Compare commits
No commits in common. "2.3.2" and "main" have entirely different histories.
|
@ -0,0 +1,27 @@
|
|||
{
|
||||
"$schema": "https://developer.microsoft.com/json-schemas/api-extractor/v7/api-extractor.schema.json",
|
||||
"mainEntryPointFilePath": "types/lib/src/human.d.ts",
|
||||
"compiler": {
|
||||
"skipLibCheck": true
|
||||
},
|
||||
"newlineKind": "lf",
|
||||
"dtsRollup": {
|
||||
"enabled": true,
|
||||
"untrimmedFilePath": "types/human.d.ts"
|
||||
},
|
||||
"docModel": { "enabled": false },
|
||||
"tsdocMetadata": { "enabled": false },
|
||||
"apiReport": { "enabled": false },
|
||||
"messages": {
|
||||
"compilerMessageReporting": {
|
||||
"default": { "logLevel": "warning" }
|
||||
},
|
||||
"extractorMessageReporting": {
|
||||
"default": { "logLevel": "warning" },
|
||||
"ae-missing-release-tag": { "logLevel": "none" }
|
||||
},
|
||||
"tsdocMessageReporting": {
|
||||
"default": { "logLevel": "warning" }
|
||||
}
|
||||
}
|
||||
}
|
|
@ -8,13 +8,14 @@
|
|||
"profiles": {
|
||||
"production": ["clean", "compile", "typings", "typedoc", "lint", "changelog"],
|
||||
"development": ["serve", "watch", "compile"],
|
||||
"serve": ["serve"]
|
||||
"serve": ["serve"],
|
||||
"clean": ["clean"]
|
||||
},
|
||||
"clean": {
|
||||
"locations": ["dist/*", "types/*", "typedoc/*"]
|
||||
},
|
||||
"lint": {
|
||||
"locations": [ "*.json", "src/**/*.ts", "test/**/*.js", "demo/**/*.js" ],
|
||||
"locations": [ "**/*.json", "src/**/*.ts", "test/**/*.js", "demo/**/*.js", "**/*.md" ],
|
||||
"rules": { }
|
||||
},
|
||||
"changelog": {
|
||||
|
@ -23,8 +24,8 @@
|
|||
"serve": {
|
||||
"sslKey": "node_modules/@vladmandic/build/cert/https.key",
|
||||
"sslCrt": "node_modules/@vladmandic/build/cert/https.crt",
|
||||
"httpPort": 10030,
|
||||
"httpsPort": 10031,
|
||||
"httpPort": 8000,
|
||||
"httpsPort": 8001,
|
||||
"documentRoot": ".",
|
||||
"defaultFolder": "demo",
|
||||
"defaultFile": "index.html"
|
||||
|
@ -33,9 +34,18 @@
|
|||
"global": {
|
||||
"target": "es2018",
|
||||
"sourcemap": false,
|
||||
"treeShaking": true,
|
||||
"ignoreAnnotations": true,
|
||||
"banner": { "js": "/*\n Human\n homepage: <https://github.com/vladmandic/human>\n author: <https://github.com/vladmandic>'\n*/\n" }
|
||||
},
|
||||
"targets": [
|
||||
{
|
||||
"name": "tfjs/browser/version",
|
||||
"platform": "browser",
|
||||
"format": "esm",
|
||||
"input": "tfjs/tf-version.ts",
|
||||
"output": "dist/tfjs.version.js"
|
||||
},
|
||||
{
|
||||
"name": "tfjs/nodejs/cpu",
|
||||
"platform": "node",
|
||||
|
@ -74,6 +84,7 @@
|
|||
"format": "cjs",
|
||||
"input": "tfjs/tf-node-wasm.ts",
|
||||
"output": "dist/tfjs.esm.js",
|
||||
"minify": false,
|
||||
"external": ["@tensorflow"]
|
||||
},
|
||||
{
|
||||
|
@ -84,21 +95,13 @@
|
|||
"output": "dist/human.node-wasm.js",
|
||||
"external": ["@tensorflow"]
|
||||
},
|
||||
{
|
||||
"name": "tfjs/browser/version",
|
||||
"platform": "browser",
|
||||
"format": "esm",
|
||||
"input": "tfjs/tf-version.ts",
|
||||
"output": "dist/tfjs.version.js",
|
||||
"external": ["fs", "os", "buffer", "util"]
|
||||
},
|
||||
{
|
||||
"name": "tfjs/browser/esm/nobundle",
|
||||
"platform": "browser",
|
||||
"format": "esm",
|
||||
"input": "tfjs/tf-browser.ts",
|
||||
"output": "dist/tfjs.esm.js",
|
||||
"external": ["@tensorflow", "fs", "os", "buffer", "util"]
|
||||
"external": ["@tensorflow"]
|
||||
},
|
||||
{
|
||||
"name": "human/browser/esm/nobundle",
|
||||
|
@ -106,8 +109,8 @@
|
|||
"format": "esm",
|
||||
"input": "src/human.ts",
|
||||
"output": "dist/human.esm-nobundle.js",
|
||||
"sourcemap": true,
|
||||
"external": ["@tensorflow", "fs", "os", "buffer", "util"]
|
||||
"sourcemap": false,
|
||||
"external": ["@tensorflow"]
|
||||
},
|
||||
{
|
||||
"name": "tfjs/browser/esm/bundle",
|
||||
|
@ -115,8 +118,8 @@
|
|||
"format": "esm",
|
||||
"input": "tfjs/tf-browser.ts",
|
||||
"output": "dist/tfjs.esm.js",
|
||||
"sourcemap": true,
|
||||
"external": ["fs", "os", "buffer", "util"]
|
||||
"sourcemap": false,
|
||||
"minify": true
|
||||
},
|
||||
{
|
||||
"name": "human/browser/iife/bundle",
|
||||
|
@ -126,7 +129,7 @@
|
|||
"output": "dist/human.js",
|
||||
"minify": true,
|
||||
"globalName": "Human",
|
||||
"external": ["fs", "os", "buffer", "util"]
|
||||
"external": ["@tensorflow"]
|
||||
},
|
||||
{
|
||||
"name": "human/browser/esm/bundle",
|
||||
|
@ -135,14 +138,42 @@
|
|||
"input": "src/human.ts",
|
||||
"output": "dist/human.esm.js",
|
||||
"sourcemap": true,
|
||||
"external": ["fs", "os", "buffer", "util"],
|
||||
"typings": "types",
|
||||
"minify": false,
|
||||
"external": ["@tensorflow"],
|
||||
"typings": "types/lib",
|
||||
"typedoc": "typedoc"
|
||||
},
|
||||
{
|
||||
"name": "demo/typescript",
|
||||
"platform": "browser",
|
||||
"format": "esm",
|
||||
"input": "demo/typescript/index.ts",
|
||||
"output": "demo/typescript/index.js",
|
||||
"sourcemap": true,
|
||||
"external": ["*/human.esm.js"]
|
||||
},
|
||||
{
|
||||
"name": "demo/faceid",
|
||||
"platform": "browser",
|
||||
"format": "esm",
|
||||
"input": "demo/faceid/index.ts",
|
||||
"output": "demo/faceid/index.js",
|
||||
"sourcemap": true,
|
||||
"external": ["*/human.esm.js"]
|
||||
},
|
||||
{
|
||||
"name": "demo/tracker",
|
||||
"platform": "browser",
|
||||
"format": "esm",
|
||||
"input": "demo/tracker/index.ts",
|
||||
"output": "demo/tracker/index.js",
|
||||
"sourcemap": true,
|
||||
"external": ["*/human.esm.js"]
|
||||
}
|
||||
]
|
||||
},
|
||||
"watch": {
|
||||
"locations": [ "src/**/*", "tfjs/**/*" ]
|
||||
"locations": [ "src/**/*", "tfjs/**/*", "demo/**/*.ts" ]
|
||||
},
|
||||
"typescript": {
|
||||
"allowJs": false
|
289
.eslintrc.json
|
@ -1,84 +1,221 @@
|
|||
{
|
||||
"globals": {},
|
||||
"env": {
|
||||
"browser": true,
|
||||
"commonjs": true,
|
||||
"node": true,
|
||||
"es2021": true
|
||||
"globals": {
|
||||
},
|
||||
"parser": "@typescript-eslint/parser",
|
||||
"parserOptions": {
|
||||
"ecmaVersion": 2021
|
||||
"rules": {
|
||||
"@typescript-eslint/no-require-imports":"off"
|
||||
},
|
||||
"plugins": [
|
||||
"@typescript-eslint"
|
||||
],
|
||||
"extends": [
|
||||
"airbnb-base",
|
||||
"eslint:recommended",
|
||||
"plugin:@typescript-eslint/eslint-recommended",
|
||||
"plugin:@typescript-eslint/recommended",
|
||||
"plugin:import/errors",
|
||||
"plugin:import/warnings",
|
||||
"plugin:json/recommended-with-comments",
|
||||
"plugin:node/recommended",
|
||||
"plugin:promise/recommended"
|
||||
"overrides": [
|
||||
{
|
||||
"files": ["**/*.ts"],
|
||||
"parser": "@typescript-eslint/parser",
|
||||
"parserOptions": { "ecmaVersion": "latest", "project": ["./tsconfig.json"] },
|
||||
"plugins": ["@typescript-eslint"],
|
||||
"env": {
|
||||
"browser": true,
|
||||
"commonjs": false,
|
||||
"node": false,
|
||||
"es2021": true
|
||||
},
|
||||
"extends": [
|
||||
"airbnb-base",
|
||||
"eslint:recommended",
|
||||
"plugin:@typescript-eslint/eslint-recommended",
|
||||
"plugin:@typescript-eslint/recommended",
|
||||
"plugin:@typescript-eslint/recommended-requiring-type-checking",
|
||||
"plugin:@typescript-eslint/strict",
|
||||
"plugin:import/recommended",
|
||||
"plugin:promise/recommended"
|
||||
],
|
||||
"rules": {
|
||||
"@typescript-eslint/ban-ts-comment":"off",
|
||||
"@typescript-eslint/dot-notation":"off",
|
||||
"@typescript-eslint/no-empty-interface":"off",
|
||||
"@typescript-eslint/no-inferrable-types":"off",
|
||||
"@typescript-eslint/no-misused-promises":"off",
|
||||
"@typescript-eslint/no-unnecessary-condition":"off",
|
||||
"@typescript-eslint/no-unsafe-argument":"off",
|
||||
"@typescript-eslint/no-unsafe-assignment":"off",
|
||||
"@typescript-eslint/no-unsafe-call":"off",
|
||||
"@typescript-eslint/no-unsafe-member-access":"off",
|
||||
"@typescript-eslint/no-unsafe-return":"off",
|
||||
"@typescript-eslint/no-require-imports":"off",
|
||||
"@typescript-eslint/no-empty-object-type":"off",
|
||||
"@typescript-eslint/non-nullable-type-assertion-style":"off",
|
||||
"@typescript-eslint/prefer-for-of":"off",
|
||||
"@typescript-eslint/prefer-nullish-coalescing":"off",
|
||||
"@typescript-eslint/prefer-ts-expect-error":"off",
|
||||
"@typescript-eslint/restrict-plus-operands":"off",
|
||||
"@typescript-eslint/restrict-template-expressions":"off",
|
||||
"dot-notation":"off",
|
||||
"guard-for-in":"off",
|
||||
"import/extensions": ["off", "always"],
|
||||
"import/no-unresolved":"off",
|
||||
"import/prefer-default-export":"off",
|
||||
"lines-between-class-members":"off",
|
||||
"max-len": [1, 275, 3],
|
||||
"no-async-promise-executor":"off",
|
||||
"no-await-in-loop":"off",
|
||||
"no-bitwise":"off",
|
||||
"no-continue":"off",
|
||||
"no-lonely-if":"off",
|
||||
"no-mixed-operators":"off",
|
||||
"no-param-reassign":"off",
|
||||
"no-plusplus":"off",
|
||||
"no-regex-spaces":"off",
|
||||
"no-restricted-syntax":"off",
|
||||
"no-return-assign":"off",
|
||||
"no-void":"off",
|
||||
"object-curly-newline":"off",
|
||||
"prefer-destructuring":"off",
|
||||
"prefer-template":"off",
|
||||
"radix":"off"
|
||||
}
|
||||
},
|
||||
{
|
||||
"files": ["**/*.d.ts"],
|
||||
"parser": "@typescript-eslint/parser",
|
||||
"parserOptions": { "ecmaVersion": "latest", "project": ["./tsconfig.json"] },
|
||||
"plugins": ["@typescript-eslint"],
|
||||
"env": {
|
||||
"browser": true,
|
||||
"commonjs": false,
|
||||
"node": false,
|
||||
"es2021": true
|
||||
},
|
||||
"extends": [
|
||||
"airbnb-base",
|
||||
"eslint:recommended",
|
||||
"plugin:@typescript-eslint/eslint-recommended",
|
||||
"plugin:@typescript-eslint/recommended",
|
||||
"plugin:@typescript-eslint/recommended-requiring-type-checking",
|
||||
"plugin:@typescript-eslint/strict",
|
||||
"plugin:import/recommended",
|
||||
"plugin:promise/recommended"
|
||||
],
|
||||
"rules": {
|
||||
"@typescript-eslint/array-type":"off",
|
||||
"@typescript-eslint/ban-types":"off",
|
||||
"@typescript-eslint/consistent-indexed-object-style":"off",
|
||||
"@typescript-eslint/consistent-type-definitions":"off",
|
||||
"@typescript-eslint/no-empty-interface":"off",
|
||||
"@typescript-eslint/no-explicit-any":"off",
|
||||
"@typescript-eslint/no-invalid-void-type":"off",
|
||||
"@typescript-eslint/no-unnecessary-type-arguments":"off",
|
||||
"@typescript-eslint/no-unnecessary-type-constraint":"off",
|
||||
"comma-dangle":"off",
|
||||
"indent":"off",
|
||||
"lines-between-class-members":"off",
|
||||
"max-classes-per-file":"off",
|
||||
"max-len":"off",
|
||||
"no-multiple-empty-lines":"off",
|
||||
"no-shadow":"off",
|
||||
"no-use-before-define":"off",
|
||||
"quotes":"off",
|
||||
"semi":"off"
|
||||
}
|
||||
},
|
||||
{
|
||||
"files": ["**/*.js"],
|
||||
"parserOptions": { "sourceType": "module", "ecmaVersion": "latest" },
|
||||
"plugins": [],
|
||||
"env": {
|
||||
"browser": true,
|
||||
"commonjs": true,
|
||||
"node": true,
|
||||
"es2021": true
|
||||
},
|
||||
"extends": [
|
||||
"airbnb-base",
|
||||
"eslint:recommended",
|
||||
"plugin:node/recommended",
|
||||
"plugin:promise/recommended"
|
||||
],
|
||||
"rules": {
|
||||
"dot-notation":"off",
|
||||
"import/extensions": ["error", "always"],
|
||||
"import/no-extraneous-dependencies":"off",
|
||||
"max-len": [1, 275, 3],
|
||||
"no-await-in-loop":"off",
|
||||
"no-bitwise":"off",
|
||||
"no-continue":"off",
|
||||
"no-mixed-operators":"off",
|
||||
"no-param-reassign":"off",
|
||||
"no-plusplus":"off",
|
||||
"no-regex-spaces":"off",
|
||||
"no-restricted-syntax":"off",
|
||||
"no-return-assign":"off",
|
||||
"node/no-unsupported-features/es-syntax":"off",
|
||||
"object-curly-newline":"off",
|
||||
"prefer-destructuring":"off",
|
||||
"prefer-template":"off",
|
||||
"radix":"off"
|
||||
}
|
||||
},
|
||||
{
|
||||
"files": ["**/*.json"],
|
||||
"parserOptions": { "ecmaVersion": "latest" },
|
||||
"plugins": ["json"],
|
||||
"env": {
|
||||
"browser": false,
|
||||
"commonjs": false,
|
||||
"node": false,
|
||||
"es2021": false
|
||||
},
|
||||
"extends": []
|
||||
},
|
||||
{
|
||||
"files": ["**/*.html"],
|
||||
"parserOptions": { "sourceType": "module", "ecmaVersion": "latest" },
|
||||
"parser": "@html-eslint/parser",
|
||||
"plugins": ["html", "@html-eslint"],
|
||||
"env": {
|
||||
"browser": true,
|
||||
"commonjs": false,
|
||||
"node": false,
|
||||
"es2021": false
|
||||
},
|
||||
"extends": ["plugin:@html-eslint/recommended"],
|
||||
"rules": {
|
||||
"@html-eslint/element-newline":"off",
|
||||
"@html-eslint/attrs-newline":"off",
|
||||
"@html-eslint/indent": ["error", 2]
|
||||
}
|
||||
},
|
||||
{
|
||||
"files": ["**/*.md"],
|
||||
"plugins": ["markdown"],
|
||||
"processor": "markdown/markdown",
|
||||
"rules": {
|
||||
"no-undef":"off"
|
||||
}
|
||||
},
|
||||
{
|
||||
"files": ["**/*.md/*.js"],
|
||||
"rules": {
|
||||
"@typescript-eslint/no-unused-vars":"off",
|
||||
"@typescript-eslint/triple-slash-reference":"off",
|
||||
"import/newline-after-import":"off",
|
||||
"import/no-unresolved":"off",
|
||||
"no-console":"off",
|
||||
"no-global-assign":"off",
|
||||
"no-multi-spaces":"off",
|
||||
"no-restricted-globals":"off",
|
||||
"no-undef":"off",
|
||||
"no-unused-vars":"off",
|
||||
"node/no-missing-import":"off",
|
||||
"node/no-missing-require":"off",
|
||||
"promise/catch-or-return":"off"
|
||||
}
|
||||
}
|
||||
],
|
||||
"ignorePatterns": [
|
||||
"node_modules",
|
||||
"assets",
|
||||
"demo/helpers",
|
||||
"dist",
|
||||
"media",
|
||||
"models",
|
||||
"node_modules"
|
||||
],
|
||||
"rules": {
|
||||
"@typescript-eslint/ban-ts-comment": "off",
|
||||
"@typescript-eslint/explicit-module-boundary-types": "off",
|
||||
"@typescript-eslint/no-shadow": "error",
|
||||
"@typescript-eslint/no-var-requires": "off",
|
||||
"@typescript-eslint/triple-slash-reference": "off",
|
||||
"@typescript-eslint/no-inferrable-types": "off",
|
||||
"camelcase": "off",
|
||||
"dot-notation": "off",
|
||||
"func-names": "off",
|
||||
"guard-for-in": "off",
|
||||
"import/extensions": "off",
|
||||
"import/no-extraneous-dependencies": "off",
|
||||
"import/no-named-as-default": "off",
|
||||
"import/no-unresolved": "off",
|
||||
"import/prefer-default-export": "off",
|
||||
"lines-between-class-members": "off",
|
||||
"max-len": [1, 275, 3],
|
||||
"newline-per-chained-call": "off",
|
||||
"no-async-promise-executor": "off",
|
||||
"no-await-in-loop": "off",
|
||||
"no-bitwise": "off",
|
||||
"no-case-declarations":"off",
|
||||
"no-continue": "off",
|
||||
"no-lonely-if": "off",
|
||||
"no-loop-func": "off",
|
||||
"no-mixed-operators": "off",
|
||||
"no-param-reassign":"off",
|
||||
"no-plusplus": "off",
|
||||
"no-process-exit": "off",
|
||||
"no-regex-spaces": "off",
|
||||
"no-restricted-globals": "off",
|
||||
"no-restricted-syntax": "off",
|
||||
"no-return-assign": "off",
|
||||
"no-shadow": "off",
|
||||
"no-underscore-dangle": "off",
|
||||
"node/no-missing-import": ["error", { "tryExtensions": [".js", ".json", ".ts"] }],
|
||||
"node/no-unpublished-import": "off",
|
||||
"node/no-unpublished-require": "off",
|
||||
"node/no-unsupported-features/es-syntax": "off",
|
||||
"node/shebang": "off",
|
||||
"object-curly-newline": "off",
|
||||
"prefer-destructuring": "off",
|
||||
"prefer-template":"off",
|
||||
"promise/always-return": "off",
|
||||
"promise/catch-or-return": "off",
|
||||
"promise/no-nesting": "off",
|
||||
"radix": "off"
|
||||
}
|
||||
"demo/helpers/*.js",
|
||||
"demo/typescript/*.js",
|
||||
"demo/faceid/*.js",
|
||||
"demo/tracker/*.js",
|
||||
"typedoc"
|
||||
]
|
||||
}
|
||||
|
|
|
@ -0,0 +1,11 @@
|
|||
github: [vladmandic]
|
||||
patreon: # Replace with a single Patreon username
|
||||
open_collective: # Replace with a single Open Collective username
|
||||
ko_fi: # Replace with a single Ko-fi username
|
||||
tidelift: # Replace with a single Tidelift platform-name/package-name e.g., npm/babel
|
||||
community_bridge: # Replace with a single Community Bridge project-name e.g., cloud-foundry
|
||||
liberapay: # Replace with a single Liberapay username
|
||||
issuehunt: # Replace with a single IssueHunt username
|
||||
otechie: # Replace with a single Otechie username
|
||||
lfx_crowdfunding: # Replace with a single LFX Crowdfunding project-name e.g., cloud-foundry
|
||||
custom: # Replace with up to 4 custom sponsorship URLs e.g., ['link1', 'link2']
|
|
@ -1,4 +1,9 @@
|
|||
node_modules
|
||||
node_modules/
|
||||
types/lib
|
||||
pnpm-lock.yaml
|
||||
assets/tf*
|
||||
package-lock.json
|
||||
*.swp
|
||||
samples/**/*.mp4
|
||||
samples/**/*.webm
|
||||
temp
|
||||
tmp
|
||||
|
|
2
.hintrc
|
@ -5,7 +5,7 @@
|
|||
"browserslist": [
|
||||
"chrome >= 90",
|
||||
"edge >= 90",
|
||||
"firefox >= 90",
|
||||
"firefox >= 100",
|
||||
"android >= 90",
|
||||
"safari >= 15"
|
||||
],
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
{
|
||||
"MD012": false,
|
||||
"MD013": false,
|
||||
"MD029": false,
|
||||
"MD033": false,
|
||||
"MD036": false,
|
||||
"MD041": false
|
||||
|
|
|
@ -4,5 +4,4 @@ samples
|
|||
typedoc
|
||||
test
|
||||
wiki
|
||||
dist/tfjs.esm.js
|
||||
dist/tfjs.esm.js.map
|
||||
types/lib
|
||||
|
|
6
.npmrc
|
@ -1 +1,5 @@
|
|||
force = true
|
||||
force=true
|
||||
omit=dev
|
||||
legacy-peer-deps=true
|
||||
strict-peer-dependencies=false
|
||||
node-options='--no-deprecation'
|
||||
|
|
|
@ -0,0 +1,10 @@
|
|||
{
|
||||
"search.exclude": {
|
||||
"dist/*": true,
|
||||
"node_modules/*": true,
|
||||
"types": true,
|
||||
"typedoc": true,
|
||||
},
|
||||
"search.useGlobalIgnoreFiles": true,
|
||||
"search.useParentIgnoreFiles": true
|
||||
}
|
561
CHANGELOG.md
|
@ -1,23 +1,389 @@
|
|||
# packageJson
|
||||
# @vladmandic/human
|
||||
|
||||
Version: **undefined**
|
||||
Description: **undefined**
|
||||
Version: **3.3.5**
|
||||
Description: **Human: AI-powered 3D Face Detection & Rotation Tracking, Face Description & Recognition, Body Pose Tracking, 3D Hand & Finger Tracking, Iris Analysis, Age & Gender & Emotion Prediction, Gesture Recognition**
|
||||
|
||||
Author: **undefined**
|
||||
License: **undefined**
|
||||
Author: **Vladimir Mandic <mandic00@live.com>**
|
||||
License: **MIT**
|
||||
Repository: **<https://github.com/vladmandic/human>**
|
||||
|
||||
## Changelog
|
||||
|
||||
### **HEAD -> main** 2021/10/10 mandic00@live.com
|
||||
### **3.3.5** 2025/02/05 mandic00@live.com
|
||||
|
||||
|
||||
### **origin/main** 2024/10/24 mandic00@live.com
|
||||
|
||||
- add human.draw.tensor method
|
||||
|
||||
### **3.3.4** 2024/10/24 mandic00@live.com
|
||||
|
||||
|
||||
### **3.3.3** 2024/10/14 mandic00@live.com
|
||||
|
||||
- add loaded property to model stats and mark models not loaded correctly.
|
||||
- release build
|
||||
|
||||
### **3.3.2** 2024/09/11 mandic00@live.com
|
||||
|
||||
- full rebuild
|
||||
|
||||
### **3.3.1** 2024/09/11 mandic00@live.com
|
||||
|
||||
- add config.face.detector.square option
|
||||
- human 3.3 alpha test run
|
||||
- human 3.3 alpha with new build environment
|
||||
- release rebuild
|
||||
- fix flazeface tensor scale and update build platform
|
||||
|
||||
### **3.2.2** 2024/04/17 mandic00@live.com
|
||||
|
||||
|
||||
### **release: 3.2.1** 2024/02/15 mandic00@live.com
|
||||
|
||||
|
||||
### **3.2.1** 2024/02/15 mandic00@live.com
|
||||
|
||||
|
||||
### **3.2.0** 2023/12/06 mandic00@live.com
|
||||
|
||||
- set browser false when navigator object is empty
|
||||
- https://github.com/vladmandic/human/issues/402
|
||||
|
||||
### **release: 3.1.2** 2023/09/18 mandic00@live.com
|
||||
|
||||
- full rebuild
|
||||
|
||||
### **3.1.2** 2023/09/18 mandic00@live.com
|
||||
|
||||
- major toolkit upgrade
|
||||
- full rebuild
|
||||
- major toolkit upgrade
|
||||
|
||||
### **3.1.1** 2023/08/05 mandic00@live.com
|
||||
|
||||
- fixes plus tfjs upgrade for new release
|
||||
|
||||
### **3.0.7** 2023/06/12 mandic00@live.com
|
||||
|
||||
- full rebuild
|
||||
- fix memory leak in histogramequalization
|
||||
- initial work on tracker
|
||||
|
||||
### **3.0.6** 2023/03/21 mandic00@live.com
|
||||
|
||||
- add optional crop to multiple models
|
||||
- fix movenet-multipose
|
||||
- add electron detection
|
||||
- fix gender-ssrnet-imdb
|
||||
- add movenet-multipose workaround
|
||||
- rebuild and publish
|
||||
- add face.detector.minsize configurable setting
|
||||
- add affectnet
|
||||
|
||||
### **3.0.5** 2023/02/02 mandic00@live.com
|
||||
|
||||
- add gear-e models
|
||||
- detect react-native
|
||||
- redo blazeface annotations
|
||||
|
||||
### **3.0.4** 2023/01/29 mandic00@live.com
|
||||
|
||||
- make naviator calls safe
|
||||
- fix facedetector-only configs
|
||||
|
||||
### **3.0.3** 2023/01/07 mandic00@live.com
|
||||
|
||||
- full rebuild
|
||||
|
||||
### **3.0.2** 2023/01/06 mandic00@live.com
|
||||
|
||||
- default face.rotation disabled
|
||||
|
||||
### **release: 3.0.1** 2022/11/22 mandic00@live.com
|
||||
|
||||
|
||||
### **3.0.1** 2022/11/22 mandic00@live.com
|
||||
|
||||
- support dynamic loads
|
||||
- polish demos
|
||||
- add facedetect demo and fix model async load
|
||||
- enforce markdown linting
|
||||
- cleanup git history
|
||||
- default empty result
|
||||
- refactor draw and models namespaces
|
||||
- refactor distance
|
||||
- add basic anthropometry
|
||||
- added webcam id specification
|
||||
- include external typedefs
|
||||
- prepare external typedefs
|
||||
- rebuild all
|
||||
- include project files for types
|
||||
- architectural improvements
|
||||
- refresh dependencies
|
||||
- add named exports
|
||||
- add draw label templates
|
||||
- reduce dev dependencies
|
||||
- tensor rank strong typechecks
|
||||
- rebuild dependencies
|
||||
|
||||
### **2.11.1** 2022/10/09 mandic00@live.com
|
||||
|
||||
- add rvm segmentation model
|
||||
- add human.webcam methods
|
||||
- create funding.yml
|
||||
- fix rotation interpolation
|
||||
|
||||
### **2.10.3** 2022/09/21 mandic00@live.com
|
||||
|
||||
- add human.video method
|
||||
|
||||
### **2.10.2** 2022/09/11 mandic00@live.com
|
||||
|
||||
- add node.js esm compatibility (#292)
|
||||
- release
|
||||
|
||||
### **2.10.1** 2022/09/07 mandic00@live.com
|
||||
|
||||
- release candidate
|
||||
- add config flags
|
||||
- test update
|
||||
- release preview
|
||||
- optimize startup sequence
|
||||
- reorder backend init code
|
||||
- test embedding
|
||||
- embedding test
|
||||
- add browser iife tests
|
||||
- minor bug fixes and increased test coverage
|
||||
- extend release tests
|
||||
- add model load exception handling
|
||||
- add softwarekernels config option
|
||||
- expand type safety
|
||||
- full eslint rule rewrite
|
||||
|
||||
### **2.9.4** 2022/08/20 mandic00@live.com
|
||||
|
||||
- add browser test
|
||||
- add tensorflow library detection
|
||||
- fix wasm detection
|
||||
- enumerate additional models
|
||||
- release refresh
|
||||
|
||||
### **2.9.3** 2022/08/10 mandic00@live.com
|
||||
|
||||
- rehault testing framework
|
||||
- release refresh
|
||||
- add insightface
|
||||
|
||||
### **2.9.2** 2022/08/08 mandic00@live.com
|
||||
|
||||
- release rebuild
|
||||
|
||||
### **2.9.1** 2022/07/25 mandic00@live.com
|
||||
|
||||
- full rebuild
|
||||
- release cleanup
|
||||
- tflite experiments
|
||||
- add load monitor test
|
||||
- beta for upcoming major release
|
||||
- swtich to release version of tfjs
|
||||
- placeholder for face contours
|
||||
- improve face compare in main demo
|
||||
- add webview support
|
||||
- fix(gear): ensure gear.modelpath is used for loadmodel()
|
||||
- npm default install should be prod only
|
||||
- fix npm v7 compatibility
|
||||
- add getmodelstats method
|
||||
- rebuild
|
||||
- release build
|
||||
|
||||
### **2.8.1** 2022/06/08 mandic00@live.com
|
||||
|
||||
- webgpu and wasm optimizations
|
||||
- add faceboxes prototype
|
||||
- full rebuild
|
||||
|
||||
### **2.7.4** 2022/05/24 mandic00@live.com
|
||||
|
||||
|
||||
### **2.7.3** 2022/05/24 mandic00@live.com
|
||||
|
||||
- add face.mesh.keepinvalid config flag
|
||||
- initial work for new facemesh model
|
||||
|
||||
### **2.7.2** 2022/05/12 mandic00@live.com
|
||||
|
||||
- fix demo when used with video files
|
||||
- major release
|
||||
|
||||
### **2.7.1** 2022/05/09 mandic00@live.com
|
||||
|
||||
- support 4k input
|
||||
- add attention draw methods
|
||||
- fix coloring function
|
||||
- enable precompile as part of warmup
|
||||
- prepare release beta
|
||||
- change default face crop
|
||||
- beta release 2.7
|
||||
- refactor draw methods
|
||||
- implement face attention model
|
||||
- add electronjs demo
|
||||
- rebuild
|
||||
|
||||
### **2.6.5** 2022/04/01 mandic00@live.com
|
||||
|
||||
- bundle offscreencanvas types
|
||||
- prototype precompile pass
|
||||
- fix changelog generation
|
||||
- fix indexdb config check
|
||||
|
||||
### **2.6.4** 2022/02/27 mandic00@live.com
|
||||
|
||||
- fix types typo
|
||||
- refresh
|
||||
- add config option wasmplatformfetch
|
||||
|
||||
### **2.6.3** 2022/02/10 mandic00@live.com
|
||||
|
||||
- rebuild
|
||||
|
||||
### **2.6.2** 2022/02/07 mandic00@live.com
|
||||
|
||||
- release rebuild
|
||||
|
||||
### **2.6.1** 2022/01/20 mandic00@live.com
|
||||
|
||||
- implement model caching using indexdb
|
||||
- prototype global fetch handler
|
||||
- fix face box and hand tracking when in front of face
|
||||
|
||||
### **2.5.8** 2022/01/14 mandic00@live.com
|
||||
|
||||
- fix samples
|
||||
- fix(src): typo
|
||||
- change on how face box is calculated
|
||||
|
||||
### **2.5.7** 2021/12/27 mandic00@live.com
|
||||
|
||||
- fix posenet
|
||||
- release refresh
|
||||
|
||||
### **2.5.6** 2021/12/15 mandic00@live.com
|
||||
|
||||
- strong type for string enums
|
||||
- rebuild
|
||||
- fix node detection in electron environment
|
||||
|
||||
### **2.5.5** 2021/12/01 mandic00@live.com
|
||||
|
||||
- added human-motion
|
||||
- add offscreencanvas typedefs
|
||||
- release preview
|
||||
- fix face box scaling on detection
|
||||
- cleanup
|
||||
|
||||
### **2.5.4** 2021/11/22 mandic00@live.com
|
||||
|
||||
- prototype blazepose detector
|
||||
- minor fixes
|
||||
- add body 3d interpolation
|
||||
- edit blazepose keypoints
|
||||
- new build process
|
||||
|
||||
### **2.5.3** 2021/11/18 mandic00@live.com
|
||||
|
||||
- create typedef rollup
|
||||
- optimize centernet
|
||||
- cache frequent tf constants
|
||||
- add extra face rotation prior to mesh
|
||||
- release 2.5.2
|
||||
- improve error handling
|
||||
|
||||
### **2.5.2** 2021/11/14 mandic00@live.com
|
||||
|
||||
- fix mobilefacenet module
|
||||
- fix gear and ssrnet modules
|
||||
- fix for face crop when mesh is disabled
|
||||
- implement optional face masking
|
||||
- add similarity score range normalization
|
||||
- add faceid demo
|
||||
- documentation overhaul
|
||||
- auto tensor shape and channels handling
|
||||
- disable use of path2d in node
|
||||
- add liveness module and facerecognition demo
|
||||
- initial version of facerecognition demo
|
||||
- rebuild
|
||||
- add type defs when working with relative path imports
|
||||
- disable humangl backend if webgl 1.0 is detected
|
||||
- add additional hand gestures
|
||||
|
||||
### **2.5.1** 2021/11/08 mandic00@live.com
|
||||
|
||||
- new human.compare api
|
||||
- added links to release notes
|
||||
- new frame change detection algorithm
|
||||
- add histogram equalization
|
||||
- implement wasm missing ops
|
||||
- performance and memory optimizations
|
||||
- fix react compatibility issues
|
||||
- improve box rescaling for all modules
|
||||
- improve precision using wasm backend
|
||||
- refactor predict with execute
|
||||
- patch tfjs type defs
|
||||
- start 2.5 major version
|
||||
- build and docs cleanup
|
||||
- fix firefox bug
|
||||
|
||||
### **2.4.3** 2021/10/28 mandic00@live.com
|
||||
|
||||
- additional human.performance counters
|
||||
|
||||
### **2.4.2** 2021/10/27 mandic00@live.com
|
||||
|
||||
- add ts demo
|
||||
- switch from es2018 to es2020 for main build
|
||||
- switch to custom tfjs for demos
|
||||
- release 2.4
|
||||
|
||||
### **2.4.1** 2021/10/25 mandic00@live.com
|
||||
|
||||
- refactoring plus jsdoc comments
|
||||
- increase face similarity match resolution
|
||||
- time based caching
|
||||
- turn on minification
|
||||
- initial work on skiptime
|
||||
- added generic types
|
||||
- enhanced typing exports
|
||||
- add optional autodetected custom wasm path
|
||||
|
||||
### **2.3.6** 2021/10/21 mandic00@live.com
|
||||
|
||||
- fix for human.draw labels and typedefs
|
||||
- refactor human.env to a class type
|
||||
- add human.custom.esm using custom tfjs build
|
||||
|
||||
### **2.3.5** 2021/10/19 mandic00@live.com
|
||||
|
||||
- removed direct usage of performance.now
|
||||
|
||||
### **2.3.4** 2021/10/19 mandic00@live.com
|
||||
|
||||
- minor blazepose optimizations
|
||||
- compress samples
|
||||
- remove posenet from default package
|
||||
- enhanced movenet postprocessing
|
||||
- use transferrable buffer for worker messages
|
||||
- add optional anti-spoofing module
|
||||
- add node-match advanced example using worker thread pool
|
||||
- package updates
|
||||
- optimize image preprocessing
|
||||
- set webgpu optimized flags
|
||||
- major precision improvements to movenet and handtrack
|
||||
- image processing fixes
|
||||
- redesign body and hand caching and interpolation
|
||||
- demo default config cleanup
|
||||
- improve gaze and face angle visualizations in draw
|
||||
|
||||
### **release 2.3.1** 2021/10/06 mandic00@live.com
|
||||
|
||||
- release 2.3.1
|
||||
|
||||
### **2.3.1** 2021/10/06 mandic00@live.com
|
||||
|
||||
|
@ -27,7 +393,6 @@
|
|||
- fix backend order initialization
|
||||
- added docker notes
|
||||
- breaking change: new similarity and match methods
|
||||
- release candidate
|
||||
- tweaked default values
|
||||
- enable handtrack as default model
|
||||
- redesign face processing
|
||||
|
@ -57,9 +422,7 @@
|
|||
### **2.2.2** 2021/09/17 mandic00@live.com
|
||||
|
||||
- experimental webgl status monitoring
|
||||
|
||||
### **release: 2.2.1** 2021/09/16 mandic00@live.com
|
||||
|
||||
- major release
|
||||
|
||||
### **2.2.1** 2021/09/16 mandic00@live.com
|
||||
|
||||
|
@ -88,8 +451,6 @@
|
|||
- implement event emitters
|
||||
- fix iife loader
|
||||
- simplify dependencies
|
||||
- fix file permissions
|
||||
- remove old build server
|
||||
- change build process
|
||||
- add benchmark info
|
||||
- simplify canvas handling in nodejs
|
||||
|
@ -132,7 +493,6 @@
|
|||
|
||||
### **2.1.1** 2021/07/29 mandic00@live.com
|
||||
|
||||
- proposal #141
|
||||
- add note on manually disping tensor
|
||||
- modularize model loading
|
||||
|
||||
|
@ -146,9 +506,7 @@
|
|||
- reorganize demos
|
||||
- fix centernet box width & height
|
||||
- add body segmentation sample
|
||||
|
||||
### **release: 2.0.1** 2021/06/08 mandic00@live.com
|
||||
|
||||
- add release notes
|
||||
- release 2.0
|
||||
|
||||
### **2.0.1** 2021/06/08 mandic00@live.com
|
||||
|
@ -177,7 +535,6 @@
|
|||
- implemented human.next global interpolation method
|
||||
- finished draw buffering and smoothing and enabled by default
|
||||
- implemented service worker
|
||||
- quantized centernet
|
||||
- release candidate
|
||||
- added usage restrictions
|
||||
- quantize handdetect model
|
||||
|
@ -211,8 +568,6 @@
|
|||
### **1.9.1** 2021/05/21 mandic00@live.com
|
||||
|
||||
- caching improvements
|
||||
- sanitize server input
|
||||
- remove nanodet weights from default distribution
|
||||
- add experimental mb3-centernet object detection
|
||||
- individual model skipframes values still max high threshold for caching
|
||||
- config.videooptimized has been removed and config.cachesensitivity has been added instead
|
||||
|
@ -234,9 +589,7 @@
|
|||
|
||||
### **1.8.2** 2021/05/04 mandic00@live.com
|
||||
|
||||
|
||||
### **release 1.8 with major changes and tfjs 3.6.0** 2021/04/30 mandic00@live.com
|
||||
|
||||
- release 1.8 with major changes and tfjs 3.6.0
|
||||
|
||||
### **1.8.1** 2021/04/30 mandic00@live.com
|
||||
|
||||
|
@ -270,7 +623,6 @@
|
|||
- added filter.flip feature
|
||||
- added demo load image from http
|
||||
- mobile demo optimization and iris gestures
|
||||
- full test run
|
||||
- full rebuild
|
||||
- new look
|
||||
- added benchmarks
|
||||
|
@ -380,7 +732,6 @@
|
|||
|
||||
- add experimental nanodet object detection
|
||||
- full models signature
|
||||
- cleanup
|
||||
|
||||
### **1.1.7** 2021/03/16 mandic00@live.com
|
||||
|
||||
|
@ -426,7 +777,6 @@
|
|||
### **1.0.3** 2021/03/10 mandic00@live.com
|
||||
|
||||
- strong typing for public classes and hide private classes
|
||||
- re-added blazeface-front
|
||||
- enhanced age, gender, emotion detection
|
||||
- full rebuild
|
||||
|
||||
|
@ -435,151 +785,73 @@
|
|||
- remove blazeface-front, blazepose-upper, faceboxes
|
||||
- remove blazeface-front and faceboxes
|
||||
|
||||
### **release: 1.0.1** 2021/03/09 mandic00@live.com
|
||||
|
||||
|
||||
### **1.0.1** 2021/03/09 mandic00@live.com
|
||||
|
||||
- fix for face detector when mesh is disabled
|
||||
- optimize for npm
|
||||
|
||||
### **0.40.9** 2021/03/08 mandic00@live.com
|
||||
|
||||
- 0.40.9
|
||||
- fix performance issue when running with low confidence
|
||||
|
||||
### **0.40.8** 2021/03/08 mandic00@live.com
|
||||
|
||||
|
||||
### **0.40.7** 2021/03/06 mandic00@live.com
|
||||
|
||||
- 0.40.8
|
||||
- 0.40.7
|
||||
- implemented 3d face angle calculations
|
||||
|
||||
### **0.40.6** 2021/03/06 mandic00@live.com
|
||||
|
||||
- 0.40.6
|
||||
- add curve draw output
|
||||
|
||||
### **0.40.5** 2021/03/05 mandic00@live.com
|
||||
|
||||
- 0.40.5
|
||||
- fix human.draw
|
||||
|
||||
### **0.40.4** 2021/03/05 mandic00@live.com
|
||||
|
||||
- cleanup blazepose code
|
||||
- 0.40.4
|
||||
- fix demo
|
||||
|
||||
### **0.40.3** 2021/03/05 mandic00@live.com
|
||||
|
||||
|
||||
### **0.40.2** 2021/03/05 mandic00@live.com
|
||||
|
||||
- 0.40.3
|
||||
- 0.40.2
|
||||
- added blazepose-upper
|
||||
|
||||
### **0.40.1** 2021/03/04 mandic00@live.com
|
||||
|
||||
- 0.40.1
|
||||
- implement blazepose and update demos
|
||||
- add todo list
|
||||
|
||||
### **0.30.6** 2021/03/03 mandic00@live.com
|
||||
|
||||
- 0.30.6
|
||||
- fine tuning age and face models
|
||||
|
||||
### **0.30.5** 2021/03/02 mandic00@live.com
|
||||
|
||||
- 0.30.5
|
||||
- add debug logging flag
|
||||
|
||||
### **0.30.4** 2021/03/01 mandic00@live.com
|
||||
|
||||
- 0.30.4
|
||||
- added skipinitial flag
|
||||
|
||||
### **0.30.3** 2021/02/28 mandic00@live.com
|
||||
|
||||
- 0.30.3
|
||||
- typo
|
||||
|
||||
### **0.30.2** 2021/02/26 mandic00@live.com
|
||||
|
||||
- 0.30.2
|
||||
- rebuild
|
||||
- fix typo
|
||||
|
||||
### **0.30.1** 2021/02/25 mandic00@live.com
|
||||
|
||||
|
||||
### **0.20.11** 2021/02/24 mandic00@live.com
|
||||
|
||||
|
||||
### **0.20.10** 2021/02/22 mandic00@live.com
|
||||
|
||||
|
||||
### **0.20.9** 2021/02/21 mandic00@live.com
|
||||
|
||||
- remove extra items
|
||||
- simmilarity fix
|
||||
|
||||
### **0.20.8** 2021/02/21 mandic00@live.com
|
||||
|
||||
- embedding fix
|
||||
|
||||
### **0.20.7** 2021/02/21 mandic00@live.com
|
||||
|
||||
- 0.30.1
|
||||
- 0.20.11
|
||||
- 0.20.10
|
||||
- 0.20.9
|
||||
- 0.20.8
|
||||
- 0.20.7
|
||||
- build fix
|
||||
|
||||
### **0.20.6** 2021/02/21 mandic00@live.com
|
||||
|
||||
- 0.20.6
|
||||
- embedding fix
|
||||
|
||||
### **0.20.5** 2021/02/21 mandic00@live.com
|
||||
|
||||
- 0.20.5
|
||||
- fix imagefx and add dev builds
|
||||
|
||||
### **0.20.4** 2021/02/19 mandic00@live.com
|
||||
|
||||
- 0.20.4
|
||||
|
||||
### **0.20.3** 2021/02/17 mandic00@live.com
|
||||
|
||||
- 0.20.3
|
||||
- rebuild
|
||||
|
||||
### **0.20.2** 2021/02/13 mandic00@live.com
|
||||
|
||||
- 0.20.2
|
||||
- merge branch 'main' of https://github.com/vladmandic/human into main
|
||||
- create codeql-analysis.yml
|
||||
- create security.md
|
||||
- add templates
|
||||
|
||||
### **0.20.1** 2021/02/08 mandic00@live.com
|
||||
|
||||
- 0.20.1
|
||||
- menu fixes
|
||||
- convert to typescript
|
||||
|
||||
### **0.11.5** 2021/02/06 mandic00@live.com
|
||||
|
||||
- 0.11.5
|
||||
- added faceboxes alternative model
|
||||
|
||||
### **0.11.4** 2021/02/06 mandic00@live.com
|
||||
|
||||
|
||||
### **0.11.3** 2021/02/02 mandic00@live.com
|
||||
|
||||
|
||||
### **0.11.2** 2021/01/30 mandic00@live.com
|
||||
|
||||
- 0.11.4
|
||||
- 0.11.3
|
||||
- 0.11.2
|
||||
- added warmup for nodejs
|
||||
|
||||
### **update for tfjs 3.0.0** 2021/01/29 mandic00@live.com
|
||||
|
||||
|
||||
### **0.11.1** 2021/01/29 mandic00@live.com
|
||||
|
||||
|
||||
### **0.10.2** 2021/01/22 mandic00@live.com
|
||||
|
||||
|
||||
### **0.10.1** 2021/01/20 mandic00@live.com
|
||||
|
||||
- 0.11.1
|
||||
- 0.10.2
|
||||
- 0.10.1
|
||||
|
||||
### **0.9.26** 2021/01/18 mandic00@live.com
|
||||
|
||||
- fix face detection when mesh is disabled
|
||||
- added minification notes
|
||||
- version bump
|
||||
|
||||
### **0.9.25** 2021/01/13 mandic00@live.com
|
||||
|
@ -641,7 +913,6 @@
|
|||
|
||||
- conditional hand rotation
|
||||
- staggered skipframes
|
||||
- fix permissions
|
||||
|
||||
### **0.9.13** 2020/12/08 mandic00@live.com
|
||||
|
||||
|
@ -693,9 +964,7 @@
|
|||
### **0.9.3** 2020/11/16 mandic00@live.com
|
||||
|
||||
- switched to minified build
|
||||
|
||||
### **release: 1.2** 2020/11/15 mandic00@live.com
|
||||
|
||||
- web worker fixes
|
||||
- full rebuild
|
||||
|
||||
### **0.9.2** 2020/11/14 mandic00@live.com
|
||||
|
@ -752,7 +1021,6 @@
|
|||
- optimized model loader
|
||||
- merge branch 'main' of https://github.com/vladmandic/human into main
|
||||
- created wiki
|
||||
- delete bug_report.md
|
||||
- optimize font resizing
|
||||
- fix nms sync call
|
||||
|
||||
|
@ -776,7 +1044,6 @@
|
|||
|
||||
- optimized camera and mobile layout
|
||||
- fixed worker and filter compatibility
|
||||
- removed test code
|
||||
|
||||
### **0.7.2** 2020/11/04 mandic00@live.com
|
||||
|
||||
|
@ -853,7 +1120,6 @@
|
|||
### **0.4.8** 2020/10/28 mandic00@live.com
|
||||
|
||||
- revert "updated menu handler"
|
||||
- fix webpack compatibility issue
|
||||
|
||||
### **0.4.7** 2020/10/27 mandic00@live.com
|
||||
|
||||
|
@ -941,7 +1207,6 @@
|
|||
|
||||
### **0.2.8** 2020/10/13 mandic00@live.com
|
||||
|
||||
- added example image
|
||||
|
||||
### **0.2.7** 2020/10/13 mandic00@live.com
|
||||
|
||||
|
@ -957,7 +1222,6 @@
|
|||
|
||||
### **0.2.4** 2020/10/12 mandic00@live.com
|
||||
|
||||
- removed extra files
|
||||
|
||||
### **0.2.3** 2020/10/12 mandic00@live.com
|
||||
|
||||
|
@ -965,9 +1229,6 @@
|
|||
### **0.2.2** 2020/10/12 mandic00@live.com
|
||||
|
||||
|
||||
### **release: 1.0** 2020/10/12 mandic00@live.com
|
||||
|
||||
|
||||
### **0.2.1** 2020/10/12 mandic00@live.com
|
||||
|
||||
- added sample image
|
||||
|
|
295
README.md
|
@ -1,9 +1,9 @@
|
|||
[](https://github.com/sponsors/vladmandic)
|
||||

