Compare commits

..

450 Commits
main ... 2.9.1

Author SHA1 Message Date
Vladimir Mandic 7b8b843771 release rebuild 2022-07-25 08:33:07 -04:00
Vladimir Mandic 8a62a3a87d 2.9.1 2022-07-25 08:30:38 -04:00
Vladimir Mandic 4d0b9fff98 update tfjs 2022-07-25 08:30:34 -04:00
Vladimir Mandic 0ea4edf39c update tfjs 2022-07-23 14:45:40 -04:00
Vladimir Mandic 4ce7fa22a0 full rebuild 2022-07-21 13:06:13 -04:00
Vladimir Mandic 789f6770e7 release cleanup 2022-07-21 12:53:10 -04:00
Vladimir Mandic 3f54aa8c3e tflite experiments 2022-07-19 17:49:58 -04:00
Vladimir Mandic e51a58211d update wiki 2022-07-18 08:22:42 -04:00
Vladimir Mandic 5f03ae3053 add load monitor test 2022-07-18 08:22:19 -04:00
Vladimir Mandic f543c82ec9 beta for upcoming major release 2022-07-17 21:31:08 -04:00
Vladimir Mandic c625892e18 swtich to release version of tfjs 2022-07-16 09:08:58 -04:00
Vladimir Mandic 0abc7ce124 update method signatures 2022-07-14 10:41:52 -04:00
Vladimir Mandic b341aadd0f update demo 2022-07-14 10:02:23 -04:00
Vladimir Mandic 8480468869 update typedocs 2022-07-14 09:36:08 -04:00
Vladimir Mandic c08395433e placeholder for face contours 2022-07-13 12:08:23 -04:00
Vladimir Mandic ccfd5ef49e improve face compare in main demo 2022-07-13 09:26:00 -04:00
Vladimir Mandic bd110857f8 add webview support 2022-07-13 08:53:37 -04:00
Vladimir Mandic 5c375117d7 update dependencies 2022-07-13 08:23:18 -04:00
FaeronGaming ad4b23aa34 fix(gear): ensure gear.modelPath is used for loadModel() 2022-07-13 08:22:28 -04:00
Vladimir Mandic 50d117c22e npm default install should be prod only 2022-07-07 12:11:05 +02:00
Vladimir Mandic 88f3b6eeda fix npm v7 compatibility 2022-07-05 05:03:31 -04:00
Vladimir Mandic bc009e165e add getModelStats method 2022-07-02 03:39:40 -04:00
Vladimir Mandic b201435660 rebuild 2022-06-21 13:26:58 -04:00
Vladimir Mandic 22bcd417fd update 2022-06-10 08:47:22 -04:00
Vladimir Mandic c39e13e60a release build 2022-06-08 08:52:19 -04:00
Vladimir Mandic 71729677be 2.8.1 2022-06-08 08:44:52 -04:00
Vladimir Mandic f23aab9866 webgpu and wasm optimizations 2022-06-02 10:39:53 -04:00
Vladimir Mandic 53f5edbe26 add faceboxes prototype 2022-05-30 08:58:54 -04:00
Vladimir Mandic 2b0b7bbb7b updated facemesh and attention models 2022-05-29 21:12:18 -04:00
Vladimir Mandic 694f08708a full rebuild 2022-05-24 07:28:51 -04:00
Vladimir Mandic 2a60b0787f 2.7.4 2022-05-24 07:28:43 -04:00
Vladimir Mandic 35c2d2452b 2.7.3 2022-05-24 07:19:38 -04:00
Vladimir Mandic 465176e2dd add face.mesh.keepInvalid config flag 2022-05-22 08:50:51 -04:00
Vladimir Mandic cc18f16b2e initial work for new facemesh model 2022-05-18 17:42:40 -04:00
Vladimir Mandic 2596b82580 update changelog 2022-05-18 08:35:06 -04:00
Vladimir Mandic 4ce4a92b6f update tfjs 2022-05-18 08:33:33 -04:00
Vladimir Mandic 6b21638372 2.7.2 2022-05-12 16:47:41 -04:00
Vladimir Mandic 8ab1256e11 fix demo when used with video files 2022-05-12 16:47:21 -04:00
Vladimir Mandic 5275475c26 major release 2022-05-09 08:16:00 -04:00
Vladimir Mandic eae60a2693 2.7.1 2022-05-09 08:14:00 -04:00
Vladimir Mandic 08cf2be7cf update wiki 2022-04-23 13:02:00 -04:00
Vladimir Mandic 0a8f194e02 update todo 2022-04-21 09:58:13 -04:00
Vladimir Mandic ea4a99a1a1 support 4k input 2022-04-21 09:39:40 -04:00
Vladimir Mandic 95f278b72e update tfjs 2022-04-21 09:38:36 -04:00
Vladimir Mandic e239386fd8 add attention draw methods 2022-04-18 12:26:05 -04:00
Vladimir Mandic 365ce35f2d fix coloring function 2022-04-18 11:29:45 -04:00
Vladimir Mandic 90b38664ec enable precompile as part of warmup 2022-04-15 07:54:27 -04:00
Vladimir Mandic e8156f4adb prepare release beta 2022-04-14 11:55:49 -04:00
Vladimir Mandic b155cae9bb change default face crop 2022-04-14 11:47:08 -04:00
Vladimir Mandic 55aa98817c update wiki 2022-04-11 11:55:30 -04:00
Vladimir Mandic e7871bc79c face attention model is available in human-models 2022-04-11 11:51:04 -04:00
Vladimir Mandic daa89efd39 beta release 2.7 2022-04-11 11:46:35 -04:00
Vladimir Mandic d347babe11 refactor draw methods 2022-04-11 11:46:00 -04:00
Vladimir Mandic 346e722839 implement face attention model 2022-04-11 11:45:24 -04:00
Vladimir Mandic 0cb473dc0d add electronjs demo 2022-04-10 11:00:41 -04:00
Vladimir Mandic a3d890119c rebuild 2022-04-10 10:13:13 -04:00
Vladimir Mandic 7835126870 rebuild 2022-04-05 12:25:41 -04:00
Vladimir Mandic 0c0fff6a99 update tfjs 2022-04-01 12:38:05 -04:00
Vladimir Mandic 13a78e477b update 2022-04-01 09:13:32 -04:00
Vladimir Mandic 1125a79a8c 2.6.5 2022-04-01 09:12:13 -04:00
Vladimir Mandic 4b3edc5f78 bundle offscreencanvas types 2022-04-01 09:12:04 -04:00
Vladimir Mandic 0086a9169d prototype precompile pass 2022-03-19 11:02:30 -04:00
Vladimir Mandic 738ee9a7e5 fix changelog generation 2022-03-16 11:38:57 -04:00
Vladimir Mandic f350f01fb0 fix indexdb config check 2022-03-16 11:19:56 -04:00
Vladimir Mandic f7be4a4c1f update typescript and tensorflow 2022-03-07 13:24:06 -05:00
Vladimir Mandic 9da67575fe 2.6.4 2022-02-27 07:25:45 -05:00
Vladimir Mandic 9452cf097c fix types typo 2022-02-17 08:15:57 -05:00
Vladimir Mandic 3bc8a5a1b2 refresh 2022-02-14 07:53:28 -05:00
Vladimir Mandic 51246d43f8 add config option wasmPlatformFetch 2022-02-10 15:35:32 -05:00
Vladimir Mandic 7ce0aaf8b4 2.6.3 2022-02-10 15:32:53 -05:00
Vladimir Mandic 3df1c8c8b8 rebuild 2022-02-10 12:27:21 -05:00
Vladimir Mandic c83b8d9485 update toolkit 2022-02-07 10:12:59 -05:00
Vladimir Mandic c20a8102c4 2.6.2 2022-02-07 09:47:17 -05:00
Vladimir Mandic d1ae5dc761 update todo 2022-01-20 08:24:23 -05:00
Vladimir Mandic b586c0d998 release rebuild 2022-01-20 08:17:06 -05:00
Vladimir Mandic bfcc6b63e8 2.6.1 2022-01-20 07:54:56 -05:00
Vladimir Mandic d96d275061 implement model caching using indexdb 2022-01-17 11:03:21 -05:00
Vladimir Mandic 1c2032fd89 prototype global fetch handler 2022-01-16 09:49:55 -05:00
Vladimir Mandic 4471881930 update samples 2022-01-15 09:18:14 -05:00
Vladimir Mandic 086f30c3f5 update samples 2022-01-15 09:11:04 -05:00
Vladimir Mandic 1e666d7a27 update samples with images under cc licence only 2022-01-14 16:10:32 -05:00
Vladimir Mandic ea03e67601 fix face box and hand tracking when in front of face 2022-01-14 09:46:16 -05:00
Vladimir Mandic ca1b609eb8 2.5.8 2022-01-14 09:42:57 -05:00
Vladimir Mandic beafe9bfef update 2022-01-08 12:43:44 -05:00
Vladimir Mandic 60e13020ea update wiki 2022-01-05 11:49:10 -05:00
Vladimir Mandic 9a6ad885f4 update wiki 2022-01-05 09:55:07 -05:00
Vladimir Mandic 5a3bbd0d4a update 2022-01-05 08:34:31 -05:00
Vladimir Mandic ac1522386b update demos 2022-01-01 08:13:04 -05:00
Vladimir Mandic 3a3e2eb067 update blazepose 2021-12-31 13:58:03 -05:00
Vladimir Mandic 1059c9c3de update dependencies 2021-12-30 12:39:29 -05:00
Vladimir Mandic 77f7d6cce2 update hand annotations 2021-12-30 12:14:09 -05:00
Vladimir Mandic a8aec4e610 update blazepose 2021-12-29 12:37:46 -05:00
Vladimir Mandic 4fd18fa5fa update 2021-12-28 11:39:54 -05:00
Vladimir Mandic 4c8a12512a update demos 2021-12-28 09:40:32 -05:00
Vladimir Mandic d2ce0331e8 fix samples 2021-12-28 07:03:05 -05:00
libowen.eric 3788c82ffc fix(src): typo 2021-12-28 06:59:16 -05:00
Vladimir Mandic daffddd057 change on how face box is calculated 2021-12-27 10:59:56 -05:00
Vladimir Mandic bbe68c3c55 2.5.7 2021-12-27 09:29:15 -05:00
Vladimir Mandic 48a0c36d9e update 2021-12-22 10:04:41 -05:00
Vladimir Mandic ff3d9df22e fix posenet 2021-12-18 12:24:01 -05:00
Vladimir Mandic 56f6c54ee5 release refresh 2021-12-15 09:30:26 -05:00
Vladimir Mandic 7aff9ad28d 2.5.6 2021-12-15 09:26:40 -05:00
Vladimir Mandic 31de3e2d86 strong type for string enums 2021-12-15 09:26:32 -05:00
Vladimir Mandic 1afe7f7777 update 2021-12-14 15:45:43 -05:00
Vladimir Mandic abac67389b rebuild 2021-12-13 21:38:55 -05:00
Vladimir Mandic 03b2a9f4ea update tfjs 2021-12-09 14:44:26 -05:00
Vladimir Mandic 48bb49dd8f fix node detection in electron environment 2021-12-07 17:02:33 -05:00
Vladimir Mandic ab1f44ff30 update 2021-12-01 08:27:05 -05:00
Vladimir Mandic 5a7553aa14 2.5.5 2021-12-01 08:21:55 -05:00
Vladimir Mandic b7d1dca089 update readme 2021-11-26 12:14:40 -05:00
Vladimir Mandic 9d798cb073 added human-motion 2021-11-26 12:12:46 -05:00
Vladimir Mandic 268f2602d1 add offscreencanvas typedefs 2021-11-26 11:55:52 -05:00
Vladimir Mandic 5cf64c1803 update blazepose and extend hand annotations 2021-11-24 16:17:03 -05:00
Vladimir Mandic 690a94f5ea release preview 2021-11-23 10:40:40 -05:00
Vladimir Mandic ec41b72710 fix face box scaling on detection 2021-11-23 08:36:32 -05:00
Vladimir Mandic 40429cedda cleanup 2021-11-22 14:44:25 -05:00
Vladimir Mandic 39c3f4ea1d 2.5.4 2021-11-22 14:33:46 -05:00
Vladimir Mandic c53be42d11 prototype blazepose detector 2021-11-22 14:33:40 -05:00
Vladimir Mandic 1162f6e06b minor fixes 2021-11-21 16:55:17 -05:00
Vladimir Mandic 3132f298c3 add body 3d interpolation 2021-11-19 18:30:57 -05:00
Vladimir Mandic 96e5399991 edit blazepose keypoints 2021-11-19 16:11:03 -05:00
Vladimir Mandic 5da11225b6 new build process 2021-11-18 10:10:06 -05:00
Vladimir Mandic 6e60ec8d22 2.5.3 2021-11-18 10:06:07 -05:00
Vladimir Mandic 1a53bb14de update typescript 2021-11-17 16:50:21 -05:00
Vladimir Mandic 15fb4981c9 create typedef rollup 2021-11-17 15:45:49 -05:00
Vladimir Mandic a3359460e2 optimize centernet 2021-11-16 20:16:49 -05:00
Vladimir Mandic fb81d557e4 cache frequent tf constants 2021-11-16 18:31:07 -05:00
Vladimir Mandic 8cc5c938f4 add extra face rotation prior to mesh 2021-11-16 13:07:44 -05:00
Vladimir Mandic 0420a5d144 release 2.5.2 2021-11-15 09:26:38 -05:00
Vladimir Mandic 6d580a0b4f improve error handling 2021-11-14 11:22:52 -05:00
Vladimir Mandic 4f641380ce 2.5.2 2021-11-14 10:43:00 -05:00
Vladimir Mandic 39fa2396a1 fix mobilefacenet module 2021-11-13 17:26:19 -05:00
Vladimir Mandic 4b526ad53c fix gear and ssrnet modules 2021-11-13 12:23:32 -05:00
Vladimir Mandic 76830567f7 fix for face crop when mesh is disabled 2021-11-12 15:17:08 -05:00
Vladimir Mandic 61a7de3c0f implement optional face masking 2021-11-12 15:07:23 -05:00
Vladimir Mandic 9d026ea950 update todo 2021-11-11 17:02:32 -05:00
Vladimir Mandic 8cc810bb69 add similarity score range normalization 2021-11-11 17:01:10 -05:00
Vladimir Mandic 6b69f38d55 add faceid demo 2021-11-11 11:30:55 -05:00
Vladimir Mandic a019176a15 documentation overhaul 2021-11-10 12:21:45 -05:00
Vladimir Mandic d6acf90013 auto tensor shape and channels handling 2021-11-09 19:39:18 -05:00
Vladimir Mandic 485c10ab0a disable use of path2d in node 2021-11-09 18:10:54 -05:00
Vladimir Mandic 34c52df4d6 update wiki 2021-11-09 14:45:45 -05:00
Vladimir Mandic f8a51deae4 add liveness module and facerecognition demo 2021-11-09 14:37:50 -05:00
Vladimir Mandic cbc1fddbf7 initial version of facerecognition demo 2021-11-09 10:39:23 -05:00
Vladimir Mandic 13a71485cd rebuild 2021-11-08 16:41:30 -05:00
Vladimir Mandic a0654dc231 add type defs when working with relative path imports 2021-11-08 16:36:20 -05:00
Vladimir Mandic 419dd219a6 disable humangl backend if webgl 1.0 is detected 2021-11-08 11:35:35 -05:00
Vladimir Mandic 7343d2e8ec add additional hand gestures 2021-11-08 07:36:26 -05:00
Vladimir Mandic 391812d251 2.5.1 2021-11-08 06:25:07 -05:00
Vladimir Mandic e0d66fffd9 update automated tests 2021-11-07 10:10:23 -05:00
Vladimir Mandic 588c9c08f0 new human.compare api 2021-11-07 10:03:33 -05:00
Vladimir Mandic 2b1f5a2b3f added links to release notes 2021-11-07 08:14:14 -05:00
Vladimir Mandic d937953f4d update readme 2021-11-06 10:26:04 -04:00
Vladimir Mandic 3200460055 new frame change detection algorithm 2021-11-06 10:21:51 -04:00
Vladimir Mandic 018e61f2bb add histogram equalization 2021-11-05 15:35:53 -04:00
Vladimir Mandic 6c75c26a51 add histogram equalization 2021-11-05 15:09:54 -04:00
Vladimir Mandic 065349c085 implement wasm missing ops 2021-11-05 13:36:53 -04:00
Vladimir Mandic 52769ef2e9 performance and memory optimizations 2021-11-05 11:28:06 -04:00
Vladimir Mandic 91440273f2 fix react compatibility issues 2021-11-04 06:34:13 -04:00
Vladimir Mandic d30a571a9c improve box rescaling for all modules 2021-11-03 16:32:07 -04:00
Vladimir Mandic 8634ec7fd9 improve precision using wasm backend 2021-11-02 11:42:15 -04:00
Vladimir Mandic cff58d6384 refactor predict with execute 2021-11-02 11:07:11 -04:00
Vladimir Mandic e45e7ebd55 update tests 2021-10-31 09:58:48 -04:00
Vladimir Mandic eeadb396fa update hand landmarks model 2021-10-31 09:06:33 -04:00
Vladimir Mandic 8ba083651f patch tfjs type defs 2021-10-31 08:03:42 -04:00
Vladimir Mandic a109f3b051 start 2.5 major version 2021-10-30 12:21:54 -04:00
Vladimir Mandic bcb6e34a1e build and docs cleanup 2021-10-29 15:55:20 -04:00
Vladimir Mandic 2c2688023e fix firefox bug 2021-10-28 17:25:50 -04:00
Vladimir Mandic 792930fc91 update tfjs 2021-10-28 14:40:31 -04:00
Vladimir Mandic 5bf74a53ad 2.4.3 2021-10-28 13:59:57 -04:00
Vladimir Mandic 74cf335523 additional human.performance counters 2021-10-27 09:45:38 -04:00
Vladimir Mandic ff48422c13 2.4.2 2021-10-27 09:44:17 -04:00
Vladimir Mandic 8892886734 add ts demo 2021-10-27 08:16:06 -04:00
Vladimir Mandic 4357fbc0ba switch from es2018 to es2020 for main build 2021-10-26 19:38:23 -04:00
Vladimir Mandic e2866b2bd6 switch to custom tfjs for demos 2021-10-26 15:08:05 -04:00
Vladimir Mandic 3b449dbfe3 update todo 2021-10-25 13:45:04 -04:00
Vladimir Mandic 38b581373e release 2.4 2021-10-25 13:29:29 -04:00
Vladimir Mandic f0f8a8ddff 2.4.1 2021-10-25 13:09:41 -04:00
Vladimir Mandic 3d4c12fec3 refactoring plus jsdoc comments 2021-10-25 13:09:00 -04:00
Vladimir Mandic 1f03270e76 increase face similarity match resolution 2021-10-25 09:44:13 -04:00
Vladimir Mandic 90ce714446 update todo 2021-10-23 09:42:41 -04:00
Vladimir Mandic c38773bf26 time based caching 2021-10-23 09:38:52 -04:00
Vladimir Mandic 267c87536a turn on minification 2021-10-22 20:14:13 -04:00
Vladimir Mandic 3d81a19a66 update todo 2021-10-22 16:11:02 -04:00
Vladimir Mandic b517dc7f1b initial work on skipTime 2021-10-22 16:09:52 -04:00
Vladimir Mandic 1534b58235 added generic types 2021-10-22 14:46:19 -04:00
Vladimir Mandic 129365e52f enhanced typing exports 2021-10-22 13:49:40 -04:00
Vladimir Mandic b2b07e4b36 update tfjs to 3.10.0 2021-10-22 09:48:27 -04:00
Vladimir Mandic fa0a93e9b2 add optional autodetected custom wasm path 2021-10-21 12:42:08 -04:00
Vladimir Mandic 7e1b2840a2 2.3.6 2021-10-21 11:31:46 -04:00
Vladimir Mandic dc5e46adde fix for human.draw labels and typedefs 2021-10-21 10:54:51 -04:00
Vladimir Mandic 01316a4c2d refactor human.env to a class type 2021-10-21 10:26:44 -04:00
Vladimir Mandic 7f87d2633a add human.custom.esm using custom tfjs build 2021-10-20 17:49:00 -04:00
Vladimir Mandic 7a05cf3743 update handtrack boxes and refactor handpose 2021-10-20 09:10:57 -04:00
Vladimir Mandic a741ad95cb update demos 2021-10-19 11:28:59 -04:00
Vladimir Mandic 3b9fc2e8a7 2.3.5 2021-10-19 11:25:05 -04:00
Jimmy Nyström eaeb02592e Removed direct usage of performance.now
Switched to using the utility function that works in both nodejs and browser environments
2021-10-19 09:58:14 -04:00
Vladimir Mandic ff156bc413 update 2021-10-19 08:09:46 -04:00
Vladimir Mandic 8bd987a7b3 2.3.4 2021-10-19 08:05:19 -04:00
Vladimir Mandic 6291d779ef update dependencies and refresh release 2021-10-19 07:58:51 -04:00
Vladimir Mandic 131cc2609a minor blazepose optimizations 2021-10-15 09:34:40 -04:00
Vladimir Mandic 209506611a compress samples 2021-10-15 07:25:51 -04:00
Vladimir Mandic 2463b16e85 remove posenet from default package 2021-10-15 06:49:41 -04:00
Vladimir Mandic d046513c92 enhanced movenet postprocessing 2021-10-14 12:26:59 -04:00
Vladimir Mandic 84df7f885f update handtrack skip algorithm 2021-10-13 14:49:41 -04:00
Vladimir Mandic 515fbf76e7 use transferrable buffer for worker messages 2021-10-13 11:53:54 -04:00
Vladimir Mandic d47557cfdd update todo 2021-10-13 11:02:44 -04:00
Vladimir Mandic 203fcfa904 add optional anti-spoofing module 2021-10-13 10:56:56 -04:00
Vladimir Mandic ff894a1ee7 update todo 2021-10-13 08:36:20 -04:00
Vladimir Mandic ab453f69df add node-match advanced example using worker thread pool 2021-10-13 08:06:11 -04:00
Vladimir Mandic df53d373e1 package updates 2021-10-12 14:17:33 -04:00
Vladimir Mandic 2930255757 optimize image preprocessing 2021-10-12 11:39:18 -04:00
Vladimir Mandic c430d0d99d update imagefx 2021-10-12 09:48:00 -04:00
Vladimir Mandic 67afa5952f set webgpu optimized flags 2021-10-11 09:22:39 -04:00
Vladimir Mandic ce37a0f716 major precision improvements to movenet and handtrack 2021-10-10 22:29:20 -04:00
Vladimir Mandic 90ec92bbe2 image processing fixes 2021-10-10 17:52:43 -04:00
Vladimir Mandic 1b7ee44659 redesign body and hand caching and interpolation 2021-10-08 18:39:04 -04:00
Vladimir Mandic a7b06eafb2 demo default config cleanup 2021-10-08 07:48:48 -04:00
Vladimir Mandic fd7f7c2195 improve gaze and face angle visualizations in draw 2021-10-07 10:33:10 -04:00
Vladimir Mandic d4322fc0f9 release 2.3.1 2021-10-06 11:33:58 -04:00
Vladimir Mandic b2d5b8322d 2.3.1 2021-10-06 11:30:44 -04:00
Vladimir Mandic 02afd6c54f workaround for chrome offscreencanvas bug 2021-10-06 11:30:34 -04:00
Vladimir Mandic 12644a3e06 fix backend conflict in webworker 2021-10-04 17:03:36 -04:00
Vladimir Mandic 8a50618e9a add blazepose v2 and add annotations to body results 2021-10-04 16:29:15 -04:00
Vladimir Mandic ab3cda4f51 fix backend order initialization 2021-10-03 08:12:26 -04:00
Vladimir Mandic a76ebdaf00 added docker notes 2021-10-02 11:41:51 -04:00
Vladimir Mandic 429df55ac5 update dependencies 2021-10-02 07:46:07 -04:00
Vladimir Mandic ab69d5414a updated hint rules 2021-10-01 12:07:14 -04:00
Vladimir Mandic 8b2225d737 updated facematch demo 2021-10-01 11:40:57 -04:00
Vladimir Mandic 03fd6378c4 update wiki 2021-09-30 14:29:14 -04:00
Vladimir Mandic 8579766d5f breaking change: new similarity and match methods 2021-09-30 14:28:16 -04:00
Vladimir Mandic 23b937e5e2 update facematch demo 2021-09-29 08:02:23 -04:00
Vladimir Mandic 44a5c30e0d update movenet-multipose and samples 2021-09-28 17:07:34 -04:00
Vladimir Mandic c1af3888f9 tweaked default values 2021-09-28 13:48:29 -04:00
Vladimir Mandic eed3d67928 update todo 2021-09-28 12:02:47 -04:00
Vladimir Mandic 61c8ab9b2c enable handtrack as default model 2021-09-28 12:02:17 -04:00
Vladimir Mandic 49cbbb387e redesign face processing 2021-09-28 12:01:48 -04:00
Vladimir Mandic b6f7d683e1 update types and dependencies 2021-09-27 14:39:54 -04:00
Vladimir Mandic 0643fb50df refactoring 2021-09-27 13:58:13 -04:00
Vladimir Mandic ae0e7533eb define app specific types 2021-09-27 09:19:43 -04:00
Vladimir Mandic 3f8db964ba implement box caching for movenet 2021-09-27 08:53:41 -04:00
Vladimir Mandic 8864b5f7c1 update todo 2021-09-26 10:09:30 -04:00
Vladimir Mandic ab93b7ffb2 update todo 2021-09-26 10:03:39 -04:00
Vladimir Mandic a250db9042 update wiki 2021-09-26 06:53:06 -04:00
Vladimir Mandic b5f307f49b autodetect number of bodies and hands 2021-09-25 19:14:03 -04:00
Vladimir Mandic 6f0c0e77b8 upload new samples 2021-09-25 16:31:44 -04:00
Vladimir Mandic 16f993c266 new samples gallery and major code folder restructure 2021-09-25 11:51:15 -04:00
Vladimir Mandic e3f477a50d update todo 2021-09-24 09:57:03 -04:00
Vladimir Mandic 79822d3e01 new release 2021-09-24 09:55:27 -04:00
Vladimir Mandic a8f37111ad 2.2.3 2021-09-24 09:46:35 -04:00
Vladimir Mandic a2b52b3f52 optimize model loading 2021-09-23 14:09:41 -04:00
Vladimir Mandic 43d3c6ce80 support segmentation for nodejs 2021-09-22 19:27:12 -04:00
Vladimir Mandic 7d636c8522 update todo and docs 2021-09-22 16:00:43 -04:00
Vladimir Mandic 182136fbfb redo segmentation and handtracking 2021-09-22 15:16:14 -04:00
Vladimir Mandic 70181b53e9 prototype handtracking 2021-09-21 16:48:16 -04:00
Vladimir Mandic cb9af0a48c automated browser tests 2021-09-20 22:06:49 -04:00
Vladimir Mandic 0d681e4908 support for dynamic backend switching 2021-09-20 21:59:49 -04:00
Vladimir Mandic e0c43098dd initial automated browser tests 2021-09-20 17:17:13 -04:00
Vladimir Mandic 2695b215df enhanced automated test coverage 2021-09-20 09:42:34 -04:00
Vladimir Mandic ddf5d5f0f2 more automated tests 2021-09-19 14:20:22 -04:00
Vladimir Mandic d7cdda2e1b added configuration validation 2021-09-19 14:07:53 -04:00
Vladimir Mandic f59250bde6 updated build platform and typedoc theme 2021-09-18 19:09:02 -04:00
Vladimir Mandic 6ced256a42 prevent validation failed on some model combinations 2021-09-17 14:30:57 -04:00
Vladimir Mandic ab53f1cde7 webgl exception handling 2021-09-17 14:07:44 -04:00
Vladimir Mandic bee6f3b651 2.2.2 2021-09-17 14:07:32 -04:00
Vladimir Mandic 06ab47f941 experimental webgl status monitoring 2021-09-17 11:23:00 -04:00
Vladimir Mandic a261b7bd99 major release 2021-09-16 10:49:42 -04:00
Vladimir Mandic ca56407d49 2.2.1 2021-09-16 10:46:24 -04:00
Vladimir Mandic a50c3e2103 add vr model demo 2021-09-16 10:15:20 -04:00
Vladimir Mandic b0b0702208 update readme 2021-09-15 19:12:05 -04:00
Vladimir Mandic ee0b4af220 all tests passing 2021-09-15 19:02:51 -04:00
Vladimir Mandic 1e8a932a2b redefine draw helpers interface 2021-09-15 18:58:54 -04:00
Vladimir Mandic 4febbc1d3e add simple webcam and webrtc demo 2021-09-15 13:59:18 -04:00
Vladimir Mandic 35583d3a04 added visual results browser to demo 2021-09-15 11:15:38 -04:00
Vladimir Mandic 9ace39fdab reorganize tfjs bundle 2021-09-14 22:07:13 -04:00
Vladimir Mandic 155c7c2a00 experimental custom tfjs bundle - disabled 2021-09-14 20:07:08 -04:00
Vladimir Mandic 71b08aa8f8 add platform and backend capabilities detection 2021-09-13 23:24:04 -04:00
Vladimir Mandic c94e5f86c2 update changelog and todo 2021-09-13 13:54:42 -04:00
Vladimir Mandic 6569b62f70 update dependencies 2021-09-13 13:34:41 -04:00
Vladimir Mandic b39f0d55bb enhanced automated tests 2021-09-13 13:30:46 -04:00
Vladimir Mandic 36150c0730 enable canvas patching for nodejs 2021-09-13 13:30:08 -04:00
Vladimir Mandic 9d4955cb8a full ts strict typechecks 2021-09-13 13:29:14 -04:00
Vladimir Mandic 6796a9a1ba fix multiple memory leaks 2021-09-13 13:28:35 -04:00
Vladimir Mandic edc719cc9e modularize human class and add model validation 2021-09-12 18:37:06 -04:00
Vladimir Mandic 0374ecdcc3 update todo 2021-09-12 13:18:33 -04:00
Vladimir Mandic fd0df97d94 add dynamic kernel op detection 2021-09-12 13:17:33 -04:00
Vladimir Mandic b492ce5c40 added human.env diagnostic class 2021-09-12 12:42:17 -04:00
Vladimir Mandic c03b7b3f4c minor typos 2021-09-12 08:49:56 -04:00
Vladimir Mandic 259036e8ca release candidate 2021-09-12 00:30:11 -04:00
Vladimir Mandic f423bfe9e3 parametrize face config 2021-09-12 00:05:06 -04:00
Vladimir Mandic 6c8faf7de2 mark all config items as optional 2021-09-11 23:59:41 -04:00
Vladimir Mandic eef2b43852 redefine config and result interfaces 2021-09-11 23:54:35 -04:00
Vladimir Mandic 7b284f63f6 fix usge of string enums 2021-09-11 23:08:18 -04:00
Vladimir Mandic 4d2ca7dd2d start using partial definitions 2021-09-11 16:11:00 -04:00
Vladimir Mandic cc864891bf implement event emitters 2021-09-11 16:00:16 -04:00
Vladimir Mandic f4d73e46b9 fix iife loader 2021-09-11 11:42:48 -04:00
Vladimir Mandic b36cd175b0 update sourcemaps 2021-09-11 11:17:13 -04:00
Vladimir Mandic fbd04f8555 simplify dependencies 2021-09-11 10:29:31 -04:00
Vladimir Mandic f42f64427a change build process 2021-09-10 21:21:29 -04:00
Vladimir Mandic 589511f1f3 updated wiki 2021-09-06 08:17:48 -04:00
Vladimir Mandic 2c05cfea24 update lint exceptions 2021-09-05 17:05:46 -04:00
Vladimir Mandic 14164dc603 update wiki 2021-09-05 16:48:57 -04:00
Vladimir Mandic 43074a660c add benchmark info 2021-09-05 16:42:11 -04:00
Vladimir Mandic e6f004dbf9 update hand detector processing algorithm 2021-09-02 08:50:16 -04:00
Vladimir Mandic 76cdfa88a6 update 2021-08-31 18:24:30 -04:00
Vladimir Mandic 90a21de40e simplify canvas handling in nodejs 2021-08-31 18:22:16 -04:00
Vladimir Mandic 2be4c00d3a full rebuild 2021-08-31 14:50:16 -04:00
Vladimir Mandic 6f6577c3b0 2.1.5 2021-08-31 14:49:07 -04:00
Vladimir Mandic eaaa71df07 added demo node-canvas 2021-08-31 14:48:55 -04:00
Vladimir Mandic de89111e70 update node-fetch 2021-08-31 13:29:29 -04:00
Vladimir Mandic 9cd8a433fe dynamically generate default wasm path 2021-08-31 13:00:06 -04:00
Vladimir Mandic 21d4af9235 updated wiki 2021-08-23 08:41:50 -04:00
Vladimir Mandic e5821563a1 implement finger poses in hand detection and gestures 2021-08-20 20:43:03 -04:00
Vladimir Mandic 49c547d698 implemented movenet-multipose model 2021-08-20 09:05:07 -04:00
Vladimir Mandic 6764b0f5be update todo 2021-08-19 17:28:07 -04:00
Vladimir Mandic 6b6a991cf2 2.1.4 2021-08-19 16:17:03 -04:00
Vladimir Mandic 5d871f1dd9 add static type definitions to main class 2021-08-19 16:16:56 -04:00
Vladimir Mandic 58fc62e646 fix interpolation overflow 2021-08-18 14:28:31 -04:00
Vladimir Mandic f460eca131 rebuild full 2021-08-17 18:49:49 -04:00
Vladimir Mandic a559d05378 update angle calculations 2021-08-17 18:46:50 -04:00
Vladimir Mandic cf7ba1ef30 improve face box caching 2021-08-17 09:15:47 -04:00
Vladimir Mandic cf64b3259e strict type checks 2021-08-17 08:51:17 -04:00
Vladimir Mandic 4d3a112985 add webgu checks 2021-08-15 08:09:40 -04:00
Vladimir Mandic 0b0e63f183 update todo 2021-08-14 18:02:39 -04:00
Vladimir Mandic f40eb5d380 experimental webgpu support 2021-08-14 18:00:26 -04:00
Vladimir Mandic d0d0aba8fa add experimental webgu demo 2021-08-14 13:39:26 -04:00
Vladimir Mandic 00d7efa724 add backend initialization checks 2021-08-14 11:17:51 -04:00
Vladimir Mandic 4fd37dfd56 complete async work 2021-08-14 11:16:26 -04:00
Vladimir Mandic af5ab60495 update node-webcam 2021-08-13 18:47:37 -04:00
Vladimir Mandic 6e06695780 list detect cameras 2021-08-13 10:34:09 -04:00
Vladimir Mandic af28fff323 switch to async data reads 2021-08-12 09:31:16 -04:00
Vladimir Mandic f877c2515b 2.1.3 2021-08-12 09:29:48 -04:00
Vladimir Mandic 0fd7683a56 fix centernet & update blazeface 2021-08-11 18:59:02 -04:00
Vladimir Mandic cafb7732ab update todo 2021-08-09 10:46:03 -04:00
Vladimir Mandic 7dad79933e update model list 2021-08-06 08:50:50 -04:00
Vladimir Mandic c6ec8dec76 minor update 2021-08-06 08:29:41 -04:00
Vladimir Mandic 958f898d4b minor update 2021-08-05 10:38:04 -04:00
Vladimir Mandic 5c529d5889 update build process to remove warnings 2021-07-31 20:42:28 -04:00
Vladimir Mandic cd8861b6bb update todo 2021-07-31 07:43:50 -04:00
Vladimir Mandic b1b9cc2954 update typedoc links 2021-07-31 07:29:37 -04:00
Vladimir Mandic 0868aeb350 replace movenet with lightning-v4 2021-07-30 07:18:54 -04:00
Vladimir Mandic 173fa35b7c update eslint rules 2021-07-30 06:49:41 -04:00
Vladimir Mandic db1502829a enable webgl uniform support for faster warmup 2021-07-29 16:35:16 -04:00
Vladimir Mandic c3b95f452e 2.1.2 2021-07-29 16:34:03 -04:00
Vladimir Mandic a3dea5a01f fix unregistered ops in tfjs 2021-07-29 16:06:03 -04:00
Vladimir Mandic 1dccff181b update build 2021-07-29 12:50:06 -04:00
Vladimir Mandic 45d4095bff fix typo 2021-07-29 11:26:19 -04:00
Vladimir Mandic 80299c8600 updated wiki 2021-07-29 11:06:34 -04:00
Vladimir Mandic e3470dc2f1 rebuild new release 2021-07-29 11:03:21 -04:00
Vladimir Mandic 190c3a60b4 2.1.1 2021-07-29 11:02:02 -04:00
Vladimir Mandic 80526ee02a updated gesture types 2021-07-29 11:01:50 -04:00
Vladimir Mandic 3e26e91340 update tfjs and typescript 2021-07-29 09:53:13 -04:00
Vladimir Mandic 46f2426621 updated minimum version of nodejs to v14 2021-07-29 09:41:17 -04:00
Vladimir Mandic 1de80c9e36 add note on manually disping tensor 2021-06-18 13:39:20 -04:00
Vladimir Mandic b506f67e91 update todo 2021-06-18 09:19:34 -04:00
Vladimir Mandic b408c47847 modularize model loading 2021-06-18 09:16:21 -04:00
Vladimir Mandic 20f9ab4519 update typedoc 2021-06-18 07:25:33 -04:00
Vladimir Mandic 70510e9a2f 2.0.3 2021-06-18 07:20:33 -04:00
Vladimir Mandic 07412090d8 update 2021-06-16 15:47:01 -04:00
Vladimir Mandic 65c4d2581f update 2021-06-16 15:46:05 -04:00
Vladimir Mandic a558dd8870 fix demo paths 2021-06-16 15:40:35 -04:00
Vladimir Mandic 66615cac76 added multithreaded demo 2021-06-14 10:23:06 -04:00
Vladimir Mandic 1491561ad2 2.0.2 2021-06-14 10:20:49 -04:00
Vladimir Mandic 1d7227b02a reorganize demos 2021-06-14 08:16:10 -04:00
Vladimir Mandic f0ed4d2cd5 fix centernet box width & height 2021-06-11 16:12:24 -04:00
Vladimir Mandic e205509a39 update todo 2021-06-09 07:27:19 -04:00
Vladimir Mandic c3ac335771 update 2021-06-09 07:19:03 -04:00
Vladimir Mandic 53f960f821 update demo menu documentation 2021-06-09 07:17:54 -04:00
Vladimir Mandic 7944953ab7 update 2021-06-08 07:37:15 -04:00
Vladimir Mandic 6d91ea3f53 add body segmentation sample 2021-06-08 07:29:08 -04:00
Vladimir Mandic 8d3aacea46 add release notes 2021-06-08 07:09:37 -04:00
Vladimir Mandic b08afe09c0 release 2.0 2021-06-08 07:06:16 -04:00
Vladimir Mandic f2abd3c069 2.0.1 2021-06-08 07:02:11 -04:00
Vladimir Mandic 496d09aab7 add video drag&drop capability 2021-06-07 08:38:16 -04:00
Vladimir Mandic 69330e6335 update readme 2021-06-06 20:49:48 -04:00
Vladimir Mandic c7cd2f8a59 update packages 2021-06-06 20:47:59 -04:00
Vladimir Mandic af3699c769 modularize build platform 2021-06-06 20:34:29 -04:00
Vladimir Mandic 5b81690dc9 custom build tfjs from sources 2021-06-06 19:00:34 -04:00
Vladimir Mandic 7a76f9c065 update wasm to tfjs 3.7.0 2021-06-06 12:58:06 -04:00
Vladimir Mandic af31b5b9ef update defaults 2021-06-05 20:06:36 -04:00
Vladimir Mandic 6d728b4e5c modularize build platform 2021-06-05 17:51:46 -04:00
Vladimir Mandic 22c849593e enable body segmentation and background replacement in demo 2021-06-05 16:13:41 -04:00
Vladimir Mandic 60b7143da4 minor git corruption 2021-06-05 15:23:17 -04:00
Vladimir Mandic 3e73fd8742 update 2021-06-05 15:10:28 -04:00
Vladimir Mandic ac7d1c3e12 update 2021-06-05 13:02:01 -04:00
Vladimir Mandic 4be7fc9294 unified build 2021-06-05 12:59:11 -04:00
Vladimir Mandic 5d42b85084 enable body segmentation and background replacement 2021-06-05 11:54:49 -04:00
Vladimir Mandic 13d82a176a work on body segmentation 2021-06-04 20:22:05 -04:00
Vladimir Mandic f6e91fb47d added experimental body segmentation module 2021-06-04 13:52:40 -04:00
Vladimir Mandic f85356843d add meet and selfie models 2021-06-04 13:51:01 -04:00
Vladimir Mandic 47e2f78324 update for tfjs 3.7.0 2021-06-04 09:20:59 -04:00
Vladimir Mandic b4a9934f92 update 2021-06-04 07:03:34 -04:00
Vladimir Mandic 835fd8d184 update gaze strength calculations 2021-06-03 09:53:11 -04:00
Vladimir Mandic e4cdd3ffca update build with automatic linter 2021-06-03 09:41:53 -04:00
Vladimir Mandic 852f22d786 add live hints to demo 2021-06-02 17:29:50 -04:00
Vladimir Mandic c100d03405 switch worker from module to iife importscripts 2021-06-02 16:46:07 -04:00
Vladimir Mandic 7b19e5d246 release candidate 2021-06-02 13:39:02 -04:00
Vladimir Mandic 2cc6f380ba update wiki 2021-06-02 13:35:59 -04:00
Vladimir Mandic 9d7b7dcdce update tests and demos 2021-06-02 13:35:33 -04:00
Vladimir Mandic 32bb8eba58 added samples to git 2021-06-02 12:44:12 -04:00
Vladimir Mandic 375c6f65fc implemented drag & drop for image processing 2021-06-02 12:43:43 -04:00
Vladimir Mandic 92f225d3df release candidate 2021-06-01 08:59:09 -04:00
Vladimir Mandic 47c5c6c822 breaking changes to results.face output properties 2021-06-01 07:37:17 -04:00
Vladimir Mandic c4df466a9a breaking changes to results.object output properties 2021-06-01 07:07:01 -04:00
Vladimir Mandic 616aad6add breaking changes to results.hand output properties 2021-06-01 07:01:59 -04:00
Vladimir Mandic 00f5bd6fde breaking changes to results.body output properties 2021-06-01 06:55:40 -04:00
Vladimir Mandic dc2b68532f update wiki 2021-05-31 10:40:24 -04:00
Vladimir Mandic 23276d522c implemented human.next global interpolation method 2021-05-31 10:40:07 -04:00
Vladimir Mandic f218f96749 update wiki 2021-05-30 23:22:21 -04:00
Vladimir Mandic 0b62a4f9a3 finished draw buffering and smoothing and enabled by default 2021-05-30 23:21:48 -04:00
Vladimir Mandic d29a47e5a2 update wiki 2021-05-30 18:46:23 -04:00
Vladimir Mandic 25c45b20c6 update typedoc definitions 2021-05-30 18:45:39 -04:00
Vladimir Mandic 52f1fccb28 update pwa scope 2021-05-30 18:00:51 -04:00
Vladimir Mandic 168ad14fda implemented service worker 2021-05-30 17:56:40 -04:00
Vladimir Mandic 168fd473c6 update todo 2021-05-30 12:05:27 -04:00
Vladimir Mandic fa33b660af quantized centernet 2021-05-30 12:03:52 -04:00
Vladimir Mandic 60f6f75d35 release candidate 2021-05-30 12:03:34 -04:00
Vladimir Mandic 55d2848336 added usage restrictions 2021-05-30 09:51:23 -04:00
Vladimir Mandic 5f08806e8f update security policy 2021-05-30 09:41:24 -04:00
Vladimir Mandic e1ba7ef942 quantize handdetect model 2021-05-29 18:29:57 -04:00
Vladimir Mandic dafaca5b3d update todo list 2021-05-29 09:24:09 -04:00
Vladimir Mandic 30df35ec7c added experimental movenet-lightning and removed blazepose from default dist 2021-05-29 09:20:01 -04:00
Vladimir Mandic 0c4574a5a3 update 2021-05-28 15:54:29 -04:00
Vladimir Mandic b9a8d27d9c added experimental face.rotation.gaze 2021-05-28 15:53:51 -04:00
Vladimir Mandic ef22c94d62 fix and optimize for mobile platform 2021-05-28 10:43:48 -04:00
Vladimir Mandic 96ef4a4805 lock typescript to 4.2 due to typedoc incompatibility with 4.3 2021-05-27 16:07:02 -04:00
Vladimir Mandic 53a8d12d7b 1.9.4 2021-05-27 16:05:20 -04:00
Vladimir Mandic 9f0621ba99 fix demo facecompare 2021-05-26 08:52:31 -04:00
Vladimir Mandic 59a1fb3855 webhint and lighthouse optimizations 2021-05-26 08:47:31 -04:00
Vladimir Mandic 92e611e735 update 2021-05-26 07:59:52 -04:00
Vladimir Mandic 3c1111a831 add camera startup diag messages 2021-05-26 07:57:51 -04:00
Vladimir Mandic 2903adbf37 update all box calculations 2021-05-25 08:58:20 -04:00
Vladimir Mandic 7b4a90cfb5 implemented unified result.persons that combines face, body and hands for each person 2021-05-24 11:10:13 -04:00
Vladimir Mandic 02ba8016e2 update iris distance docs 2021-05-24 07:18:03 -04:00
Vladimir Mandic 33e8a92cd8 update iris distance calculations 2021-05-24 07:16:38 -04:00
Vladimir Mandic 19b17acbf5 added experimental results interpolation for smooth draw operations 2021-05-23 13:55:33 -04:00
Vladimir Mandic dbd18e0344 1.9.3 2021-05-23 13:54:44 -04:00
Vladimir Mandic 17ae986665 use green weighted for input diff calculation 2021-05-23 13:54:22 -04:00
Vladimir Mandic c70e9817ef implement experimental drawOptions.bufferedOutput and bufferedFactor 2021-05-23 13:52:49 -04:00
Vladimir Mandic 76f624f78f use explicit tensor interface 2021-05-22 21:54:18 -04:00
Vladimir Mandic 2307767161 add tfjs types and remove all instances of any 2021-05-22 21:47:59 -04:00
Vladimir Mandic 24ec73e037 enhance strong typing 2021-05-22 14:53:51 -04:00
Vladimir Mandic f2ac34f4a9 rebuild all for release 2021-05-22 13:17:07 -04:00
Vladimir Mandic 01e7855578 1.9.2 2021-05-22 13:15:11 -04:00
Vladimir Mandic 15925dd75d add id and boxraw on missing objects 2021-05-22 12:41:29 -04:00
Vladimir Mandic f0420232c6 restructure results strong typing 2021-05-22 12:33:19 -04:00
Vladimir Mandic 21d37c0f31 update dependencies 2021-05-21 06:54:02 -04:00
Vladimir Mandic c71475af90 1.9.1 2021-05-21 06:51:31 -04:00
Vladimir Mandic 5566c145ea caching improvements 2021-05-20 19:14:07 -04:00
Vladimir Mandic 6b736ebb0d add experimental mb3-centernet object detection 2021-05-19 08:27:28 -04:00
463 changed files with 240279 additions and 74255 deletions

