/** * Hand Detection and Segmentation */ import { log, join } from '../helpers'; import * as tf from '../../dist/tfjs.esm.js'; import type { HandResult } from '../result'; import type { GraphModel, Tensor } from '../tfjs/types'; import type { Config } from '../config'; import { env } from '../env'; import * as fingerPose from '../fingerpose/fingerpose'; const models: [GraphModel | null, GraphModel | null] = [null, null]; const modelOutputNodes = ['StatefulPartitionedCall/Postprocessor/Slice', 'StatefulPartitionedCall/Postprocessor/ExpandDims_1']; const inputSize = [0, 0]; const classes = [ 'hand', 'fist', 'pinch', 'point', 'face', 'tip', 'pinchtip', ]; let skipped = 0; let outputSize; type HandDetectResult = { id: number, score: number, box: [number, number, number, number], boxRaw: [number, number, number, number], label: string, yxBox: [number, number, number, number], } let boxes: Array = []; const fingerMap = { thumb: [1, 2, 3, 4], index: [5, 6, 7, 8], middle: [9, 10, 11, 12], ring: [13, 14, 15, 16], pinky: [17, 18, 19, 20], palm: [0], }; export async function load(config: Config): Promise<[GraphModel, GraphModel]> { if (env.initial) { models[0] = null; models[1] = null; } if (!models[0]) { models[0] = await tf.loadGraphModel(join(config.modelBasePath, config.hand.detector?.modelPath || '')) as unknown as GraphModel; const inputs = Object.values(models[0].modelSignature['inputs']); inputSize[0] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0; if (!models[0] || !models[0]['modelUrl']) log('load model failed:', config.object.modelPath); else if (config.debug) log('load model:', models[0]['modelUrl']); } else if (config.debug) log('cached model:', models[0]['modelUrl']); if (!models[1]) { models[1] = await tf.loadGraphModel(join(config.modelBasePath, config.hand.skeleton?.modelPath || '')) as unknown as GraphModel; const inputs = Object.values(models[1].modelSignature['inputs']); inputSize[1] = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : 0; if (!models[1] || !models[1]['modelUrl']) log('load model failed:', config.object.modelPath); else if (config.debug) log('load model:', models[1]['modelUrl']); } else if (config.debug) log('cached model:', models[1]['modelUrl']); return models as [GraphModel, GraphModel]; } async function detectHands(input: Tensor, config: Config): Promise { const hands: HandDetectResult[] = []; if (!input || !models[0]) return hands; const t: Record = {}; t.resize = tf.image.resizeBilinear(input, [240, 320]); // todo: resize with padding t.cast = tf.cast(t.resize, 'int32'); [t.rawScores, t.rawBoxes] = await models[0].executeAsync(t.cast, modelOutputNodes) as Tensor[]; t.boxes = tf.squeeze(t.rawBoxes, [0, 2]); t.scores = tf.squeeze(t.rawScores, [0]); const classScores = tf.unstack(t.scores, 1); let id = 0; for (let i = 0; i < classScores.length; i++) { if (i !== 0 && i !== 1) continue; t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, classScores[i], config.hand.maxDetected, config.hand.iouThreshold, config.hand.minConfidence); const nms = await t.nms.data(); tf.dispose(t.nms); for (const res of Array.from(nms)) { // generates results for each class const boxSlice = tf.slice(t.boxes, res, 1); const yxBox = await boxSlice.data(); const boxRaw: [number, number, number, number] = [yxBox[1], yxBox[0], yxBox[3] - yxBox[1], yxBox[2] - yxBox[0]]; const box: [number, number, number, number] = [Math.trunc(boxRaw[0] * outputSize[0]), Math.trunc(boxRaw[1] * outputSize[1]), Math.trunc(boxRaw[2] * outputSize[0]), Math.trunc(boxRaw[3] * outputSize[1])]; tf.dispose(boxSlice); const scoreSlice = tf.slice(classScores[i], res, 