|
||||

|
||||

|
||||

|
||||

|
||||

|
||||
|
||||
# Human Library
|
||||
|
||||
|
@ -13,43 +13,99 @@
|
|||
|
||||
<br>
|
||||
|
||||
JavaScript module using TensorFlow/JS Machine Learning library
|
||||
## Highlights
|
||||
|
||||
- **Browser**:
|
||||
Compatible with both desktop and mobile platforms
|
||||
Compatible with *CPU*, *WebGL*, *WASM* backends
|
||||
Compatible with *WebWorker* execution
|
||||
- **NodeJS**:
|
||||
Compatible with both software *tfjs-node* and
|
||||
GPU accelerated backends *tfjs-node-gpu* using CUDA libraries
|
||||
- Compatible with most server-side and client-side environments and frameworks
|
||||
- Combines multiple machine learning models which can be switched on-demand depending on the use-case
|
||||
- Related models are executed in an attention pipeline to provide details when needed
|
||||
- Optimized input pre-processing that can enhance image quality of any type of inputs
|
||||
- Detection of frame changes to trigger only required models for improved performance
|
||||
- Intelligent temporal interpolation to provide smooth results regardless of processing performance
|
||||
- Simple unified API
|
||||
- Built-in Image, Video and WebCam handling
|
||||
|
||||
[*Jump to Quick Start*](#quick-start)
|
||||
|
||||
<br>
|
||||
|
||||
Check out [**Live Demo**](https://vladmandic.github.io/human/demo/index.html) app for processing of live WebCam video or static images
|
||||
## Compatibility
|
||||
|
||||
**Browser**:
|
||||
- Compatible with both desktop and mobile platforms
|
||||
- Compatible with *WebGPU*, *WebGL*, *WASM*, *CPU* backends
|
||||
- Compatible with *WebWorker* execution
|
||||
- Compatible with *WebView*
|
||||
- Primary platform: *Chromium*-based browsers
|
||||
- Secondary platform: *Firefox*, *Safari*
|
||||
|
||||
**NodeJS**:
|
||||
- Compatibile with *WASM* backend for executions on architectures where *tensorflow* binaries are not available
|
||||
- Compatible with *tfjs-node* using software execution via *tensorflow* shared libraries
|
||||
- Compatible with *tfjs-node* using GPU-accelerated execution via *tensorflow* shared libraries and nVidia CUDA
|
||||
- Supported versions are from **14.x** to **22.x**
|
||||
- NodeJS version **23.x** is not supported due to breaking changes and issues with `@tensorflow/tfjs`
|
||||
|
||||
<br>
|
||||
|
||||
## Releases
|
||||
- [Release Notes](https://github.com/vladmandic/human/releases)
|
||||
- [NPM Link](https://www.npmjs.com/package/@vladmandic/human)
|
||||
## Demos
|
||||
|
||||
*Check out [**Simple Live Demo**](https://vladmandic.github.io/human/demo/typescript/index.html) fully annotated app as a good start starting point ([html](https://github.com/vladmandic/human/blob/main/demo/typescript/index.html))([code](https://github.com/vladmandic/human/blob/main/demo/typescript/index.ts))*
|
||||
|
||||
*Check out [**Main Live Demo**](https://vladmandic.github.io/human/demo/index.html) app for advanced processing of of webcam, video stream or images static images with all possible tunable options*
|
||||
|
||||
- To start video detection, simply press *Play*
|
||||
- To process images, simply drag & drop in your Browser window
|
||||
- Note: For optimal performance, select only models you'd like to use
|
||||
- Note: If you have modern GPU, WebGL (default) backend is preferred, otherwise select WASM backend
|
||||
- Note: If you have modern GPU, *WebGL* (default) backend is preferred, otherwise select *WASM* backend
|
||||
|
||||
<br>
|
||||
|
||||
## Demos
|
||||
|
||||
- [**List of all Demo applications**](https://github.com/vladmandic/human/wiki/Demos)
|
||||
- [*Live:* **Main Application**](https://vladmandic.github.io/human/demo/index.html)
|
||||
- [*Live:* **Face Extraction, Description, Identification and Matching**](https://vladmandic.github.io/human/demo/facematch/index.html)
|
||||
- [*Live:* **Face Extraction and 3D Rendering**](https://vladmandic.github.io/human/demo/face3d/index.html)
|
||||
- [*Live:* **Multithreaded Detection Showcasing Maximum Performance**](https://vladmandic.github.io/human/demo/multithread/index.html)
|
||||
- [*Live:* **VR Model with Head, Face, Eye, Body and Hand tracking**](https://vladmandic.github.io/human-vrm/src/human-vrm.html)
|
||||
- [Examples galery](https://vladmandic.github.io/human/samples/samples.html)
|
||||
- [**Live Examples galery**](https://vladmandic.github.io/human/samples/index.html)
|
||||
|
||||
### Browser Demos
|
||||
|
||||
*All browser demos are self-contained without any external dependencies*
|
||||
|
||||
- **Full** [[*Live*]](https://vladmandic.github.io/human/demo/index.html) [[*Details*]](https://github.com/vladmandic/human/tree/main/demo): Main browser demo app that showcases all Human capabilities
|
||||
- **Simple** [[*Live*]](https://vladmandic.github.io/human/demo/typescript/index.html) [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/typescript): Simple demo in WebCam processing demo in TypeScript
|
||||
- **Embedded** [[*Live*]](https://vladmandic.github.io/human/demo/video/index.html) [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/video/index.html): Even simpler demo with tiny code embedded in HTML file
|
||||
- **Face Detect** [[*Live*]](https://vladmandic.github.io/human/demo/facedetect/index.html) [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/facedetect): Extract faces from images and processes details
|
||||
- **Face Match** [[*Live*]](https://vladmandic.github.io/human/demo/facematch/index.html) [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/facematch): Extract faces from images, calculates face descriptors and similarities and matches them to known database
|
||||
- **Face ID** [[*Live*]](https://vladmandic.github.io/human/demo/faceid/index.html) [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/faceid): Runs multiple checks to validate webcam input before performing face match to faces in IndexDB
|
||||
- **Multi-thread** [[*Live*]](https://vladmandic.github.io/human/demo/multithread/index.html) [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/multithread): Runs each Human module in a separate web worker for highest possible performance
|
||||
- **NextJS** [[*Live*]](https://vladmandic.github.io/human-next/out/index.html) [[*Details*]](https://github.com/vladmandic/human-next): Use Human with TypeScript, NextJS and ReactJS
|
||||
- **ElectronJS** [[*Details*]](https://github.com/vladmandic/human-electron): Use Human with TypeScript and ElectonJS to create standalone cross-platform apps
|
||||
- **3D Analysis with BabylonJS** [[*Live*]](https://vladmandic.github.io/human-motion/src/index.html) [[*Details*]](https://github.com/vladmandic/human-motion): 3D tracking and visualization of heead, face, eye, body and hand
|
||||
- **VRM Virtual Model Tracking with Three.JS** [[*Live*]](https://vladmandic.github.io/human-three-vrm/src/human-vrm.html) [[*Details*]](https://github.com/vladmandic/human-three-vrm): VR model with head, face, eye, body and hand tracking
|
||||
- **VRM Virtual Model Tracking with BabylonJS** [[*Live*]](https://vladmandic.github.io/human-bjs-vrm/src/index.html) [[*Details*]](https://github.com/vladmandic/human-bjs-vrm): VR model with head, face, eye, body and hand tracking
|
||||
|
||||
### NodeJS Demos
|
||||
|
||||
*NodeJS demos may require extra dependencies which are used to decode inputs*
|
||||
*See header of each demo to see its dependencies as they are not automatically installed with `Human`*
|
||||
|
||||
- **Main** [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/nodejs/node.js): Process images from files, folders or URLs using native methods
|
||||
- **Canvas** [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/nodejs/node-canvas.js): Process image from file or URL and draw results to a new image file using `node-canvas`
|
||||
- **Video** [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/nodejs/node-video.js): Processing of video input using `ffmpeg`
|
||||
- **WebCam** [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/nodejs/node-webcam.js): Processing of webcam screenshots using `fswebcam`
|
||||
- **Events** [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/nodejs/node-event.js): Showcases usage of `Human` eventing to get notifications on processing
|
||||
- **Similarity** [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/nodejs/node-similarity.js): Compares two input images for similarity of detected faces
|
||||
- **Face Match** [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/facematch/node-match.js): Parallel processing of face **match** in multiple child worker threads
|
||||
- **Multiple Workers** [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/multithread/node-multiprocess.js): Runs multiple parallel `human` by dispaching them to pool of pre-created worker processes
|
||||
- **Dynamic Load** [[*Details*]](https://github.com/vladmandic/human/tree/main/demo/nodejs): Loads Human dynamically with multiple different desired backends
|
||||
|
||||
## Project pages
|
||||
|
||||
- [**Code Repository**](https://github.com/vladmandic/human)
|
||||
- [**NPM Package**](https://www.npmjs.com/package/@vladmandic/human)
|
||||
- [**Issues Tracker**](https://github.com/vladmandic/human/issues)
|
||||
- [**TypeDoc API Specification**](https://vladmandic.github.io/human/typedoc/classes/Human.html)
|
||||
- [**TypeDoc API Specification - Main class**](https://vladmandic.github.io/human/typedoc/classes/Human.html)
|
||||
- [**TypeDoc API Specification - Full**](https://vladmandic.github.io/human/typedoc/)
|
||||
- [**Change Log**](https://github.com/vladmandic/human/blob/main/CHANGELOG.md)
|
||||
- [**Current To-do List**](https://github.com/vladmandic/human/blob/main/TODO.md)
|
||||
|
||||
|
@ -58,8 +114,11 @@ Check out [**Live Demo**](https://vladmandic.github.io/human/demo/index.html) ap
|
|||
- [**Home**](https://github.com/vladmandic/human/wiki)
|
||||
- [**Installation**](https://github.com/vladmandic/human/wiki/Install)
|
||||
- [**Usage & Functions**](https://github.com/vladmandic/human/wiki/Usage)
|
||||
- [**Configuration Details**](https://github.com/vladmandic/human/wiki/Configuration)
|
||||
- [**Output Details**](https://github.com/vladmandic/human/wiki/Outputs)
|
||||
- [**Configuration Details**](https://github.com/vladmandic/human/wiki/Config)
|
||||
- [**Result Details**](https://github.com/vladmandic/human/wiki/Result)
|
||||
- [**Customizing Draw Methods**](https://github.com/vladmandic/human/wiki/Draw)
|
||||
- [**Caching & Smoothing**](https://github.com/vladmandic/human/wiki/Caching)
|
||||
- [**Input Processing**](https://github.com/vladmandic/human/wiki/Image)
|
||||
- [**Face Recognition & Face Description**](https://github.com/vladmandic/human/wiki/Embedding)
|
||||
- [**Gesture Recognition**](https://github.com/vladmandic/human/wiki/Gesture)
|
||||
- [**Common Issues**](https://github.com/vladmandic/human/wiki/Issues)
|
||||
|
@ -89,27 +148,24 @@ Check out [**Live Demo**](https://vladmandic.github.io/human/demo/index.html) ap
|
|||
|
||||
<hr><br>
|
||||
|
||||
## Examples
|
||||
## App Examples
|
||||
|
||||
Visit [Examples galery](https://vladmandic.github.io/human/samples/samples.html) for more examples
|
||||
<https://vladmandic.github.io/human/samples/samples.html>
|
||||
|
||||

|
||||
Visit [Examples gallery](https://vladmandic.github.io/human/samples/index.html) for more examples
|
||||
[<img src="assets/samples.jpg" width="640"/>](assets/samples.jpg)
|
||||
|
||||
<br>
|
||||
|
||||
## Options
|
||||
|
||||
All options as presented in the demo application...
|
||||
> [demo/index.html](demo/index.html)
|
||||
|
||||

|
||||
[demo/index.html](demo/index.html)
|
||||
[<img src="assets/screenshot-menu.png"/>](assets/screenshot-menu.png)
|
||||
|
||||
<br>
|
||||
|
||||
**Results Browser:**
|
||||
[ *Demo -> Display -> Show Results* ]<br>
|
||||

|
||||
[<img src="assets/screenshot-results.png"/>](assets/screenshot-results.png)
|
||||
|
||||
<br>
|
||||
|
||||
|
@ -121,26 +177,47 @@ sorts them by similarity to selected face
|
|||
and optionally matches detected face with database of known people to guess their names
|
||||
> [demo/facematch](demo/facematch/index.html)
|
||||
|
||||

|
||||
[<img src="assets/screenshot-facematch.jpg" width="640"/>](assets/screenshot-facematch.jpg)
|
||||
|
||||
2. **Face Detect:**
|
||||
Extracts all detect faces from loaded images on-demand and highlights face details on a selected face
|
||||
> [demo/facedetect](demo/facedetect/index.html)
|
||||
|
||||
[<img src="assets/screenshot-facedetect.jpg" width="640"/>](assets/screenshot-facedetect.jpg)
|
||||
|
||||
3. **Face ID:**
|
||||
Performs validation check on a webcam input to detect a real face and matches it to known faces stored in database
|
||||
> [demo/faceid](demo/faceid/index.html)
|
||||
|
||||
[<img src="assets/screenshot-faceid.jpg" width="640"/>](assets/screenshot-faceid.jpg)
|
||||
|
||||
<br>
|
||||
|
||||
2. **Face3D OpenGL Rendering:**
|
||||
> [demo/face3d](demo/face3d/index.html)
|
||||
4. **3D Rendering:**
|
||||
> [human-motion](https://github.com/vladmandic/human-motion)
|
||||
|
||||

|
||||
[<img src="https://github.com/vladmandic/human-motion/raw/main/assets/screenshot-face.jpg" width="640"/>](https://github.com/vladmandic/human-motion/raw/main/assets/screenshot-face.jpg)
|
||||
[<img src="https://github.com/vladmandic/human-motion/raw/main/assets/screenshot-body.jpg" width="640"/>](https://github.com/vladmandic/human-motion/raw/main/assets/screenshot-body.jpg)
|
||||
[<img src="https://github.com/vladmandic/human-motion/raw/main/assets/screenshot-hand.jpg" width="640"/>](https://github.com/vladmandic/human-motion/raw/main/assets/screenshot-hand.jpg)
|
||||
|
||||
<br>
|
||||
|
||||
3. **VR Model Tracking:**
|
||||

|
||||
5. **VR Model Tracking:**
|
||||
> [human-three-vrm](https://github.com/vladmandic/human-three-vrm)
|
||||
> [human-bjs-vrm](https://github.com/vladmandic/human-bjs-vrm)
|
||||
|
||||
[<img src="https://github.com/vladmandic/human-three-vrm/raw/main/assets/human-vrm-screenshot.jpg" width="640"/>](https://github.com/vladmandic/human-three-vrm/raw/main/assets/human-vrm-screenshot.jpg)
|
||||
|
||||
|
||||
6. **Human as OS native application:**
|
||||
> [human-electron](https://github.com/vladmandic/human-electron)
|
||||
|
||||
<br>
|
||||
|
||||
**468-Point Face Mesh Defails:**
|
||||
(view in full resolution to see keypoints)
|
||||
|
||||

|
||||
[<img src="assets/facemesh.png" width="400"/>](assets/facemesh.png)
|
||||
|
||||
<br><hr><br>
|
||||
|
||||
|
@ -150,44 +227,25 @@ Simply load `Human` (*IIFE version*) directly from a cloud CDN in your HTML file
|
|||
(pick one: `jsdelirv`, `unpkg` or `cdnjs`)
|
||||
|
||||
```html
|
||||
<!DOCTYPE HTML>
|
||||
<script src="https://cdn.jsdelivr.net/npm/@vladmandic/human/dist/human.js"></script>
|
||||
<script src="https://unpkg.dev/@vladmandic/human/dist/human.js"></script>
|
||||
<script src="https://cdnjs.cloudflare.com/ajax/libs/human/2.1.5/human.js"></script>
|
||||
<script src="https://cdnjs.cloudflare.com/ajax/libs/human/3.0.0/human.js"></script>
|
||||
```
|
||||
|
||||
For details, including how to use `Browser ESM` version or `NodeJS` version of `Human`, see [**Installation**](https://github.com/vladmandic/human/wiki/Install)
|
||||
|
||||
<br>
|
||||
|
||||
## Inputs
|
||||
## Code Examples
|
||||
|
||||
`Human` library can process all known input types:
|
||||
|
||||
- `Image`, `ImageData`, `ImageBitmap`, `Canvas`, `OffscreenCanvas`, `Tensor`,
|
||||
- `HTMLImageElement`, `HTMLCanvasElement`, `HTMLVideoElement`, `HTMLMediaElement`
|
||||
|
||||
Additionally, `HTMLVideoElement`, `HTMLMediaElement` can be a standard `<video>` tag that links to:
|
||||
|
||||
- WebCam on user's system
|
||||
- Any supported video type
|
||||
For example: `.mp4`, `.avi`, etc.
|
||||
- Additional video types supported via *HTML5 Media Source Extensions*
|
||||
Live streaming examples:
|
||||
- **HLS** (*HTTP Live Streaming*) using `hls.js`
|
||||
- **DASH** (Dynamic Adaptive Streaming over HTTP) using `dash.js`
|
||||
- **WebRTC** media track using built-in support
|
||||
|
||||
<br>
|
||||
|
||||
## Example
|
||||
|
||||
Example simple app that uses Human to process video input and
|
||||
Simple app that uses Human to process video input and
|
||||
draw output on screen using internal draw helper functions
|
||||
|
||||
```js
|
||||
// create instance of human with simple configuration using default values
|
||||
const config = { backend: 'webgl' };
|
||||
const human = new Human(config);
|
||||
const human = new Human.Human(config);
|
||||
// select input HTMLVideoElement and output HTMLCanvasElement from page
|
||||
const inputVideo = document.getElementById('video-id');
|
||||
const outputCanvas = document.getElementById('canvas-id');
|
||||
|
@ -206,6 +264,7 @@ function detectVideo() {
|
|||
human.draw.gesture(outputCanvas, result.gesture);
|
||||
// and loop immediate to the next frame
|
||||
requestAnimationFrame(detectVideo);
|
||||
return result;
|
||||
});
|
||||
}
|
||||
|
||||
|
@ -245,7 +304,7 @@ human.events.addEventListener('detect', () => { // event gets triggered when det
|
|||
|
||||
function detectVideo() {
|
||||
human.detect(inputVideo) // run detection
|
||||
.then(() => requestAnimationFrame(detectVideo)); // upon detect complete start processing of the next frame
|
||||
.then(() => requestAnimationFrame(detectVideo)); // upon detect complete start processing of the next frame
|
||||
}
|
||||
|
||||
detectVideo(); // start loop
|
||||
|
@ -266,7 +325,7 @@ async function detectVideo() {
|
|||
|
||||
async function drawVideo() {
|
||||
if (result) { // check if result is available
|
||||
const interpolated = human.next(result); // calculate next interpolated frame
|
||||
const interpolated = human.next(result); // get smoothened result using last-known results
|
||||
human.draw.all(outputCanvas, interpolated); // draw the frame
|
||||
}
|
||||
requestAnimationFrame(drawVideo); // run draw loop
|
||||
|
@ -276,27 +335,108 @@ detectVideo(); // start detection loop
|
|||
drawVideo(); // start draw loop
|
||||
```
|
||||
|
||||
or same, but using built-in full video processing instead of running manual frame-by-frame loop:
|
||||
|
||||
```js
|
||||
const human = new Human(); // create instance of Human
|
||||
const inputVideo = document.getElementById('video-id');
|
||||
const outputCanvas = document.getElementById('canvas-id');
|
||||
|
||||
async function drawResults() {
|
||||
const interpolated = human.next(); // get smoothened result using last-known results
|
||||
human.draw.all(outputCanvas, interpolated); // draw the frame
|
||||
requestAnimationFrame(drawResults); // run draw loop
|
||||
}
|
||||
|
||||
human.video(inputVideo); // start detection loop which continously updates results
|
||||
drawResults(); // start draw loop
|
||||
```
|
||||
|
||||
or using built-in webcam helper methods that take care of video handling completely:
|
||||
|
||||
```js
|
||||
const human = new Human(); // create instance of Human
|
||||
const outputCanvas = document.getElementById('canvas-id');
|
||||
|
||||
async function drawResults() {
|
||||
const interpolated = human.next(); // get smoothened result using last-known results
|
||||
human.draw.canvas(outputCanvas, human.webcam.element); // draw current webcam frame
|
||||
human.draw.all(outputCanvas, interpolated); // draw the frame detectgion results
|
||||
requestAnimationFrame(drawResults); // run draw loop
|
||||
}
|
||||
|
||||
await human.webcam.start({ crop: true });
|
||||
human.video(human.webcam.element); // start detection loop which continously updates results
|
||||
drawResults(); // start draw loop
|
||||
```
|
||||
|
||||
And for even better results, you can run detection in a separate web worker thread
|
||||
|
||||
<br><hr><br>
|
||||
|
||||
## Inputs
|
||||
|
||||
`Human` library can process all known input types:
|
||||
|
||||
- `Image`, `ImageData`, `ImageBitmap`, `Canvas`, `OffscreenCanvas`, `Tensor`,
|
||||
- `HTMLImageElement`, `HTMLCanvasElement`, `HTMLVideoElement`, `HTMLMediaElement`
|
||||
|
||||
Additionally, `HTMLVideoElement`, `HTMLMediaElement` can be a standard `<video>` tag that links to:
|
||||
|
||||
- WebCam on user's system
|
||||
- Any supported video type
|
||||
e.g. `.mp4`, `.avi`, etc.
|
||||
- Additional video types supported via *HTML5 Media Source Extensions*
|
||||
e.g.: **HLS** (*HTTP Live Streaming*) using `hls.js` or **DASH** (*Dynamic Adaptive Streaming over HTTP*) using `dash.js`
|
||||
- **WebRTC** media track using built-in support
|
||||
|
||||
<br><hr><br>
|
||||
|
||||
## Detailed Usage
|
||||
|
||||
- [**Wiki Home**](https://github.com/vladmandic/human/wiki)
|
||||
- [**List of all available methods, properies and namespaces**](https://github.com/vladmandic/human/wiki/Usage)
|
||||
- [**TypeDoc API Specification - Main class**](https://vladmandic.github.io/human/typedoc/classes/Human.html)
|
||||
- [**TypeDoc API Specification - Full**](https://vladmandic.github.io/human/typedoc/)
|
||||
|
||||

|
||||
|
||||
<br><hr><br>
|
||||
|
||||
## TypeDefs
|
||||
|
||||
`Human` is written using TypeScript strong typing and ships with full **TypeDefs** for all classes defined by the library bundled in `types/human.d.ts` and enabled by default
|
||||
|
||||
*Note*: This does not include embedded `tfjs`
|
||||
If you want to use embedded `tfjs` inside `Human` (`human.tf` namespace) and still full **typedefs**, add this code:
|
||||
|
||||
> import type * as tfjs from '@vladmandic/human/dist/tfjs.esm';
|
||||
> const tf = human.tf as typeof tfjs;
|
||||
|
||||
This is not enabled by default as `Human` does not ship with full **TFJS TypeDefs** due to size considerations
|
||||
Enabling `tfjs` TypeDefs as above creates additional project (dev-only as only types are required) dependencies as defined in `@vladmandic/human/dist/tfjs.esm.d.ts`:
|
||||
|
||||
> @tensorflow/tfjs-core, @tensorflow/tfjs-converter, @tensorflow/tfjs-backend-wasm, @tensorflow/tfjs-backend-webgl
|
||||
|
||||
|
||||
<br><hr><br>
|
||||
|
||||
## Default models
|
||||
|
||||
Default models in Human library are:
|
||||
|
||||
- **Face Detection**: MediaPipe BlazeFace - Back variation
|
||||
- **Face Mesh**: MediaPipe FaceMesh
|
||||
- **Face Iris Analysis**: MediaPipe Iris
|
||||
- **Face Description**: HSE FaceRes
|
||||
- **Emotion Detection**: Oarriaga Emotion
|
||||
- **Body Analysis**: MoveNet - Lightning variation
|
||||
- **Hand Analysis**: MediaPipe Hands
|
||||
- **Body Segmentation**: Google Selfie
|
||||
- **Object Detection**: MB3 CenterNet
|
||||
- **Body Segmentation**: Google Selfie
|
||||
- **Face Detection**: *MediaPipe BlazeFace Back variation*
|
||||
- **Face Mesh**: *MediaPipe FaceMesh*
|
||||
- **Face Iris Analysis**: *MediaPipe Iris*
|
||||
- **Face Description**: *HSE FaceRes*
|
||||
- **Emotion Detection**: *Oarriaga Emotion*
|
||||
- **Body Analysis**: *MoveNet Lightning variation*
|
||||
- **Hand Analysis**: *HandTrack & MediaPipe HandLandmarks*
|
||||
- **Body Segmentation**: *Google Selfie*
|
||||
- **Object Detection**: *CenterNet with MobileNet v3*
|
||||
|
||||
Note that alternative models are provided and can be enabled via configuration
|
||||
For example, `PoseNet` model can be switched for `BlazePose`, `EfficientPose` or `MoveNet` model depending on the use case
|
||||
For example, body pose detection by default uses *MoveNet Lightning*, but can be switched to *MultiNet Thunder* for higher precision or *Multinet MultiPose* for multi-person detection or even *PoseNet*, *BlazePose* or *EfficientPose* depending on the use case
|
||||
|
||||
For more info, see [**Configuration Details**](https://github.com/vladmandic/human/wiki/Configuration) and [**List of Models**](https://github.com/vladmandic/human/wiki/Models)
|
||||
|
||||
|
@ -308,9 +448,9 @@ For more info, see [**Configuration Details**](https://github.com/vladmandic/hum
|
|||
|
||||
<br><hr><br>
|
||||
|
||||
`Human` library is written in `TypeScript` [4.4](https://www.typescriptlang.org/docs/handbook/intro.html)
|
||||
Conforming to `JavaScript` [ECMAScript version 2020](https://www.ecma-international.org/ecma-262/11.0/index.html) standard
|
||||
Build target is `JavaScript` [EMCAScript version 2018](https://262.ecma-international.org/9.0/)
|
||||
`Human` library is written in [TypeScript](https://www.typescriptlang.org/docs/handbook/intro.html) **5.1** using [TensorFlow/JS](https://www.tensorflow.org/js/) **4.10** and conforming to latest `JavaScript` [ECMAScript version 2022](https://262.ecma-international.org/) standard
|
||||
|
||||
Build target for distributables is `JavaScript` [EMCAScript version 2018](https://262.ecma-international.org/9.0/)
|
||||
|
||||
<br>
|
||||
|
||||
|
@ -319,6 +459,7 @@ and [**API Specification**](https://vladmandic.github.io/human/typedoc/classes/H
|
|||
|
||||
<br>
|
||||
|
||||
[](https://github.com/sponsors/vladmandic)
|
||||

