/** * Image Processing module used by Human */ import * as tf from '../../dist/tfjs.esm.js'; import * as fxImage from './imagefx'; import type { Tensor } from '../tfjs/types'; import type { Config } from '../config'; import { env } from '../env'; import { log } from '../helpers'; type Input = Tensor | ImageData | ImageBitmap | HTMLImageElement | HTMLMediaElement | HTMLVideoElement | HTMLCanvasElement | OffscreenCanvas | typeof Image | typeof env.Canvas; const maxSize = 2048; // internal temp canvases let inCanvas; let outCanvas; // @ts-ignore // imagefx is js module that should be converted to a class let fx: fxImage.GLImageFilter | null; // instance of imagefx export function canvas(width, height): HTMLCanvasElement | OffscreenCanvas { let c; if (env.browser) { if (typeof OffscreenCanvas !== 'undefined') { c = new OffscreenCanvas(width, height); } else { c = document.createElement('canvas'); c.width = width; c.height = height; } } else { // @ts-ignore // env.canvas is an external monkey-patch c = (typeof env.Canvas !== 'undefined') ? new env.Canvas(width, height) : null; } // if (!c) throw new Error('cannot create canvas'); return c; } // process input image and return tensor // input can be tensor, imagedata, htmlimageelement, htmlvideoelement // input is resized and run through imagefx filter export function process(input: Input, config: Config): { tensor: Tensor | null, canvas: OffscreenCanvas | HTMLCanvasElement } { let tensor; if (!input) throw new Error('input is missing'); // sanity checks since different browsers do not implement all dom elements if ( !(input instanceof tf.Tensor) && !(typeof Image !== 'undefined' && input instanceof Image) && !(typeof env.Canvas !== 'undefined' && input instanceof env.Canvas) && !(typeof ImageData !== 'undefined' && input instanceof ImageData) && !(typeof ImageBitmap !== 'undefined' && input instanceof ImageBitmap) && !(typeof HTMLImageElement !== 'undefined' && input instanceof HTMLImageElement) && !(typeof HTMLMediaElement !== 'undefined' && input instanceof HTMLMediaElement) && !(typeof HTMLVideoElement !== 'undefined' && input instanceof HTMLVideoElement) && !(typeof HTMLCanvasElement !== 'undefined' && input instanceof HTMLCanvasElement) && !(typeof OffscreenCanvas !== 'undefined' && input instanceof OffscreenCanvas) ) { throw new Error('input type is not recognized'); } if (input instanceof tf.Tensor) { // if input is tensor, use as-is if ((input as unknown as Tensor).shape && (input as unknown as Tensor).shape.length === 4 && (input as unknown as Tensor).shape[0] === 1 && (input as unknown as Tensor).shape[3] === 3) tensor = tf.clone(input); else throw new Error(`input tensor shape must be [1, height, width, 3] and instead was ${(input as unknown as Tensor).shape}`); } else { // check if resizing will be needed if (typeof input['readyState'] !== 'undefined' && input['readyState'] <= 2) { log('input stream is not ready'); return { tensor: null, canvas: inCanvas }; // video may become temporarily unavailable due to onresize } const originalWidth = input['naturalWidth'] || input['videoWidth'] || input['width'] || (input['shape'] && (input['shape'][1] > 0)); const originalHeight = input['naturalHeight'] || input['videoHeight'] || input['height'] || (input['shape'] && (input['shape'][2] > 0)); if (!originalWidth || !originalHeight) { log('cannot determine input dimensions'); return { tensor: null, canvas: inCanvas }; // video may become temporarily unavailable due to onresize } let targetWidth = originalWidth; let targetHeight = originalHeight; if (targetWidth > maxSize) { targetWidth = maxSize; targetHeight = targetWidth * originalHeight / originalWidth; } if (targetHeight > maxSize) { targetHeight = maxSize; targetWidth = targetHeight * originalWidth / originalHeight; } // create our canvas and resize it if needed if ((config.filter.width || 0) > 0) targetWidth = config.filter.width; else if ((config.filter.height || 0) > 0) targetWidth = originalWidth * ((config.filter.height || 0) / originalHeight); if ((config.filter.height || 0) > 0) targetHeight = config.filter.height; else if ((config.filter.width || 0) > 0) targetHeight = originalHeight * ((config.filter.width || 0) / originalWidth); if (!targetWidth || !targetHeight) throw new Error('input cannot determine dimension'); if (!inCanvas || (inCanvas?.width !