): any; export namespace real { } export function reciprocal(...args: any[]): any; export namespace reciprocal { } export function registerBackend(name: any, factory: any, priority?: number): any; export function registerCallbackConstructor(verbosityLevel: any, callbackConstructor: any): void; export function registerGradient(config: any): void; export function registerKernel(config: any): void; export function registerOp(name: any, opFunc: any): void; declare var exports_regularizers_exports: {}; export function relu(...args: any[]): any; export namespace relu { } export function relu6(...args: any[]): any; export namespace relu6 { } export function removeBackend(name: any): void; export function reshape(...args: any[]): any; export namespace reshape { } export function reverse(...args: any[]): any; export namespace reverse { } export function reverse1d(...args: any[]): any; export namespace reverse1d { } export function reverse2d(...args: any[]): any; export namespace reverse2d { } export function reverse3d(...args: any[]): any; export namespace reverse3d { } export function reverse4d(...args: any[]): any; export namespace reverse4d { } export function rfft(...args: any[]): any; export namespace rfft { } declare function round2(...args: any[]): any; declare namespace round2 { } export function rsqrt(...args: any[]): any; export namespace rsqrt { } export function scalar(value: any, dtype: any): any; export function scatterND(...args: any[]): any; export namespace scatterND { } declare var scatter_nd_util_exports: {}; export function selu(...args: any[]): any; export namespace selu { } export function separableConv2d(...args: any[]): any; export namespace separableConv2d { } export function sequential(config: any): any; declare var serialization_exports: {}; export function setBackend(backendName: any): any; export function setPlatform(platformName: any, platform: any): void; export function setWasmPath(path: any, usePlatformFetch?: boolean): void; export function setWasmPaths(prefixOrFileMap: any, usePlatformFetch?: boolean): void; export function setWebGLContext(webGLVersion: any, gl: any): void; export function setdiff1dAsync(x: any, y: any): Promise; declare var shared_exports: {}; export function sigmoid(...args: any[]): any; export namespace sigmoid { } export function sign(...args: any[]): any; export namespace sign { } export namespace signal { export { hammingWindow }; export { hannWindow }; export { frame }; export { stft }; } export function sin(...args: any[]): any; export namespace sin { } export function sinh(...args: any[]): any; export namespace sinh { } export function slice(...args: any[]): any; export namespace slice { } export function slice1d(...args: any[]): any; export namespace slice1d { } export function slice2d(...args: any[]): any; export namespace slice2d { } export function slice3d(...args: any[]): any; export namespace slice3d { } export function slice4d(...args: any[]): any; export namespace slice4d { } declare var slice_util_exports: {}; export function softmax(...args: any[]): any; export namespace softmax { } export function softplus(...args: any[]): any; export namespace softplus { } export function spaceToBatchND(...args: any[]): any; export namespace spaceToBatchND { } export namespace sparse { export { sparseFillEmptyRows }; export { sparseReshape }; export { sparseSegmentMean }; export { sparseSegmentSum }; } export function sparseToDense(...args: any[]): any; export namespace sparseToDense { } export namespace spectral { export { fft }; export { ifft }; export { rfft }; export { irfft }; } export function split(...args: any[]): any; export namespace split { } export function sqrt(...args: any[]): any; export namespace sqrt { } export function square(...args: any[]): any; export namespace square { } export function squaredDifference(...args: any[]): any; export namespace squaredDifference { } export function squeeze(...args: any[]): any; export namespace squeeze { } export function stack(...args: any[]): any; export namespace stack { } export function step(...args: any[]): any; export namespace step { } export function