|
||||

|
||||

|
||||
|
|
99
TODO.md
|
@ -1,81 +1,38 @@
|
|||
# To-Do list for Human library
|
||||
|
||||
## Work in Progress
|
||||
## Work-in-Progress
|
||||
|
||||
<br>
|
||||
<hr><br>
|
||||
|
||||
### Models
|
||||
## Known Issues & Limitations
|
||||
|
||||
- Implement BlazePose end-to-end
|
||||
### Face with Attention
|
||||
|
||||
<br>
|
||||
|
||||
### Backends
|
||||
|
||||
#### WebGL
|
||||
- Optimize shader packing for WebGL backend:
|
||||
<https://github.com/tensorflow/tfjs/issues/5343>
|
||||
|
||||
#### WASM
|
||||
|
||||
- Backend WASM incorrect handling of `int32` tensors
|
||||
<https://github.com/tensorflow/tfjs/issues/5641>
|
||||
|
||||
#### WebGPU
|
||||
|
||||
Implementation of WebGPU backend
|
||||
Experimental support only until support is officially added in Chromium
|
||||
|
||||
- Evaluate WGSL vs GLSL for WebGPU
|
||||
- Backend WebGPU missing kernel ops
|
||||
<https://github.com/tensorflow/tfjs/issues/5496>
|
||||
- Backend WebGPU incompatible with web workers
|
||||
<https://github.com/tensorflow/tfjs/issues/5467>
|
||||
- Backend WebGPU incompatible with sync read calls
|
||||
<https://github.com/tensorflow/tfjs/issues/5468>
|
||||
|
||||
|
||||
<br>
|
||||
|
||||
### Exploring
|
||||
|
||||
- Optical Flow: <https://docs.opencv.org/3.3.1/db/d7f/tutorial_js_lucas_kanade.html>
|
||||
- TFLite Models: <https://js.tensorflow.org/api_tflite/0.0.1-alpha.4/>
|
||||
|
||||
<br><hr><br>
|
||||
|
||||
## Known Issues
|
||||
|
||||
<br>
|
||||
|
||||
### Face Detection
|
||||
|
||||
Enhanced rotation correction for face detection is not working in NodeJS due to missing kernel op in TFJS
|
||||
Feature is automatically disabled in NodeJS without user impact
|
||||
|
||||
- Backend NodeJS missing kernel op `RotateWithOffset`
|
||||
<https://github.com/tensorflow/tfjs/issues/5473>
|
||||
|
||||
### Hand Detection
|
||||
|
||||
Enhanced rotation correction for hand detection is not working in NodeJS due to missing kernel op in TFJS
|
||||
Feature is automatically disabled in NodeJS without user impact
|
||||
|
||||
- Backend NodeJS missing kernel op `RotateWithOffset`
|
||||
<https://github.com/tensorflow/tfjs/issues/5473>
|
||||
|
||||
### Body Detection
|
||||
|
||||
MoveNet MultiPose model does not work with WASM backend due to missing F32 broadcast implementation
|
||||
|
||||
- Backend WASM missing F32 broadcat implementation
|
||||
<https://github.com/tensorflow/tfjs/issues/5516>
|
||||
`FaceMesh-Attention` is not supported when using `WASM` backend due to missing kernel op in **TFJS**
|
||||
No issues with default model `FaceMesh`
|
||||
|
||||
### Object Detection
|
||||
|
||||
Object detection using CenterNet or NanoDet models is not working when using WASM backend due to missing kernel ops in TFJS
|
||||
`NanoDet` model is not supported when using `WASM` backend due to missing kernel op in **TFJS**
|
||||
No issues with default model `MB3-CenterNet`
|
||||
|
||||
- Backend WASM missing kernel op `Mod`
|
||||
<https://github.com/tensorflow/tfjs/issues/5110>
|
||||
- Backend WASM missing kernel op `SparseToDense`
|
||||
<https://github.com/tensorflow/tfjs/issues/4824>
|
||||
## Body Detection using MoveNet-MultiPose
|
||||
|
||||
Model does not return valid detection scores (all other functionality is not impacted)
|
||||
|
||||
### Firefox
|
||||
|
||||
Running in **web workers** requires `OffscreenCanvas` which is still disabled by default in **Firefox**
|
||||
Enable via `about:config` -> `gfx.offscreencanvas.enabled`
|
||||
[Details](https://developer.mozilla.org/en-US/docs/Web/API/OffscreenCanvas#browser_compatibility)
|
||||
|
||||
### Safari
|
||||
|
||||
No support for running in **web workers** as Safari still does not support `OffscreenCanvas`
|
||||
[Details](https://developer.mozilla.org/en-US/docs/Web/API/OffscreenCanvas#browser_compatibility)
|
||||
|
||||
## React-Native
|
||||
|
||||
`Human` support for **React-Native** is best-effort, but not part of the main development focus
|
||||
|
||||
<hr><br>
|
||||
|
|
Before Width: | Height: | Size: 1.1 MiB After Width: | Height: | Size: 595 KiB |
Before Width: | Height: | Size: 297 KiB After Width: | Height: | Size: 261 KiB |
Before Width: | Height: | Size: 55 KiB |
After Width: | Height: | Size: 70 KiB |
After Width: | Height: | Size: 47 KiB |
Before Width: | Height: | Size: 366 KiB After Width: | Height: | Size: 321 KiB |
Before Width: | Height: | Size: 41 KiB After Width: | Height: | Size: 22 KiB |
Before Width: | Height: | Size: 36 KiB After Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 62 KiB |
After Width: | Height: | Size: 38 KiB |
Before Width: | Height: | Size: 47 KiB After Width: | Height: | Size: 42 KiB |
|
@ -0,0 +1,153 @@
|
|||
const fs = require('fs');
|
||||
const path = require('path');
|
||||
const log = require('@vladmandic/pilogger'); // eslint-disable-line node/no-unpublished-require
|
||||
const Build = require('@vladmandic/build').Build; // eslint-disable-line node/no-unpublished-require
|
||||
const APIExtractor = require('@microsoft/api-extractor'); // eslint-disable-line node/no-unpublished-require
|
||||
const tf = require('@tensorflow/tfjs-node'); // eslint-disable-line node/no-unpublished-require
|
||||
const packageJSON = require('./package.json');
|
||||
|
||||
const logFile = 'test/build.log';
|
||||
const modelsOut = 'models/models.json';
|
||||
const modelsFolders = [
|
||||
'./models',
|
||||
'../human-models/models',
|
||||
'../blazepose/model/',
|
||||
'../anti-spoofing/model',
|
||||
'../efficientpose/models',
|
||||
'../insightface/models',
|
||||
'../movenet/models',
|
||||
'../nanodet/models',
|
||||
];
|
||||
|
||||
const apiExtractorIgnoreList = [ // eslint-disable-line no-unused-vars
|
||||
'ae-missing-release-tag',
|
||||
'tsdoc-param-tag-missing-hyphen',
|
||||
'tsdoc-escape-right-brace',
|
||||
'tsdoc-undefined-tag',
|
||||
'tsdoc-escape-greater-than',
|
||||
'ae-unresolved-link',
|
||||
'ae-forgotten-export',
|
||||
'tsdoc-malformed-inline-tag',
|
||||
'tsdoc-unnecessary-backslash',
|
||||
];
|
||||
|
||||
const regEx = [
|
||||
{ search: 'types="@webgpu/types/dist"', replace: 'path="../src/types/webgpu.d.ts"' },
|
||||
{ search: 'types="offscreencanvas"', replace: 'path="../src/types/offscreencanvas.d.ts"' },
|
||||
];
|
||||
|
||||
function copyFile(src, dst) {
|
||||
if (!fs.existsSync(src)) {
|
||||
log.warn('Copy:', { input: src, output: dst });
|
||||
return;
|
||||
}
|
||||
log.state('Copy:', { input: src, output: dst });
|
||||
const buffer = fs.readFileSync(src);
|
||||
fs.writeFileSync(dst, buffer);
|
||||
}
|
||||
|
||||
function writeFile(str, dst) {
|
||||
log.state('Write:', { output: dst });
|
||||
fs.writeFileSync(dst, str);
|
||||
}
|
||||
|
||||
function regExFile(src, entries) {
|
||||
if (!fs.existsSync(src)) {
|
||||
log.warn('Filter:', { src });
|
||||
return;
|
||||
}
|
||||
log.state('Filter:', { input: src });
|
||||
for (const entry of entries) {
|
||||
const buffer = fs.readFileSync(src, 'UTF-8');
|
||||
const lines = buffer.split(/\r?\n/);
|
||||
const out = [];
|
||||
for (const line of lines) {
|
||||
if (line.includes(entry.search)) out.push(line.replace(entry.search, entry.replace));
|
||||
else out.push(line);
|
||||
}
|
||||
fs.writeFileSync(src, out.join('\n'));
|
||||
}
|
||||
}
|
||||
|
||||
async function analyzeModels() {
|
||||
log.info('Analyze models:', { folders: modelsFolders.length, result: modelsOut });
|
||||
let totalSize = 0;
|
||||
const models = {};
|
||||
const allModels = [];
|
||||
for (const folder of modelsFolders) {
|
||||
try {
|
||||
if (!fs.existsSync(folder)) continue;
|
||||
const stat = fs.statSync(folder);
|
||||
if (!stat.isDirectory) continue;
|
||||
const dir = fs.readdirSync(folder);
|
||||
const found = dir.map((f) => `file://${folder}/${f}`).filter((f) => f.endsWith('json'));
|
||||
log.state('Models', { folder, models: found.length });
|
||||
allModels.push(...found);
|
||||
} catch {
|
||||
// log.warn('Cannot enumerate:', modelFolder);
|
||||
}
|
||||
}
|
||||
for (const url of allModels) {
|
||||
// if (!f.endsWith('.json')) continue;
|
||||
// const url = `file://${modelsDir}/${f}`;
|
||||
const model = new tf.GraphModel(url); // create model prototype and decide if load from cache or from original modelurl
|
||||
model.findIOHandler();
|
||||
const artifacts = await model.handler.load();
|
||||
const size = artifacts?.weightData?.byteLength || 0;
|
||||
totalSize += size;
|
||||
const name = path.basename(url).replace('.json', '');
|
||||
if (!models[name]) models[name] = size;
|
||||
}
|
||||
const json = JSON.stringify(models, null, 2);
|
||||
fs.writeFileSync(modelsOut, json);
|
||||
log.state('Models:', { count: Object.keys(models).length, totalSize });
|
||||
}
|
||||
|
||||
async function main() {
|
||||
log.logFile(logFile);
|
||||
log.data('Build', { name: packageJSON.name, version: packageJSON.version });
|
||||
|
||||
// run production build
|
||||
const build = new Build();
|
||||
await build.run('production');
|
||||
|
||||
// patch tfjs typedefs
|
||||
copyFile('node_modules/@vladmandic/tfjs/types/tfjs-core.d.ts', 'types/tfjs-core.d.ts');
|
||||
copyFile('node_modules/@vladmandic/tfjs/types/tfjs.d.ts', 'types/tfjs.esm.d.ts');
|
||||
copyFile('src/types/tsconfig.json', 'types/tsconfig.json');
|
||||
copyFile('src/types/eslint.json', 'types/.eslintrc.json');
|
||||
copyFile('src/types/tfjs.esm.d.ts', 'dist/tfjs.esm.d.ts');
|
||||
regExFile('types/tfjs-core.d.ts', regEx);
|
||||
|
||||
// run api-extractor to create typedef rollup
|
||||
const extractorConfig = APIExtractor.ExtractorConfig.loadFileAndPrepare('.api-extractor.json');
|
||||
try {
|
||||
const extractorResult = APIExtractor.Extractor.invoke(extractorConfig, {
|
||||
localBuild: true,
|
||||
showVerboseMessages: false,
|
||||
messageCallback: (msg) => {
|
||||
msg.handled = true;
|
||||
if (msg.logLevel === 'none' || msg.logLevel === 'verbose' || msg.logLevel === 'info') return;
|
||||
if (msg.sourceFilePath?.includes('/node_modules/')) return;
|
||||
// if (apiExtractorIgnoreList.reduce((prev, curr) => prev || msg.messageId.includes(curr), false)) return; // those are external issues outside of human control
|
||||
log.data('API', { level: msg.logLevel, category: msg.category, id: msg.messageId, file: msg.sourceFilePath, line: msg.sourceFileLine, text: msg.text });
|
||||
},
|
||||
});
|
||||
log.state('API-Extractor:', { succeeeded: extractorResult.succeeded, errors: extractorResult.errorCount, warnings: extractorResult.warningCount });
|
||||
} catch (err) {
|
||||
log.error('API-Extractor:', err);
|
||||
}
|
||||
regExFile('types/human.d.ts', regEx);
|
||||
writeFile('export * from \'../types/human\';', 'dist/human.esm-nobundle.d.ts');
|
||||
writeFile('export * from \'../types/human\';', 'dist/human.esm.d.ts');
|
||||
writeFile('export * from \'../types/human\';', 'dist/human.d.ts');
|
||||
writeFile('export * from \'../types/human\';', 'dist/human.node-gpu.d.ts');
|
||||
writeFile('export * from \'../types/human\';', 'dist/human.node.d.ts');
|
||||
writeFile('export * from \'../types/human\';', 'dist/human.node-wasm.d.ts');
|
||||
|
||||
// generate model signature
|
||||
await analyzeModels();
|
||||
log.info('Human Build complete...', { logFile });
|
||||
}
|
||||
|
||||
main();
|
|
@ -1,5 +1,67 @@
|
|||
# Human Library: Demos
|
||||
|
||||
For details see Wiki:
|
||||
For details on other demos see Wiki: [**Demos**](https://github.com/vladmandic/human/wiki/Demos)
|
||||
|
||||
- [**Demos**](https://github.com/vladmandic/human/wiki/Demos)
|
||||
## Main Demo
|
||||
|
||||
|
||||
`index.html`: Full demo using `Human` ESM module running in Browsers,
|
||||
|
||||
Includes:
|
||||
|
||||
- Selectable inputs:
|
||||
- Sample images
|
||||
- Image via drag & drop
|
||||
- Image via URL param
|
||||
- WebCam input
|
||||
- Video stream
|
||||
- WebRTC stream
|
||||
- Selectable active `Human` modules
|
||||
- With interactive module params
|
||||
- Interactive `Human` image filters
|
||||
- Selectable interactive `results` browser
|
||||
- Selectable `backend`
|
||||
- Multiple execution methods:
|
||||
- Sync vs Async
|
||||
- in main thread or web worker
|
||||
- live on git pages, on user-hosted web server or via included [**micro http2 server**](https://github.com/vladmandic/human/wiki/Development-Server)
|
||||
|
||||
### Demo Options
|
||||
|
||||
- General `Human` library options
|
||||
in `index.js:userConfig`
|
||||
- General `Human` `draw` options
|
||||
in `index.js:drawOptions`
|
||||
- Demo PWA options
|
||||
in `index.js:pwa`
|
||||
- Demo specific options
|
||||
in `index.js:ui`
|
||||
|
||||
```js
|
||||
const ui = {
|
||||
console: true, // log messages to browser console
|
||||
useWorker: true, // use web workers for processing
|
||||
buffered: true, // should output be buffered between frames
|
||||
interpolated: true, // should output be interpolated for smoothness between frames
|
||||
results: false, // show results tree
|
||||
useWebRTC: false, // use webrtc as camera source instead of local webcam
|
||||
};
|
||||
```
|
||||
|
||||
Demo implements several ways to use `Human` library,
|
||||
|
||||
### URL Params
|
||||
|
||||
Demo app can use URL parameters to override configuration values
|
||||
For example:
|
||||
|
||||
- Force using `WASM` as backend: <https://vladmandic.github.io/human/demo/index.html?backend=wasm>
|
||||
- Enable `WebWorkers`: <https://vladmandic.github.io/human/demo/index.html?worker=true>
|
||||
- Skip pre-loading and warming up: <https://vladmandic.github.io/human/demo/index.html?preload=false&warmup=false>
|
||||
|
||||
### WebRTC
|
||||
|
||||
Note that WebRTC connection requires a WebRTC server that provides a compatible media track such as H.264 video track
|
||||
For such a WebRTC server implementation see <https://github.com/vladmandic/stream-rtsp> project
|
||||
that implements a connection to IP Security camera using RTSP protocol and transcodes it to WebRTC
|
||||
ready to be consumed by a client such as `Human`
|
||||
|
|
|
@ -1,30 +0,0 @@
|
|||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<title>Human</title>
|
||||
<meta name="viewport" content="width=device-width" id="viewport">
|
||||
<meta name="keywords" content="Human">
|
||||
<meta name="application-name" content="Human">
|
||||
<meta name="description" content="Human: 3D Face Detection, Body Pose, Hand & Finger Tracking, Iris Tracking, Age & Gender Prediction, Emotion Prediction & Gesture Recognition; Author: Vladimir Mandic <https://github.com/vladmandic>">
|
||||
<meta name="msapplication-tooltip" content="Human: 3D Face Detection, Body Pose, Hand & Finger Tracking, Iris Tracking, Age & Gender Prediction, Emotion Prediction & Gesture Recognition; Author: Vladimir Mandic <https://github.com/vladmandic>">
|
||||
<meta name="theme-color" content="#000000">
|
||||
<link rel="manifest" href="../manifest.webmanifest">
|
||||
<link rel="shortcut icon" href="../../favicon.ico" type="image/x-icon">
|
||||
<link rel="apple-touch-icon" href="../../assets/icon.png">
|
||||
<script type="module" src="browser.js"></script>
|
||||
<style>
|
||||
@font-face { font-family: 'Lato'; font-display: swap; font-style: normal; font-weight: 100; src: local('Lato'), url('../../assets/lato-light.woff2') }
|
||||
html { font-family: 'Lato', 'Segoe UI'; font-size: 16px; font-variant: small-caps; }
|
||||
body { margin: 0; background: black; color: white; overflow-x: hidden; width: 100vw; height: 100vh; }
|
||||
body::-webkit-scrollbar { display: none; }
|
||||
.status { position: absolute; width: 100vw; bottom: 10%; text-align: center; font-size: 3rem; font-weight: 100; text-shadow: 2px 2px #303030; }
|
||||
.log { position: absolute; bottom: 0; margin: 0.4rem 0.4rem 0 0.4rem; font-size: 0.9rem; }
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div id="status" class="status"></div>
|
||||
<img id="image" src="../../samples/groups/group1.jpg" style="display: none"></img>
|
||||
<div id="log" class="log"></div>
|
||||
</body>
|
||||
</html>
|
|
@ -1,51 +0,0 @@
|
|||
// import * as tf from '../../assets/tf.es2017.js';
|
||||
// import '../../assets/tf-backend-webgpu.es2017.js';
|
||||
import Human from '../../dist/human.esm.js';
|
||||
|
||||
const loop = 20;
|
||||
|
||||
// eslint-disable-next-line no-console
|
||||
const log = (...msg) => console.log(...msg);
|
||||
|
||||
const myConfig = {
|
||||
backend: 'humangl',
|
||||
modelBasePath: 'https://vladmandic.github.io/human/models',
|
||||
wasmPath: 'https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@3.9.0/dist/',
|
||||
debug: true,
|
||||
async: true,
|
||||
cacheSensitivity: 0,
|
||||
filter: { enabled: false },
|
||||
face: {
|
||||
enabled: true,
|
||||
detector: { enabled: true, rotation: false },
|
||||
mesh: { enabled: true },
|
||||
iris: { enabled: true },
|
||||
description: { enabled: true },
|
||||
emotion: { enabled: false },
|
||||
},
|
||||
hand: { enabled: true, rotation: false },
|
||||
body: { enabled: true },
|
||||
object: { enabled: false },
|
||||
};
|
||||
|
||||
async function main() {
|
||||
const human = new Human(myConfig);
|
||||
await human.tf.ready();
|
||||
log('Human:', human.version);
|
||||
await human.load();
|
||||
const loaded = Object.keys(human.models).filter((a) => human.models[a]);
|
||||
log('Loaded:', loaded);
|
||||
log('Memory state:', human.tf.engine().memory());
|
||||
const element = document.getElementById('image');
|
||||
const processed = await human.image(element);
|
||||
const t0 = performance.now();
|
||||
await human.detect(processed.tensor, myConfig);
|
||||
const t1 = performance.now();
|
||||
log('Backend:', human.tf.getBackend());
|
||||
log('Warmup:', Math.round(t1 - t0));
|
||||
for (let i = 0; i < loop; i++) await human.detect(processed.tensor, myConfig);
|
||||
const t2 = performance.now();
|
||||
log('Average:', Math.round((t2 - t1) / loop));
|
||||
}
|
||||
|
||||
main();
|
|
@ -1,71 +0,0 @@
|
|||
// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars
|
||||
const tf = require('@tensorflow/tfjs-node-gpu');
|
||||
const log = require('@vladmandic/pilogger');
|
||||
const canvasJS = require('canvas');
|
||||
const Human = require('../../dist/human.node-gpu.js').default;
|
||||
|
||||
const input = 'samples/groups/group1.jpg';
|
||||
const loop = 20;
|
||||
|
||||
const myConfig = {
|
||||
backend: 'tensorflow',
|
||||
modelBasePath: 'https://vladmandic.github.io/human/models',
|
||||
wasmPath: 'https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@3.9.0/dist/',
|
||||
debug: true,
|
||||
async: true,
|
||||
cacheSensitivity: 0,
|
||||
filter: { enabled: false },
|
||||
face: {
|
||||
enabled: true,
|
||||
detector: { enabled: true, rotation: false },
|
||||
mesh: { enabled: true },
|
||||
iris: { enabled: true },
|
||||
description: { enabled: true },
|
||||
emotion: { enabled: true },
|
||||
},
|
||||
hand: {
|
||||
enabled: true,
|
||||
},
|
||||
body: { enabled: true },
|
||||
object: { enabled: false },
|
||||
};
|
||||
|
||||
async function getImage(human) {
|
||||
const img = await canvasJS.loadImage(input);
|
||||
const canvas = canvasJS.createCanvas(img.width, img.height);
|
||||
const ctx = canvas.getContext('2d');
|
||||
ctx.drawImage(img, 0, 0, img.width, img.height);
|
||||
const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
|
||||
const res = human.tf.tidy(() => {
|
||||
const tensor = human.tf.tensor(Array.from(imageData.data), [canvas.height, canvas.width, 4], 'int32'); // create rgba image tensor from flat array
|
||||
const channels = human.tf.split(tensor, 4, 2); // split rgba to channels
|
||||
const rgb = human.tf.stack([channels[0], channels[1], channels[2]], 2); // stack channels back to rgb
|
||||
const reshape = human.tf.reshape(rgb, [1, canvas.height, canvas.width, 3]); // move extra dim from the end of tensor and use it as batch number instead
|
||||
return reshape;
|
||||
});
|
||||
log.info('Image:', input, res.shape);
|
||||
return res;
|
||||
}
|
||||
|
||||
async function main() {
|
||||
log.header();
|
||||
const human = new Human(myConfig);
|
||||
await human.tf.ready();
|
||||
log.info('Human:', human.version);
|
||||
await human.load();
|
||||
const loaded = Object.keys(human.models).filter((a) => human.models[a]);
|
||||
log.info('Loaded:', loaded);
|
||||
log.info('Memory state:', human.tf.engine().memory());
|
||||
const tensor = await getImage(human);
|
||||
log.state('Processing:', tensor['shape']);
|
||||
const t0 = performance.now();
|
||||
await human.detect(tensor, myConfig);
|
||||
const t1 = performance.now();
|
||||
log.state('Backend:', human.tf.getBackend());
|
||||
log.data('Warmup:', Math.round(t1 - t0));
|
||||
for (let i = 0; i < loop; i++) await human.detect(tensor, myConfig);
|
||||
const t2 = performance.now();
|
||||
log.data('Average:', Math.round((t2 - t1) / loop));
|
||||
}
|
||||
|
||||
main();
|
|
@ -1,189 +0,0 @@
|
|||
// @ts-nocheck // typescript checks disabled as this is pure javascript
|
||||
|
||||
/**
|
||||
* Human demo for browsers
|
||||
*
|
||||
* Demo for face mesh detection and projection as 3D object using Three.js
|
||||
*/
|
||||
|
||||
import { DoubleSide, Mesh, MeshBasicMaterial, OrthographicCamera, Scene, sRGBEncoding, VideoTexture, WebGLRenderer, BufferGeometry, BufferAttribute } from '../helpers/three.js';
|
||||
import { OrbitControls } from '../helpers/three-orbitControls.js';
|
||||
import Human from '../../dist/human.esm.js'; // equivalent of @vladmandic/human
|
||||
|
||||
const userConfig = {
|
||||
backend: 'wasm',
|
||||
async: false,
|
||||
profile: false,
|
||||
warmup: 'full',
|
||||
modelBasePath: '../../models/',
|
||||
// wasmPath: 'https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@3.9.0/dist/',
|
||||
filter: { enabled: false },
|
||||
face: { enabled: true,
|
||||
detector: { rotation: false, maxDetected: 1 },
|
||||
mesh: { enabled: true },
|
||||
iris: { enabled: true },
|
||||
description: { enabled: false },
|
||||
emotion: { enabled: false },
|
||||
},
|
||||
hand: { enabled: false },
|
||||
gesture: { enabled: false },
|
||||
body: { enabled: false },
|
||||
object: { enabled: false },
|
||||
};
|
||||
const human = new Human(userConfig);
|
||||
|
||||
const wireframe = true; // enable wireframe overlay
|
||||
|
||||
const canvas = document.getElementById('canvas');
|
||||
let width = 0;
|
||||
let height = 0;
|
||||
|
||||
const renderer = new WebGLRenderer({ antialias: true, alpha: true, canvas });
|
||||
renderer.setClearColor(0x000000);
|
||||
renderer.outputEncoding = sRGBEncoding;
|
||||
const camera = new OrthographicCamera();
|
||||
const controls = new OrbitControls(camera, renderer.domElement); // pan&zoom controls
|
||||
controls.enabled = true;
|
||||
const materialWireFrame = new MeshBasicMaterial({ // create wireframe material
|
||||
color: 0xffaaaa,
|
||||
wireframe: true,
|
||||
});
|
||||
const materialFace = new MeshBasicMaterial({ // create material for mask
|
||||
color: 0xffffff,
|
||||
map: null, // will be created when the video is ready.
|
||||
side: DoubleSide,
|
||||
});
|
||||
|
||||
class FaceGeometry extends BufferGeometry {
|
||||
constructor(triangulation) {
|
||||
super();
|
||||
this.positions = new Float32Array(478 * 3);
|
||||
this.uvs = new Float32Array(478 * 2);
|
||||
this.setAttribute('position', new BufferAttribute(this.positions, 3));
|
||||
this.setAttribute('uv', new BufferAttribute(this.uvs, 2));
|
||||
this.setIndex(triangulation);
|
||||
}
|
||||
|
||||
update(face) {
|
||||
let ptr = 0;
|
||||
for (const p of face.mesh) {
|
||||
this.positions[ptr + 0] = -p[0] + width / 2;
|
||||
this.positions[ptr + 1] = height - p[1] - height / 2;
|
||||
this.positions[ptr + 2] = -p[2];
|
||||
ptr += 3;
|
||||
}
|
||||
ptr = 0;
|
||||
for (const p of face.meshRaw) {
|
||||
this.uvs[ptr + 0] = 0 + p[0];
|
||||
this.uvs[ptr + 1] = 1 - p[1];
|
||||
ptr += 2;
|
||||
}
|
||||
materialFace.map.update(); // update textures from video
|
||||
this.attributes.position.needsUpdate = true; // vertices
|
||||
this.attributes.uv.needsUpdate = true; // textures
|
||||
this.computeVertexNormals();
|
||||
}
|
||||
}
|
||||
|
||||
const scene = new Scene();
|
||||
const faceGeometry = new FaceGeometry(human.faceTriangulation); // create a new geometry helper
|
||||
const mesh = new Mesh(faceGeometry, materialFace); // create mask mesh
|
||||
scene.add(mesh);
|
||||
|
||||
function resize(input) {
|
||||
width = input.videoWidth;
|
||||
height = input.videoHeight;
|
||||
camera.left = -width / 2;
|
||||
camera.right = width / 2;
|
||||
camera.top = height / 2;
|
||||
camera.bottom = -height / 2;
|
||||
camera.near = -100;
|
||||
camera.far = 100;
|
||||
camera.zoom = 2;
|
||||
camera.updateProjectionMatrix();
|
||||
renderer.setSize(width, height);
|
||||
}
|
||||
|
||||
const isLive = (input) => input.srcObject && (input.srcObject.getVideoTracks()[0].readyState === 'live') && (input.readyState > 2) && (!input.paused);
|
||||
|
||||
async function render(input) {
|
||||
if (isLive(input)) {
|
||||
if (width !== input.videoWidth || height !== input.videoHeight) resize(input); // resize orthographic camera to video dimensions if necessary
|
||||
const res = await human.detect(input);
|
||||
if (res?.face?.length > 0) {
|
||||
faceGeometry.update(res.face[0]);
|
||||
// render the mask
|
||||
mesh.material = materialFace;
|
||||
renderer.autoClear = true;
|
||||
renderer.render(scene, camera);
|
||||
if (wireframe) { // overlay wireframe
|
||||
mesh.material = materialWireFrame;
|
||||
renderer.autoClear = false;
|
||||
renderer.render(scene, camera);
|
||||
}
|
||||
}
|
||||
}
|
||||
requestAnimationFrame(() => render(input));
|
||||
}
|
||||
|
||||
// setup webcam
|
||||
async function setupCamera() {
|
||||
if (!navigator.mediaDevices) return null;
|
||||
const video = document.getElementById('video');
|
||||
canvas.addEventListener('click', () => {
|
||||
if (isLive(video)) video.pause();
|
||||
else video.play();
|
||||
});
|
||||
const constraints = {
|
||||
audio: false,
|
||||
video: { facingMode: 'user', resizeMode: 'crop-and-scale' },
|
||||
};
|
||||
if (window.innerWidth > window.innerHeight) constraints.video.width = { ideal: window.innerWidth };
|
||||
else constraints.video.height = { ideal: window.innerHeight };
|
||||
const stream = await navigator.mediaDevices.getUserMedia(constraints);
|
||||
if (stream) video.srcObject = stream;
|
||||
else return null;
|
||||
// get information data
|
||||
const track = stream.getVideoTracks()[0];
|
||||
const settings = track.getSettings();
|
||||
// log('camera constraints:', constraints, 'window:', { width: window.innerWidth, height: window.innerHeight }, 'settings:', settings, 'track:', track);
|
||||
const engineData = human.tf.engine();
|
||||
const gpuData = (engineData.backendInstance && engineData.backendInstance.numBytesInGPU > 0) ? `gpu: ${(engineData.backendInstance.numBytesInGPU ? engineData.backendInstance.numBytesInGPU : 0).toLocaleString()} bytes` : '';
|
||||
const cameraData = { name: track.label?.toLowerCase(), width: settings.width, height: settings.height, facing: settings.facingMode === 'user' ? 'front' : 'back' };
|
||||
const memoryData = `system: ${engineData.state.numBytes.toLocaleString()} bytes ${gpuData} | tensors: ${engineData.state.numTensors.toLocaleString()}`;
|
||||
document.getElementById('log').innerHTML = `
|
||||
video: ${cameraData.name} | facing: ${cameraData.facing} | screen: ${window.innerWidth} x ${window.innerHeight} camera: ${cameraData.width} x ${cameraData.height}<br>
|
||||
backend: ${human.tf.getBackend()} | ${memoryData}<br>
|
||||
`;
|
||||
// return when camera is ready
|
||||
return new Promise((resolve) => {
|
||||
video.onloadeddata = async () => {
|
||||
video.width = video.videoWidth;
|
||||
video.height = video.videoHeight;
|
||||
canvas.width = video.width;
|
||||
canvas.height = video.height;
|
||||
video.play();
|
||||
resolve(video);
|
||||
};
|
||||
});
|
||||
}
|
||||
|
||||
async function main() {
|
||||
window.addEventListener('unhandledrejection', (evt) => {
|
||||
// eslint-disable-next-line no-console
|
||||
console.error(evt.reason || evt);
|
||||
document.getElementById('log').innerHTML = evt?.reason?.message || evt?.reason || evt;
|
||||
evt.preventDefault();
|
||||
});
|
||||
|
||||
await human.load();
|
||||
const video = await setupCamera();
|
||||
if (video) {
|
||||
const videoTexture = new VideoTexture(video); // now load textures from video
|
||||
videoTexture.encoding = sRGBEncoding;
|
||||
materialFace.map = videoTexture;
|
||||
render(video);
|
||||
}
|
||||
}
|
||||
|
||||
window.onload = main;
|
|
@ -0,0 +1,160 @@
|
|||
/**
|
||||
* Human demo for browsers
|
||||
*
|
||||
* Demo for face detection
|
||||
*/
|
||||
|
||||
/** @type {Human} */
|
||||
import { Human } from '../../dist/human.esm.js';
|
||||
|
||||
let loader;
|
||||
|
||||
const humanConfig = { // user configuration for human, used to fine-tune behavior
|
||||
cacheSensitivity: 0,
|
||||
debug: true,
|
||||
modelBasePath: 'https://vladmandic.github.io/human-models/models/',
|
||||
filter: { enabled: true, equalization: false, flip: false },
|
||||
face: {
|
||||
enabled: true,
|
||||
detector: { rotation: false, maxDetected: 100, minConfidence: 0.2, return: true, square: false },
|
||||
iris: { enabled: true },
|
||||
description: { enabled: true },
|
||||
emotion: { enabled: true },
|
||||
antispoof: { enabled: true },
|
||||
liveness: { enabled: true },
|
||||
},
|
||||
body: { enabled: false },
|
||||
hand: { enabled: false },
|
||||
object: { enabled: false },
|
||||
gesture: { enabled: false },
|
||||
segmentation: { enabled: false },
|
||||
};
|
||||
|
||||
const human = new Human(humanConfig); // new instance of human
|
||||
|
||||
export const showLoader = (msg) => { loader.setAttribute('msg', msg); loader.style.display = 'block'; };
|
||||
export const hideLoader = () => loader.style.display = 'none';
|
||||
|
||||
class ComponentLoader extends HTMLElement { // watch for attributes
|
||||
message = document.createElement('div');
|
||||
|
||||
static get observedAttributes() { return ['msg']; }
|
||||
|
||||
attributeChangedCallback(_name, _prevVal, currVal) {
|
||||
this.message.innerHTML = currVal;
|
||||
}
|
||||
|
||||
connectedCallback() { // triggered on insert
|
||||
this.attachShadow({ mode: 'open' });
|
||||
const css = document.createElement('style');
|
||||
css.innerHTML = `
|
||||
.loader-container { top: 450px; justify-content: center; position: fixed; width: 100%; }
|
||||
.loader-message { font-size: 1.5rem; padding: 1rem; }
|
||||
.loader { width: 300px; height: 300px; border: 3px solid transparent; border-radius: 50%; border-top: 4px solid #f15e41; animation: spin 4s linear infinite; position: relative; }
|
||||
.loader::before, .loader::after { content: ""; position: absolute; top: 6px; bottom: 6px; left: 6px; right: 6px; border-radius: 50%; border: 4px solid transparent; }
|
||||
.loader::before { border-top-color: #bad375; animation: 3s spin linear infinite; }
|
||||
.loader::after { border-top-color: #26a9e0; animation: spin 1.5s linear infinite; }
|
||||
@keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } }
|
||||
`;
|
||||
const container = document.createElement('div');
|
||||
container.id = 'loader-container';
|
||||
container.className = 'loader-container';
|
||||
loader = document.createElement('div');
|
||||
loader.id = 'loader';
|
||||
loader.className = 'loader';
|
||||
this.message.id = 'loader-message';
|
||||
this.message.className = 'loader-message';
|
||||
this.message.innerHTML = '';
|
||||
container.appendChild(this.message);
|
||||
container.appendChild(loader);
|
||||
this.shadowRoot?.append(css, container);
|
||||
loader = this; // eslint-disable-line @typescript-eslint/no-this-alias
|
||||
}
|
||||
}
|
||||
|
||||
customElements.define('component-loader', ComponentLoader);
|
||||
|
||||
function addFace(face, source) {
|
||||
const deg = (rad) => Math.round((rad || 0) * 180 / Math.PI);
|
||||
const canvas = document.createElement('canvas');
|
||||
const emotion = face.emotion?.map((e) => `${Math.round(100 * e.score)}% ${e.emotion}`) || [];
|
||||
const rotation = `pitch ${deg(face.rotation?.angle.pitch)}° | roll ${deg(face.rotation?.angle.roll)}° | yaw ${deg(face.rotation?.angle.yaw)}°`;
|
||||
const gaze = `direction ${deg(face.rotation?.gaze.bearing)}° strength ${Math.round(100 * (face.rotation.gaze.strength || 0))}%`;
|
||||
canvas.title = `
|
||||
source: ${source}
|
||||
score: ${Math.round(100 * face.boxScore)}% detection ${Math.round(100 * face.faceScore)}% analysis
|
||||
age: ${face.age} years | gender: ${face.gender} score ${Math.round(100 * face.genderScore)}%
|
||||
emotion: ${emotion.join(' | ')}
|
||||
head rotation: ${rotation}
|
||||
eyes gaze: ${gaze}
|
||||
camera distance: ${face.distance}m | ${Math.round(100 * face.distance / 2.54)}in
|
||||
check: ${Math.round(100 * face.real)}% real ${Math.round(100 * face.live)}% live
|
||||
`.replace(/ /g, ' ');
|
||||
canvas.onclick = (e) => {
|
||||
e.preventDefault();
|
||||
document.getElementById('description').innerHTML = canvas.title;
|
||||
};
|
||||
human.draw.tensor(face.tensor, canvas);
|
||||
human.tf.dispose(face.tensor);
|
||||
return canvas;
|
||||
}
|
||||
|
||||
async function addFaces(imgEl) {
|
||||
showLoader('human: busy');
|
||||
const faceEl = document.getElementById('faces');
|
||||
faceEl.innerHTML = '';
|
||||
const res = await human.detect(imgEl);
|
||||
console.log(res); // eslint-disable-line no-console
|
||||
document.getElementById('description').innerHTML = `detected ${res.face.length} faces`;
|
||||
for (const face of res.face) {
|
||||
const canvas = addFace(face, imgEl.src.substring(0, 64));
|
||||
faceEl.appendChild(canvas);
|
||||
}
|
||||
hideLoader();
|
||||
}
|
||||
|
||||
function addImage(imageUri) {
|
||||
const imgEl = new Image(256, 256);
|
||||
imgEl.onload = () => {
|
||||
const images = document.getElementById('images');
|
||||
images.appendChild(imgEl); // add image if loaded ok
|
||||
images.scroll(images?.offsetWidth, 0);
|
||||
};
|
||||
imgEl.onerror = () => console.error('addImage', { imageUri }); // eslint-disable-line no-console
|
||||
imgEl.onclick = () => addFaces(imgEl);
|
||||
imgEl.title = imageUri.substring(0, 64);
|
||||
imgEl.src = encodeURI(imageUri);
|
||||
}
|
||||
|
||||
async function initDragAndDrop() {
|
||||
const reader = new FileReader();
|
||||
reader.onload = async (e) => {
|
||||
if (e.target.result.startsWith('data:image')) await addImage(e.target.result);
|
||||
};
|
||||
document.body.addEventListener('dragenter', (evt) => evt.preventDefault());
|
||||
document.body.addEventListener('dragleave', (evt) => evt.preventDefault());
|
||||
document.body.addEventListener('dragover', (evt) => evt.preventDefault());
|
||||
document.body.addEventListener('drop', async (evt) => {
|
||||
evt.preventDefault();
|
||||
evt.dataTransfer.dropEffect = 'copy';
|
||||
for (const f of evt.dataTransfer.files) reader.readAsDataURL(f);
|
||||
});
|
||||
document.body.onclick = (e) => {
|
||||
if (e.target.localName !== 'canvas') document.getElementById('description').innerHTML = '';
|
||||
};
|
||||
}
|
||||
|
||||
async function main() {
|
||||
showLoader('loading models');
|
||||
await human.load();
|
||||
showLoader('compiling models');
|
||||
await human.warmup();
|
||||
showLoader('loading images');
|
||||
const images = ['group-1.jpg', 'group-2.jpg', 'group-3.jpg', 'group-4.jpg', 'group-5.jpg', 'group-6.jpg', 'group-7.jpg', 'solvay1927.jpg', 'stock-group-1.jpg', 'stock-group-2.jpg', 'stock-models-6.jpg', 'stock-models-7.jpg'];