== targetWidth) || (inCanvas?.height !== targetHeight)) inCanvas = canvas(targetWidth, targetHeight); // draw input to our canvas const ctx = inCanvas.getContext('2d'); if ((typeof ImageData !== 'undefined') && (input instanceof ImageData)) { ctx.putImageData(input, 0, 0); } else { if (config.filter.flip && typeof ctx.translate !== 'undefined') { ctx.translate(originalWidth, 0); ctx.scale(-1, 1); ctx.drawImage(input, 0, 0, originalWidth, originalHeight, 0, 0, inCanvas?.width, inCanvas?.height); ctx.setTransform(1, 0, 0, 1, 0, 0); // resets transforms to defaults } else { ctx.drawImage(input, 0, 0, originalWidth, originalHeight, 0, 0, inCanvas?.width, inCanvas?.height); } } // imagefx transforms using gl if (config.filter.enabled && env.webgl.supported) { if (!fx || !outCanvas || (inCanvas.width !== outCanvas.width) || (inCanvas?.height !== outCanvas?.height)) { outCanvas = canvas(inCanvas?.width, inCanvas?.height); if (outCanvas?.width !== inCanvas?.width) outCanvas.width = inCanvas?.width; if (outCanvas?.height !== inCanvas?.height) outCanvas.height = inCanvas?.height; // log('created FX filter'); fx = env.browser ? new fxImage.GLImageFilter({ canvas: outCanvas }) : null; // && (typeof document !== 'undefined') } if (!fx) return { tensor: null, canvas: inCanvas }; fx.reset(); fx.addFilter('brightness', config.filter.brightness); // must have at least one filter enabled if (config.filter.contrast !== 0) fx.addFilter('contrast', config.filter.contrast); if (config.filter.sharpness !== 0) fx.addFilter('sharpen', config.filter.sharpness); if (config.filter.blur !== 0) fx.addFilter('blur', config.filter.blur); if (config.filter.saturation !== 0) fx.addFilter('saturation', config.filter.saturation); if (config.filter.hue !== 0) fx.addFilter('hue', config.filter.hue); if (config.filter.negative) fx.addFilter('negative'); if (config.filter.sepia) fx.addFilter('sepia'); if (config.filter.vintage) fx.addFilter('brownie'); if (config.filter.sepia) fx.addFilter('sepia'); if (config.filter.kodachrome) fx.addFilter('kodachrome'); if (config.filter.technicolor) fx.addFilter('technicolor'); if (config.filter.polaroid) fx.addFilter('polaroid'); if (config.filter.pixelate !== 0) fx.addFilter('pixelate', config.filter.pixelate); fx.apply(inCanvas); // read pixel data /* const gl = outCanvas.getContext('webgl'); if (gl) { const glBuffer = new Uint8Array(outCanvas.width * outCanvas.height * 4); const pixBuffer = new Uint8Array(outCanvas.width * outCanvas.height * 3); gl.readPixels(0, 0, outCanvas.width, outCanvas.height, gl.RGBA, gl.UNSIGNED_BYTE, glBuffer); // gl returns rbga while we only need rgb, so discarding alpha channel // gl returns starting point as lower left, so need to invert vertical let i = 0; for (let y = outCanvas.height - 1; y >= 0; y--) { for (let x = 0; x < outCanvas.width; x++) { const index = (x + y * outCanvas.width) * 4; pixBuffer[i++] = glBuffer[index + 0]; pixBuffer[i++] = glBuffer[index + 1]; pixBuffer[i++] = glBuffer[index + 2]; } } outCanvas.data = pixBuffer; const shape = [outCanvas.height, outCanvas.width, 3]; const pixels = tf.tensor3d(outCanvas.data, shape, 'float32'); tensor = tf.expandDims(pixels, 0); tf.dispose(pixels); } */ } else { outCanvas = inCanvas; if (fx) fx = null; } // create tensor from image if tensor is not already defined if (!tensor) { let pixels; if (outCanvas.data) { // if we have data, just convert to tensor const shape = [outCanvas.height, outCanvas.width, 3]; pixels = tf.tensor3d(outCanvas.data, shape, 'int32'); } else if ((typeof ImageData !