View File

@ -12,10 +12,10 @@
"clean": ["clean"] "clean": ["clean"]
}, },
"clean": { "clean": {
"locations": ["dist/*", "types/*", "typedoc/*"] "locations": ["dist/*", "types/lib/*", "typedoc/*"]
}, },
"lint": { "lint": {
"locations": [ "**/*.json", "src/**/*.ts", "test/**/*.js", "demo/**/*.js", "**/*.md" ], "locations": [ "*.json", "src/**/*.ts", "test/**/*.js", "demo/**/*.js" ],
"rules": { } "rules": { }
}, },
"changelog": { "changelog": {
@ -24,8 +24,8 @@
"serve": { "serve": {
"sslKey": "node_modules/@vladmandic/build/cert/https.key", "sslKey": "node_modules/@vladmandic/build/cert/https.key",
"sslCrt": "node_modules/@vladmandic/build/cert/https.crt", "sslCrt": "node_modules/@vladmandic/build/cert/https.crt",
"httpPort": 8000, "httpPort": 10030,
"httpsPort": 8001, "httpsPort": 10031,
"documentRoot": ".", "documentRoot": ".",
"defaultFolder": "demo", "defaultFolder": "demo",
"defaultFile": "index.html" "defaultFile": "index.html"
@ -39,13 +39,6 @@
"banner": { "js": "/*\n Human\n homepage: <https://github.com/vladmandic/human>\n author: <https://github.com/vladmandic>'\n*/\n" } "banner": { "js": "/*\n Human\n homepage: <https://github.com/vladmandic/human>\n author: <https://github.com/vladmandic>'\n*/\n" }
}, },
"targets": [ "targets": [
{
"name": "tfjs/browser/version",
"platform": "browser",
"format": "esm",
"input": "tfjs/tf-version.ts",
"output": "dist/tfjs.version.js"
},
{ {
"name": "tfjs/nodejs/cpu", "name": "tfjs/nodejs/cpu",
"platform": "node", "platform": "node",
@ -84,7 +77,6 @@
"format": "cjs", "format": "cjs",
"input": "tfjs/tf-node-wasm.ts", "input": "tfjs/tf-node-wasm.ts",
"output": "dist/tfjs.esm.js", "output": "dist/tfjs.esm.js",
"minify": false,
"external": ["@tensorflow"] "external": ["@tensorflow"]
}, },
{ {
@ -95,6 +87,13 @@
"output": "dist/human.node-wasm.js", "output": "dist/human.node-wasm.js",
"external": ["@tensorflow"] "external": ["@tensorflow"]
}, },
{
"name": "tfjs/browser/version",
"platform": "browser",
"format": "esm",
"input": "tfjs/tf-version.ts",
"output": "dist/tfjs.version.js"
},
{ {
"name": "tfjs/browser/esm/nobundle", "name": "tfjs/browser/esm/nobundle",
"platform": "browser", "platform": "browser",
@ -109,17 +108,17 @@
"format": "esm", "format": "esm",
"input": "src/human.ts", "input": "src/human.ts",
"output": "dist/human.esm-nobundle.js", "output": "dist/human.esm-nobundle.js",
"sourcemap": false, "sourcemap": true,
"external": ["@tensorflow"] "external": ["@tensorflow"]
}, },
{ {
"name": "tfjs/browser/esm/bundle", "name": "tfjs/browser/esm/custom",
"platform": "browser", "platform": "browser",
"format": "esm", "format": "esm",
"input": "tfjs/tf-browser.ts", "input": "tfjs/tf-custom.ts",
"output": "dist/tfjs.esm.js", "output": "dist/tfjs.esm.js",
"sourcemap": false, "sourcemap": false,
"minify": true "minify": false
}, },
{ {
"name": "human/browser/iife/bundle", "name": "human/browser/iife/bundle",
@ -160,15 +159,6 @@
"output": "demo/faceid/index.js", "output": "demo/faceid/index.js",
"sourcemap": true, "sourcemap": true,
"external": ["*/human.esm.js"] "external": ["*/human.esm.js"]
},
{
"name": "demo/tracker",
"platform": "browser",
"format": "esm",
"input": "demo/tracker/index.ts",
"output": "demo/tracker/index.js",
"sourcemap": true,
"external": ["*/human.esm.js"]
} }
] ]
}, },

View File

@ -1,204 +1,93 @@
{ {
"globals": { "globals": {},
"env": {
"browser": true,
"commonjs": true,
"node": true,
"es2021": true
}, },
"rules": { "parser": "@typescript-eslint/parser",
"@typescript-eslint/no-require-imports":"off" "parserOptions": {
"ecmaVersion": 2021
}, },
"overrides": [ "plugins": [
{ "@typescript-eslint",
"files": ["**/*.ts"], "html"
"parser": "@typescript-eslint/parser", ],
"parserOptions": { "ecmaVersion": "latest", "project": ["./tsconfig.json"] }, "extends": [
"plugins": ["@typescript-eslint"], "airbnb-base",
"env": { "eslint:recommended",
"browser": true, "plugin:@typescript-eslint/eslint-recommended",
"commonjs": false, "plugin:@typescript-eslint/recommended",
"node": false, "plugin:import/errors",
"es2021": true "plugin:import/warnings",
}, "plugin:json/recommended-with-comments",
"extends": [ "plugin:node/recommended",
"airbnb-base", "plugin:promise/recommended"
"eslint:recommended",
"plugin:@typescript-eslint/strict",
"plugin:@typescript-eslint/recommended",
"plugin:@typescript-eslint/recommended-requiring-type-checking",
"plugin:@typescript-eslint/eslint-recommended",
"plugin:import/recommended",
"plugin:promise/recommended"
],
"rules": {
"@typescript-eslint/ban-ts-comment":"off",
"@typescript-eslint/dot-notation":"off",
"@typescript-eslint/no-empty-interface":"off",
"@typescript-eslint/no-empty-object-type":"off",
"@typescript-eslint/no-inferrable-types":"off",
"@typescript-eslint/no-misused-promises":"off",
"@typescript-eslint/no-require-imports":"off",
"@typescript-eslint/no-unnecessary-condition":"off",
"@typescript-eslint/no-unnecessary-type-assertion":"off",
"@typescript-eslint/no-unsafe-argument":"off",
"@typescript-eslint/no-unsafe-assignment":"off",
"@typescript-eslint/no-unsafe-call":"off",
"@typescript-eslint/no-unsafe-member-access":"off",
"@typescript-eslint/no-unsafe-return":"off",
"@typescript-eslint/non-nullable-type-assertion-style":"off",
"@typescript-eslint/prefer-for-of":"off",
"@typescript-eslint/prefer-nullish-coalescing":"off",
"@typescript-eslint/prefer-ts-expect-error":"off",
"@typescript-eslint/restrict-plus-operands":"off",
"@typescript-eslint/restrict-template-expressions":"off",
"dot-notation":"off",
"guard-for-in":"off",
"import/extensions": ["off", "always"],
"import/no-unresolved":"off",
"import/prefer-default-export":"off",
"lines-between-class-members":"off",
"max-len": [1, 275, 3],
"no-async-promise-executor":"off",
"no-await-in-loop":"off",
"no-bitwise":"off",
"no-continue":"off",
"no-lonely-if":"off",
"no-mixed-operators":"off",
"no-param-reassign":"off",
"no-plusplus":"off",
"no-regex-spaces":"off",
"no-restricted-syntax":"off",
"no-return-assign":"off",
"no-void":"off",
"object-curly-newline":"off",
"prefer-destructuring":"off",
"prefer-template":"off",
"radix":"off"
}
},
{
"files": ["**/*.d.ts"],
"parser": "@typescript-eslint/parser",
"parserOptions": { "ecmaVersion": "latest", "project": ["./tsconfig.json"] },
"plugins": ["@typescript-eslint"],
"env": {
"browser": true,
"commonjs": false,
"node": false,
"es2021": true
},
"extends": [
"airbnb-base",
"eslint:recommended",
"plugin:@typescript-eslint/eslint-recommended",
"plugin:@typescript-eslint/recommended",
"plugin:@typescript-eslint/recommended-requiring-type-checking",
"plugin:@typescript-eslint/strict",
"plugin:import/recommended",
"plugin:promise/recommended"
],
"rules": {
"@typescript-eslint/array-type":"off",
"@typescript-eslint/ban-types":"off",
"@typescript-eslint/consistent-indexed-object-style":"off",
"@typescript-eslint/consistent-type-definitions":"off",
"@typescript-eslint/no-empty-interface":"off",
"@typescript-eslint/no-explicit-any":"off",
"@typescript-eslint/no-invalid-void-type":"off",
"@typescript-eslint/no-unnecessary-type-arguments":"off",
"@typescript-eslint/no-unnecessary-type-constraint":"off",
"comma-dangle":"off",
"indent":"off",
"lines-between-class-members":"off",
"max-classes-per-file":"off",
"max-len":"off",
"no-multiple-empty-lines":"off",
"no-shadow":"off",
"no-use-before-define":"off",
"quotes":"off",
"semi":"off"
}
},
{
"files": ["**/*.js"],
"parserOptions": { "sourceType": "module", "ecmaVersion": "latest" },
"plugins": [],
"env": {
"browser": true,
"commonjs": true,
"node": true,
"es2021": true
},
"extends": [
"airbnb-base",
"eslint:recommended",
"plugin:node/recommended",
"plugin:promise/recommended"
],
"rules": {
"dot-notation":"off",
"import/extensions": ["error", "always"],
"import/no-extraneous-dependencies":"off",
"max-len": [1, 275, 3],
"no-await-in-loop":"off",
"no-bitwise":"off",
"no-continue":"off",
"no-mixed-operators":"off",
"no-param-reassign":"off",
"no-plusplus":"off",
"no-regex-spaces":"off",
"no-restricted-syntax":"off",
"no-return-assign":"off",
"node/no-unsupported-features/es-syntax":"off",
"object-curly-newline":"off",
"prefer-destructuring":"off",
"prefer-template":"off",
"radix":"off"
}
},
{
"files": ["**/*.json"],
"parserOptions": { "ecmaVersion": "latest" },
"plugins": ["json"],
"env": {
"browser": false,
"commonjs": false,
"node": false,
"es2021": false
},
"extends": []
},
{
"files": ["**/*.md"],
"plugins": ["markdown"],
"processor": "markdown/markdown",
"rules": {
"no-undef":"off"
}
},
{
"files": ["**/*.md/*.js"],
"rules": {
"@typescript-eslint/no-unused-vars":"off",
"@typescript-eslint/triple-slash-reference":"off",
"import/newline-after-import":"off",
"import/no-unresolved":"off",
"no-console":"off",
"no-global-assign":"off",
"no-multi-spaces":"off",
"no-restricted-globals":"off",
"no-undef":"off",
"no-unused-vars":"off",
"node/no-missing-import":"off",
"node/no-missing-require":"off",
"promise/catch-or-return":"off"
}
}
], ],
"ignorePatterns": [ "ignorePatterns": [
"node_modules",
"assets", "assets",
"dist",
"demo/helpers/*.js", "demo/helpers/*.js",
"demo/typescript/*.js", "demo/typescript/*.js",
"demo/faceid/*.js", "demo/faceid/*.js",
"demo/tracker/*.js", "dist",
"typedoc" "media",
] "models",
"node_modules",
"types/human.d.ts"
],
"rules": {
"@typescript-eslint/ban-ts-comment": "off",
"@typescript-eslint/explicit-module-boundary-types": "off",
"@typescript-eslint/no-shadow": "error",
"@typescript-eslint/no-var-requires": "off",
"@typescript-eslint/prefer-as-const": "off",
"@typescript-eslint/triple-slash-reference": "off",
"@typescript-eslint/no-inferrable-types": "off",
"@typescript-eslint/no-empty-interface": ["error", { "allowSingleExtends": true }],
"camelcase": "off",
"class-methods-use-this": "off",
"dot-notation": "off",
"func-names": "off",
"guard-for-in": "off",
"import/extensions": "off",
"import/named": "off",
"import/no-extraneous-dependencies": "off",
"import/no-named-as-default": "off",
"import/no-unresolved": "off",
"import/prefer-default-export": "off",
"lines-between-class-members": "off",
"max-len": [1, 275, 3],
"newline-per-chained-call": "off",
"no-async-promise-executor": "off",
"no-await-in-loop": "off",
"no-bitwise": "off",
"no-case-declarations":"off",
"no-continue": "off",
"no-else-return": "off",
"no-lonely-if": "off",
"no-loop-func": "off",
"no-mixed-operators": "off",
"no-param-reassign":"off",
"no-plusplus": "off",
"no-process-exit": "off",
"no-regex-spaces": "off",
"no-restricted-globals": "off",
"no-restricted-syntax": "off",
"no-return-assign": "off",
"no-shadow": "off",
"no-underscore-dangle": "off",
"node/no-missing-import": ["error", { "tryExtensions": [".js", ".json", ".ts"] }],
"node/no-unpublished-import": "off",
"node/no-unpublished-require": "off",
"node/no-unsupported-features/es-syntax": "off",
"node/shebang": "off",
"object-curly-newline": "off",
"prefer-destructuring": "off",
"prefer-template":"off",
"promise/always-return": "off",
"promise/catch-or-return": "off",
"promise/no-nesting": "off",
"radix": "off"
}
} }

11
.github/FUNDING.yml vendored
View File

@ -1,11 +0,0 @@
github: [vladmandic]
patreon: # Replace with a single Patreon username
open_collective: # Replace with a single Open Collective username
ko_fi: # Replace with a single Ko-fi username
tidelift: # Replace with a single Tidelift platform-name/package-name e.g., npm/babel
community_bridge: # Replace with a single Community Bridge project-name e.g., cloud-foundry
liberapay: # Replace with a single Liberapay username
issuehunt: # Replace with a single IssueHunt username
otechie: # Replace with a single Otechie username
lfx_crowdfunding: # Replace with a single LFX Crowdfunding project-name e.g., cloud-foundry
custom: # Replace with up to 4 custom sponsorship URLs e.g., ['link1', 'link2']

10
.gitignore vendored
View File

@ -1,9 +1,5 @@
.vscode
pnpm-lock.yaml
*.swp
node_modules/ node_modules/
types/lib types/lib
pnpm-lock.yaml
package-lock.json
*.swp
samples/**/*.mp4
samples/**/*.webm
temp
tmp

View File

@ -1,7 +1,6 @@
{ {
"MD012": false, "MD012": false,
"MD013": false, "MD013": false,
"MD029": false,
"MD033": false, "MD033": false,
"MD036": false, "MD036": false,
"MD041": false "MD041": false

3
.npmrc
View File

@ -1,5 +1,4 @@
force=true force=true
omit=dev production=true
legacy-peer-deps=true legacy-peer-deps=true
strict-peer-dependencies=false strict-peer-dependencies=false
node-options='--no-deprecation'

10
.vscode/settings.json vendored
View File

@ -1,10 +0,0 @@
{
"search.exclude": {
"dist/*": true,
"node_modules/*": true,
"types": true,
"typedoc": true,
},
"search.useGlobalIgnoreFiles": true,
"search.useParentIgnoreFiles": true
}

View File

@ -1,6 +1,6 @@
# @vladmandic/human # @vladmandic/human
Version: **3.3.6** Version: **2.9.1**
Description: **Human: AI-powered 3D Face Detection & Rotation Tracking, Face Description & Recognition, Body Pose Tracking, 3D Hand & Finger Tracking, Iris Analysis, Age & Gender & Emotion Prediction, Gesture Recognition** Description: **Human: AI-powered 3D Face Detection & Rotation Tracking, Face Description & Recognition, Body Pose Tracking, 3D Hand & Finger Tracking, Iris Analysis, Age & Gender & Emotion Prediction, Gesture Recognition**
Author: **Vladimir Mandic <mandic00@live.com>** Author: **Vladimir Mandic <mandic00@live.com>**
@ -9,183 +9,11 @@
## Changelog ## Changelog
### **3.3.6** 2025/08/26 mandic00@live.com
### **origin/main** 2025/02/05 mandic00@live.com
- full rebuild
### **3.3.5** 2025/02/05 mandic00@live.com
- rebuild
- add human.draw.tensor method
### **3.3.4** 2024/10/24 mandic00@live.com
### **3.3.3** 2024/10/14 mandic00@live.com
- add loaded property to model stats and mark models not loaded correctly.
- release build
### **3.3.2** 2024/09/11 mandic00@live.com
- full rebuild
### **3.3.1** 2024/09/11 mandic00@live.com
- add config.face.detector.square option
- human 3.3 alpha test run
- human 3.3 alpha with new build environment
- release rebuild
- fix flazeface tensor scale and update build platform
### **3.2.2** 2024/04/17 mandic00@live.com
### **release: 3.2.1** 2024/02/15 mandic00@live.com
### **3.2.1** 2024/02/15 mandic00@live.com
### **3.2.0** 2023/12/06 mandic00@live.com
- set browser false when navigator object is empty
- https://github.com/vladmandic/human/issues/402
### **release: 3.1.2** 2023/09/18 mandic00@live.com
- full rebuild
### **3.1.2** 2023/09/18 mandic00@live.com
- major toolkit upgrade
- full rebuild
- major toolkit upgrade
### **3.1.1** 2023/08/05 mandic00@live.com
- fixes plus tfjs upgrade for new release
### **3.0.7** 2023/06/12 mandic00@live.com
- full rebuild
- fix memory leak in histogramequalization
- initial work on tracker
### **3.0.6** 2023/03/21 mandic00@live.com
- add optional crop to multiple models
- fix movenet-multipose
- add electron detection
- fix gender-ssrnet-imdb
- add movenet-multipose workaround
- rebuild and publish
- add face.detector.minsize configurable setting
- add affectnet
### **3.0.5** 2023/02/02 mandic00@live.com
- add gear-e models
- detect react-native
- redo blazeface annotations
### **3.0.4** 2023/01/29 mandic00@live.com
- make naviator calls safe
- fix facedetector-only configs
### **3.0.3** 2023/01/07 mandic00@live.com
- full rebuild
### **3.0.2** 2023/01/06 mandic00@live.com
- default face.rotation disabled
### **release: 3.0.1** 2022/11/22 mandic00@live.com
### **3.0.1** 2022/11/22 mandic00@live.com
- support dynamic loads
- polish demos
- add facedetect demo and fix model async load
- enforce markdown linting
- cleanup git history
- default empty result
- refactor draw and models namespaces
- refactor distance
- add basic anthropometry
- added webcam id specification
- include external typedefs
- prepare external typedefs
- rebuild all
- include project files for types
- architectural improvements
- refresh dependencies
- add named exports
- add draw label templates
- reduce dev dependencies
- tensor rank strong typechecks
- rebuild dependencies
### **2.11.1** 2022/10/09 mandic00@live.com
- add rvm segmentation model
- add human.webcam methods
- create funding.yml
- fix rotation interpolation
### **2.10.3** 2022/09/21 mandic00@live.com
- add human.video method
### **2.10.2** 2022/09/11 mandic00@live.com
- add node.js esm compatibility (#292)
- release
### **2.10.1** 2022/09/07 mandic00@live.com
- release candidate
- add config flags
- test update
- release preview
- optimize startup sequence
- reorder backend init code
- test embedding
- embedding test
- add browser iife tests
- minor bug fixes and increased test coverage
- extend release tests
- add model load exception handling
- add softwarekernels config option
- expand type safety
- full eslint rule rewrite
### **2.9.4** 2022/08/20 mandic00@live.com
- add browser test
- add tensorflow library detection
- fix wasm detection
- enumerate additional models
- release refresh
### **2.9.3** 2022/08/10 mandic00@live.com
- rehault testing framework
- release refresh
- add insightface
### **2.9.2** 2022/08/08 mandic00@live.com
- release rebuild
### **2.9.1** 2022/07/25 mandic00@live.com ### **2.9.1** 2022/07/25 mandic00@live.com
### **origin/main** 2022/07/23 mandic00@live.com
- full rebuild - full rebuild
- release cleanup - release cleanup
- tflite experiments - tflite experiments
@ -229,6 +57,7 @@
- enable precompile as part of warmup - enable precompile as part of warmup
- prepare release beta - prepare release beta
- change default face crop - change default face crop
- face attention model is available in human-models
- beta release 2.7 - beta release 2.7
- refactor draw methods - refactor draw methods
- implement face attention model - implement face attention model
@ -540,6 +369,7 @@
- implemented human.next global interpolation method - implemented human.next global interpolation method
- finished draw buffering and smoothing and enabled by default - finished draw buffering and smoothing and enabled by default
- implemented service worker - implemented service worker
- quantized centernet
- release candidate - release candidate
- added usage restrictions - added usage restrictions
- quantize handdetect model - quantize handdetect model

283
README.md
View File

@ -1,9 +1,9 @@
[![](https://img.shields.io/static/v1?label=Sponsor&message=%E2%9D%A4&logo=GitHub&color=%23fe8e86)](https://github.com/sponsors/vladmandic)
![Git Version](https://img.shields.io/github/package-json/v/vladmandic/human?style=flat-square&svg=true&label=git) ![Git Version](https://img.shields.io/github/package-json/v/vladmandic/human?style=flat-square&svg=true&label=git)
![NPM Version](https://img.shields.io/npm/v/@vladmandic/human.png?style=flat-square) ![NPM Version](https://img.shields.io/npm/v/@vladmandic/human.png?style=flat-square)
![Last Commit](https://img.shields.io/github/last-commit/vladmandic/human?style=flat-square&svg=true) ![Last Commit](https://img.shields.io/github/last-commit/vladmandic/human?style=flat-square&svg=true)
![License](https://img.shields.io/github/license/vladmandic/human?style=flat-square&svg=true) ![License](https://img.shields.io/github/license/vladmandic/human?style=flat-square&svg=true)
![GitHub Status Checks](https://img.shields.io/github/checks-status/vladmandic/human/main?style=flat-square&svg=true) ![GitHub Status Checks](https://img.shields.io/github/checks-status/vladmandic/human/main?style=flat-square&svg=true)
![Vulnerabilities](https://img.shields.io/snyk/vulnerabilities/github/vladmandic/human?style=flat-square&svg=true)
# Human Library # Human Library
@ -13,45 +13,19 @@
<br> <br>
## Highlights JavaScript module using TensorFlow/JS Machine Learning library
- Compatible with most server-side and client-side environments and frameworks - **Browser**:
- Combines multiple machine learning models which can be switched on-demand depending on the use-case Compatible with both desktop and mobile platforms
- Related models are executed in an attention pipeline to provide details when needed Compatible with *CPU*, *WebGL*, *WASM* backends
- Optimized input pre-processing that can enhance image quality of any type of inputs Compatible with *WebWorker* execution
- Detection of frame changes to trigger only required models for improved performance Compatible with *WebView*
- Intelligent temporal interpolation to provide smooth results regardless of processing performance - **NodeJS**:
- Simple unified API Compatible with both software *tfjs-node* and
- Built-in Image, Video and WebCam handling GPU accelerated backends *tfjs-node-gpu* using CUDA libraries
[*Jump to Quick Start*](#quick-start)
<br> <br>
## Compatibility
**Browser**:
- Compatible with both desktop and mobile platforms
- Compatible with *WebGPU*, *WebGL*, *WASM*, *CPU* backends
- Compatible with *WebWorker* execution
- Compatible with *WebView*
- Primary platform: *Chromium*-based browsers
- Secondary platform: *Firefox*, *Safari*
**NodeJS**:
- Compatibile with *WASM* backend for executions on architectures where *tensorflow* binaries are not available
- Compatible with *tfjs-node* using software execution via *tensorflow* shared libraries
- Compatible with *tfjs-node* using GPU-accelerated execution via *tensorflow* shared libraries and nVidia CUDA
- Supported versions are from **14.x** to **22.x**
- NodeJS version **23.x** is not supported due to breaking changes and issues with `@tensorflow/tfjs`
<br>
## Releases
- [Release Notes](https://github.com/vladmandic/human/releases)
- [NPM Link](https://www.npmjs.com/package/@vladmandic/human)
## Demos
*Check out [**Simple Live Demo**](https://vladmandic.github.io/human/demo/typescript/index.html) fully annotated app as a good start starting point ([html](https://github.com/vladmandic/human/blob/main/demo/typescript/index.html))([code](https://github.com/vladmandic/human/blob/main/demo/typescript/index.ts))* *Check out [**Simple Live Demo**](https://vladmandic.github.io/human/demo/typescript/index.html) fully annotated app as a good start starting point ([html](https://github.com/vladmandic/human/blob/main/demo/typescript/index.html))([code](https://github.com/vladmandic/human/blob/main/demo/typescript/index.ts))*
*Check out [**Main Live Demo**](https://vladmandic.github.io/human/demo/index.html) app for advanced processing of of webcam, video stream or images static images with all possible tunable options* *Check out [**Main Live Demo**](https://vladmandic.github.io/human/demo/index.html) app for advanced processing of of webcam, video stream or images static images with all possible tunable options*
@ -59,53 +33,49 @@
- To start video detection, simply press *Play* - To start video detection, simply press *Play*
- To process images, simply drag & drop in your Browser window - To process images, simply drag & drop in your Browser window
- Note: For optimal performance, select only models you'd like to use - Note: For optimal performance, select only models you'd like to use
- Note: If you have modern GPU, *WebGL* (default) backend is preferred, otherwise select *WASM* backend - Note: If you have modern GPU, WebGL (default) backend is preferred, otherwise select WASM backend
<br> <br>
## Releases
- [Release Notes](https://github.com/vladmandic/human/releases)
- [NPM Link](https://www.npmjs.com/package/@vladmandic/human)
## Demos
- [**List of all Demo applications**](https://github.com/vladmandic/human/wiki/Demos) - [**List of all Demo applications**](https://github.com/vladmandic/human/wiki/Demos)
- [**Live Examples galery**](https://vladmandic.github.io/human/samples/index.html) - [**Live Examples galery**](https://vladmandic.github.io/human/samples/index.html)
### Browser Demos ### Browser Demos
*All browser demos are self-contained without any external dependencies*
- **Full** [[*Live*]](https://vladmandic.github.io/human/demo/index.html) [[*Details*]](https://github.com/vladmandic/human/tree/main/demo): Main browser demo app that showcases all Human capabilities - **Full** [[*Live*]](https://vladmandic.github.io/human/demo/index.html) [[*Details*]](https://github.com/vladmandic/human/tree/main/demo): Main browser demo app that showcases all Human capabilities
- **Simple** [[*Live*]](https://vladmandic.github.io/human/demo/typescript/index.html) [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/typescript): Simple demo in WebCam processing demo in TypeScript - **Simple** [[*Live*]](https://vladmandic.github.io/human/demo/typescript/index.html) [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/typescript): Simple demo in WebCam processing demo in TypeScript
- **Embedded** [[*Live*]](https://vladmandic.github.io/human/demo/video/index.html) [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/video/index.html): Even simpler demo with tiny code embedded in HTML file - **Face Match** [[*Live*]](https://vladmandic.github.io/human/demo/facematch/index.html) [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/facematch): Extract faces from images, calculates face descriptors and simmilarities and matches them to known database
- **Face Detect** [[*Live*]](https://vladmandic.github.io/human/demo/facedetect/index.html) [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/facedetect): Extract faces from images and processes details
- **Face Match** [[*Live*]](https://vladmandic.github.io/human/demo/facematch/index.html) [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/facematch): Extract faces from images, calculates face descriptors and similarities and matches them to known database
- **Face ID** [[*Live*]](https://vladmandic.github.io/human/demo/faceid/index.html) [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/faceid): Runs multiple checks to validate webcam input before performing face match to faces in IndexDB - **Face ID** [[*Live*]](https://vladmandic.github.io/human/demo/faceid/index.html) [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/faceid): Runs multiple checks to validate webcam input before performing face match to faces in IndexDB
- **Multi-thread** [[*Live*]](https://vladmandic.github.io/human/demo/multithread/index.html) [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/multithread): Runs each Human module in a separate web worker for highest possible performance - **Multi-thread** [[*Live*]](https://vladmandic.github.io/human/demo/multithread/index.html) [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/multithread): Runs each Human module in a separate web worker for highest possible performance
- **NextJS** [[*Live*]](https://vladmandic.github.io/human-next/out/index.html) [[*Details*]](https://github.com/vladmandic/human-next): Use Human with TypeScript, NextJS and ReactJS - **NextJS** [[*Live*]](https://vladmandic.github.io/human-next/out/index.html) [[*Details*]](https://github.com/vladmandic/human-next): Use Human with TypeScript, NextJS and ReactJS
- **ElectronJS** [[*Details*]](https://github.com/vladmandic/human-electron): Use Human with TypeScript and ElectonJS to create standalone cross-platform apps - **ElectronJS** [[*Details*]](https://github.com/vladmandic/human-electron): Use Human with TypeScript and ElectonJS to create standalone cross-platform apps
- **3D Analysis with BabylonJS** [[*Live*]](https://vladmandic.github.io/human-motion/src/index.html) [[*Details*]](https://github.com/vladmandic/human-motion): 3D tracking and visualization of heead, face, eye, body and hand - **3D Analysis** [[*Live*]](https://vladmandic.github.io/human-motion/src/index.html) [[*Details*]](https://github.com/vladmandic/human-motion): 3D tracking and visualization of heead, face, eye, body and hand
- **VRM Virtual Model Tracking with Three.JS** [[*Live*]](https://vladmandic.github.io/human-three-vrm/src/human-vrm.html) [[*Details*]](https://github.com/vladmandic/human-three-vrm): VR model with head, face, eye, body and hand tracking - **Avatar Bone Mapping** [[*Live*]](https://vladmandic.github.io/human-vrm/src/human-avatar.html) [[*Details*]](https://github.com/vladmandic/human-avatar): Human skeleton with full bone mapping using look and inverse kinematics controllers
- **VRM Virtual Model Tracking with BabylonJS** [[*Live*]](https://vladmandic.github.io/human-bjs-vrm/src/index.html) [[*Details*]](https://github.com/vladmandic/human-bjs-vrm): VR model with head, face, eye, body and hand tracking - **Virtual Model Tracking** [[*Live*]](https://vladmandic.github.io/human-vrm/src/human-vrm.html) [[*Details*]](https://github.com/vladmandic/human-vrm): VR model with head, face, eye, body and hand tracking
### NodeJS Demos ### NodeJS Demos
*NodeJS demos may require extra dependencies which are used to decode inputs* - **Main** [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/nodejs): Process images from files, folders or URLs using native methods
*See header of each demo to see its dependencies as they are not automatically installed with `Human`* - **Canvas** [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/nodejs): Process image from file or URL and draw results to a new image file using `node-canvas`
- **Video** [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/nodejs): Processing of video input using `ffmpeg`
- **WebCam** [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/nodejs): Processing of webcam screenshots using `fswebcam`
- **Events** [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/nodejs): Showcases usage of `Human` eventing to get notifications on processing
- **Similarity** [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/nodejs): Compares two input images for similarity of detected faces
- **Face Match** [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/facematch): Parallel processing of face **match** in multiple child worker threads
- **Multiple Workers** [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/nodejs): Runs multiple parallel `human` by dispaching them to pool of pre-created worker processes
- **Main** [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/nodejs/node.js): Process images from files, folders or URLs using native methods
- **Canvas** [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/nodejs/node-canvas.js): Process image from file or URL and draw results to a new image file using `node-canvas`
- **Video** [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/nodejs/node-video.js): Processing of video input using `ffmpeg`
- **WebCam** [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/nodejs/node-webcam.js): Processing of webcam screenshots using `fswebcam`
- **Events** [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/nodejs/node-event.js): Showcases usage of `Human` eventing to get notifications on processing
- **Similarity** [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/nodejs/node-similarity.js): Compares two input images for similarity of detected faces
- **Face Match** [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/facematch/node-match.js): Parallel processing of face **match** in multiple child worker threads
- **Multiple Workers** [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/multithread/node-multiprocess.js): Runs multiple parallel `human` by dispaching them to pool of pre-created worker processes
- **Dynamic Load** [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/nodejs): Loads Human dynamically with multiple different desired backends
## Project pages ## Project pages
- [**Code Repository**](https://github.com/vladmandic/human) - [**Code Repository**](https://github.com/vladmandic/human)
- [**NPM Package**](https://www.npmjs.com/package/@vladmandic/human) - [**NPM Package**](https://www.npmjs.com/package/@vladmandic/human)
- [**Issues Tracker**](https://github.com/vladmandic/human/issues) - [**Issues Tracker**](https://github.com/vladmandic/human/issues)
- [**TypeDoc API Specification - Main class**](https://vladmandic.github.io/human/typedoc/classes/Human.html) - [**TypeDoc API Specification**](https://vladmandic.github.io/human/typedoc/classes/Human.html)
- [**TypeDoc API Specification - Full**](https://vladmandic.github.io/human/typedoc/)
- [**Change Log**](https://github.com/vladmandic/human/blob/main/CHANGELOG.md) - [**Change Log**](https://github.com/vladmandic/human/blob/main/CHANGELOG.md)
- [**Current To-do List**](https://github.com/vladmandic/human/blob/main/TODO.md) - [**Current To-do List**](https://github.com/vladmandic/human/blob/main/TODO.md)
@ -116,7 +86,6 @@
- [**Usage & Functions**](https://github.com/vladmandic/human/wiki/Usage) - [**Usage & Functions**](https://github.com/vladmandic/human/wiki/Usage)
- [**Configuration Details**](https://github.com/vladmandic/human/wiki/Config) - [**Configuration Details**](https://github.com/vladmandic/human/wiki/Config)
- [**Result Details**](https://github.com/vladmandic/human/wiki/Result) - [**Result Details**](https://github.com/vladmandic/human/wiki/Result)
- [**Customizing Draw Methods**](https://github.com/vladmandic/human/wiki/Draw)
- [**Caching & Smoothing**](https://github.com/vladmandic/human/wiki/Caching) - [**Caching & Smoothing**](https://github.com/vladmandic/human/wiki/Caching)
- [**Input Processing**](https://github.com/vladmandic/human/wiki/Image) - [**Input Processing**](https://github.com/vladmandic/human/wiki/Image)
- [**Face Recognition & Face Description**](https://github.com/vladmandic/human/wiki/Embedding) - [**Face Recognition & Face Description**](https://github.com/vladmandic/human/wiki/Embedding)
@ -148,24 +117,27 @@
<hr><br> <hr><br>
## App Examples ## Examples
Visit [Examples gallery](https://vladmandic.github.io/human/samples/index.html) for more examples Visit [Examples galery](https://vladmandic.github.io/human/samples/samples.html) for more examples
[<img src="assets/samples.jpg" width="640"/>](assets/samples.jpg) <https://vladmandic.github.io/human/samples/samples.html>
![samples](assets/samples.jpg)
<br> <br>
## Options ## Options
All options as presented in the demo application... All options as presented in the demo application...
[demo/index.html](demo/index.html) > [demo/index.html](demo/index.html)
[<img src="assets/screenshot-menu.png"/>](assets/screenshot-menu.png)
![Options visible in demo](assets/screenshot-menu.png)
<br> <br>
**Results Browser:** **Results Browser:**
[ *Demo -> Display -> Show Results* ]<br> [ *Demo -> Display -> Show Results* ]<br>
[<img src="assets/screenshot-results.png"/>](assets/screenshot-results.png) ![Results](assets/screenshot-results.png)
<br> <br>
@ -177,47 +149,37 @@ sorts them by similarity to selected face
and optionally matches detected face with database of known people to guess their names and optionally matches detected face with database of known people to guess their names
> [demo/facematch](demo/facematch/index.html) > [demo/facematch](demo/facematch/index.html)
[<img src="assets/screenshot-facematch.jpg" width="640"/>](assets/screenshot-facematch.jpg) ![Face Matching](assets/screenshot-facematch.jpg)
2. **Face Detect:**
Extracts all detect faces from loaded images on-demand and highlights face details on a selected face
> [demo/facedetect](demo/facedetect/index.html)
[<img src="assets/screenshot-facedetect.jpg" width="640"/>](assets/screenshot-facedetect.jpg)
3. **Face ID:**
Performs validation check on a webcam input to detect a real face and matches it to known faces stored in database
> [demo/faceid](demo/faceid/index.html)
[<img src="assets/screenshot-faceid.jpg" width="640"/>](assets/screenshot-faceid.jpg)
<br> <br>
4. **3D Rendering:** 2. **3D Rendering:**
> [human-motion](https://github.com/vladmandic/human-motion) > [human-motion](https://github.com/vladmandic/human-motion)
[<img src="https://github.com/vladmandic/human-motion/raw/main/assets/screenshot-face.jpg" width="640"/>](https://github.com/vladmandic/human-motion/raw/main/assets/screenshot-face.jpg) ![Face3D](https://github.com/vladmandic/human-motion/raw/main/assets/screenshot-face.jpg)
[<img src="https://github.com/vladmandic/human-motion/raw/main/assets/screenshot-body.jpg" width="640"/>](https://github.com/vladmandic/human-motion/raw/main/assets/screenshot-body.jpg) ![Body3D](https://github.com/vladmandic/human-motion/raw/main/assets/screenshot-body.jpg)
[<img src="https://github.com/vladmandic/human-motion/raw/main/assets/screenshot-hand.jpg" width="640"/>](https://github.com/vladmandic/human-motion/raw/main/assets/screenshot-hand.jpg) ![Hand3D](https://github.com/vladmandic/human-motion/raw/main/assets/screenshot-hand.jpg)
<br> <br>
5. **VR Model Tracking:** 3. **Avatar Bone Mapping:**
> [human-three-vrm](https://github.com/vladmandic/human-three-vrm) > [human-avatar](https://github.com/vladmandic/human-avatar)
> [human-bjs-vrm](https://github.com/vladmandic/human-bjs-vrm)
[<img src="https://github.com/vladmandic/human-three-vrm/raw/main/assets/human-vrm-screenshot.jpg" width="640"/>](https://github.com/vladmandic/human-three-vrm/raw/main/assets/human-vrm-screenshot.jpg) ![Avatar](https://github.com/vladmandic/human-avatar/raw/main/assets/screenshot.jpg)
<br>
6. **Human as OS native application:** 4. **VR Model Tracking:**
> [human-electron](https://github.com/vladmandic/human-electron) > [human-vrmmotion](https://github.com/vladmandic/human-vrm)
![VRM](https://github.com/vladmandic/human-vrm/raw/main/assets/human-vrm-screenshot.jpg)
<br> <br>
**468-Point Face Mesh Defails:** **468-Point Face Mesh Defails:**
(view in full resolution to see keypoints) (view in full resolution to see keypoints)
[<img src="assets/facemesh.png" width="400"/>](assets/facemesh.png) ![FaceMesh](assets/facemesh.png)
<br><hr><br> <br><hr><br>
@ -227,25 +189,44 @@ Simply load `Human` (*IIFE version*) directly from a cloud CDN in your HTML file
(pick one: `jsdelirv`, `unpkg` or `cdnjs`) (pick one: `jsdelirv`, `unpkg` or `cdnjs`)
```html ```html
<!DOCTYPE HTML>
<script src="https://cdn.jsdelivr.net/npm/@vladmandic/human/dist/human.js"></script> <script src="https://cdn.jsdelivr.net/npm/@vladmandic/human/dist/human.js"></script>
<script src="https://unpkg.dev/@vladmandic/human/dist/human.js"></script> <script src="https://unpkg.dev/@vladmandic/human/dist/human.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/human/3.0.0/human.js"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/human/2.1.5/human.js"></script>
``` ```
For details, including how to use `Browser ESM` version or `NodeJS` version of `Human`, see [**Installation**](https://github.com/vladmandic/human/wiki/Install) For details, including how to use `Browser ESM` version or `NodeJS` version of `Human`, see [**Installation**](https://github.com/vladmandic/human/wiki/Install)
<br> <br>
## Code Examples ## Inputs
Simple app that uses Human to process video input and `Human` library can process all known input types:
- `Image`, `ImageData`, `ImageBitmap`, `Canvas`, `OffscreenCanvas`, `Tensor`,
- `HTMLImageElement`, `HTMLCanvasElement`, `HTMLVideoElement`, `HTMLMediaElement`
Additionally, `HTMLVideoElement`, `HTMLMediaElement` can be a standard `<video>` tag that links to:
- WebCam on user's system
- Any supported video type
For example: `.mp4`, `.avi`, etc.
- Additional video types supported via *HTML5 Media Source Extensions*
Live streaming examples:
- **HLS** (*HTTP Live Streaming*) using `hls.js`
- **DASH** (Dynamic Adaptive Streaming over HTTP) using `dash.js`
- **WebRTC** media track using built-in support
<br>
## Example
Example simple app that uses Human to process video input and
draw output on screen using internal draw helper functions draw output on screen using internal draw helper functions
```js ```js
// create instance of human with simple configuration using default values // create instance of human with simple configuration using default values
const config = { backend: 'webgl' }; const config = { backend: 'webgl' };
const human = new Human.Human(config); const human = new Human(config);
// select input HTMLVideoElement and output HTMLCanvasElement from page // select input HTMLVideoElement and output HTMLCanvasElement from page
const inputVideo = document.getElementById('video-id'); const inputVideo = document.getElementById('video-id');
const outputCanvas = document.getElementById('canvas-id'); const outputCanvas = document.getElementById('canvas-id');
@ -264,7 +245,6 @@ function detectVideo() {
human.draw.gesture(outputCanvas, result.gesture); human.draw.gesture(outputCanvas, result.gesture);
// and loop immediate to the next frame // and loop immediate to the next frame
requestAnimationFrame(detectVideo); requestAnimationFrame(detectVideo);
return result;
}); });
} }
@ -304,7 +284,7 @@ human.events.addEventListener('detect', () => { // event gets triggered when det
function detectVideo() { function detectVideo() {
human.detect(inputVideo) // run detection human.detect(inputVideo) // run detection
.then(() => requestAnimationFrame(detectVideo)); // upon detect complete start processing of the next frame .then(() => requestAnimationFrame(detectVideo)); // upon detect complete start processing of the next frame
} }
detectVideo(); // start loop detectVideo(); // start loop
@ -325,7 +305,7 @@ async function detectVideo() {
async function drawVideo() { async function drawVideo() {
if (result) { // check if result is available if (result) { // check if result is available
const interpolated = human.next(result); // get smoothened result using last-known results const interpolated = human.next(result); // calculate next interpolated frame
human.draw.all(outputCanvas, interpolated); // draw the frame human.draw.all(outputCanvas, interpolated); // draw the frame
} }
requestAnimationFrame(drawVideo); // run draw loop requestAnimationFrame(drawVideo); // run draw loop
@ -335,108 +315,26 @@ detectVideo(); // start detection loop
drawVideo(); // start draw loop drawVideo(); // start draw loop
``` ```
or same, but using built-in full video processing instead of running manual frame-by-frame loop:
```js
const human = new Human(); // create instance of Human
const inputVideo = document.getElementById('video-id');
const outputCanvas = document.getElementById('canvas-id');
async function drawResults() {
const interpolated = human.next(); // get smoothened result using last-known results
human.draw.all(outputCanvas, interpolated); // draw the frame
requestAnimationFrame(drawResults); // run draw loop
}
human.video(inputVideo); // start detection loop which continously updates results
drawResults(); // start draw loop
```
or using built-in webcam helper methods that take care of video handling completely:
```js
const human = new Human(); // create instance of Human
const outputCanvas = document.getElementById('canvas-id');
async function drawResults() {
const interpolated = human.next(); // get smoothened result using last-known results
human.draw.canvas(outputCanvas, human.webcam.element); // draw current webcam frame
human.draw.all(outputCanvas, interpolated); // draw the frame detectgion results
requestAnimationFrame(drawResults); // run draw loop
}
await human.webcam.start({ crop: true });
human.video(human.webcam.element); // start detection loop which continously updates results
drawResults(); // start draw loop
```
And for even better results, you can run detection in a separate web worker thread And for even better results, you can run detection in a separate web worker thread
<br><hr><br>
## Inputs
`Human` library can process all known input types:
- `Image`, `ImageData`, `ImageBitmap`, `Canvas`, `OffscreenCanvas`, `Tensor`,
- `HTMLImageElement`, `HTMLCanvasElement`, `HTMLVideoElement`, `HTMLMediaElement`
Additionally, `HTMLVideoElement`, `HTMLMediaElement` can be a standard `<video>` tag that links to:
- WebCam on user's system
- Any supported video type
e.g. `.mp4`, `.avi`, etc.
- Additional video types supported via *HTML5 Media Source Extensions*
e.g.: **HLS** (*HTTP Live Streaming*) using `hls.js` or **DASH** (*Dynamic Adaptive Streaming over HTTP*) using `dash.js`
- **WebRTC** media track using built-in support
<br><hr><br>
## Detailed Usage
- [**Wiki Home**](https://github.com/vladmandic/human/wiki)
- [**List of all available methods, properies and namespaces**](https://github.com/vladmandic/human/wiki/Usage)
- [**TypeDoc API Specification - Main class**](https://vladmandic.github.io/human/typedoc/classes/Human.html)
- [**TypeDoc API Specification - Full**](https://vladmandic.github.io/human/typedoc/)
![typedoc](assets/screenshot-typedoc.png)
<br><hr><br>
## TypeDefs
`Human` is written using TypeScript strong typing and ships with full **TypeDefs** for all classes defined by the library bundled in `types/human.d.ts` and enabled by default
*Note*: This does not include embedded `tfjs`
If you want to use embedded `tfjs` inside `Human` (`human.tf` namespace) and still full **typedefs**, add this code:
> import type * as tfjs from '@vladmandic/human/dist/tfjs.esm';
> const tf = human.tf as typeof tfjs;
This is not enabled by default as `Human` does not ship with full **TFJS TypeDefs** due to size considerations
Enabling `tfjs` TypeDefs as above creates additional project (dev-only as only types are required) dependencies as defined in `@vladmandic/human/dist/tfjs.esm.d.ts`:
> @tensorflow/tfjs-core, @tensorflow/tfjs-converter, @tensorflow/tfjs-backend-wasm, @tensorflow/tfjs-backend-webgl
<br><hr><br> <br><hr><br>
## Default models ## Default models
Default models in Human library are: Default models in Human library are:
- **Face Detection**: *MediaPipe BlazeFace Back variation* - **Face Detection**: MediaPipe BlazeFace Back variation
- **Face Mesh**: *MediaPipe FaceMesh* - **Face Mesh**: MediaPipe FaceMesh
- **Face Iris Analysis**: *MediaPipe Iris* - **Face Iris Analysis**: MediaPipe Iris
- **Face Description**: *HSE FaceRes* - **Face Description**: HSE FaceRes
- **Emotion Detection**: *Oarriaga Emotion* - **Emotion Detection**: Oarriaga Emotion
- **Body Analysis**: *MoveNet Lightning variation* - **Body Analysis**: MoveNet Lightning variation
- **Hand Analysis**: *HandTrack & MediaPipe HandLandmarks* - **Hand Analysis**: HandTrack & MediaPipe HandLandmarks
- **Body Segmentation**: *Google Selfie* - **Body Segmentation**: Google Selfie
- **Object Detection**: *CenterNet with MobileNet v3* - **Object Detection**: CenterNet with MobileNet v3
Note that alternative models are provided and can be enabled via configuration Note that alternative models are provided and can be enabled via configuration
For example, body pose detection by default uses *MoveNet Lightning*, but can be switched to *MultiNet Thunder* for higher precision or *Multinet MultiPose* for multi-person detection or even *PoseNet*, *BlazePose* or *EfficientPose* depending on the use case For example, `PoseNet` model can be switched for `BlazePose`, `EfficientPose` or `MoveNet` model depending on the use case
For more info, see [**Configuration Details**](https://github.com/vladmandic/human/wiki/Configuration) and [**List of Models**](https://github.com/vladmandic/human/wiki/Models) For more info, see [**Configuration Details**](https://github.com/vladmandic/human/wiki/Configuration) and [**List of Models**](https://github.com/vladmandic/human/wiki/Models)
@ -448,9 +346,9 @@ For more info, see [**Configuration Details**](https://github.com/vladmandic/hum
<br><hr><br> <br><hr><br>
`Human` library is written in [TypeScript](https://www.typescriptlang.org/docs/handbook/intro.html) **5.1** using [TensorFlow/JS](https://www.tensorflow.org/js/) **4.10** and conforming to latest `JavaScript` [ECMAScript version 2022](https://262.ecma-international.org/) standard `Human` library is written in `TypeScript` [4.6](https://www.typescriptlang.org/docs/handbook/intro.html)
Conforming to latest `JavaScript` [ECMAScript version 2021](https://262.ecma-international.org/) standard
Build target for distributables is `JavaScript` [EMCAScript version 2018](https://262.ecma-international.org/9.0/) Build target is `JavaScript` [EMCAScript version 2018](https://262.ecma-international.org/11.0/)
<br> <br>
@ -459,7 +357,6 @@ and [**API Specification**](https://vladmandic.github.io/human/typedoc/classes/H
<br> <br>
[![](https://img.shields.io/static/v1?label=Sponsor&message=%E2%9D%A4&logo=GitHub&color=%23fe8e86)](https://github.com/sponsors/vladmandic)
![Stars](https://img.shields.io/github/stars/vladmandic/human?style=flat-square&svg=true) ![Stars](https://img.shields.io/github/stars/vladmandic/human?style=flat-square&svg=true)
![Forks](https://badgen.net/github/forks/vladmandic/human) ![Forks](https://badgen.net/github/forks/vladmandic/human)
![Code Size](https://img.shields.io/github/languages/code-size/vladmandic/human?style=flat-square&svg=true) ![Code Size](https://img.shields.io/github/languages/code-size/vladmandic/human?style=flat-square&svg=true)