|
||||
const imageUris = images.map((a) => `../../samples/in/${a}`);
|
||||
for (let i = 0; i < imageUris.length; i++) addImage(imageUris[i]);
|
||||
initDragAndDrop();
|
||||
hideLoader();
|
||||
}
|
||||
|
||||
window.onload = main;
|
|
@ -0,0 +1,43 @@
|
|||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<title>Human</title>
|
||||
<!-- <meta http-equiv="content-type" content="text/html; charset=utf-8"> -->
|
||||
<meta name="viewport" content="width=device-width, shrink-to-fit=yes">
|
||||
<meta name="keywords" content="Human">
|
||||
<meta name="application-name" content="Human">
|
||||
<meta name="description" content="Human: 3D Face Detection, Body Pose, Hand & Finger Tracking, Iris Tracking, Age & Gender Prediction, Emotion Prediction & Gesture Recognition; Author: Vladimir Mandic <https://github.com/vladmandic>">
|
||||
<meta name="msapplication-tooltip" content="Human: 3D Face Detection, Body Pose, Hand & Finger Tracking, Iris Tracking, Age & Gender Prediction, Emotion Prediction & Gesture Recognition; Author: Vladimir Mandic <https://github.com/vladmandic>">
|
||||
<meta name="theme-color" content="#000000">
|
||||
<link rel="manifest" href="../manifest.webmanifest">
|
||||
<link rel="shortcut icon" href="../../favicon.ico" type="image/x-icon">
|
||||
<link rel="apple-touch-icon" href="../../assets/icon.png">
|
||||
<script src="./facedetect.js" type="module"></script>
|
||||
<style>
|
||||
img { object-fit: contain; }
|
||||
img:hover { filter: grayscale(1); transform: scale(1.08); transition : all 0.3s ease; }
|
||||
@font-face { font-family: 'Lato'; font-display: swap; font-style: normal; font-weight: 100; src: local('Lato'), url('../../assets/lato-light.woff2') }
|
||||
html { font-family: 'Lato', 'Segoe UI'; font-size: 24px; font-variant: small-caps; }
|
||||
body { margin: 24px; background: black; color: white; overflow: hidden; text-align: -webkit-center; width: 100vw; height: 100vh; }
|
||||
::-webkit-scrollbar { height: 8px; border: 0; border-radius: 0; }
|
||||
::-webkit-scrollbar-thumb { background: grey }
|
||||
::-webkit-scrollbar-track { margin: 3px; }
|
||||
canvas { width: 192px; height: 192px; margin: 2px; padding: 2px; cursor: grab; transform: scale(1.00); transition : all 0.3s ease; }
|
||||
canvas:hover { filter: grayscale(1); transform: scale(1.08); transition : all 0.3s ease; }
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<component-loader></component-loader>
|
||||
<div style="display: flex">
|
||||
<div>
|
||||
<div style="margin: 24px">select image to show detected faces<br>drag & drop to add your images</div>
|
||||
<div id="images" style="display: flex; width: 98vw; overflow-x: auto; overflow-y: hidden; scroll-behavior: smooth"></div>
|
||||
</div>
|
||||
</div>
|
||||
<div id="list" style="height: 10px"></div>
|
||||
<div style="margin: 24px">hover or click on face to show details</div>
|
||||
<div id="faces" style="overflow-y: auto"></div>
|
||||
<div id="description" style="white-space: pre;"></div>
|
||||
</body>
|
||||
</html>
|
|
@ -0,0 +1,42 @@
|
|||
# Human Face Recognition: FaceID
|
||||
|
||||
`faceid` runs multiple checks to validate webcam input before performing face match
|
||||
Detected face image and descriptor are stored in client-side IndexDB
|
||||
|
||||
## Workflow
|
||||
- Starts webcam
|
||||
- Waits until input video contains validated face or timeout is reached
|
||||
- Number of people
|
||||
- Face size
|
||||
- Face and gaze direction
|
||||
- Detection scores
|
||||
- Blink detection (including temporal check for blink speed) to verify live input
|
||||
- Runs `antispoofing` optional module
|
||||
- Runs `liveness` optional module
|
||||
- Runs match against database of registered faces and presents best match with scores
|
||||
|
||||
## Notes
|
||||
|
||||
Both `antispoof` and `liveness` models are tiny and
|
||||
designed to serve as a quick check when used together with other indicators:
|
||||
- size below 1MB
|
||||
- very quick inference times as they are very simple (11 ops for antispoof and 23 ops for liveness)
|
||||
- trained on low-resolution inputs
|
||||
|
||||
### Anti-spoofing Module
|
||||
- Checks if input is realistic (e.g. computer generated faces)
|
||||
- Configuration: `human.config.face.antispoof`.enabled
|
||||
- Result: `human.result.face[0].real` as score
|
||||
|
||||
### Liveness Module
|
||||
- Checks if input has obvious artifacts due to recording (e.g. playing back phone recording of a face)
|
||||
- Configuration: `human.config.face.liveness`.enabled
|
||||
- Result: `human.result.face[0].live` as score
|
||||
|
||||
### Models
|
||||
|
||||
**FaceID** is compatible with
|
||||
- `faceres.json` (default) perfoms combined age/gender/descriptor analysis
|
||||
- `faceres-deep.json` higher resolution variation of `faceres`
|
||||
- `insightface` alternative model for face descriptor analysis
|
||||
- `mobilefacenet` alternative model for face descriptor analysis
|
|
@ -0,0 +1,49 @@
|
|||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<title>Human: Face Recognition</title>
|
||||
<meta name="viewport" content="width=device-width" id="viewport">
|
||||
<meta name="keywords" content="Human">
|
||||
<meta name="application-name" content="Human">
|
||||
<meta name="description" content="Human: 3D Face Detection, Body Pose, Hand & Finger Tracking, Iris Tracking, Age & Gender Prediction, Emotion Prediction & Gesture Recognition; Author: Vladimir Mandic <https://github.com/vladmandic>">
|
||||
<meta name="msapplication-tooltip" content="Human: 3D Face Detection, Body Pose, Hand & Finger Tracking, Iris Tracking, Age & Gender Prediction, Emotion Prediction & Gesture Recognition; Author: Vladimir Mandic <https://github.com/vladmandic>">
|
||||
<meta name="theme-color" content="#000000">
|
||||
<link rel="manifest" href="../manifest.webmanifest">
|
||||
<link rel="shortcut icon" href="../../favicon.ico" type="image/x-icon">
|
||||
<link rel="apple-touch-icon" href="../../assets/icon.png">
|
||||
<script src="./index.js" type="module"></script>
|
||||
<style>
|
||||
@font-face { font-family: 'Lato'; font-display: swap; font-style: normal; font-weight: 100; src: local('Lato'), url('../../assets/lato-light.woff2') }
|
||||
html { font-family: 'Lato', 'Segoe UI'; font-size: 16px; font-variant: small-caps; }
|
||||
body { margin: 0; padding: 16px; background: black; color: white; overflow-x: hidden; width: 100vw; height: 100vh; }
|
||||
body::-webkit-scrollbar { display: none; }
|
||||
.button { padding: 2px; cursor: pointer; box-shadow: 2px 2px black; width: 64px; text-align: center; place-content: center; margin-left: 16px; height: 16px; display: none }
|
||||
.ok { position: absolute; top: 64px; right: 20px; width: 150px; background-color: grey; padding: 4px; color: black; font-size: 14px }
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div style="padding: 8px">
|
||||
<h1 style="margin: 0">faceid demo using human library</h1>
|
||||
look directly at camera and make sure that detection passes all of the required tests noted on the right hand side of the screen<br>
|
||||
if input does not satisfies tests within specific timeout, no image will be selected<br>
|
||||
once face image is approved, it will be compared with existing face database<br>
|
||||
you can also store face descriptor with label in a browser's indexdb for future usage<br>
|
||||
<br>
|
||||
<i>note: this is not equivalent to full faceid methods as used by modern mobile phones or windows hello<br>
|
||||
as they rely on additional infrared sensors and depth-sensing and not just camera image for additional levels of security</i>
|
||||
</div>
|
||||
<canvas id="canvas" style="padding: 8px"></canvas>
|
||||
<canvas id="source" style="padding: 8px"></canvas>
|
||||
<video id="video" playsinline style="display: none"></video>
|
||||
<pre id="log" style="padding: 8px"></pre>
|
||||
<div id="match" style="display: none; padding: 8px">
|
||||
<label for="name">name:</label>
|
||||
<input id="name" type="text" value="" style="height: 16px; border: none; padding: 2px; margin-left: 8px">
|
||||
<span id="save" class="button" style="background-color: royalblue">save</span>
|
||||
<span id="delete" class="button" style="background-color: lightcoral">delete</span>
|
||||
</div>
|
||||
<div id="retry" class="button" style="background-color: darkslategray; width: 93%; margin-top: 32px; padding: 12px">retry</div>
|
||||
<div id="ok"></div>
|
||||
</body>
|
||||
</html>
|
|
@ -0,0 +1,318 @@
|
|||
/**
|
||||
* Human demo for browsers
|
||||
* @default Human Library
|
||||
* @summary <https://github.com/vladmandic/human>
|
||||
* @author <https://github.com/vladmandic>
|
||||
* @copyright <https://github.com/vladmandic>
|
||||
* @license MIT
|
||||
*/
|
||||
|
||||
import * as H from '../../dist/human.esm.js'; // equivalent of @vladmandic/Human
|
||||
import * as indexDb from './indexdb'; // methods to deal with indexdb
|
||||
|
||||
const humanConfig = { // user configuration for human, used to fine-tune behavior
|
||||
cacheSensitivity: 0.01,
|
||||
modelBasePath: '../../models',
|
||||
filter: { enabled: true, equalization: true }, // lets run with histogram equilizer
|
||||
debug: true,
|
||||
face: {
|
||||
enabled: true,
|
||||
detector: { rotation: true, return: true, mask: false }, // return tensor is used to get detected face image
|
||||
description: { enabled: true }, // default model for face descriptor extraction is faceres
|
||||
// mobilefacenet: { enabled: true, modelPath: 'https://vladmandic.github.io/human-models/models/mobilefacenet.json' }, // alternative model
|
||||
// insightface: { enabled: true, modelPath: 'https://vladmandic.github.io/insightface/models/insightface-mobilenet-swish.json' }, // alternative model
|
||||
iris: { enabled: true }, // needed to determine gaze direction
|
||||
emotion: { enabled: false }, // not needed
|
||||
antispoof: { enabled: true }, // enable optional antispoof module
|
||||
liveness: { enabled: true }, // enable optional liveness module
|
||||
},
|
||||
body: { enabled: false },
|
||||
hand: { enabled: false },
|
||||
object: { enabled: false },
|
||||
gesture: { enabled: true }, // parses face and iris gestures
|
||||
};
|
||||
|
||||
// const matchOptions = { order: 2, multiplier: 1000, min: 0.0, max: 1.0 }; // for embedding model
|
||||
const matchOptions = { order: 2, multiplier: 25, min: 0.2, max: 0.8 }; // for faceres model
|
||||
|
||||
const options = {
|
||||
minConfidence: 0.6, // overal face confidence for box, face, gender, real, live
|
||||
minSize: 224, // min input to face descriptor model before degradation
|
||||
maxTime: 30000, // max time before giving up
|
||||
blinkMin: 10, // minimum duration of a valid blink
|
||||
blinkMax: 800, // maximum duration of a valid blink
|
||||
threshold: 0.5, // minimum similarity
|
||||
distanceMin: 0.4, // closest that face is allowed to be to the cammera in cm
|
||||
distanceMax: 1.0, // farthest that face is allowed to be to the cammera in cm
|
||||
mask: humanConfig.face.detector.mask,
|
||||
rotation: humanConfig.face.detector.rotation,
|
||||
...matchOptions,
|
||||
};
|
||||
|
||||
const ok: Record<string, { status: boolean | undefined, val: number }> = { // must meet all rules
|
||||
faceCount: { status: false, val: 0 },
|
||||
faceConfidence: { status: false, val: 0 },
|
||||
facingCenter: { status: false, val: 0 },
|
||||
lookingCenter: { status: false, val: 0 },
|
||||
blinkDetected: { status: false, val: 0 },
|
||||
faceSize: { status: false, val: 0 },
|
||||
antispoofCheck: { status: false, val: 0 },
|
||||
livenessCheck: { status: false, val: 0 },
|
||||
distance: { status: false, val: 0 },
|
||||
age: { status: false, val: 0 },
|
||||
gender: { status: false, val: 0 },
|
||||
timeout: { status: true, val: 0 },
|
||||
descriptor: { status: false, val: 0 },
|
||||
elapsedMs: { status: undefined, val: 0 }, // total time while waiting for valid face
|
||||
detectFPS: { status: undefined, val: 0 }, // mark detection fps performance
|
||||
drawFPS: { status: undefined, val: 0 }, // mark redraw fps performance
|
||||
};
|
||||
|
||||
const allOk = () => ok.faceCount.status
|
||||
&& ok.faceSize.status
|
||||
&& ok.blinkDetected.status
|
||||
&& ok.facingCenter.status
|
||||
&& ok.lookingCenter.status
|
||||
&& ok.faceConfidence.status
|
||||
&& ok.antispoofCheck.status
|
||||
&& ok.livenessCheck.status
|
||||
&& ok.distance.status
|
||||
&& ok.descriptor.status
|
||||
&& ok.age.status
|
||||
&& ok.gender.status;
|
||||
|
||||
const current: { face: H.FaceResult | null, record: indexDb.FaceRecord | null } = { face: null, record: null }; // current face record and matched database record
|
||||
|
||||
const blink = { // internal timers for blink start/end/duration
|
||||
start: 0,
|
||||
end: 0,
|
||||
time: 0,
|
||||
};
|
||||
|
||||
// let db: Array<{ name: string, source: string, embedding: number[] }> = []; // holds loaded face descriptor database
|
||||
const human = new H.Human(humanConfig); // create instance of human with overrides from user configuration
|
||||
|
||||
human.env.perfadd = false; // is performance data showing instant or total values
|
||||
human.draw.options.font = 'small-caps 18px "Lato"'; // set font used to draw labels when using draw methods
|
||||
human.draw.options.lineHeight = 20;
|
||||
|
||||
const dom = { // grab instances of dom objects so we dont have to look them up later
|
||||
video: document.getElementById('video') as HTMLVideoElement,
|
||||
canvas: document.getElementById('canvas') as HTMLCanvasElement,
|
||||
log: document.getElementById('log') as HTMLPreElement,
|
||||
fps: document.getElementById('fps') as HTMLPreElement,
|
||||
match: document.getElementById('match') as HTMLDivElement,
|
||||
name: document.getElementById('name') as HTMLInputElement,
|
||||
save: document.getElementById('save') as HTMLSpanElement,
|
||||
delete: document.getElementById('delete') as HTMLSpanElement,
|
||||
retry: document.getElementById('retry') as HTMLDivElement,
|
||||
source: document.getElementById('source') as HTMLCanvasElement,
|
||||
ok: document.getElementById('ok') as HTMLDivElement,
|
||||
};
|
||||
const timestamp = { detect: 0, draw: 0 }; // holds information used to calculate performance and possible memory leaks
|
||||
let startTime = 0;
|
||||
|
||||
const log = (...msg) => { // helper method to output messages
|
||||
dom.log.innerText += msg.join(' ') + '\n';
|
||||
console.log(...msg); // eslint-disable-line no-console
|
||||
};
|
||||
|
||||
async function webCam() { // initialize webcam
|
||||
// @ts-ignore resizeMode is not yet defined in tslib
|
||||
const cameraOptions: MediaStreamConstraints = { audio: false, video: { facingMode: 'user', resizeMode: 'none', width: { ideal: document.body.clientWidth } } };
|
||||
const stream: MediaStream = await navigator.mediaDevices.getUserMedia(cameraOptions);
|
||||
const ready = new Promise((resolve) => { dom.video.onloadeddata = () => resolve(true); });
|
||||
dom.video.srcObject = stream;
|
||||
void dom.video.play();
|
||||
await ready;
|
||||
dom.canvas.width = dom.video.videoWidth;
|
||||
dom.canvas.height = dom.video.videoHeight;
|
||||
dom.canvas.style.width = '50%';
|
||||
dom.canvas.style.height = '50%';
|
||||
if (human.env.initial) log('video:', dom.video.videoWidth, dom.video.videoHeight, '|', stream.getVideoTracks()[0].label);
|
||||
dom.canvas.onclick = () => { // pause when clicked on screen and resume on next click
|
||||
if (dom.video.paused) void dom.video.play();
|
||||
else dom.video.pause();
|
||||
};
|
||||
}
|
||||
|
||||
async function detectionLoop() { // main detection loop
|
||||
if (!dom.video.paused) {
|
||||
if (current.face?.tensor) human.tf.dispose(current.face.tensor); // dispose previous tensor
|
||||
await human.detect(dom.video); // actual detection; were not capturing output in a local variable as it can also be reached via human.result
|
||||
const now = human.now();
|
||||
ok.detectFPS.val = Math.round(10000 / (now - timestamp.detect)) / 10;
|
||||
timestamp.detect = now;
|
||||
requestAnimationFrame(detectionLoop); // start new frame immediately
|
||||
}
|
||||
}
|
||||
|
||||
function drawValidationTests() {
|
||||
let y = 32;
|
||||
for (const [key, val] of Object.entries(ok)) {
|
||||
let el = document.getElementById(`ok-${key}`);
|
||||
if (!el) {
|
||||
el = document.createElement('div');
|
||||
el.id = `ok-${key}`;
|
||||
el.innerText = key;
|
||||
el.className = 'ok';
|
||||
el.style.top = `${y}px`;
|
||||
dom.ok.appendChild(el);
|
||||
}
|
||||
if (typeof val.status === 'boolean') el.style.backgroundColor = val.status ? 'lightgreen' : 'lightcoral';
|
||||
const status = val.status ? 'ok' : 'fail';
|
||||
el.innerText = `${key}: ${val.val === 0 ? status : val.val}`;
|
||||
y += 28;
|
||||
}
|
||||
}
|
||||
|
||||
async function validationLoop(): Promise<H.FaceResult> { // main screen refresh loop
|
||||
const interpolated = human.next(human.result); // smoothen result using last-known results
|
||||
human.draw.canvas(dom.video, dom.canvas); // draw canvas to screen
|
||||
await human.draw.all(dom.canvas, interpolated); // draw labels, boxes, lines, etc.
|
||||
const now = human.now();
|
||||
ok.drawFPS.val = Math.round(10000 / (now - timestamp.draw)) / 10;
|
||||
timestamp.draw = now;
|
||||
ok.faceCount.val = human.result.face.length;
|
||||
ok.faceCount.status = ok.faceCount.val === 1; // must be exactly detected face
|
||||
if (ok.faceCount.status) { // skip the rest if no face
|
||||
const gestures: string[] = Object.values(human.result.gesture).map((gesture: H.GestureResult) => gesture.gesture); // flatten all gestures
|
||||
if (gestures.includes('blink left eye') || gestures.includes('blink right eye')) blink.start = human.now(); // blink starts when eyes get closed
|
||||
if (blink.start > 0 && !gestures.includes('blink left eye') && !gestures.includes('blink right eye')) blink.end = human.now(); // if blink started how long until eyes are back open
|
||||
ok.blinkDetected.status = ok.blinkDetected.status || (Math.abs(blink.end - blink.start) > options.blinkMin && Math.abs(blink.end - blink.start) < options.blinkMax);
|
||||
if (ok.blinkDetected.status && blink.time === 0) blink.time = Math.trunc(blink.end - blink.start);
|
||||
ok.facingCenter.status = gestures.includes('facing center');
|
||||
ok.lookingCenter.status = gestures.includes('looking center'); // must face camera and look at camera
|
||||
ok.faceConfidence.val = human.result.face[0].faceScore || human.result.face[0].boxScore || 0;
|
||||
ok.faceConfidence.status = ok.faceConfidence.val >= options.minConfidence;
|
||||
ok.antispoofCheck.val = human.result.face[0].real || 0;
|
||||
ok.antispoofCheck.status = ok.antispoofCheck.val >= options.minConfidence;
|
||||
ok.livenessCheck.val = human.result.face[0].live || 0;
|
||||
ok.livenessCheck.status = ok.livenessCheck.val >= options.minConfidence;
|
||||
ok.faceSize.val = Math.min(human.result.face[0].box[2], human.result.face[0].box[3]);
|
||||
ok.faceSize.status = ok.faceSize.val >= options.minSize;
|
||||
ok.distance.val = human.result.face[0].distance || 0;
|
||||
ok.distance.status = (ok.distance.val >= options.distanceMin) && (ok.distance.val <= options.distanceMax);
|
||||
ok.descriptor.val = human.result.face[0].embedding?.length || 0;
|
||||
ok.descriptor.status = ok.descriptor.val > 0;
|
||||
ok.age.val = human.result.face[0].age || 0;
|
||||
ok.age.status = ok.age.val > 0;
|
||||
ok.gender.val = human.result.face[0].genderScore || 0;
|
||||
ok.gender.status = ok.gender.val >= options.minConfidence;
|
||||
}
|
||||
// run again
|
||||
ok.timeout.status = ok.elapsedMs.val <= options.maxTime;
|
||||
drawValidationTests();
|
||||
if (allOk() || !ok.timeout.status) { // all criteria met
|
||||
dom.video.pause();
|
||||
return human.result.face[0];
|
||||
}
|
||||
ok.elapsedMs.val = Math.trunc(human.now() - startTime);
|
||||
return new Promise((resolve) => {
|
||||
setTimeout(async () => {
|
||||
await validationLoop(); // run validation loop until conditions are met
|
||||
resolve(human.result.face[0]); // recursive promise resolve
|
||||
}, 30); // use to slow down refresh from max refresh rate to target of 30 fps
|
||||
});
|
||||
}
|
||||
|
||||
async function saveRecords() {
|
||||
if (dom.name.value.length > 0) {
|
||||
const image = dom.canvas.getContext('2d')?.getImageData(0, 0, dom.canvas.width, dom.canvas.height) as ImageData;
|
||||
const rec = { id: 0, name: dom.name.value, descriptor: current.face?.embedding as number[], image };
|
||||
await indexDb.save(rec);
|
||||
log('saved face record:', rec.name, 'descriptor length:', current.face?.embedding?.length);
|
||||
log('known face records:', await indexDb.count());
|
||||
} else {
|
||||
log('invalid name');
|
||||
}
|
||||
}
|
||||
|
||||
async function deleteRecord() {
|
||||
if (current.record && current.record.id > 0) {
|
||||
await indexDb.remove(current.record);
|
||||
}
|
||||
}
|
||||
|
||||
async function detectFace() {
|
||||
dom.canvas.style.height = '';
|
||||
dom.canvas.getContext('2d')?.clearRect(0, 0, options.minSize, options.minSize);
|
||||
if (!current?.face?.tensor || !current?.face?.embedding) return false;
|
||||
console.log('face record:', current.face); // eslint-disable-line no-console
|
||||
log(`detected face: ${current.face.gender} ${current.face.age || 0}y distance ${100 * (current.face.distance || 0)}cm/${Math.round(100 * (current.face.distance || 0) / 2.54)}in`);
|
||||
await human.draw.tensor(current.face.tensor, dom.canvas);
|
||||
if (await indexDb.count() === 0) {
|
||||
log('face database is empty: nothing to compare face with');
|
||||
document.body.style.background = 'black';
|
||||
dom.delete.style.display = 'none';
|
||||
return false;
|
||||
}
|
||||
const db = await indexDb.load();
|
||||
const descriptors = db.map((rec) => rec.descriptor).filter((desc) => desc.length > 0);
|
||||
const res = human.match.find(current.face.embedding, descriptors, matchOptions);
|
||||
current.record = db[res.index] || null;
|
||||
if (current.record) {
|
||||
log(`best match: ${current.record.name} | id: ${current.record.id} | similarity: ${Math.round(1000 * res.similarity) / 10}%`);
|
||||
dom.name.value = current.record.name;
|
||||
dom.source.style.display = '';
|
||||
dom.source.getContext('2d')?.putImageData(current.record.image, 0, 0);
|
||||
}
|
||||
document.body.style.background = res.similarity > options.threshold ? 'darkgreen' : 'maroon';
|
||||
return res.similarity > options.threshold;
|
||||
}
|
||||
|
||||
async function main() { // main entry point
|
||||
ok.faceCount.status = false;
|
||||
ok.faceConfidence.status = false;
|
||||
ok.facingCenter.status = false;
|
||||
ok.blinkDetected.status = false;
|
||||
ok.faceSize.status = false;
|
||||
ok.antispoofCheck.status = false;
|
||||
ok.livenessCheck.status = false;
|
||||
ok.age.status = false;
|
||||
ok.gender.status = false;
|
||||
ok.elapsedMs.val = 0;
|
||||
dom.match.style.display = 'none';
|
||||
dom.retry.style.display = 'none';
|
||||
dom.source.style.display = 'none';
|
||||
dom.canvas.style.height = '50%';
|
||||
document.body.style.background = 'black';
|
||||
await webCam();
|
||||
await detectionLoop(); // start detection loop
|
||||
startTime = human.now();
|
||||
current.face = await validationLoop(); // start validation loop
|
||||
dom.canvas.width = current.face?.tensor?.shape[1] || options.minSize;
|
||||
dom.canvas.height = current.face?.tensor?.shape[0] || options.minSize;
|
||||
dom.source.width = dom.canvas.width;
|
||||
dom.source.height = dom.canvas.height;
|
||||
dom.canvas.style.width = '';
|
||||
dom.match.style.display = 'flex';
|
||||
dom.save.style.display = 'flex';
|
||||
dom.delete.style.display = 'flex';
|
||||
dom.retry.style.display = 'block';
|
||||
if (!allOk()) { // is all criteria met?
|
||||
log('did not find valid face');
|
||||
return false;
|
||||
}
|
||||
return detectFace();
|
||||
}
|
||||
|
||||
async function init() {
|
||||
log('human version:', human.version, '| tfjs version:', human.tf.version['tfjs-core']);
|
||||
log('options:', JSON.stringify(options).replace(/{|}|"|\[|\]/g, '').replace(/,/g, ' '));
|
||||
log('initializing webcam...');
|
||||
await webCam(); // start webcam
|
||||
log('loading human models...');
|
||||
await human.load(); // preload all models
|
||||
log('initializing human...');
|
||||
log('face embedding model:', humanConfig.face.description.enabled ? 'faceres' : '', humanConfig.face['mobilefacenet']?.enabled ? 'mobilefacenet' : '', humanConfig.face['insightface']?.enabled ? 'insightface' : '');
|
||||
log('loading face database...');
|
||||
log('known face records:', await indexDb.count());
|
||||
dom.retry.addEventListener('click', main);
|
||||
dom.save.addEventListener('click', saveRecords);
|
||||
dom.delete.addEventListener('click', deleteRecord);
|
||||
await human.warmup(); // warmup function to initialize backend for future faster detection
|
||||
await main();
|
||||
}
|
||||
|
||||
window.onload = init;
|
|
@ -0,0 +1,65 @@
|
|||
let db: IDBDatabase; // instance of indexdb
|
||||
|
||||
const database = 'human';
|
||||
const table = 'person';
|
||||
|
||||
export interface FaceRecord { id: number, name: string, descriptor: number[], image: ImageData }
|
||||
|
||||
const log = (...msg) => console.log('indexdb', ...msg); // eslint-disable-line no-console
|
||||
|
||||
export async function open() {
|
||||
if (db) return true;
|
||||
return new Promise((resolve) => {
|
||||
const request: IDBOpenDBRequest = indexedDB.open(database, 1);
|
||||
request.onerror = (evt) => log('error:', evt);
|
||||
request.onupgradeneeded = (evt: IDBVersionChangeEvent) => { // create if doesnt exist
|
||||
log('create:', evt.target);
|
||||
db = (evt.target as IDBOpenDBRequest).result;
|
||||
db.createObjectStore(table, { keyPath: 'id', autoIncrement: true });
|
||||
};
|
||||
request.onsuccess = (evt) => { // open
|
||||
db = (evt.target as IDBOpenDBRequest).result;
|
||||
log('open:', db);
|
||||
resolve(true);
|
||||
};
|
||||
});
|
||||
}
|
||||
|
||||
export async function load(): Promise<FaceRecord[]> {
|
||||
const faceDB: FaceRecord[] = [];
|
||||
if (!db) await open(); // open or create if not already done
|
||||
return new Promise((resolve) => {
|
||||
const cursor: IDBRequest = db.transaction([table], 'readwrite').objectStore(table).openCursor(null, 'next');
|
||||
cursor.onerror = (evt) => log('load error:', evt);
|
||||
cursor.onsuccess = (evt) => {
|
||||
if ((evt.target as IDBRequest).result) {
|
||||
faceDB.push((evt.target as IDBRequest).result.value);
|
||||
(evt.target as IDBRequest).result.continue();
|
||||
} else {
|
||||
resolve(faceDB);
|
||||
}
|
||||
};
|
||||
});
|
||||
}
|
||||
|
||||
export async function count(): Promise<number> {
|
||||
if (!db) await open(); // open or create if not already done
|
||||
return new Promise((resolve) => {
|
||||
const store: IDBRequest = db.transaction([table], 'readwrite').objectStore(table).count();
|
||||
store.onerror = (evt) => log('count error:', evt);
|
||||
store.onsuccess = () => resolve(store.result);
|
||||
});
|
||||
}
|
||||
|
||||
export async function save(faceRecord: FaceRecord) {
|
||||
if (!db) await open(); // open or create if not already done
|
||||
const newRecord = { name: faceRecord.name, descriptor: faceRecord.descriptor, image: faceRecord.image }; // omit id as its autoincrement
|
||||
db.transaction([table], 'readwrite').objectStore(table).put(newRecord);
|
||||
log('save:', newRecord);
|
||||
}
|
||||
|
||||
export async function remove(faceRecord: FaceRecord) {
|
||||
if (!db) await open(); // open or create if not already done
|
||||
db.transaction([table], 'readwrite').objectStore(table).delete(faceRecord.id); // delete based on id
|
||||
log('delete:', faceRecord);
|
||||
}
|
|
@ -0,0 +1,84 @@
|
|||
# Human Face Recognition & Matching
|
||||
|
||||
- **Browser** demo: `index.html` & `facematch.js`:
|
||||
Loads sample images, extracts faces and runs match and similarity analysis
|
||||
- **NodeJS** demo `node-match.js` and `node-match-worker.js`
|
||||
Advanced multithreading demo that runs number of worker threads to process high number of matches
|
||||
- Sample face database: `faces.json`
|
||||
|
||||
<br>
|
||||
|
||||
## Browser Face Recognition Demo
|
||||
|
||||
- `demo/facematch`: Demo for Browsers that uses all face description and embedding features to
|
||||
detect, extract and identify all faces plus calculate similarity between them
|
||||
|
||||
It highlights functionality such as:
|
||||
|
||||
- Loading images
|
||||
- Extracting faces from images
|
||||
- Calculating face embedding descriptors
|
||||
- Finding face similarity and sorting them by similarity
|
||||
- Finding best face match based on a known list of faces and printing matches
|
||||
|
||||
<br>
|
||||
|
||||
## NodeJS Multi-Threading Match Solution
|
||||
|
||||
### Methods and Properties in `node-match`
|
||||
|
||||
- `createBuffer`: create shared buffer array
|
||||
single copy of data regardless of number of workers
|
||||
fixed size based on `options.dbMax`
|
||||
- `appendRecord`: add additional batch of descriptors to buffer
|
||||
can append batch of records to buffer at anytime
|
||||
workers are informed of the new content after append has been completed
|
||||
- `workersStart`: start or expand pool of `threadPoolSize` workers
|
||||
each worker runs `node-match-worker` and listens for messages from main thread
|
||||
can shutdown workers or create additional worker threads on-the-fly
|
||||
safe against workers that exit
|
||||
- `workersClose`: close workers in a pool
|
||||
first request workers to exit then terminate after timeout
|
||||
- `match`: dispach a match job to a worker
|
||||
returns first match that satisfies `minThreshold`
|
||||
assigment to workers using round-robin
|
||||
since timing for each job is near-fixed and predictable
|
||||
- `getDescriptor`: get descriptor array for a given id from a buffer
|
||||
- `fuzDescriptor`: small randomize descriptor content for harder match
|
||||
- `getLabel`: fetch label for resolved descriptor index
|
||||
- `loadDB`: load face database from a JSON file `dbFile`
|
||||
extracts descriptors and adds them to buffer
|
||||
extracts labels and maintains them in main thread
|
||||
for test purposes loads same database `dbFact` times to create a very large database
|
||||
|
||||
`node-match` runs in a listens for messages from workers until `maxJobs` have been reached
|
||||
|
||||
### Performance
|
||||
|
||||
Linear performance decrease that depends on number of records in database
|
||||
Non-linear performance that increases with number of worker threads due to communication overhead
|
||||
|
||||
- Face dataase with 10k records:
|
||||
> threadPoolSize: 1 => ~60 ms / match job
|
||||
> threadPoolSize: 6 => ~25 ms / match job
|
||||
- Face database with 50k records:
|
||||
> threadPoolSize: 1 => ~300 ms / match job
|
||||
> threadPoolSize: 6 => ~100 ms / match job
|
||||
- Face database with 100k records:
|
||||
> threadPoolSize: 1 => ~600 ms / match job
|
||||
> threadPoolSize: 6 => ~200 ms / match job
|
||||
|
||||
### Example
|
||||
|
||||
> node node-match
|
||||
|
||||
<!-- eslint-skip -->
|
||||
```js
|
||||
INFO: options: { dbFile: './faces.json', dbMax: 10000, threadPoolSize: 6, workerSrc: './node-match-worker.js', debug: false, minThreshold: 0.9, descLength: 1024 }
|
||||
DATA: created shared buffer: { maxDescriptors: 10000, totalBytes: 40960000, totalElements: 10240000 }
|
||||
DATA: db loaded: { existingRecords: 0, newRecords: 5700 }
|
||||
INFO: starting worker thread pool: { totalWorkers: 6, alreadyActive: 0 }
|
||||
STATE: submitted: { matchJobs: 100, poolSize: 6, activeWorkers: 6 }
|
||||
STATE: { matchJobsFinished: 100, totalTimeMs: 1769, averageTimeMs: 17.69 }
|
||||
INFO: closing workers: { poolSize: 6, activeWorkers: 6 }
|
||||
```
|
|
@ -1,34 +1,36 @@
|
|||
// @ts-nocheck // typescript checks disabled as this is pure javascript
|
||||
|
||||
/**
|
||||
* Human demo for browsers
|
||||
*
|
||||
* Demo for face descriptor analysis and face simmilarity analysis
|
||||
* Demo for face descriptor analysis and face similarity analysis
|
||||
*/
|
||||
|
||||
import Human from '../../dist/human.esm.js';
|
||||
/** @type {Human} */
|
||||
import { Human } from '../../dist/human.esm.js';
|
||||
|
||||
const userConfig = {
|
||||
backend: 'wasm',
|
||||
async: false,
|
||||
backend: 'humangl',
|
||||
async: true,
|
||||
warmup: 'none',
|
||||
cacheSimilarity: 0,
|
||||
cacheSensitivity: 0.01,
|
||||
debug: true,
|
||||
modelBasePath: '../../models/',
|
||||
// wasmPath: 'https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@3.9.0/dist/',
|
||||
deallocate: true,
|
||||
filter: {
|
||||
enabled: true,
|
||||
equalization: true,
|
||||
width: 0,
|
||||
},
|
||||
face: {
|
||||
enabled: true,
|
||||
detector: { rotation: true, return: true, maxDetected: 20 },
|
||||
detector: { return: true, rotation: true, maxDetected: 50, iouThreshold: 0.01, minConfidence: 0.2 },
|
||||
mesh: { enabled: true },
|
||||
embedding: { enabled: false },
|
||||
iris: { enabled: true },
|
||||
iris: { enabled: false },
|
||||
emotion: { enabled: true },
|
||||
description: { enabled: true },
|
||||
},
|
||||
hand: { enabled: false },
|
||||
gesture: { enabled: true },
|
||||
gesture: { enabled: false },
|
||||
body: { enabled: false },
|
||||
filter: { enabled: true },
|
||||
segmentation: { enabled: false },
|
||||
};
|
||||
|
||||
|
@ -42,8 +44,7 @@ const minScore = 0.4;
|
|||
function log(...msg) {
|
||||
const dt = new Date();
|
||||
const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;
|
||||
// eslint-disable-next-line no-console
|
||||
console.log(ts, ...msg);
|
||||
console.log(ts, ...msg); // eslint-disable-line no-console
|
||||
}
|
||||
|
||||
function title(msg) {
|
||||
|
@ -62,27 +63,16 @@ async function loadFaceMatchDB() {
|
|||
}
|
||||
}
|
||||
|
||||
async function SelectFaceCanvas(face) {
|
||||
async function selectFaceCanvas(face) {
|
||||
// if we have face image tensor, enhance it and display it
|
||||
let embedding;
|
||||
document.getElementById('orig').style.filter = 'blur(16px)';
|
||||
if (face.tensor) {
|
||||
title('Sorting Faces by Similarity');
|
||||
const enhanced = human.enhance(face);
|
||||
if (enhanced) {
|
||||
const c = document.getElementById('orig');
|
||||
const squeeze = human.tf.squeeze(enhanced);
|
||||
const normalize = human.tf.div(squeeze, 255);
|
||||
await human.tf.browser.toPixels(normalize, c);
|
||||
human.tf.dispose(enhanced);
|
||||
human.tf.dispose(squeeze);
|
||||
human.tf.dispose(normalize);
|
||||
const ctx = c.getContext('2d');
|
||||
ctx.font = 'small-caps 0.4rem "Lato"';
|
||||
ctx.fillStyle = 'rgba(255, 255, 255, 1)';
|
||||
}
|
||||
const c = document.getElementById('orig');
|
||||
await human.draw.tensor(face.tensor, c);
|
||||
const arr = db.map((rec) => rec.embedding);
|
||||
const res = await human.match(face.embedding, arr);
|
||||
const res = await human.match.find(face.embedding, arr);
|
||||
log('Match:', db[res.index].name);
|
||||
const emotion = face.emotion[0] ? `${Math.round(100 * face.emotion[0].score)}% ${face.emotion[0].emotion}` : 'N/A';
|
||||
document.getElementById('desc').innerHTML = `
|
||||
|
@ -103,11 +93,11 @@ async function SelectFaceCanvas(face) {
|
|||
for (const canvas of canvases) {
|
||||
// calculate similarity from selected face to current one in the loop
|
||||
