/** * Module that analyzes person age * Obsolete */ import { log, join } from '../helpers'; import * as tf from '../../dist/tfjs.esm.js'; import { Config } from '../config'; import { GraphModel, Tensor } from '../tfjs/types'; let model: GraphModel; let last = { age: 0 }; let skipped = Number.MAX_SAFE_INTEGER; // eslint-disable-next-line @typescript-eslint/no-explicit-any export async function load(config: Config | any) { if (!model) { // @ts-ignore type mismatch on GraphModel model = await tf.loadGraphModel(join(config.modelBasePath, config.face.age.modelPath)); if (!model || !model['modelUrl']) log('load model failed:', config.face.age.modelPath); else if (config.debug) log('load model:', model['modelUrl']); } else if (config.debug) log('cached model:', model['modelUrl']); return model; } // eslint-disable-next-line @typescript-eslint/no-explicit-any export async function predict(image: Tensor, config: Config | any) { if (!model) return null; if ((skipped < config.face.age.skipFrames) && config.skipFrame && last.age && (last.age > 0)) { skipped++; return last; } skipped = 0; return new Promise(async (resolve) => { if (!model.inputs[0].shape) return; const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false); const enhance = tf.mul(resize, [255.0]); tf.dispose(resize); let ageT; const obj = { age: 0 }; if (config.face.age.enabled) ageT = await model.predict(enhance); enhance.dispose(); if (ageT) { const data = ageT.dataSync(); obj.age = Math.trunc(10 * data[0]) / 10; } ageT.dispose(); last = obj; resolve(obj); }); }