49
TODO.md
View File

@ -2,37 +2,50 @@
## Work-in-Progress ## Work-in-Progress
N/A
<hr><br> <hr><br>
## Known Issues & Limitations ## Exploring
- Optical flow for intelligent temporal interpolation
<https://docs.opencv.org/3.3.1/db/d7f/tutorial_js_lucas_kanade.html>
- Advanced histogram equalization for optimization of badly lit scenes
**Adaptive**, **Contrast Limited**, **CLAHE**
- TFLite models
<https://js.tensorflow.org/api_tflite/0.0.1-alpha.4/>
- Body segmentation with temporal analysis
<https://github.com/PeterL1n/RobustVideoMatting>
<hr><br>
## Known Issues
### Face with Attention ### Face with Attention
`FaceMesh-Landmarks` model is supported only with `CPU` and `WebGL` backends due to `TFJS` issues
`FaceMesh-Attention` is not supported when using `WASM` backend due to missing kernel op in **TFJS** ### WASM
No issues with default model `FaceMesh`
### Object Detection Support for **WASM SIMD** and **WASM MultiThreading** is still disabled by default in **Chromium** based browsers
Suggestion is to enable it manually for major performance boost
Enable via <chrome://flags/#enable-experimental-webassembly-features>
`NanoDet` model is not supported when using `WASM` backend due to missing kernel op in **TFJS** ### WebGPU
No issues with default model `MB3-CenterNet`
## Body Detection using MoveNet-MultiPose Experimental support only until support is officially added in Chromium
Enable via <chrome://flags/#enable-unsafe-webgpu>
Model does not return valid detection scores (all other functionality is not impacted)
### Firefox ### Firefox
Running in **web workers** requires `OffscreenCanvas` which is still disabled by default in **Firefox** Running in **web workers** requires `OffscreenCanvas` which is still disabled by default in **Firefox**
Enable via `about:config` -> `gfx.offscreencanvas.enabled` Enable via `about:config` -> `gfx.offscreencanvas.enabled`
[Details](https://developer.mozilla.org/en-US/docs/Web/API/OffscreenCanvas#browser_compatibility)
### Safari ### Face Detection
No support for running in **web workers** as Safari still does not support `OffscreenCanvas` Enhanced rotation correction for face detection is not working in **NodeJS** due to missing kernel op in **TFJS**
[Details](https://developer.mozilla.org/en-US/docs/Web/API/OffscreenCanvas#browser_compatibility) Feature is automatically disabled in **NodeJS** without user impact
## React-Native
`Human` support for **React-Native** is best-effort, but not part of the main development focus
<hr><br> <hr><br>
## Pending Release Changes

View File

@ -1,8 +1,9 @@
{ {
"$schema": "https://developer.microsoft.com/json-schemas/api-extractor/v7/api-extractor.schema.json", "$schema": "https://developer.microsoft.com/json-schemas/api-extractor/v7/api-extractor.schema.json",
"mainEntryPointFilePath": "types/lib/src/human.d.ts", "mainEntryPointFilePath": "types/lib/src/human.d.ts",
"bundledPackages": ["@types/offscreencanvas", "@tensorflow/tfjs-core", "@tensorflow/tfjs-converter", "@tensorflow/tfjs-data"],
"compiler": { "compiler": {
"skipLibCheck": true "skipLibCheck": false
}, },
"newlineKind": "lf", "newlineKind": "lf",
"dtsRollup": { "dtsRollup": {

Binary file not shown.

Before

Width:  |  Height:  |  Size: 70 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 47 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 22 KiB

After

Width:  |  Height:  |  Size: 41 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 14 KiB

After

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 38 KiB

162
build.js
View File

@ -1,25 +1,15 @@
const fs = require('fs'); const fs = require('fs');
const path = require('path'); const log = require('@vladmandic/pilogger');
const log = require('@vladmandic/pilogger'); // eslint-disable-line node/no-unpublished-require const Build = require('@vladmandic/build').Build;
const Build = require('@vladmandic/build').Build; // eslint-disable-line node/no-unpublished-require const APIExtractor = require('@microsoft/api-extractor');
const APIExtractor = require('@microsoft/api-extractor'); // eslint-disable-line node/no-unpublished-require const tf = require('@tensorflow/tfjs-node');
const tf = require('@tensorflow/tfjs-node'); // eslint-disable-line node/no-unpublished-require const package = require('./package.json');
const packageJSON = require('./package.json');
const logFile = 'test/build.log'; const modelsDir = '../human-models/models';
const modelsOut = 'models/models.json'; const modelsOut = 'models/models.json';
const modelsFolders = [
'./models',
'../human-models/models',
'../blazepose/model/',
'../anti-spoofing/model',
'../efficientpose/models',
'../insightface/models',
'../movenet/models',
'../nanodet/models',
];
const apiExtractorIgnoreList = [ // eslint-disable-line no-unused-vars // eslint-disable-next-line @typescript-eslint/no-unused-vars
const apiExtractorIgnoreList = [
'ae-missing-release-tag', 'ae-missing-release-tag',
'tsdoc-param-tag-missing-hyphen', 'tsdoc-param-tag-missing-hyphen',
'tsdoc-escape-right-brace', 'tsdoc-escape-right-brace',
@ -31,72 +21,36 @@ const apiExtractorIgnoreList = [ // eslint-disable-line no-unused-vars
'tsdoc-unnecessary-backslash', 'tsdoc-unnecessary-backslash',
]; ];
const regEx = [ function copy(src, dst) {
{ search: 'types="@webgpu/types/dist"', replace: 'path="../src/types/webgpu.d.ts"' }, if (!fs.existsSync(src)) return;
{ search: 'types="offscreencanvas"', replace: 'path="../src/types/offscreencanvas.d.ts"' },
];
function copyFile(src, dst) {
if (!fs.existsSync(src)) {
log.warn('Copy:', { input: src, output: dst });
return;
}
log.state('Copy:', { input: src, output: dst });
const buffer = fs.readFileSync(src); const buffer = fs.readFileSync(src);
fs.writeFileSync(dst, buffer); fs.writeFileSync(dst, buffer);
} }
function writeFile(str, dst) {
log.state('Write:', { output: dst });
fs.writeFileSync(dst, str);
}
function regExFile(src, entries) {
if (!fs.existsSync(src)) {
log.warn('Filter:', { src });
return;
}
log.state('Filter:', { input: src });
for (const entry of entries) {
const buffer = fs.readFileSync(src, 'UTF-8');
const lines = buffer.split(/\r?\n/);
const out = [];
for (const line of lines) {
if (line.includes(entry.search)) out.push(line.replace(entry.search, entry.replace));
else out.push(line);
}
fs.writeFileSync(src, out.join('\n'));
}
}
async function analyzeModels() { async function analyzeModels() {
log.info('Analyze models:', { folders: modelsFolders.length, result: modelsOut }); log.info('Analyze:', { modelsDir, modelsOut });
let totalSize = 0; let totalSize = 0;
const models = {}; const models = {};
const allModels = []; let dir;
for (const folder of modelsFolders) { try {
try { dir = fs.readdirSync(modelsDir);
if (!fs.existsSync(folder)) continue; } catch {
const stat = fs.statSync(folder); log.warn('Cannot enumerate:', modelsDir);
if (!stat.isDirectory) continue;
const dir = fs.readdirSync(folder);
const found = dir.map((f) => `file://${folder}/${f}`).filter((f) => f.endsWith('json'));
log.state('Models', { folder, models: found.length });
allModels.push(...found);
} catch {
// log.warn('Cannot enumerate:', modelFolder);
}
} }
for (const url of allModels) { if (!dir || dir.length === 0) {
// if (!f.endsWith('.json')) continue; log.warn('No models found:', modelsDir);
// const url = `file://${modelsDir}/${f}`; return;
}
for (const f of dir) {
if (!f.endsWith('.json')) continue;
const url = `file://${modelsDir}/${f}`;
const model = new tf.GraphModel(url); // create model prototype and decide if load from cache or from original modelurl const model = new tf.GraphModel(url); // create model prototype and decide if load from cache or from original modelurl
model.findIOHandler(); model.findIOHandler();
const artifacts = await model.handler.load(); const artifacts = await model.handler.load();
const size = artifacts?.weightData?.byteLength || 0; const size = artifacts?.weightData?.byteLength || 0;
totalSize += size; totalSize += size;
const name = path.basename(url).replace('.json', ''); const name = f.replace('.json', '');
if (!models[name]) models[name] = size; models[name] = size;
} }
const json = JSON.stringify(models, null, 2); const json = JSON.stringify(models, null, 2);
fs.writeFileSync(modelsOut, json); fs.writeFileSync(modelsOut, json);
@ -104,50 +58,38 @@ async function analyzeModels() {
} }
async function main() { async function main() {
log.logFile(logFile); log.data('Build', { name: package.name, version: package.version });
log.data('Build', { name: packageJSON.name, version: packageJSON.version }); // generate model signature
await analyzeModels();
// run production build // run production build
const build = new Build(); const build = new Build();
await build.run('production'); await build.run('production');
// patch tfjs typedefs // patch tfjs typedefs
copyFile('node_modules/@vladmandic/tfjs/types/tfjs-core.d.ts', 'types/tfjs-core.d.ts'); log.state('Copy:', { input: 'tfjs/tfjs.esm.d.ts' });
copyFile('node_modules/@vladmandic/tfjs/types/tfjs.d.ts', 'types/tfjs.esm.d.ts'); copy('tfjs/tfjs.esm.d.ts', 'types/lib/dist/tfjs.esm.d.ts');
copyFile('src/types/tsconfig.json', 'types/tsconfig.json');
copyFile('src/types/eslint.json', 'types/.eslintrc.json');
copyFile('src/types/tfjs.esm.d.ts', 'dist/tfjs.esm.d.ts');
regExFile('types/tfjs-core.d.ts', regEx);
// run api-extractor to create typedef rollup // run api-extractor to create typedef rollup
const extractorConfig = APIExtractor.ExtractorConfig.loadFileAndPrepare('.api-extractor.json'); const extractorConfig = APIExtractor.ExtractorConfig.loadFileAndPrepare('api-extractor.json');
try { const extractorResult = APIExtractor.Extractor.invoke(extractorConfig, {
const extractorResult = APIExtractor.Extractor.invoke(extractorConfig, { localBuild: true,
localBuild: true, showVerboseMessages: false,
showVerboseMessages: false, messageCallback: (msg) => {
messageCallback: (msg) => { msg.handled = true;
msg.handled = true; if (msg.logLevel === 'none' || msg.logLevel === 'verbose' || msg.logLevel === 'info') return;
if (msg.logLevel === 'none' || msg.logLevel === 'verbose' || msg.logLevel === 'info') return; if (msg.sourceFilePath?.includes('/node_modules/')) return;
if (msg.sourceFilePath?.includes('/node_modules/')) return; // if (apiExtractorIgnoreList.reduce((prev, curr) => prev || msg.messageId.includes(curr), false)) return; // those are external issues outside of human control
// if (apiExtractorIgnoreList.reduce((prev, curr) => prev || msg.messageId.includes(curr), false)) return; // those are external issues outside of human control log.data('API', { level: msg.logLevel, category: msg.category, id: msg.messageId, file: msg.sourceFilePath, line: msg.sourceFileLine, text: msg.text });
log.data('API', { level: msg.logLevel, category: msg.category, id: msg.messageId, file: msg.sourceFilePath, line: msg.sourceFileLine, text: msg.text }); },
}, });
}); log.state('API-Extractor:', { succeeeded: extractorResult.succeeded, errors: extractorResult.errorCount, warnings: extractorResult.warningCount });
log.state('API-Extractor:', { succeeeded: extractorResult.succeeded, errors: extractorResult.errorCount, warnings: extractorResult.warningCount }); // distribute typedefs
} catch (err) { log.state('Copy:', { input: 'types/human.d.ts' });
log.error('API-Extractor:', err); copy('types/human.d.ts', 'dist/human.esm-nobundle.d.ts');
} copy('types/human.d.ts', 'dist/human.esm.d.ts');
regExFile('types/human.d.ts', regEx); copy('types/human.d.ts', 'dist/human.d.ts');
writeFile('export * from \'../types/human\';', 'dist/human.esm-nobundle.d.ts'); copy('types/human.d.ts', 'dist/human.node-gpu.d.ts');
writeFile('export * from \'../types/human\';', 'dist/human.esm.d.ts'); copy('types/human.d.ts', 'dist/human.node.d.ts');
writeFile('export * from \'../types/human\';', 'dist/human.d.ts'); copy('types/human.d.ts', 'dist/human.node-wasm.d.ts');
writeFile('export * from \'../types/human\';', 'dist/human.node-gpu.d.ts'); log.info('Human Build complete...');
writeFile('export * from \'../types/human\';', 'dist/human.node.d.ts');
writeFile('export * from \'../types/human\';', 'dist/human.node-wasm.d.ts');
// generate model signature
await analyzeModels();
log.info('Human Build complete...', { logFile });
} }
main(); main();

58748
build.log Normal file

File diff suppressed because it is too large Load Diff

View File

@ -8,7 +8,6 @@ For details on other demos see Wiki: [**Demos**](https://github.com/vladmandic/h
`index.html`: Full demo using `Human` ESM module running in Browsers, `index.html`: Full demo using `Human` ESM module running in Browsers,
Includes: Includes:
- Selectable inputs: - Selectable inputs:
- Sample images - Sample images
- Image via drag & drop - Image via drag & drop
@ -38,14 +37,12 @@ Includes:
in `index.js:ui` in `index.js:ui`
```js ```js
const ui = {
console: true, // log messages to browser console console: true, // log messages to browser console
useWorker: true, // use web workers for processing useWorker: true, // use web workers for processing
buffered: true, // should output be buffered between frames buffered: true, // should output be buffered between frames
interpolated: true, // should output be interpolated for smoothness between frames interpolated: true, // should output be interpolated for smoothness between frames
results: false, // show results tree results: false, // show results tree
useWebRTC: false, // use webrtc as camera source instead of local webcam useWebRTC: false, // use webrtc as camera source instead of local webcam
};
``` ```
Demo implements several ways to use `Human` library, Demo implements several ways to use `Human` library,

4
demo/benchmark/README.md Normal file
View File

@ -0,0 +1,4 @@
# Human Benchmarks
- `node.js` runs benchmark using `tensorflow` backend in **NodeJS**
- `index.html` runs benchmark using `wasm`, `webgl`, `humangl` and `webgpu` backends in **Browser**

121
demo/benchmark/index.html Normal file
View File

@ -0,0 +1,121 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Human</title>
<meta name="viewport" content="width=device-width" id="viewport">
<meta name="keywords" content="Human">
<meta name="application-name" content="Human">
<meta name="description" content="Human: 3D Face Detection, Body Pose, Hand & Finger Tracking, Iris Tracking, Age & Gender Prediction, Emotion Prediction & Gesture Recognition; Author: Vladimir Mandic <https://github.com/vladmandic>">
<meta name="msapplication-tooltip" content="Human: 3D Face Detection, Body Pose, Hand & Finger Tracking, Iris Tracking, Age & Gender Prediction, Emotion Prediction & Gesture Recognition; Author: Vladimir Mandic <https://github.com/vladmandic>">
<meta name="theme-color" content="#000000">
<link rel="manifest" href="../manifest.webmanifest">
<link rel="shortcut icon" href="../../favicon.ico" type="image/x-icon">
<link rel="apple-touch-icon" href="../../assets/icon.png">
<style>
@font-face { font-family: 'Lato'; font-display: swap; font-style: normal; font-weight: 100; src: local('Lato'), url('../../assets/lato-light.woff2') }
html { font-family: 'Lato', 'Segoe UI'; font-size: 16px; font-variant: small-caps; }
body { margin: 0; background: black; color: white; overflow-x: hidden; width: 100vw; height: 100vh; }
body::-webkit-scrollbar { display: none; }
</style>
</head>
<body>
<img id="image" src="../../samples/in/group-1.jpg" alt="test image" style="display: none">
<div id="log" style="position: absolute; top: 0; margin: 1rem; font-size: 1rem; line-height: 1.4rem; font-family: monospace;"></div>
<script type="module">
import Human from '../../dist/human.esm.js';
const loop = 20;
let initial = true;
const backends = ['wasm', 'webgl', 'humangl', 'webgpu'];
function str(...msg) {
if (!Array.isArray(msg)) return msg;
let line = '';
for (const entry of msg) {
if (typeof entry === 'object') line += JSON.stringify(entry).replace(/{|}|"|\[|\]/g, '').replace(/,/g, ', ');
else line += entry;
}
return line;
}
function log(...msg) {
const dt = new Date();
const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;
// eslint-disable-next-line no-console
if (msg) console.log(ts, 'Human:', ...msg);
const el = document.getElementById('log');
el.innerHTML += str(...msg) + '<br>';
}
const myConfig = {
modelBasePath: 'https://vladmandic.github.io/human/models',
// wasmPath: 'https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@3.18.0/dist/',
debug: true,
async: true,
cacheSensitivity: 0,
filter: { enabled: false },
face: {
enabled: true,
detector: { enabled: true, rotation: false },
mesh: { enabled: true },
iris: { enabled: true },
description: { enabled: true },
emotion: { enabled: true },
antispoof: { enabled: true },
liveness: { enabled: true },
},
hand: { enabled: true },
body: { enabled: true },
object: { enabled: true },
};
async function benchmark(backend) {
myConfig.backend = backend;
const human = new Human(myConfig);
await human.init();
await human.load();
const loaded = Object.keys(human.models).filter((a) => human.models[a]);
if (initial) {
log('Human: ', human.version);
log('TFJS: ', human.tf.version.tfjs);
log('Environment: ', { platform: human.env.platform, agent: human.env.agent });
log('Backends: ', human.env.backends);
log('Support: ', { offscreen: human.env.offscreen, webgl: human.env.webgl.supported, webgpu: human.env.webgpu.supported, wasm: human.env.wasm.supported, simd: human.env.wasm.simd, multithread: human.env.wasm.multithread });
log('Models: ', loaded);
log('');
initial = false;
}
const element = document.getElementById('image');
const processed = await human.image(element);
const t0 = human.now();
await human.detect(processed.tensor, myConfig);
const t1 = human.now();
if (human.tf.getBackend().toLowerCase() === backend.toLowerCase()) {
log('Backend: ', human.tf.getBackend());
log('Memory state: ', human.tf.engine().memory());
log('Initial inference: ', Math.round(t1 - t0));
for (let i = 0; i < loop; i++) {
const image = await human.image(element);
human.tf.dispose(image.tensor);
}
const t2 = human.now();
log('Input processing: ', Math.round(10 * (t2 - t1) / loop) / 10);
for (let i = 0; i < loop; i++) await human.detect(processed.tensor, myConfig);
const t3 = human.now();
log('Average inference: ', Math.round((t3 - t1) / loop));
} else {
log('Backend error: ', { desired: backend, current: human.tf.getBackend().toLowerCase() });
}
log('');
}
log('Attempting backends: ', backends);
async function main() {
for (const backend of backends) await benchmark(backend);
}
window.onload = main;
</script>
</body>
</html>

65
demo/benchmark/node.js Normal file
View File

@ -0,0 +1,65 @@
// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars
const tf = require('@tensorflow/tfjs-node-gpu');
const log = require('@vladmandic/pilogger');
const canvasJS = require('canvas');
const Human = require('../../dist/human.node-gpu.js').default;
const input = './samples/in/group-1.jpg';
const loop = 20;
const myConfig = {
backend: 'tensorflow',
modelBasePath: 'https://vladmandic.github.io/human/models',
// wasmPath: 'https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@3.18.0/dist/',
debug: true,
async: true,
cacheSensitivity: 0,
filter: { enabled: false },
face: {
enabled: true,
detector: { enabled: true, rotation: false },
mesh: { enabled: true },
iris: { enabled: true },
description: { enabled: true },
emotion: { enabled: true },
antispoof: { enabled: true },
liveness: { enabled: true },
},
hand: { enabled: true },
body: { enabled: true },
object: { enabled: true },
};
async function getImage(human) {
const img = await canvasJS.loadImage(input);
const canvas = canvasJS.createCanvas(img.width, img.height);
const ctx = canvas.getContext('2d');
ctx.drawImage(img, 0, 0, img.width, img.height);
const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
const tensor = human.tf.tensor(Array.from(imageData.data), [canvas.height, canvas.width, 4], 'int32'); // create rgba image tensor from flat array
log.info('Image:', input, tensor.shape);
return tensor;
}
async function main() {
log.header();
const human = new Human(myConfig);
await human.tf.ready();
log.info('Human:', human.version);
await human.load();
const loaded = Object.keys(human.models).filter((a) => human.models[a]);
log.info('Loaded:', loaded);
log.info('Memory state:', human.tf.engine().memory());
const tensor = await getImage(human);
log.state('Processing:', tensor['shape']);
const t0 = human.now();
await human.detect(tensor, myConfig);
const t1 = human.now();
log.state('Backend:', human.tf.getBackend());
log.data('Warmup:', Math.round(t1 - t0));
for (let i = 0; i < loop; i++) await human.detect(tensor, myConfig);
const t2 = human.now();
log.data('Average:', Math.round((t2 - t1) / loop));
}
main();

View File

@ -1,160 +0,0 @@
/**
* Human demo for browsers
*
* Demo for face detection
*/
/** @type {Human} */
import { Human } from '../../dist/human.esm.js';
let loader;
const humanConfig = { // user configuration for human, used to fine-tune behavior
cacheSensitivity: 0,
debug: true,
modelBasePath: 'https://vladmandic.github.io/human-models/models/',
filter: { enabled: true, equalization: false, flip: false },
face: {
enabled: true,
detector: { rotation: false, maxDetected: 100, minConfidence: 0.2, return: true, square: false },
iris: { enabled: true },
description: { enabled: true },
emotion: { enabled: true },
antispoof: { enabled: true },
liveness: { enabled: true },
},
body: { enabled: false },
hand: { enabled: false },
object: { enabled: false },
gesture: { enabled: false },
segmentation: { enabled: false },
};
const human = new Human(humanConfig); // new instance of human
export const showLoader = (msg) => { loader.setAttribute('msg', msg); loader.style.display = 'block'; };
export const hideLoader = () => loader.style.display = 'none';
class ComponentLoader extends HTMLElement { // watch for attributes
message = document.createElement('div');
static get observedAttributes() { return ['msg']; }
attributeChangedCallback(_name, _prevVal, currVal) {
this.message.innerHTML = currVal;
}
connectedCallback() { // triggered on insert
this.attachShadow({ mode: 'open' });
const css = document.createElement('style');
css.innerHTML = `
.loader-container { top: 450px; justify-content: center; position: fixed; width: 100%; }
.loader-message { font-size: 1.5rem; padding: 1rem; }
.loader { width: 300px; height: 300px; border: 3px solid transparent; border-radius: 50%; border-top: 4px solid #f15e41; animation: spin 4s linear infinite; position: relative; }
.loader::before, .loader::after { content: ""; position: absolute; top: 6px; bottom: 6px; left: 6px; right: 6px; border-radius: 50%; border: 4px solid transparent; }
.loader::before { border-top-color: #bad375; animation: 3s spin linear infinite; }
.loader::after { border-top-color: #26a9e0; animation: spin 1.5s linear infinite; }
@keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } }
`;
const container = document.createElement('div');
container.id = 'loader-container';
container.className = 'loader-container';
loader = document.createElement('div');
loader.id = 'loader';
loader.className = 'loader';
this.message.id = 'loader-message';
this.message.className = 'loader-message';
this.message.innerHTML = '';
container.appendChild(this.message);
container.appendChild(loader);
this.shadowRoot?.append(css, container);
loader = this; // eslint-disable-line @typescript-eslint/no-this-alias
}
}
customElements.define('component-loader', ComponentLoader);
function addFace(face, source) {
const deg = (rad) => Math.round((rad || 0) * 180 / Math.PI);
const canvas = document.createElement('canvas');
const emotion = face.emotion?.map((e) => `${Math.round(100 * e.score)}% ${e.emotion}`) || [];
const rotation = `pitch ${deg(face.rotation?.angle.pitch)}° | roll ${deg(face.rotation?.angle.roll)}° | yaw ${deg(face.rotation?.angle.yaw)}°`;
const gaze = `direction ${deg(face.rotation?.gaze.bearing)}° strength ${Math.round(100 * (face.rotation.gaze.strength || 0))}%`;
canvas.title = `
source: ${source}
score: ${Math.round(100 * face.boxScore)}% detection ${Math.round(100 * face.faceScore)}% analysis
age: ${face.age} years | gender: ${face.gender} score ${Math.round(100 * face.genderScore)}%
emotion: ${emotion.join(' | ')}
head rotation: ${rotation}
eyes gaze: ${gaze}
camera distance: ${face.distance}m | ${Math.round(100 * face.distance / 2.54)}in
check: ${Math.round(100 * face.real)}% real ${Math.round(100 * face.live)}% live
`.replace(/ /g, ' ');
canvas.onclick = (e) => {
e.preventDefault();
document.getElementById('description').innerHTML = canvas.title;
};
human.draw.tensor(face.tensor, canvas);
human.tf.dispose(face.tensor);
return canvas;
}
async function addFaces(imgEl) {
showLoader('human: busy');
const faceEl = document.getElementById('faces');
faceEl.innerHTML = '';
const res = await human.detect(imgEl);
console.log(res); // eslint-disable-line no-console
document.getElementById('description').innerHTML = `detected ${res.face.length} faces`;
for (const face of res.face) {
const canvas = addFace(face, imgEl.src.substring(0, 64));
faceEl.appendChild(canvas);
}
hideLoader();
}
function addImage(imageUri) {
const imgEl = new Image(256, 256);
imgEl.onload = () => {
const images = document.getElementById('images');
images.appendChild(imgEl); // add image if loaded ok
images.scroll(images?.offsetWidth, 0);
};
imgEl.onerror = () => console.error('addImage', { imageUri }); // eslint-disable-line no-console
imgEl.onclick = () => addFaces(imgEl);
imgEl.title = imageUri.substring(0, 64);
imgEl.src = encodeURI(imageUri);
}
async function initDragAndDrop() {
const reader = new FileReader();
reader.onload = async (e) => {
if (e.target.result.startsWith('data:image')) await addImage(e.target.result);
};
document.body.addEventListener('dragenter', (evt) => evt.preventDefault());
document.body.addEventListener('dragleave', (evt) => evt.preventDefault());
document.body.addEventListener('dragover', (evt) => evt.preventDefault());
document.body.addEventListener('drop', async (evt) => {
evt.preventDefault();
evt.dataTransfer.dropEffect = 'copy';
for (const f of evt.dataTransfer.files) reader.readAsDataURL(f);
});
document.body.onclick = (e) => {
if (e.target.localName !== 'canvas') document.getElementById('description').innerHTML = '';
};
}
async function main() {
showLoader('loading models');
await human.load();
showLoader('compiling models');
await human.warmup();
showLoader('loading images');
const images = ['group-1.jpg', 'group-2.jpg', 'group-3.jpg', 'group-4.jpg', 'group-5.jpg', 'group-6.jpg', 'group-7.jpg', 'solvay1927.jpg', 'stock-group-1.jpg', 'stock-group-2.jpg', 'stock-models-6.jpg', 'stock-models-7.jpg'];
const imageUris = images.map((a) => `../../samples/in/${a}`);
for (let i = 0; i < imageUris.length; i++) addImage(imageUris[i]);
initDragAndDrop();
hideLoader();
}
window.onload = main;

View File

@ -1,43 +0,0 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Human</title>
<!-- <meta http-equiv="content-type" content="text/html; charset=utf-8"> -->
<meta name="viewport" content="width=device-width, shrink-to-fit=yes">
<meta name="keywords" content="Human">
<meta name="application-name" content="Human">
<meta name="description" content="Human: 3D Face Detection, Body Pose, Hand & Finger Tracking, Iris Tracking, Age & Gender Prediction, Emotion Prediction & Gesture Recognition; Author: Vladimir Mandic <https://github.com/vladmandic>">
<meta name="msapplication-tooltip" content="Human: 3D Face Detection, Body Pose, Hand & Finger Tracking, Iris Tracking, Age & Gender Prediction, Emotion Prediction & Gesture Recognition; Author: Vladimir Mandic <https://github.com/vladmandic>">
<meta name="theme-color" content="#000000">
<link rel="manifest" href="../manifest.webmanifest">
<link rel="shortcut icon" href="../../favicon.ico" type="image/x-icon">
<link rel="apple-touch-icon" href="../../assets/icon.png">
<script src="./facedetect.js" type="module"></script>
<style>
img { object-fit: contain; }
img:hover { filter: grayscale(1); transform: scale(1.08); transition : all 0.3s ease; }
@font-face { font-family: 'Lato'; font-display: swap; font-style: normal; font-weight: 100; src: local('Lato'), url('../../assets/lato-light.woff2') }
html { font-family: 'Lato', 'Segoe UI'; font-size: 24px; font-variant: small-caps; }
body { margin: 24px; background: black; color: white; overflow: hidden; text-align: -webkit-center; width: 100vw; height: 100vh; }
::-webkit-scrollbar { height: 8px; border: 0; border-radius: 0; }
::-webkit-scrollbar-thumb { background: grey }
::-webkit-scrollbar-track { margin: 3px; }
canvas { width: 192px; height: 192px; margin: 2px; padding: 2px; cursor: grab; transform: scale(1.00); transition : all 0.3s ease; }
canvas:hover { filter: grayscale(1); transform: scale(1.08); transition : all 0.3s ease; }
</style>
</head>
<body>
<component-loader></component-loader>
<div style="display: flex">
<div>
<div style="margin: 24px">select image to show detected faces<br>drag & drop to add your images</div>
<div id="images" style="display: flex; width: 98vw; overflow-x: auto; overflow-y: hidden; scroll-behavior: smooth"></div>
</div>
</div>
<div id="list" style="height: 10px"></div>
<div style="margin: 24px">hover or click on face to show details</div>
<div id="faces" style="overflow-y: auto"></div>
<div id="description" style="white-space: pre;"></div>
</body>
</html>

View File

@ -38,5 +38,4 @@ designed to serve as a quick check when used together with other indicators:
**FaceID** is compatible with **FaceID** is compatible with
- `faceres.json` (default) perfoms combined age/gender/descriptor analysis - `faceres.json` (default) perfoms combined age/gender/descriptor analysis
- `faceres-deep.json` higher resolution variation of `faceres` - `faceres-deep.json` higher resolution variation of `faceres`
- `insightface` alternative model for face descriptor analysis
- `mobilefacenet` alternative model for face descriptor analysis - `mobilefacenet` alternative model for face descriptor analysis

View File

@ -19,23 +19,14 @@
body { margin: 0; padding: 16px; background: black; color: white; overflow-x: hidden; width: 100vw; height: 100vh; } body { margin: 0; padding: 16px; background: black; color: white; overflow-x: hidden; width: 100vw; height: 100vh; }
body::-webkit-scrollbar { display: none; } body::-webkit-scrollbar { display: none; }
.button { padding: 2px; cursor: pointer; box-shadow: 2px 2px black; width: 64px; text-align: center; place-content: center; margin-left: 16px; height: 16px; display: none } .button { padding: 2px; cursor: pointer; box-shadow: 2px 2px black; width: 64px; text-align: center; place-content: center; margin-left: 16px; height: 16px; display: none }
.ok { position: absolute; top: 64px; right: 20px; width: 150px; background-color: grey; padding: 4px; color: black; font-size: 14px } .ok { position: absolute; top: 64px; right: 20px; width: 100px; background-color: grey; padding: 4px; color: black; font-size: 14px }
</style> </style>
</head> </head>
<body> <body>
<div style="padding: 8px">
<h1 style="margin: 0">faceid demo using human library</h1>
look directly at camera and make sure that detection passes all of the required tests noted on the right hand side of the screen<br>
if input does not satisfies tests within specific timeout, no image will be selected<br>
once face image is approved, it will be compared with existing face database<br>
you can also store face descriptor with label in a browser's indexdb for future usage<br>
<br>
<i>note: this is not equivalent to full faceid methods as used by modern mobile phones or windows hello<br>
as they rely on additional infrared sensors and depth-sensing and not just camera image for additional levels of security</i>
</div>
<canvas id="canvas" style="padding: 8px"></canvas> <canvas id="canvas" style="padding: 8px"></canvas>
<canvas id="source" style="padding: 8px"></canvas> <canvas id="source" style="padding: 8px"></canvas>
<video id="video" playsinline style="display: none"></video> <video id="video" playsinline style="display: none"></video>
<pre id="fps" style="position: absolute; bottom: 16px; right: 20px; background-color: grey; padding: 8px; box-shadow: 2px 2px black"></pre>
<pre id="log" style="padding: 8px"></pre> <pre id="log" style="padding: 8px"></pre>
<div id="match" style="display: none; padding: 8px"> <div id="match" style="display: none; padding: 8px">
<label for="name">name:</label> <label for="name">name:</label>
@ -43,7 +34,7 @@
<span id="save" class="button" style="background-color: royalblue">save</span> <span id="save" class="button" style="background-color: royalblue">save</span>
<span id="delete" class="button" style="background-color: lightcoral">delete</span> <span id="delete" class="button" style="background-color: lightcoral">delete</span>
</div> </div>
<div id="retry" class="button" style="background-color: darkslategray; width: 93%; margin-top: 32px; padding: 12px">retry</div> <div id="retry" class="button" style="background-color: darkslategray; width: 350px; margin-top: 32px; padding: 4px">retry</div>
<div id="ok"></div> <div id="ok"></div>
</body> </body>
</html> </html>