const current = all[canvas.tag.sample][canvas.tag.face];
|
||||
const similarity = human.similarity(face.embedding, current.embedding);
|
||||
const similarity = human.match.similarity(face.embedding, current.embedding);
|
||||
canvas.tag.similarity = similarity;
|
||||
// get best match
|
||||
// draw the canvas
|
||||
await human.tf.browser.toPixels(current.tensor, canvas);
|
||||
await human.draw.tensor(current.tensor, canvas);
|
||||
const ctx = canvas.getContext('2d');
|
||||
ctx.font = 'small-caps 1rem "Lato"';
|
||||
ctx.fillStyle = 'rgba(0, 0, 0, 1)';
|
||||
|
@ -118,10 +108,10 @@ async function SelectFaceCanvas(face) {
|
|||
ctx.fillText(`${current.age}y ${(100 * (current.genderScore || 0)).toFixed(1)}% ${current.gender}`, 4, canvas.height - 6);
|
||||
// identify person
|
||||
ctx.font = 'small-caps 1rem "Lato"';
|
||||
const start = performance.now();
|
||||
const start = human.now();
|
||||
const arr = db.map((rec) => rec.embedding);
|
||||
const res = await human.match(face.embedding, arr);
|
||||
time += (performance.now() - start);
|
||||
const res = await human.match.find(current.embedding, arr);
|
||||
time += (human.now() - start);
|
||||
if (res.similarity > minScore) ctx.fillText(`DB: ${(100 * res.similarity).toFixed(1)}% ${db[res.index].name}`, 4, canvas.height - 30);
|
||||
}
|
||||
|
||||
|
@ -135,12 +125,11 @@ async function SelectFaceCanvas(face) {
|
|||
title('Selected Face');
|
||||
}
|
||||
|
||||
async function AddFaceCanvas(index, res, fileName) {
|
||||
async function addFaceCanvas(index, res, fileName) {
|
||||
all[index] = res.face;
|
||||
let ok = false;
|
||||
for (const i in res.face) {
|
||||
if (res.face[i].mesh.length === 0) continue;
|
||||
ok = true;
|
||||
if (!res.face[i].tensor) continue; // did not get valid results
|
||||
if ((res.face[i].faceScore || 0) < human.config.face.detector.minConfidence) continue; // face analysis score too low
|
||||
all[index][i].fileName = fileName;
|
||||
const canvas = document.createElement('canvas');
|
||||
canvas.tag = { sample: index, face: i, source: fileName };
|
||||
|
@ -155,40 +144,37 @@ async function AddFaceCanvas(index, res, fileName) {
|
|||
gender: ${Math.round(100 * res.face[i].genderScore)}% ${res.face[i].gender}
|
||||
emotion: ${emotion}
|
||||
`.replace(/ /g, ' ');
|
||||
// mouse click on any face canvas triggers analysis
|
||||
await human.draw.tensor(res.face[i].tensor, canvas);
|
||||
const ctx = canvas.getContext('2d');
|
||||
if (!ctx) return;
|
||||
ctx.font = 'small-caps 0.8rem "Lato"';
|
||||
ctx.fillStyle = 'rgba(255, 255, 255, 1)';
|
||||
ctx.fillText(`${res.face[i].age}y ${(100 * (res.face[i].genderScore || 0)).toFixed(1)}% ${res.face[i].gender}`, 4, canvas.height - 6);
|
||||
const arr = db.map((rec) => rec.embedding);
|
||||
const result = human.match.find(res.face[i].embedding, arr);
|
||||
ctx.font = 'small-caps 1rem "Lato"';
|
||||
if (result.similarity && res.similarity > minScore) ctx.fillText(`${(100 * result.similarity).toFixed(1)}% ${db[result.index].name}`, 4, canvas.height - 30);
|
||||
document.getElementById('faces').appendChild(canvas);
|
||||
canvas.addEventListener('click', (evt) => {
|
||||
log('Select:', 'Image:', evt.target.tag.sample, 'Face:', evt.target.tag.face, 'Source:', evt.target.tag.source, all[evt.target.tag.sample][evt.target.tag.face]);
|
||||
SelectFaceCanvas(all[evt.target.tag.sample][evt.target.tag.face]);
|
||||
selectFaceCanvas(all[evt.target.tag.sample][evt.target.tag.face]);
|
||||
});
|
||||
// if we actually got face image tensor, draw canvas with that face
|
||||
if (res.face[i].tensor) {
|
||||
await human.tf.browser.toPixels(res.face[i].tensor, canvas);
|
||||
document.getElementById('faces').appendChild(canvas);
|
||||
const ctx = canvas.getContext('2d');
|
||||
ctx.font = 'small-caps 0.8rem "Lato"';
|
||||
ctx.fillStyle = 'rgba(255, 255, 255, 1)';
|
||||
ctx.fillText(`${res.face[i].age}y ${(100 * (res.face[i].genderScore || 0)).toFixed(1)}% ${res.face[i].gender}`, 4, canvas.height - 6);
|
||||
const arr = db.map((rec) => rec.embedding);
|
||||
const result = await human.match(res.face[i].embedding, arr);
|
||||
ctx.font = 'small-caps 1rem "Lato"';
|
||||
if (result.similarity && res.similarity > minScore) ctx.fillText(`${(100 * result.similarity).toFixed(1)}% ${db[result.index].name}`, 4, canvas.height - 30);
|
||||
}
|
||||
}
|
||||
return ok;
|
||||
}
|
||||
|
||||
async function AddImageElement(index, image, length) {
|
||||
async function addImageElement(index, image, length) {
|
||||
const faces = all.reduce((prev, curr) => prev += curr.length, 0);
|
||||
title(`Analyzing Input Images<br> ${Math.round(100 * index / length)}% [${index} / ${length}]<br>Found ${faces} Faces`);
|
||||
return new Promise((resolve) => {
|
||||
const img = new Image(128, 128);
|
||||
img.onload = () => { // must wait until image is loaded
|
||||
human.detect(img, userConfig).then(async (res) => {
|
||||
const ok = await AddFaceCanvas(index, res, image); // then wait until image is analyzed
|
||||
// log('Add image:', index + 1, image, 'faces:', res.face.length);
|
||||
if (ok) document.getElementById('images').appendChild(img); // and finally we can add it
|
||||
resolve(true);
|
||||
});
|
||||
document.getElementById('images').appendChild(img); // and finally we can add it
|
||||
human.detect(img, userConfig)
|
||||
.then((res) => { // eslint-disable-line promise/always-return
|
||||
addFaceCanvas(index, res, image); // then wait until image is analyzed
|
||||
resolve(true);
|
||||
})
|
||||
.catch(() => log('human detect error'));
|
||||
};
|
||||
img.onerror = () => {
|
||||
log('Add image error:', index + 1, image);
|
||||
|
@ -199,7 +185,7 @@ async function AddImageElement(index, image, length) {
|
|||
});
|
||||
}
|
||||
|
||||
async function createFaceMatchDB() {
|
||||
function createFaceMatchDB() {
|
||||
log('Creating Faces DB...');
|
||||
for (const image of all) {
|
||||
for (const face of image) db.push({ name: 'unknown', source: face.fileName, embedding: face.embedding });
|
||||
|
@ -226,36 +212,46 @@ async function main() {
|
|||
// could not dynamically enumerate images so using static list
|
||||
if (images.length === 0) {
|
||||
images = [
|
||||
'ai-body.jpg', 'ai-upper.jpg',
|
||||
'person-carolina.jpg', 'person-celeste.jpg', 'person-leila1.jpg', 'person-leila2.jpg', 'person-lexi.jpg', 'person-linda.jpg', 'person-nicole.jpg', 'person-tasia.jpg',
|
||||
'person-tetiana.jpg', 'person-vlado1.jpg', 'person-vlado5.jpg', 'person-vlado.jpg', 'person-christina.jpg', 'person-lauren.jpg',
|
||||
'ai-face.jpg', 'ai-upper.jpg', 'ai-body.jpg', 'solvay1927.jpg',
|
||||
'group-1.jpg', 'group-2.jpg', 'group-3.jpg', 'group-4.jpg', 'group-5.jpg', 'group-6.jpg', 'group-7.jpg',
|
||||
'daz3d-brianna.jpg', 'daz3d-chiyo.jpg', 'daz3d-cody.jpg', 'daz3d-drew-01.jpg', 'daz3d-drew-02.jpg', 'daz3d-ella-01.jpg', 'daz3d-ella-02.jpg', 'daz3d-gillian.jpg',
|
||||
'daz3d-hye-01.jpg', 'daz3d-hye-02.jpg', 'daz3d-kaia.jpg', 'daz3d-karen.jpg', 'daz3d-kiaria-01.jpg', 'daz3d-kiaria-02.jpg', 'daz3d-lilah-01.jpg', 'daz3d-lilah-02.jpg',
|
||||
'daz3d-lilah-03.jpg', 'daz3d-lila.jpg', 'daz3d-lindsey.jpg', 'daz3d-megah.jpg', 'daz3d-selina-01.jpg', 'daz3d-selina-02.jpg', 'daz3d-snow.jpg',
|
||||
'daz3d-sunshine.jpg', 'daz3d-taia.jpg', 'daz3d-tuesday-01.jpg', 'daz3d-tuesday-02.jpg', 'daz3d-tuesday-03.jpg', 'daz3d-zoe.jpg', 'daz3d-ginnifer.jpg',
|
||||
'daz3d-_emotions01.jpg', 'daz3d-_emotions02.jpg', 'daz3d-_emotions03.jpg', 'daz3d-_emotions04.jpg', 'daz3d-_emotions05.jpg',
|
||||
'person-celeste.jpg', 'person-christina.jpg', 'person-lauren.jpg', 'person-lexi.jpg', 'person-linda.jpg', 'person-nicole.jpg', 'person-tasia.jpg', 'person-tetiana.jpg', 'person-vlado.jpg', 'person-vlado1.jpg', 'person-vlado5.jpg',
|
||||
'stock-group-1.jpg', 'stock-group-2.jpg',
|
||||
'stock-models-1.jpg', 'stock-models-2.jpg', 'stock-models-3.jpg', 'stock-models-4.jpg', 'stock-models-5.jpg', 'stock-models-6.jpg', 'stock-models-7.jpg', 'stock-models-8.jpg', 'stock-models-9.jpg',
|
||||
'stock-teen-1.jpg', 'stock-teen-2.jpg', 'stock-teen-3.jpg', 'stock-teen-4.jpg', 'stock-teen-5.jpg', 'stock-teen-6.jpg', 'stock-teen-7.jpg', 'stock-teen-8.jpg',
|
||||
'stock-models-10.jpg', 'stock-models-11.jpg', 'stock-models-12.jpg', 'stock-models-13.jpg', 'stock-models-14.jpg', 'stock-models-15.jpg', 'stock-models-16.jpg',
|
||||
'cgi-model-1.jpg', 'cgi-model-2.jpg', 'cgi-model-3.jpg', 'cgi-model-4.jpg', 'cgi-model-5.jpg', 'cgi-model-6.jpg', 'cgi-model-7.jpg', 'cgi-model-8.jpg', 'cgi-model-9.jpg',
|
||||
'cgi-model-10.jpg', 'cgi-model-11.jpg', 'cgi-model-12.jpg', 'cgi-model-13.jpg', 'cgi-model-14.jpg', 'cgi-model-15.jpg', 'cgi-model-18.jpg', 'cgi-model-19.jpg',
|
||||
'cgi-model-20.jpg', 'cgi-model-21.jpg', 'cgi-model-22.jpg', 'cgi-model-23.jpg', 'cgi-model-24.jpg', 'cgi-model-25.jpg', 'cgi-model-26.jpg', 'cgi-model-27.jpg', 'cgi-model-28.jpg', 'cgi-model-29.jpg',
|
||||
'cgi-model-30.jpg', 'cgi-model-31.jpg', 'cgi-model-33.jpg', 'cgi-model-34.jpg',
|
||||
'cgi-multiangle-1.jpg', 'cgi-multiangle-2.jpg', 'cgi-multiangle-3.jpg', 'cgi-multiangle-4.jpg', 'cgi-multiangle-6.jpg', 'cgi-multiangle-7.jpg', 'cgi-multiangle-8.jpg', 'cgi-multiangle-9.jpg', 'cgi-multiangle-10.jpg', 'cgi-multiangle-11.jpg',
|
||||
'stock-emotions-a-1.jpg', 'stock-emotions-a-2.jpg', 'stock-emotions-a-3.jpg', 'stock-emotions-a-4.jpg', 'stock-emotions-a-5.jpg', 'stock-emotions-a-6.jpg', 'stock-emotions-a-7.jpg', 'stock-emotions-a-8.jpg',
|
||||
'stock-emotions-b-1.jpg', 'stock-emotions-b-2.jpg', 'stock-emotions-b-3.jpg', 'stock-emotions-b-4.jpg', 'stock-emotions-b-5.jpg', 'stock-emotions-b-6.jpg', 'stock-emotions-b-7.jpg', 'stock-emotions-b-8.jpg',
|
||||
];
|
||||
// add prefix for gitpages
|
||||
images = images.map((a) => `/human/samples/in/${a}`);
|
||||
images = images.map((a) => `../../samples/in/${a}`);
|
||||
log('Adding static image list:', images);
|
||||
} else {
|
||||
log('Discovered images:', images);
|
||||
}
|
||||
|
||||
// download and analyze all images
|
||||
for (let i = 0; i < images.length; i++) await AddImageElement(i, images[i], images.length);
|
||||
// images = ['/samples/in/person-lexi.jpg', '/samples/in/person-carolina.jpg', '/samples/in/solvay1927.jpg'];
|
||||
|
||||
const t0 = human.now();
|
||||
for (let i = 0; i < images.length; i++) await addImageElement(i, images[i], images.length);
|
||||
const t1 = human.now();
|
||||
|
||||
// print stats
|
||||
const num = all.reduce((prev, cur) => prev += cur.length, 0);
|
||||
log('Extracted faces:', num, 'from images:', all.length);
|
||||
log('Extracted faces:', num, 'from images:', all.length, 'time:', Math.round(t1 - t0));
|
||||
log(human.tf.engine().memory());
|
||||
|
||||
// if we didn't download db, generate it from current faces
|
||||
if (!db || db.length === 0) await createFaceMatchDB();
|
||||
if (!db || db.length === 0) createFaceMatchDB();
|
||||
|
||||
title('');
|
||||
log('Ready');
|
||||
human.validate(userConfig);
|
||||
human.match.similarity([], []);
|
||||
}
|
||||
|
||||
window.onload = main;
|
||||
|
|
|
@ -1,8 +1,9 @@
|
|||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<title>Human</title>
|
||||
<meta http-equiv="content-type" content="text/html; charset=utf-8">
|
||||
<!-- <meta http-equiv="content-type" content="text/html; charset=utf-8"> -->
|
||||
<meta name="viewport" content="width=device-width, shrink-to-fit=yes">
|
||||
<meta name="keywords" content="Human">
|
||||
<meta name="application-name" content="Human">
|
||||
|
@ -44,6 +45,6 @@
|
|||
<div id="list" style="height: 10px"></div>
|
||||
<div class="text">Select person to sort by similarity and get a known face match</div>
|
||||
<div id="faces" style="height: 50vh; overflow-y: auto"></div>
|
||||
</div>
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
||||
|
|
|
@ -0,0 +1,76 @@
|
|||
/**
|
||||
* Runs in a worker thread started by `node-match` demo app
|
||||
*
|
||||
*/
|
||||
|
||||
const threads = require('worker_threads');
|
||||
|
||||
let debug = false;
|
||||
|
||||
/** @type SharedArrayBuffer */
|
||||
let buffer;
|
||||
/** @type Float32Array */
|
||||
let view;
|
||||
let threshold = 0;
|
||||
let records = 0;
|
||||
|
||||
const descLength = 1024; // descriptor length in bytes
|
||||
|
||||
function distance(descBuffer, index, options = { order: 2, multiplier: 20 }) {
|
||||
const descriptor = new Float32Array(descBuffer);
|
||||
let sum = 0;
|
||||
for (let i = 0; i < descriptor.length; i++) {
|
||||
const diff = (options.order === 2) ? (descriptor[i] - view[index * descLength + i]) : (Math.abs(descriptor[i] - view[index * descLength + i]));
|
||||
sum += (options.order === 2) ? (diff * diff) : (diff ** options.order);
|
||||
}
|
||||
return (options.multiplier || 20) * sum;
|
||||
}
|
||||
|
||||
function match(descBuffer, options = { order: 2, multiplier: 20 }) {
|
||||
let best = Number.MAX_SAFE_INTEGER;
|
||||
let index = -1;
|
||||
for (let i = 0; i < records; i++) {
|
||||
const res = distance(descBuffer, i, { order: options.order, multiplier: options.multiplier });
|
||||
if (res < best) {
|
||||
best = res;
|
||||
index = i;
|
||||
}
|
||||
if (best < threshold || best === 0) break; // short circuit
|
||||
}
|
||||
best = (options.order === 2) ? Math.sqrt(best) : best ** (1 / options.order);
|
||||
const similarity = Math.round(100 * Math.max(0, 100 - best) / 100.0) / 100;
|
||||
return { index, distance: best, similarity };
|
||||
}
|
||||
|
||||
threads.parentPort?.on('message', (msg) => {
|
||||
if (typeof msg.descriptor !== 'undefined') { // actual work order to find a match
|
||||
const t0 = performance.now();
|
||||
const result = match(msg.descriptor);
|
||||
const t1 = performance.now();
|
||||
threads.parentPort?.postMessage({ request: msg.request, time: Math.trunc(t1 - t0), ...result });
|
||||
return; // short circuit
|
||||
}
|
||||
if (msg instanceof SharedArrayBuffer) { // called only once to receive reference to shared array buffer
|
||||
buffer = msg;
|
||||
view = new Float32Array(buffer); // initialize f64 view into buffer
|
||||
if (debug) threads.parentPort?.postMessage(`buffer: ${buffer.byteLength}`);
|
||||
}
|
||||
if (typeof msg.records !== 'undefined') { // recived every time when number of records changes
|
||||
records = msg.records;
|
||||
if (debug) threads.parentPort?.postMessage(`records: ${records}`);
|
||||
}
|
||||
if (typeof msg.debug !== 'undefined') { // set verbose logging
|
||||
debug = msg.debug;
|
||||
// if (debug) threads.parentPort?.postMessage(`debug: ${debug}`);
|
||||
}
|
||||
if (typeof msg.threshold !== 'undefined') { // set minimum similarity threshold
|
||||
threshold = msg.threshold;
|
||||
// if (debug) threads.parentPort?.postMessage(`threshold: ${threshold}`);
|
||||
}
|
||||
if (typeof msg.shutdown !== 'undefined') { // got message to close worker
|
||||
if (debug) threads.parentPort?.postMessage('shutting down');
|
||||
process.exit(0); // eslint-disable-line no-process-exit
|
||||
}
|
||||
});
|
||||
|
||||
if (debug) threads.parentPort?.postMessage('started');
|
|
@ -0,0 +1,184 @@
|
|||
/**
|
||||
* Human demo app for NodeJS that generates random facial descriptors
|
||||
* and uses NodeJS multi-threading to start multiple threads for face matching
|
||||
* uses `node-match-worker.js` to perform actual face matching analysis
|
||||
*/
|
||||
|
||||
const fs = require('fs');
|
||||
const path = require('path');
|
||||
const threads = require('worker_threads');
|
||||
const log = require('@vladmandic/pilogger'); // eslint-disable-line node/no-unpublished-require
|
||||
|
||||
// global optinos
|
||||
const options = {
|
||||
dbFile: 'demo/facematch/faces.json', // sample face db
|
||||
dbMax: 10000, // maximum number of records to hold in memory
|
||||
threadPoolSize: 12, // number of worker threads to create in thread pool
|
||||
workerSrc: './node-match-worker.js', // code that executes in the worker thread
|
||||
debug: true, // verbose messages
|
||||
minThreshold: 0.5, // match returns first record that meets the similarity threshold, set to 0 to always scan all records
|
||||
descLength: 1024, // descriptor length
|
||||
};
|
||||
|
||||
// test options
|
||||
const testOptions = {
|
||||
dbFact: 175, // load db n times to fake huge size
|
||||
maxJobs: 200, // exit after processing this many jobs
|
||||
fuzDescriptors: true, // randomize descriptor content before match for harder jobs
|
||||
};
|
||||
|
||||
// global data structures
|
||||
const data = {
|
||||
/** @type string[] */
|
||||
labels: [], // array of strings, length of array serves as overal number of records so has to be maintained carefully
|
||||
/** @type SharedArrayBuffer | null */
|
||||
buffer: null,
|
||||
/** @type Float32Array | null */
|
||||
view: null,
|
||||
/** @type threads.Worker[] */
|
||||
workers: [], // holds instance of workers. worker can be null if exited
|
||||
requestID: 0, // each request should increment this counter as its used for round robin assignment
|
||||
};
|
||||
|
||||
let t0 = process.hrtime.bigint(); // used for perf counters
|
||||
|
||||
const appendRecords = (labels, descriptors) => {
|
||||
if (!data.view) return 0;
|
||||
if (descriptors.length !== labels.length) {
|
||||
log.error('append error:', { descriptors: descriptors.length, labels: labels.length });
|
||||
}
|
||||
// if (options.debug) log.state('appending:', { descriptors: descriptors.length, labels: labels.length });
|
||||
for (let i = 0; i < descriptors.length; i++) {
|
||||
for (let j = 0; j < descriptors[i].length; j++) {
|
||||
data.view[data.labels.length * descriptors[i].length + j] = descriptors[i][j]; // add each descriptors element to buffer
|
||||
}
|
||||
data.labels.push(labels[i]); // finally add to labels
|
||||
}
|
||||
for (const worker of data.workers) { // inform all workers how many records we have
|
||||
if (worker) worker.postMessage({ records: data.labels.length });
|
||||
}
|
||||
return data.labels.length;
|
||||
};
|
||||
|
||||
const getLabel = (index) => data.labels[index];
|
||||
|
||||
const getDescriptor = (index) => {
|
||||
if (!data.view) return [];
|
||||
const descriptor = [];
|
||||
for (let i = 0; i < 1024; i++) descriptor.push(data.view[index * options.descLength + i]);
|
||||
return descriptor;
|
||||
};
|
||||
|
||||
const fuzDescriptor = (descriptor) => {
|
||||
for (let i = 0; i < descriptor.length; i++) descriptor[i] += Math.random() - 0.5;
|
||||
return descriptor;
|
||||
};
|
||||
|
||||
const delay = (ms) => new Promise((resolve) => { setTimeout(resolve, ms); });
|
||||
|
||||
async function workersClose() {
|
||||
const current = data.workers.filter((worker) => !!worker).length;
|
||||
log.info('closing workers:', { poolSize: data.workers.length, activeWorkers: current });
|
||||
for (const worker of data.workers) {
|
||||
if (worker) worker.postMessage({ shutdown: true }); // tell worker to exit
|
||||
}
|
||||
await delay(250); // wait a little for threads to exit on their own
|
||||
const remaining = data.workers.filter((worker) => !!worker).length;
|
||||
if (remaining > 0) {
|
||||
log.info('terminating remaining workers:', { remaining: current, pool: data.workers.length });
|
||||
for (const worker of data.workers) {
|
||||
if (worker) worker.terminate(); // if worker did not exit cleany terminate it
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const workerMessage = (index, msg) => {
|
||||
if (msg.request) {
|
||||
if (options.debug) log.data('message:', { worker: index, request: msg.request, time: msg.time, label: getLabel(msg.index), similarity: msg.similarity });
|
||||
if (msg.request >= testOptions.maxJobs) {
|
||||
const t1 = process.hrtime.bigint();
|
||||
const elapsed = Math.round(Number(t1 - t0) / 1000 / 1000);
|
||||
log.state({ matchJobsFinished: testOptions.maxJobs, totalTimeMs: elapsed, averageTimeMs: Math.round(100 * elapsed / testOptions.maxJobs) / 100 });
|
||||
workersClose();
|
||||
}
|
||||
} else {
|
||||
log.data('message:', { worker: index, msg });
|
||||
}
|
||||
};
|
||||
|
||||
async function workerClose(id, code) {
|
||||
const previous = data.workers.filter((worker) => !!worker).length;
|
||||
delete data.workers[id];
|
||||
const current = data.workers.filter((worker) => !!worker).length;
|
||||
if (options.debug) log.state('worker exit:', { id, code, previous, current });
|
||||
}
|
||||
|
||||
async function workersStart(numWorkers) {
|
||||
const previous = data.workers.filter((worker) => !!worker).length;
|
||||
log.info('starting worker thread pool:', { totalWorkers: numWorkers, alreadyActive: previous });
|
||||
for (let i = 0; i < numWorkers; i++) {
|
||||
if (!data.workers[i]) { // worker does not exist, so create it
|
||||
const worker = new threads.Worker(path.join(__dirname, options.workerSrc));
|
||||
worker.on('message', (msg) => workerMessage(i, msg));
|
||||
worker.on('error', (err) => log.error('worker error:', { err }));
|
||||
worker.on('exit', (code) => workerClose(i, code));
|
||||
worker.postMessage(data.buffer); // send buffer to worker
|
||||
data.workers[i] = worker;
|
||||
}
|
||||
data.workers[i]?.postMessage({ records: data.labels.length, threshold: options.minThreshold, debug: options.debug }); // inform worker how many records there are
|
||||
}
|
||||
await delay(100); // just wait a bit for everything to settle down
|
||||
}
|
||||
|
||||
const match = (descriptor) => {
|
||||
// const arr = Float32Array.from(descriptor);
|
||||
const buffer = new ArrayBuffer(options.descLength * 4);
|
||||
const view = new Float32Array(buffer);
|
||||
view.set(descriptor);
|
||||
const available = data.workers.filter((worker) => !!worker).length; // find number of available workers
|
||||
if (available > 0) data.workers[data.requestID % available].postMessage({ descriptor: buffer, request: data.requestID }, [buffer]); // round robin to first available worker
|
||||
else log.error('no available workers');
|
||||
};
|
||||
|
||||
async function loadDB(count) {
|
||||
const previous = data.labels.length;
|
||||
if (!fs.existsSync(options.dbFile)) {
|
||||
log.error('db file does not exist:', options.dbFile);
|
||||
return;
|
||||
}
|
||||
t0 = process.hrtime.bigint();
|
||||
for (let i = 0; i < count; i++) { // test loop: load entire face db from array of objects n times into buffer
|
||||
const db = JSON.parse(fs.readFileSync(options.dbFile).toString());
|
||||
const names = db.map((record) => record.name);
|
||||
const descriptors = db.map((record) => record.embedding);
|
||||
appendRecords(names, descriptors);
|
||||
}
|
||||
log.data('db loaded:', { existingRecords: previous, newRecords: data.labels.length });
|
||||
}
|
||||
|
||||
async function createBuffer() {
|
||||
data.buffer = new SharedArrayBuffer(4 * options.dbMax * options.descLength); // preallocate max number of records as sharedarraybuffers cannot grow
|
||||
data.view = new Float32Array(data.buffer); // create view into buffer
|
||||
data.labels.length = 0;
|
||||
log.data('created shared buffer:', { maxDescriptors: (data.view.length || 0) / options.descLength, totalBytes: data.buffer.byteLength, totalElements: data.view.length });
|
||||
}
|
||||
|
||||
async function main() {
|
||||
log.header();
|
||||
log.info('options:', options);
|
||||
|
||||
await createBuffer(); // create shared buffer array
|
||||
await loadDB(testOptions.dbFact); // loadDB is a test method that calls actual addRecords
|
||||
await workersStart(options.threadPoolSize); // can be called at anytime to modify worker pool size
|
||||
for (let i = 0; i < testOptions.maxJobs; i++) {
|
||||
const idx = Math.trunc(data.labels.length * Math.random()); // grab a random descriptor index that we'll search for
|
||||
const descriptor = getDescriptor(idx); // grab a descriptor at index
|
||||
data.requestID++; // increase request id
|
||||
if (testOptions.fuzDescriptors) match(fuzDescriptor(descriptor)); // fuz descriptor for harder match
|
||||
else match(descriptor);
|
||||
if (options.debug) log.debug('submited job', data.requestID); // we already know what we're searching for so we can compare results
|
||||
}
|
||||
log.state('submitted:', { matchJobs: testOptions.maxJobs, poolSize: data.workers.length, activeWorkers: data.workers.filter((worker) => !!worker).length });
|
||||
}
|
||||
|
||||
main();
|
|
@ -0,0 +1,3 @@
|
|||
# Helper libraries
|
||||
|
||||
Used by main `Human` demo app
|
|
@ -1,4 +1,3 @@
|
|||
// @ts-nocheck
|
||||
// based on: https://github.com/munrocket/gl-bench
|
||||
|
||||
const UICSS = `
|
||||
|
@ -37,15 +36,13 @@ const UISVG = `
|
|||
|
||||
class GLBench {
|
||||
/** GLBench constructor
|
||||
* @param { WebGLRenderingContext | WebGL2RenderingContext } gl context
|
||||
* @param { WebGLRenderingContext | WebGL2RenderingContext | null } gl context
|
||||
* @param { Object | undefined } settings additional settings
|
||||
*/
|
||||
constructor(gl, settings = {}) {
|
||||
this.css = UICSS;
|
||||
this.svg = UISVG;
|
||||
// eslint-disable-next-line @typescript-eslint/no-empty-function
|
||||
this.paramLogger = () => {};
|
||||
// eslint-disable-next-line @typescript-eslint/no-empty-function
|
||||
this.chartLogger = () => {};
|
||||
this.chartLen = 20;
|
||||
this.chartHz = 20;
|
||||
|
@ -92,7 +89,6 @@ class GLBench {
|
|||
|
||||
const addProfiler = (fn, self, target) => {
|
||||
const t = self.now();
|
||||
// eslint-disable-next-line prefer-rest-params
|
||||
fn.apply(target, arguments);
|
||||
if (self.trackGPU) self.finished.push(glFinish(t, self.activeAccums.slice(0)));
|
||||
};
|
||||
|
@ -107,13 +103,11 @@ class GLBench {
|
|||
if (gl[fn]) {
|
||||
gl[fn] = addProfiler(gl[fn], this, gl);
|
||||
} else {
|
||||
// eslint-disable-next-line no-console
|
||||
console.log('bench: cannot attach to webgl function');
|
||||
}
|
||||
|
||||
/*
|
||||
gl.getExtension = ((fn, self) => {
|
||||
// eslint-disable-next-line prefer-rest-params
|
||||
const ext = fn.apply(gl, arguments);
|
||||
if (ext) {
|
||||
['drawElementsInstancedANGLE', 'drawBuffersWEBGL'].forEach((fn2) => {
|
||||
|
@ -148,7 +142,6 @@ class GLBench {
|
|||
return (i, cpu, gpu, mem, fps, totalTime, frameId) => {
|
||||
nodes['gl-cpu'][i].style.strokeDasharray = (cpu * 0.27).toFixed(0) + ' 100';
|
||||
nodes['gl-gpu'][i].style.strokeDasharray = (gpu * 0.27).toFixed(0) + ' 100';
|
||||
// eslint-disable-next-line no-nested-ternary
|
||||
nodes['gl-mem'][i].innerHTML = names[i] ? names[i] : (mem ? 'mem: ' + mem.toFixed(0) + 'mb' : '');
|
||||
nodes['gl-fps'][i].innerHTML = 'FPS: ' + fps.toFixed(1);
|
||||
logger(names[i], cpu, gpu, mem, fps, totalTime, frameId);
|
||||
|
|
|
@ -64,9 +64,7 @@ function createNode() {
|
|||
hideChildren() {
|
||||
if (Array.isArray(this.children)) {
|
||||
this.children.forEach((item) => {
|
||||
// @ts-ignore
|
||||
item['elem']['classList'].add('hide');
|
||||
// @ts-ignore
|
||||
if (item['expanded']) item.hideChildren();
|
||||
});
|
||||
}
|
||||
|
@ -74,9 +72,7 @@ function createNode() {
|
|||
showChildren() {
|
||||
if (Array.isArray(this.children)) {
|
||||
this.children.forEach((item) => {
|
||||
// @ts-ignore
|
||||
item['elem']['classList'].remove('hide');
|
||||
// @ts-ignore
|
||||
if (item['expanded']) item.showChildren();
|
||||
});
|
||||
}
|
||||
|
|
|
@ -1,5 +1,3 @@
|
|||
//@ts-nocheck
|
||||
|
||||
let instance = 0;
|
||||
let CSScreated = false;
|
||||
|
||||
|
@ -86,6 +84,7 @@ class Menu {
|
|||
}
|
||||
|
||||
createMenu(parent, title = '', position = { top: null, left: null, bottom: null, right: null }) {
|
||||
/** @type {HTMLDivElement} */
|
||||
this.menu = document.createElement('div');
|
||||
this.menu.id = `menu-${instance}`;
|
||||
this.menu.className = 'menu';
|
||||
|
@ -133,11 +132,11 @@ class Menu {
|
|||
}
|
||||
|
||||
get width() {
|
||||
return this.menu.offsetWidth || 0;
|
||||
return this.menu ? this.menu.offsetWidth : 0;
|
||||
}
|
||||
|
||||
get height() {
|
||||
return this.menu.offsetHeight || 0;
|
||||
return this.menu ? this.menu.offsetHeight : 0;
|
||||
}
|
||||
|
||||
hide() {
|
||||
|
@ -205,8 +204,10 @@ class Menu {
|
|||
el.innerHTML = `<div class="menu-checkbox"><input class="menu-checkbox" type="checkbox" id="${this.newID}" ${object[variable] ? 'checked' : ''}/><label class="menu-checkbox-label" for="${this.ID}"></label></div>${title}`;
|
||||
if (this.container) this.container.appendChild(el);
|
||||
el.addEventListener('change', (evt) => {
|
||||
object[variable] = evt.target.checked;
|
||||
if (callback) callback(evt.target.checked);
|
||||
if (evt.target) {
|
||||
object[variable] = evt.target['checked'];
|
||||
if (callback) callback(evt.target['checked']);
|
||||
}
|
||||
});
|
||||
return el;
|
||||
}
|
||||
|
@ -225,7 +226,7 @@ class Menu {
|
|||
el.style.fontVariant = document.body.style.fontVariant;
|
||||
if (this.container) this.container.appendChild(el);
|
||||
el.addEventListener('change', (evt) => {
|
||||
if (callback) callback(items[evt.target.selectedIndex]);
|
||||
if (callback && evt.target) callback(items[evt.target['selectedIndex']]);
|
||||
});
|
||||
return el;
|
||||
}
|
||||
|
@ -237,12 +238,12 @@ class Menu {
|
|||
if (this.container) this.container.appendChild(el);
|
||||
el.addEventListener('change', (evt) => {
|
||||
if (evt.target) {
|
||||
object[variable] = parseInt(evt.target.value) === parseFloat(evt.target.value) ? parseInt(evt.target.value) : parseFloat(evt.target.value);
|
||||
evt.target.setAttribute('value', evt.target.value);
|
||||
if (callback) callback(evt.target.value);
|
||||
object[variable] = parseInt(evt.target['value']) === parseFloat(evt.target['value']) ? parseInt(evt.target['value']) : parseFloat(evt.target['value']);
|
||||
evt.target.setAttribute('value', evt.target['value']);
|
||||
if (callback) callback(evt.target['value']);
|
||||
}
|
||||
});
|
||||
el.input = el.children[0];
|
||||
el['input'] = el.children[0];
|
||||
return el;
|
||||
}
|
||||
|
||||
|
@ -282,7 +283,6 @@ class Menu {
|
|||
return el;
|
||||
}
|
||||
|
||||
// eslint-disable-next-line class-methods-use-this
|
||||
updateValue(title, val, suffix = '') {
|
||||
const el = document.getElementById(`menu-val-${title}`);
|
||||
if (el) el.innerText = `${title}: ${val}${suffix}`;
|
||||
|
@ -299,12 +299,13 @@ class Menu {
|
|||
return el;
|
||||
}
|
||||
|
||||
// eslint-disable-next-line class-methods-use-this
|
||||
async updateChart(id, values) {
|
||||
if (!values || (values.length === 0)) return;
|
||||
/** @type {HTMLCanvasElement} */
|
||||
const canvas = document.getElementById(`menu-canvas-${id}`);
|
||||
if (!canvas) return;
|
||||
const ctx = canvas.getContext('2d');
|
||||
if (!ctx) return;
|
||||
ctx.fillStyle = theme.background;
|
||||
ctx.fillRect(0, 0, canvas.width, canvas.height);
|
||||
const width = canvas.width / values.length;
|
||||
|
@ -318,7 +319,7 @@ class Menu {
|
|||
ctx.fillRect(i * width, 0, width - 4, canvas.height);
|
||||
ctx.fillStyle = theme.background;
|
||||
ctx.font = `${width / 1.5}px "Segoe UI"`;
|
||||
ctx.fillText(Math.round(values[i]), i * width + 1, canvas.height - 1, width - 1);
|
||||
ctx.fillText(Math.round(values[i]).toString(), i * width + 1, canvas.height - 1, width - 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,870 +0,0 @@
|
|||
// @ts-nocheck
|
||||
|
||||
import { Vector2, Vector3, Spherical, MOUSE, Quaternion, EventDispatcher } from './three.js';
|
||||
|
||||
/**
|
||||
* @author qiao / https://github.com/qiao
|
||||
* @author mrdoob / http://mrdoob.com
|
||||
* @author alteredq / http://alteredqualia.com/
|
||||
* @author WestLangley / http://github.com/WestLangley
|
||||
* @author erich666 / http://erichaines.com
|
||||
*/
|
||||
|
||||
// This set of controls performs orbiting, dollying (zooming), and panning.
|
||||
// Unlike TrackballControls, it maintains the "up" direction object.up (+Y by default).
|
||||
//
|
||||
// Orbit - left mouse / touch: one-finger move
|
||||
// Zoom - middle mouse, or mousewheel / touch: two-finger spread or squish
|
||||
// Pan - right mouse, or left mouse + ctrl/metaKey, or arrow keys / touch: two-finger move
|
||||
|
||||
const OrbitControls = function (object, domElement) {
|
||||
this.object = object;
|
||||
|
||||
this.domElement = (domElement !== undefined) ? domElement : document;
|
||||
|
||||
// Set to false to disable this control
|
||||
this.enabled = true;
|
||||
|
||||
// "target" sets the location of focus, where the object orbits around
|
||||
this.target = new Vector3();
|
||||
|
||||
// How far you can dolly in and out ( PerspectiveCamera only )
|
||||
this.minDistance = 0;
|
||||
this.maxDistance = Infinity;
|
||||
|
||||
// How far you can zoom in and out ( OrthographicCamera only )
|
||||
this.minZoom = 0;
|
||||
this.maxZoom = Infinity;
|
||||
|
||||
// How far you can orbit vertically, upper and lower limits.
|
||||
// Range is 0 to Math.PI radians.
|
||||
this.minPolarAngle = 0; // radians
|
||||
this.maxPolarAngle = Math.PI; // radians
|
||||
|
||||
// How far you can orbit horizontally, upper and lower limits.
|
||||
// If set, must be a sub-interval of the interval [ - Math.PI, Math.PI ].
|
||||
this.minAzimuthAngle = -Infinity; // radians
|
||||
this.maxAzimuthAngle = Infinity; // radians
|
||||
|
||||
// Set to true to enable damping (inertia)
|
||||
// If damping is enabled, you must call controls.update() in your animation loop
|
||||
this.enableDamping = false;
|
||||
this.dampingFactor = 0.25;
|
||||
|
||||
// This option actually enables dollying in and out; left as "zoom" for backwards compatibility.
|
||||
// Set to false to disable zooming
|
||||
this.enableZoom = true;
|
||||
this.zoomSpeed = 1.0;
|
||||
|
||||
// Set to false to disable rotating
|
||||
this.enableRotate = true;
|
||||
this.rotateSpeed = 1.0;
|
||||
|
||||
// Set to false to disable panning
|
||||
this.enablePan = true;
|
||||
this.panSpeed = 1.0;
|
||||
this.screenSpacePanning = false; // if true, pan in screen-space
|
||||
this.keyPanSpeed = 7.0; // pixels moved per arrow key push
|
||||
|
||||
// Set to true to automatically rotate around the target
|
||||
// If auto-rotate is enabled, you must call controls.update() in your animation loop
|
||||
this.autoRotate = false;
|
||||
this.autoRotateSpeed = 2.0; // 30 seconds per round when fps is 60
|
||||
|
||||
// Set to false to disable use of the keys
|
||||
this.enableKeys = true;
|
||||
|
||||
// The four arrow keys
|
||||
this.keys = { LEFT: 37, UP: 38, RIGHT: 39, BOTTOM: 40 };
|
||||
|
||||
// Mouse buttons
|
||||
this.mouseButtons = { LEFT: MOUSE.LEFT, MIDDLE: MOUSE.MIDDLE, RIGHT: MOUSE.RIGHT };
|
||||
|
||||
// for reset
|
||||
this.target0 = this.target.clone();
|
||||
this.position0 = this.object.position.clone();
|
||||
this.zoom0 = this.object.zoom;
|
||||
|
||||
//
|
||||
// public methods
|
||||
//
|
||||
|
||||
this.getPolarAngle = function () {
|
||||
return spherical.phi;
|
||||
};
|
||||
|
||||
this.getAzimuthalAngle = function () {
|
||||
return spherical.theta;
|
||||
};
|
||||
|
||||
this.saveState = function () {
|
||||
scope.target0.copy(scope.target);
|
||||
scope.position0.copy(scope.object.position);
|
||||
scope.zoom0 = scope.object.zoom;
|
||||
};
|
||||
|
||||
this.reset = function () {
|
||||
scope.target.copy(scope.target0);
|
||||
scope.object.position.copy(scope.position0);
|
||||
scope.object.zoom = scope.zoom0;
|
||||
|
||||
scope.object.updateProjectionMatrix();
|
||||
scope.dispatchEvent(changeEvent);
|
||||
|
||||
scope.update();
|
||||
|
||||
state = STATE.NONE;
|
||||
};
|
||||
|
||||
// this method is exposed, but perhaps it would be better if we can make it private...
|
||||
this.update = (function () {
|
||||
const offset = new Vector3();
|
||||