1); const score = (await scoreSlice.data())[0]; tf.dispose(scoreSlice); const hand: HandDetectResult = { id: id++, score, box, boxRaw, label: classes[i], yxBox }; hands.push(hand); } } classScores.forEach((tensor) => tf.dispose(tensor)); Object.keys(t).forEach((tensor) => tf.dispose(t[tensor])); return hands; } /* const scaleFact = 1.2; function updateBoxes(h, keypoints) { const fingerX = keypoints.map((pt) => pt[0]); const fingerY = keypoints.map((pt) => pt[1]); const minX = Math.min(...fingerX); const maxX = Math.max(...fingerX); const minY = Math.min(...fingerY); const maxY = Math.max(...fingerY); h.box = [ Math.trunc(minX / scaleFact), Math.trunc(minY / scaleFact), Math.trunc(scaleFact * maxX - minX), Math.trunc(scaleFact * maxY - minY), ] as [number, number, number, number]; h.bowRaw = [ h.box / outputSize[0], h.box / outputSize[1], h.box / outputSize[0], h.box / outputSize[1], ] as [number, number, number, number]; h.yxBox = [ h.boxRaw[1], h.boxRaw[0], h.boxRaw[3] + h.boxRaw[1], h.boxRaw[2] + h.boxRaw[0], ] as [number, number, number, number]; return h; } */ async function detectFingers(input: Tensor, h: HandDetectResult, config: Config): Promise { const hand: HandResult = { id: h.id, score: Math.round(100 * h.score) / 100, boxScore: Math.round(100 * h.score) / 100, fingerScore: 0, box: h.box, boxRaw: h.boxRaw, label: h.label, keypoints: [], landmarks: {} as HandResult['landmarks'], annotations: {} as HandResult['annotations'], }; if (!input || !models[1] || !config.hand.landmarks) return hand; const t: Record = {}; t.crop = tf.image.cropAndResize(input, [h.yxBox], [0], [inputSize[1], inputSize[1]], 'bilinear'); t.cast = tf.cast(t.crop, 'float32'); t.div = tf.div(t.cast, 255); [t.score, t.keypoints] = models[1].execute(t.div) as Tensor[]; const score = Math.round(100 * (await t.score.data())[0] / 100); if (score > (config.hand.minConfidence || 0)) { hand.fingerScore = score; t.reshaped = tf.reshape(t.keypoints, [-1, 3]); const rawCoords = await t.reshaped.array() as number[]; hand.keypoints = (rawCoords as number[]).map((coord) => [ (h.box[2] * coord[0] / inputSize[1]) + h.box[0], (h.box[3] * coord[1] / inputSize[1]) + h.box[1], (h.box[2] + h.box[3]) / 2 / inputSize[1] * coord[2], ]); // h = updateBoxes(h, hand.keypoints); // replace detected box with box calculated around keypoints hand.landmarks = fingerPose.analyze(hand.keypoints) as HandResult['landmarks']; // calculate finger landmarks for (const key of Object.keys(fingerMap)) { // map keypoints to per-finger annotations hand.annotations[key] = fingerMap[key].map((index) => (hand.landmarks && hand.keypoints[index] ? hand.keypoints[index] : null)); } } Object.keys(t).forEach((tensor) => tf.dispose(t[tensor])); return hand; } let last = 0; export async function predict(input: Tensor, config: Config): Promise { outputSize = [input.shape[2] || 0, input.shape[1] || 0]; if ((skipped < (config.object.skipFrames || 0)) && config.skipFrame) { // use cached boxes skipped++; const hands: HandResult[] = await Promise.all(boxes.map((hand) => detectFingers(input, hand, config))); const withFingers = hands.filter((hand) => hand.fingerScore > 0).length; if (withFingers === last) return hands; } // calculate new boxes skipped = 0; boxes = await detectHands(input, config); const hands: HandResult[] = await Promise.all(boxes.map((hand) => detectFingers(input, hand, config))); const withFingers = hands.filter((hand) => hand.fingerScore > 0).length; last = withFingers; // console.log('NEW', withFingers, hands.length, boxes.length); return hands; } /* */ /* TODO - smart resize - updateboxes is drifting */