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -7,20 +7,17 @@
* @license MIT * @license MIT
*/ */
import * as H from '../../dist/human.esm.js'; // equivalent of @vladmandic/Human import { Human, TensorLike, FaceResult } from '../../dist/human.esm.js'; // equivalent of @vladmandic/Human
import * as indexDb from './indexdb'; // methods to deal with indexdb import * as indexDb from './indexdb'; // methods to deal with indexdb
const humanConfig = { // user configuration for human, used to fine-tune behavior const humanConfig = { // user configuration for human, used to fine-tune behavior
cacheSensitivity: 0.01,
modelBasePath: '../../models', modelBasePath: '../../models',
filter: { enabled: true, equalization: true }, // lets run with histogram equilizer filter: { equalization: true }, // lets run with histogram equilizer
debug: true,
face: { face: {
enabled: true, enabled: true,
detector: { rotation: true, return: true, mask: false }, // return tensor is used to get detected face image detector: { rotation: true, return: true, cropFactor: 1.6, mask: false }, // return tensor is used to get detected face image
description: { enabled: true }, // default model for face descriptor extraction is faceres description: { enabled: true }, // default model for face descriptor extraction is faceres
// mobilefacenet: { enabled: true, modelPath: 'https://vladmandic.github.io/human-models/models/mobilefacenet.json' }, // alternative model mobilefacenet: { enabled: false, modelPath: 'https://vladmandic.github.io/human-models/models/mobilefacenet.json' }, // alternative model
// insightface: { enabled: true, modelPath: 'https://vladmandic.github.io/insightface/models/insightface-mobilenet-swish.json' }, // alternative model
iris: { enabled: true }, // needed to determine gaze direction iris: { enabled: true }, // needed to determine gaze direction
emotion: { enabled: false }, // not needed emotion: { enabled: false }, // not needed
antispoof: { enabled: true }, // enable optional antispoof module antispoof: { enabled: true }, // enable optional antispoof module
@ -38,50 +35,29 @@ const matchOptions = { order: 2, multiplier: 25, min: 0.2, max: 0.8 }; // for fa
const options = { const options = {
minConfidence: 0.6, // overal face confidence for box, face, gender, real, live minConfidence: 0.6, // overal face confidence for box, face, gender, real, live
minSize: 224, // min input to face descriptor model before degradation minSize: 224, // min input to face descriptor model before degradation
maxTime: 30000, // max time before giving up maxTime: 10000, // max time before giving up
blinkMin: 10, // minimum duration of a valid blink blinkMin: 10, // minimum duration of a valid blink
blinkMax: 800, // maximum duration of a valid blink blinkMax: 800, // maximum duration of a valid blink
threshold: 0.5, // minimum similarity threshold: 0.5, // minimum similarity
distanceMin: 0.4, // closest that face is allowed to be to the cammera in cm
distanceMax: 1.0, // farthest that face is allowed to be to the cammera in cm
mask: humanConfig.face.detector.mask, mask: humanConfig.face.detector.mask,
rotation: humanConfig.face.detector.rotation, rotation: humanConfig.face.detector.rotation,
cropFactor: humanConfig.face.detector.cropFactor,
...matchOptions, ...matchOptions,
}; };
const ok: Record<string, { status: boolean | undefined, val: number }> = { // must meet all rules const ok = { // must meet all rules
faceCount: { status: false, val: 0 }, faceCount: false,
faceConfidence: { status: false, val: 0 }, faceConfidence: false,
facingCenter: { status: false, val: 0 }, facingCenter: false,
lookingCenter: { status: false, val: 0 }, lookingCenter: false,
blinkDetected: { status: false, val: 0 }, blinkDetected: false,
faceSize: { status: false, val: 0 }, faceSize: false,
antispoofCheck: { status: false, val: 0 }, antispoofCheck: false,
livenessCheck: { status: false, val: 0 }, livenessCheck: false,
distance: { status: false, val: 0 }, elapsedMs: 0, // total time while waiting for valid face
age: { status: false, val: 0 },
gender: { status: false, val: 0 },
timeout: { status: true, val: 0 },
descriptor: { status: false, val: 0 },
elapsedMs: { status: undefined, val: 0 }, // total time while waiting for valid face
detectFPS: { status: undefined, val: 0 }, // mark detection fps performance
drawFPS: { status: undefined, val: 0 }, // mark redraw fps performance
}; };
const allOk = () => ok.faceCount && ok.faceSize && ok.blinkDetected && ok.facingCenter && ok.lookingCenter && ok.faceConfidence && ok.antispoofCheck && ok.livenessCheck;
const allOk = () => ok.faceCount.status const current: { face: FaceResult | null, record: indexDb.FaceRecord | null } = { face: null, record: null }; // current face record and matched database record
&& ok.faceSize.status
&& ok.blinkDetected.status
&& ok.facingCenter.status
&& ok.lookingCenter.status
&& ok.faceConfidence.status
&& ok.antispoofCheck.status
&& ok.livenessCheck.status
&& ok.distance.status
&& ok.descriptor.status
&& ok.age.status
&& ok.gender.status;
const current: { face: H.FaceResult | null, record: indexDb.FaceRecord | null } = { face: null, record: null }; // current face record and matched database record
const blink = { // internal timers for blink start/end/duration const blink = { // internal timers for blink start/end/duration
start: 0, start: 0,
@ -90,9 +66,9 @@ const blink = { // internal timers for blink start/end/duration
}; };
// let db: Array<{ name: string, source: string, embedding: number[] }> = []; // holds loaded face descriptor database // let db: Array<{ name: string, source: string, embedding: number[] }> = []; // holds loaded face descriptor database
const human = new H.Human(humanConfig); // create instance of human with overrides from user configuration const human = new Human(humanConfig); // create instance of human with overrides from user configuration
human.env.perfadd = false; // is performance data showing instant or total values human.env['perfadd'] = false; // is performance data showing instant or total values
human.draw.options.font = 'small-caps 18px "Lato"'; // set font used to draw labels when using draw methods human.draw.options.font = 'small-caps 18px "Lato"'; // set font used to draw labels when using draw methods
human.draw.options.lineHeight = 20; human.draw.options.lineHeight = 20;
@ -110,110 +86,97 @@ const dom = { // grab instances of dom objects so we dont have to look them up l
ok: document.getElementById('ok') as HTMLDivElement, ok: document.getElementById('ok') as HTMLDivElement,
}; };
const timestamp = { detect: 0, draw: 0 }; // holds information used to calculate performance and possible memory leaks const timestamp = { detect: 0, draw: 0 }; // holds information used to calculate performance and possible memory leaks
const fps = { detect: 0, draw: 0 }; // holds calculated fps information for both detect and screen refresh
let startTime = 0; let startTime = 0;
const log = (...msg) => { // helper method to output messages const log = (...msg) => { // helper method to output messages
dom.log.innerText += msg.join(' ') + '\n'; dom.log.innerText += msg.join(' ') + '\n';
console.log(...msg); // eslint-disable-line no-console // eslint-disable-next-line no-console
console.log(...msg);
}; };
const printFPS = (msg) => dom.fps.innerText = msg; // print status element
async function webCam() { // initialize webcam async function webCam() { // initialize webcam
printFPS('starting webcam...');
// @ts-ignore resizeMode is not yet defined in tslib // @ts-ignore resizeMode is not yet defined in tslib
const cameraOptions: MediaStreamConstraints = { audio: false, video: { facingMode: 'user', resizeMode: 'none', width: { ideal: document.body.clientWidth } } }; const cameraOptions: MediaStreamConstraints = { audio: false, video: { facingMode: 'user', resizeMode: 'none', width: { ideal: document.body.clientWidth } } };
const stream: MediaStream = await navigator.mediaDevices.getUserMedia(cameraOptions); const stream: MediaStream = await navigator.mediaDevices.getUserMedia(cameraOptions);
const ready = new Promise((resolve) => { dom.video.onloadeddata = () => resolve(true); }); const ready = new Promise((resolve) => { dom.video.onloadeddata = () => resolve(true); });
dom.video.srcObject = stream; dom.video.srcObject = stream;
void dom.video.play(); dom.video.play();
await ready; await ready;
dom.canvas.width = dom.video.videoWidth; dom.canvas.width = dom.video.videoWidth;
dom.canvas.height = dom.video.videoHeight; dom.canvas.height = dom.video.videoHeight;
dom.canvas.style.width = '50%';
dom.canvas.style.height = '50%';
if (human.env.initial) log('video:', dom.video.videoWidth, dom.video.videoHeight, '|', stream.getVideoTracks()[0].label); if (human.env.initial) log('video:', dom.video.videoWidth, dom.video.videoHeight, '|', stream.getVideoTracks()[0].label);
dom.canvas.onclick = () => { // pause when clicked on screen and resume on next click dom.canvas.onclick = () => { // pause when clicked on screen and resume on next click
if (dom.video.paused) void dom.video.play(); if (dom.video.paused) dom.video.play();
else dom.video.pause(); else dom.video.pause();
}; };
} }
async function detectionLoop() { // main detection loop async function detectionLoop() { // main detection loop
if (!dom.video.paused) { if (!dom.video.paused) {
if (current.face?.tensor) human.tf.dispose(current.face.tensor); // dispose previous tensor if (current.face && current.face.tensor) human.tf.dispose(current.face.tensor); // dispose previous tensor
await human.detect(dom.video); // actual detection; were not capturing output in a local variable as it can also be reached via human.result await human.detect(dom.video); // actual detection; were not capturing output in a local variable as it can also be reached via human.result
const now = human.now(); const now = human.now();
ok.detectFPS.val = Math.round(10000 / (now - timestamp.detect)) / 10; fps.detect = 1000 / (now - timestamp.detect);
timestamp.detect = now; timestamp.detect = now;
requestAnimationFrame(detectionLoop); // start new frame immediately requestAnimationFrame(detectionLoop); // start new frame immediately
} }
} }
function drawValidationTests() { async function validationLoop(): Promise<FaceResult> { // main screen refresh loop
const interpolated = await human.next(human.result); // smoothen result using last-known results
await human.draw.canvas(dom.video, dom.canvas); // draw canvas to screen
await human.draw.all(dom.canvas, interpolated); // draw labels, boxes, lines, etc.
const now = human.now();
fps.draw = 1000 / (now - timestamp.draw);
timestamp.draw = now;
printFPS(`fps: ${fps.detect.toFixed(1).padStart(5, ' ')} detect | ${fps.draw.toFixed(1).padStart(5, ' ')} draw`); // write status
ok.faceCount = human.result.face.length === 1; // must be exactly detected face
if (ok.faceCount) { // skip the rest if no face
const gestures: string[] = Object.values(human.result.gesture).map((gesture) => gesture.gesture); // flatten all gestures
if (gestures.includes('blink left eye') || gestures.includes('blink right eye')) blink.start = human.now(); // blink starts when eyes get closed
if (blink.start > 0 && !gestures.includes('blink left eye') && !gestures.includes('blink right eye')) blink.end = human.now(); // if blink started how long until eyes are back open
ok.blinkDetected = ok.blinkDetected || (Math.abs(blink.end - blink.start) > options.blinkMin && Math.abs(blink.end - blink.start) < options.blinkMax);
if (ok.blinkDetected && blink.time === 0) blink.time = Math.trunc(blink.end - blink.start);
ok.facingCenter = gestures.includes('facing center');
ok.lookingCenter = gestures.includes('looking center'); // must face camera and look at camera
ok.faceConfidence = (human.result.face[0].boxScore || 0) > options.minConfidence && (human.result.face[0].faceScore || 0) > options.minConfidence && (human.result.face[0].genderScore || 0) > options.minConfidence;
ok.antispoofCheck = (human.result.face[0].real || 0) > options.minConfidence;
ok.livenessCheck = (human.result.face[0].live || 0) > options.minConfidence;
ok.faceSize = human.result.face[0].box[2] >= options.minSize && human.result.face[0].box[3] >= options.minSize;
}
let y = 32; let y = 32;
for (const [key, val] of Object.entries(ok)) { for (const [key, val] of Object.entries(ok)) {
let el = document.getElementById(`ok-${key}`); let el = document.getElementById(`ok-${key}`);
if (!el) { if (!el) {
el = document.createElement('div'); el = document.createElement('div');
el.id = `ok-${key}`;
el.innerText = key; el.innerText = key;
el.className = 'ok'; el.className = 'ok';
el.style.top = `${y}px`; el.style.top = `${y}px`;
dom.ok.appendChild(el); dom.ok.appendChild(el);
} }
if (typeof val.status === 'boolean') el.style.backgroundColor = val.status ? 'lightgreen' : 'lightcoral'; if (typeof val === 'boolean') el.style.backgroundColor = val ? 'lightgreen' : 'lightcoral';
const status = val.status ? 'ok' : 'fail'; else el.innerText = `${key}:${val}`;
el.innerText = `${key}: ${val.val === 0 ? status : val.val}`;
y += 28; y += 28;
} }
} if (allOk()) { // all criteria met
async function validationLoop(): Promise<H.FaceResult> { // main screen refresh loop
const interpolated = human.next(human.result); // smoothen result using last-known results
human.draw.canvas(dom.video, dom.canvas); // draw canvas to screen
await human.draw.all(dom.canvas, interpolated); // draw labels, boxes, lines, etc.
const now = human.now();
ok.drawFPS.val = Math.round(10000 / (now - timestamp.draw)) / 10;
timestamp.draw = now;
ok.faceCount.val = human.result.face.length;
ok.faceCount.status = ok.faceCount.val === 1; // must be exactly detected face
if (ok.faceCount.status) { // skip the rest if no face
const gestures: string[] = Object.values(human.result.gesture).map((gesture: H.GestureResult) => gesture.gesture); // flatten all gestures
if (gestures.includes('blink left eye') || gestures.includes('blink right eye')) blink.start = human.now(); // blink starts when eyes get closed
if (blink.start > 0 && !gestures.includes('blink left eye') && !gestures.includes('blink right eye')) blink.end = human.now(); // if blink started how long until eyes are back open
ok.blinkDetected.status = ok.blinkDetected.status || (Math.abs(blink.end - blink.start) > options.blinkMin && Math.abs(blink.end - blink.start) < options.blinkMax);
if (ok.blinkDetected.status && blink.time === 0) blink.time = Math.trunc(blink.end - blink.start);
ok.facingCenter.status = gestures.includes('facing center');
ok.lookingCenter.status = gestures.includes('looking center'); // must face camera and look at camera
ok.faceConfidence.val = human.result.face[0].faceScore || human.result.face[0].boxScore || 0;
ok.faceConfidence.status = ok.faceConfidence.val >= options.minConfidence;
ok.antispoofCheck.val = human.result.face[0].real || 0;
ok.antispoofCheck.status = ok.antispoofCheck.val >= options.minConfidence;
ok.livenessCheck.val = human.result.face[0].live || 0;
ok.livenessCheck.status = ok.livenessCheck.val >= options.minConfidence;
ok.faceSize.val = Math.min(human.result.face[0].box[2], human.result.face[0].box[3]);
ok.faceSize.status = ok.faceSize.val >= options.minSize;
ok.distance.val = human.result.face[0].distance || 0;
ok.distance.status = (ok.distance.val >= options.distanceMin) && (ok.distance.val <= options.distanceMax);
ok.descriptor.val = human.result.face[0].embedding?.length || 0;
ok.descriptor.status = ok.descriptor.val > 0;
ok.age.val = human.result.face[0].age || 0;
ok.age.status = ok.age.val > 0;
ok.gender.val = human.result.face[0].genderScore || 0;
ok.gender.status = ok.gender.val >= options.minConfidence;
}
// run again
ok.timeout.status = ok.elapsedMs.val <= options.maxTime;
drawValidationTests();
if (allOk() || !ok.timeout.status) { // all criteria met
dom.video.pause(); dom.video.pause();
return human.result.face[0]; return human.result.face[0];
} }
ok.elapsedMs.val = Math.trunc(human.now() - startTime); if (ok.elapsedMs > options.maxTime) { // give up
return new Promise((resolve) => { dom.video.pause();
setTimeout(async () => { return human.result.face[0];
await validationLoop(); // run validation loop until conditions are met } else { // run again
resolve(human.result.face[0]); // recursive promise resolve ok.elapsedMs = Math.trunc(human.now() - startTime);
}, 30); // use to slow down refresh from max refresh rate to target of 30 fps return new Promise((resolve) => {
}); setTimeout(async () => {
const res = await validationLoop(); // run validation loop until conditions are met
if (res) resolve(human.result.face[0]); // recursive promise resolve
}, 30); // use to slow down refresh from max refresh rate to target of 30 fps
});
}
} }
async function saveRecords() { async function saveRecords() {
@ -221,8 +184,7 @@ async function saveRecords() {
const image = dom.canvas.getContext('2d')?.getImageData(0, 0, dom.canvas.width, dom.canvas.height) as ImageData; const image = dom.canvas.getContext('2d')?.getImageData(0, 0, dom.canvas.width, dom.canvas.height) as ImageData;
const rec = { id: 0, name: dom.name.value, descriptor: current.face?.embedding as number[], image }; const rec = { id: 0, name: dom.name.value, descriptor: current.face?.embedding as number[], image };
await indexDb.save(rec); await indexDb.save(rec);
log('saved face record:', rec.name, 'descriptor length:', current.face?.embedding?.length); log('saved face record:', rec.name);
log('known face records:', await indexDb.count());
} else { } else {
log('invalid name'); log('invalid name');
} }
@ -235,21 +197,20 @@ async function deleteRecord() {
} }
async function detectFace() { async function detectFace() {
dom.canvas.style.height = '';
dom.canvas.getContext('2d')?.clearRect(0, 0, options.minSize, options.minSize); dom.canvas.getContext('2d')?.clearRect(0, 0, options.minSize, options.minSize);
if (!current?.face?.tensor || !current?.face?.embedding) return false; if (!current.face || !current.face.tensor || !current.face.embedding) return false;
console.log('face record:', current.face); // eslint-disable-line no-console // eslint-disable-next-line no-console
log(`detected face: ${current.face.gender} ${current.face.age || 0}y distance ${100 * (current.face.distance || 0)}cm/${Math.round(100 * (current.face.distance || 0) / 2.54)}in`); console.log('face record:', current.face);
await human.draw.tensor(current.face.tensor, dom.canvas); human.tf.browser.toPixels(current.face.tensor as unknown as TensorLike, dom.canvas);
if (await indexDb.count() === 0) { if (await indexDb.count() === 0) {
log('face database is empty: nothing to compare face with'); log('face database is empty');
document.body.style.background = 'black'; document.body.style.background = 'black';
dom.delete.style.display = 'none'; dom.delete.style.display = 'none';
return false; return false;
} }
const db = await indexDb.load(); const db = await indexDb.load();
const descriptors = db.map((rec) => rec.descriptor).filter((desc) => desc.length > 0); const descriptors = db.map((rec) => rec.descriptor);
const res = human.match.find(current.face.embedding, descriptors, matchOptions); const res = await human.match(current.face.embedding, descriptors, matchOptions);
current.record = db[res.index] || null; current.record = db[res.index] || null;
if (current.record) { if (current.record) {
log(`best match: ${current.record.name} | id: ${current.record.id} | similarity: ${Math.round(1000 * res.similarity) / 10}%`); log(`best match: ${current.record.name} | id: ${current.record.id} | similarity: ${Math.round(1000 * res.similarity) / 10}%`);
@ -262,20 +223,17 @@ async function detectFace() {
} }
async function main() { // main entry point async function main() { // main entry point
ok.faceCount.status = false; ok.faceCount = false;
ok.faceConfidence.status = false; ok.faceConfidence = false;
ok.facingCenter.status = false; ok.facingCenter = false;
ok.blinkDetected.status = false; ok.blinkDetected = false;
ok.faceSize.status = false; ok.faceSize = false;
ok.antispoofCheck.status = false; ok.antispoofCheck = false;
ok.livenessCheck.status = false; ok.livenessCheck = false;
ok.age.status = false; ok.elapsedMs = 0;
ok.gender.status = false;
ok.elapsedMs.val = 0;
dom.match.style.display = 'none'; dom.match.style.display = 'none';
dom.retry.style.display = 'none'; dom.retry.style.display = 'none';
dom.source.style.display = 'none'; dom.source.style.display = 'none';
dom.canvas.style.height = '50%';
document.body.style.background = 'black'; document.body.style.background = 'black';
await webCam(); await webCam();
await detectionLoop(); // start detection loop await detectionLoop(); // start detection loop
@ -293,21 +251,19 @@ async function main() { // main entry point
if (!allOk()) { // is all criteria met? if (!allOk()) { // is all criteria met?
log('did not find valid face'); log('did not find valid face');
return false; return false;
} else {
return detectFace();
} }
return detectFace();
} }
async function init() { async function init() {
log('human version:', human.version, '| tfjs version:', human.tf.version['tfjs-core']); log('human version:', human.version, '| tfjs version:', human.tf.version['tfjs-core']);
log('options:', JSON.stringify(options).replace(/{|}|"|\[|\]/g, '').replace(/,/g, ' ')); log('options:', JSON.stringify(options).replace(/{|}|"|\[|\]/g, '').replace(/,/g, ' '));
log('initializing webcam...'); printFPS('loading...');
await webCam(); // start webcam
log('loading human models...');
await human.load(); // preload all models
log('initializing human...');
log('face embedding model:', humanConfig.face.description.enabled ? 'faceres' : '', humanConfig.face['mobilefacenet']?.enabled ? 'mobilefacenet' : '', humanConfig.face['insightface']?.enabled ? 'insightface' : '');
log('loading face database...');
log('known face records:', await indexDb.count()); log('known face records:', await indexDb.count());
await webCam(); // start webcam
await human.load(); // preload all models
printFPS('initializing...');
dom.retry.addEventListener('click', main); dom.retry.addEventListener('click', main);
dom.save.addEventListener('click', saveRecords); dom.save.addEventListener('click', saveRecords);
dom.delete.addEventListener('click', deleteRecord); dom.delete.addEventListener('click', deleteRecord);

View File

@ -3,9 +3,10 @@ let db: IDBDatabase; // instance of indexdb
const database = 'human'; const database = 'human';
const table = 'person'; const table = 'person';
export interface FaceRecord { id: number, name: string, descriptor: number[], image: ImageData } export type FaceRecord = { id: number, name: string, descriptor: number[], image: ImageData };
const log = (...msg) => console.log('indexdb', ...msg); // eslint-disable-line no-console // eslint-disable-next-line no-console
const log = (...msg) => console.log('indexdb', ...msg);
export async function open() { export async function open() {
if (db) return true; if (db) return true;
@ -18,7 +19,7 @@ export async function open() {
db.createObjectStore(table, { keyPath: 'id', autoIncrement: true }); db.createObjectStore(table, { keyPath: 'id', autoIncrement: true });
}; };
request.onsuccess = (evt) => { // open request.onsuccess = (evt) => { // open
db = (evt.target as IDBOpenDBRequest).result; db = (evt.target as IDBOpenDBRequest).result as IDBDatabase;
log('open:', db); log('open:', db);
resolve(true); resolve(true);
}; };
@ -26,7 +27,7 @@ export async function open() {
} }
export async function load(): Promise<FaceRecord[]> { export async function load(): Promise<FaceRecord[]> {
const faceDB: FaceRecord[] = []; const faceDB: Array<FaceRecord> = [];
if (!db) await open(); // open or create if not already done if (!db) await open(); // open or create if not already done
return new Promise((resolve) => { return new Promise((resolve) => {
const cursor: IDBRequest = db.transaction([table], 'readwrite').objectStore(table).openCursor(null, 'next'); const cursor: IDBRequest = db.transaction([table], 'readwrite').objectStore(table).openCursor(null, 'next');

View File

@ -11,7 +11,7 @@
## Browser Face Recognition Demo ## Browser Face Recognition Demo
- `demo/facematch`: Demo for Browsers that uses all face description and embedding features to - `demo/facematch`: Demo for Browsers that uses all face description and embedding features to
detect, extract and identify all faces plus calculate similarity between them detect, extract and identify all faces plus calculate simmilarity between them
It highlights functionality such as: It highlights functionality such as:
@ -72,13 +72,12 @@ Non-linear performance that increases with number of worker threads due to commu
> node node-match > node node-match
<!-- eslint-skip -->
```js ```js
INFO: options: { dbFile: './faces.json', dbMax: 10000, threadPoolSize: 6, workerSrc: './node-match-worker.js', debug: false, minThreshold: 0.9, descLength: 1024 } 2021-10-13 07:53:36 INFO: options: { dbFile: './faces.json', dbMax: 10000, threadPoolSize: 6, workerSrc: './node-match-worker.js', debug: false, minThreshold: 0.9, descLength: 1024 }
DATA: created shared buffer: { maxDescriptors: 10000, totalBytes: 40960000, totalElements: 10240000 } 2021-10-13 07:53:36 DATA: created shared buffer: { maxDescriptors: 10000, totalBytes: 40960000, totalElements: 10240000 }
DATA: db loaded: { existingRecords: 0, newRecords: 5700 } 2021-10-13 07:53:36 DATA: db loaded: { existingRecords: 0, newRecords: 5700 }
INFO: starting worker thread pool: { totalWorkers: 6, alreadyActive: 0 } 2021-10-13 07:53:36 INFO: starting worker thread pool: { totalWorkers: 6, alreadyActive: 0 }
STATE: submitted: { matchJobs: 100, poolSize: 6, activeWorkers: 6 } 2021-10-13 07:53:36 STATE: submitted: { matchJobs: 100, poolSize: 6, activeWorkers: 6 }
STATE: { matchJobsFinished: 100, totalTimeMs: 1769, averageTimeMs: 17.69 } 2021-10-13 07:53:38 STATE: { matchJobsFinished: 100, totalTimeMs: 1769, averageTimeMs: 17.69 }
INFO: closing workers: { poolSize: 6, activeWorkers: 6 } 2021-10-13 07:53:38 INFO: closing workers: { poolSize: 6, activeWorkers: 6 }
``` ```

View File

@ -1,17 +1,18 @@
// @ts-nocheck
/** /**
* Human demo for browsers * Human demo for browsers
* *
* Demo for face descriptor analysis and face similarity analysis * Demo for face descriptor analysis and face simmilarity analysis
*/ */
/** @type {Human} */ /** @type {Human} */
import { Human } from '../../dist/human.esm.js'; import Human from '../../dist/human.esm.js';
const userConfig = { const userConfig = {
backend: 'humangl', backend: 'humangl',
async: true, async: true,
warmup: 'none', warmup: 'none',
cacheSensitivity: 0.01, cacheSensitivity: 0,
debug: true, debug: true,
modelBasePath: '../../models/', modelBasePath: '../../models/',
deallocate: true, deallocate: true,
@ -22,6 +23,7 @@ const userConfig = {
}, },
face: { face: {
enabled: true, enabled: true,
// detector: { rotation: false, return: true, maxDetected: 50, iouThreshold: 0.206, minConfidence: 0.122 },
detector: { return: true, rotation: true, maxDetected: 50, iouThreshold: 0.01, minConfidence: 0.2 }, detector: { return: true, rotation: true, maxDetected: 50, iouThreshold: 0.01, minConfidence: 0.2 },
mesh: { enabled: true }, mesh: { enabled: true },
iris: { enabled: false }, iris: { enabled: false },
@ -44,7 +46,8 @@ const minScore = 0.4;
function log(...msg) { function log(...msg) {
const dt = new Date(); const dt = new Date();
const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`; const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;
console.log(ts, ...msg); // eslint-disable-line no-console // eslint-disable-next-line no-console
console.log(ts, ...msg);
} }
function title(msg) { function title(msg) {
@ -63,16 +66,25 @@ async function loadFaceMatchDB() {
} }
} }
async function selectFaceCanvas(face) { async function SelectFaceCanvas(face) {
// if we have face image tensor, enhance it and display it // if we have face image tensor, enhance it and display it
let embedding; let embedding;
document.getElementById('orig').style.filter = 'blur(16px)'; document.getElementById('orig').style.filter = 'blur(16px)';
if (face.tensor) { if (face.tensor) {
title('Sorting Faces by Similarity'); title('Sorting Faces by Similarity');
const c = document.getElementById('orig'); const enhanced = human.enhance(face);
await human.draw.tensor(face.tensor, c); if (enhanced) {
const c = document.getElementById('orig');
const squeeze = human.tf.squeeze(enhanced);
const normalize = human.tf.div(squeeze, 255);
await human.tf.browser.toPixels(normalize, c);
human.tf.dispose([enhanced, squeeze, normalize]);
const ctx = c.getContext('2d');
ctx.font = 'small-caps 0.4rem "Lato"';
ctx.fillStyle = 'rgba(255, 255, 255, 1)';
}
const arr = db.map((rec) => rec.embedding); const arr = db.map((rec) => rec.embedding);
const res = await human.match.find(face.embedding, arr); const res = await human.match(face.embedding, arr);
log('Match:', db[res.index].name); log('Match:', db[res.index].name);
const emotion = face.emotion[0] ? `${Math.round(100 * face.emotion[0].score)}% ${face.emotion[0].emotion}` : 'N/A'; const emotion = face.emotion[0] ? `${Math.round(100 * face.emotion[0].score)}% ${face.emotion[0].emotion}` : 'N/A';
document.getElementById('desc').innerHTML = ` document.getElementById('desc').innerHTML = `
@ -93,11 +105,11 @@ async function selectFaceCanvas(face) {
for (const canvas of canvases) { for (const canvas of canvases) {
// calculate similarity from selected face to current one in the loop // calculate similarity from selected face to current one in the loop
const current = all[canvas.tag.sample][canvas.tag.face]; const current = all[canvas.tag.sample][canvas.tag.face];
const similarity = human.match.similarity(face.embedding, current.embedding); const similarity = human.similarity(face.embedding, current.embedding);
canvas.tag.similarity = similarity; canvas.tag.similarity = similarity;
// get best match // get best match
// draw the canvas // draw the canvas
await human.draw.tensor(current.tensor, canvas); await human.tf.browser.toPixels(current.tensor, canvas);
const ctx = canvas.getContext('2d'); const ctx = canvas.getContext('2d');
ctx.font = 'small-caps 1rem "Lato"'; ctx.font = 'small-caps 1rem "Lato"';
ctx.fillStyle = 'rgba(0, 0, 0, 1)'; ctx.fillStyle = 'rgba(0, 0, 0, 1)';
@ -110,7 +122,7 @@ async function selectFaceCanvas(face) {
ctx.font = 'small-caps 1rem "Lato"'; ctx.font = 'small-caps 1rem "Lato"';
const start = human.now(); const start = human.now();
const arr = db.map((rec) => rec.embedding); const arr = db.map((rec) => rec.embedding);
const res = await human.match.find(current.embedding, arr); const res = await human.match(current.embedding, arr);
time += (human.now() - start); time += (human.now() - start);
if (res.similarity > minScore) ctx.fillText(`DB: ${(100 * res.similarity).toFixed(1)}% ${db[res.index].name}`, 4, canvas.height - 30); if (res.similarity > minScore) ctx.fillText(`DB: ${(100 * res.similarity).toFixed(1)}% ${db[res.index].name}`, 4, canvas.height - 30);
} }
@ -125,7 +137,7 @@ async function selectFaceCanvas(face) {
title('Selected Face'); title('Selected Face');
} }
async function addFaceCanvas(index, res, fileName) { async function AddFaceCanvas(index, res, fileName) {
all[index] = res.face; all[index] = res.face;
for (const i in res.face) { for (const i in res.face) {
if (!res.face[i].tensor) continue; // did not get valid results if (!res.face[i].tensor) continue; // did not get valid results
@ -144,37 +156,35 @@ async function addFaceCanvas(index, res, fileName) {
gender: ${Math.round(100 * res.face[i].genderScore)}% ${res.face[i].gender} gender: ${Math.round(100 * res.face[i].genderScore)}% ${res.face[i].gender}
emotion: ${emotion} emotion: ${emotion}
`.replace(/ /g, ' '); `.replace(/ /g, ' ');
await human.draw.tensor(res.face[i].tensor, canvas); await human.tf.browser.toPixels(res.face[i].tensor, canvas);
const ctx = canvas.getContext('2d'); const ctx = canvas.getContext('2d');
if (!ctx) return; if (!ctx) return false;
ctx.font = 'small-caps 0.8rem "Lato"'; ctx.font = 'small-caps 0.8rem "Lato"';
ctx.fillStyle = 'rgba(255, 255, 255, 1)'; ctx.fillStyle = 'rgba(255, 255, 255, 1)';
ctx.fillText(`${res.face[i].age}y ${(100 * (res.face[i].genderScore || 0)).toFixed(1)}% ${res.face[i].gender}`, 4, canvas.height - 6); ctx.fillText(`${res.face[i].age}y ${(100 * (res.face[i].genderScore || 0)).toFixed(1)}% ${res.face[i].gender}`, 4, canvas.height - 6);
const arr = db.map((rec) => rec.embedding); const arr = db.map((rec) => rec.embedding);
const result = human.match.find(res.face[i].embedding, arr); const result = human.match(res.face[i].embedding, arr);
ctx.font = 'small-caps 1rem "Lato"'; ctx.font = 'small-caps 1rem "Lato"';
if (result.similarity && res.similarity > minScore) ctx.fillText(`${(100 * result.similarity).toFixed(1)}% ${db[result.index].name}`, 4, canvas.height - 30); if (result.similarity && res.similarity > minScore) ctx.fillText(`${(100 * result.similarity).toFixed(1)}% ${db[result.index].name}`, 4, canvas.height - 30);
document.getElementById('faces').appendChild(canvas); document.getElementById('faces').appendChild(canvas);
canvas.addEventListener('click', (evt) => { canvas.addEventListener('click', (evt) => {
log('Select:', 'Image:', evt.target.tag.sample, 'Face:', evt.target.tag.face, 'Source:', evt.target.tag.source, all[evt.target.tag.sample][evt.target.tag.face]); log('Select:', 'Image:', evt.target.tag.sample, 'Face:', evt.target.tag.face, 'Source:', evt.target.tag.source, all[evt.target.tag.sample][evt.target.tag.face]);
selectFaceCanvas(all[evt.target.tag.sample][evt.target.tag.face]); SelectFaceCanvas(all[evt.target.tag.sample][evt.target.tag.face]);
}); });
} }
} }
async function addImageElement(index, image, length) { async function AddImageElement(index, image, length) {
const faces = all.reduce((prev, curr) => prev += curr.length, 0); const faces = all.reduce((prev, curr) => prev += curr.length, 0);
title(`Analyzing Input Images<br> ${Math.round(100 * index / length)}% [${index} / ${length}]<br>Found ${faces} Faces`); title(`Analyzing Input Images<br> ${Math.round(100 * index / length)}% [${index} / ${length}]<br>Found ${faces} Faces`);
return new Promise((resolve) => { return new Promise((resolve) => {
const img = new Image(128, 128); const img = new Image(128, 128);
img.onload = () => { // must wait until image is loaded img.onload = () => { // must wait until image is loaded
document.getElementById('images').appendChild(img); // and finally we can add it document.getElementById('images').appendChild(img); // and finally we can add it
human.detect(img, userConfig) human.detect(img, userConfig).then((res) => {
.then((res) => { // eslint-disable-line promise/always-return AddFaceCanvas(index, res, image); // then wait until image is analyzed
addFaceCanvas(index, res, image); // then wait until image is analyzed resolve(true);
resolve(true); });
})
.catch(() => log('human detect error'));
}; };
img.onerror = () => { img.onerror = () => {
log('Add image error:', index + 1, image); log('Add image error:', index + 1, image);
@ -212,23 +222,18 @@ async function main() {
// could not dynamically enumerate images so using static list // could not dynamically enumerate images so using static list
if (images.length === 0) { if (images.length === 0) {
images = [ images = [
'ai-face.jpg', 'ai-upper.jpg', 'ai-body.jpg', 'solvay1927.jpg', 'ai-body.jpg', 'solvay1927.jpg', 'ai-upper.jpg',
'person-carolina.jpg', 'person-celeste.jpg', 'person-leila1.jpg', 'person-leila2.jpg', 'person-lexi.jpg', 'person-linda.jpg', 'person-nicole.jpg', 'person-tasia.jpg',
'person-tetiana.jpg', 'person-vlado1.jpg', 'person-vlado5.jpg', 'person-vlado.jpg', 'person-christina.jpg', 'person-lauren.jpg',
'group-1.jpg', 'group-2.jpg', 'group-3.jpg', 'group-4.jpg', 'group-5.jpg', 'group-6.jpg', 'group-7.jpg', 'group-1.jpg', 'group-2.jpg', 'group-3.jpg', 'group-4.jpg', 'group-5.jpg', 'group-6.jpg', 'group-7.jpg',
'person-celeste.jpg', 'person-christina.jpg', 'person-lauren.jpg', 'person-lexi.jpg', 'person-linda.jpg', 'person-nicole.jpg', 'person-tasia.jpg', 'person-tetiana.jpg', 'person-vlado.jpg', 'person-vlado1.jpg', 'person-vlado5.jpg', 'daz3d-brianna.jpg', 'daz3d-chiyo.jpg', 'daz3d-cody.jpg', 'daz3d-drew-01.jpg', 'daz3d-drew-02.jpg', 'daz3d-ella-01.jpg', 'daz3d-ella-02.jpg', 'daz3d-gillian.jpg',
'stock-group-1.jpg', 'stock-group-2.jpg', 'daz3d-hye-01.jpg', 'daz3d-hye-02.jpg', 'daz3d-kaia.jpg', 'daz3d-karen.jpg', 'daz3d-kiaria-01.jpg', 'daz3d-kiaria-02.jpg', 'daz3d-lilah-01.jpg', 'daz3d-lilah-02.jpg',
'stock-models-1.jpg', 'stock-models-2.jpg', 'stock-models-3.jpg', 'stock-models-4.jpg', 'stock-models-5.jpg', 'stock-models-6.jpg', 'stock-models-7.jpg', 'stock-models-8.jpg', 'stock-models-9.jpg', 'daz3d-lilah-03.jpg', 'daz3d-lila.jpg', 'daz3d-lindsey.jpg', 'daz3d-megah.jpg', 'daz3d-selina-01.jpg', 'daz3d-selina-02.jpg', 'daz3d-snow.jpg',
'stock-teen-1.jpg', 'stock-teen-2.jpg', 'stock-teen-3.jpg', 'stock-teen-4.jpg', 'stock-teen-5.jpg', 'stock-teen-6.jpg', 'stock-teen-7.jpg', 'stock-teen-8.jpg', 'daz3d-sunshine.jpg', 'daz3d-taia.jpg', 'daz3d-tuesday-01.jpg', 'daz3d-tuesday-02.jpg', 'daz3d-tuesday-03.jpg', 'daz3d-zoe.jpg', 'daz3d-ginnifer.jpg',
'stock-models-10.jpg', 'stock-models-11.jpg', 'stock-models-12.jpg', 'stock-models-13.jpg', 'stock-models-14.jpg', 'stock-models-15.jpg', 'stock-models-16.jpg', 'daz3d-_emotions01.jpg', 'daz3d-_emotions02.jpg', 'daz3d-_emotions03.jpg', 'daz3d-_emotions04.jpg', 'daz3d-_emotions05.jpg',
'cgi-model-1.jpg', 'cgi-model-2.jpg', 'cgi-model-3.jpg', 'cgi-model-4.jpg', 'cgi-model-5.jpg', 'cgi-model-6.jpg', 'cgi-model-7.jpg', 'cgi-model-8.jpg', 'cgi-model-9.jpg',
'cgi-model-10.jpg', 'cgi-model-11.jpg', 'cgi-model-12.jpg', 'cgi-model-13.jpg', 'cgi-model-14.jpg', 'cgi-model-15.jpg', 'cgi-model-18.jpg', 'cgi-model-19.jpg',
'cgi-model-20.jpg', 'cgi-model-21.jpg', 'cgi-model-22.jpg', 'cgi-model-23.jpg', 'cgi-model-24.jpg', 'cgi-model-25.jpg', 'cgi-model-26.jpg', 'cgi-model-27.jpg', 'cgi-model-28.jpg', 'cgi-model-29.jpg',
'cgi-model-30.jpg', 'cgi-model-31.jpg', 'cgi-model-33.jpg', 'cgi-model-34.jpg',
'cgi-multiangle-1.jpg', 'cgi-multiangle-2.jpg', 'cgi-multiangle-3.jpg', 'cgi-multiangle-4.jpg', 'cgi-multiangle-6.jpg', 'cgi-multiangle-7.jpg', 'cgi-multiangle-8.jpg', 'cgi-multiangle-9.jpg', 'cgi-multiangle-10.jpg', 'cgi-multiangle-11.jpg',
'stock-emotions-a-1.jpg', 'stock-emotions-a-2.jpg', 'stock-emotions-a-3.jpg', 'stock-emotions-a-4.jpg', 'stock-emotions-a-5.jpg', 'stock-emotions-a-6.jpg', 'stock-emotions-a-7.jpg', 'stock-emotions-a-8.jpg',
'stock-emotions-b-1.jpg', 'stock-emotions-b-2.jpg', 'stock-emotions-b-3.jpg', 'stock-emotions-b-4.jpg', 'stock-emotions-b-5.jpg', 'stock-emotions-b-6.jpg', 'stock-emotions-b-7.jpg', 'stock-emotions-b-8.jpg',
]; ];
// add prefix for gitpages // add prefix for gitpages
images = images.map((a) => `../../samples/in/${a}`); images = images.map((a) => `/human/samples/in/${a}`);
log('Adding static image list:', images); log('Adding static image list:', images);
} else { } else {
log('Discovered images:', images); log('Discovered images:', images);
@ -237,7 +242,7 @@ async function main() {
// images = ['/samples/in/person-lexi.jpg', '/samples/in/person-carolina.jpg', '/samples/in/solvay1927.jpg']; // images = ['/samples/in/person-lexi.jpg', '/samples/in/person-carolina.jpg', '/samples/in/solvay1927.jpg'];
const t0 = human.now(); const t0 = human.now();
for (let i = 0; i < images.length; i++) await addImageElement(i, images[i], images.length); for (let i = 0; i < images.length; i++) await AddImageElement(i, images[i], images.length);
const t1 = human.now(); const t1 = human.now();
// print stats // print stats
@ -251,7 +256,7 @@ async function main() {
title(''); title('');
log('Ready'); log('Ready');
human.validate(userConfig); human.validate(userConfig);
human.match.similarity([], []); human.similarity([], []);
} }
window.onload = main; window.onload = main;