|
||||
// so camera.up is the orbit axis
|
||||
const quat = new Quaternion().setFromUnitVectors(object.up, new Vector3(0, 1, 0));
|
||||
const quatInverse = quat.clone().invert();
|
||||
|
||||
const lastPosition = new Vector3();
|
||||
const lastQuaternion = new Quaternion();
|
||||
|
||||
return function update() {
|
||||
const position = scope.object.position;
|
||||
|
||||
offset.copy(position).sub(scope.target);
|
||||
|
||||
// rotate offset to "y-axis-is-up" space
|
||||
offset.applyQuaternion(quat);
|
||||
|
||||
// angle from z-axis around y-axis
|
||||
spherical.setFromVector3(offset);
|
||||
|
||||
if (scope.autoRotate && state === STATE.NONE) {
|
||||
rotateLeft(getAutoRotationAngle());
|
||||
}
|
||||
|
||||
spherical.theta += sphericalDelta.theta;
|
||||
spherical.phi += sphericalDelta.phi;
|
||||
|
||||
// restrict theta to be between desired limits
|
||||
spherical.theta = Math.max(scope.minAzimuthAngle, Math.min(scope.maxAzimuthAngle, spherical.theta));
|
||||
|
||||
// restrict phi to be between desired limits
|
||||
spherical.phi = Math.max(scope.minPolarAngle, Math.min(scope.maxPolarAngle, spherical.phi));
|
||||
|
||||
spherical.makeSafe();
|
||||
|
||||
spherical.radius *= scale;
|
||||
|
||||
// restrict radius to be between desired limits
|
||||
spherical.radius = Math.max(scope.minDistance, Math.min(scope.maxDistance, spherical.radius));
|
||||
|
||||
// move target to panned location
|
||||
scope.target.add(panOffset);
|
||||
|
||||
offset.setFromSpherical(spherical);
|
||||
|
||||
// rotate offset back to "camera-up-vector-is-up" space
|
||||
offset.applyQuaternion(quatInverse);
|
||||
|
||||
position.copy(scope.target).add(offset);
|
||||
|
||||
scope.object.lookAt(scope.target);
|
||||
|
||||
if (scope.enableDamping === true) {
|
||||
sphericalDelta.theta *= (1 - scope.dampingFactor);
|
||||
sphericalDelta.phi *= (1 - scope.dampingFactor);
|
||||
|
||||
panOffset.multiplyScalar(1 - scope.dampingFactor);
|
||||
} else {
|
||||
sphericalDelta.set(0, 0, 0);
|
||||
|
||||
panOffset.set(0, 0, 0);
|
||||
}
|
||||
|
||||
scale = 1;
|
||||
|
||||
// update condition is:
|
||||
// min(camera displacement, camera rotation in radians)^2 > EPS
|
||||
// using small-angle approximation cos(x/2) = 1 - x^2 / 8
|
||||
|
||||
if (zoomChanged
|
||||
|| lastPosition.distanceToSquared(scope.object.position) > EPS
|
||||
|| 8 * (1 - lastQuaternion.dot(scope.object.quaternion)) > EPS) {
|
||||
scope.dispatchEvent(changeEvent);
|
||||
|
||||
lastPosition.copy(scope.object.position);
|
||||
lastQuaternion.copy(scope.object.quaternion);
|
||||
zoomChanged = false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
};
|
||||
}());
|
||||
|
||||
this.dispose = function () {
|
||||
scope.domElement.removeEventListener('contextmenu', onContextMenu, false);
|
||||
scope.domElement.removeEventListener('mousedown', onMouseDown, false);
|
||||
scope.domElement.removeEventListener('wheel', onMouseWheel, false);
|
||||
|
||||
scope.domElement.removeEventListener('touchstart', onTouchStart, false);
|
||||
scope.domElement.removeEventListener('touchend', onTouchEnd, false);
|
||||
scope.domElement.removeEventListener('touchmove', onTouchMove, false);
|
||||
|
||||
document.removeEventListener('mousemove', onMouseMove, false);
|
||||
document.removeEventListener('mouseup', onMouseUp, false);
|
||||
|
||||
window.removeEventListener('keydown', onKeyDown, false);
|
||||
|
||||
// scope.dispatchEvent( { type: 'dispose' } ); // should this be added here?
|
||||
};
|
||||
|
||||
//
|
||||
// internals
|
||||
//
|
||||
|
||||
var scope = this;
|
||||
|
||||
var changeEvent = { type: 'change' };
|
||||
const startEvent = { type: 'start' };
|
||||
const endEvent = { type: 'end' };
|
||||
|
||||
var STATE = { NONE: -1, ROTATE: 0, DOLLY: 1, PAN: 2, TOUCH_ROTATE: 3, TOUCH_DOLLY_PAN: 4 };
|
||||
|
||||
var state = STATE.NONE;
|
||||
|
||||
var EPS = 0.000001;
|
||||
|
||||
// current position in spherical coordinates
|
||||
var spherical = new Spherical();
|
||||
var sphericalDelta = new Spherical();
|
||||
|
||||
var scale = 1;
|
||||
var panOffset = new Vector3();
|
||||
var zoomChanged = false;
|
||||
|
||||
const rotateStart = new Vector2();
|
||||
const rotateEnd = new Vector2();
|
||||
const rotateDelta = new Vector2();
|
||||
|
||||
const panStart = new Vector2();
|
||||
const panEnd = new Vector2();
|
||||
const panDelta = new Vector2();
|
||||
|
||||
const dollyStart = new Vector2();
|
||||
const dollyEnd = new Vector2();
|
||||
const dollyDelta = new Vector2();
|
||||
|
||||
function getAutoRotationAngle() {
|
||||
return 2 * Math.PI / 60 / 60 * scope.autoRotateSpeed;
|
||||
}
|
||||
|
||||
function getZoomScale() {
|
||||
return Math.pow(0.95, scope.zoomSpeed);
|
||||
}
|
||||
|
||||
function rotateLeft(angle) {
|
||||
sphericalDelta.theta -= angle;
|
||||
}
|
||||
|
||||
function rotateUp(angle) {
|
||||
sphericalDelta.phi -= angle;
|
||||
}
|
||||
|
||||
const panLeft = (function () {
|
||||
const v = new Vector3();
|
||||
|
||||
return function panLeft(distance, objectMatrix) {
|
||||
v.setFromMatrixColumn(objectMatrix, 0); // get X column of objectMatrix
|
||||
v.multiplyScalar(-distance);
|
||||
|
||||
panOffset.add(v);
|
||||
};
|
||||
}());
|
||||
|
||||
const panUp = (function () {
|
||||
const v = new Vector3();
|
||||
|
||||
return function panUp(distance, objectMatrix) {
|
||||
if (scope.screenSpacePanning === true) {
|
||||
v.setFromMatrixColumn(objectMatrix, 1);
|
||||
} else {
|
||||
v.setFromMatrixColumn(objectMatrix, 0);
|
||||
v.crossVectors(scope.object.up, v);
|
||||
}
|
||||
|
||||
v.multiplyScalar(distance);
|
||||
|
||||
panOffset.add(v);
|
||||
};
|
||||
}());
|
||||
|
||||
// deltaX and deltaY are in pixels; right and down are positive
|
||||
const pan = (function () {
|
||||
const offset = new Vector3();
|
||||
|
||||
return function pan(deltaX, deltaY) {
|
||||
const element = scope.domElement === document ? scope.domElement.body : scope.domElement;
|
||||
|
||||
if (scope.object.isPerspectiveCamera) {
|
||||
// perspective
|
||||
const position = scope.object.position;
|
||||
offset.copy(position).sub(scope.target);
|
||||
let targetDistance = offset.length();
|
||||
|
||||
// half of the fov is center to top of screen
|
||||
targetDistance *= Math.tan((scope.object.fov / 2) * Math.PI / 180.0);
|
||||
|
||||
// we use only clientHeight here so aspect ratio does not distort speed
|
||||
panLeft(2 * deltaX * targetDistance / element.clientHeight, scope.object.matrix);
|
||||
panUp(2 * deltaY * targetDistance / element.clientHeight, scope.object.matrix);
|
||||
} else if (scope.object.isOrthographicCamera) {
|
||||
// orthographic
|
||||
panLeft(deltaX * (scope.object.right - scope.object.left) / scope.object.zoom / element.clientWidth,
|
||||
scope.object.matrix);
|
||||
panUp(deltaY * (scope.object.top - scope.object.bottom) / scope.object.zoom / element.clientHeight, scope
|
||||
.object.matrix);
|
||||
} else {
|
||||
// camera neither orthographic nor perspective
|
||||
scope.enablePan = false;
|
||||
}
|
||||
};
|
||||
}());
|
||||
|
||||
function dollyIn(dollyScale) {
|
||||
if (scope.object.isPerspectiveCamera) {
|
||||
scale /= dollyScale;
|
||||
} else if (scope.object.isOrthographicCamera) {
|
||||
scope.object.zoom = Math.max(scope.minZoom, Math.min(scope.maxZoom, scope.object.zoom * dollyScale));
|
||||
scope.object.updateProjectionMatrix();
|
||||
zoomChanged = true;
|
||||
} else {
|
||||
scope.enableZoom = false;
|
||||
}
|
||||
}
|
||||
|
||||
function dollyOut(dollyScale) {
|
||||
if (scope.object.isPerspectiveCamera) {
|
||||
scale *= dollyScale;
|
||||
} else if (scope.object.isOrthographicCamera) {
|
||||
scope.object.zoom = Math.max(scope.minZoom, Math.min(scope.maxZoom, scope.object.zoom / dollyScale));
|
||||
scope.object.updateProjectionMatrix();
|
||||
zoomChanged = true;
|
||||
} else {
|
||||
scope.enableZoom = false;
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// event callbacks - update the object state
|
||||
//
|
||||
|
||||
function handleMouseDownRotate(event) {
|
||||
// console.log( 'handleMouseDownRotate' );
|
||||
|
||||
rotateStart.set(event.clientX, event.clientY);
|
||||
}
|
||||
|
||||
function handleMouseDownDolly(event) {
|
||||
// console.log( 'handleMouseDownDolly' );
|
||||
|
||||
dollyStart.set(event.clientX, event.clientY);
|
||||
}
|
||||
|
||||
function handleMouseDownPan(event) {
|
||||
// console.log( 'handleMouseDownPan' );
|
||||
|
||||
panStart.set(event.clientX, event.clientY);
|
||||
}
|
||||
|
||||
function handleMouseMoveRotate(event) {
|
||||
// console.log( 'handleMouseMoveRotate' );
|
||||
|
||||
rotateEnd.set(event.clientX, event.clientY);
|
||||
|
||||
rotateDelta.subVectors(rotateEnd, rotateStart).multiplyScalar(scope.rotateSpeed);
|
||||
|
||||
const element = scope.domElement === document ? scope.domElement.body : scope.domElement;
|
||||
|
||||
rotateLeft(2 * Math.PI * rotateDelta.x / element.clientHeight); // yes, height
|
||||
|
||||
rotateUp(2 * Math.PI * rotateDelta.y / element.clientHeight);
|
||||
|
||||
rotateStart.copy(rotateEnd);
|
||||
|
||||
scope.update();
|
||||
}
|
||||
|
||||
function handleMouseMoveDolly(event) {
|
||||
// console.log( 'handleMouseMoveDolly' );
|
||||
|
||||
dollyEnd.set(event.clientX, event.clientY);
|
||||
|
||||
dollyDelta.subVectors(dollyEnd, dollyStart);
|
||||
|
||||
if (dollyDelta.y > 0) {
|
||||
dollyIn(getZoomScale());
|
||||
} else if (dollyDelta.y < 0) {
|
||||
dollyOut(getZoomScale());
|
||||
}
|
||||
|
||||
dollyStart.copy(dollyEnd);
|
||||
|
||||
scope.update();
|
||||
}
|
||||
|
||||
function handleMouseMovePan(event) {
|
||||
// console.log( 'handleMouseMovePan' );
|
||||
|
||||
panEnd.set(event.clientX, event.clientY);
|
||||
|
||||
panDelta.subVectors(panEnd, panStart).multiplyScalar(scope.panSpeed);
|
||||
|
||||
pan(panDelta.x, panDelta.y);
|
||||
|
||||
panStart.copy(panEnd);
|
||||
|
||||
scope.update();
|
||||
}
|
||||
|
||||
function handleMouseUp(event) {
|
||||
|
||||
// console.log( 'handleMouseUp' );
|
||||
|
||||
}
|
||||
|
||||
function handleMouseWheel(event) {
|
||||
// console.log( 'handleMouseWheel' );
|
||||
|
||||
if (event.deltaY < 0) {
|
||||
dollyOut(getZoomScale());
|
||||
} else if (event.deltaY > 0) {
|
||||
dollyIn(getZoomScale());
|
||||
}
|
||||
|
||||
scope.update();
|
||||
}
|
||||
|
||||
function handleKeyDown(event) {
|
||||
// console.log( 'handleKeyDown' );
|
||||
|
||||
switch (event.keyCode) {
|
||||
case scope.keys.UP:
|
||||
pan(0, scope.keyPanSpeed);
|
||||
scope.update();
|
||||
break;
|
||||
|
||||
case scope.keys.BOTTOM:
|
||||
pan(0, -scope.keyPanSpeed);
|
||||
scope.update();
|
||||
break;
|
||||
|
||||
case scope.keys.LEFT:
|
||||
pan(scope.keyPanSpeed, 0);
|
||||
scope.update();
|
||||
break;
|
||||
|
||||
case scope.keys.RIGHT:
|
||||
pan(-scope.keyPanSpeed, 0);
|
||||
scope.update();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
function handleTouchStartRotate(event) {
|
||||
// console.log( 'handleTouchStartRotate' );
|
||||
|
||||
rotateStart.set(event.touches[0].pageX, event.touches[0].pageY);
|
||||
}
|
||||
|
||||
function handleTouchStartDollyPan(event) {
|
||||
// console.log( 'handleTouchStartDollyPan' );
|
||||
|
||||
if (scope.enableZoom) {
|
||||
const dx = event.touches[0].pageX - event.touches[1].pageX;
|
||||
const dy = event.touches[0].pageY - event.touches[1].pageY;
|
||||
|
||||
const distance = Math.sqrt(dx * dx + dy * dy);
|
||||
|
||||
dollyStart.set(0, distance);
|
||||
}
|
||||
|
||||
if (scope.enablePan) {
|
||||
const x = 0.5 * (event.touches[0].pageX + event.touches[1].pageX);
|
||||
const y = 0.5 * (event.touches[0].pageY + event.touches[1].pageY);
|
||||
|
||||
panStart.set(x, y);
|
||||
}
|
||||
}
|
||||
|
||||
function handleTouchMoveRotate(event) {
|
||||
// console.log( 'handleTouchMoveRotate' );
|
||||
|
||||
rotateEnd.set(event.touches[0].pageX, event.touches[0].pageY);
|
||||
|
||||
rotateDelta.subVectors(rotateEnd, rotateStart).multiplyScalar(scope.rotateSpeed);
|
||||
|
||||
const element = scope.domElement === document ? scope.domElement.body : scope.domElement;
|
||||
|
||||
rotateLeft(2 * Math.PI * rotateDelta.x / element.clientHeight); // yes, height
|
||||
|
||||
rotateUp(2 * Math.PI * rotateDelta.y / element.clientHeight);
|
||||
|
||||
rotateStart.copy(rotateEnd);
|
||||
|
||||
scope.update();
|
||||
}
|
||||
|
||||
function handleTouchMoveDollyPan(event) {
|
||||
// console.log( 'handleTouchMoveDollyPan' );
|
||||
|
||||
if (scope.enableZoom) {
|
||||
const dx = event.touches[0].pageX - event.touches[1].pageX;
|
||||
const dy = event.touches[0].pageY - event.touches[1].pageY;
|
||||
|
||||
const distance = Math.sqrt(dx * dx + dy * dy);
|
||||
|
||||
dollyEnd.set(0, distance);
|
||||
|
||||
dollyDelta.set(0, Math.pow(dollyEnd.y / dollyStart.y, scope.zoomSpeed));
|
||||
|
||||
dollyIn(dollyDelta.y);
|
||||
|
||||
dollyStart.copy(dollyEnd);
|
||||
}
|
||||
|
||||
if (scope.enablePan) {
|
||||
const x = 0.5 * (event.touches[0].pageX + event.touches[1].pageX);
|
||||
const y = 0.5 * (event.touches[0].pageY + event.touches[1].pageY);
|
||||
|
||||
panEnd.set(x, y);
|
||||
|
||||
panDelta.subVectors(panEnd, panStart).multiplyScalar(scope.panSpeed);
|
||||
|
||||
pan(panDelta.x, panDelta.y);
|
||||
|
||||
panStart.copy(panEnd);
|
||||
}
|
||||
|
||||
scope.update();
|
||||
}
|
||||
|
||||
function handleTouchEnd(event) {
|
||||
|
||||
// console.log( 'handleTouchEnd' );
|
||||
|
||||
}
|
||||
|
||||
//
|
||||
// event handlers - FSM: listen for events and reset state
|
||||
//
|
||||
|
||||
function onMouseDown(event) {
|
||||
if (scope.enabled === false) return;
|
||||
|
||||
event.preventDefault();
|
||||
|
||||
switch (event.button) {
|
||||
case scope.mouseButtons.LEFT:
|
||||
|
||||
if (event.ctrlKey || event.metaKey) {
|
||||
if (scope.enablePan === false) return;
|
||||
|
||||
handleMouseDownPan(event);
|
||||
|
||||
state = STATE.PAN;
|
||||
} else {
|
||||
if (scope.enableRotate === false) return;
|
||||
|
||||
handleMouseDownRotate(event);
|
||||
|
||||
state = STATE.ROTATE;
|
||||
}
|
||||
|
||||
break;
|
||||
|
||||
case scope.mouseButtons.MIDDLE:
|
||||
|
||||
if (scope.enableZoom === false) return;
|
||||
|
||||
handleMouseDownDolly(event);
|
||||
|
||||
state = STATE.DOLLY;
|
||||
|
||||
break;
|
||||
|
||||
case scope.mouseButtons.RIGHT:
|
||||
|
||||
if (scope.enablePan === false) return;
|
||||
|
||||
handleMouseDownPan(event);
|
||||
|
||||
state = STATE.PAN;
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
if (state !== STATE.NONE) {
|
||||
document.addEventListener('mousemove', onMouseMove, false);
|
||||
document.addEventListener('mouseup', onMouseUp, false);
|
||||
|
||||
scope.dispatchEvent(startEvent);
|
||||
}
|
||||
}
|
||||
|
||||
function onMouseMove(event) {
|
||||
if (scope.enabled === false) return;
|
||||
|
||||
event.preventDefault();
|
||||
|
||||
switch (state) {
|
||||
case STATE.ROTATE:
|
||||
|
||||
if (scope.enableRotate === false) return;
|
||||
|
||||
handleMouseMoveRotate(event);
|
||||
|
||||
break;
|
||||
|
||||
case STATE.DOLLY:
|
||||
|
||||
if (scope.enableZoom === false) return;
|
||||
|
||||
handleMouseMoveDolly(event);
|
||||
|
||||
break;
|
||||
|
||||
case STATE.PAN:
|
||||
|
||||
if (scope.enablePan === false) return;
|
||||
|
||||
handleMouseMovePan(event);
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
function onMouseUp(event) {
|
||||
if (scope.enabled === false) return;
|
||||
|
||||
handleMouseUp(event);
|
||||
|
||||
document.removeEventListener('mousemove', onMouseMove, false);
|
||||
document.removeEventListener('mouseup', onMouseUp, false);
|
||||
|
||||
scope.dispatchEvent(endEvent);
|
||||
|
||||
state = STATE.NONE;
|
||||
}
|
||||
|
||||
function onMouseWheel(event) {
|
||||
if (scope.enabled === false || scope.enableZoom === false || (state !== STATE.NONE && state !== STATE.ROTATE)) return;
|
||||
|
||||
event.preventDefault();
|
||||
event.stopPropagation();
|
||||
|
||||
scope.dispatchEvent(startEvent);
|
||||
|
||||
handleMouseWheel(event);
|
||||
|
||||
scope.dispatchEvent(endEvent);
|
||||
}
|
||||
|
||||
function onKeyDown(event) {
|
||||
if (scope.enabled === false || scope.enableKeys === false || scope.enablePan === false) return;
|
||||
|
||||
handleKeyDown(event);
|
||||
}
|
||||
|
||||
function onTouchStart(event) {
|
||||
if (scope.enabled === false) return;
|
||||
|
||||
event.preventDefault();
|
||||
|
||||
switch (event.touches.length) {
|
||||
case 1: // one-fingered touch: rotate
|
||||
|
||||
if (scope.enableRotate === false) return;
|
||||
|
||||
handleTouchStartRotate(event);
|
||||
|
||||
state = STATE.TOUCH_ROTATE;
|
||||
|
||||
break;
|
||||
|
||||
case 2: // two-fingered touch: dolly-pan
|
||||
|
||||
if (scope.enableZoom === false && scope.enablePan === false) return;
|
||||
|
||||
handleTouchStartDollyPan(event);
|
||||
|
||||
state = STATE.TOUCH_DOLLY_PAN;
|
||||
|
||||
break;
|
||||
|
||||
default:
|
||||
|
||||
state = STATE.NONE;
|
||||
}
|
||||
|
||||
if (state !== STATE.NONE) {
|
||||
scope.dispatchEvent(startEvent);
|
||||
}
|
||||
}
|
||||
|
||||
function onTouchMove(event) {
|
||||
if (scope.enabled === false) return;
|
||||
|
||||
event.preventDefault();
|
||||
event.stopPropagation();
|
||||
|
||||
switch (event.touches.length) {
|
||||
case 1: // one-fingered touch: rotate
|
||||
|
||||
if (scope.enableRotate === false) return;
|
||||
if (state !== STATE.TOUCH_ROTATE) return; // is this needed?
|
||||
|
||||
handleTouchMoveRotate(event);
|
||||
|
||||
break;
|
||||
|
||||
case 2: // two-fingered touch: dolly-pan
|
||||
|
||||
if (scope.enableZoom === false && scope.enablePan === false) return;
|
||||
if (state !== STATE.TOUCH_DOLLY_PAN) return; // is this needed?
|
||||
|
||||
handleTouchMoveDollyPan(event);
|
||||
|
||||
break;
|
||||
|
||||
default:
|
||||
|
||||
state = STATE.NONE;
|
||||
}
|
||||
}
|
||||
|
||||
function onTouchEnd(event) {
|
||||
if (scope.enabled === false) return;
|
||||
|
||||
handleTouchEnd(event);
|
||||
|
||||
scope.dispatchEvent(endEvent);
|
||||
|
||||
state = STATE.NONE;
|
||||
}
|
||||
|
||||
function onContextMenu(event) {
|
||||
if (scope.enabled === false) return;
|
||||
|
||||
event.preventDefault();
|
||||
}
|
||||
|
||||
//
|
||||
|
||||
scope.domElement.addEventListener('contextmenu', onContextMenu, false);
|
||||
|
||||
scope.domElement.addEventListener('mousedown', onMouseDown, false);
|
||||
scope.domElement.addEventListener('wheel', onMouseWheel, false);
|
||||
|
||||
scope.domElement.addEventListener('touchstart', onTouchStart, false);
|
||||
scope.domElement.addEventListener('touchend', onTouchEnd, false);
|
||||
scope.domElement.addEventListener('touchmove', onTouchMove, false);
|
||||
|
||||
window.addEventListener('keydown', onKeyDown, false);
|
||||
|
||||
// force an update at start
|
||||
|
||||
this.update();
|
||||
};
|
||||
|
||||
OrbitControls.prototype = Object.create(EventDispatcher.prototype);
|
||||
OrbitControls.prototype.constructor = OrbitControls;
|
||||
|
||||
Object.defineProperties(OrbitControls.prototype, {
|
||||
|
||||
center: {
|
||||
|
||||
get() {
|
||||
return this.target;
|
||||
},
|
||||
|
||||
},
|
||||
|
||||
// backward compatibility
|
||||
|
||||
noZoom: {
|
||||
|
||||
get() {
|
||||
return !this.enableZoom;
|
||||
},
|
||||
|
||||
set(value) {
|
||||
this.enableZoom = !value;
|
||||
},
|
||||
|
||||
},
|
||||
|
||||
noRotate: {
|
||||
|
||||
get() {
|
||||
return !this.enableRotate;
|
||||
},
|
||||
|
||||
set(value) {
|
||||
this.enableRotate = !value;
|
||||
},
|
||||
|
||||
},
|
||||
|
||||
noPan: {
|
||||
|
||||
get() {
|
||||
return !this.enablePan;
|
||||
},
|
||||
|
||||
set(value) {
|
||||
this.enablePan = !value;
|
||||
},
|
||||
|
||||
},
|
||||
|
||||
noKeys: {
|
||||
|
||||
get() {
|
||||
return !this.enableKeys;
|
||||
},
|
||||
|
||||
set(value) {
|
||||
this.enableKeys = !value;
|
||||
},
|
||||
|
||||
},
|
||||
|
||||
staticMoving: {
|
||||
|
||||
get() {
|
||||
return !this.enableDamping;
|
||||
},
|
||||
|
||||
set(value) {
|
||||
this.enableDamping = !value;
|
||||
},
|
||||
|
||||
},
|
||||
|
||||
dynamicDampingFactor: {
|
||||
|
||||
get() {
|
||||
return this.dampingFactor;
|
||||
},
|
||||
|
||||
set(value) {
|
||||
this.dampingFactor = value;
|
||||
},
|
||||
|
||||
},
|
||||
|
||||
});
|
||||
|
||||
export { OrbitControls };
|
|
@ -4,8 +4,7 @@ async function log(...msg) {
|
|||
if (debug) {
|
||||
const dt = new Date();
|
||||
const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;
|
||||
// eslint-disable-next-line no-console
|
||||
console.log(ts, 'webrtc', ...msg);
|
||||
console.log(ts, 'webrtc', ...msg); // eslint-disable-line no-console
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
* PWA Service Worker for Human main demo
|
||||
*/
|
||||
|
||||
/* eslint-disable no-restricted-globals */
|
||||
/// <reference lib="webworker" />
|
||||
|
||||
const skipCaching = false;
|
||||
|
@ -19,8 +20,7 @@ const stats = { hit: 0, miss: 0 };
|
|||
const log = (...msg) => {
|
||||
const dt = new Date();
|
||||
const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;
|
||||
// eslint-disable-next-line no-console
|
||||
console.log(ts, 'pwa', ...msg);
|
||||
console.log(ts, 'pwa', ...msg); // eslint-disable-line no-console
|
||||
};
|
||||
|
||||
async function updateCached(req) {
|
||||
|
@ -31,7 +31,7 @@ async function updateCached(req) {
|
|||
caches
|
||||
.open(cacheName)
|
||||
.then((cache) => cache.put(req, update))
|
||||
.catch((err) => log('cache update error', err));
|
||||
.catch((err) => log('cache update error', err)); // eslint-disable-line promise/no-nesting
|
||||
}
|
||||
return true;
|
||||
})
|
||||
|
@ -75,14 +75,13 @@ async function getCached(evt) {
|
|||
}
|
||||
|
||||
function cacheInit() {
|
||||
// eslint-disable-next-line promise/catch-or-return
|
||||
caches.open(cacheName)
|
||||
// eslint-disable-next-line promise/no-nesting
|
||||
.then((cache) => cache.addAll(cacheFiles)
|
||||
.then(
|
||||
.then( // eslint-disable-line promise/no-nesting
|
||||
() => log('cache refresh:', cacheFiles.length, 'files'),
|
||||
(err) => log('cache error', err),
|
||||
));
|
||||
))
|
||||
.catch(() => log('cache error'));
|
||||
}
|
||||
|
||||
if (!listening) {
|
||||
|
@ -99,14 +98,12 @@ if (!listening) {
|
|||
|
||||
self.addEventListener('install', (evt) => {
|
||||
log('install');
|
||||
// @ts-ignore scope for self is ServiceWorkerGlobalScope not Window
|
||||
self.skipWaiting();
|
||||
evt.waitUntil(cacheInit);
|
||||
});
|
||||
|
||||
self.addEventListener('activate', (evt) => {
|
||||
log('activate');
|
||||
// @ts-ignore scope for self is ServiceWorkerGlobalScope not Window
|
||||
evt.waitUntil(self.clients.claim());
|
||||
});
|
||||
|
||||
|
@ -114,7 +111,7 @@ if (!listening) {
|
|||
const uri = new URL(evt.request.url);
|
||||
// if (uri.pathname === '/') { log('cache skip /', evt.request); return; } // skip root access requests
|
||||
if (evt.request.cache === 'only-if-cached' && evt.request.mode !== 'same-origin') return; // required due to chrome bug
|
||||
if (uri.origin !== location.origin) return; // skip non-local requests
|
||||
if (uri.origin !== self.location.origin) return; // skip non-local requests
|
||||
if (evt.request.method !== 'GET') return; // only cache get requests
|
||||
if (evt.request.url.includes('/api/')) return; // don't cache api requests, failures are handled at the time of call
|
||||
|
||||
|
@ -129,7 +126,7 @@ if (!listening) {
|
|||
log(`PWA: ${evt.type}`);
|
||||
if (refreshed) return;
|
||||
refreshed = true;
|
||||
location.reload();
|
||||
self.location.reload();
|
||||
});
|
||||
|
||||
listening = true;
|
||||
|
|
|
@ -1,12 +1,15 @@
|
|||
/// <reference lib="webworker" />
|
||||
/**
|
||||
* Web worker used by main demo app
|
||||
* Loaded from index.js
|
||||
*/
|
||||
|
||||
/// <reference lib="webworker"/>
|
||||
|
||||
// load Human using IIFE script as Chome Mobile does not support Modules as Workers
|
||||
// import Human from '../dist/human.esm.js';
|
||||
self.importScripts('../dist/human.js');
|
||||
self.importScripts('../dist/human.js'); // eslint-disable-line no-restricted-globals
|
||||
|
||||
let busy = false;
|
||||
// @ts-ignore // Human is registered as global namespace using IIFE script
|
||||
// eslint-disable-next-line no-undef, new-cap
|
||||
// eslint-disable-next-line new-cap, no-undef
|
||||
const human = new Human.default();
|
||||
|
||||
onmessage = async (msg) => { // receive message from main thread
|
||||
|
|
|
@ -35,7 +35,7 @@
|
|||
.video { display: none; }
|
||||
.canvas { margin: 0 auto; }
|
||||
.bench { position: absolute; right: 0; bottom: 0; }
|
||||
.compare-image { width: 256px; position: absolute; top: 150px; left: 30px; box-shadow: 0 0 2px 2px black; background: black; display: none; }
|
||||
.compare-image { width: 200px; position: absolute; top: 150px; left: 30px; box-shadow: 0 0 2px 2px black; background: black; display: none; }
|
||||
.loader { width: 300px; height: 300px; border: 3px solid transparent; border-radius: 50%; border-top: 4px solid #f15e41; animation: spin 4s linear infinite; position: absolute; bottom: 15%; left: 50%; margin-left: -150px; z-index: 15; }
|
||||
.loader::before, .loader::after { content: ""; position: absolute; top: 6px; bottom: 6px; left: 6px; right: 6px; border-radius: 50%; border: 4px solid transparent; }
|
||||
.loader::before { border-top-color: #bad375; animation: 3s spin linear infinite; }
|
||||
|
@ -67,7 +67,7 @@
|
|||
.hint { opacity: 0; transition-duration: 0.5s; transition-property: opacity; font-style: italic; position: fixed; top: 5rem; padding: 8px; margin: 8px; box-shadow: 0 0 2px 2px #303030; }
|
||||
.input-file { align-self: center; width: 5rem; }
|
||||
|
||||
.results { position: absolute; left: 0; top: 6rem; background: #303030; width: 20rem; height: 90%; font-size: 0.8rem; overflow-y: auto; display: none }
|
||||
.results { position: absolute; left: 0; top: 5rem; background: #303030; width: 20rem; height: 90%; font-size: 0.8rem; overflow-y: auto; display: none }
|
||||
.results::-webkit-scrollbar { background-color: #303030; }
|
||||
.results::-webkit-scrollbar-thumb { background: black; border-radius: 10px; }
|
||||
.json-line { margin: 4px 0; display: flex; justify-content: flex-start; }
|
||||
|
@ -89,9 +89,9 @@
|
|||
<body>
|
||||
<div id="play" class="play icon-play"></div>
|
||||
<div id="background">
|
||||
<div class='wave one'></div>
|
||||
<div class='wave two'></div>
|
||||
<div class='wave three'></div>
|
||||
<div class="wave one"></div>
|
||||
<div class="wave two"></div>
|
||||
<div class="wave three"></div>
|
||||
</div>
|
||||
<div id="loader" class="loader"></div>
|
||||
<div id="status" class="status"></div>
|
||||
|
@ -107,13 +107,9 @@
|
|||
<video id="video" playsinline class="video"></video>
|
||||
</div>
|
||||
<div id="compare-container" class="compare-image">
|
||||
<canvas id="compare-canvas" width="256" height="256"></canvas>
|
||||
<canvas id="compare-canvas" width="200" height="200"></canvas>
|
||||
<div id="similarity"></div>
|
||||
</div>
|
||||
<div id="segmentation-container" class="compare-image">
|
||||
<canvas id="segmentation-mask" width="256" height="256" style="width: 256px; height: 256px;"></canvas>
|
||||
<canvas id="segmentation-canvas" width="256" height="256" style="width: 256px; height: 256px;"></canvas>
|
||||
</div>
|
||||
<div id="samples-container" class="samples-container"></div>
|
||||
<div id="hint" class="hint"></div>
|
||||
<div id="log" class="log"></div>
|
||||
|
|
265
demo/index.js
|
@ -18,11 +18,12 @@
|
|||
* ui={}: contains all variables exposed in the UI
|
||||
*/
|
||||
|
||||
// test url <https://human.local/?worker=false&async=false&bench=false&draw=true&warmup=full&backend=humangl>
|
||||
// WARNING!!!
|
||||
// This demo is written using older code style and a lot of manual setup
|
||||
// Newer versions of Human have richer functionality allowing for much cleaner & easier usage
|
||||
// It is recommended to use other demos such as `demo/typescript` for usage examples
|
||||
|
||||
// @ts-nocheck // typescript checks disabled as this is pure javascript
|
||||
|
||||
import Human from '../dist/human.esm.js'; // equivalent of @vladmandic/human
|
||||
import { Human } from '../dist/human.esm.js'; // equivalent of @vladmandic/human
|
||||
import Menu from './helpers/menu.js';
|
||||
import GLBench from './helpers/gl-bench.js';
|
||||
import webRTC from './helpers/webrtc.js';
|
||||
|
@ -31,17 +32,17 @@ import jsonView from './helpers/jsonview.js';
|
|||
let human;
|
||||
|
||||
let userConfig = {
|
||||
// face: { enabled: false },
|
||||
// body: { enabled: false },
|
||||
// hand: { enabled: false },
|
||||
/*
|
||||
warmup: 'none',
|
||||
backend: 'humangl',
|
||||
backend: 'webgl',
|
||||
debug: true,
|
||||
wasmPath: 'https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@3.9.0/dist/',
|
||||
async: false,
|
||||
cacheSensitivity: 0.75,
|
||||
filter: {
|
||||
enabled: false,
|
||||
flip: false,
|
||||
},
|
||||
filter: { enabled: false, flip: false },
|
||||
face: { enabled: false,
|
||||
detector: { return: false, rotation: true },
|
||||
mesh: { enabled: false },
|
||||
|
@ -51,13 +52,17 @@ let userConfig = {
|
|||
},
|
||||
object: { enabled: false },
|
||||
gesture: { enabled: true },
|
||||
// hand: { enabled: false },
|
||||
hand: { enabled: true, maxDetected: 1, minConfidence: 0.5, detector: { modelPath: 'handtrack.json' } },
|
||||
body: { enabled: false },
|
||||
// body: { enabled: true, modelPath: 'movenet-multipose.json' },
|
||||
// body: { enabled: true, modelPath: 'posenet.json' },
|
||||
segmentation: { enabled: false },
|
||||
*/
|
||||
/*
|
||||
face: { iris: { enabled: false }, emotion: { enabled: false } },
|
||||
hand: { enabled: false },
|
||||
body: { enabled: false },
|
||||
gesture: { enabled: false },
|
||||
*/
|
||||
};
|
||||
|
||||
const drawOptions = {
|
||||
|
@ -65,6 +70,7 @@ const drawOptions = {
|
|||
drawBoxes: true,
|
||||
drawGaze: true,
|
||||
drawLabels: true,
|
||||
drawGestures: true,
|
||||
drawPolygons: true,
|
||||
drawPoints: false,
|
||||
fillPolygons: false,
|
||||
|
@ -80,7 +86,7 @@ const ui = {
|
|||
facing: true, // camera facing front or back
|
||||
baseBackground: 'rgba(50, 50, 50, 1)', // 'grey'
|
||||
columns: 2, // when processing sample images create this many columns
|
||||
useWorker: true, // use web workers for processing
|
||||
useWorker: false, // use web workers for processing
|
||||
worker: 'index-worker.js',
|
||||
maxFPSframes: 10, // keep fps history for how many frames
|
||||
modelsPreload: false, // preload human models on startup
|
||||
|
@ -108,7 +114,6 @@ const ui = {
|
|||
results: false, // show results tree
|
||||
lastFrame: 0, // time of last frame processing
|
||||
viewportSet: false, // internal, has custom viewport been set
|
||||
background: null, // holds instance of segmentation background image
|
||||
transferCanvas: null, // canvas used to transfer data to and from worker
|
||||
|
||||
// webrtc
|
||||
|
@ -147,6 +152,10 @@ let worker;
|
|||
let bench;
|
||||
let lastDetectedResult = {};
|
||||
|
||||
// helper function: async pause
|
||||
// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars
|
||||
const delay = (ms) => new Promise((resolve) => { setTimeout(resolve, ms); });
|
||||
|
||||
// helper function: translates json to human readable string
|
||||
function str(...msg) {
|
||||
if (!Array.isArray(msg)) return msg;
|
||||
|
@ -162,30 +171,30 @@ function str(...msg) {
|
|||
function log(...msg) {
|
||||
const dt = new Date();
|
||||
const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;
|
||||
// eslint-disable-next-line no-console
|
||||
if (ui.console) console.log(ts, ...msg);
|
||||
if (ui.console) console.log(ts, ...msg); // eslint-disable-line no-console
|
||||
}
|
||||
|
||||
let prevStatus = '';
|
||||
function status(msg) {
|
||||
const div = document.getElementById('status');
|
||||
if (div && msg && msg.length > 0) {
|
||||
if (div && msg && msg !== prevStatus && msg.length > 0) {
|
||||
log('status', msg);
|
||||
document.getElementById('play').style.display = 'none';
|
||||
document.getElementById('loader').style.display = 'block';
|
||||
div.innerText = msg;
|
||||
prevStatus = msg;
|
||||
} else {
|
||||
const video = document.getElementById('video');
|
||||
const playing = (video.srcObject !== null) && !video.paused;
|
||||
const playing = isLive(video) && !video.paused; // eslint-disable-line no-use-before-define
|
||||
document.getElementById('play').style.display = playing ? 'none' : 'block';
|
||||
document.getElementById('loader').style.display = 'none';
|
||||
div.innerText = '';
|
||||
}
|
||||
}
|
||||
|
||||
async function videoPlay() {
|
||||
async function videoPlay(videoElement = document.getElementById('video')) {
|
||||
document.getElementById('btnStartText').innerHTML = 'pause video';
|
||||
await document.getElementById('video').play();
|
||||
// status();
|
||||
await videoElement.play();
|
||||
}
|
||||
|
||||
async function videoPause() {
|
||||
|
@ -198,68 +207,56 @@ async function videoPause() {
|
|||
|
||||
const compare = { enabled: false, original: null };
|
||||
async function calcSimmilarity(result) {
|
||||
document.getElementById('compare-container').onclick = () => {
|
||||
log('resetting face compare baseline:');
|
||||
compare.original = null;
|
||||
};
|
||||
document.getElementById('compare-container').style.display = compare.enabled ? 'block' : 'none';
|
||||
if (!compare.enabled) return;
|
||||
if (!compare.enabled) {
|
||||
compare.original = null;
|
||||
return;
|
||||
}
|
||||
if (!result || !result.face || !result.face[0] || !result.face[0].embedding) return;
|
||||
if (!(result.face.length > 0) || (result.face[0].embedding.length <= 64)) return;
|
||||
if (!compare.original) {
|
||||
compare.original = result;
|
||||
log('setting face compare baseline:', result.face[0]);
|
||||
if (result.face[0].tensor) {
|
||||
const enhanced = human.enhance(result.face[0]);
|
||||
if (enhanced) {
|
||||
const c = document.getElementById('orig');
|
||||
const squeeze = human.tf.squeeze(enhanced);
|
||||
const norm = human.tf.div(squeeze, 255);
|
||||
human.tf.browser.toPixels(norm, c);
|
||||
human.tf.dispose(enhanced);
|
||||
human.tf.dispose(squeeze);
|
||||
human.tf.dispose(norm);
|
||||
}
|
||||
const c = document.getElementById('orig');
|
||||
human.draw.tensor(result.face[0].tensor, c);
|
||||
} else {
|
||||
document.getElementById('compare-canvas').getContext('2d').drawImage(compare.original.canvas, 0, 0, 200, 200);
|
||||
}
|
||||
}
|
||||
const similarity = human.similarity(compare.original.face[0].embedding, result.face[0].embedding);
|
||||
const similarity = human.match.similarity(compare.original.face[0].embedding, result.face[0].embedding);
|
||||
document.getElementById('similarity').innerText = `similarity: ${Math.trunc(1000 * similarity) / 10}%`;
|
||||
}
|
||||
|
||||
const isLive = (input) => {
|
||||
const videoLive = input.readyState > 2;
|
||||
const cameraLive = input.srcObject?.getVideoTracks()[0].readyState === 'live';
|
||||
const live = (videoLive || cameraLive) && (!input.paused);
|
||||
const isCamera = input.srcObject?.getVideoTracks()[0] && input.srcObject?.getVideoTracks()[0].enabled;
|
||||
const isVideoLive = input.readyState > 2;
|
||||
const isCameraLive = input.srcObject?.getVideoTracks()[0].readyState === 'live';
|
||||
let live = isCamera ? isCameraLive : isVideoLive;
|
||||
live = live && !input.paused;
|
||||
return live;
|
||||
};
|
||||
|