stridedSlice(...args: any[]): any; export namespace stridedSlice { } export namespace string { export { stringNGrams }; export { stringSplit }; export { stringToHashBucketFast }; } export function sub(...args: any[]): any; export namespace sub { } declare function sum2(...args: any[]): any; declare namespace sum2 { } export function sumOutType(type: any): any; export function tan(...args: any[]): any; export namespace tan { } declare function tanh2(...args: any[]): any; declare namespace tanh2 { } export function tensor(values: any, shape: any, dtype: any): any; export function tensor1d(values: any, dtype: any): any; export function tensor2d(values: any, shape: any, dtype: any): any; export function tensor3d(values: any, shape: any, dtype: any): any; export function tensor4d(values: any, shape: any, dtype: any): any; export function tensor5d(values: any, shape: any, dtype: any): any; export function tensor6d(values: any, shape: any, dtype: any): any; declare var tensor_util_exports: {}; declare var test_util_exports: {}; export function tidy(nameOrFn: any, fn: any): any; export function tile(...args: any[]): any; export namespace tile { } export function time(f: any): any; export function topk(...args: any[]): any; export namespace topk { } export namespace train { import sgd = OptimizerConstructors.sgd; export { sgd }; import momentum = OptimizerConstructors.momentum; export { momentum }; import adadelta = OptimizerConstructors.adadelta; export { adadelta }; import adagrad = OptimizerConstructors.adagrad; export { adagrad }; import rmsprop = OptimizerConstructors.rmsprop; export { rmsprop }; import adamax = OptimizerConstructors.adamax; export { adamax }; import adam = OptimizerConstructors.adam; export { adam }; } export function transpose(...args: any[]): any; export namespace transpose { } export function truncatedNormal(...args: any[]): any; export namespace truncatedNormal { } export function unique(...args: any[]): any; export namespace unique { } export function unregisterGradient(kernelName: any): void; export function unregisterKernel(kernelName: any, backendName: any): void; export function unsortedSegmentSum(...args: any[]): any; export namespace unsortedSegmentSum { } export function unstack(...args: any[]): any; export namespace unstack { } export function upcastType(typeA: any, typeB: any): any; declare var util_exports: {}; export function valueAndGrad(f: any): (x: any, dy: any) => { grad: any; value: any; }; export function valueAndGrads(f: any): (args: any, dy: any) => any; export function variable(initialValue: any, trainable: boolean | undefined, name: any, dtype: any): any; export function variableGrads(f: any, varList: any): { value: any; grads: {}; }; declare var version16: { tfjs: string; "tfjs-core": string; "tfjs-data": string; "tfjs-layers": string; "tfjs-converter": string; "tfjs-backend-cpu": string; "tfjs-backend-webgl": string; "tfjs-backend-wasm": string; }; declare var version11: string; declare var version9: string; declare var version13: string; declare var version10: string; declare var version15: string; declare var version14: string; export namespace webgl { export { forceHalfFloat }; } declare var webgl_util_exports: {}; export function where(...args: any[]): any; export namespace where { } export function whereAsync(condition: any): Promise; export function zeros(shape: any, dtype?: string): any; export function zerosLike(...args: any[]): any; export namespace zerosLike { } declare function less2(currVal: any, prevVal: any): boolean; declare function getQueryParams(queryString: any): {}; declare function earlyStopping(args: any): { monitor: any; minDelta: number; patience: any; verbose: any; mode: any; baseline: any; monitorFunc: typeof less2; onTrainBegin(logs: any): Promise; wait: number | undefined; stoppedEpoch: any; best: any; onEpochEnd(epoch: any, logs: any): Promise; onTrainEnd(logs: any): Promise; getMonitorValue(logs: any): any; model: { [x: string]: any; isTraining: boolean; summary(lineLength: any, positions: any, printFn?: { (...data: any[]): void; (message?: any, ...optionalParams: any[]): void; }): void; compile(args: any): void; loss: any; optimizer_: any; isOptimizerOwned: boolean | undefined; lossFunctions: any; feedOutputNames: any[] | undefined; feedOutputShapes: any[] | undefined; feedLossFns: any[] | undefined; metrics: any; metricsNames: string[] | undefined; metricsTensors: any[] | undefined; collectedTrainableWeights: any; checkTrainableWeightsConsistency(): void; evaluate(x: any, y: any, args?: {}): any; evaluateDataset(dataset: any, args: any): Promise; checkNumSamples(ins: any, batchSize: any, steps: any, stepsName?: string): any; execute(inputs: any, outputs: any): any; retrieveSymbolicTensors(symbolicTensorNames: any): any[]; predictLoop(ins: any, batchSize?: number, verbose?: boolean): any; predict(x: any, args?: {}): any; predictOnBatch(x: any): any; standardizeUserDataXY(x: any, y: any, checkBatchAxis: boolean | undefined, batchSize: any): any[]; standardizeUserData(x: any, y: any, sampleWeight: any, classWeight: any, checkBatchAxis: boolean | undefined, batchSize: any): Promise; testLoop(f: any, ins: any, batchSize: any, verbose: number | undefined, steps: any): any; getDedupedMetricsNames(): string[]; makeTrainFunction(): (data: any) => any[]; makeTestFunction(): void; testFunction: ((data: any) => any) | undefined; fit(x: any, y: any, args?: {}): Promise; fitDataset(dataset: any, args: any): Promise; trainOnBatch(x: any, y: any): Promise; getNamedWeights(config: any): { name: any; tensor: any; }[]; stopTraining: any; stopTraining_: any; optimizer: any; dispose(): any; getLossIdentifiers(): any; getMetricIdentifiers(): {}; getTrainingConfig(): { loss: any; metrics: {}; optimizer_config: { class_name: any; config: any; }; }; loadTrainingConfig(trainingConfig: any): void; save(handlerOrURL: any, config: any): Promise; setUserDefinedMetadata(userDefinedMetadata: any): void; userDefinedMetadata: any; getUserDefinedMetadata(): any; } | null; setModel(model2: any): void; validationData: any; setParams(params: any): void; params: any; onEpochBegin(epoch: any, logs: any): Promise; onBatchBegin(batch: any, logs: any): Promise; onBatchEnd(batch: any, logs: any): Promise; }; declare function flipLeftRight(...args: any[]): any; declare namespace flipLeftRight { } declare function grayscaleToRGB(...args: any[]): any; declare namespace grayscaleToRGB { } declare function resizeNearestNeighbor(...args: any[]): any; declare namespace resizeNearestNeighbor { } declare function resizeBilinear(...args: any[]): any; declare namespace resizeBilinear { } declare function rotateWithOffset(...args: any[]): any; declare namespace rotateWithOffset { } declare function cropAndResize(...args: any[]): any; declare namespace cropAndResize { } declare function nonMaxSuppression(...args: any[]): any; declare namespace nonMaxSuppression { } declare function nonMaxSuppressionAsync(boxes: any, scores: any, maxOutputSize: any, iouThreshold?: number, scoreThreshold?: number): Promise; declare function nonMaxSuppressionWithScore(...args: any[]): any; declare namespace nonMaxSuppressionWithScore { } declare function nonMaxSuppressionWithScoreAsync(boxes: any, scores: any, maxOutputSize: any, iouThreshold?: number, scoreThreshold?: number, softNmsSigma?: number): Promise<{ selectedIndices: any; selectedScores: any; }>; declare function nonMaxSuppressionPadded(...args: any[]): any; declare namespace nonMaxSuppressionPadded { } declare function nonMaxSuppressionPaddedAsync(boxes: any, scores: any, maxOutputSize: any, iouThreshold?: number, scoreThreshold?: number, padToMaxOutputSize?: boolean): Promise<{ selectedIndices: any; validOutputs: any; }>; declare function threshold(...args: any[]): any; declare namespace threshold { } declare function transform(...args: any[]): any; declare namespace transform { } declare function bandPart(...args: any[]): any; declare namespace bandPart { } declare function gramSchmidt(...args: any[]): any; declare namespace gramSchmidt { } declare function qr(...args: any[]): any; declare namespace qr { } declare function absoluteDifference(...args: any[]): any; declare namespace absoluteDifference { } declare function computeWeightedLoss(...args: any[]): any; declare namespace computeWeightedLoss { } declare function cosineDistance(...args: any[]): any; declare namespace cosineDistance { } declare function hingeLoss(...args: any[]): any; declare namespace hingeLoss { } declare function huberLoss(...args: any[]): any; declare namespace huberLoss { } declare function logLoss(...args: any[]): any; declare namespace logLoss { } declare function meanSquaredError(...args: any[]): any; declare namespace meanSquaredError { } declare function sigmoidCrossEntropy(...args: any[]): any; declare namespace sigmoidCrossEntropy { } declare function softmaxCrossEntropy(...args: any[]): any; declare namespace softmaxCrossEntropy { } declare function hammingWindow(...args: any[]): any; declare namespace hammingWindow { } declare function hannWindow(...args: any[]): any; declare namespace hannWindow { } declare function frame(...args: any[]): any; declare namespace frame { } declare function stft(...args: any[]): any; declare namespace stft { } declare function sparseFillEmptyRows(...args: any[]): any; declare namespace sparseFillEmptyRows { } declare function sparseReshape(...args: any[]): any; declare namespace sparseReshape { } declare function sparseSegmentMean(...args: any[]): any; declare namespace sparseSegmentMean { } declare function sparseSegmentSum(...args: any[]): any; declare namespace sparseSegmentSum { } declare function stringNGrams(...args: any[]): any; declare namespace stringNGrams { } declare function stringSplit(...args: any[]): any; declare namespace stringSplit { } declare function stringToHashBucketFast(...args: any[]): any; declare namespace stringToHashBucketFast { } declare var OptimizerConstructors: { new (): {}; sgd(learningRate: any): { learningRate: any; applyGradients(variableGradients: any): void; setLearningRate(learningRate: any): void; c: any; dispose(): void; getWeights(): Promise<{ name: string; tensor: any; }[]>; setWeights(weightValues: any): Promise; getConfig(): { learningRate: any; }; minimize(f: any, returnCost: boolean | undefined, varList: any): any; readonly iterations: any; iterations_: any; incrementIterations(): void; computeGradients(f: any, varList: any): { value: any; grads: {}; }; saveIterations(): Promise<{ name: string; tensor: any; }>; extractIterations(weightValues: any): Promise; getClassName(): any; }; momentum(learningRate: any, momentum: any, useNesterov?: boolean): { learningRate: any; momentum: any; useNesterov: boolean; accumulations: any[]; m: any; applyGradients(variableGradients: any): void; dispose(): void; setMomentum(momentum: any): void; getWeights(): Promise<{ name: string; tensor: any; }[]>; setWeights(weightValues: any): Promise; getConfig(): { learningRate: any; momentum: any; useNesterov: boolean; }; setLearningRate(learningRate: any): void; c: any; minimize(f: any, returnCost: boolean | undefined, varList: any): any; readonly iterations: any; iterations_: any; incrementIterations(): void; computeGradients(f: any, varList: any): { value: any; grads: {}; }; saveIterations(): Promise<{ name: string; tensor: any; }>; extractIterations(weightValues: any): Promise; getClassName(): any; }; rmsprop(learningRate: any, decay?: number, momentum?: number, epsilon3?: null, centered?: boolean): { learningRate: any; decay: number; momentum: number; epsilon: any; accumulatedMeanSquares: any[]; accumulatedMoments: any[]; accumulatedMeanGrads: any[]; centered: boolean; applyGradients(variableGradients: any): void; dispose(): void; getWeights(): Promise<{ name: string; tensor: any; }[]>; setWeights(weightValues: any): Promise; getConfig(): { learningRate: any; decay: number; momentum: number; epsilon: any; centered: boolean; }; minimize(f: any, returnCost: boolean | undefined, varList: any): any; readonly iterations: any; iterations_: any; incrementIterations(): void; computeGradients(f: any, varList: any): { value: any; grads: {}; }; saveIterations(): Promise<{ name: string; tensor: any; }>; extractIterations(weightValues: any): Promise; getClassName(): any; }; adam(learningRate?: number, beta1?: number, beta2?: number, epsilon3?: null): { learningRate: any; beta1: any; beta2: any; epsilon: any; accumulatedFirstMoment: any[]; accumulatedSecondMoment: any[]; accBeta1: any; accBeta2: any; applyGradients(variableGradients: any): void; dispose(): void; getWeights(): Promise<{ name: string; tensor: any; }[]>; setWeights(weightValues: any): Promise; getConfig(): { learningRate: any; beta1: any; beta2: any; epsilon: any; }; minimize(f: any, returnCost: boolean | undefined, varList: any): any; readonly iterations: any; iterations_: any; incrementIterations(): void; computeGradients(f: any, varList: any): { value: any; grads: {}; }; saveIterations(): Promise<{ name: string; tensor: any; }>; extractIterations(weightValues: any): Promise; getClassName(): any; }; adadelta(learningRate?: number, rho?: number, epsilon3?: null): { learningRate: any; rho: any; epsilon: any; accumulatedGrads: any[]; accumulatedUpdates: any[]; applyGradients(variableGradients: any): void; dispose(): void; getWeights(): Promise<{ name: string; tensor: any; }[]>; setWeights(weightValues: any): Promise; getConfig(): { learningRate: any; rho: any; epsilon: any; }; minimize(f: any, returnCost: boolean | undefined, varList: any): any; readonly iterations: any; iterations_: any; incrementIterations(): void; computeGradients(f: any, varList: any): { value: any; grads: {}; }; saveIterations(): Promise<{ name: string; tensor: any; }>; extractIterations(weightValues: any): Promise; getClassName(): any; }; adamax(learningRate?: number, beta1?: number, beta2?: number, epsilon3?: null, decay?: number): { learningRate: any; beta1: any; beta2: any; epsilon: any; decay: number; accumulatedFirstMoment: any[]; accumulatedWeightedInfNorm: any[]; iteration: any; accBeta1: any; applyGradients(variableGradients: any): void; dispose(): void; getWeights(): Promise; setWeights(weightValues: any): Promise; getConfig(): { learningRate: any; beta1: any; beta2: any; epsilon: any; decay: number; }; minimize(f: any, returnCost: boolean | undefined, varList: any): any; readonly iterations: any; iterations_: any; incrementIterations(): void; computeGradients(f: any, varList: any): { value: any; grads: {}; }; saveIterations(): Promise<{ name: string; tensor: any; }>; extractIterations(weightValues: any): Promise; getClassName(): any; }; adagrad(learningRate: any, initialAccumulatorValue?: number): { learningRate: any; initialAccumulatorValue: number; accumulatedGrads: any[]; applyGradients(variableGradients: any): void; dispose(): void; getWeights(): Promise<{ name: string; tensor: any; }[]>; setWeights(weightValues: any): Promise; getConfig(): { learningRate: any; initialAccumulatorValue: number; }; minimize(f: any, returnCost: boolean | undefined, varList: any): any; readonly iterations: any; iterations_: any; incrementIterations(): void; computeGradients(f: any, varList: any): { value: any; grads: {}; }; saveIterations(): Promise<{ name: string; tensor: any; }>; extractIterations(weightValues: any): Promise; getClassName(): any; }; }; export { add2 as add, backend_util_exports as backend_util, browser_exports as browser, exports_constraints_exports as constraints, dist_exports as data, device_util_exports as device_util, fused_ops_exports as fused, gather_nd_util_exports as gather_util, gpgpu_util_exports as gpgpu_util, exports_initializers_exports as initializers, io_exports as io, isFinite2 as isFinite, isNaN2 as isNaN, kernel_impls_exports as kernel_impls, exports_layers_exports as layers, log5 as log, math_exports as math, exports_metrics_exports as metrics, exports_models_exports as models, ones2 as ones, print2 as print, exports_regularizers_exports as regularizers, round2 as round, scatter_nd_util_exports as scatter_util, serialization_exports as serialization, shared_exports as shared, slice_util_exports as slice_util, sum2 as sum, tanh2 as tanh, tensor_util_exports as tensor_util, test_util_exports as test_util, util_exports as util, version16 as version, version11 as version_converter, version9 as version_core, version13 as version_cpu, version10 as version_layers, version15 as version_wasm, version14 as version_webgl, webgl_util_exports as webgl_util };