View File

@ -45,6 +45,6 @@
<div id="list" style="height: 10px"></div> <div id="list" style="height: 10px"></div>
<div class="text">Select person to sort by similarity and get a known face match</div> <div class="text">Select person to sort by similarity and get a known face match</div>
<div id="faces" style="height: 50vh; overflow-y: auto"></div> <div id="faces" style="height: 50vh; overflow-y: auto"></div>
</div> </div>
</body> </body>
</html> </html>

View File

@ -1,8 +1,3 @@
/**
* Runs in a worker thread started by `node-match` demo app
*
*/
const threads = require('worker_threads'); const threads = require('worker_threads');
let debug = false; let debug = false;
@ -38,8 +33,7 @@ function match(descBuffer, options = { order: 2, multiplier: 20 }) {
if (best < threshold || best === 0) break; // short circuit if (best < threshold || best === 0) break; // short circuit
} }
best = (options.order === 2) ? Math.sqrt(best) : best ** (1 / options.order); best = (options.order === 2) ? Math.sqrt(best) : best ** (1 / options.order);
const similarity = Math.round(100 * Math.max(0, 100 - best) / 100.0) / 100; return { index, distance: best, similarity: Math.max(0, 100 - best) / 100.0 };
return { index, distance: best, similarity };
} }
threads.parentPort?.on('message', (msg) => { threads.parentPort?.on('message', (msg) => {
@ -53,7 +47,7 @@ threads.parentPort?.on('message', (msg) => {
if (msg instanceof SharedArrayBuffer) { // called only once to receive reference to shared array buffer if (msg instanceof SharedArrayBuffer) { // called only once to receive reference to shared array buffer
buffer = msg; buffer = msg;
view = new Float32Array(buffer); // initialize f64 view into buffer view = new Float32Array(buffer); // initialize f64 view into buffer
if (debug) threads.parentPort?.postMessage(`buffer: ${buffer.byteLength}`); if (debug) threads.parentPort?.postMessage(`buffer: ${buffer?.byteLength}`);
} }
if (typeof msg.records !== 'undefined') { // recived every time when number of records changes if (typeof msg.records !== 'undefined') { // recived every time when number of records changes
records = msg.records; records = msg.records;
@ -61,15 +55,15 @@ threads.parentPort?.on('message', (msg) => {
} }
if (typeof msg.debug !== 'undefined') { // set verbose logging if (typeof msg.debug !== 'undefined') { // set verbose logging
debug = msg.debug; debug = msg.debug;
// if (debug) threads.parentPort?.postMessage(`debug: ${debug}`); if (debug) threads.parentPort?.postMessage(`debug: ${debug}`);
} }
if (typeof msg.threshold !== 'undefined') { // set minimum similarity threshold if (typeof msg.threshold !== 'undefined') { // set minimum similarity threshold
threshold = msg.threshold; threshold = msg.threshold;
// if (debug) threads.parentPort?.postMessage(`threshold: ${threshold}`); if (debug) threads.parentPort?.postMessage(`threshold: ${threshold}`);
} }
if (typeof msg.shutdown !== 'undefined') { // got message to close worker if (typeof msg.shutdown !== 'undefined') { // got message to close worker
if (debug) threads.parentPort?.postMessage('shutting down'); if (debug) threads.parentPort?.postMessage('shutting down');
process.exit(0); // eslint-disable-line no-process-exit process.exit(0);
} }
}); });

View File

@ -1,13 +1,7 @@
/**
* Human demo app for NodeJS that generates random facial descriptors
* and uses NodeJS multi-threading to start multiple threads for face matching
* uses `node-match-worker.js` to perform actual face matching analysis
*/
const fs = require('fs'); const fs = require('fs');
const path = require('path'); const path = require('path');
const log = require('@vladmandic/pilogger');
const threads = require('worker_threads'); const threads = require('worker_threads');
const log = require('@vladmandic/pilogger'); // eslint-disable-line node/no-unpublished-require
// global optinos // global optinos
const options = { const options = {
@ -15,7 +9,7 @@ const options = {
dbMax: 10000, // maximum number of records to hold in memory dbMax: 10000, // maximum number of records to hold in memory
threadPoolSize: 12, // number of worker threads to create in thread pool threadPoolSize: 12, // number of worker threads to create in thread pool
workerSrc: './node-match-worker.js', // code that executes in the worker thread workerSrc: './node-match-worker.js', // code that executes in the worker thread
debug: true, // verbose messages debug: false, // verbose messages
minThreshold: 0.5, // match returns first record that meets the similarity threshold, set to 0 to always scan all records minThreshold: 0.5, // match returns first record that meets the similarity threshold, set to 0 to always scan all records
descLength: 1024, // descriptor length descLength: 1024, // descriptor length
}; };
@ -160,7 +154,7 @@ async function createBuffer() {
data.buffer = new SharedArrayBuffer(4 * options.dbMax * options.descLength); // preallocate max number of records as sharedarraybuffers cannot grow data.buffer = new SharedArrayBuffer(4 * options.dbMax * options.descLength); // preallocate max number of records as sharedarraybuffers cannot grow
data.view = new Float32Array(data.buffer); // create view into buffer data.view = new Float32Array(data.buffer); // create view into buffer
data.labels.length = 0; data.labels.length = 0;
log.data('created shared buffer:', { maxDescriptors: (data.view.length || 0) / options.descLength, totalBytes: data.buffer.byteLength, totalElements: data.view.length }); log.data('created shared buffer:', { maxDescriptors: (data.view?.length || 0) / options.descLength, totalBytes: data.buffer.byteLength, totalElements: data.view?.length });
} }
async function main() { async function main() {
@ -176,7 +170,7 @@ async function main() {
data.requestID++; // increase request id data.requestID++; // increase request id
if (testOptions.fuzDescriptors) match(fuzDescriptor(descriptor)); // fuz descriptor for harder match if (testOptions.fuzDescriptors) match(fuzDescriptor(descriptor)); // fuz descriptor for harder match
else match(descriptor); else match(descriptor);
if (options.debug) log.debug('submited job', data.requestID); // we already know what we're searching for so we can compare results if (options.debug) log.info('submited job', data.requestID); // we already know what we're searching for so we can compare results
} }
log.state('submitted:', { matchJobs: testOptions.maxJobs, poolSize: data.workers.length, activeWorkers: data.workers.filter((worker) => !!worker).length }); log.state('submitted:', { matchJobs: testOptions.maxJobs, poolSize: data.workers.length, activeWorkers: data.workers.filter((worker) => !!worker).length });
} }

View File

@ -1,3 +1,4 @@
// @ts-nocheck
// based on: https://github.com/munrocket/gl-bench // based on: https://github.com/munrocket/gl-bench
const UICSS = ` const UICSS = `
@ -42,7 +43,9 @@ class GLBench {
constructor(gl, settings = {}) { constructor(gl, settings = {}) {
this.css = UICSS; this.css = UICSS;
this.svg = UISVG; this.svg = UISVG;
// eslint-disable-next-line @typescript-eslint/no-empty-function
this.paramLogger = () => {}; this.paramLogger = () => {};
// eslint-disable-next-line @typescript-eslint/no-empty-function
this.chartLogger = () => {}; this.chartLogger = () => {};
this.chartLen = 20; this.chartLen = 20;
this.chartHz = 20; this.chartHz = 20;
@ -89,6 +92,7 @@ class GLBench {
const addProfiler = (fn, self, target) => { const addProfiler = (fn, self, target) => {
const t = self.now(); const t = self.now();
// eslint-disable-next-line prefer-rest-params
fn.apply(target, arguments); fn.apply(target, arguments);
if (self.trackGPU) self.finished.push(glFinish(t, self.activeAccums.slice(0))); if (self.trackGPU) self.finished.push(glFinish(t, self.activeAccums.slice(0)));
}; };
@ -103,11 +107,13 @@ class GLBench {
if (gl[fn]) { if (gl[fn]) {
gl[fn] = addProfiler(gl[fn], this, gl); gl[fn] = addProfiler(gl[fn], this, gl);
} else { } else {
// eslint-disable-next-line no-console
console.log('bench: cannot attach to webgl function'); console.log('bench: cannot attach to webgl function');
} }
/* /*
gl.getExtension = ((fn, self) => { gl.getExtension = ((fn, self) => {
// eslint-disable-next-line prefer-rest-params
const ext = fn.apply(gl, arguments); const ext = fn.apply(gl, arguments);
if (ext) { if (ext) {
['drawElementsInstancedANGLE', 'drawBuffersWEBGL'].forEach((fn2) => { ['drawElementsInstancedANGLE', 'drawBuffersWEBGL'].forEach((fn2) => {
@ -142,6 +148,7 @@ class GLBench {
return (i, cpu, gpu, mem, fps, totalTime, frameId) => { return (i, cpu, gpu, mem, fps, totalTime, frameId) => {
nodes['gl-cpu'][i].style.strokeDasharray = (cpu * 0.27).toFixed(0) + ' 100'; nodes['gl-cpu'][i].style.strokeDasharray = (cpu * 0.27).toFixed(0) + ' 100';
nodes['gl-gpu'][i].style.strokeDasharray = (gpu * 0.27).toFixed(0) + ' 100'; nodes['gl-gpu'][i].style.strokeDasharray = (gpu * 0.27).toFixed(0) + ' 100';
// eslint-disable-next-line no-nested-ternary
nodes['gl-mem'][i].innerHTML = names[i] ? names[i] : (mem ? 'mem: ' + mem.toFixed(0) + 'mb' : ''); nodes['gl-mem'][i].innerHTML = names[i] ? names[i] : (mem ? 'mem: ' + mem.toFixed(0) + 'mb' : '');
nodes['gl-fps'][i].innerHTML = 'FPS: ' + fps.toFixed(1); nodes['gl-fps'][i].innerHTML = 'FPS: ' + fps.toFixed(1);
logger(names[i], cpu, gpu, mem, fps, totalTime, frameId); logger(names[i], cpu, gpu, mem, fps, totalTime, frameId);

View File

@ -64,7 +64,9 @@ function createNode() {
hideChildren() { hideChildren() {
if (Array.isArray(this.children)) { if (Array.isArray(this.children)) {
this.children.forEach((item) => { this.children.forEach((item) => {
// @ts-ignore
item['elem']['classList'].add('hide'); item['elem']['classList'].add('hide');
// @ts-ignore
if (item['expanded']) item.hideChildren(); if (item['expanded']) item.hideChildren();
}); });
} }
@ -72,7 +74,9 @@ function createNode() {
showChildren() { showChildren() {
if (Array.isArray(this.children)) { if (Array.isArray(this.children)) {
this.children.forEach((item) => { this.children.forEach((item) => {
// @ts-ignore
item['elem']['classList'].remove('hide'); item['elem']['classList'].remove('hide');
// @ts-ignore
if (item['expanded']) item.showChildren(); if (item['expanded']) item.showChildren();
}); });
} }

View File

@ -119,6 +119,7 @@ class Menu {
this.menu.appendChild(this.container); this.menu.appendChild(this.container);
if (typeof parent === 'object') parent.appendChild(this.menu); if (typeof parent === 'object') parent.appendChild(this.menu);
// @ts-ignore undefined
else document.getElementById(parent).appendChild(this.menu); else document.getElementById(parent).appendChild(this.menu);
} }
@ -183,6 +184,7 @@ class Menu {
this.hidden = !this.hidden; this.hidden = !this.hidden;
const all = document.getElementsByClassName('menu'); const all = document.getElementsByClassName('menu');
for (const item of all) { for (const item of all) {
// @ts-ignore
item.style.display = this.hidden ? 'none' : 'block'; item.style.display = this.hidden ? 'none' : 'block';
} }
}); });
@ -239,6 +241,7 @@ class Menu {
el.addEventListener('change', (evt) => { el.addEventListener('change', (evt) => {
if (evt.target) { if (evt.target) {
object[variable] = parseInt(evt.target['value']) === parseFloat(evt.target['value']) ? parseInt(evt.target['value']) : parseFloat(evt.target['value']); object[variable] = parseInt(evt.target['value']) === parseFloat(evt.target['value']) ? parseInt(evt.target['value']) : parseFloat(evt.target['value']);
// @ts-ignore
evt.target.setAttribute('value', evt.target['value']); evt.target.setAttribute('value', evt.target['value']);
if (callback) callback(evt.target['value']); if (callback) callback(evt.target['value']);
} }
@ -283,6 +286,7 @@ class Menu {
return el; return el;
} }
// eslint-disable-next-line class-methods-use-this
updateValue(title, val, suffix = '') { updateValue(title, val, suffix = '') {
const el = document.getElementById(`menu-val-${title}`); const el = document.getElementById(`menu-val-${title}`);
if (el) el.innerText = `${title}: ${val}${suffix}`; if (el) el.innerText = `${title}: ${val}${suffix}`;
@ -299,9 +303,11 @@ class Menu {
return el; return el;
} }
// eslint-disable-next-line class-methods-use-this
async updateChart(id, values) { async updateChart(id, values) {
if (!values || (values.length === 0)) return; if (!values || (values.length === 0)) return;
/** @type {HTMLCanvasElement} */ /** @type {HTMLCanvasElement} */
// @ts-ignore undefined
const canvas = document.getElementById(`menu-canvas-${id}`); const canvas = document.getElementById(`menu-canvas-${id}`);
if (!canvas) return; if (!canvas) return;
const ctx = canvas.getContext('2d'); const ctx = canvas.getContext('2d');

View File

@ -4,7 +4,8 @@ async function log(...msg) {
if (debug) { if (debug) {
const dt = new Date(); const dt = new Date();
const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`; const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;
console.log(ts, 'webrtc', ...msg); // eslint-disable-line no-console // eslint-disable-next-line no-console
console.log(ts, 'webrtc', ...msg);
} }
} }

View File

@ -2,7 +2,6 @@
* PWA Service Worker for Human main demo * PWA Service Worker for Human main demo
*/ */
/* eslint-disable no-restricted-globals */
/// <reference lib="webworker" /> /// <reference lib="webworker" />
const skipCaching = false; const skipCaching = false;
@ -20,7 +19,8 @@ const stats = { hit: 0, miss: 0 };
const log = (...msg) => { const log = (...msg) => {
const dt = new Date(); const dt = new Date();
const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`; const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;
console.log(ts, 'pwa', ...msg); // eslint-disable-line no-console // eslint-disable-next-line no-console
console.log(ts, 'pwa', ...msg);
}; };
async function updateCached(req) { async function updateCached(req) {
@ -31,7 +31,7 @@ async function updateCached(req) {
caches caches
.open(cacheName) .open(cacheName)
.then((cache) => cache.put(req, update)) .then((cache) => cache.put(req, update))
.catch((err) => log('cache update error', err)); // eslint-disable-line promise/no-nesting .catch((err) => log('cache update error', err));
} }
return true; return true;
}) })
@ -75,13 +75,14 @@ async function getCached(evt) {
} }
function cacheInit() { function cacheInit() {
// eslint-disable-next-line promise/catch-or-return
caches.open(cacheName) caches.open(cacheName)
// eslint-disable-next-line promise/no-nesting
.then((cache) => cache.addAll(cacheFiles) .then((cache) => cache.addAll(cacheFiles)
.then( // eslint-disable-line promise/no-nesting .then(
() => log('cache refresh:', cacheFiles.length, 'files'), () => log('cache refresh:', cacheFiles.length, 'files'),
(err) => log('cache error', err), (err) => log('cache error', err),
)) ));
.catch(() => log('cache error'));
} }
if (!listening) { if (!listening) {
@ -98,12 +99,14 @@ if (!listening) {
self.addEventListener('install', (evt) => { self.addEventListener('install', (evt) => {
log('install'); log('install');
// @ts-ignore scope for self is ServiceWorkerGlobalScope not Window
self.skipWaiting(); self.skipWaiting();
evt.waitUntil(cacheInit); evt.waitUntil(cacheInit);
}); });
self.addEventListener('activate', (evt) => { self.addEventListener('activate', (evt) => {
log('activate'); log('activate');
// @ts-ignore scope for self is ServiceWorkerGlobalScope not Window
evt.waitUntil(self.clients.claim()); evt.waitUntil(self.clients.claim());
}); });
@ -111,7 +114,7 @@ if (!listening) {
const uri = new URL(evt.request.url); const uri = new URL(evt.request.url);
// if (uri.pathname === '/') { log('cache skip /', evt.request); return; } // skip root access requests // if (uri.pathname === '/') { log('cache skip /', evt.request); return; } // skip root access requests
if (evt.request.cache === 'only-if-cached' && evt.request.mode !== 'same-origin') return; // required due to chrome bug if (evt.request.cache === 'only-if-cached' && evt.request.mode !== 'same-origin') return; // required due to chrome bug
if (uri.origin !== self.location.origin) return; // skip non-local requests if (uri.origin !== location.origin) return; // skip non-local requests
if (evt.request.method !== 'GET') return; // only cache get requests if (evt.request.method !== 'GET') return; // only cache get requests
if (evt.request.url.includes('/api/')) return; // don't cache api requests, failures are handled at the time of call if (evt.request.url.includes('/api/')) return; // don't cache api requests, failures are handled at the time of call
@ -126,7 +129,7 @@ if (!listening) {
log(`PWA: ${evt.type}`); log(`PWA: ${evt.type}`);
if (refreshed) return; if (refreshed) return;
refreshed = true; refreshed = true;
self.location.reload(); location.reload();
}); });
listening = true; listening = true;

View File

@ -6,9 +6,10 @@
/// <reference lib="webworker"/> /// <reference lib="webworker"/>
// load Human using IIFE script as Chome Mobile does not support Modules as Workers // load Human using IIFE script as Chome Mobile does not support Modules as Workers
self.importScripts('../dist/human.js'); // eslint-disable-line no-restricted-globals self.importScripts('../dist/human.js');
let busy = false; let busy = false;
// @ts-ignore
// eslint-disable-next-line new-cap, no-undef // eslint-disable-next-line new-cap, no-undef
const human = new Human.default(); const human = new Human.default();

View File

@ -89,9 +89,9 @@
<body> <body>
<div id="play" class="play icon-play"></div> <div id="play" class="play icon-play"></div>
<div id="background"> <div id="background">
<div class="wave one"></div> <div class='wave one'></div>
<div class="wave two"></div> <div class='wave two'></div>
<div class="wave three"></div> <div class='wave three'></div>
</div> </div>
<div id="loader" class="loader"></div> <div id="loader" class="loader"></div>
<div id="status" class="status"></div> <div id="status" class="status"></div>
@ -110,6 +110,10 @@
<canvas id="compare-canvas" width="200" height="200"></canvas> <canvas id="compare-canvas" width="200" height="200"></canvas>
<div id="similarity"></div> <div id="similarity"></div>
</div> </div>
<div id="segmentation-container" class="compare-image">
<canvas id="segmentation-mask" width="256" height="256" style="width: 256px; height: 256px;"></canvas>
<canvas id="segmentation-canvas" width="256" height="256" style="width: 256px; height: 256px;"></canvas>
</div>
<div id="samples-container" class="samples-container"></div> <div id="samples-container" class="samples-container"></div>
<div id="hint" class="hint"></div> <div id="hint" class="hint"></div>
<div id="log" class="log"></div> <div id="log" class="log"></div>

View File

@ -18,12 +18,11 @@
* ui={}: contains all variables exposed in the UI * ui={}: contains all variables exposed in the UI
*/ */
// WARNING!!! // test url <https://human.local/?worker=false&async=false&bench=false&draw=true&warmup=full&backend=humangl>
// This demo is written using older code style and a lot of manual setup
// Newer versions of Human have richer functionality allowing for much cleaner & easier usage
// It is recommended to use other demos such as `demo/typescript` for usage examples
import { Human } from '../dist/human.esm.js'; // equivalent of @vladmandic/human // @ts-nocheck // typescript checks disabled as this is pure javascript
import Human from '../dist/human.esm.js'; // equivalent of @vladmandic/human
import Menu from './helpers/menu.js'; import Menu from './helpers/menu.js';
import GLBench from './helpers/gl-bench.js'; import GLBench from './helpers/gl-bench.js';
import webRTC from './helpers/webrtc.js'; import webRTC from './helpers/webrtc.js';
@ -37,7 +36,7 @@ let userConfig = {
// hand: { enabled: false }, // hand: { enabled: false },
/* /*
warmup: 'none', warmup: 'none',
backend: 'webgl', backend: 'humangl',
debug: true, debug: true,
wasmPath: 'https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@3.9.0/dist/', wasmPath: 'https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@3.9.0/dist/',
async: false, async: false,
@ -86,7 +85,7 @@ const ui = {
facing: true, // camera facing front or back facing: true, // camera facing front or back
baseBackground: 'rgba(50, 50, 50, 1)', // 'grey' baseBackground: 'rgba(50, 50, 50, 1)', // 'grey'
columns: 2, // when processing sample images create this many columns columns: 2, // when processing sample images create this many columns
useWorker: false, // use web workers for processing useWorker: true, // use web workers for processing
worker: 'index-worker.js', worker: 'index-worker.js',
maxFPSframes: 10, // keep fps history for how many frames maxFPSframes: 10, // keep fps history for how many frames
modelsPreload: false, // preload human models on startup modelsPreload: false, // preload human models on startup
@ -114,6 +113,7 @@ const ui = {
results: false, // show results tree results: false, // show results tree
lastFrame: 0, // time of last frame processing lastFrame: 0, // time of last frame processing
viewportSet: false, // internal, has custom viewport been set viewportSet: false, // internal, has custom viewport been set
background: null, // holds instance of segmentation background image
transferCanvas: null, // canvas used to transfer data to and from worker transferCanvas: null, // canvas used to transfer data to and from worker
// webrtc // webrtc
@ -153,7 +153,7 @@ let bench;
let lastDetectedResult = {}; let lastDetectedResult = {};
// helper function: async pause // helper function: async pause
// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars // eslint-disable-next-line @typescript-eslint/no-unused-vars, no-unused-vars
const delay = (ms) => new Promise((resolve) => { setTimeout(resolve, ms); }); const delay = (ms) => new Promise((resolve) => { setTimeout(resolve, ms); });
// helper function: translates json to human readable string // helper function: translates json to human readable string
@ -171,7 +171,8 @@ function str(...msg) {
function log(...msg) { function log(...msg) {
const dt = new Date(); const dt = new Date();
const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`; const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;
if (ui.console) console.log(ts, ...msg); // eslint-disable-line no-console // eslint-disable-next-line no-console
if (ui.console) console.log(ts, ...msg);
} }
let prevStatus = ''; let prevStatus = '';
@ -185,7 +186,7 @@ function status(msg) {
prevStatus = msg; prevStatus = msg;
} else { } else {
const video = document.getElementById('video'); const video = document.getElementById('video');
const playing = isLive(video) && !video.paused; // eslint-disable-line no-use-before-define const playing = (video.srcObject !== null) && !video.paused;
document.getElementById('play').style.display = playing ? 'none' : 'block'; document.getElementById('play').style.display = playing ? 'none' : 'block';
document.getElementById('loader').style.display = 'none'; document.getElementById('loader').style.display = 'none';
div.innerText = ''; div.innerText = '';
@ -195,6 +196,7 @@ function status(msg) {
async function videoPlay(videoElement = document.getElementById('video')) { async function videoPlay(videoElement = document.getElementById('video')) {
document.getElementById('btnStartText').innerHTML = 'pause video'; document.getElementById('btnStartText').innerHTML = 'pause video';
await videoElement.play(); await videoElement.play();
// status();
} }
async function videoPause() { async function videoPause() {
@ -222,13 +224,21 @@ async function calcSimmilarity(result) {
compare.original = result; compare.original = result;
log('setting face compare baseline:', result.face[0]); log('setting face compare baseline:', result.face[0]);
if (result.face[0].tensor) { if (result.face[0].tensor) {
const c = document.getElementById('orig'); const enhanced = human.enhance(result.face[0]);
human.draw.tensor(result.face[0].tensor, c); if (enhanced) {
const c = document.getElementById('orig');
const squeeze = human.tf.squeeze(enhanced);
const norm = human.tf.div(squeeze, 255);
human.tf.browser.toPixels(norm, c);
human.tf.dispose(enhanced);
human.tf.dispose(squeeze);
human.tf.dispose(norm);
}
} else { } else {
document.getElementById('compare-canvas').getContext('2d').drawImage(compare.original.canvas, 0, 0, 200, 200); document.getElementById('compare-canvas').getContext('2d').drawImage(compare.original.canvas, 0, 0, 200, 200);
} }
} }
const similarity = human.match.similarity(compare.original.face[0].embedding, result.face[0].embedding); const similarity = human.similarity(compare.original.face[0].embedding, result.face[0].embedding);
document.getElementById('similarity').innerText = `similarity: ${Math.trunc(1000 * similarity) / 10}%`; document.getElementById('similarity').innerText = `similarity: ${Math.trunc(1000 * similarity) / 10}%`;
} }
@ -256,7 +266,21 @@ async function drawResults(input) {
// draw fps chart // draw fps chart
await menu.process.updateChart('FPS', ui.detectFPS); await menu.process.updateChart('FPS', ui.detectFPS);
if (!result.canvas || ui.buffered) { // refresh with input if using buffered output or if missing canvas document.getElementById('segmentation-container').style.display = userConfig.segmentation.enabled ? 'block' : 'none';
if (userConfig.segmentation.enabled && ui.buffered) { // refresh segmentation if using buffered output
const seg = await human.segmentation(input, ui.background);
if (seg.alpha) {
const canvasSegMask = document.getElementById('segmentation-mask');
const ctxSegMask = canvasSegMask.getContext('2d');
ctxSegMask.clearRect(0, 0, canvasSegMask.width, canvasSegMask.height); // need to clear as seg.alpha is alpha based canvas so it adds
ctxSegMask.drawImage(seg.alpha, 0, 0, seg.alpha.width, seg.alpha.height, 0, 0, canvasSegMask.width, canvasSegMask.height);
const canvasSegCanvas = document.getElementById('segmentation-canvas');
const ctxSegCanvas = canvasSegCanvas.getContext('2d');
ctxSegCanvas.clearRect(0, 0, canvasSegCanvas.width, canvasSegCanvas.height); // need to clear as seg.alpha is alpha based canvas so it adds
ctxSegCanvas.drawImage(seg.canvas, 0, 0, seg.alpha.width, seg.alpha.height, 0, 0, canvasSegCanvas.width, canvasSegCanvas.height);
}
// result.canvas = seg.alpha;
} else if (!result.canvas || ui.buffered) { // refresh with input if using buffered output or if missing canvas
const image = await human.image(input, false); const image = await human.image(input, false);
result.canvas = image.canvas; result.canvas = image.canvas;
human.tf.dispose(image.tensor); human.tf.dispose(image.tensor);
@ -325,10 +349,12 @@ async function drawResults(input) {
videoPause(); videoPause();
ui.drawThread = null; ui.drawThread = null;
} }
} else if (ui.drawThread) { } else {
log('stopping buffered refresh'); if (ui.drawThread) {
cancelAnimationFrame(ui.drawThread); log('stopping buffered refresh');
ui.drawThread = null; cancelAnimationFrame(ui.drawThread);
ui.drawThread = null;
}
} }
} }
@ -419,7 +445,8 @@ async function setupCamera() {
ui.menuWidth.input.setAttribute('value', video.videoWidth); ui.menuWidth.input.setAttribute('value', video.videoWidth);
ui.menuHeight.input.setAttribute('value', video.videoHeight); ui.menuHeight.input.setAttribute('value', video.videoHeight);
if (live || ui.autoPlay) await videoPlay(); if (live || ui.autoPlay) await videoPlay();
if ((live || ui.autoPlay) && !ui.detectThread) runHumanDetect(video, canvas); // eslint-disable-line no-use-before-define // eslint-disable-next-line no-use-before-define
if ((live || ui.autoPlay) && !ui.detectThread) runHumanDetect(video, canvas);
return 'camera stream ready'; return 'camera stream ready';
} }
@ -473,7 +500,8 @@ function webWorker(input, image, canvas, timestamp) {
ui.framesDetect++; ui.framesDetect++;
if (!ui.drawThread) drawResults(input); if (!ui.drawThread) drawResults(input);
if (isLive(input)) { if (isLive(input)) {
ui.detectThread = requestAnimationFrame((now) => runHumanDetect(input, canvas, now)); // eslint-disable-line no-use-before-define // eslint-disable-next-line no-use-before-define
ui.detectThread = requestAnimationFrame((now) => runHumanDetect(input, canvas, now));
} }
}); });
} }
@ -510,28 +538,36 @@ function runHumanDetect(input, canvas, timestamp) {
// perform detection in worker // perform detection in worker
webWorker(input, data, canvas, timestamp); webWorker(input, data, canvas, timestamp);
} else { } else {
human.detect(input, userConfig) human.detect(input, userConfig).then((result) => {
.then((result) => { status();
status(); /*
if (result.performance && result.performance.total) ui.detectFPS.push(1000 / result.performance.total); setTimeout(async () => { // simulate gl context lost 2sec after initial detection
if (ui.detectFPS.length > ui.maxFPSframes) ui.detectFPS.shift(); const ext = human.gl && human.gl.gl ? human.gl.gl.getExtension('WEBGL_lose_context') : {};
if (ui.bench) { if (ext && ext.loseContext) {
if (!bench) initPerfMonitor(); log('simulate context lost:', human.env.webgl, human.gl, ext);
bench.nextFrame(timestamp); human.gl.gl.getExtension('WEBGL_lose_context').loseContext();
await videoPause();
status('Exception: WebGL');
} }
if (document.getElementById('gl-bench')) document.getElementById('gl-bench').style.display = ui.bench ? 'block' : 'none'; }, 2000);
if (result.error) { */
log(result.error); if (result.performance && result.performance.total) ui.detectFPS.push(1000 / result.performance.total);
document.getElementById('log').innerText += `\nHuman error: ${result.error}`; if (ui.detectFPS.length > ui.maxFPSframes) ui.detectFPS.shift();
} else { if (ui.bench) {
lastDetectedResult = result; if (!bench) initPerfMonitor();
if (!ui.drawThread) drawResults(input); bench.nextFrame(timestamp);
ui.framesDetect++; }
ui.detectThread = requestAnimationFrame((now) => runHumanDetect(input, canvas, now)); if (document.getElementById('gl-bench')) document.getElementById('gl-bench').style.display = ui.bench ? 'block' : 'none';
} if (result.error) {
return result; log(result.error);
}) document.getElementById('log').innerText += `\nHuman error: ${result.error}`;
.catch(() => log('human detect error')); } else {
lastDetectedResult = result;
if (!ui.drawThread) drawResults(input);
ui.framesDetect++;
ui.detectThread = requestAnimationFrame((now) => runHumanDetect(input, canvas, now));
}
});
} }
} }
@ -578,7 +614,8 @@ async function processImage(input, title) {
// copy to clipboard on click // copy to clipboard on click
if (typeof ClipboardItem !== 'undefined' && navigator.clipboard) { if (typeof ClipboardItem !== 'undefined' && navigator.clipboard) {
evt.target.toBlob((blob) => { evt.target.toBlob((blob) => {
const item = new ClipboardItem({ 'image/png': blob }); // eslint-disable-line no-undef // eslint-disable-next-line no-undef
const item = new ClipboardItem({ 'image/png': blob });
navigator.clipboard.write([item]); navigator.clipboard.write([item]);
log('copied image to clipboard'); log('copied image to clipboard');
}); });
@ -606,15 +643,21 @@ async function processImage(input, title) {
async function processVideo(input, title) { async function processVideo(input, title) {
status(`processing video: ${title}`); status(`processing video: ${title}`);
// const video = document.getElementById('video-file') || document.createElement('video');
const video = document.getElementById('video'); const video = document.getElementById('video');
const canvas = document.getElementById('canvas'); const canvas = document.getElementById('canvas');
// video.id = 'video-file';
// video.controls = true;
// video.loop = true;
// video.style.display = 'none';
// document.body.appendChild(video);
video.addEventListener('error', () => status(`video loading error: ${video.error.message}`)); video.addEventListener('error', () => status(`video loading error: ${video.error.message}`));
video.addEventListener('canplay', async () => { video.addEventListener('canplay', async () => {
for (const m of Object.values(menu)) m.hide(); for (const m of Object.values(menu)) m.hide();
document.getElementById('samples-container').style.display = 'none'; document.getElementById('samples-container').style.display = 'none';
canvas.style.display = 'block'; canvas.style.display = 'block';
await videoPlay(); await videoPlay();
runHumanDetect(video, canvas); if (!ui.detectThread) runHumanDetect(video, canvas);
}); });
video.srcObject = null; video.srcObject = null;
video.src = input; video.src = input;
@ -627,8 +670,9 @@ async function detectVideo() {
const canvas = document.getElementById('canvas'); const canvas = document.getElementById('canvas');
canvas.style.display = 'block'; canvas.style.display = 'block';
cancelAnimationFrame(ui.detectThread); cancelAnimationFrame(ui.detectThread);
if (isLive(video) && !video.paused) { if ((video.srcObject !== null) && !video.paused) {
await videoPause(); await videoPause();
// if (ui.drawThread) cancelAnimationFrame(ui.drawThread);
} else { } else {
const cameraError = await setupCamera(); const cameraError = await setupCamera();
if (!cameraError) { if (!cameraError) {
@ -704,6 +748,7 @@ function setupMenu() {
menu.image.addBool('technicolor', userConfig.filter, 'technicolor', (val) => userConfig.filter.technicolor = val); menu.image.addBool('technicolor', userConfig.filter, 'technicolor', (val) => userConfig.filter.technicolor = val);
menu.image.addBool('polaroid', userConfig.filter, 'polaroid', (val) => userConfig.filter.polaroid = val); menu.image.addBool('polaroid', userConfig.filter, 'polaroid', (val) => userConfig.filter.polaroid = val);
menu.image.addHTML('<input type="file" id="file-input" class="input-file"></input> &nbsp input'); menu.image.addHTML('<input type="file" id="file-input" class="input-file"></input> &nbsp input');
menu.image.addHTML('<input type="file" id="file-background" class="input-file"></input> &nbsp background');
menu.process = new Menu(document.body, '', { top, left: x[2] }); menu.process = new Menu(document.body, '', { top, left: x[2] });
menu.process.addList('backend', ['cpu', 'webgl', 'wasm', 'humangl'], userConfig.backend, (val) => userConfig.backend = val); menu.process.addList('backend', ['cpu', 'webgl', 'wasm', 'humangl'], userConfig.backend, (val) => userConfig.backend = val);
@ -751,6 +796,8 @@ function setupMenu() {
menu.models.addHTML('<hr style="border-style: inset; border-color: dimgray">'); menu.models.addHTML('<hr style="border-style: inset; border-color: dimgray">');
menu.models.addBool('gestures', userConfig.gesture, 'enabled', (val) => userConfig.gesture.enabled = val); menu.models.addBool('gestures', userConfig.gesture, 'enabled', (val) => userConfig.gesture.enabled = val);
menu.models.addHTML('<hr style="border-style: inset; border-color: dimgray">'); menu.models.addHTML('<hr style="border-style: inset; border-color: dimgray">');
menu.models.addBool('body segmentation', userConfig.segmentation, 'enabled', (val) => userConfig.segmentation.enabled = val);
menu.models.addHTML('<hr style="border-style: inset; border-color: dimgray">');
menu.models.addBool('object detection', userConfig.object, 'enabled', (val) => userConfig.object.enabled = val); menu.models.addBool('object detection', userConfig.object, 'enabled', (val) => userConfig.object.enabled = val);
menu.models.addHTML('<hr style="border-style: inset; border-color: dimgray">'); menu.models.addHTML('<hr style="border-style: inset; border-color: dimgray">');
menu.models.addBool('face compare', compare, 'enabled', (val) => { menu.models.addBool('face compare', compare, 'enabled', (val) => {
@ -770,7 +817,6 @@ function setupMenu() {
async function resize() { async function resize() {
window.onresize = null; window.onresize = null;
log('resize');
// best setting for mobile, ignored for desktop // best setting for mobile, ignored for desktop
// can set dynamic value such as Math.min(1, Math.round(100 * window.innerWidth / 960) / 100); // can set dynamic value such as Math.min(1, Math.round(100 * window.innerWidth / 960) / 100);
const viewportScale = 0.7; const viewportScale = 0.7;
@ -819,12 +865,42 @@ async function processDataURL(f, action) {
if (e.target.result.startsWith('data:video')) await processVideo(e.target.result, f.name); if (e.target.result.startsWith('data:video')) await processVideo(e.target.result, f.name);
document.getElementById('canvas').style.display = 'none'; document.getElementById('canvas').style.display = 'none';
} }
if (action === 'background') {
const image = new Image();
image.onerror = async () => status('image loading error');
image.onload = async () => {
ui.background = image;
if (document.getElementById('canvas').style.display === 'block') { // replace canvas used for video
const canvas = document.getElementById('canvas');
const ctx = canvas.getContext('2d');
const seg = await human.segmentation(canvas, ui.background, userConfig);
if (seg.canvas) ctx.drawImage(seg.canvas, 0, 0);
} else {
const canvases = document.getElementById('samples-container').children; // replace loaded images
for (const canvas of canvases) {
const ctx = canvas.getContext('2d');
const seg = await human.segmentation(canvas, ui.background, userConfig);
if (seg.canvas) ctx.drawImage(seg.canvas, 0, 0);
}
}
};
image.src = e.target.result;
}
resolve(true); resolve(true);
}; };
reader.readAsDataURL(f); reader.readAsDataURL(f);
}); });
} }
async function runSegmentation() {
document.getElementById('file-background').onchange = async (evt) => {
userConfig.segmentation.enabled = true;
evt.preventDefault();
if (evt.target.files.length < 2) ui.columns = 1;
for (const f of evt.target.files) await processDataURL(f, 'background');
};
}
async function dragAndDrop() { async function dragAndDrop() {
document.body.addEventListener('dragenter', (evt) => evt.preventDefault()); document.body.addEventListener('dragenter', (evt) => evt.preventDefault());
document.body.addEventListener('dragleave', (evt) => evt.preventDefault()); document.body.addEventListener('dragleave', (evt) => evt.preventDefault());
@ -862,10 +938,10 @@ async function pwaRegister() {
const regs = await navigator.serviceWorker.getRegistrations(); const regs = await navigator.serviceWorker.getRegistrations();
for (const reg of regs) { for (const reg of regs) {
log('pwa found:', reg.scope); log('pwa found:', reg.scope);
if (reg.scope.startsWith(window.location.origin)) found = reg; if (reg.scope.startsWith(location.origin)) found = reg;
} }
if (!found) { if (!found) {
const reg = await navigator.serviceWorker.register(pwa.scriptFile, { scope: window.location.pathname }); const reg = await navigator.serviceWorker.register(pwa.scriptFile, { scope: location.pathname });
found = reg; found = reg;
log('pwa registered:', reg.scope); log('pwa registered:', reg.scope);
} }
@ -897,7 +973,8 @@ async function main() {
if (ui.detectThread) cancelAnimationFrame(ui.detectThread); if (ui.detectThread) cancelAnimationFrame(ui.detectThread);
if (ui.drawThread) cancelAnimationFrame(ui.drawThread); if (ui.drawThread) cancelAnimationFrame(ui.drawThread);
const msg = evt.reason.message || evt.reason || evt; const msg = evt.reason.message || evt.reason || evt;
console.error(msg); // eslint-disable-line no-console // eslint-disable-next-line no-console
console.error(msg);
document.getElementById('log').innerHTML = msg; document.getElementById('log').innerHTML = msg;
status(`exception: ${msg}`); status(`exception: ${msg}`);
evt.preventDefault(); evt.preventDefault();
@ -920,7 +997,7 @@ async function main() {
await pwaRegister(); await pwaRegister();
// parse url search params // parse url search params
const params = new URLSearchParams(window.location.search); const params = new URLSearchParams(location.search);
log('url options:', params.toString()); log('url options:', params.toString());
if (params.has('worker')) { if (params.has('worker')) {
ui.useWorker = JSON.parse(params.get('worker')); ui.useWorker = JSON.parse(params.get('worker'));
@ -963,8 +1040,10 @@ async function main() {
// we've merged human defaults with user config and now lets store it back so it can be accessed by methods such as menu // we've merged human defaults with user config and now lets store it back so it can be accessed by methods such as menu
userConfig = human.config; userConfig = human.config;
if (typeof tf !== 'undefined') { if (typeof tf !== 'undefined') {
log('TensorFlow external version:', tf.version); // eslint-disable-line no-undef // eslint-disable-next-line no-undef
human.tf = tf; // eslint-disable-line no-undef log('TensorFlow external version:', tf.version);
// eslint-disable-next-line no-undef
human.tf = tf; // use externally loaded version of tfjs
} }
log('tfjs version:', human.tf.version.tfjs); log('tfjs version:', human.tf.version.tfjs);
@ -977,7 +1056,8 @@ async function main() {
if (ui.modelsPreload && !ui.useWorker) { if (ui.modelsPreload && !ui.useWorker) {
status('loading'); status('loading');
await human.load(userConfig); // this is not required, just pre-loads all models await human.load(userConfig); // this is not required, just pre-loads all models
log('demo loaded models:', human.models.loaded()); const loaded = Object.keys(human.models).filter((a) => human.models[a]);
log('demo loaded models:', loaded);
} else { } else {
await human.init(); await human.init();
} }
@ -999,6 +1079,9 @@ async function main() {
// init drag & drop // init drag & drop
await dragAndDrop(); await dragAndDrop();
// init segmentation
await runSegmentation();
if (params.has('image')) { if (params.has('image')) {
try { try {
const image = JSON.parse(params.get('image')); const image = JSON.parse(params.get('image'));
@ -1019,7 +1102,7 @@ async function main() {
} }
if (human.config.debug) log('environment:', human.env); if (human.config.debug) log('environment:', human.env);
if (human.config.backend === 'webgl' && human.config.debug) log('backend:', human.gl); if (human.config.backend === 'humangl' && human.config.debug) log('backend:', human.gl);
} }
window.onload = main; window.onload = main;

View File

@ -16,7 +16,6 @@
node demo/nodejs/node-multiprocess.js node demo/nodejs/node-multiprocess.js
``` ```
<!-- eslint-skip -->
```json ```json
2021-06-01 08:54:19 INFO: @vladmandic/human version 2.0.0 2021-06-01 08:54:19 INFO: @vladmandic/human version 2.0.0
2021-06-01 08:54:19 INFO: User: vlado Platform: linux Arch: x64 Node: v16.0.0 2021-06-01 08:54:19 INFO: User: vlado Platform: linux Arch: x64 Node: v16.0.0