||||
// draws processed results and starts processing of a next frame
|
||||
let lastDraw = performance.now();
|
||||
let lastDraw = 0;
|
||||
async function drawResults(input) {
|
||||
// await delay(25);
|
||||
const result = lastDetectedResult;
|
||||
const canvas = document.getElementById('canvas');
|
||||
|
||||
// update draw fps data
|
||||
ui.drawFPS.push(1000 / (performance.now() - lastDraw));
|
||||
ui.drawFPS.push(1000 / (human.now() - lastDraw));
|
||||
if (ui.drawFPS.length > ui.maxFPSframes) ui.drawFPS.shift();
|
||||
lastDraw = performance.now();
|
||||
lastDraw = human.now();
|
||||
|
||||
// draw fps chart
|
||||
await menu.process.updateChart('FPS', ui.detectFPS);
|
||||
|
||||
document.getElementById('segmentation-container').style.display = userConfig.segmentation.enabled ? 'block' : 'none';
|
||||
if (userConfig.segmentation.enabled && ui.buffered) { // refresh segmentation if using buffered output
|
||||
const seg = await human.segmentation(input, ui.background);
|
||||
if (seg.alpha) {
|
||||
const canvasSegMask = document.getElementById('segmentation-mask');
|
||||
const ctxSegMask = canvasSegMask.getContext('2d');
|
||||
ctxSegMask.clearRect(0, 0, canvasSegMask.width, canvasSegMask.height); // need to clear as seg.alpha is alpha based canvas so it adds
|
||||
ctxSegMask.drawImage(seg.alpha, 0, 0, seg.alpha.width, seg.alpha.height, 0, 0, canvasSegMask.width, canvasSegMask.height);
|
||||
const canvasSegCanvas = document.getElementById('segmentation-canvas');
|
||||
const ctxSegCanvas = canvasSegCanvas.getContext('2d');
|
||||
ctxSegCanvas.clearRect(0, 0, canvasSegCanvas.width, canvasSegCanvas.height); // need to clear as seg.alpha is alpha based canvas so it adds
|
||||
ctxSegCanvas.drawImage(seg.canvas, 0, 0, seg.alpha.width, seg.alpha.height, 0, 0, canvasSegCanvas.width, canvasSegCanvas.height);
|
||||
}
|
||||
// result.canvas = seg.alpha;
|
||||
} else if (!result.canvas || ui.buffered) { // refresh with input if using buffered output or if missing canvas
|
||||
if (!result.canvas || ui.buffered) { // refresh with input if using buffered output or if missing canvas
|
||||
const image = await human.image(input, false);
|
||||
result.canvas = image.canvas;
|
||||
human.tf.dispose(image.tensor);
|
||||
|
@ -318,21 +315,20 @@ async function drawResults(input) {
|
|||
${warning}<br>
|
||||
`;
|
||||
ui.framesDraw++;
|
||||
ui.lastFrame = performance.now();
|
||||
// if buffered, immediate loop but limit frame rate although it's going to run slower as JS is singlethreaded
|
||||
ui.lastFrame = human.now();
|
||||
if (ui.buffered) {
|
||||
if (isLive(input)) {
|
||||
ui.drawThread = requestAnimationFrame(() => drawResults(input));
|
||||
// ui.drawThread = requestAnimationFrame(() => drawResults(input));
|
||||
ui.drawThread = setTimeout(() => drawResults(input), 25);
|
||||
} else {
|
||||
cancelAnimationFrame(ui.drawThread);
|
||||
videoPause();
|
||||
ui.drawThread = null;
|
||||
}
|
||||
} else {
|
||||
if (ui.drawThread) {
|
||||
log('stopping buffered refresh');
|
||||
cancelAnimationFrame(ui.drawThread);
|
||||
ui.drawThread = null;
|
||||
}
|
||||
} else if (ui.drawThread) {
|
||||
log('stopping buffered refresh');
|
||||
cancelAnimationFrame(ui.drawThread);
|
||||
ui.drawThread = null;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -381,10 +377,11 @@ async function setupCamera() {
|
|||
},
|
||||
};
|
||||
// enumerate devices for diag purposes
|
||||
if (initialCameraAccess) {
|
||||
navigator.mediaDevices.enumerateDevices().then((devices) => log('enumerated input devices:', devices));
|
||||
log('camera constraints', constraints);
|
||||
}
|
||||
const devices = await navigator.mediaDevices.enumerateDevices();
|
||||
if (initialCameraAccess) log('enumerated input devices:', devices);
|
||||
// to select specific camera add deviceid from enumerated devices to camera constraints
|
||||
// constraints.video.deviceId = '6794499e046cf4aebf41cfeb7d1ef48a17bd65f72bafb55f3c0b06405d3d487b';
|
||||
if (initialCameraAccess) log('camera constraints', constraints);
|
||||
try {
|
||||
stream = await navigator.mediaDevices.getUserMedia(constraints);
|
||||
} catch (err) {
|
||||
|
@ -406,13 +403,13 @@ async function setupCamera() {
|
|||
}
|
||||
const track = stream.getVideoTracks()[0];
|
||||
const settings = track.getSettings();
|
||||
if (initialCameraAccess) log('selected video source:', track, settings); // log('selected camera:', track.label, 'id:', settings.deviceId);
|
||||
if (initialCameraAccess) log('selected video source:', track, settings);
|
||||
ui.camera = { name: track.label.toLowerCase(), width: settings.width, height: settings.height, facing: settings.facingMode === 'user' ? 'front' : 'back' };
|
||||
initialCameraAccess = false;
|
||||
|
||||
if (!stream) return 'camera stream empty';
|
||||
|
||||
const ready = new Promise((resolve) => (video.onloadeddata = () => resolve(true)));
|
||||
const ready = new Promise((resolve) => { (video.onloadeddata = () => resolve(true)); });
|
||||
video.srcObject = stream;
|
||||
await ready;
|
||||
if (settings.width > settings.height) canvas.style.width = '100vw';
|
||||
|
@ -422,8 +419,7 @@ async function setupCamera() {
|
|||
ui.menuWidth.input.setAttribute('value', video.videoWidth);
|
||||
ui.menuHeight.input.setAttribute('value', video.videoHeight);
|
||||
if (live || ui.autoPlay) await videoPlay();
|
||||
// eslint-disable-next-line no-use-before-define
|
||||
if ((live || ui.autoPlay) && !ui.detectThread) runHumanDetect(video, canvas);
|
||||
if ((live || ui.autoPlay) && !ui.detectThread) runHumanDetect(video, canvas); // eslint-disable-line no-use-before-define
|
||||
return 'camera stream ready';
|
||||
}
|
||||
|
||||
|
@ -477,8 +473,7 @@ function webWorker(input, image, canvas, timestamp) {
|
|||
ui.framesDetect++;
|
||||
if (!ui.drawThread) drawResults(input);
|
||||
if (isLive(input)) {
|
||||
// eslint-disable-next-line no-use-before-define
|
||||
ui.detectThread = requestAnimationFrame((now) => runHumanDetect(input, canvas, now));
|
||||
ui.detectThread = requestAnimationFrame((now) => runHumanDetect(input, canvas, now)); // eslint-disable-line no-use-before-define
|
||||
}
|
||||
});
|
||||
}
|
||||
|
@ -515,36 +510,28 @@ function runHumanDetect(input, canvas, timestamp) {
|
|||
// perform detection in worker
|
||||
webWorker(input, data, canvas, timestamp);
|
||||
} else {
|
||||
human.detect(input, userConfig).then((result) => {
|
||||
status();
|
||||
/*
|
||||
setTimeout(async () => { // simulate gl context lost 2sec after initial detection
|
||||
const ext = human.gl && human.gl.gl ? human.gl.gl.getExtension('WEBGL_lose_context') : {};
|
||||
if (ext && ext.loseContext) {
|
||||
log('simulate context lost:', human.env.webgl, human.gl, ext);
|
||||
human.gl.gl.getExtension('WEBGL_lose_context').loseContext();
|
||||
await videoPause();
|
||||
status('Exception: WebGL');
|
||||
human.detect(input, userConfig)
|
||||
.then((result) => {
|
||||
status();
|
||||
if (result.performance && result.performance.total) ui.detectFPS.push(1000 / result.performance.total);
|
||||
if (ui.detectFPS.length > ui.maxFPSframes) ui.detectFPS.shift();
|
||||
if (ui.bench) {
|
||||
if (!bench) initPerfMonitor();
|
||||
bench.nextFrame(timestamp);
|
||||
}
|
||||
}, 2000);
|
||||
*/
|
||||
if (result.performance && result.performance.total) ui.detectFPS.push(1000 / result.performance.total);
|
||||
if (ui.detectFPS.length > ui.maxFPSframes) ui.detectFPS.shift();
|
||||
if (ui.bench) {
|
||||
if (!bench) initPerfMonitor();
|
||||
bench.nextFrame(timestamp);
|
||||
}
|
||||
if (document.getElementById('gl-bench')) document.getElementById('gl-bench').style.display = ui.bench ? 'block' : 'none';
|
||||
if (result.error) {
|
||||
log(result.error);
|
||||
document.getElementById('log').innerText += `\nHuman error: ${result.error}`;
|
||||
} else {
|
||||
lastDetectedResult = result;
|
||||
if (!ui.drawThread) drawResults(input);
|
||||
ui.framesDetect++;
|
||||
ui.detectThread = requestAnimationFrame((now) => runHumanDetect(input, canvas, now));
|
||||
}
|
||||
});
|
||||
if (document.getElementById('gl-bench')) document.getElementById('gl-bench').style.display = ui.bench ? 'block' : 'none';
|
||||
if (result.error) {
|
||||
log(result.error);
|
||||
document.getElementById('log').innerText += `\nHuman error: ${result.error}`;
|
||||
} else {
|
||||
lastDetectedResult = result;
|
||||
if (!ui.drawThread) drawResults(input);
|
||||
ui.framesDetect++;
|
||||
ui.detectThread = requestAnimationFrame((now) => runHumanDetect(input, canvas, now));
|
||||
}
|
||||
return result;
|
||||
})
|
||||
.catch(() => log('human detect error'));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -591,8 +578,7 @@ async function processImage(input, title) {
|
|||
// copy to clipboard on click
|
||||
if (typeof ClipboardItem !== 'undefined' && navigator.clipboard) {
|
||||
evt.target.toBlob((blob) => {
|
||||
// eslint-disable-next-line no-undef
|
||||
const item = new ClipboardItem({ 'image/png': blob });
|
||||
const item = new ClipboardItem({ 'image/png': blob }); // eslint-disable-line no-undef
|
||||
navigator.clipboard.write([item]);
|
||||
log('copied image to clipboard');
|
||||
});
|
||||
|
@ -603,6 +589,7 @@ async function processImage(input, title) {
|
|||
const prev = document.getElementsByClassName('thumbnail');
|
||||
if (prev && prev.length > 0) document.getElementById('samples-container').insertBefore(thumb, prev[0]);
|
||||
else document.getElementById('samples-container').appendChild(thumb);
|
||||
document.getElementById('samples-container').style.display = 'block';
|
||||
|
||||
// finish up
|
||||
status();
|
||||
|
@ -619,20 +606,17 @@ async function processImage(input, title) {
|
|||
|
||||
async function processVideo(input, title) {
|
||||
status(`processing video: ${title}`);
|
||||
const video = document.createElement('video');
|
||||
const video = document.getElementById('video');
|
||||
const canvas = document.getElementById('canvas');
|
||||
video.id = 'video-file';
|
||||
video.controls = true;
|
||||
video.loop = true;
|
||||
// video.onerror = async () => status(`video loading error: ${video.error.message}`);
|
||||
video.addEventListener('error', () => status(`video loading error: ${video.error.message}`));
|
||||
video.addEventListener('canplay', async () => {
|
||||
for (const m of Object.values(menu)) m.hide();
|
||||
document.getElementById('samples-container').style.display = 'none';
|
||||
canvas.style.display = 'block';
|
||||
await videoPlay();
|
||||
if (!ui.detectThread) runHumanDetect(video, canvas);
|
||||
runHumanDetect(video, canvas);
|
||||
});
|
||||
video.srcObject = null;
|
||||
video.src = input;
|
||||
}
|
||||
|
||||
|
@ -643,9 +627,8 @@ async function detectVideo() {
|
|||
const canvas = document.getElementById('canvas');
|
||||
canvas.style.display = 'block';
|
||||
cancelAnimationFrame(ui.detectThread);
|
||||
if ((video.srcObject !== null) && !video.paused) {
|
||||
if (isLive(video) && !video.paused) {
|
||||
await videoPause();
|
||||
// if (ui.drawThread) cancelAnimationFrame(ui.drawThread);
|
||||
} else {
|
||||
const cameraError = await setupCamera();
|
||||
if (!cameraError) {
|
||||
|
@ -702,6 +685,7 @@ function setupMenu() {
|
|||
|
||||
menu.image = new Menu(document.body, '', { top, left: x[1] });
|
||||
menu.image.addBool('enabled', userConfig.filter, 'enabled', (val) => userConfig.filter.enabled = val);
|
||||
menu.image.addBool('histogram equalization', userConfig.filter, 'equalization', (val) => userConfig.filter.equalization = val);
|
||||
ui.menuWidth = menu.image.addRange('image width', userConfig.filter, 'width', 0, 3840, 10, (val) => userConfig.filter.width = parseInt(val));
|
||||
ui.menuHeight = menu.image.addRange('image height', userConfig.filter, 'height', 0, 2160, 10, (val) => userConfig.filter.height = parseInt(val));
|
||||
menu.image.addHTML('<hr style="border-style: inset; border-color: dimgray">');
|
||||
|
@ -720,7 +704,6 @@ function setupMenu() {
|
|||
menu.image.addBool('technicolor', userConfig.filter, 'technicolor', (val) => userConfig.filter.technicolor = val);
|
||||
menu.image.addBool('polaroid', userConfig.filter, 'polaroid', (val) => userConfig.filter.polaroid = val);
|
||||
menu.image.addHTML('<input type="file" id="file-input" class="input-file"></input>   input');
|
||||
menu.image.addHTML('<input type="file" id="file-background" class="input-file"></input>   background');
|
||||
|
||||
menu.process = new Menu(document.body, '', { top, left: x[2] });
|
||||
menu.process.addList('backend', ['cpu', 'webgl', 'wasm', 'humangl'], userConfig.backend, (val) => userConfig.backend = val);
|
||||
|
@ -768,8 +751,6 @@ function setupMenu() {
|
|||
menu.models.addHTML('<hr style="border-style: inset; border-color: dimgray">');
|
||||
menu.models.addBool('gestures', userConfig.gesture, 'enabled', (val) => userConfig.gesture.enabled = val);
|
||||
menu.models.addHTML('<hr style="border-style: inset; border-color: dimgray">');
|
||||
menu.models.addBool('body segmentation', userConfig.segmentation, 'enabled', (val) => userConfig.segmentation.enabled = val);
|
||||
menu.models.addHTML('<hr style="border-style: inset; border-color: dimgray">');
|
||||
menu.models.addBool('object detection', userConfig.object, 'enabled', (val) => userConfig.object.enabled = val);
|
||||
menu.models.addHTML('<hr style="border-style: inset; border-color: dimgray">');
|
||||
menu.models.addBool('face compare', compare, 'enabled', (val) => {
|
||||
|
@ -789,6 +770,7 @@ function setupMenu() {
|
|||
|
||||
async function resize() {
|
||||
window.onresize = null;
|
||||
log('resize');
|
||||
// best setting for mobile, ignored for desktop
|
||||
// can set dynamic value such as Math.min(1, Math.round(100 * window.innerWidth / 960) / 100);
|
||||
const viewportScale = 0.7;
|
||||
|
@ -837,42 +819,12 @@ async function processDataURL(f, action) {
|
|||
if (e.target.result.startsWith('data:video')) await processVideo(e.target.result, f.name);
|
||||
document.getElementById('canvas').style.display = 'none';
|
||||
}
|
||||
if (action === 'background') {
|
||||
const image = new Image();
|
||||
image.onerror = async () => status('image loading error');
|
||||
image.onload = async () => {
|
||||
ui.background = image;
|
||||
if (document.getElementById('canvas').style.display === 'block') { // replace canvas used for video
|
||||
const canvas = document.getElementById('canvas');
|
||||
const ctx = canvas.getContext('2d');
|
||||
const seg = await human.segmentation(canvas, ui.background, userConfig);
|
||||
if (seg.canvas) ctx.drawImage(seg.canvas, 0, 0);
|
||||
} else {
|
||||
const canvases = document.getElementById('samples-container').children; // replace loaded images
|
||||
for (const canvas of canvases) {
|
||||
const ctx = canvas.getContext('2d');
|
||||
const seg = await human.segmentation(canvas, ui.background, userConfig);
|
||||
if (seg.canvas) ctx.drawImage(seg.canvas, 0, 0);
|
||||
}
|
||||
}
|
||||
};
|
||||
image.src = e.target.result;
|
||||
}
|
||||
resolve(true);
|
||||
};
|
||||
reader.readAsDataURL(f);
|
||||
});
|
||||
}
|
||||
|
||||
async function runSegmentation() {
|
||||
document.getElementById('file-background').onchange = async (evt) => {
|
||||
userConfig.segmentation.enabled = true;
|
||||
evt.preventDefault();
|
||||
if (evt.target.files.length < 2) ui.columns = 1;
|
||||
for (const f of evt.target.files) await processDataURL(f, 'background');
|
||||
};
|
||||
}
|
||||
|
||||
async function dragAndDrop() {
|
||||
document.body.addEventListener('dragenter', (evt) => evt.preventDefault());
|
||||
document.body.addEventListener('dragleave', (evt) => evt.preventDefault());
|
||||
|
@ -910,10 +862,10 @@ async function pwaRegister() {
|
|||
const regs = await navigator.serviceWorker.getRegistrations();
|
||||
for (const reg of regs) {
|
||||
log('pwa found:', reg.scope);
|
||||
if (reg.scope.startsWith(location.origin)) found = reg;
|
||||
if (reg.scope.startsWith(window.location.origin)) found = reg;
|
||||
}
|
||||
if (!found) {
|
||||
const reg = await navigator.serviceWorker.register(pwa.scriptFile, { scope: location.pathname });
|
||||
const reg = await navigator.serviceWorker.register(pwa.scriptFile, { scope: window.location.pathname });
|
||||
found = reg;
|
||||
log('pwa registered:', reg.scope);
|
||||
}
|
||||
|
@ -945,8 +897,7 @@ async function main() {
|
|||
if (ui.detectThread) cancelAnimationFrame(ui.detectThread);
|
||||
if (ui.drawThread) cancelAnimationFrame(ui.drawThread);
|
||||
const msg = evt.reason.message || evt.reason || evt;
|
||||
// eslint-disable-next-line no-console
|
||||
console.error(msg);
|
||||
console.error(msg); // eslint-disable-line no-console
|
||||
document.getElementById('log').innerHTML = msg;
|
||||
status(`exception: ${msg}`);
|
||||
evt.preventDefault();
|
||||
|
@ -969,7 +920,7 @@ async function main() {
|
|||
await pwaRegister();
|
||||
|
||||
// parse url search params
|
||||
const params = new URLSearchParams(location.search);
|
||||
const params = new URLSearchParams(window.location.search);
|
||||
log('url options:', params.toString());
|
||||
if (params.has('worker')) {
|
||||
ui.useWorker = JSON.parse(params.get('worker'));
|
||||
|
@ -1006,14 +957,14 @@ async function main() {
|
|||
|
||||
// create instance of human
|
||||
human = new Human(userConfig);
|
||||
// human.env.perfadd = true;
|
||||
|
||||
log('human version:', human.version);
|
||||
// we've merged human defaults with user config and now lets store it back so it can be accessed by methods such as menu
|
||||
userConfig = human.config;
|
||||
if (typeof tf !== 'undefined') {
|
||||
// eslint-disable-next-line no-undef
|
||||
log('TensorFlow external version:', tf.version);
|
||||
// eslint-disable-next-line no-undef
|
||||
human.tf = tf; // use externally loaded version of tfjs
|
||||
log('TensorFlow external version:', tf.version); // eslint-disable-line no-undef
|
||||
human.tf = tf; // eslint-disable-line no-undef
|
||||
}
|
||||
log('tfjs version:', human.tf.version.tfjs);
|
||||
|
||||
|
@ -1026,8 +977,7 @@ async function main() {
|
|||
if (ui.modelsPreload && !ui.useWorker) {
|
||||
status('loading');
|
||||
await human.load(userConfig); // this is not required, just pre-loads all models
|
||||
const loaded = Object.keys(human.models).filter((a) => human.models[a]);
|
||||
log('demo loaded models:', loaded);
|
||||
log('demo loaded models:', human.models.loaded());
|
||||
} else {
|
||||
await human.init();
|
||||
}
|
||||
|
@ -1049,9 +999,6 @@ async function main() {
|
|||
// init drag & drop
|
||||
await dragAndDrop();
|
||||
|
||||
// init segmentation
|
||||
await runSegmentation();
|
||||
|
||||
if (params.has('image')) {
|
||||
try {
|
||||
const image = JSON.parse(params.get('image'));
|
||||
|
@ -1072,7 +1019,7 @@ async function main() {
|
|||
}
|
||||
|
||||
if (human.config.debug) log('environment:', human.env);
|
||||
if (human.config.backend === 'humangl' && human.config.debug) log('backend:', human.gl);
|
||||
if (human.config.backend === 'webgl' && human.config.debug) log('backend:', human.gl);
|
||||
}
|
||||
|
||||
window.onload = main;
|
||||
|
|
|
@ -7,4 +7,4 @@
|
|||
"display": "standalone",
|
||||
"background_color": "#000000",
|
||||
"theme_color": "#000000"
|
||||
}
|
||||
}
|
||||
|
|
|
@ -0,0 +1,71 @@
|
|||
# Human Multithreading Demos
|
||||
|
||||
- **Browser** demo `multithread` & `worker`
|
||||
Runs each `human` module in a separate web worker for highest possible performance
|
||||
- **NodeJS** demo `node-multiprocess` & `node-multiprocess-worker`
|
||||
Runs multiple parallel `human` by dispaching them to pool of pre-created worker processes
|
||||
|
||||
<br><hr><br>
|
||||
|
||||
## NodeJS Multi-process Demo
|
||||
|
||||
`nodejs/node-multiprocess.js` and `nodejs/node-multiprocess-worker.js`: Demo using NodeJS with CommonJS module
|
||||
Demo that starts n child worker processes for parallel execution
|
||||
|
||||
```shell
|
||||
node demo/nodejs/node-multiprocess.js
|
||||
```
|
||||
|
||||
<!-- eslint-skip -->
|
||||
```json
|
||||
2021-06-01 08:54:19 INFO: @vladmandic/human version 2.0.0
|
||||
2021-06-01 08:54:19 INFO: User: vlado Platform: linux Arch: x64 Node: v16.0.0
|
||||
2021-06-01 08:54:19 INFO: Human multi-process test
|
||||
2021-06-01 08:54:19 STATE: Enumerated images: ./assets 15
|
||||
2021-06-01 08:54:19 STATE: Main: started worker: 130362
|
||||
2021-06-01 08:54:19 STATE: Main: started worker: 130363
|
||||
2021-06-01 08:54:19 STATE: Main: started worker: 130369
|
||||
2021-06-01 08:54:19 STATE: Main: started worker: 130370
|
||||
2021-06-01 08:54:20 STATE: Worker: PID: 130370 TensorFlow/JS 3.6.0 Human 2.0.0 Backend: tensorflow
|
||||
2021-06-01 08:54:20 STATE: Worker: PID: 130362 TensorFlow/JS 3.6.0 Human 2.0.0 Backend: tensorflow
|
||||
2021-06-01 08:54:20 STATE: Worker: PID: 130369 TensorFlow/JS 3.6.0 Human 2.0.0 Backend: tensorflow
|
||||
2021-06-01 08:54:20 STATE: Worker: PID: 130363 TensorFlow/JS 3.6.0 Human 2.0.0 Backend: tensorflow
|
||||
2021-06-01 08:54:21 STATE: Main: dispatching to worker: 130370
|
||||
2021-06-01 08:54:21 INFO: Latency: worker initializtion: 1348 message round trip: 0
|
||||
2021-06-01 08:54:21 DATA: Worker received message: 130370 { test: true }
|
||||
2021-06-01 08:54:21 STATE: Main: dispatching to worker: 130362
|
||||
2021-06-01 08:54:21 DATA: Worker received message: 130362 { image: 'samples/ai-face.jpg' }
|
||||
2021-06-01 08:54:21 DATA: Worker received message: 130370 { image: 'samples/ai-body.jpg' }
|
||||
2021-06-01 08:54:21 STATE: Main: dispatching to worker: 130369
|
||||
2021-06-01 08:54:21 STATE: Main: dispatching to worker: 130363
|
||||
2021-06-01 08:54:21 DATA: Worker received message: 130369 { image: 'assets/human-sample-upper.jpg' }
|
||||
2021-06-01 08:54:21 DATA: Worker received message: 130363 { image: 'assets/sample-me.jpg' }
|
||||
2021-06-01 08:54:24 DATA: Main: worker finished: 130362 detected faces: 1 bodies: 1 hands: 0 objects: 1
|
||||
2021-06-01 08:54:24 STATE: Main: dispatching to worker: 130362
|
||||
2021-06-01 08:54:24 DATA: Worker received message: 130362 { image: 'assets/sample1.jpg' }
|
||||
2021-06-01 08:54:25 DATA: Main: worker finished: 130369 detected faces: 1 bodies: 1 hands: 0 objects: 1
|
||||
2021-06-01 08:54:25 STATE: Main: dispatching to worker: 130369
|
||||
2021-06-01 08:54:25 DATA: Main: worker finished: 130370 detected faces: 1 bodies: 1 hands: 0 objects: 1
|
||||
2021-06-01 08:54:25 STATE: Main: dispatching to worker: 130370
|
||||
2021-06-01 08:54:25 DATA: Worker received message: 130369 { image: 'assets/sample2.jpg' }
|
||||
2021-06-01 08:54:25 DATA: Main: worker finished: 130363 detected faces: 1 bodies: 1 hands: 0 objects: 2
|
||||
2021-06-01 08:54:25 STATE: Main: dispatching to worker: 130363
|
||||
2021-06-01 08:54:25 DATA: Worker received message: 130370 { image: 'assets/sample3.jpg' }
|
||||
2021-06-01 08:54:25 DATA: Worker received message: 130363 { image: 'assets/sample4.jpg' }
|
||||
2021-06-01 08:54:30 DATA: Main: worker finished: 130362 detected faces: 3 bodies: 1 hands: 0 objects: 7
|
||||
2021-06-01 08:54:30 STATE: Main: dispatching to worker: 130362
|
||||
2021-06-01 08:54:30 DATA: Worker received message: 130362 { image: 'assets/sample5.jpg' }
|
||||
2021-06-01 08:54:31 DATA: Main: worker finished: 130369 detected faces: 3 bodies: 1 hands: 0 objects: 5
|
||||
2021-06-01 08:54:31 STATE: Main: dispatching to worker: 130369
|
||||
2021-06-01 08:54:31 DATA: Worker received message: 130369 { image: 'assets/sample6.jpg' }
|
||||
2021-06-01 08:54:31 DATA: Main: worker finished: 130363 detected faces: 4 bodies: 1 hands: 2 objects: 2
|
||||
2021-06-01 08:54:31 STATE: Main: dispatching to worker: 130363
|
||||
2021-06-01 08:54:39 STATE: Main: worker exit: 130370 0
|
||||
2021-06-01 08:54:39 DATA: Main: worker finished: 130362 detected faces: 1 bodies: 1 hands: 0 objects: 1
|
||||
2021-06-01 08:54:39 DATA: Main: worker finished: 130369 detected faces: 1 bodies: 1 hands: 1 objects: 3
|
||||
2021-06-01 08:54:39 STATE: Main: worker exit: 130362 0
|
||||
2021-06-01 08:54:39 STATE: Main: worker exit: 130369 0
|
||||
2021-06-01 08:54:41 DATA: Main: worker finished: 130363 detected faces: 9 bodies: 1 hands: 0 objects: 10
|
||||
2021-06-01 08:54:41 STATE: Main: worker exit: 130363 0
|
||||
2021-06-01 08:54:41 INFO: Processed: 15 images in total: 22006 ms working: 20658 ms average: 1377 ms
|
||||
```
|
|
@ -9,10 +9,10 @@
|
|||
<meta name="description" content="Human: 3D Face Detection, Body Pose, Hand & Finger Tracking, Iris Tracking, Age & Gender Prediction, Emotion Prediction & Gesture Recognition; Author: Vladimir Mandic <https://github.com/vladmandic>">
|
||||
<meta name="msapplication-tooltip" content="Human: 3D Face Detection, Body Pose, Hand & Finger Tracking, Iris Tracking, Age & Gender Prediction, Emotion Prediction & Gesture Recognition; Author: Vladimir Mandic <https://github.com/vladmandic>">
|
||||
<meta name="theme-color" content="#000000">
|
||||
<link rel="manifest" href="../manifest.webmanifest">
|
||||
<link rel="manifest" href="../../manifest.webmanifest">
|
||||
<link rel="shortcut icon" href="../../favicon.ico" type="image/x-icon">
|
||||
<link rel="apple-touch-icon" href="../../assets/icon.png">
|
||||
<script src="./index.js" type="module"></script>
|
||||
<script src="../multithread/index.js" type="module"></script>
|
||||
<style>
|
||||
@font-face { font-family: 'Lato'; font-display: swap; font-style: normal; font-weight: 100; src: local('Lato'), url('../../assets/lato-light.woff2') }
|
||||
html { font-family: 'Lato', 'Segoe UI'; font-size: 16px; font-variant: small-caps; }
|
||||
|
|
|
@ -4,17 +4,16 @@
|
|||
* @description Demo app that enables all Human modules and runs them in separate worker threads
|
||||
*
|
||||
*/
|
||||
// @ts-nocheck // typescript checks disabled as this is pure javascript
|
||||
|
||||
import Human from '../../dist/human.esm.js'; // equivalent of @vladmandic/human
|
||||
import { Human } from '../../dist/human.esm.js'; // equivalent of @vladmandic/human
|
||||
import GLBench from '../helpers/gl-bench.js';
|
||||
|
||||
const workerJS = './worker.js';
|
||||
const workerJS = '../multithread/worker.js';
|
||||
|
||||
const config = {
|
||||
main: { // processes input and runs gesture analysis
|
||||
warmup: 'none',
|
||||
backend: 'humangl',
|
||||
backend: 'webgl',
|
||||
modelBasePath: '../../models/',
|
||||
async: false,
|
||||
filter: { enabled: true },
|
||||
|
@ -27,7 +26,7 @@ const config = {
|
|||
},
|
||||
face: { // runs all face models
|
||||
warmup: 'none',
|
||||
backend: 'humangl',
|
||||
backend: 'webgl',
|
||||
modelBasePath: '../../models/',
|
||||
async: false,
|
||||
filter: { enabled: false },
|
||||
|
@ -40,7 +39,7 @@ const config = {
|
|||
},
|
||||
body: { // runs body model
|
||||
warmup: 'none',
|
||||
backend: 'humangl',
|
||||
backend: 'webgl',
|
||||
modelBasePath: '../../models/',
|
||||
async: false,
|
||||
filter: { enabled: false },
|
||||
|
@ -53,7 +52,7 @@ const config = {
|
|||
},
|
||||
hand: { // runs hands model
|
||||
warmup: 'none',
|
||||
backend: 'humangl',
|
||||
backend: 'webgl',
|
||||
modelBasePath: '../../models/',
|
||||
async: false,
|
||||
filter: { enabled: false },
|
||||
|
@ -66,7 +65,7 @@ const config = {
|
|||
},
|
||||
object: { // runs object model
|
||||
warmup: 'none',
|
||||
backend: 'humangl',
|
||||
backend: 'webgl',
|
||||
modelBasePath: '../../models/',
|
||||
async: false,
|
||||
filter: { enabled: false },
|
||||
|
@ -92,9 +91,13 @@ const busy = {
|
|||
};
|
||||
|
||||
const workers = {
|
||||
/** @type {Worker | null} */
|
||||
face: null,
|
||||
/** @type {Worker | null} */
|
||||
body: null,
|
||||
/** @type {Worker | null} */
|
||||
hand: null,
|
||||
/** @type {Worker | null} */
|
||||
object: null,
|
||||
};
|
||||
|
||||
|
@ -127,60 +130,58 @@ const result = { // initialize empty result object which will be partially fille
|
|||
function log(...msg) {
|
||||
const dt = new Date();
|
||||
const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;
|
||||
// eslint-disable-next-line no-console
|
||||
console.log(ts, ...msg);
|
||||
console.log(ts, ...msg); // eslint-disable-line no-console
|
||||
}
|
||||
|
||||
async function drawResults() {
|
||||
start.draw = performance.now();
|
||||
start.draw = human.now();
|
||||
const interpolated = human.next(result);
|
||||
await human.draw.all(canvas, interpolated);
|
||||
time.draw = Math.round(1 + performance.now() - start.draw);
|
||||
time.draw = Math.round(1 + human.now() - start.draw);
|
||||
const fps = Math.round(10 * 1000 / time.main) / 10;
|
||||
const draw = Math.round(10 * 1000 / time.draw) / 10;
|
||||
document.getElementById('log').innerText = `Human: version ${human.version} | Performance: Main ${time.main}ms Face: ${time.face}ms Body: ${time.body}ms Hand: ${time.hand}ms Object ${time.object}ms | FPS: ${fps} / ${draw}`;
|
||||
const div = document.getElementById('log');
|
||||
if (div) div.innerText = `Human: version ${human.version} | Performance: Main ${time.main}ms Face: ${time.face}ms Body: ${time.body}ms Hand: ${time.hand}ms Object ${time.object}ms | FPS: ${fps} / ${draw}`;
|
||||
requestAnimationFrame(drawResults);
|
||||
}
|
||||
|
||||
async function receiveMessage(msg) {
|
||||
result[msg.data.type] = msg.data.result;
|
||||
busy[msg.data.type] = false;
|
||||
time[msg.data.type] = Math.round(performance.now() - start[msg.data.type]);
|
||||
time[msg.data.type] = Math.round(human.now() - start[msg.data.type]);
|
||||
}
|
||||
|
||||
async function runDetection() {
|
||||
start.main = performance.now();
|
||||
start.main = human.now();
|
||||
if (!bench) {
|
||||
bench = new GLBench(null, { trackGPU: false, chartHz: 20, chartLen: 20 });
|
||||
bench.begin();
|
||||
bench.begin('human');
|
||||
}
|
||||
const ctx = canvas.getContext('2d');
|
||||
// const image = await human.image(video);
|
||||
// ctx.drawImage(image.canvas, 0, 0, canvas.width, canvas.height);
|
||||
ctx.drawImage(video, 0, 0, canvas.width, canvas.height);
|
||||
const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
|
||||
if (!busy.face) {
|
||||
busy.face = true;
|
||||
start.face = performance.now();
|
||||
workers.face.postMessage({ image: imageData.data.buffer, width: canvas.width, height: canvas.height, config: config.face, type: 'face' }, [imageData.data.buffer.slice(0)]);
|
||||
start.face = human.now();
|
||||
if (workers.face) workers.face.postMessage({ image: imageData.data.buffer, width: canvas.width, height: canvas.height, config: config.face, type: 'face' }, [imageData.data.buffer.slice(0)]);
|
||||
}
|
||||
if (!busy.body) {
|
||||
busy.body = true;
|
||||
start.body = performance.now();
|
||||
workers.body.postMessage({ image: imageData.data.buffer, width: canvas.width, height: canvas.height, config: config.body, type: 'body' }, [imageData.data.buffer.slice(0)]);
|
||||
start.body = human.now();
|
||||
if (workers.body) workers.body.postMessage({ image: imageData.data.buffer, width: canvas.width, height: canvas.height, config: config.body, type: 'body' }, [imageData.data.buffer.slice(0)]);
|
||||
}
|
||||
if (!busy.hand) {
|
||||
busy.hand = true;
|
||||
start.hand = performance.now();
|
||||
workers.hand.postMessage({ image: imageData.data.buffer, width: canvas.width, height: canvas.height, config: config.hand, type: 'hand' }, [imageData.data.buffer.slice(0)]);
|
||||
start.hand = human.now();
|
||||
if (workers.hand) workers.hand.postMessage({ image: imageData.data.buffer, width: canvas.width, height: canvas.height, config: config.hand, type: 'hand' }, [imageData.data.buffer.slice(0)]);
|
||||
}
|
||||
if (!busy.object) {
|
||||
busy.object = true;
|
||||
start.object = performance.now();
|
||||
workers.object.postMessage({ image: imageData.data.buffer, width: canvas.width, height: canvas.height, config: config.object, type: 'object' }, [imageData.data.buffer.slice(0)]);
|
||||
start.object = human.now();
|
||||
if (workers.object) workers.object.postMessage({ image: imageData.data.buffer, width: canvas.width, height: canvas.height, config: config.object, type: 'object' }, [imageData.data.buffer.slice(0)]);
|
||||
}
|
||||
|
||||
time.main = Math.round(performance.now() - start.main);
|
||||
time.main = Math.round(human.now() - start.main);
|
||||
|
||||
bench.nextFrame();
|
||||
requestAnimationFrame(runDetection);
|
||||
|
@ -197,37 +198,40 @@ async function setupCamera() {
|
|||
facingMode: 'user',
|
||||
resizeMode: 'crop-and-scale',
|
||||
width: { ideal: document.body.clientWidth },
|
||||
// height: { ideal: document.body.clientHeight }, // not set as we're using aspectRation to get height instead
|
||||
aspectRatio: document.body.clientWidth / document.body.clientHeight,
|
||||
},
|
||||
};
|
||||
// enumerate devices for diag purposes
|
||||
navigator.mediaDevices.enumerateDevices().then((devices) => log('enumerated devices:', devices));
|
||||
navigator.mediaDevices.enumerateDevices()
|
||||
.then((devices) => log('enumerated devices:', devices))
|
||||
.catch(() => log('mediaDevices error'));
|
||||
log('camera constraints', constraints);
|
||||
try {
|
||||
stream = await navigator.mediaDevices.getUserMedia(constraints);
|
||||
} catch (err) {
|
||||
output.innerText += `\n${err.name}: ${err.message}`;
|
||||
status(err.name);
|
||||
if (output) output.innerText += `\n${err.name}: ${err.message}`;
|
||||
log('camera error:', err);
|
||||
}
|
||||
const tracks = stream.getVideoTracks();
|
||||
log('enumerated viable tracks:', tracks);
|
||||
const track = stream.getVideoTracks()[0];
|
||||
const settings = track.getSettings();
|
||||
log('selected video source:', track, settings);
|
||||
if (stream) {
|
||||
const tracks = stream.getVideoTracks();
|
||||
log('enumerated viable tracks:', tracks);
|
||||
const track = stream.getVideoTracks()[0];
|
||||
const settings = track.getSettings();
|
||||
log('selected video source:', track, settings);
|
||||
} else {
|
||||
log('missing video stream');
|
||||
}
|
||||
const promise = !stream || new Promise((resolve) => {
|
||||
video.onloadeddata = () => {
|
||||
if (settings.width > settings.height) canvas.style.width = '100vw';
|
||||
else canvas.style.height = '100vh';
|
||||
canvas.style.height = '100vh';
|
||||
canvas.width = video.videoWidth;
|
||||
canvas.height = video.videoHeight;
|
||||
video.play();
|
||||
resolve();
|
||||
resolve(true);
|
||||
};
|
||||
});
|
||||
// attach input to video element
|
||||
if (stream) video.srcObject = stream;
|
||||
if (stream && video) video.srcObject = stream;
|
||||
return promise;
|
||||
}
|
||||
|
||||
|
@ -243,21 +247,13 @@ async function startWorkers() {
|
|||
}
|
||||
|
||||
async function main() {
|
||||
window.addEventListener('unhandledrejection', (evt) => {
|
||||
// eslint-disable-next-line no-console
|
||||
console.error(evt.reason || evt);
|
||||
document.getElementById('log').innerHTML = evt.reason.message || evt.reason || evt;
|
||||
status('exception error');
|
||||
evt.preventDefault();
|
||||
});
|
||||
|
||||
if (typeof Worker === 'undefined' || typeof OffscreenCanvas === 'undefined') {
|
||||
status('workers are not supported');
|
||||
return;
|
||||
}
|
||||
|
||||
human = new Human(config.main);
|
||||
document.getElementById('log').innerText = `Human: version ${human.version}`;
|
||||
const div = document.getElementById('log');
|
||||
if (div) div.innerText = `Human: version ${human.version}`;
|
||||
|
||||
await startWorkers();
|
||||
await setupCamera();
|
||||
|
|
|
@ -6,17 +6,16 @@
|
|||
*/
|
||||
|
||||
const fs = require('fs');