== 'undefined') && (outCanvas instanceof ImageData)) { // if input is imagedata, just use it pixels = tf.browser ? tf.browser.fromPixels(outCanvas) : null; } else if (config.backend === 'webgl' || config.backend === 'humangl') { // tf kernel-optimized method to get imagedata // we cant use canvas as-is as it already has a context, so we do a silly one more canvas const tempCanvas = canvas(targetWidth, targetHeight); tempCanvas.width = targetWidth; tempCanvas.height = targetHeight; const tempCtx = tempCanvas.getContext('2d'); tempCtx?.drawImage(outCanvas, 0, 0); try { pixels = (tf.browser && env.browser) ? tf.browser.fromPixels(tempCanvas) : null; } catch (err) { throw new Error('browser webgl error'); } } else { // cpu and wasm kernel does not implement efficient fromPixels method // we cant use canvas as-is as it already has a context, so we do a silly one more canvas and do fromPixels on ImageData instead const tempCanvas = canvas(targetWidth, targetHeight); if (!tempCanvas) return { tensor: null, canvas: inCanvas }; tempCanvas.width = targetWidth; tempCanvas.height = targetHeight; const tempCtx = tempCanvas.getContext('2d'); if (!tempCtx) return { tensor: null, canvas: inCanvas }; tempCtx.drawImage(outCanvas, 0, 0); const data = tempCtx.getImageData(0, 0, targetWidth, targetHeight); if (tf.browser && env.browser) { pixels = tf.browser.fromPixels(data); } else { pixels = tf.tidy(() => { const imageData = tf.tensor(Array.from(data.data), [targetWidth, targetHeight, 4]); const channels = tf.split(imageData, 4, 2); // split rgba to channels const rgb = tf.stack([channels[0], channels[1], channels[2]], 2); // stack channels back to rgb and ignore alpha const expand = tf.reshape(rgb, [imageData.shape[0], imageData.shape[1], 3]); // move extra dim from the end of tensor and use it as batch number instead return expand; }); } } if (pixels) { const casted = tf.cast(pixels, 'float32'); tensor = tf.expandDims(casted, 0); tf.dispose(pixels); tf.dispose(casted); } else { tensor = tf.zeros([1, targetWidth, targetHeight, 3]); throw new Error('cannot create tensor from input'); } } } return { tensor, canvas: (config.filter.return ? outCanvas : null) }; } let lastInputSum = 0; let lastCacheDiff = 1; export async function skip(config, input: Tensor) { if (config.cacheSensitivity === 0) return false; const resizeFact = 32; if (!input.shape[1] || !input.shape[2]) return false; const reduced: Tensor = tf.image.resizeBilinear(input, [Math.trunc(input.shape[1] / resizeFact), Math.trunc(input.shape[2] / resizeFact)]); // use tensor sum /* const sumT = this.tf.sum(reduced); const sum = await sumT.data()[0] as number; sumT.dispose(); */ // use js loop sum, faster than uploading tensor to gpu calculating and downloading back const reducedData = await reduced.data(); // raw image rgb array tf.dispose(reduced); let sum = 0; for (let i = 0; i < reducedData.length / 3; i++) sum += reducedData[3 * i + 2]; // look only at green value of each pixel const diff = 100 * (Math.max(sum, lastInputSum) / Math.min(sum, lastInputSum) - 1); lastInputSum = sum; // if previous frame was skipped, skip this frame if changed more than cacheSensitivity // if previous frame was not skipped, then look for cacheSensitivity or difference larger than one in previous frame to avoid resetting cache in subsequent frames unnecessarily const skipFrame = diff < Math.max(config.cacheSensitivity, lastCacheDiff); // if difference is above 10x threshold, don't use last value to force reset cache for significant change of scenes or images lastCacheDiff = diff > 10 * config.cacheSensitivity ? 0 : diff; // console.log('skipFrame', skipFrame, this.config.cacheSensitivity, diff); return skipFrame; }