View File

@ -9,10 +9,10 @@
<meta name="description" content="Human: 3D Face Detection, Body Pose, Hand & Finger Tracking, Iris Tracking, Age & Gender Prediction, Emotion Prediction & Gesture Recognition; Author: Vladimir Mandic <https://github.com/vladmandic>"> <meta name="description" content="Human: 3D Face Detection, Body Pose, Hand & Finger Tracking, Iris Tracking, Age & Gender Prediction, Emotion Prediction & Gesture Recognition; Author: Vladimir Mandic <https://github.com/vladmandic>">
<meta name="msapplication-tooltip" content="Human: 3D Face Detection, Body Pose, Hand & Finger Tracking, Iris Tracking, Age & Gender Prediction, Emotion Prediction & Gesture Recognition; Author: Vladimir Mandic <https://github.com/vladmandic>"> <meta name="msapplication-tooltip" content="Human: 3D Face Detection, Body Pose, Hand & Finger Tracking, Iris Tracking, Age & Gender Prediction, Emotion Prediction & Gesture Recognition; Author: Vladimir Mandic <https://github.com/vladmandic>">
<meta name="theme-color" content="#000000"> <meta name="theme-color" content="#000000">
<link rel="manifest" href="../../manifest.webmanifest"> <link rel="manifest" href="../manifest.webmanifest">
<link rel="shortcut icon" href="../../favicon.ico" type="image/x-icon"> <link rel="shortcut icon" href="../../favicon.ico" type="image/x-icon">
<link rel="apple-touch-icon" href="../../assets/icon.png"> <link rel="apple-touch-icon" href="../../assets/icon.png">
<script src="../multithread/index.js" type="module"></script> <script src="./index.js" type="module"></script>
<style> <style>
@font-face { font-family: 'Lato'; font-display: swap; font-style: normal; font-weight: 100; src: local('Lato'), url('../../assets/lato-light.woff2') } @font-face { font-family: 'Lato'; font-display: swap; font-style: normal; font-weight: 100; src: local('Lato'), url('../../assets/lato-light.woff2') }
html { font-family: 'Lato', 'Segoe UI'; font-size: 16px; font-variant: small-caps; } html { font-family: 'Lato', 'Segoe UI'; font-size: 16px; font-variant: small-caps; }

View File

@ -5,15 +5,15 @@
* *
*/ */
import { Human } from '../../dist/human.esm.js'; // equivalent of @vladmandic/human import Human from '../../dist/human.esm.js'; // equivalent of @vladmandic/human
import GLBench from '../helpers/gl-bench.js'; import GLBench from '../helpers/gl-bench.js';
const workerJS = '../multithread/worker.js'; const workerJS = './worker.js';
const config = { const config = {
main: { // processes input and runs gesture analysis main: { // processes input and runs gesture analysis
warmup: 'none', warmup: 'none',
backend: 'webgl', backend: 'humangl',
modelBasePath: '../../models/', modelBasePath: '../../models/',
async: false, async: false,
filter: { enabled: true }, filter: { enabled: true },
@ -26,7 +26,7 @@ const config = {
}, },
face: { // runs all face models face: { // runs all face models
warmup: 'none', warmup: 'none',
backend: 'webgl', backend: 'humangl',
modelBasePath: '../../models/', modelBasePath: '../../models/',
async: false, async: false,
filter: { enabled: false }, filter: { enabled: false },
@ -39,7 +39,7 @@ const config = {
}, },
body: { // runs body model body: { // runs body model
warmup: 'none', warmup: 'none',
backend: 'webgl', backend: 'humangl',
modelBasePath: '../../models/', modelBasePath: '../../models/',
async: false, async: false,
filter: { enabled: false }, filter: { enabled: false },
@ -52,7 +52,7 @@ const config = {
}, },
hand: { // runs hands model hand: { // runs hands model
warmup: 'none', warmup: 'none',
backend: 'webgl', backend: 'humangl',
modelBasePath: '../../models/', modelBasePath: '../../models/',
async: false, async: false,
filter: { enabled: false }, filter: { enabled: false },
@ -65,7 +65,7 @@ const config = {
}, },
object: { // runs object model object: { // runs object model
warmup: 'none', warmup: 'none',
backend: 'webgl', backend: 'humangl',
modelBasePath: '../../models/', modelBasePath: '../../models/',
async: false, async: false,
filter: { enabled: false }, filter: { enabled: false },
@ -130,7 +130,8 @@ const result = { // initialize empty result object which will be partially fille
function log(...msg) { function log(...msg) {
const dt = new Date(); const dt = new Date();
const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`; const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;
console.log(ts, ...msg); // eslint-disable-line no-console // eslint-disable-next-line no-console
console.log(ts, ...msg);
} }
async function drawResults() { async function drawResults() {
@ -202,9 +203,7 @@ async function setupCamera() {
}, },
}; };
// enumerate devices for diag purposes // enumerate devices for diag purposes
navigator.mediaDevices.enumerateDevices() navigator.mediaDevices.enumerateDevices().then((devices) => log('enumerated devices:', devices));
.then((devices) => log('enumerated devices:', devices))
.catch(() => log('mediaDevices error'));
log('camera constraints', constraints); log('camera constraints', constraints);
try { try {
stream = await navigator.mediaDevices.getUserMedia(constraints); stream = await navigator.mediaDevices.getUserMedia(constraints);
@ -231,7 +230,7 @@ async function setupCamera() {
}; };
}); });
// attach input to video element // attach input to video element
if (stream && video) video.srcObject = stream; if (stream && video) video['srcObject'] = stream;
return promise; return promise;
} }

View File

@ -6,10 +6,11 @@
*/ */
const fs = require('fs'); const fs = require('fs');
const log = require('@vladmandic/pilogger'); // eslint-disable-line node/no-unpublished-require const log = require('@vladmandic/pilogger');
// workers actual import tfjs and human modules // workers actual import tfjs and human modules
const tf = require('@tensorflow/tfjs-node'); // eslint-disable-line node/no-unpublished-require // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars
const tf = require('@tensorflow/tfjs-node');
const Human = require('../../dist/human.node.js').default; // or const Human = require('../dist/human.node-gpu.js').default; const Human = require('../../dist/human.node.js').default; // or const Human = require('../dist/human.node-gpu.js').default;
let human = null; let human = null;
@ -63,9 +64,11 @@ async function main() {
// on worker start first initialize message handler so we don't miss any messages // on worker start first initialize message handler so we don't miss any messages
process.on('message', (msg) => { process.on('message', (msg) => {
// if main told worker to exit // @ts-ignore
if (msg.exit && process.exit) process.exit(); // eslint-disable-line no-process-exit if (msg.exit && process.exit) process.exit(); // if main told worker to exit
// @ts-ignore
if (msg.test && process.send) process.send({ test: true }); if (msg.test && process.send) process.send({ test: true });
// @ts-ignore
if (msg.image) detect(msg.image); // if main told worker to process image if (msg.image) detect(msg.image); // if main told worker to process image
log.data('Worker received message:', process.pid, msg); // generic log log.data('Worker received message:', process.pid, msg); // generic log
}); });

View File

@ -8,12 +8,13 @@
const fs = require('fs'); const fs = require('fs');
const path = require('path'); const path = require('path');
const childProcess = require('child_process'); // eslint-disable-line camelcase // eslint-disable-next-line import/no-extraneous-dependencies, node/no-unpublished-require
const log = require('@vladmandic/pilogger'); // eslint-disable-line node/no-unpublished-require const log = require('@vladmandic/pilogger'); // this is my simple logger with few extra features
const child_process = require('child_process');
// note that main process does not import human or tfjs at all, it's all done from worker process // note that main process does not import human or tfjs at all, it's all done from worker process
const workerFile = 'demo/multithread/node-multiprocess-worker.js'; const workerFile = 'demo/nodejs/node-multiprocess-worker.js';
const imgPathRoot = './samples/in'; // modify to include your sample images const imgPathRoot = './assets'; // modify to include your sample images
const numWorkers = 4; // how many workers will be started const numWorkers = 4; // how many workers will be started
const workers = []; // this holds worker processes const workers = []; // this holds worker processes
const images = []; // this holds queue of enumerated images const images = []; // this holds queue of enumerated images
@ -22,7 +23,7 @@ let numImages;
// trigered by main when worker sends ready message // trigered by main when worker sends ready message
// if image pool is empty, signal worker to exit otherwise dispatch image to worker and remove image from queue // if image pool is empty, signal worker to exit otherwise dispatch image to worker and remove image from queue
async function submitDetect(worker) { async function detect(worker) {
if (!t[2]) t[2] = process.hrtime.bigint(); // first time do a timestamp so we can measure initial latency if (!t[2]) t[2] = process.hrtime.bigint(); // first time do a timestamp so we can measure initial latency
if (images.length === numImages) worker.send({ test: true }); // for first image in queue just measure latency if (images.length === numImages) worker.send({ test: true }); // for first image in queue just measure latency
if (images.length === 0) worker.send({ exit: true }); // nothing left in queue if (images.length === 0) worker.send({ exit: true }); // nothing left in queue
@ -73,13 +74,13 @@ async function main() {
// manage worker processes // manage worker processes
for (let i = 0; i < numWorkers; i++) { for (let i = 0; i < numWorkers; i++) {
// create worker process // create worker process
workers[i] = await childProcess.fork(workerFile, ['special']); workers[i] = await child_process.fork(workerFile, ['special']);
// parse message that worker process sends back to main // parse message that worker process sends back to main
// if message is ready, dispatch next image in queue // if message is ready, dispatch next image in queue
// if message is processing result, just print how many faces were detected // if message is processing result, just print how many faces were detected
// otherwise it's an unknown message // otherwise it's an unknown message
workers[i].on('message', (msg) => { workers[i].on('message', (msg) => {
if (msg.ready) submitDetect(workers[i]); if (msg.ready) detect(workers[i]);
else if (msg.image) log.data('Main: worker finished:', workers[i].pid, 'detected faces:', msg.detected.face?.length, 'bodies:', msg.detected.body?.length, 'hands:', msg.detected.hand?.length, 'objects:', msg.detected.object?.length); else if (msg.image) log.data('Main: worker finished:', workers[i].pid, 'detected faces:', msg.detected.face?.length, 'bodies:', msg.detected.body?.length, 'hands:', msg.detected.hand?.length, 'objects:', msg.detected.object?.length);
else if (msg.test) measureLatency(); else if (msg.test) measureLatency();
else log.data('Main: worker message:', workers[i].pid, msg); else log.data('Main: worker message:', workers[i].pid, msg);

View File

@ -1,7 +1,7 @@
/// <reference lib="webworker" /> /// <reference lib="webworker" />
// load Human using IIFE script as Chome Mobile does not support Modules as Workers // load Human using IIFE script as Chome Mobile does not support Modules as Workers
self.importScripts('../../dist/human.js'); // eslint-disable-line no-restricted-globals self.importScripts('../../dist/human.js');
let human; let human;
@ -9,8 +9,9 @@ onmessage = async (msg) => {
// received from index.js using: // received from index.js using:
// worker.postMessage({ image: image.data.buffer, width: canvas.width, height: canvas.height, config }, [image.data.buffer]); // worker.postMessage({ image: image.data.buffer, width: canvas.width, height: canvas.height, config }, [image.data.buffer]);
// Human is registered as global namespace using IIFE script // @ts-ignore // Human is registered as global namespace using IIFE script
if (!human) human = new Human.default(msg.data.config); // eslint-disable-line no-undef, new-cap // eslint-disable-next-line no-undef, new-cap
if (!human) human = new Human.default(msg.data.config);
const image = new ImageData(new Uint8ClampedArray(msg.data.image), msg.data.width, msg.data.height); const image = new ImageData(new Uint8ClampedArray(msg.data.image), msg.data.width, msg.data.height);
let result = {}; let result = {};
result = await human.detect(image, msg.data.config); result = await human.detect(image, msg.data.config);

View File

@ -28,8 +28,7 @@ or you can pass a path to image to analyze, either on local filesystem or using
node demo/nodejs/node.js node demo/nodejs/node.js
``` ```
<!-- eslint-skip --> ```json
```js
2021-06-01 08:52:15 INFO: @vladmandic/human version 2.0.0 2021-06-01 08:52:15 INFO: @vladmandic/human version 2.0.0
2021-06-01 08:52:15 INFO: User: vlado Platform: linux Arch: x64 Node: v16.0.0 2021-06-01 08:52:15 INFO: User: vlado Platform: linux Arch: x64 Node: v16.0.0
2021-06-01 08:52:15 INFO: Current folder: /home/vlado/dev/human 2021-06-01 08:52:15 INFO: Current folder: /home/vlado/dev/human
@ -83,7 +82,7 @@ node demo/nodejs/node.js
detector: { modelPath: 'handdetect.json' }, detector: { modelPath: 'handdetect.json' },
skeleton: { modelPath: 'handskeleton.json' } skeleton: { modelPath: 'handskeleton.json' }
}, },
object: { enabled: true, modelPath: 'centernet.json', minConfidence: 0.2, iouThreshold: 0.4, maxDetected: 10, skipFrames: 19 } object: { enabled: true, modelPath: 'mb3-centernet.json', minConfidence: 0.2, iouThreshold: 0.4, maxDetected: 10, skipFrames: 19 }
} }
08:52:15.673 Human: version: 2.0.0 08:52:15.673 Human: version: 2.0.0
08:52:15.674 Human: tfjs version: 3.6.0 08:52:15.674 Human: tfjs version: 3.6.0
@ -97,7 +96,7 @@ node demo/nodejs/node.js
08:52:15.847 Human: load model: file://models/handdetect.json 08:52:15.847 Human: load model: file://models/handdetect.json
08:52:15.847 Human: load model: file://models/handskeleton.json 08:52:15.847 Human: load model: file://models/handskeleton.json
08:52:15.914 Human: load model: file://models/movenet-lightning.json 08:52:15.914 Human: load model: file://models/movenet-lightning.json
08:52:15.957 Human: load model: file://models/centernet.json 08:52:15.957 Human: load model: file://models/mb3-centernet.json
08:52:16.015 Human: load model: file://models/faceres.json 08:52:16.015 Human: load model: file://models/faceres.json
08:52:16.015 Human: tf engine state: 50796152 bytes 1318 tensors 08:52:16.015 Human: tf engine state: 50796152 bytes 1318 tensors
2021-06-01 08:52:16 INFO: Loaded: [ 'face', 'movenet', 'handpose', 'emotion', 'centernet', 'faceres', [length]: 6 ] 2021-06-01 08:52:16 INFO: Loaded: [ 'face', 'movenet', 'handpose', 'emotion', 'centernet', 'faceres', [length]: 6 ]

View File

@ -1,70 +0,0 @@
const fs = require('fs');
const process = require('process');
const log = require('@vladmandic/pilogger'); // eslint-disable-line node/no-unpublished-require
const tf = require('@tensorflow/tfjs-node'); // eslint-disable-line node/no-unpublished-require
const Human = require('../../dist/human.node.js');
const humanConfig = {
debug: false,
face: {
enabled: true,
detector: { enabled: true, modelPath: 'blazeface.json' },
description: { enabled: true, modelPath: 'faceres.json' },
// gear: { enabled: true, modelPath: '/home/vlado/dev/human-models/models/gear.json' },
// ssrnet: { enabled: true, modelPathAge: '/home/vlado/dev/human-models/models/age.json', modelPathGender: '/home/vlado/dev/human-models/models/gender.json' },
emotion: { enabled: false },
mesh: { enabled: false },
iris: { enabled: false },
antispoof: { enabled: false },
liveness: { enabled: false },
},
body: { enabled: false },
hand: { enabled: false },
gesture: { enabled: false },
};
const human = new Human.Human(humanConfig);
const ageThreshold = 18;
async function detect(inputFile) {
try {
const buffer = fs.readFileSync(inputFile);
const tensor = human.tf.node.decodeImage(buffer);
const result = await human.detect(tensor);
human.tf.dispose(tensor);
if (!result || !result.face || result.face.length === 0) return false;
let msg = ` file=${inputFile} resolution=${tensor.shape}`;
for (const face of result.face) {
msg = ` file=${inputFile} resolution=${tensor.shape} age=${face.age} gender=${face.gender} confidence=${face.genderScore}`;
if (face.age < ageThreshold) {
log.warn('fail:' + msg);
return true;
}
}
log.info('pass: ' + msg);
return false;
} catch (err) {
log.error(`error: file=${inputFile}: ${err}`);
}
return false;
}
async function main() {
log.info(`Human: version=${human.version} tf=${tf.version_core}`);
process.noDeprecation = true;
if (process.argv.length < 3) return;
await human.load();
await human.warmup();
const t0 = performance.now();
const args = process.argv.slice(2);
let pass = 0;
let fail = 0;
for (const arg of args) {
const ok = await detect(arg);
if (ok) pass++;
else fail++;
}
const t1 = performance.now();
log.info(`Human: files=${args.length} pass=${pass} fail=${fail} time=${Math.round(t1 - t0)} fps=${Math.round(10000 * args.length / (t1 - t0)) / 10}`);
}
main();

View File

@ -1,66 +0,0 @@
/**
* Human simple demo for NodeJS
*/
const childProcess = require('child_process'); // eslint-disable-line camelcase
const log = require('@vladmandic/pilogger'); // eslint-disable-line node/no-unpublished-require
const canvas = require('canvas'); // eslint-disable-line node/no-unpublished-require
const config = {
cacheSensitivity: 0.01,
wasmPlatformFetch: true,
modelBasePath: 'https://vladmandic.github.io/human-models/models/',
};
const count = 10;
async function loadImage(input) {
const inputImage = await canvas.loadImage(input);
const inputCanvas = new canvas.Canvas(inputImage.width, inputImage.height);
const inputCtx = inputCanvas.getContext('2d');
inputCtx.drawImage(inputImage, 0, 0);
const imageData = inputCtx.getImageData(0, 0, inputCanvas.width, inputCanvas.height);
process.send({ input, resolution: [inputImage.width, inputImage.height] });
return imageData;
}
async function runHuman(module, backend) {
if (backend === 'wasm') require('@tensorflow/tfjs-backend-wasm'); // eslint-disable-line node/no-unpublished-require, global-require
const Human = require('../../dist/' + module); // eslint-disable-line global-require, import/no-dynamic-require
config.backend = backend;
const human = new Human.Human(config);
human.env.Canvas = canvas.Canvas;
human.env.Image = canvas.Image;
human.env.ImageData = canvas.ImageData;
process.send({ human: human.version, module });
await human.init();
process.send({ desired: human.config.backend, wasm: human.env.wasm, tfjs: human.tf.version.tfjs, tensorflow: human.env.tensorflow });
const imageData = await loadImage('samples/in/ai-body.jpg');
const t0 = human.now();
await human.load();
const t1 = human.now();
await human.warmup();
const t2 = human.now();
for (let i = 0; i < count; i++) await human.detect(imageData);
const t3 = human.now();
process.send({ backend: human.tf.getBackend(), load: Math.round(t1 - t0), warmup: Math.round(t2 - t1), detect: Math.round(t3 - t2), count, memory: human.tf.memory().numBytes });
}
async function executeWorker(args) {
return new Promise((resolve) => {
const worker = childProcess.fork(process.argv[1], args);
worker.on('message', (msg) => log.data(msg));
worker.on('exit', () => resolve(true));
});
}
async function main() {
if (process.argv[2]) {
await runHuman(process.argv[2], process.argv[3]);
} else {
await executeWorker(['human.node.js', 'tensorflow']);
await executeWorker(['human.node-gpu.js', 'tensorflow']);
await executeWorker(['human.node-wasm.js', 'wasm']);
}
}
main();

View File

@ -1,22 +1,21 @@
/** /**
* Human demo for NodeJS using Canvas library * Human demo for NodeJS using Canvas library
*
* Requires [canvas](https://www.npmjs.com/package/canvas) to provide Canvas functionality in NodeJS environment
*/ */
const fs = require('fs'); const fs = require('fs');
const process = require('process'); const process = require('process');
const log = require('@vladmandic/pilogger'); // eslint-disable-line node/no-unpublished-require const log = require('@vladmandic/pilogger');
// in nodejs environments tfjs-node is required to be loaded before human const canvas = require('canvas');
const tf = require('@tensorflow/tfjs-node'); // eslint-disable-line node/no-unpublished-require
const canvas = require('canvas'); // eslint-disable-line node/no-unpublished-require // eslint-disable-next-line import/no-extraneous-dependencies, no-unused-vars, @typescript-eslint/no-unused-vars
const tf = require('@tensorflow/tfjs-node'); // in nodejs environments tfjs-node is required to be loaded before human
// const human = require('@vladmandic/human'); // use this when human is installed as module (majority of use cases) // const human = require('@vladmandic/human'); // use this when human is installed as module (majority of use cases)
const Human = require('../../dist/human.node.js'); // use this when using human in dev mode const Human = require('../../dist/human.node.js'); // use this when using human in dev mode
const config = { // just enable all and leave default settings const config = { // just enable all and leave default settings
debug: false, debug: false,
face: { enabled: true, detector: { maxDetected: 10 } }, // includes mesh, iris, emotion, descriptor face: { enabled: true }, // includes mesh, iris, emotion, descriptor
hand: { enabled: true, maxDetected: 20, minConfidence: 0.5, detector: { modelPath: 'handtrack.json' } }, // use alternative hand model hand: { enabled: true, maxDetected: 2, minConfidence: 0.5, detector: { modelPath: 'handtrack.json' } }, // use alternative hand model
body: { enabled: true }, body: { enabled: true },
object: { enabled: true }, object: { enabled: true },
gestures: { enabled: true }, gestures: { enabled: true },
@ -24,7 +23,6 @@ const config = { // just enable all and leave default settings
async function main() { async function main() {
log.header(); log.header();
process.noDeprecation = true;
globalThis.Canvas = canvas.Canvas; // patch global namespace with canvas library globalThis.Canvas = canvas.Canvas; // patch global namespace with canvas library
globalThis.ImageData = canvas.ImageData; // patch global namespace with canvas library globalThis.ImageData = canvas.ImageData; // patch global namespace with canvas library
@ -33,16 +31,15 @@ async function main() {
// init // init
const human = new Human.Human(config); // create instance of human const human = new Human.Human(config); // create instance of human
log.info('Human:', human.version, 'TF:', tf.version_core); log.info('Human:', human.version);
await human.load(); // pre-load models await human.load(); // pre-load models
log.info('Loaded models:', human.models.loaded()); log.info('Loaded models:', Object.keys(human.models).filter((a) => human.models[a]));
log.info('Memory state:', human.tf.engine().memory()); log.info('Memory state:', human.tf.engine().memory());
// parse cmdline // parse cmdline
const input = process.argv[2]; const input = process.argv[2];
let output = process.argv[3]; const output = process.argv[3];
if (!output.toLowerCase().endsWith('.jpg')) output += '.jpg';
if (process.argv.length !== 4) log.error('Parameters: <input-image> <output-image> missing'); if (process.argv.length !== 4) log.error('Parameters: <input-image> <output-image> missing');
else if (!fs.existsSync(input) && !input.startsWith('http')) log.error(`File not found: ${process.argv[2]}`); else if (!fs.existsSync(input) && !input.startsWith('http')) log.error(`File not found: ${process.argv[2]}`);
else { else {
@ -56,6 +53,9 @@ async function main() {
// run detection // run detection
const result = await human.detect(imageData); const result = await human.detect(imageData);
// run segmentation
// const seg = await human.segmentation(inputCanvas);
// log.data('Segmentation:', { data: seg.data.length, alpha: typeof seg.alpha, canvas: typeof seg.canvas });
// print results summary // print results summary
const persons = result.persons; // invoke persons getter, only used to print summary on console const persons = result.persons; // invoke persons getter, only used to print summary on console
@ -63,7 +63,7 @@ async function main() {
const face = persons[i].face; const face = persons[i].face;
const faceTxt = face ? `score:${face.score} age:${face.age} gender:${face.gender} iris:${face.iris}` : null; const faceTxt = face ? `score:${face.score} age:${face.age} gender:${face.gender} iris:${face.iris}` : null;
const body = persons[i].body; const body = persons[i].body;
const bodyTxt = body ? `score:${body.score} keypoints:${body.keypoints.length}` : null; const bodyTxt = body ? `score:${body.score} keypoints:${body.keypoints?.length}` : null;
log.data(`Detected: #${i}: Face:${faceTxt} Body:${bodyTxt} LeftHand:${persons[i].hands.left ? 'yes' : 'no'} RightHand:${persons[i].hands.right ? 'yes' : 'no'} Gestures:${persons[i].gestures.length}`); log.data(`Detected: #${i}: Face:${faceTxt} Body:${bodyTxt} LeftHand:${persons[i].hands.left ? 'yes' : 'no'} RightHand:${persons[i].hands.right ? 'yes' : 'no'} Gestures:${persons[i].gestures.length}`);
} }
@ -71,6 +71,7 @@ async function main() {
const outputCanvas = new canvas.Canvas(inputImage.width, inputImage.height); // create canvas const outputCanvas = new canvas.Canvas(inputImage.width, inputImage.height); // create canvas
const outputCtx = outputCanvas.getContext('2d'); const outputCtx = outputCanvas.getContext('2d');
outputCtx.drawImage(result.canvas || inputImage, 0, 0); // draw input image onto canvas outputCtx.drawImage(result.canvas || inputImage, 0, 0); // draw input image onto canvas
// @ts-ignore canvas is not checked for typedefs
human.draw.all(outputCanvas, result); // use human build-in method to draw results as overlays on canvas human.draw.all(outputCanvas, result); // use human build-in method to draw results as overlays on canvas
const outFile = fs.createWriteStream(output); // write canvas to new image file const outFile = fs.createWriteStream(output); // write canvas to new image file
outFile.on('finish', () => log.state('Output image:', output, outputCanvas.width, outputCanvas.height)); outFile.on('finish', () => log.state('Output image:', output, outputCanvas.width, outputCanvas.height));

View File

@ -2,12 +2,14 @@
* Human demo for NodeJS * Human demo for NodeJS
*/ */
const log = require('@vladmandic/pilogger');
const fs = require('fs'); const fs = require('fs');
const process = require('process'); const process = require('process');
const log = require('@vladmandic/pilogger'); // eslint-disable-line node/no-unpublished-require let fetch; // fetch is dynamically imported later
// in nodejs environments tfjs-node is required to be loaded before human
const tf = require('@tensorflow/tfjs-node'); // eslint-disable-line node/no-unpublished-require // eslint-disable-next-line import/no-extraneous-dependencies, no-unused-vars, @typescript-eslint/no-unused-vars
const tf = require('@tensorflow/tfjs-node'); // in nodejs environments tfjs-node is required to be loaded before human
// const human = require('@vladmandic/human'); // use this when human is installed as module (majority of use cases) // const human = require('@vladmandic/human'); // use this when human is installed as module (majority of use cases)
const Human = require('../../dist/human.node.js'); // use this when using human in dev mode const Human = require('../../dist/human.node.js'); // use this when using human in dev mode
@ -36,13 +38,13 @@ async function detect(input) {
let buffer; let buffer;
log.info('Loading image:', input); log.info('Loading image:', input);
if (input.startsWith('http:') || input.startsWith('https:')) { if (input.startsWith('http:') || input.startsWith('https:')) {
fetch = (await import('node-fetch')).default;
const res = await fetch(input); const res = await fetch(input);
if (res && res.ok) buffer = Buffer.from(await res.arrayBuffer()); if (res && res.ok) buffer = await res.buffer();
else log.error('Invalid image URL:', input, res.status, res.statusText, res.headers.get('content-type')); else log.error('Invalid image URL:', input, res.status, res.statusText, res.headers.get('content-type'));
} else { } else {
buffer = fs.readFileSync(input); buffer = fs.readFileSync(input);
} }
log.data('Image bytes:', buffer?.length, 'buffer:', buffer?.slice(0, 32));
// decode image using tfjs-node so we don't need external depenencies // decode image using tfjs-node so we don't need external depenencies
if (!buffer) return; if (!buffer) return;
@ -57,7 +59,6 @@ async function main() {
log.header(); log.header();
human = new Human.Human(myConfig); human = new Human.Human(myConfig);
log.info('Human:', human.version, 'TF:', tf.version_core);
if (human.events) { if (human.events) {
human.events.addEventListener('warmup', () => { human.events.addEventListener('warmup', () => {
@ -65,7 +66,8 @@ async function main() {
}); });
human.events.addEventListener('load', () => { human.events.addEventListener('load', () => {
log.info('Event Loaded:', human.models.loaded(), human.tf.engine().memory()); const loaded = Object.keys(human.models).filter((a) => human.models[a]);
log.info('Event Loaded:', loaded, human.tf.engine().memory());
}); });
human.events.addEventListener('image', () => { human.events.addEventListener('image', () => {
@ -77,7 +79,7 @@ async function main() {
const persons = human.result.persons; const persons = human.result.persons;
for (let i = 0; i < persons.length; i++) { for (let i = 0; i < persons.length; i++) {
const face = persons[i].face; const face = persons[i].face;
const faceTxt = face ? `score:${face.score} age:${face.age} gender:${face.gender} iris:${face.distance}` : null; const faceTxt = face ? `score:${face.score} age:${face.age} gender:${face.gender} iris:${face.iris}` : null;
const body = persons[i].body; const body = persons[i].body;
const bodyTxt = body ? `score:${body.score} keypoints:${body.keypoints?.length}` : null; const bodyTxt = body ? `score:${body.score} keypoints:${body.keypoints?.length}` : null;
log.data(` #${i}: Face:${faceTxt} Body:${bodyTxt} LeftHand:${persons[i].hands.left ? 'yes' : 'no'} RightHand:${persons[i].hands.right ? 'yes' : 'no'} Gestures:${persons[i].gestures.length}`); log.data(` #${i}: Face:${faceTxt} Body:${bodyTxt} LeftHand:${persons[i].hands.left ? 'yes' : 'no'} RightHand:${persons[i].hands.right ? 'yes' : 'no'} Gestures:${persons[i].gestures.length}`);

View File

@ -1,13 +1,7 @@
/**
* Human demo for NodeJS using http fetch to get image file
*
* Requires [node-fetch](https://www.npmjs.com/package/node-fetch) to provide `fetch` functionality in NodeJS environment
*/
const fs = require('fs'); const fs = require('fs');
const log = require('@vladmandic/pilogger'); // eslint-disable-line node/no-unpublished-require
// in nodejs environments tfjs-node is required to be loaded before human // eslint-disable-next-line import/no-extraneous-dependencies, no-unused-vars, @typescript-eslint/no-unused-vars
const tf = require('@tensorflow/tfjs-node'); // eslint-disable-line node/no-unpublished-require const tf = require('@tensorflow/tfjs-node'); // in nodejs environments tfjs-node is required to be loaded before human
// const human = require('@vladmandic/human'); // use this when human is installed as module (majority of use cases) // const human = require('@vladmandic/human'); // use this when human is installed as module (majority of use cases)
const Human = require('../../dist/human.node.js'); // use this when using human in dev mode const Human = require('../../dist/human.node.js'); // use this when using human in dev mode
@ -16,15 +10,16 @@ const humanConfig = {
}; };
async function main(inputFile) { async function main(inputFile) {
global.fetch = (await import('node-fetch')).default; // eslint-disable-line node/no-unpublished-import, import/no-unresolved, node/no-missing-import, node/no-extraneous-import // @ts-ignore
global.fetch = (await import('node-fetch')).default;
const human = new Human.Human(humanConfig); // create instance of human using default configuration const human = new Human.Human(humanConfig); // create instance of human using default configuration
log.info('Human:', human.version, 'TF:', tf.version_core);
await human.load(); // optional as models would be loaded on-demand first time they are required await human.load(); // optional as models would be loaded on-demand first time they are required
await human.warmup(); // optional as model warmup is performed on-demand first time its executed await human.warmup(); // optional as model warmup is performed on-demand first time its executed
const buffer = fs.readFileSync(inputFile); // read file data into buffer const buffer = fs.readFileSync(inputFile); // read file data into buffer
const tensor = human.tf.node.decodeImage(buffer); // decode jpg data const tensor = human.tf.node.decodeImage(buffer); // decode jpg data
const result = await human.detect(tensor); // run detection; will initialize backend and on-demand load models const result = await human.detect(tensor); // run detection; will initialize backend and on-demand load models
log.data(result.gesture); // eslint-disable-next-line no-console
console.log(result.gesture);
} }
main('samples/in/ai-body.jpg'); main('samples/in/ai-body.jpg');

View File

@ -2,12 +2,12 @@
* Human Person Similarity test for NodeJS * Human Person Similarity test for NodeJS
*/ */
const log = require('@vladmandic/pilogger');
const fs = require('fs'); const fs = require('fs');
const process = require('process'); const process = require('process');
const log = require('@vladmandic/pilogger'); // eslint-disable-line node/no-unpublished-require // eslint-disable-next-line import/no-extraneous-dependencies, no-unused-vars, @typescript-eslint/no-unused-vars
// in nodejs environments tfjs-node is required to be loaded before human const tf = require('@tensorflow/tfjs-node'); // in nodejs environments tfjs-node is required to be loaded before human
const tf = require('@tensorflow/tfjs-node'); // eslint-disable-line node/no-unpublished-require
// const human = require('@vladmandic/human'); // use this when human is installed as module (majority of use cases) // const human = require('@vladmandic/human'); // use this when human is installed as module (majority of use cases)
const Human = require('../../dist/human.node.js'); // use this when using human in dev mode const Human = require('../../dist/human.node.js'); // use this when using human in dev mode
@ -25,19 +25,21 @@ const myConfig = {
async function init() { async function init() {
human = new Human.Human(myConfig); human = new Human.Human(myConfig);
await human.tf.ready(); await human.tf.ready();
log.info('Human:', human.version, 'TF:', tf.version_core); log.info('Human:', human.version);
await human.load(); await human.load();
log.info('Loaded:', human.models.loaded()); const loaded = Object.keys(human.models).filter((a) => human.models[a]);
log.info('Loaded:', loaded);
log.info('Memory state:', human.tf.engine().memory()); log.info('Memory state:', human.tf.engine().memory());
} }
async function detect(input) { async function detect(input) {
if (!fs.existsSync(input)) { if (!fs.existsSync(input)) {
throw new Error('Cannot load image:', input); log.error('Cannot load image:', input);
process.exit(1);
} }
const buffer = fs.readFileSync(input); const buffer = fs.readFileSync(input);
const tensor = human.tf.node.decodeImage(buffer, 3); const tensor = human.tf.node.decodeImage(buffer, 3);
log.state('Loaded image:', input, tensor.shape); log.state('Loaded image:', input, tensor['shape']);
const result = await human.detect(tensor, myConfig); const result = await human.detect(tensor, myConfig);
human.tf.dispose(tensor); human.tf.dispose(tensor);
log.state('Detected faces:', result.face.length); log.state('Detected faces:', result.face.length);
@ -45,20 +47,20 @@ async function detect(input) {
} }
async function main() { async function main() {
process.noDeprecation = true;
log.configure({ inspect: { breakLength: 265 } }); log.configure({ inspect: { breakLength: 265 } });
log.header(); log.header();
if (process.argv.length !== 4) { if (process.argv.length !== 4) {
log.error('Parameters: <first image> <second image> missing'); log.error('Parameters: <first image> <second image> missing');
return; process.exit(1);
} }
await init(); await init();
const res1 = await detect(process.argv[2]); const res1 = await detect(process.argv[2]);
const res2 = await detect(process.argv[3]); const res2 = await detect(process.argv[3]);
if (!res1 || !res1.face || res1.face.length === 0 || !res2 || !res2.face || res2.face.length === 0) { if (!res1 || !res1.face || res1.face.length === 0 || !res2 || !res2.face || res2.face.length === 0) {
throw new Error('Could not detect face descriptors'); log.error('Could not detect face descriptors');
process.exit(1);
} }
const similarity = human.match.similarity(res1.face[0].embedding, res2.face[0].embedding, { order: 2 }); const similarity = human.similarity(res1.face[0].embedding, res2.face[0].embedding, { order: 2 });
log.data('Similarity: ', similarity); log.data('Similarity: ', similarity);
} }

View File

@ -1,32 +1,26 @@
/**
* Human simple demo for NodeJS
*/
const fs = require('fs'); const fs = require('fs');
const process = require('process'); const process = require('process');
// in nodejs environments tfjs-node is required to be loaded before human // eslint-disable-next-line import/no-extraneous-dependencies, no-unused-vars, @typescript-eslint/no-unused-vars
const tf = require('@tensorflow/tfjs-node'); // eslint-disable-line node/no-unpublished-require const tf = require('@tensorflow/tfjs-node'); // in nodejs environments tfjs-node is required to be loaded before human
// const human = require('@vladmandic/human'); // use this when human is installed as module (majority of use cases) // const human = require('@vladmandic/human'); // use this when human is installed as module (majority of use cases)
const Human = require('../../dist/human.node.js'); // use this when using human in dev mode const Human = require('../../dist/human.node.js'); // use this when using human in dev mode
const humanConfig = { const humanConfig = {
// add any custom config here // add any custom config here
debug: true,
body: { enabled: false },
}; };
async function detect(inputFile) { async function detect(inputFile) {
process.noDeprecation = true;
const human = new Human.Human(humanConfig); // create instance of human using default configuration const human = new Human.Human(humanConfig); // create instance of human using default configuration
console.log('Human:', human.version, 'TF:', tf.version_core); // eslint-disable-line no-console
await human.load(); // optional as models would be loaded on-demand first time they are required await human.load(); // optional as models would be loaded on-demand first time they are required
await human.warmup(); // optional as model warmup is performed on-demand first time its executed await human.warmup(); // optional as model warmup is performed on-demand first time its executed
const buffer = fs.readFileSync(inputFile); // read file data into buffer const buffer = fs.readFileSync(inputFile); // read file data into buffer
const tensor = human.tf.node.decodeImage(buffer); // decode jpg data const tensor = human.tf.node.decodeImage(buffer); // decode jpg data
console.log('loaded input file:', inputFile, 'resolution:', tensor.shape); // eslint-disable-line no-console // eslint-disable-next-line no-console
console.log('loaded input file:', inputFile, 'resolution:', tensor.shape);
const result = await human.detect(tensor); // run detection; will initialize backend and on-demand load models const result = await human.detect(tensor); // run detection; will initialize backend and on-demand load models
console.log(result); // eslint-disable-line no-console // eslint-disable-next-line no-console
console.log(result);
} }
if (process.argv.length === 3) detect(process.argv[2]); // if input file is provided as cmdline parameter use it if (process.argv.length === 3) detect(process.argv[2]); // if input file is provided as cmdline parameter use it

View File

@ -7,24 +7,24 @@
* If you want process at specific intervals, set output fps to some value * If you want process at specific intervals, set output fps to some value
* If you want to process an input stream, set real-time flag and set input as required * If you want to process an input stream, set real-time flag and set input as required
* *
* Note that [pipe2jpeg](https://www.npmjs.com/package/pipe2jpeg) is not part of Human dependencies and should be installed manually * Note that pipe2jpeg is not part of Human dependencies and should be installed manually
* Working version of `ffmpeg` must be present on the system * Working version of ffmpeg must be present on the system
*/ */
const process = require('process');
const spawn = require('child_process').spawn; const spawn = require('child_process').spawn;
const log = require('@vladmandic/pilogger'); // eslint-disable-line node/no-unpublished-require const log = require('@vladmandic/pilogger');
// in nodejs environments tfjs-node is required to be loaded before human // @ts-ignore pipe2jpeg is not installed by default
// const tf = require('@tensorflow/tfjs-node'); // eslint-disable-line node/no-unpublished-require // eslint-disable-next-line node/no-missing-require
// const human = require('@vladmandic/human'); // use this when human is installed as module (majority of use cases) const Pipe2Jpeg = require('pipe2jpeg');
const Pipe2Jpeg = require('pipe2jpeg'); // eslint-disable-line node/no-missing-require, import/no-unresolved
// eslint-disable-next-line import/no-extraneous-dependencies, no-unused-vars, @typescript-eslint/no-unused-vars
const tf = require('@tensorflow/tfjs-node'); // in nodejs environments tfjs-node is required to be loaded before human
// const human = require('@vladmandic/human'); // use this when human is installed as module (majority of use cases) // const human = require('@vladmandic/human'); // use this when human is installed as module (majority of use cases)
const Human = require('../../dist/human.node.js'); // use this when using human in dev mode const Human = require('../../dist/human.node.js'); // use this when using human in dev mode
let count = 0; // counter let count = 0; // counter
let busy = false; // busy flag let busy = false; // busy flag
let inputFile = './test.mp4'; const inputFile = './test.mp4';
if (process.argv.length === 3) inputFile = process.argv[2];
const humanConfig = { const humanConfig = {
modelBasePath: 'file://models/', modelBasePath: 'file://models/',
@ -61,27 +61,24 @@ const ffmpegParams = [
'pipe:1', // output to unix pipe that is then captured by pipe2jpeg 'pipe:1', // output to unix pipe that is then captured by pipe2jpeg
]; ];
async function detect(jpegBuffer) { async function process(jpegBuffer) {
if (busy) return; // skip processing if busy if (busy) return; // skip processing if busy
busy = true; busy = true;
const tensor = human.tf.node.decodeJpeg(jpegBuffer, 3); // decode jpeg buffer to raw tensor const tensor = human.tf.node.decodeJpeg(jpegBuffer, 3); // decode jpeg buffer to raw tensor
log.state('input frame:', ++count, 'size:', jpegBuffer.length, 'decoded shape:', tensor.shape);
const res = await human.detect(tensor); const res = await human.detect(tensor);
human.tf.dispose(tensor); // must dispose tensor log.data('gesture', JSON.stringify(res.gesture));
// start custom processing here // do processing here
log.data('frame', { frame: ++count, size: jpegBuffer.length, shape: tensor.shape, face: res?.face?.length, body: res?.body?.length, hand: res?.hand?.length, gesture: res?.gesture?.length }); tf.dispose(tensor); // must dispose tensor
if (res?.face?.[0]) log.data('person', { score: [res.face[0].boxScore, res.face[0].faceScore], age: res.face[0].age || 0, gender: [res.face[0].genderScore || 0, res.face[0].gender], emotion: res.face[0].emotion?.[0] });
// at the of processing mark loop as not busy so it can process next frame
busy = false; busy = false;
} }
async function main() { async function main() {
log.header(); log.header();
process.noDeprecation = true;
await human.tf.ready(); await human.tf.ready();
// pre-load models // pre-load models
log.info({ human: human.version, tf: human.tf.version_core }); log.info('human:', human.version);
log.info({ input: inputFile }); pipe2jpeg.on('jpeg', (jpegBuffer) => process(jpegBuffer));
pipe2jpeg.on('data', (jpegBuffer) => detect(jpegBuffer));
const ffmpeg = spawn('ffmpeg', ffmpegParams, { stdio: ['ignore', 'pipe', 'ignore'] }); const ffmpeg = spawn('ffmpeg', ffmpegParams, { stdio: ['ignore', 'pipe', 'ignore'] });
ffmpeg.on('error', (error) => log.error('ffmpeg error:', error)); ffmpeg.on('error', (error) => log.error('ffmpeg error:', error));

View File

@ -2,16 +2,18 @@
* Human demo for NodeJS * Human demo for NodeJS
* Unsupported sample of using external utility fswebcam to capture screenshot from attached webcam in regular intervals and process it using Human * Unsupported sample of using external utility fswebcam to capture screenshot from attached webcam in regular intervals and process it using Human
* *
* Note that [node-webcam](https://www.npmjs.com/package/node-webcam) is not part of Human dependencies and should be installed manually * Note that node-webcam is not part of Human dependencies and should be installed manually
* Working version of `fswebcam` must be present on the system * Working version of fswebcam must be present on the system
*/ */
let initial = true; // remember if this is the first run to print additional details let initial = true; // remember if this is the first run to print additional details
const log = require('@vladmandic/pilogger'); // eslint-disable-line node/no-unpublished-require const log = require('@vladmandic/pilogger');
const nodeWebCam = require('node-webcam'); // eslint-disable-line import/no-unresolved, node/no-missing-require // @ts-ignore node-webcam is not installed by default
// eslint-disable-next-line node/no-missing-require
const nodeWebCam = require('node-webcam');
// in nodejs environments tfjs-node is required to be loaded before human // eslint-disable-next-line import/no-extraneous-dependencies, no-unused-vars, @typescript-eslint/no-unused-vars
const tf = require('@tensorflow/tfjs-node'); // eslint-disable-line node/no-unpublished-require const tf = require('@tensorflow/tfjs-node'); // in nodejs environments tfjs-node is required to be loaded before human
// const human = require('@vladmandic/human'); // use this when human is installed as module (majority of use cases) // const human = require('@vladmandic/human'); // use this when human is installed as module (majority of use cases)
const Human = require('../../dist/human.node.js'); // use this when using human in dev mode const Human = require('../../dist/human.node.js'); // use this when using human in dev mode
@ -27,7 +29,6 @@ const camera = nodeWebCam.create(optionsCamera);
const optionsHuman = { const optionsHuman = {
modelBasePath: 'file://models/', modelBasePath: 'file://models/',
}; };
const human = new Human.Human(optionsHuman); const human = new Human.Human(optionsHuman);
function buffer2tensor(buffer) { function buffer2tensor(buffer) {
@ -60,20 +61,18 @@ async function detect() {
} else { } else {
const tensor = buffer2tensor(data); // create tensor from image buffer const tensor = buffer2tensor(data); // create tensor from image buffer
if (initial) log.data('input tensor:', tensor.shape); if (initial) log.data('input tensor:', tensor.shape);
human.detect(tensor) // eslint-disable-line promise/no-promise-in-callback // eslint-disable-next-line promise/no-promise-in-callback
.then((result) => { human.detect(tensor).then((result) => {
if (result && result.face && result.face.length > 0) { if (result && result.face && result.face.length > 0) {
for (let i = 0; i < result.face.length; i++) { for (let i = 0; i < result.face.length; i++) {
const face = result.face[i]; const face = result.face[i];
const emotion = face.emotion?.reduce((prev, curr) => (prev.score > curr.score ? prev : curr)); const emotion = face.emotion?.reduce((prev, curr) => (prev.score > curr.score ? prev : curr));
log.data(`detected face: #${i} boxScore:${face.boxScore} faceScore:${face.faceScore} age:${face.age} genderScore:${face.genderScore} gender:${face.gender} emotionScore:${emotion?.score} emotion:${emotion?.emotion} iris:${face.iris}`); log.data(`detected face: #${i} boxScore:${face.boxScore} faceScore:${face.faceScore} age:${face.age} genderScore:${face.genderScore} gender:${face.gender} emotionScore:${emotion?.score} emotion:${emotion?.emotion} iris:${face.iris}`);
}
} else {
log.data(' Face: N/A');
} }
return result; } else {
}) log.data(' Face: N/A');
.catch(() => log.error('human detect error')); }
});
} }
initial = false; initial = false;
}); });
@ -82,7 +81,6 @@ async function detect() {
} }
async function main() { async function main() {
log.info('human:', human.version, 'tf:', tf.version_core);
camera.list((list) => { camera.list((list) => {
log.data('detected camera:', list); log.data('detected camera:', list);
}); });

View File

@ -1,14 +1,16 @@
/** /**
* Human demo for NodeJS * Human demo for NodeJS
*/ */
const log = require('@vladmandic/pilogger');
const fs = require('fs'); const fs = require('fs');
const path = require('path'); const path = require('path');
const process = require('process'); const process = require('process');
const log = require('@vladmandic/pilogger'); // eslint-disable-line node/no-unpublished-require
// in nodejs environments tfjs-node is required to be loaded before human let fetch; // fetch is dynamically imported later
const tf = require('@tensorflow/tfjs-node'); // eslint-disable-line node/no-unpublished-require
// eslint-disable-next-line import/no-extraneous-dependencies, no-unused-vars, @typescript-eslint/no-unused-vars
const tf = require('@tensorflow/tfjs-node'); // in nodejs environments tfjs-node is required to be loaded before human
// const human = require('@vladmandic/human'); // use this when human is installed as module (majority of use cases) // const human = require('@vladmandic/human'); // use this when human is installed as module (majority of use cases)
const Human = require('../../dist/human.node.js'); // use this when using human in dev mode const Human = require('../../dist/human.node.js'); // use this when using human in dev mode
@ -44,14 +46,14 @@ async function init() {
human = new Human.Human(myConfig); human = new Human.Human(myConfig);
// wait until tf is ready // wait until tf is ready
await human.tf.ready(); await human.tf.ready();
log.info('human:', human.version, 'tf:', tf.version_core);
// pre-load models // pre-load models
log.info('Human:', human.version); log.info('Human:', human.version);
// log.info('Active Configuration', human.config); // log.info('Active Configuration', human.config);
await human.load(); await human.load();
log.info('Loaded:', human.models.loaded()); const loaded = Object.keys(human.models).filter((a) => human.models[a]);
log.info('Loaded:', loaded);
// log.info('Memory state:', human.tf.engine().memory()); // log.info('Memory state:', human.tf.engine().memory());
log.data(tf.backend().binding ? tf.backend().binding.TF_Version : null); log.data(tf.backend()['binding'] ? tf.backend()['binding']['TF_Version'] : null);
} }
async function detect(input) { async function detect(input) {
@ -60,12 +62,11 @@ async function detect(input) {
log.info('Loading image:', input); log.info('Loading image:', input);
if (input.startsWith('http:') || input.startsWith('https:')) { if (input.startsWith('http:') || input.startsWith('https:')) {
const res = await fetch(input); const res = await fetch(input);
if (res && res.ok) buffer = Buffer.from(await res.arrayBuffer()); if (res && res.ok) buffer = await res.buffer();
else log.error('Invalid image URL:', input, res.status, res.statusText, res.headers.get('content-type')); else log.error('Invalid image URL:', input, res.status, res.statusText, res.headers.get('content-type'));
} else { } else {
buffer = fs.readFileSync(input); buffer = fs.readFileSync(input);
} }
log.data('Image bytes:', buffer?.length, 'buffer:', buffer?.slice(0, 32));
// decode image using tfjs-node so we don't need external depenencies // decode image using tfjs-node so we don't need external depenencies
// can also be done using canvas.js or some other 3rd party image library // can also be done using canvas.js or some other 3rd party image library
@ -85,14 +86,14 @@ async function detect(input) {
}); });
// image shape contains image dimensions and depth // image shape contains image dimensions and depth
log.state('Processing:', tensor.shape); log.state('Processing:', tensor['shape']);
// run actual detection // run actual detection
let result; let result;
try { try {
result = await human.detect(tensor, myConfig); result = await human.detect(tensor, myConfig);
} catch (err) { } catch (err) {
log.error('caught', err); log.error('caught');
} }
// dispose image tensor as we no longer need it // dispose image tensor as we no longer need it
@ -104,7 +105,7 @@ async function detect(input) {
for (let i = 0; i < result.face.length; i++) { for (let i = 0; i < result.face.length; i++) {
const face = result.face[i]; const face = result.face[i];
const emotion = face.emotion.reduce((prev, curr) => (prev.score > curr.score ? prev : curr)); const emotion = face.emotion.reduce((prev, curr) => (prev.score > curr.score ? prev : curr));
log.data(` Face: #${i} boxScore:${face.boxScore} faceScore:${face.faceScore} age:${face.age} genderScore:${face.genderScore} gender:${face.gender} emotionScore:${emotion.score} emotion:${emotion.emotion} distance:${face.distance}`); log.data(` Face: #${i} boxScore:${face.boxScore} faceScore:${face.faceScore} age:${face.age} genderScore:${face.genderScore} gender:${face.gender} emotionScore:${emotion.score} emotion:${emotion.emotion} iris:${face.iris}`);
} }
} else { } else {
log.data(' Face: N/A'); log.data(' Face: N/A');
@ -187,8 +188,8 @@ async function test() {
async function main() { async function main() {
log.configure({ inspect: { breakLength: 265 } }); log.configure({ inspect: { breakLength: 265 } });
log.header(); log.header();
process.noDeprecation = true;
log.info('Current folder:', process.env.PWD); log.info('Current folder:', process.env.PWD);
fetch = (await import('node-fetch')).default;
await init(); await init();
const f = process.argv[2]; const f = process.argv[2];
if (process.argv.length !== 3) { if (process.argv.length !== 3) {
@ -196,18 +197,20 @@ async function main() {
await test(); await test();
} else if (!fs.existsSync(f) && !f.startsWith('http')) { } else if (!fs.existsSync(f) && !f.startsWith('http')) {
log.error(`File not found: ${process.argv[2]}`); log.error(`File not found: ${process.argv[2]}`);
} else if (fs.existsSync(f)) { } else {
const stat = fs.statSync(f); if (fs.existsSync(f)) {
if (stat.isDirectory()) { const stat = fs.statSync(f);
const dir = fs.readdirSync(f); if (stat.isDirectory()) {
for (const file of dir) { const dir = fs.readdirSync(f);
await detect(path.join(f, file)); for (const file of dir) {
await detect(path.join(f, file));
}
} else {
await detect(f);
} }
} else { } else {
await detect(f); await detect(f);
} }
} else {
await detect(f);
} }
} }

View File

@ -1,120 +1,78 @@
/**
* Human demo for NodeJS
*
* Takes input and output folder names parameters and processes all images
* found in input folder and creates annotated images in output folder
*
* Requires [canvas](https://www.npmjs.com/package/canvas) to provide Canvas functionality in NodeJS environment
*/
const fs = require('fs'); const fs = require('fs');
const path = require('path'); const path = require('path');
const process = require('process'); const process = require('process');
const log = require('@vladmandic/pilogger'); // eslint-disable-line node/no-unpublished-require const log = require('@vladmandic/pilogger');
const canvas = require('canvas'); // eslint-disable-line node/no-unpublished-require const canvas = require('canvas');
// for nodejs, `tfjs-node` or `tfjs-node-gpu` should be loaded before using Human // const tf = require('@tensorflow/tfjs-node-gpu'); // for nodejs, `tfjs-node` or `tfjs-node-gpu` should be loaded before using Human
const tf = require('@tensorflow/tfjs-node-gpu'); // eslint-disable-line node/no-unpublished-require
const Human = require('../../dist/human.node-gpu.js'); // this is 'const Human = require('../dist/human.node-gpu.js').default;' const Human = require('../../dist/human.node-gpu.js'); // this is 'const Human = require('../dist/human.node-gpu.js').default;'
const config = { // just enable all and leave default settings const config = { // just enable all and leave default settings
modelBasePath: 'file://models',
debug: true, debug: true,
softwareKernels: true, // slower but enhanced precision since face rotation can work in software mode in nodejs environments async: false,
cacheSensitivity: 0.01, cacheSensitivity: 0,
face: { enabled: true, detector: { maxDetected: 100, minConfidence: 0.1 } }, face: { enabled: true, detector: { maxDetected: 20 } },
object: { enabled: true, maxDetected: 100, minConfidence: 0.1 }, object: { enabled: true },
gesture: { enabled: true }, gesture: { enabled: true },
hand: { enabled: true, maxDetected: 100, minConfidence: 0.2 }, hand: { enabled: true },
body: { enabled: true, maxDetected: 100, minConfidence: 0.1, modelPath: 'https://vladmandic.github.io/human-models/models/movenet-multipose.json' }, body: { enabled: true, modelPath: 'https://vladmandic.github.io/human-models/models/movenet-multipose.json' },
}; };
const poolSize = 4;
const human = new Human.Human(config); // create instance of human
async function saveFile(shape, buffer, result, outFile) {
return new Promise(async (resolve, reject) => { // eslint-disable-line no-async-promise-executor
const outputCanvas = new canvas.Canvas(shape[2], shape[1]); // create canvas
const outputCtx = outputCanvas.getContext('2d');
const inputImage = await canvas.loadImage(buffer); // load image using canvas library
outputCtx.drawImage(inputImage, 0, 0); // draw input image onto canvas
human.draw.all(outputCanvas, result); // use human build-in method to draw results as overlays on canvas
const outStream = fs.createWriteStream(outFile); // write canvas to new image file
outStream.on('finish', () => {
log.data('Output image:', outFile, outputCanvas.width, outputCanvas.height);
resolve();
});
outStream.on('error', (err) => {
log.error('Output error:', outFile, err);
reject();
});
const stream = outputCanvas.createJPEGStream({ quality: 0.5, progressive: true, chromaSubsampling: true });
stream.pipe(outStream);
});
}
async function processFile(image, inFile, outFile) {
const buffer = fs.readFileSync(inFile);
const tensor = tf.tidy(() => {
const decode = tf.node.decodeImage(buffer, 3);
const expand = tf.expandDims(decode, 0);
const cast = tf.cast(expand, 'float32');
return cast;
});
log.state('Loaded image:', inFile, tensor.shape);
const result = await human.detect(tensor);
human.tf.dispose(tensor);
log.data(`Detected: ${image}:`, 'Face:', result.face.length, 'Body:', result.body.length, 'Hand:', result.hand.length, 'Objects:', result.object.length, 'Gestures:', result.gesture.length);
if (outFile) await saveFile(tensor.shape, buffer, result, outFile);
}
async function main() { async function main() {
log.header(); log.header();
globalThis.Canvas = canvas.Canvas; // patch global namespace with canvas library globalThis.Canvas = canvas.Canvas; // patch global namespace with canvas library
globalThis.ImageData = canvas.ImageData; // patch global namespace with canvas library globalThis.ImageData = canvas.ImageData; // patch global namespace with canvas library
log.info('Human:', human.version, 'TF:', tf.version_core); const human = new Human.Human(config); // create instance of human
process.noDeprecation = true; log.info('Human:', human.version);
const configErrors = await human.validate(); const configErrors = await human.validate();
if (configErrors.length > 0) log.error('Configuration errors:', configErrors); if (configErrors.length > 0) log.error('Configuration errors:', configErrors);
await human.load(); // pre-load models await human.load(); // pre-load models
log.info('Loaded models:', human.models.loaded()); log.info('Loaded models:', Object.keys(human.models).filter((a) => human.models[a]));
const inDir = process.argv[2]; const inDir = process.argv[2];
const outDir = process.argv[3]; const outDir = process.argv[3];
if (!inDir) { if (process.argv.length !== 4) {
log.error('Parameters: <input-directory> missing'); log.error('Parameters: <input-directory> <output-directory> missing');
return; return;
} }
if (inDir && (!fs.existsSync(inDir) || !fs.statSync(inDir).isDirectory())) { if (!fs.existsSync(inDir) || !fs.statSync(inDir).isDirectory() || !fs.existsSync(outDir) || !fs.statSync(outDir).isDirectory()) {
log.error('Invalid input directory:', fs.existsSync(inDir) ?? fs.statSync(inDir).isDirectory()); log.error('Invalid directory specified:', 'input:', fs.existsSync(inDir) ?? fs.statSync(inDir).isDirectory(), 'output:', fs.existsSync(outDir) ?? fs.statSync(outDir).isDirectory());
return;
}
if (!outDir) {
log.info('Parameters: <output-directory> missing, images will not be saved');
}
if (outDir && (!fs.existsSync(outDir) || !fs.statSync(outDir).isDirectory())) {
log.error('Invalid output directory:', fs.existsSync(outDir) ?? fs.statSync(outDir).isDirectory());
return; return;
} }
const dir = fs.readdirSync(inDir); const dir = fs.readdirSync(inDir);
const images = dir.filter((f) => fs.statSync(path.join(inDir, f)).isFile() && (f.toLocaleLowerCase().endsWith('.jpg') || f.toLocaleLowerCase().endsWith('.jpeg'))); const images = dir.filter((f) => fs.statSync(path.join(inDir, f)).isFile() && (f.toLocaleLowerCase().endsWith('.jpg') || f.toLocaleLowerCase().endsWith('.jpeg')));
log.info(`Processing folder: ${inDir} entries:`, dir.length, 'images', images.length); log.info(`Processing folder: ${inDir} entries:`, dir.length, 'images', images.length);
const t0 = performance.now(); for (const image of images) {
const promises = []; const inFile = path.join(inDir, image);
for (let i = 0; i < images.length; i++) { const buffer = fs.readFileSync(inFile);
const inFile = path.join(inDir, images[i]); const tensor = human.tf.tidy(() => {
const outFile = outDir ? path.join(outDir, images[i]) : null; const decode = human.tf.node.decodeImage(buffer, 3);
promises.push(processFile(images[i], inFile, outFile)); const expand = human.tf.expandDims(decode, 0);
if (i % poolSize === 0) await Promise.all(promises); const cast = human.tf.cast(expand, 'float32');
return cast;
});
log.state('Loaded image:', inFile, tensor.shape);
const result = await human.detect(tensor);
human.tf.dispose(tensor);
log.data(`Detected: ${image}:`, 'Face:', result.face.length, 'Body:', result.body.length, 'Hand:', result.hand.length, 'Objects:', result.object.length, 'Gestures:', result.gesture.length);
const outputCanvas = new canvas.Canvas(tensor.shape[2], tensor.shape[1]); // create canvas
const outputCtx = outputCanvas.getContext('2d');
const inputImage = await canvas.loadImage(buffer); // load image using canvas library
outputCtx.drawImage(inputImage, 0, 0); // draw input image onto canvas
// @ts-ignore
human.draw.all(outputCanvas, result); // use human build-in method to draw results as overlays on canvas
const outFile = path.join(outDir, image);
const outStream = fs.createWriteStream(outFile); // write canvas to new image file
outStream.on('finish', () => log.state('Output image:', outFile, outputCanvas.width, outputCanvas.height));
outStream.on('error', (err) => log.error('Output error:', outFile, err));
const stream = outputCanvas.createJPEGStream({ quality: 0.5, progressive: true, chromaSubsampling: true });
// @ts-ignore
stream.pipe(outStream);
} }
await Promise.all(promises);
const t1 = performance.now();
log.info(`Processed ${images.length} images in ${Math.round(t1 - t0)} ms`);
} }
main(); main();

View File

@ -24,13 +24,13 @@
a:hover { color: lightskyblue; text-decoration: none; } a:hover { color: lightskyblue; text-decoration: none; }
.row { width: 90vw; margin: auto; margin-top: 100px; text-align: center; } .row { width: 90vw; margin: auto; margin-top: 100px; text-align: center; }
</style> </style>
</head> </head>
<body> <body>
<div class="row text-center"> <div class="row text-center">
<h1> <h1>
<a href="/">Human: Offline</a><br> <a href="/">Human: Offline</a><br>
<img alt="icon" src="../assets/icon.png"> <img alt="icon" src="../assets/icon.png">
</h1> </h1>
</div> </div>
</body> </body>
</html> </html>

View File

@ -1,61 +0,0 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<title>Human Demo</title>
<meta name="viewport" content="width=device-width, shrink-to-fit=yes">
<meta name="mobile-web-app-capable" content="yes">
<meta name="application-name" content="Human Demo">
<meta name="keywords" content="Human Demo">
<meta name="description" content="Human Demo; Author: Vladimir Mandic <mandic00@live.com>">
<link rel="manifest" href="../manifest.webmanifest">
<link rel="shortcut icon" href="../favicon.ico" type="image/x-icon">
<link rel="icon" sizes="256x256" href="../assets/icons/dash-256.png">
<link rel="apple-touch-icon" href="../assets/icons/dash-256.png">
<link rel="apple-touch-startup-image" href="../assets/icons/dash-256.png">
<style>
@font-face { font-family: 'CenturyGothic'; font-display: swap; font-style: normal; font-weight: 400; src: local('CenturyGothic'), url('../assets/century-gothic.ttf') format('truetype'); }
html { font-size: 18px; }
body { font-size: 1rem; font-family: "CenturyGothic", "Segoe UI", sans-serif; font-variant: small-caps; width: -webkit-fill-available; height: 100%; background: black; color: white; overflow: hidden; margin: 0; }
select { font-size: 1rem; font-family: "CenturyGothic", "Segoe UI", sans-serif; font-variant: small-caps; background: gray; color: white; border: none; }
</style>
<script src="../segmentation/index.js" type="module"></script>
</head>
<body>
<noscript><h1>javascript is required</h1></noscript>
<nav>
<div id="nav" class="nav"></div>
</nav>
<header>
<div id="header" class="header" style="position: fixed; top: 0; right: 0; padding: 4px; margin: 16px; background: rgba(0, 0, 0, 0.5); z-index: 10; line-height: 2rem;">
<label for="mode">mode</label>
<select id="mode" name="mode">
<option value="default">remove background</option>
<option value="alpha">draw alpha channel</option>
<option value="foreground">full foreground</option>
<option value="state">recurrent state</option>
</select><br>
<label for="composite">composite</label>
<select id="composite" name="composite"></select><br>
<label for="ratio">downsample ratio</label>
<input type="range" name="ratio" id="ratio" min="0.1" max="1" value="0.5" step="0.05">
<div id="fps" style="margin-top: 8px"></div>
</div>
</header>
<main>
<div id="main" class="main">
<video id="webcam" style="position: fixed; top: 0; left: 0; width: 50vw; height: 50vh"></video>
<img id="background" alt="background" style="position: fixed; top: 0; right: 0; width: 50vw; height: 50vh" controls></img>
<canvas id="output" style="position: fixed; bottom: 0; left: 0; height: 50vh"></canvas>
<canvas id="merge" style="position: fixed; bottom: 0; right: 0; height: 50vh"></canvas>
</div>
</main>
<footer>
<div id="footer" class="footer"></div>
</footer>
<aside>
<div id="aside" class="aside"></div>
</aside>
</body>
</html>

View File

@ -1,99 +0,0 @@
/**
* Human demo for browsers
* @default Human Library
* @summary <https://github.com/vladmandic/human>
* @author <https://github.com/vladmandic>
* @copyright <https://github.com/vladmandic>
* @license MIT
*/
import * as H from '../../dist/human.esm.js'; // equivalent of @vladmandic/Human
const humanConfig = { // user configuration for human, used to fine-tune behavior
modelBasePath: 'https://vladmandic.github.io/human-models/models/',
filter: { enabled: true, equalization: false, flip: false },
face: { enabled: false },
body: { enabled: false },
hand: { enabled: false },
object: { enabled: false },
gesture: { enabled: false },
segmentation: {
enabled: true,
modelPath: 'rvm.json', // can use rvm, selfie or meet
ratio: 0.5,
mode: 'default',
},
};
const backgroundImage = '../../samples/in/background.jpg';
const human = new H.Human(humanConfig); // create instance of human with overrides from user configuration
const log = (...msg) => console.log(...msg); // eslint-disable-line no-console
async function main() {
// gather dom elements
const dom = {
background: document.getElementById('background'),
webcam: document.getElementById('webcam'),
output: document.getElementById('output'),
merge: document.getElementById('merge'),
mode: document.getElementById('mode'),
composite: document.getElementById('composite'),
ratio: document.getElementById('ratio'),
fps: document.getElementById('fps'),
};
// set defaults
dom.fps.innerText = 'initializing';
dom.ratio.valueAsNumber = human.config.segmentation.ratio;
dom.background.src = backgroundImage;
dom.composite.innerHTML = ['source-atop', 'color', 'color-burn', 'color-dodge', 'copy', 'darken', 'destination-atop', 'destination-in', 'destination-out', 'destination-over', 'difference', 'exclusion', 'hard-light', 'hue', 'lighten', 'lighter', 'luminosity', 'multiply', 'overlay', 'saturation', 'screen', 'soft-light', 'source-in', 'source-out', 'source-over', 'xor'].map((gco) => `<option value="${gco}">${gco}</option>`).join(''); // eslint-disable-line max-len
const ctxMerge = dom.merge.getContext('2d');
log('human version:', human.version, '| tfjs version:', human.tf.version['tfjs-core']);
log('platform:', human.env.platform, '| agent:', human.env.agent);
await human.load(); // preload all models
log('backend:', human.tf.getBackend(), '| available:', human.env.backends);
log('models stats:', human.models.stats());
log('models loaded:', human.models.loaded());
await human.warmup(); // warmup function to initialize backend for future faster detection
const numTensors = human.tf.engine().state.numTensors;
// initialize webcam
dom.webcam.onplay = () => { // start processing on video play
log('start processing');
dom.output.width = human.webcam.width;
dom.output.height = human.webcam.height;
dom.merge.width = human.webcam.width;
dom.merge.height = human.webcam.height;
loop(); // eslint-disable-line no-use-before-define
};
await human.webcam.start({ element: dom.webcam, crop: true, width: window.innerWidth / 2, height: window.innerHeight / 2 }); // use human webcam helper methods and associate webcam stream with a dom element
if (!human.webcam.track) dom.fps.innerText = 'webcam error';
// processing loop
async function loop() {
if (!human.webcam.element || human.webcam.paused) return; // check if webcam is valid and playing
human.config.segmentation.mode = dom.mode.value; // get segmentation mode from ui
human.config.segmentation.ratio = dom.ratio.valueAsNumber; // get segmentation downsample ratio from ui
const t0 = Date.now();
const rgba = await human.segmentation(human.webcam.element, human.config); // run model and process results
const t1 = Date.now();
if (!rgba) {
dom.fps.innerText = 'error';
return;
}
dom.fps.innerText = `fps: ${Math.round(10000 / (t1 - t0)) / 10}`; // mark performance
human.draw.tensor(rgba, dom.output); // draw raw output
human.tf.dispose(rgba); // dispose tensors
ctxMerge.globalCompositeOperation = 'source-over';
ctxMerge.drawImage(dom.background, 0, 0); // draw original video to first stacked canvas
ctxMerge.globalCompositeOperation = dom.composite.value;
ctxMerge.drawImage(dom.output, 0, 0); // draw processed output to second stacked canvas
if (numTensors !== human.tf.engine().state.numTensors) log({ leak: human.tf.engine().state.numTensors - numTensors }); // check for memory leaks
requestAnimationFrame(loop);
}
}
window.onload = main;

View File

@ -1,28 +0,0 @@
## Tracker
### Based on
<https://github.com/opendatacam/node-moving-things-tracker>
### Build
- remove reference to `lodash`:
> `isEqual` in <tracker.js>
- replace external lib:
> curl https://raw.githubusercontent.com/ubilabs/kd-tree-javascript/master/kdTree.js -o lib/kdTree-min.js
- build with `esbuild`:
> node_modules/.bin/esbuild --bundle tracker.js --format=esm --platform=browser --target=esnext --keep-names --tree-shaking=false --analyze --outfile=/home/vlado/dev/human/demo/tracker/tracker.js --banner:js="/* eslint-disable */"
### Usage
computeDistance(item1, item2)
disableKeepInMemory()
enableKeepInMemory()
getAllTrackedItems()
getJSONDebugOfTrackedItems(roundInt = true)
getJSONOfAllTrackedItems()
getJSONOfTrackedItems(roundInt = true)
getTrackedItemsInMOTFormat(frameNb)
reset()
setParams(newParams)
updateTrackedItemsWithNewFrame(detectionsOfThisFrame, frameNb)

View File

@ -1,65 +0,0 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Human</title>
<meta name="viewport" content="width=device-width" id="viewport">
<meta name="keywords" content="Human">
<meta name="application-name" content="Human">
<meta name="description" content="Human: 3D Face Detection, Body Pose, Hand & Finger Tracking, Iris Tracking, Age & Gender Prediction, Emotion Prediction & Gesture Recognition; Author: Vladimir Mandic <https://github.com/vladmandic>">
<meta name="msapplication-tooltip" content="Human: 3D Face Detection, Body Pose, Hand & Finger Tracking, Iris Tracking, Age & Gender Prediction, Emotion Prediction & Gesture Recognition; Author: Vladimir Mandic <https://github.com/vladmandic>">
<meta name="theme-color" content="#000000">
<link rel="manifest" href="../manifest.webmanifest">
<link rel="shortcut icon" href="../../favicon.ico" type="image/x-icon">
<link rel="apple-touch-icon" href="../../assets/icon.png">
<script src="./index.js" type="module"></script>
<style>
html { font-family: 'Segoe UI'; font-size: 16px; font-variant: small-caps; }
body { margin: 0; background: black; color: white; overflow-x: hidden; width: 100vw; height: 100vh; }
body::-webkit-scrollbar { display: none; }
input[type="file"] { font-family: 'Segoe UI'; font-size: 14px; font-variant: small-caps; }
::-webkit-file-upload-button { background: #333333; color: white; border: 0; border-radius: 0; padding: 6px 16px; box-shadow: 4px 4px 4px #222222; font-family: 'Segoe UI'; font-size: 14px; font-variant: small-caps; }
</style>
</head>
<body>
<div style="display: flex">
<video id="video" playsinline style="width: 25vw" controls controlslist="nofullscreen nodownload noremoteplayback" disablepictureinpicture loop></video>
<canvas id="canvas" style="width: 75vw"></canvas>
</div>
<div class="uploader" style="padding: 8px">
<input type="file" name="inputvideo" id="inputvideo" accept="video/*"></input>
<input type="checkbox" id="interpolation" name="interpolation"></input>
<label for="tracker">interpolation</label>
</div>
<form id="config" style="padding: 8px; line-height: 1.6rem;">
tracker |
<input type="checkbox" id="tracker" name="tracker" checked></input>
<label for="tracker">enabled</label> |
<input type="checkbox" id="keepInMemory" name="keepInMemory"></input>
<label for="keepInMemory">keepInMemory</label> |
<br>
tracker source |
<input type="radio" id="box-face" name="box" value="face" checked>
<label for="box-face">face</label> |
<input type="radio" id="box-body" name="box" value="body">
<label for="box-face">body</label> |
<input type="radio" id="box-object" name="box" value="object">
<label for="box-face">object</label> |
<br>
tracker config |
<input type="range" id="unMatchedFramesTolerance" name="unMatchedFramesTolerance" min="0" max="300" step="1", value="60"></input>
<label for="unMatchedFramesTolerance">unMatchedFramesTolerance</label> |
<input type="range" id="iouLimit" name="unMatchedFramesTolerance" min="0" max="1" step="0.01", value="0.1"></input>
<label for="iouLimit">iouLimit</label> |
<input type="range" id="distanceLimit" name="unMatchedFramesTolerance" min="0" max="1" step="0.01", value="0.1"></input>
<label for="distanceLimit">distanceLimit</label> |
<input type="radio" id="matchingAlgorithm-kdTree" name="matchingAlgorithm" value="kdTree" checked>
<label for="matchingAlgorithm-kdTree">kdTree</label> |
<input type="radio" id="matchingAlgorithm-munkres" name="matchingAlgorithm" value="munkres">
<label for="matchingAlgorithm-kdTree">munkres</label> |
</form>
<pre id="status" style="position: absolute; top: 12px; right: 20px; background-color: grey; padding: 8px; box-shadow: 2px 2px black"></pre>
<pre id="log" style="padding: 8px"></pre>
<div id="performance" style="position: absolute; bottom: 0; width: 100%; padding: 8px; font-size: 0.8rem;"></div>
</body>
</html>

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -1,208 +0,0 @@
/**
* Human demo for browsers
* @default Human Library
* @summary <https://github.com/vladmandic/human>
* @author <https://github.com/vladmandic>
* @copyright <https://github.com/vladmandic>
* @license MIT
*/
import * as H from '../../dist/human.esm.js'; // equivalent of @vladmandic/Human
import tracker from './tracker.js';
const humanConfig: Partial<H.Config> = { // user configuration for human, used to fine-tune behavior
debug: true,
backend: 'webgl',
// cacheSensitivity: 0,
// cacheModels: false,
// warmup: 'none',
modelBasePath: 'https://vladmandic.github.io/human-models/models',
filter: { enabled: true, equalization: false, flip: false },
face: {
enabled: true,
detector: { rotation: false, maxDetected: 10, minConfidence: 0.3 },
mesh: { enabled: true },
attention: { enabled: false },
iris: { enabled: false },
description: { enabled: false },
emotion: { enabled: false },
antispoof: { enabled: false },
liveness: { enabled: false },
},
body: { enabled: false, maxDetected: 6, modelPath: 'movenet-multipose.json' },
hand: { enabled: false },
object: { enabled: false, maxDetected: 10 },
segmentation: { enabled: false },
gesture: { enabled: false },
};
interface TrackerConfig {
unMatchedFramesTolerance: number, // number of frame when an object is not matched before considering it gone; ignored if fastDelete is set
iouLimit: number, // exclude things from beeing matched if their IOU less than; 1 means total overlap; 0 means no overlap
fastDelete: boolean, // remove new objects immediately if they could not be matched in the next frames; if set, ignores unMatchedFramesTolerance
distanceLimit: number, // distance limit for matching; if values need to be excluded from matching set their distance to something greater than the distance limit
matchingAlgorithm: 'kdTree' | 'munkres', // algorithm used to match tracks with new detections
}
interface TrackerResult {
id: number,
confidence: number,
bearing: number,
isZombie: boolean,
name: string,
x: number,
y: number,
w: number,
h: number,
}
const trackerConfig: TrackerConfig = {
unMatchedFramesTolerance: 100,
iouLimit: 0.05,
fastDelete: false,
distanceLimit: 1e4,
matchingAlgorithm: 'kdTree',
};
const human = new H.Human(humanConfig); // create instance of human with overrides from user configuration
const dom = { // grab instances of dom objects so we dont have to look them up later
video: document.getElementById('video') as HTMLVideoElement,
canvas: document.getElementById('canvas') as HTMLCanvasElement,
log: document.getElementById('log') as HTMLPreElement,
fps: document.getElementById('status') as HTMLPreElement,
tracker: document.getElementById('tracker') as HTMLInputElement,
interpolation: document.getElementById('interpolation') as HTMLInputElement,
config: document.getElementById('config') as HTMLFormElement,
ctx: (document.getElementById('canvas') as HTMLCanvasElement).getContext('2d') as CanvasRenderingContext2D,
};
const timestamp = { detect: 0, draw: 0, tensors: 0, start: 0 }; // holds information used to calculate performance and possible memory leaks
const fps = { detectFPS: 0, drawFPS: 0, frames: 0, averageMs: 0 }; // holds calculated fps information for both detect and screen refresh
const log = (...msg) => { // helper method to output messages
dom.log.innerText += msg.join(' ') + '\n';
console.log(...msg); // eslint-disable-line no-console
};
const status = (msg) => dom.fps.innerText = msg; // print status element
async function detectionLoop() { // main detection loop
if (!dom.video.paused && dom.video.readyState >= 2) {
if (timestamp.start === 0) timestamp.start = human.now();
// log('profiling data:', await human.profile(dom.video));
await human.detect(dom.video, humanConfig); // actual detection; were not capturing output in a local variable as it can also be reached via human.result
const tensors = human.tf.memory().numTensors; // check current tensor usage for memory leaks
if (tensors - timestamp.tensors !== 0) log('allocated tensors:', tensors - timestamp.tensors); // printed on start and each time there is a tensor leak
timestamp.tensors = tensors;
fps.detectFPS = Math.round(1000 * 1000 / (human.now() - timestamp.detect)) / 1000;
fps.frames++;
fps.averageMs = Math.round(1000 * (human.now() - timestamp.start) / fps.frames) / 1000;
}
timestamp.detect = human.now();
requestAnimationFrame(detectionLoop); // start new frame immediately
}
function drawLoop() { // main screen refresh loop
if (!dom.video.paused && dom.video.readyState >= 2) {
const res: H.Result = dom.interpolation.checked ? human.next(human.result) : human.result; // interpolate results if enabled
let tracking: H.FaceResult[] | H.BodyResult[] | H.ObjectResult[] = [];
if (human.config.face.enabled) tracking = res.face;
else if (human.config.body.enabled) tracking = res.body;
else if (human.config.object.enabled) tracking = res.object;
else log('unknown object type');
let data: TrackerResult[] = [];
if (dom.tracker.checked) {
const items = tracking.map((obj) => ({
x: obj.box[0] + obj.box[2] / 2,
y: obj.box[1] + obj.box[3] / 2,
w: obj.box[2],
h: obj.box[3],
name: obj.label || (human.config.face.enabled ? 'face' : 'body'),
confidence: obj.score,
}));
tracker.updateTrackedItemsWithNewFrame(items, fps.frames);
data = tracker.getJSONOfTrackedItems(true) as TrackerResult[];
}
human.draw.canvas(dom.video, dom.canvas); // copy input video frame to output canvas
for (let i = 0; i < tracking.length; i++) {
// @ts-ignore
const name = tracking[i].label || (human.config.face.enabled ? 'face' : 'body');
dom.ctx.strokeRect(tracking[i].box[0], tracking[i].box[1], tracking[i].box[1], tracking[i].box[2]);
dom.ctx.fillText(`id: ${tracking[i].id} ${Math.round(100 * tracking[i].score)}% ${name}`, tracking[i].box[0] + 4, tracking[i].box[1] + 16);
if (data[i]) {
dom.ctx.fillText(`t: ${data[i].id} ${Math.round(100 * data[i].confidence)}% ${data[i].name} ${data[i].isZombie ? 'zombie' : ''}`, tracking[i].box[0] + 4, tracking[i].box[1] + 34);
}
}
}
const now = human.now();
fps.drawFPS = Math.round(1000 * 1000 / (now - timestamp.draw)) / 1000;
timestamp.draw = now;
status(dom.video.paused ? 'paused' : `fps: ${fps.detectFPS.toFixed(1).padStart(5, ' ')} detect | ${fps.drawFPS.toFixed(1).padStart(5, ' ')} draw`); // write status
setTimeout(drawLoop, 30); // use to slow down refresh from max refresh rate to target of 30 fps
}
async function handleVideo(file: File) {
const url = URL.createObjectURL(file);
dom.video.src = url;
await dom.video.play();
log('loaded video:', file.name, 'resolution:', [dom.video.videoWidth, dom.video.videoHeight], 'duration:', dom.video.duration);
dom.canvas.width = dom.video.videoWidth;
dom.canvas.height = dom.video.videoHeight;
dom.ctx.strokeStyle = 'white';
dom.ctx.fillStyle = 'white';
dom.ctx.font = '16px Segoe UI';
dom.video.playbackRate = 0.25;
}
function initInput() {
document.body.addEventListener('dragenter', (evt) => evt.preventDefault());
document.body.addEventListener('dragleave', (evt) => evt.preventDefault());
document.body.addEventListener('dragover', (evt) => evt.preventDefault());
document.body.addEventListener('drop', async (evt) => {
evt.preventDefault();
if (evt.dataTransfer) evt.dataTransfer.dropEffect = 'copy';
const file = evt.dataTransfer?.files?.[0];
if (file) await handleVideo(file);
log(dom.video.readyState);
});
(document.getElementById('inputvideo') as HTMLInputElement).onchange = async (evt) => {
evt.preventDefault();
const file = evt.target?.['files']?.[0];
if (file) await handleVideo(file);
};
dom.config.onchange = () => {
trackerConfig.distanceLimit = (document.getElementById('distanceLimit') as HTMLInputElement).valueAsNumber;
trackerConfig.iouLimit = (document.getElementById('iouLimit') as HTMLInputElement).valueAsNumber;
trackerConfig.unMatchedFramesTolerance = (document.getElementById('unMatchedFramesTolerance') as HTMLInputElement).valueAsNumber;
trackerConfig.unMatchedFramesTolerance = (document.getElementById('unMatchedFramesTolerance') as HTMLInputElement).valueAsNumber;
trackerConfig.matchingAlgorithm = (document.getElementById('matchingAlgorithm-kdTree') as HTMLInputElement).checked ? 'kdTree' : 'munkres';
tracker.setParams(trackerConfig);
if ((document.getElementById('keepInMemory') as HTMLInputElement).checked) tracker.enableKeepInMemory();
else tracker.disableKeepInMemory();
tracker.reset();
log('tracker config change', JSON.stringify(trackerConfig));
humanConfig.face!.enabled = (document.getElementById('box-face') as HTMLInputElement).checked; // eslint-disable-line @typescript-eslint/no-non-null-assertion
humanConfig.body!.enabled = (document.getElementById('box-body') as HTMLInputElement).checked; // eslint-disable-line @typescript-eslint/no-non-null-assertion
humanConfig.object!.enabled = (document.getElementById('box-object') as HTMLInputElement).checked; // eslint-disable-line @typescript-eslint/no-non-null-assertion
};
dom.tracker.onchange = (evt) => {
log('tracker', (evt.target as HTMLInputElement).checked ? 'enabled' : 'disabled');
tracker.setParams(trackerConfig);
tracker.reset();
};
}
async function main() { // main entry point
log('human version:', human.version, '| tfjs version:', human.tf.version['tfjs-core']);
log('platform:', human.env.platform, '| agent:', human.env.agent);
status('loading...');
await human.load(); // preload all models
log('backend:', human.tf.getBackend(), '| available:', human.env.backends);
log('models loaded:', human.models.loaded());
status('initializing...');
await human.warmup(); // warmup function to initialize backend for future faster detection
initInput(); // initialize input
await detectionLoop(); // start detection loop
drawLoop(); // start draw loop
}
window.onload = main;

File diff suppressed because it is too large Load Diff

View File

@ -21,10 +21,10 @@
</style> </style>
</head> </head>
<body> <body>
<canvas id="canvas" style="margin: 0 auto; width: 100vw"></canvas> <canvas id="canvas" style="margin: 0 auto; width: 100%"></canvas>
<video id="video" playsinline style="display: none"></video> <video id="video" playsinline style="display: none"></video>
<pre id="status" style="position: absolute; top: 12px; right: 20px; background-color: grey; padding: 8px; box-shadow: 2px 2px black"></pre> <pre id="status" style="position: absolute; top: 12px; right: 20px; background-color: grey; padding: 8px; box-shadow: 2px 2px black"></pre>
<pre id="log" style="padding: 8px"></pre> <pre id="log" style="padding: 8px"></pre>
<div id="performance" style="position: absolute; bottom: 0; width: 100%; padding: 8px; font-size: 0.8rem;"></div> <div id="performance" style="position: absolute; bottom: 1rem; width: 100%; padding: 8px; font-size: 0.8rem;"></div>
</body> </body>
</html> </html>

View File

@ -4,6 +4,14 @@
author: <https://github.com/vladmandic>' author: <https://github.com/vladmandic>'
*/ */
import*as m from"../../dist/human.esm.js";var v=1920,b={debug:!0,backend:"webgl",modelBasePath:"https://vladmandic.github.io/human-models/models/",filter:{enabled:!0,equalization:!1,flip:!1},face:{enabled:!0,detector:{rotation:!1},mesh:{enabled:!0},attention:{enabled:!1},iris:{enabled:!0},description:{enabled:!0},emotion:{enabled:!0},antispoof:{enabled:!0},liveness:{enabled:!0}},body:{enabled:!1},hand:{enabled:!1},object:{enabled:!1},segmentation:{enabled:!1},gesture:{enabled:!0}},e=new m.Human(b);e.env.perfadd=!1;e.draw.options.font='small-caps 18px "Lato"';e.draw.options.lineHeight=20;e.draw.options.drawPoints=!0;var a={video:document.getElementById("video"),canvas:document.getElementById("canvas"),log:document.getElementById("log"),fps:document.getElementById("status"),perf:document.getElementById("performance")},n={detect:0,draw:0,tensors:0,start:0},s={detectFPS:0,drawFPS:0,frames:0,averageMs:0},o=(...t)=>{a.log.innerText+=t.join(" ")+` import{Human as p}from"../../dist/human.esm.js";var w={async:!0,modelBasePath:"../../models",filter:{enabled:!0,equalization:!1,flip:!1},face:{enabled:!0,detector:{rotation:!1},mesh:{enabled:!0},attention:{enabled:!1},iris:{enabled:!0},description:{enabled:!0},emotion:{enabled:!0}},body:{enabled:!0},hand:{enabled:!0},object:{enabled:!1},gesture:{enabled:!0}},t=new p(w);t.env.perfadd=!1;t.draw.options.font='small-caps 18px "Lato"';t.draw.options.lineHeight=20;var e={video:document.getElementById("video"),canvas:document.getElementById("canvas"),log:document.getElementById("log"),fps:document.getElementById("status"),perf:document.getElementById("performance")},o={detect:0,draw:0,tensors:0},d={detect:0,draw:0},s=(...a)=>{e.log.innerText+=a.join(" ")+`
`,console.log(...t)},i=t=>a.fps.innerText=t,g=t=>a.perf.innerText="tensors:"+e.tf.memory().numTensors.toString()+" | performance: "+JSON.stringify(t).replace(/"|{|}/g,"").replace(/,/g," | ");async function f(){if(!a.video.paused){n.start===0&&(n.start=e.now()),await e.detect(a.video);let t=e.tf.memory().numTensors;t-n.tensors!==0&&o("allocated tensors:",t-n.tensors),n.tensors=t,s.detectFPS=Math.round(1e3*1e3/(e.now()-n.detect))/1e3,s.frames++,s.averageMs=Math.round(1e3*(e.now()-n.start)/s.frames)/1e3,s.frames%100===0&&!a.video.paused&&o("performance",{...s,tensors:n.tensors})}n.detect=e.now(),requestAnimationFrame(f)}async function u(){var d,r,c;if(!a.video.paused){let l=e.next(e.result),w=await e.image(a.video);e.draw.canvas(w.canvas,a.canvas);let p={bodyLabels:`person confidence [score] and ${(c=(r=(d=e.result)==null?void 0:d.body)==null?void 0:r[0])==null?void 0:c.keypoints.length} keypoints`};await e.draw.all(a.canvas,l,p),g(l.performance)}let t=e.now();s.drawFPS=Math.round(1e3*1e3/(t-n.draw))/1e3,n.draw=t,i(a.video.paused?"paused":`fps: ${s.detectFPS.toFixed(1).padStart(5," ")} detect | ${s.drawFPS.toFixed(1).padStart(5," ")} draw`),setTimeout(u,30)}async function h(){let d=(await e.webcam.enumerate())[0].deviceId,r=await e.webcam.start({element:a.video,crop:!1,width:v,id:d});o(r),a.canvas.width=e.webcam.width,a.canvas.height=e.webcam.height,a.canvas.onclick=async()=>{e.webcam.paused?await e.webcam.play():e.webcam.pause()}}async function y(){o("human version:",e.version,"| tfjs version:",e.tf.version["tfjs-core"]),o("platform:",e.env.platform,"| agent:",e.env.agent),i("loading..."),await e.load(),o("backend:",e.tf.getBackend(),"| available:",e.env.backends),o("models stats:",e.models.stats()),o("models loaded:",e.models.loaded()),o("environment",e.env),i("initializing..."),await e.warmup(),await h(),await f(),await u()}window.onload=y; `,console.log(...a)},r=a=>e.fps.innerText=a,b=a=>e.perf.innerText="tensors:"+t.tf.memory().numTensors+" | performance: "+JSON.stringify(a).replace(/"|{|}/g,"").replace(/,/g," | ");async function h(){r("starting webcam...");let a={audio:!1,video:{facingMode:"user",resizeMode:"none",width:{ideal:document.body.clientWidth},height:{ideal:document.body.clientHeight}}},n=await navigator.mediaDevices.getUserMedia(a),m=new Promise(u=>{e.video.onloadeddata=()=>u(!0)});e.video.srcObject=n,e.video.play(),await m,e.canvas.width=e.video.videoWidth,e.canvas.height=e.video.videoHeight;let i=n.getVideoTracks()[0],f=i.getCapabilities?i.getCapabilities():"",v=i.getSettings?i.getSettings():"",g=i.getConstraints?i.getConstraints():"";s("video:",e.video.videoWidth,e.video.videoHeight,i.label,{stream:n,track:i,settings:v,constraints:g,capabilities:f}),e.canvas.onclick=()=>{e.video.paused?e.video.play():e.video.pause()}}async function c(){if(!e.video.paused){await t.detect(e.video);let n=t.tf.memory().numTensors;n-o.tensors!==0&&s("allocated tensors:",n-o.tensors),o.tensors=n}let a=t.now();d.detect=1e3/(a-o.detect),o.detect=a,requestAnimationFrame(c)}async function l(){if(!e.video.paused){let n=await t.next(t.result);t.config.filter.flip?await t.draw.canvas(n.canvas,e.canvas):await t.draw.canvas(e.video,e.canvas),await t.draw.all(e.canvas,n),b(n.performance)}let a=t.now();d.draw=1e3/(a-o.draw),o.draw=a,r(e.video.paused?"paused":`fps: ${d.detect.toFixed(1).padStart(5," ")} detect | ${d.draw.toFixed(1).padStart(5," ")} draw`),setTimeout(l,30)}async function y(){s("human version:",t.version,"| tfjs version:",t.tf.version["tfjs-core"]),s("platform:",t.env.platform,"| agent:",t.env.agent),r("loading..."),await t.load(),s("backend:",t.tf.getBackend(),"| available:",t.env.backends),s("models stats:",t.getModelStats()),s("models loaded:",Object.values(t.models).filter(a=>a!==null).length),r("initializing..."),await t.warmup(),await h(),await c(),await l()}window.onload=y;
/**
* Human demo for browsers
* @default Human Library
* @summary <https://github.com/vladmandic/human>
* @author <https://github.com/vladmandic>
* @copyright <https://github.com/vladmandic>
* @license MIT
*/
//# sourceMappingURL=index.js.map //# sourceMappingURL=index.js.map

File diff suppressed because one or more lines are too long

View File

@ -7,33 +7,27 @@
* @license MIT * @license MIT
*/ */
import * as H from '../../dist/human.esm.js'; // equivalent of @vladmandic/Human import { Human, Config } from '../../dist/human.esm.js'; // equivalent of @vladmandic/Human
const width = 1920; // used by webcam config as well as human maximum resultion // can be anything, but resolutions higher than 4k will disable internal optimizations const humanConfig: Partial<Config> = { // user configuration for human, used to fine-tune behavior
// backend: 'wasm' as const,
const humanConfig: Partial<H.Config> = { // user configuration for human, used to fine-tune behavior // wasmPath: 'https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@3.18.0/dist/',
debug: true,
backend: 'webgl',
// cacheSensitivity: 0, // cacheSensitivity: 0,
// cacheModels: false, async: true,
// warmup: 'none', modelBasePath: '../../models',
// modelBasePath: '../../models',
modelBasePath: 'https://vladmandic.github.io/human-models/models/',
filter: { enabled: true, equalization: false, flip: false }, filter: { enabled: true, equalization: false, flip: false },
face: { enabled: true, detector: { rotation: false }, mesh: { enabled: true }, attention: { enabled: false }, iris: { enabled: true }, description: { enabled: true }, emotion: { enabled: true }, antispoof: { enabled: true }, liveness: { enabled: true } }, face: { enabled: true, detector: { rotation: false }, mesh: { enabled: true }, attention: { enabled: false }, iris: { enabled: true }, description: { enabled: true }, emotion: { enabled: true } },
body: { enabled: false }, body: { enabled: true },
hand: { enabled: false }, hand: { enabled: true },
object: { enabled: false }, object: { enabled: false },
segmentation: { enabled: false },
gesture: { enabled: true }, gesture: { enabled: true },
}; };
const human = new H.Human(humanConfig); // create instance of human with overrides from user configuration const human = new Human(humanConfig); // create instance of human with overrides from user configuration
human.env.perfadd = false; // is performance data showing instant or total values human.env['perfadd'] = false; // is performance data showing instant or total values
human.draw.options.font = 'small-caps 18px "Lato"'; // set font used to draw labels when using draw methods human.draw.options.font = 'small-caps 18px "Lato"'; // set font used to draw labels when using draw methods
human.draw.options.lineHeight = 20; human.draw.options.lineHeight = 20;
human.draw.options.drawPoints = true; // draw points on face mesh
// human.draw.options.fillPolygons = true; // human.draw.options.fillPolygons = true;
const dom = { // grab instances of dom objects so we dont have to look them up later const dom = { // grab instances of dom objects so we dont have to look them up later
@ -43,72 +37,77 @@ const dom = { // grab instances of dom objects so we dont have to look them up l
fps: document.getElementById('status') as HTMLPreElement, fps: document.getElementById('status') as HTMLPreElement,
perf: document.getElementById('performance') as HTMLDivElement, perf: document.getElementById('performance') as HTMLDivElement,
}; };
const timestamp = { detect: 0, draw: 0, tensors: 0, start: 0 }; // holds information used to calculate performance and possible memory leaks const timestamp = { detect: 0, draw: 0, tensors: 0 }; // holds information used to calculate performance and possible memory leaks
const fps = { detectFPS: 0, drawFPS: 0, frames: 0, averageMs: 0 }; // holds calculated fps information for both detect and screen refresh const fps = { detect: 0, draw: 0 }; // holds calculated fps information for both detect and screen refresh
const log = (...msg) => { // helper method to output messages const log = (...msg) => { // helper method to output messages
dom.log.innerText += msg.join(' ') + '\n'; dom.log.innerText += msg.join(' ') + '\n';
console.log(...msg); // eslint-disable-line no-console // eslint-disable-next-line no-console
console.log(...msg);
}; };
const status = (msg) => dom.fps.innerText = msg; // print status element const status = (msg) => dom.fps.innerText = msg; // print status element
const perf = (msg) => dom.perf.innerText = 'tensors:' + human.tf.memory().numTensors.toString() + ' | performance: ' + JSON.stringify(msg).replace(/"|{|}/g, '').replace(/,/g, ' | '); // print performance element const perf = (msg) => dom.perf.innerText = 'tensors:' + human.tf.memory().numTensors + ' | performance: ' + JSON.stringify(msg).replace(/"|{|}/g, '').replace(/,/g, ' | '); // print performance element
async function webCam() { // initialize webcam
status('starting webcam...');
// @ts-ignore resizeMode is not yet defined in tslib
const options: MediaStreamConstraints = { audio: false, video: { facingMode: 'user', resizeMode: 'none', width: { ideal: document.body.clientWidth }, height: { ideal: document.body.clientHeight } } };
const stream: MediaStream = await navigator.mediaDevices.getUserMedia(options);
const ready = new Promise((resolve) => { dom.video.onloadeddata = () => resolve(true); });
dom.video.srcObject = stream;
dom.video.play();
await ready;
dom.canvas.width = dom.video.videoWidth;
dom.canvas.height = dom.video.videoHeight;
const track: MediaStreamTrack = stream.getVideoTracks()[0];
const capabilities: MediaTrackCapabilities | string = track.getCapabilities ? track.getCapabilities() : '';
const settings: MediaTrackSettings | string = track.getSettings ? track.getSettings() : '';
const constraints: MediaTrackConstraints | string = track.getConstraints ? track.getConstraints() : '';
log('video:', dom.video.videoWidth, dom.video.videoHeight, track.label, { stream, track, settings, constraints, capabilities });
dom.canvas.onclick = () => { // pause when clicked on screen and resume on next click
if (dom.video.paused) dom.video.play();
else dom.video.pause();
};
}
async function detectionLoop() { // main detection loop async function detectionLoop() { // main detection loop
if (!dom.video.paused) { if (!dom.video.paused) {
if (timestamp.start === 0) timestamp.start = human.now(); // console.log('profiling data:', await human.profile(dom.video));
// log('profiling data:', await human.profile(dom.video));
await human.detect(dom.video); // actual detection; were not capturing output in a local variable as it can also be reached via human.result await human.detect(dom.video); // actual detection; were not capturing output in a local variable as it can also be reached via human.result
const tensors = human.tf.memory().numTensors; // check current tensor usage for memory leaks const tensors = human.tf.memory().numTensors; // check current tensor usage for memory leaks
if (tensors - timestamp.tensors !== 0) log('allocated tensors:', tensors - timestamp.tensors); // printed on start and each time there is a tensor leak if (tensors - timestamp.tensors !== 0) log('allocated tensors:', tensors - timestamp.tensors); // printed on start and each time there is a tensor leak
timestamp.tensors = tensors; timestamp.tensors = tensors;
fps.detectFPS = Math.round(1000 * 1000 / (human.now() - timestamp.detect)) / 1000;
fps.frames++;
fps.averageMs = Math.round(1000 * (human.now() - timestamp.start) / fps.frames) / 1000;
if (fps.frames % 100 === 0 && !dom.video.paused) log('performance', { ...fps, tensors: timestamp.tensors });
} }
timestamp.detect = human.now(); const now = human.now();
fps.detect = 1000 / (now - timestamp.detect);
timestamp.detect = now;
requestAnimationFrame(detectionLoop); // start new frame immediately requestAnimationFrame(detectionLoop); // start new frame immediately
} }
async function drawLoop() { // main screen refresh loop async function drawLoop() { // main screen refresh loop
if (!dom.video.paused) { if (!dom.video.paused) {
const interpolated = human.next(human.result); // smoothen result using last-known results const interpolated = await human.next(human.result); // smoothen result using last-known results
const processed = await human.image(dom.video); // get current video frame, but enhanced with human.filters if (human.config.filter.flip) await human.draw.canvas(interpolated.canvas as HTMLCanvasElement, dom.canvas); // draw processed image to screen canvas
human.draw.canvas(processed.canvas as HTMLCanvasElement, dom.canvas); else await human.draw.canvas(dom.video, dom.canvas); // draw original video to screen canvas // better than using procesed image as this loop happens faster than processing loop
await human.draw.all(dom.canvas, interpolated); // draw labels, boxes, lines, etc.
const opt: Partial<H.DrawOptions> = { bodyLabels: `person confidence [score] and ${human.result?.body?.[0]?.keypoints.length} keypoints` };
await human.draw.all(dom.canvas, interpolated, opt); // draw labels, boxes, lines, etc.
perf(interpolated.performance); // write performance data perf(interpolated.performance); // write performance data
} }
const now = human.now(); const now = human.now();
fps.drawFPS = Math.round(1000 * 1000 / (now - timestamp.draw)) / 1000; fps.draw = 1000 / (now - timestamp.draw);
timestamp.draw = now; timestamp.draw = now;
status(dom.video.paused ? 'paused' : `fps: ${fps.detectFPS.toFixed(1).padStart(5, ' ')} detect | ${fps.drawFPS.toFixed(1).padStart(5, ' ')} draw`); // write status status(dom.video.paused ? 'paused' : `fps: ${fps.detect.toFixed(1).padStart(5, ' ')} detect | ${fps.draw.toFixed(1).padStart(5, ' ')} draw`); // write status
// requestAnimationFrame(drawLoop); // refresh at screen refresh rate
setTimeout(drawLoop, 30); // use to slow down refresh from max refresh rate to target of 30 fps setTimeout(drawLoop, 30); // use to slow down refresh from max refresh rate to target of 30 fps
} }
async function webCam() {
const devices = await human.webcam.enumerate();
const id = devices[0].deviceId; // use first available video source
const webcamStatus = await human.webcam.start({ element: dom.video, crop: false, width, id }); // use human webcam helper methods and associate webcam stream with a dom element
log(webcamStatus);
dom.canvas.width = human.webcam.width;
dom.canvas.height = human.webcam.height;
dom.canvas.onclick = async () => { // pause when clicked on screen and resume on next click
if (human.webcam.paused) await human.webcam.play();
else human.webcam.pause();
};
}
async function main() { // main entry point async function main() { // main entry point
log('human version:', human.version, '| tfjs version:', human.tf.version['tfjs-core']); log('human version:', human.version, '| tfjs version:', human.tf.version['tfjs-core']);
log('platform:', human.env.platform, '| agent:', human.env.agent); log('platform:', human.env.platform, '| agent:', human.env.agent);
status('loading...'); status('loading...');
await human.load(); // preload all models await human.load(); // preload all models
log('backend:', human.tf.getBackend(), '| available:', human.env.backends); log('backend:', human.tf.getBackend(), '| available:', human.env.backends);
log('models stats:', human.models.stats()); log('models stats:', human.getModelStats());
log('models loaded:', human.models.loaded()); log('models loaded:', Object.values(human.models).filter((model) => model !== null).length);
log('environment', human.env);
status('initializing...'); status('initializing...');
await human.warmup(); // warmup function to initialize backend for future faster detection await human.warmup(); // warmup function to initialize backend for future faster detection
await webCam(); // start webcam await webCam(); // start webcam

View File

@ -1,58 +0,0 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Human</title>
<meta name="viewport" content="width=device-width" id="viewport">
<meta name="keywords" content="Human">
<meta name="description" content="Human: Demo; Author: Vladimir Mandic <https://github.com/vladmandic>">
<link rel="manifest" href="../manifest.webmanifest">
<link rel="shortcut icon" href="../../favicon.ico" type="image/x-icon">
<style>
@font-face { font-family: 'Lato'; font-display: swap; font-style: normal; font-weight: 100; src: local('Lato'), url('../../assets/lato-light.woff2') }
body { font-family: 'Lato', 'Segoe UI'; font-size: 16px; font-variant: small-caps; margin: 0; background: black; color: white; overflow: hidden; width: 100vw; height: 100vh; }
</style>
</head>
<body>
<canvas id="canvas" style="margin: 0 auto; width: 100%"></canvas>
<pre id="log" style="padding: 8px; position: fixed; bottom: 0"></pre>
<script type="module">
import * as H from '../../dist/human.esm.js'; // equivalent of import @vladmandic/Human
const humanConfig = { // user configuration for human, used to fine-tune behavior
modelBasePath: '../../models', // models can be loaded directly from cdn as well
filter: { enabled: true, equalization: true, flip: false },
face: { enabled: true, detector: { rotation: false }, mesh: { enabled: true }, attention: { enabled: false }, iris: { enabled: true }, description: { enabled: true }, emotion: { enabled: true } },
body: { enabled: true },
hand: { enabled: true },
gesture: { enabled: true },
object: { enabled: false },
segmentation: { enabled: false },
};
const human = new H.Human(humanConfig); // create instance of human with overrides from user configuration
const canvas = document.getElementById('canvas'); // output canvas to draw both webcam and detection results
async function drawLoop() { // main screen refresh loop
const interpolated = human.next(); // get smoothened result using last-known results which are continously updated based on input webcam video
human.draw.canvas(human.webcam.element, canvas); // draw webcam video to screen canvas // better than using procesed image as this loop happens faster than processing loop
await human.draw.all(canvas, interpolated); // draw labels, boxes, lines, etc.
setTimeout(drawLoop, 30); // use to slow down refresh from max refresh rate to target of 1000/30 ~ 30 fps
}
async function main() { // main entry point
document.getElementById('log').innerHTML = `human version: ${human.version} | tfjs version: ${human.tf.version['tfjs-core']}<br>platform: ${human.env.platform} | agent ${human.env.agent}`;
await human.webcam.start({ crop: true }); // find webcam and start it
human.video(human.webcam.element); // instruct human to continously detect video frames
canvas.width = human.webcam.width; // set canvas resolution to input webcam native resolution
canvas.height = human.webcam.height;
canvas.onclick = async () => { // pause when clicked on screen and resume on next click
if (human.webcam.paused) await human.webcam.play();
else human.webcam.pause();
};
await drawLoop(); // start draw loop
}
window.onload = main;
</script>
</body>
</html>

2661
dist/human.d.ts vendored

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

7
dist/human.esm-nobundle.js.map vendored Normal file

File diff suppressed because one or more lines are too long

2661
dist/human.esm.d.ts vendored

File diff suppressed because it is too large Load Diff

99800
dist/human.esm.js vendored

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

6150
dist/human.js vendored

File diff suppressed because one or more lines are too long

2661
dist/human.node-gpu.d.ts vendored

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

2661
dist/human.node.d.ts vendored

File diff suppressed because it is too large Load Diff

46
dist/human.node.js vendored

File diff suppressed because one or more lines are too long

25
dist/tfjs.esm.d.ts vendored
View File

@ -1,25 +0,0 @@
/* eslint-disable import/no-unresolved */
/* eslint-disable import/no-extraneous-dependencies */
export * from 'types/tfjs.esm';
export declare const version: {
'tfjs-core': string;
'tfjs-backend-cpu': string;
'tfjs-backend-webgl': string;
'tfjs-data': string;
'tfjs-layers': string;
'tfjs-converter': string;
tfjs: string;
};
export * from '@tensorflow/tfjs-core';
export * from '@tensorflow/tfjs-converter';
export * from '@tensorflow/tfjs-data';
export * from '@tensorflow/tfjs-layers';
export * from '@tensorflow/tfjs-backend-cpu';
export * from '@tensorflow/tfjs-backend-wasm';
export * from '@tensorflow/tfjs-backend-webgl';
export * from '@tensorflow/tfjs-backend-webgpu';
export * from '@tensorflow/tfjs-node';
export * from '@tensorflow/tfjs-node-gpu';

75737
dist/tfjs.esm.js vendored

File diff suppressed because one or more lines are too long

View File

@ -4,4 +4,4 @@
author: <https://github.com/vladmandic>' author: <https://github.com/vladmandic>'
*/ */
var e="4.22.0";var s="4.22.0";var t="4.22.0";var n="4.22.0";var r="4.22.0";var i="4.22.0";var h={tfjs:e,"tfjs-core":e,"tfjs-converter":s,"tfjs-backend-cpu":t,"tfjs-backend-webgl":n,"tfjs-backend-wasm":r,"tfjs-backend-webgpu":i};export{h as version}; var e="3.19.0";var s="3.19.0";var t="3.19.0";var i="3.19.0";var n="3.19.0";var r="3.19.0";var l="3.19.0";var V={tfjs:e,"tfjs-core":s,"tfjs-data":t,"tfjs-layers":i,"tfjs-converter":n,"tfjs-backend-webgl":r,"tfjs-backend-wasm":l};export{V as version};

View File

@ -5,7 +5,7 @@ After=network.target network-online.target
[Service] [Service]
Type=simple Type=simple
Environment="NODE_ENV=production" Environment="NODE_ENV=production"
ExecStart=<path-to-node> <your-project-folder>/node_modules/@vladmandic/build/src/build.js --profile serve ExecStart=<path-to-node> <your-project-folder>/node_modules/@vladmandic/build/src/build.js --profile development
WorkingDirectory=<your-project-folder> WorkingDirectory=<your-project-folder>
StandardOutput=inherit StandardOutput=inherit
StandardError=inherit StandardError=inherit

View File

@ -3,3 +3,308 @@
For details see Wiki: For details see Wiki:
- [**List of Models & Credits**](https://github.com/vladmandic/human/wiki/Models) - [**List of Models & Credits**](https://github.com/vladmandic/human/wiki/Models)
## Model signatures:
```js
INFO: graph model: /home/vlado/dev/human/models/iris.json
INFO: created on: 2020-10-12T18:46:47.060Z
INFO: metadata: { generatedBy: 'https://github.com/google/mediapipe', convertedBy: 'https://github.com/vladmandic', version: undefined }
INFO: model inputs based on signature
{ name: 'input_1:0', dtype: 'DT_FLOAT', shape: [ -1, 64, 64, 3 ] }
INFO: model outputs based on signature
{ id: 0, name: 'Identity:0', dytpe: 'DT_FLOAT', shape: [ -1, 1, 1, 228 ] }
INFO: tensors: 191
DATA: weights: {
files: [ 'iris.bin' ],
size: { disk: 2599092, memory: 2599092 },
count: { total: 191, float32: 189, int32: 2 },
quantized: { none: 191 },
values: { total: 649773, float32: 649764, int32: 9 }
}
DATA: kernel ops: {
graph: [ 'Const', 'Placeholder', 'Identity' ],
convolution: [ '_FusedConv2D', 'DepthwiseConv2dNative', 'MaxPool' ],
arithmetic: [ 'AddV2' ],
basic_math: [ 'Prelu' ],
transformation: [ 'Pad' ],
slice_join: [ 'ConcatV2' ]
}
INFO: graph model: /home/vlado/dev/human/models/facemesh.json
INFO: created on: 2020-10-12T18:46:46.944Z
INFO: metadata: { generatedBy: 'https://github.com/google/mediapipe', convertedBy: 'https://github.com/vladmandic', version: undefined }
INFO: model inputs based on signature
{ name: 'input_1:0', dtype: 'DT_FLOAT', shape: [ 1, 192, 192, 3 ] }
INFO: model outputs based on signature
{ id: 0, name: 'Identity_1:0', dytpe: 'DT_FLOAT', shape: [ 1, 266 ] }
{ id: 1, name: 'Identity_2:0', dytpe: 'DT_FLOAT', shape: [ 1, 1 ] }
{ id: 2, name: 'Identity:0', dytpe: 'DT_FLOAT', shape: [ 1, 1404 ] }
INFO: tensors: 118
DATA: weights: {
files: [ 'facemesh.bin' ],
size: { disk: 2955780, memory: 2955780 },
count: { total: 118, float32: 114, int32: 4 },
quantized: { none: 118 },
values: { total: 738945, float32: 738919, int32: 26 }
}
DATA: kernel ops: {
graph: [ 'Placeholder', 'Const', 'NoOp', 'Identity' ],
convolution: [ '_FusedConv2D', 'DepthwiseConv2dNative', 'MaxPool' ],
arithmetic: [ 'AddV2' ],
basic_math: [ 'Prelu', 'Sigmoid' ],
transformation: [ 'Pad', 'Reshape' ]
}
INFO: graph model: /home/vlado/dev/human/models/emotion.json
INFO: created on: 2020-11-05T20:11:29.740Z
INFO: metadata: { generatedBy: 'https://github.com/oarriaga/face_classification', convertedBy: 'https://github.com/vladmandic', version: undefined }
INFO: model inputs based on signature
{ name: 'input_1:0', dtype: 'DT_FLOAT', shape: [ -1, 64, 64, 1 ] }
INFO: model outputs based on signature
{ id: 0, name: 'Identity:0', dytpe: 'DT_FLOAT', shape: [ -1, 7 ] }
INFO: tensors: 23
DATA: weights: {
files: [ 'emotion.bin' ],
size: { disk: 820516, memory: 820516 },
count: { total: 23, float32: 22, int32: 1 },
quantized: { none: 23 },
values: { total: 205129, float32: 205127, int32: 2 }
}
DATA: kernel ops: {
graph: [ 'Const', 'Placeholder', 'Identity' ],
convolution: [ '_FusedConv2D', 'DepthwiseConv2dNative', 'MaxPool' ],
arithmetic: [ 'AddV2' ],
basic_math: [ 'Relu' ],
reduction: [ 'Mean' ],
normalization: [ 'Softmax' ]
}
INFO: graph model: /home/vlado/dev/human/models/faceres.json
INFO: created on: 2021-03-21T14:12:59.863Z
INFO: metadata: { generatedBy: 'https://github.com/HSE-asavchenko/HSE_FaceRec_tf', convertedBy: 'https://github.com/vladmandic', version: undefined }
INFO: model inputs based on signature
{ name: 'input_1', dtype: 'DT_FLOAT', shape: [ -1, 224, 224, 3 ] }
INFO: model outputs based on signature
{ id: 0, name: 'gender_pred/Sigmoid:0', dytpe: 'DT_FLOAT', shape: [ 1, 1 ] }
{ id: 1, name: 'global_pooling/Mean', dytpe: 'DT_FLOAT', shape: [ 1, 1024 ] }
{ id: 2, name: 'age_pred/Softmax:0', dytpe: 'DT_FLOAT', shape: [ 1, 100 ] }
INFO: tensors: 128
DATA: weights: {
files: [ 'faceres.bin' ],
size: { disk: 6978814, memory: 13957620 },
count: { total: 128, float32: 127, int32: 1 },
quantized: { float16: 127, none: 1 },
values: { total: 3489405, float32: 3489403, int32: 2 }
}
DATA: kernel ops: {
graph: [ 'Const', 'Placeholder' ],
convolution: [ 'Conv2D', 'DepthwiseConv2dNative' ],
arithmetic: [ 'Add', 'Minimum', 'Maximum', 'Mul' ],
basic_math: [ 'Relu', 'Sigmoid' ],
reduction: [ 'Mean' ],
matrices: [ '_FusedMatMul' ],
normalization: [ 'Softmax' ]
}
INFO: graph model: /home/vlado/dev/human/models/blazeface.json
INFO: created on: 2020-10-15T19:57:26.419Z
INFO: metadata: { generatedBy: 'https://github.com/google/mediapipe', convertedBy: 'https://github.com/vladmandic', version: undefined }
INFO: model inputs based on signature
{ name: 'input:0', dtype: 'DT_FLOAT', shape: [ 1, 256, 256, 3 ] }
INFO: model outputs based on signature
{ id: 0, name: 'Identity_3:0', dytpe: 'DT_FLOAT', shape: [ 1, 384, 16 ] }
{ id: 1, name: 'Identity:0', dytpe: 'DT_FLOAT', shape: [ 1, 512, 1 ] }
{ id: 2, name: 'Identity_1:0', dytpe: 'DT_FLOAT', shape: [ 1, 384, 1 ] }
{ id: 3, name: 'Identity_2:0', dytpe: 'DT_FLOAT', shape: [ 1, 512, 16 ] }
INFO: tensors: 112
DATA: weights: {
files: [ 'blazeface.bin' ],
size: { disk: 538928, memory: 538928 },
count: { total: 112, float32: 106, int32: 6 },
quantized: { none: 112 },
values: { total: 134732, float32: 134704, int32: 28 }
}
DATA: kernel ops: {
graph: [ 'Const', 'Placeholder', 'Identity' ],
convolution: [ '_FusedConv2D', 'DepthwiseConv2dNative', 'MaxPool' ],
arithmetic: [ 'AddV2' ],
basic_math: [ 'Relu' ],
transformation: [ 'Pad', 'Reshape' ]
}
INFO: graph model: /home/vlado/dev/human/models/mb3-centernet.json
INFO: created on: 2021-05-19T11:50:13.013Z
INFO: metadata: { generatedBy: 'https://github.com/610265158/mobilenetv3_centernet', convertedBy: 'https://github.com/vladmandic', version: undefined }
INFO: model inputs based on signature
{ name: 'tower_0/images', dtype: 'DT_FLOAT', shape: [ 1, 512, 512, 3 ] }
INFO: model outputs based on signature
{ id: 0, name: 'tower_0/wh', dytpe: 'DT_FLOAT', shape: [ 1, 128, 128, 4 ] }
{ id: 1, name: 'tower_0/keypoints', dytpe: 'DT_FLOAT', shape: [ 1, 128, 128, 80 ] }
{ id: 2, name: 'tower_0/detections', dytpe: 'DT_FLOAT', shape: [ 1, 100, 6 ] }
INFO: tensors: 267
DATA: weights: {
files: [ 'mb3-centernet.bin' ],
size: { disk: 4030290, memory: 8060260 },
count: { total: 267, float32: 227, int32: 40 },
quantized: { float16: 227, none: 40 },
values: { total: 2015065, float32: 2014985, int32: 80 }
}
DATA: kernel ops: {
graph: [ 'Const', 'Placeholder', 'Identity' ],
convolution: [ '_FusedConv2D', 'FusedDepthwiseConv2dNative', 'DepthwiseConv2dNative', 'Conv2D', 'MaxPool' ],
arithmetic: [ 'Mul', 'Add', 'FloorDiv', 'FloorMod', 'Sub' ],
basic_math: [ 'Relu6', 'Relu', 'Sigmoid' ],
reduction: [ 'Mean' ],
image: [ 'ResizeBilinear' ],
slice_join: [ 'ConcatV2', 'GatherV2', 'StridedSlice' ],
transformation: [ 'Reshape', 'Cast', 'ExpandDims' ],
logical: [ 'Equal' ],
evaluation: [ 'TopKV2' ]
}
INFO: graph model: /home/vlado/dev/human/models/movenet-lightning.json
INFO: created on: 2021-05-29T12:26:32.994Z
INFO: metadata: { generatedBy: 'https://tfhub.dev/google/movenet/singlepose/lightning/4', convertedBy: 'https://github.com/vladmandic', version: undefined }
INFO: model inputs based on signature
{ name: 'input:0', dtype: 'DT_INT32', shape: [ 1, 192, 192, 3 ] }
INFO: model outputs based on signature
{ id: 0, name: 'Identity:0', dytpe: 'DT_FLOAT', shape: [ 1, 1, 17, 3 ] }
INFO: tensors: 180
DATA: weights: {
files: [ 'movenet-lightning.bin' ],
size: { disk: 4650216, memory: 9300008 },
count: { total: 180, int32: 31, float32: 149 },
quantized: { none: 31, float16: 149 },
values: { total: 2325002, int32: 106, float32: 2324896 }
}
DATA: kernel ops: {
graph: [ 'Const', 'Placeholder', 'Identity' ],
transformation: [ 'Cast', 'ExpandDims', 'Squeeze', 'Reshape' ],
slice_join: [ 'Unpack', 'Pack', 'GatherNd', 'ConcatV2' ],
arithmetic: [ 'Sub', 'Mul', 'AddV2', 'FloorDiv', 'SquaredDifference', 'RealDiv' ],
convolution: [ '_FusedConv2D', 'FusedDepthwiseConv2dNative', 'DepthwiseConv2dNative' ],
image: [ 'ResizeBilinear' ],
basic_math: [ 'Sigmoid', 'Sqrt' ],
reduction: [ 'ArgMax' ]
}
INFO: graph model: /home/vlado/dev/human/models/selfie.json
INFO: created on: 2021-06-04T13:46:56.904Z
INFO: metadata: { generatedBy: 'https://github.com/PINTO0309/PINTO_model_zoo/tree/main/109_Selfie_Segmentation', convertedBy: 'https://github.com/vladmandic', version: '561.undefined' }
INFO: model inputs based on signature
{ name: 'input_1:0', dtype: 'DT_FLOAT', shape: [ 1, 256, 256, 3 ] }
INFO: model outputs based on signature
{ id: 0, name: 'activation_10:0', dytpe: 'DT_FLOAT', shape: [ 1, 256, 256, 1 ] }
INFO: tensors: 136
DATA: weights: {
files: [ 'selfie.bin' ],
size: { disk: 212886, memory: 425732 },
count: { total: 136, int32: 4, float32: 132 },
quantized: { none: 4, float16: 132 },
values: { total: 106433, int32: 10, float32: 106423 }
}
DATA: kernel ops: {
graph: [ 'Const', 'Placeholder' ],
convolution: [ 'Conv2D', 'DepthwiseConv2dNative', 'AvgPool', 'Conv2DBackpropInput' ],
arithmetic: [ 'Add', 'Mul', 'AddV2', 'AddN' ],
basic_math: [ 'Relu6', 'Relu', 'Sigmoid' ],
image: [ 'ResizeBilinear' ]
}
INFO: graph model: /home/vlado/dev/human/models/handtrack.json
INFO: created on: 2021-09-21T12:09:47.583Z
INFO: metadata: { generatedBy: 'https://github.com/victordibia/handtracking', convertedBy: 'https://github.com/vladmandic', version: '561.undefined' }
INFO: model inputs based on signature
{ name: 'input_tensor:0', dtype: 'DT_UINT8', shape: [ 1, 320, 320, 3 ] }
INFO: model outputs based on signature
{ id: 0, name: 'Identity_2:0', dytpe: 'DT_FLOAT', shape: [ 1, 100 ] }
{ id: 1, name: 'Identity_4:0', dytpe: 'DT_FLOAT', shape: [ 1, 100 ] }
{ id: 2, name: 'Identity_6:0', dytpe: 'DT_FLOAT', shape: [ 1, 12804, 4 ] }
{ id: 3, name: 'Identity_1:0', dytpe: 'DT_FLOAT', shape: [ 1, 100, 4 ] }
{ id: 4, name: 'Identity_3:0', dytpe: 'DT_FLOAT', shape: [ 1, 100, 8 ] }
{ id: 5, name: 'Identity_5:0', dytpe: 'DT_FLOAT', shape: [ 1 ] }
{ id: 6, name: 'Identity:0', dytpe: 'DT_FLOAT', shape: [ 1, 100 ] }
{ id: 7, name: 'Identity_7:0', dytpe: 'DT_FLOAT', shape: [ 1, 12804, 8 ] }
INFO: tensors: 619
DATA: weights: {
files: [ 'handtrack.bin' ],
size: { disk: 2964837, memory: 11846016 },
count: { total: 619, int32: 347, float32: 272 },
quantized: { none: 347, uint8: 272 },
values: { total: 2961504, int32: 1111, float32: 2960393 }
}
DATA: kernel ops: {
graph: [ 'Const', 'Placeholder', 'Identity', 'Shape', 'NoOp' ],
control: [ 'TensorListReserve', 'Enter', 'TensorListFromTensor', 'Merge', 'LoopCond', 'Switch', 'Exit', 'TensorListStack', 'NextIteration', 'TensorListSetItem', 'TensorListGetItem' ],
logical: [ 'Less', 'LogicalAnd', 'Select', 'Greater', 'GreaterEqual' ],
convolution: [ '_FusedConv2D', 'FusedDepthwiseConv2dNative', 'DepthwiseConv2dNative' ],
arithmetic: [ 'AddV2', 'Mul', 'Sub', 'Minimum', 'Maximum' ],
transformation: [ 'Cast', 'ExpandDims', 'Squeeze', 'Reshape', 'Pad' ],
slice_join: [ 'Unpack', 'StridedSlice', 'Pack', 'ConcatV2', 'Slice', 'GatherV2', 'Split' ],
image: [ 'ResizeBilinear' ],
basic_math: [ 'Reciprocal', 'Sigmoid', 'Exp' ],
matrices: [ 'Transpose' ],
dynamic: [ 'NonMaxSuppressionV5', 'Where' ],
creation: [ 'Fill', 'Range' ],
evaluation: [ 'TopKV2' ],
reduction: [ 'Sum' ]
}
INFO: graph model: /home/vlado/dev/human/models/antispoof.json
INFO: created on: 2021-10-13T14:20:27.100Z
INFO: metadata: { generatedBy: 'https://www.kaggle.com/anku420/fake-face-detection', convertedBy: 'https://github.com/vladmandic', version: '716.undefined' }
INFO: model inputs based on signature
{ name: 'conv2d_input', dtype: 'DT_FLOAT', shape: [ -1, 128, 128, 3 ] }
INFO: model outputs based on signature
{ id: 0, name: 'activation_4', dytpe: 'DT_FLOAT', shape: [ -1, 1 ] }
INFO: tensors: 11
DATA: weights: {
files: [ 'antispoof.bin' ],
size: { disk: 853098, memory: 1706188 },
count: { total: 11, float32: 10, int32: 1 },
quantized: { float16: 10, none: 1 },
values: { total: 426547, float32: 426545, int32: 2 }
}
DATA: kernel ops: { graph: [ 'Const', 'Placeholder', 'Identity' ], convolution: [ '_FusedConv2D', 'MaxPool' ], basic_math: [ 'Relu', 'Sigmoid' ], transformation: [ 'Reshape' ], matrices: [ '_FusedMatMul' ] }
INFO: graph model: /home/vlado/dev/human/models/handlandmark-full.json
INFO: created on: 2021-10-31T12:27:49.343Z
INFO: metadata: { generatedBy: 'https://github.com/google/mediapipe', convertedBy: 'https://github.com/vladmandic', version: '808.undefined' }
INFO: model inputs based on signature
{ name: 'input_1', dtype: 'DT_FLOAT', shape: [ 1, 224, 224, 3 ] }
INFO: model outputs based on signature
{ id: 0, name: 'Identity_3:0', dytpe: 'DT_FLOAT', shape: [ 1, 63 ] }
{ id: 1, name: 'Identity:0', dytpe: 'DT_FLOAT', shape: [ 1, 63 ] }
{ id: 2, name: 'Identity_1:0', dytpe: 'DT_FLOAT', shape: [ 1, 1 ] }
{ id: 3, name: 'Identity_2:0', dytpe: 'DT_FLOAT', shape: [ 1, 1 ] }
INFO: tensors: 103
DATA: weights: {
files: [ 'handlandmark-full.bin' ],
size: { disk: 5431368, memory: 10862728 },
count: { total: 103, float32: 102, int32: 1 },
quantized: { float16: 102, none: 1 },
values: { total: 2715682, float32: 2715680, int32: 2 }
}
DATA: kernel ops: {
graph: [ 'Const', 'Placeholder', 'Identity' ],
convolution: [ 'Conv2D', 'DepthwiseConv2dNative' ],
arithmetic: [ 'AddV2', 'AddN' ],
basic_math: [ 'Relu6', 'Sigmoid' ],
reduction: [ 'Mean' ],
matrices: [ '_FusedMatMul' ]
}
INFO: graph model: /home/vlado/dev/human/models/liveness.json
INFO: created on: 2021-11-09T12:39:11.760Z
INFO: metadata: { generatedBy: 'https://github.com/leokwu/livenessnet', convertedBy: 'https://github.com/vladmandic', version: '808.undefined' }
INFO: model inputs based on signature
{ name: 'conv2d_1_input', dtype: 'DT_FLOAT', shape: [ -1, 32, 32, 3 ] }
INFO: model outputs based on signature
{ id: 0, name: 'activation_6', dytpe: 'DT_FLOAT', shape: [ -1, 2 ] }
INFO: tensors: 23
DATA: weights: {
files: [ 'liveness.bin' ],
size: { disk: 592976, memory: 592976 },
count: { total: 23, float32: 22, int32: 1 },
quantized: { none: 23 },
values: { total: 148244, float32: 148242, int32: 2 }
}
DATA: kernel ops: {
graph: [ 'Const', 'Placeholder', 'Identity' ],
convolution: [ '_FusedConv2D', 'MaxPool' ],
arithmetic: [ 'Mul', 'Add', 'AddV2' ],
transformation: [ 'Reshape' ],
matrices: [ '_FusedMatMul' ],
normalization: [ 'Softmax' ]
}
```

Binary file not shown.

File diff suppressed because one or more lines are too long

Binary file not shown.

File diff suppressed because one or more lines are too long

Binary file not shown.

Some files were not shown because too many files have changed in this diff Show More