|
||||
const log = require('@vladmandic/pilogger');
|
||||
const log = require('@vladmandic/pilogger'); // eslint-disable-line node/no-unpublished-require
|
||||
|
||||
// workers actual import tfjs and faceapi modules
|
||||
// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars
|
||||
const tf = require('@tensorflow/tfjs-node');
|
||||
// workers actual import tfjs and human modules
|
||||
const tf = require('@tensorflow/tfjs-node'); // eslint-disable-line node/no-unpublished-require
|
||||
const Human = require('../../dist/human.node.js').default; // or const Human = require('../dist/human.node-gpu.js').default;
|
||||
|
||||
let human = null;
|
||||
|
||||
const myConfig = {
|
||||
backend: 'tensorflow',
|
||||
// backend: 'tensorflow',
|
||||
modelBasePath: 'file://models/',
|
||||
debug: false,
|
||||
async: true,
|
||||
|
@ -36,7 +35,7 @@ const myConfig = {
|
|||
object: { enabled: true },
|
||||
};
|
||||
|
||||
// read image from a file and create tensor to be used by faceapi
|
||||
// read image from a file and create tensor to be used by human
|
||||
// this way we don't need any monkey patches
|
||||
// you can add any pre-proocessing here such as resizing, etc.
|
||||
async function image(img) {
|
||||
|
@ -45,7 +44,7 @@ async function image(img) {
|
|||
return tensor;
|
||||
}
|
||||
|
||||
// actual faceapi detection
|
||||
// actual human detection
|
||||
async function detect(img) {
|
||||
const tensor = await image(img);
|
||||
const result = await human.detect(tensor);
|
||||
|
@ -64,11 +63,9 @@ async function main() {
|
|||
|
||||
// on worker start first initialize message handler so we don't miss any messages
|
||||
process.on('message', (msg) => {
|
||||
// @ts-ignore
|
||||
if (msg.exit && process.exit) process.exit(); // if main told worker to exit
|
||||
// @ts-ignore
|
||||
// if main told worker to exit
|
||||
if (msg.exit && process.exit) process.exit(); // eslint-disable-line no-process-exit
|
||||
if (msg.test && process.send) process.send({ test: true });
|
||||
// @ts-ignore
|
||||
if (msg.image) detect(msg.image); // if main told worker to process image
|
||||
log.data('Worker received message:', process.pid, msg); // generic log
|
||||
});
|
||||
|
@ -78,7 +75,7 @@ async function main() {
|
|||
// wait until tf is ready
|
||||
await human.tf.ready();
|
||||
// pre-load models
|
||||
log.state('Worker: PID:', process.pid, `TensorFlow/JS ${human.tf.version_core} Human ${human.version} Backend: ${human.tf.getBackend()}`);
|
||||
log.state('Worker: PID:', process.pid, `TensorFlow/JS ${human.tf.version['tfjs-core']} Human ${human.version} Backend: ${human.tf.getBackend()}`);
|
||||
await human.load();
|
||||
|
||||
// now we're ready, so send message back to main that it knows it can use this worker
|
|
@ -8,13 +8,12 @@
|
|||
|
||||
const fs = require('fs');
|
||||
const path = require('path');
|
||||
// eslint-disable-next-line import/no-extraneous-dependencies, node/no-unpublished-require
|
||||
const log = require('@vladmandic/pilogger'); // this is my simple logger with few extra features
|
||||
const child_process = require('child_process');
|
||||
const childProcess = require('child_process'); // eslint-disable-line camelcase
|
||||
const log = require('@vladmandic/pilogger'); // eslint-disable-line node/no-unpublished-require
|
||||
// note that main process does not import human or tfjs at all, it's all done from worker process
|
||||
|
||||
const workerFile = 'demo/nodejs/node-multiprocess-worker.js';
|
||||
const imgPathRoot = './assets'; // modify to include your sample images
|
||||
const workerFile = 'demo/multithread/node-multiprocess-worker.js';
|
||||
const imgPathRoot = './samples/in'; // modify to include your sample images
|
||||
const numWorkers = 4; // how many workers will be started
|
||||
const workers = []; // this holds worker processes
|
||||
const images = []; // this holds queue of enumerated images
|
||||
|
@ -23,7 +22,7 @@ let numImages;
|
|||
|
||||
// trigered by main when worker sends ready message
|
||||
// if image pool is empty, signal worker to exit otherwise dispatch image to worker and remove image from queue
|
||||
async function detect(worker) {
|
||||
async function submitDetect(worker) {
|
||||
if (!t[2]) t[2] = process.hrtime.bigint(); // first time do a timestamp so we can measure initial latency
|
||||
if (images.length === numImages) worker.send({ test: true }); // for first image in queue just measure latency
|
||||
if (images.length === 0) worker.send({ exit: true }); // nothing left in queue
|
||||
|
@ -58,7 +57,7 @@ async function main() {
|
|||
});
|
||||
|
||||
log.header();
|
||||
log.info('FaceAPI multi-process test');
|
||||
log.info('Human multi-process test');
|
||||
|
||||
// enumerate all images into queue
|
||||
const dir = fs.readdirSync(imgPathRoot);
|
||||
|
@ -74,13 +73,13 @@ async function main() {
|
|||
// manage worker processes
|
||||
for (let i = 0; i < numWorkers; i++) {
|
||||
// create worker process
|
||||
workers[i] = await child_process.fork(workerFile, ['special']);
|
||||
workers[i] = await childProcess.fork(workerFile, ['special']);
|
||||
// parse message that worker process sends back to main
|
||||
// if message is ready, dispatch next image in queue
|
||||
// if message is processing result, just print how many faces were detected
|
||||
// otherwise it's an unknown message
|
||||
workers[i].on('message', (msg) => {
|
||||
if (msg.ready) detect(workers[i]);
|
||||
if (msg.ready) submitDetect(workers[i]);
|
||||
else if (msg.image) log.data('Main: worker finished:', workers[i].pid, 'detected faces:', msg.detected.face?.length, 'bodies:', msg.detected.body?.length, 'hands:', msg.detected.hand?.length, 'objects:', msg.detected.object?.length);
|
||||
else if (msg.test) measureLatency();
|
||||
else log.data('Main: worker message:', workers[i].pid, msg);
|
|
@ -1,9 +1,7 @@
|
|||
// load Human using IIFE script as Chome Mobile does not support Modules as Workers
|
||||
|
||||
/// <reference lib="webworker" />
|
||||
|
||||
// import Human from '../dist/human.esm.js';
|
||||
self.importScripts('../../dist/human.js');
|
||||
// load Human using IIFE script as Chome Mobile does not support Modules as Workers
|
||||
self.importScripts('../../dist/human.js'); // eslint-disable-line no-restricted-globals
|
||||
|
||||
let human;
|
||||
|
||||
|
@ -11,9 +9,8 @@ onmessage = async (msg) => {
|
|||
// received from index.js using:
|
||||
// worker.postMessage({ image: image.data.buffer, width: canvas.width, height: canvas.height, config }, [image.data.buffer]);
|
||||
|
||||
// @ts-ignore // Human is registered as global namespace using IIFE script
|
||||
// eslint-disable-next-line no-undef, new-cap
|
||||
if (!human) human = new Human.default(msg.data.config);
|
||||
// Human is registered as global namespace using IIFE script
|
||||
if (!human) human = new Human.default(msg.data.config); // eslint-disable-line no-undef, new-cap
|
||||
const image = new ImageData(new Uint8ClampedArray(msg.data.image), msg.data.width, msg.data.height);
|
||||
let result = {};
|
||||
result = await human.detect(image, msg.data.config);
|
||||
|
|
|
@ -0,0 +1,121 @@
|
|||
# Human Demos for NodeJS
|
||||
|
||||
- `node`: Process images from files, folders or URLs
|
||||
uses native methods for image loading and decoding without external dependencies
|
||||
- `node-canvas`: Process image from file or URL and draw results to a new image file using `node-canvas`
|
||||
uses `node-canvas` library to load and decode images from files, draw detection results and write output to a new image file
|
||||
- `node-video`: Processing of video input using `ffmpeg`
|
||||
uses `ffmpeg` to decode video input (can be a file, stream or device such as webcam) and
|
||||
output results in a pipe that are captured by demo app as frames and processed by `Human` library
|
||||
- `node-webcam`: Processing of webcam screenshots using `fswebcam`
|
||||
uses `fswebcam` to connect to web cam and take screenshots at regular interval which are then processed by `Human` library
|
||||
- `node-event`: Showcases usage of `Human` eventing to get notifications on processing
|
||||
- `node-similarity`: Compares two input images for similarity of detected faces
|
||||
- `process-folder`: Processing all images in input folder and creates output images
|
||||
interally used to generate samples gallery
|
||||
|
||||
<br>
|
||||
|
||||
## Main Demo
|
||||
|
||||
`nodejs/node.js`: Demo using NodeJS with CommonJS module
|
||||
Simple demo that can process any input image
|
||||
|
||||
Note that you can run demo as-is and it will perform detection on provided sample images,
|
||||
or you can pass a path to image to analyze, either on local filesystem or using URL
|
||||
|
||||
```shell
|
||||
node demo/nodejs/node.js
|
||||
```
|
||||
|
||||
<!-- eslint-skip -->
|
||||
```js
|
||||
2021-06-01 08:52:15 INFO: @vladmandic/human version 2.0.0
|
||||
2021-06-01 08:52:15 INFO: User: vlado Platform: linux Arch: x64 Node: v16.0.0
|
||||
2021-06-01 08:52:15 INFO: Current folder: /home/vlado/dev/human
|
||||
2021-06-01 08:52:15 INFO: Human: 2.0.0
|
||||
2021-06-01 08:52:15 INFO: Active Configuration {
|
||||
backend: 'tensorflow',
|
||||
modelBasePath: 'file://models/',
|
||||
wasmPath: '../node_modules/@tensorflow/tfjs-backend-wasm/dist/',
|
||||
debug: true,
|
||||
async: false,
|
||||
warmup: 'full',
|
||||
cacheSensitivity: 0.75,
|
||||
filter: {
|
||||
enabled: true,
|
||||
width: 0,
|
||||
height: 0,
|
||||
flip: true,
|
||||
return: true,
|
||||
brightness: 0,
|
||||
contrast: 0,
|
||||
sharpness: 0,
|
||||
blur: 0,
|
||||
saturation: 0,
|
||||
hue: 0,
|
||||
negative: false,
|
||||
sepia: false,
|
||||
vintage: false,
|
||||
kodachrome: false,
|
||||
technicolor: false,
|
||||
polaroid: false,
|
||||
pixelate: 0
|
||||
},
|
||||
gesture: { enabled: true },
|
||||
face: {
|
||||
enabled: true,
|
||||
detector: { modelPath: 'blazeface.json', rotation: false, maxDetected: 10, skipFrames: 15, minConfidence: 0.2, iouThreshold: 0.1, return: false, enabled: true },
|
||||
mesh: { enabled: true, modelPath: 'facemesh.json' },
|
||||
iris: { enabled: true, modelPath: 'iris.json' },
|
||||
description: { enabled: true, modelPath: 'faceres.json', skipFrames: 16, minConfidence: 0.1 },
|
||||
emotion: { enabled: true, minConfidence: 0.1, skipFrames: 17, modelPath: 'emotion.json' }
|
||||
},
|
||||
body: { enabled: true, modelPath: 'movenet-lightning.json', maxDetected: 1, minConfidence: 0.2 },
|
||||
hand: {
|
||||
enabled: true,
|
||||
rotation: true,
|
||||
skipFrames: 18,
|
||||
minConfidence: 0.1,
|
||||
iouThreshold: 0.1,
|
||||
maxDetected: 2,
|
||||
landmarks: true,
|
||||
detector: { modelPath: 'handdetect.json' },
|
||||
skeleton: { modelPath: 'handskeleton.json' }
|
||||
},
|
||||
object: { enabled: true, modelPath: 'centernet.json', minConfidence: 0.2, iouThreshold: 0.4, maxDetected: 10, skipFrames: 19 }
|
||||
}
|
||||
08:52:15.673 Human: version: 2.0.0
|
||||
08:52:15.674 Human: tfjs version: 3.6.0
|
||||
08:52:15.674 Human: platform: linux x64
|
||||
08:52:15.674 Human: agent: NodeJS v16.0.0
|
||||
08:52:15.674 Human: setting backend: tensorflow
|
||||
08:52:15.710 Human: load model: file://models/blazeface.json
|
||||
08:52:15.743 Human: load model: file://models/facemesh.json
|
||||
08:52:15.744 Human: load model: file://models/iris.json
|
||||
08:52:15.760 Human: load model: file://models/emotion.json
|
||||
08:52:15.847 Human: load model: file://models/handdetect.json
|
||||
08:52:15.847 Human: load model: file://models/handskeleton.json
|
||||
08:52:15.914 Human: load model: file://models/movenet-lightning.json
|
||||
08:52:15.957 Human: load model: file://models/centernet.json
|
||||
08:52:16.015 Human: load model: file://models/faceres.json
|
||||
08:52:16.015 Human: tf engine state: 50796152 bytes 1318 tensors
|
||||
2021-06-01 08:52:16 INFO: Loaded: [ 'face', 'movenet', 'handpose', 'emotion', 'centernet', 'faceres', [length]: 6 ]
|
||||
2021-06-01 08:52:16 INFO: Memory state: { unreliable: true, numTensors: 1318, numDataBuffers: 1318, numBytes: 50796152 }
|
||||
2021-06-01 08:52:16 INFO: Loading image: private/daz3d/daz3d-kiaria-02.jpg
|
||||
2021-06-01 08:52:16 STATE: Processing: [ 1, 1300, 1000, 3, [length]: 4 ]
|
||||
2021-06-01 08:52:17 DATA: Results:
|
||||
2021-06-01 08:52:17 DATA: Face: #0 boxScore:0.88 faceScore:1 age:16.3 genderScore:0.97 gender:female emotionScore:0.85 emotion:happy iris:61.05
|
||||
2021-06-01 08:52:17 DATA: Body: #0 score:0.82 keypoints:17
|
||||
2021-06-01 08:52:17 DATA: Hand: #0 score:0.89
|
||||
2021-06-01 08:52:17 DATA: Hand: #1 score:0.97
|
||||
2021-06-01 08:52:17 DATA: Gesture: face#0 gesture:facing left
|
||||
2021-06-01 08:52:17 DATA: Gesture: body#0 gesture:leaning right
|
||||
2021-06-01 08:52:17 DATA: Gesture: hand#0 gesture:pinky forward middlefinger up
|
||||
2021-06-01 08:52:17 DATA: Gesture: hand#1 gesture:pinky forward middlefinger up
|
||||
2021-06-01 08:52:17 DATA: Gesture: iris#0 gesture:looking left
|
||||
2021-06-01 08:52:17 DATA: Object: #0 score:0.55 label:person
|
||||
2021-06-01 08:52:17 DATA: Object: #1 score:0.23 label:bottle
|
||||
2021-06-01 08:52:17 DATA: Persons:
|
||||
2021-06-01 08:52:17 DATA: #0: Face:score:1 age:16.3 gender:female iris:61.05 Body:score:0.82 keypoints:17 LeftHand:no RightHand:yes Gestures:4
|
||||
```
|
|
@ -0,0 +1,66 @@
|
|||
/**
|
||||
* Human simple demo for NodeJS
|
||||
*/
|
||||
|
||||
const childProcess = require('child_process'); // eslint-disable-line camelcase
|
||||
const log = require('@vladmandic/pilogger'); // eslint-disable-line node/no-unpublished-require
|
||||
const canvas = require('canvas'); // eslint-disable-line node/no-unpublished-require
|
||||
|
||||
const config = {
|
||||
cacheSensitivity: 0.01,
|
||||
wasmPlatformFetch: true,
|
||||
modelBasePath: 'https://vladmandic.github.io/human-models/models/',
|
||||
};
|
||||
const count = 10;
|
||||
|
||||
async function loadImage(input) {
|
||||
const inputImage = await canvas.loadImage(input);
|
||||
const inputCanvas = new canvas.Canvas(inputImage.width, inputImage.height);
|
||||
const inputCtx = inputCanvas.getContext('2d');
|
||||
inputCtx.drawImage(inputImage, 0, 0);
|
||||
const imageData = inputCtx.getImageData(0, 0, inputCanvas.width, inputCanvas.height);
|
||||
process.send({ input, resolution: [inputImage.width, inputImage.height] });
|
||||
return imageData;
|
||||
}
|
||||
|
||||
async function runHuman(module, backend) {
|
||||
if (backend === 'wasm') require('@tensorflow/tfjs-backend-wasm'); // eslint-disable-line node/no-unpublished-require, global-require
|
||||
const Human = require('../../dist/' + module); // eslint-disable-line global-require, import/no-dynamic-require
|
||||
config.backend = backend;
|
||||
const human = new Human.Human(config);
|
||||
human.env.Canvas = canvas.Canvas;
|
||||
human.env.Image = canvas.Image;
|
||||
human.env.ImageData = canvas.ImageData;
|
||||
process.send({ human: human.version, module });
|
||||
await human.init();
|
||||
process.send({ desired: human.config.backend, wasm: human.env.wasm, tfjs: human.tf.version.tfjs, tensorflow: human.env.tensorflow });
|
||||
const imageData = await loadImage('samples/in/ai-body.jpg');
|
||||
const t0 = human.now();
|
||||
await human.load();
|
||||
const t1 = human.now();
|
||||
await human.warmup();
|
||||
const t2 = human.now();
|
||||
for (let i = 0; i < count; i++) await human.detect(imageData);
|
||||
const t3 = human.now();
|
||||
process.send({ backend: human.tf.getBackend(), load: Math.round(t1 - t0), warmup: Math.round(t2 - t1), detect: Math.round(t3 - t2), count, memory: human.tf.memory().numBytes });
|
||||
}
|
||||
|
||||
async function executeWorker(args) {
|
||||
return new Promise((resolve) => {
|
||||
const worker = childProcess.fork(process.argv[1], args);
|
||||
worker.on('message', (msg) => log.data(msg));
|
||||
worker.on('exit', () => resolve(true));
|
||||
});
|
||||
}
|
||||
|
||||
async function main() {
|
||||
if (process.argv[2]) {
|
||||
await runHuman(process.argv[2], process.argv[3]);
|
||||
} else {
|
||||
await executeWorker(['human.node.js', 'tensorflow']);
|
||||
await executeWorker(['human.node-gpu.js', 'tensorflow']);
|
||||
await executeWorker(['human.node-wasm.js', 'wasm']);
|
||||
}
|
||||
}
|
||||
|
||||
main();
|
|
@ -1,18 +1,22 @@
|
|||
/**
|
||||
* Human demo for NodeJS using Canvas library
|
||||
*
|
||||
* Requires [canvas](https://www.npmjs.com/package/canvas) to provide Canvas functionality in NodeJS environment
|
||||
*/
|
||||
|
||||
const fs = require('fs');
|
||||
const process = require('process');
|
||||
const log = require('@vladmandic/pilogger');
|
||||
const canvas = require('canvas');
|
||||
require('@tensorflow/tfjs-node'); // for nodejs, `tfjs-node` or `tfjs-node-gpu` should be loaded before using Human
|
||||
const Human = require('../../dist/human.node.js'); // this is 'const Human = require('../dist/human.node-gpu.js').default;'
|
||||
const log = require('@vladmandic/pilogger'); // eslint-disable-line node/no-unpublished-require
|
||||
// in nodejs environments tfjs-node is required to be loaded before human
|
||||
const tf = require('@tensorflow/tfjs-node'); // eslint-disable-line node/no-unpublished-require
|
||||
const canvas = require('canvas'); // eslint-disable-line node/no-unpublished-require
|
||||
// const human = require('@vladmandic/human'); // use this when human is installed as module (majority of use cases)
|
||||
const Human = require('../../dist/human.node.js'); // use this when using human in dev mode
|
||||
|
||||
const config = { // just enable all and leave default settings
|
||||
debug: false,
|
||||
face: { enabled: true }, // includes mesh, iris, emotion, descriptor
|
||||
hand: { enabled: true, maxDetected: 2, minConfidence: 0.5, detector: { modelPath: 'handtrack.json' } }, // use alternative hand model
|
||||
face: { enabled: true, detector: { maxDetected: 10 } }, // includes mesh, iris, emotion, descriptor
|
||||
hand: { enabled: true, maxDetected: 20, minConfidence: 0.5, detector: { modelPath: 'handtrack.json' } }, // use alternative hand model
|
||||
body: { enabled: true },
|
||||
object: { enabled: true },
|
||||
gestures: { enabled: true },
|
||||
|
@ -28,15 +32,16 @@ async function main() {
|
|||
|
||||
// init
|
||||
const human = new Human.Human(config); // create instance of human
|
||||
log.info('Human:', human.version);
|
||||
log.info('Human:', human.version, 'TF:', tf.version_core);
|
||||
|
||||
await human.load(); // pre-load models
|
||||
log.info('Loaded models:', Object.keys(human.models).filter((a) => human.models[a]));
|
||||
log.info('Loaded models:', human.models.loaded());
|
||||
log.info('Memory state:', human.tf.engine().memory());
|
||||
|
||||
// parse cmdline
|
||||
const input = process.argv[2];
|
||||
const output = process.argv[3];
|
||||
let output = process.argv[3];
|
||||
if (!output.toLowerCase().endsWith('.jpg')) output += '.jpg';
|
||||
if (process.argv.length !== 4) log.error('Parameters: <input-image> <output-image> missing');
|
||||
else if (!fs.existsSync(input) && !input.startsWith('http')) log.error(`File not found: ${process.argv[2]}`);
|
||||
else {
|
||||
|
@ -44,15 +49,12 @@ async function main() {
|
|||
const inputImage = await canvas.loadImage(input); // load image using canvas library
|
||||
log.info('Loaded image', input, inputImage.width, inputImage.height);
|
||||
const inputCanvas = new canvas.Canvas(inputImage.width, inputImage.height); // create canvas
|
||||
const ctx = inputCanvas.getContext('2d');
|
||||
ctx.drawImage(inputImage, 0, 0); // draw input image onto canvas
|
||||
const inputCtx = inputCanvas.getContext('2d');
|
||||
inputCtx.drawImage(inputImage, 0, 0); // draw input image onto canvas
|
||||
const imageData = inputCtx.getImageData(0, 0, inputCanvas.width, inputCanvas.height);
|
||||
|
||||
// run detection
|
||||
const result = await human.detect(inputCanvas);
|
||||
|
||||
// run segmentation
|
||||
// const seg = await human.segmentation(inputCanvas);
|
||||
// log.data('Segmentation:', { data: seg.data.length, alpha: typeof seg.alpha, canvas: typeof seg.canvas });
|
||||
const result = await human.detect(imageData);
|
||||
|
||||
// print results summary
|
||||
const persons = result.persons; // invoke persons getter, only used to print summary on console
|
||||
|
@ -60,16 +62,19 @@ async function main() {
|
|||
const face = persons[i].face;
|
||||
const faceTxt = face ? `score:${face.score} age:${face.age} gender:${face.gender} iris:${face.iris}` : null;
|
||||
const body = persons[i].body;
|
||||
const bodyTxt = body ? `score:${body.score} keypoints:${body.keypoints?.length}` : null;
|
||||
const bodyTxt = body ? `score:${body.score} keypoints:${body.keypoints.length}` : null;
|
||||
log.data(`Detected: #${i}: Face:${faceTxt} Body:${bodyTxt} LeftHand:${persons[i].hands.left ? 'yes' : 'no'} RightHand:${persons[i].hands.right ? 'yes' : 'no'} Gestures:${persons[i].gestures.length}`);
|
||||
}
|
||||
|
||||
// draw detected results onto canvas and save it to a file
|
||||
human.draw.all(inputCanvas, result); // use human build-in method to draw results as overlays on canvas
|
||||
const outputCanvas = new canvas.Canvas(inputImage.width, inputImage.height); // create canvas
|
||||
const outputCtx = outputCanvas.getContext('2d');
|
||||
outputCtx.drawImage(result.canvas || inputImage, 0, 0); // draw input image onto canvas
|
||||
human.draw.all(outputCanvas, result); // use human build-in method to draw results as overlays on canvas
|
||||
const outFile = fs.createWriteStream(output); // write canvas to new image file
|
||||
outFile.on('finish', () => log.state('Output image:', output, inputCanvas.width, inputCanvas.height));
|
||||
outFile.on('finish', () => log.state('Output image:', output, outputCanvas.width, outputCanvas.height));
|
||||
outFile.on('error', (err) => log.error('Output error:', output, err));
|
||||
const stream = inputCanvas.createJPEGStream({ quality: 0.5, progressive: true, chromaSubsampling: true });
|
||||
const stream = outputCanvas.createJPEGStream({ quality: 0.5, progressive: true, chromaSubsampling: true });
|
||||
stream.pipe(outFile);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,21 +0,0 @@
|
|||
const log = require('@vladmandic/pilogger');
|
||||
const Human = require('../../dist/human.node.js').default; // or const Human = require('../dist/human.node-gpu.js').default;
|
||||
|
||||
const config = {
|
||||
debug: false,
|
||||
};
|
||||
|
||||
async function main() {
|
||||
const human = new Human(config);
|
||||
await human.tf.ready();
|
||||
log.info('Human:', human.version);
|
||||
log.data('Environment', human.env);
|
||||
await human.load();
|
||||
const models = Object.keys(human.models).map((model) => ({ name: model, loaded: (human.models[model] !== null) }));
|
||||
log.data('Models:', models);
|
||||
log.info('Memory state:', human.tf.engine().memory());
|
||||
// log.data('Config', human.config);
|
||||
log.info('TFJS flags:', human.tf.ENV.flags);
|
||||
}
|
||||
|
||||
main();
|
|
@ -2,23 +2,18 @@
|
|||
* Human demo for NodeJS
|
||||
*/
|
||||
|
||||
const log = require('@vladmandic/pilogger');
|
||||
const fs = require('fs');
|
||||
const process = require('process');
|
||||
|
||||
let fetch; // fetch is dynamically imported later
|
||||
|
||||
// for NodeJS, `tfjs-node` or `tfjs-node-gpu` should be loaded before using Human
|
||||
// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars
|
||||
const tf = require('@tensorflow/tfjs-node'); // or const tf = require('@tensorflow/tfjs-node-gpu');
|
||||
|
||||
// load specific version of Human library that matches TensorFlow mode
|
||||
const Human = require('../../dist/human.node.js').default; // or const Human = require('../dist/human.node-gpu.js').default;
|
||||
const log = require('@vladmandic/pilogger'); // eslint-disable-line node/no-unpublished-require
|
||||
// in nodejs environments tfjs-node is required to be loaded before human
|
||||
const tf = require('@tensorflow/tfjs-node'); // eslint-disable-line node/no-unpublished-require
|
||||
// const human = require('@vladmandic/human'); // use this when human is installed as module (majority of use cases)
|
||||
const Human = require('../../dist/human.node.js'); // use this when using human in dev mode
|
||||
|
||||
let human = null;
|
||||
|
||||
const myConfig = {
|
||||
backend: 'tensorflow',
|
||||
modelBasePath: 'file://models/',
|
||||
debug: false,
|
||||
async: true,
|
||||
|
@ -41,29 +36,17 @@ async function detect(input) {
|
|||
let buffer;
|
||||
log.info('Loading image:', input);
|
||||
if (input.startsWith('http:') || input.startsWith('https:')) {
|
||||
fetch = (await import('node-fetch')).default;
|
||||
const res = await fetch(input);
|
||||
if (res && res.ok) buffer = await res.buffer();
|
||||
if (res && res.ok) buffer = Buffer.from(await res.arrayBuffer());
|
||||
else log.error('Invalid image URL:', input, res.status, res.statusText, res.headers.get('content-type'));
|
||||
} else {
|
||||
buffer = fs.readFileSync(input);
|
||||
}
|
||||
log.data('Image bytes:', buffer?.length, 'buffer:', buffer?.slice(0, 32));
|
||||
|
||||
// decode image using tfjs-node so we don't need external depenencies
|
||||
if (!buffer) return;
|
||||
const tensor = human.tf.tidy(() => {
|
||||
const decode = human.tf.node.decodeImage(buffer, 3);
|
||||
let expand;
|
||||
if (decode.shape[2] === 4) { // input is in rgba format, need to convert to rgb
|
||||
const channels = human.tf.split(decode, 4, 2); // split rgba to channels
|
||||
const rgb = human.tf.stack([channels[0], channels[1], channels[2]], 2); // stack channels back to rgb and ignore alpha
|
||||
expand = human.tf.reshape(rgb, [1, decode.shape[0], decode.shape[1], 3]); // move extra dim from the end of tensor and use it as batch number instead
|
||||
} else {
|
||||
expand = human.tf.expandDims(decode, 0);
|
||||
}
|
||||
const cast = human.tf.cast(expand, 'float32');
|
||||
return cast;
|
||||
});
|
||||
const tensor = human.tf.node.decodeImage(buffer, 3);
|
||||
|
||||
// run detection
|
||||
await human.detect(tensor, myConfig);
|
||||
|
@ -73,32 +56,34 @@ async function detect(input) {
|
|||
async function main() {
|
||||
log.header();
|
||||
|
||||
human = new Human(myConfig);
|
||||
human = new Human.Human(myConfig);
|
||||
log.info('Human:', human.version, 'TF:', tf.version_core);
|
||||
|
||||
human.events.addEventListener('warmup', () => {
|
||||
log.info('Event Warmup');
|
||||
});
|
||||
if (human.events) {
|
||||
human.events.addEventListener('warmup', () => {
|
||||
log.info('Event Warmup');
|
||||
});
|
||||
|
||||
human.events.addEventListener('load', () => {
|
||||
const loaded = Object.keys(human.models).filter((a) => human.models[a]);
|
||||
log.info('Event Loaded:', loaded, human.tf.engine().memory());
|
||||
});
|
||||
human.events.addEventListener('load', () => {
|
||||
log.info('Event Loaded:', human.models.loaded(), human.tf.engine().memory());
|
||||
});
|
||||
|
||||
human.events.addEventListener('image', () => {
|
||||
log.info('Event Image:', human.process.tensor.shape);
|
||||
});
|
||||
human.events.addEventListener('image', () => {
|
||||
log.info('Event Image:', human.process.tensor.shape);
|
||||
});
|
||||
|
||||
human.events.addEventListener('detect', () => {
|
||||
log.data('Event Detected:');
|
||||
const persons = human.result.persons;
|
||||
for (let i = 0; i < persons.length; i++) {
|
||||
const face = persons[i].face;
|
||||
const faceTxt = face ? `score:${face.score} age:${face.age} gender:${face.gender} iris:${face.iris}` : null;
|
||||
const body = persons[i].body;
|
||||
const bodyTxt = body ? `score:${body.score} keypoints:${body.keypoints?.length}` : null;
|
||||
log.data(` #${i}: Face:${faceTxt} Body:${bodyTxt} LeftHand:${persons[i].hands.left ? 'yes' : 'no'} RightHand:${persons[i].hands.right ? 'yes' : 'no'} Gestures:${persons[i].gestures.length}`);
|
||||
}
|
||||
});
|
||||
human.events.addEventListener('detect', () => {
|
||||
log.data('Event Detected:');
|
||||
const persons = human.result.persons;
|
||||
for (let i = 0; i < persons.length; i++) {
|
||||
const face = persons[i].face;
|
||||
const faceTxt = face ? `score:${face.score} age:${face.age} gender:${face.gender} iris:${face.distance}` : null;
|
||||
const body = persons[i].body;
|
||||
const bodyTxt = body ? `score:${body.score} keypoints:${body.keypoints?.length}` : null;
|
||||
log.data(` #${i}: Face:${faceTxt} Body:${bodyTxt} LeftHand:${persons[i].hands.left ? 'yes' : 'no'} RightHand:${persons[i].hands.right ? 'yes' : 'no'} Gestures:${persons[i].gestures.length}`);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
await human.tf.ready(); // wait until tf is ready
|
||||
|
||||
|
|
|
@ -0,0 +1,30 @@
|
|||
/**
|
||||
* Human demo for NodeJS using http fetch to get image file
|
||||
*
|
||||
* Requires [node-fetch](https://www.npmjs.com/package/node-fetch) to provide `fetch` functionality in NodeJS environment
|
||||
*/
|
||||
const fs = require('fs');
|
||||
const log = require('@vladmandic/pilogger'); // eslint-disable-line node/no-unpublished-require
|
||||
|
||||
// in nodejs environments tfjs-node is required to be loaded before human
|
||||
const tf = require('@tensorflow/tfjs-node'); // eslint-disable-line node/no-unpublished-require
|
||||
// const human = require('@vladmandic/human'); // use this when human is installed as module (majority of use cases)
|
||||
const Human = require('../../dist/human.node.js'); // use this when using human in dev mode
|
||||
|
||||
const humanConfig = {
|
||||
modelBasePath: 'https://vladmandic.github.io/human/models/',
|
||||
};
|
||||
|
||||
async function main(inputFile) {
|
||||
global.fetch = (await import('node-fetch')).default; // eslint-disable-line node/no-unpublished-import, import/no-unresolved, node/no-missing-import, node/no-extraneous-import
|
||||
const human = new Human.Human(humanConfig); // create instance of human using default configuration
|
||||
log.info('Human:', human.version, 'TF:', tf.version_core);
|
||||
await human.load(); // optional as models would be loaded on-demand first time they are required
|
||||
await human.warmup(); // optional as model warmup is performed on-demand first time its executed
|
||||
const buffer = fs.readFileSync(inputFile); // read file data into buffer
|
||||
const tensor = human.tf.node.decodeImage(buffer); // decode jpg data
|
||||
const result = await human.detect(tensor); // run detection; will initialize backend and on-demand load models
|
||||
log.data(result.gesture);
|
||||
}
|
||||
|
||||
main('samples/in/ai-body.jpg');
|
|
@ -0,0 +1,64 @@
|
|||
/**
|
||||
* Human Person Similarity test for NodeJS
|
||||
*/
|
||||
|
||||
const fs = require('fs');
|
||||
const process = require('process');
|
||||
|
||||
const log = require('@vladmandic/pilogger'); // eslint-disable-line node/no-unpublished-require
|
||||
// in nodejs environments tfjs-node is required to be loaded before human
|
||||
const tf = require('@tensorflow/tfjs-node'); // eslint-disable-line node/no-unpublished-require
|
||||
// const human = require('@vladmandic/human'); // use this when human is installed as module (majority of use cases)
|
||||
const Human = require('../../dist/human.node.js'); // use this when using human in dev mode
|
||||
|
||||
let human = null;
|
||||
|
||||
const myConfig = {
|
||||
modelBasePath: 'file://models/',
|
||||
debug: true,
|
||||
face: { emotion: { enabled: false } },
|
||||
body: { enabled: false },
|
||||
hand: { enabled: false },
|
||||
gesture: { enabled: false },
|
||||
};
|
||||
|
||||
async function init() {
|
||||
human = new Human.Human(myConfig);
|
||||
await human.tf.ready();
|
||||
log.info('Human:', human.version, 'TF:', tf.version_core);
|
||||
await human.load();
|
||||
log.info('Loaded:', human.models.loaded());
|
||||
log.info('Memory state:', human.tf.engine().memory());
|
||||
}
|
||||
|
||||
async function detect(input) {
|
||||
if (!fs.existsSync(input)) {
|
||||
throw new Error('Cannot load image:', input);
|
||||
}
|
||||
const buffer = fs.readFileSync(input);
|
||||
const tensor = human.tf.node.decodeImage(buffer, 3);
|
||||
log.state('Loaded image:', input, tensor.shape);
|
||||
const result = await human.detect(tensor, myConfig);
|
||||
human.tf.dispose(tensor);
|
||||
log.state('Detected faces:', result.face.length);
|
||||
return result;
|
||||
}
|
||||
|
||||
async function main() {
|
||||
log.configure({ inspect: { breakLength: 265 } });
|
||||
log.header();
|
||||
if (process.argv.length !== 4) {
|
||||
log.error('Parameters: <first image> <second image> missing');
|
||||
return;
|
||||
}
|
||||
await init();
|
||||
const res1 = await detect(process.argv[2]);
|
||||
const res2 = await detect(process.argv[3]);
|
||||
if (!res1 || !res1.face || res1.face.length === 0 || !res2 || !res2.face || res2.face.length === 0) {
|
||||
throw new Error('Could not detect face descriptors');
|
||||
}
|
||||
const similarity = human.match.similarity(res1.face[0].embedding, res2.face[0].embedding, { order: 2 });
|
||||
log.data('Similarity: ', similarity);
|
||||
}
|
||||
|
||||
main();
|
|
@ -0,0 +1,32 @@
|
|||
/**
|
||||
* Human simple demo for NodeJS
|
||||
*/
|
||||
|
||||
const fs = require('fs');
|
||||
const process = require('process');
|
||||
|
||||
// in nodejs environments tfjs-node is required to be loaded before human
|
||||
const tf = require('@tensorflow/tfjs-node'); // eslint-disable-line node/no-unpublished-require
|
||||
// const human = require('@vladmandic/human'); // use this when human is installed as module (majority of use cases)
|
||||
const Human = require('../../dist/human.node.js'); // use this when using human in dev mode
|
||||
|
||||
const humanConfig = {
|
||||
// add any custom config here
|
||||
debug: true,
|
||||
body: { enabled: false },
|
||||
};
|
||||
|
||||
async function detect(inputFile) {
|
||||
const human = new Human.Human(humanConfig); // create instance of human using default configuration
|
||||
console.log('Human:', human.version, 'TF:', tf.version_core); // eslint-disable-line no-console
|
||||
await human.load(); // optional as models would be loaded on-demand first time they are required
|
||||
await human.warmup(); // optional as model warmup is performed on-demand first time its executed
|
||||
const buffer = fs.readFileSync(inputFile); // read file data into buffer
|
||||
const tensor = human.tf.node.decodeImage(buffer); // decode jpg data
|
||||
console.log('loaded input file:', inputFile, 'resolution:', tensor.shape); // eslint-disable-line no-console
|
||||
const result = await human.detect(tensor); // run detection; will initialize backend and on-demand load models
|
||||
console.log(result); // eslint-disable-line no-console
|
||||
}
|
||||
|
||||
if (process.argv.length === 3) detect(process.argv[2]); // if input file is provided as cmdline parameter use it
|
||||
else detect('samples/in/ai-body.jpg'); // else use built-in test inputfile
|
|
@ -7,27 +7,26 @@
|
|||
* If you want process at specific intervals, set output fps to some value
|
||||
* If you want to process an input stream, set real-time flag and set input as required
|
||||
*
|
||||
* Note that pipe2jpeg is not part of Human dependencies and should be installed manually
|
||||
* Working version of ffmpeg must be present on the system
|
||||
* Note that [pipe2jpeg](https://www.npmjs.com/package/pipe2jpeg) is not part of Human dependencies and should be installed manually
|
||||
* Working version of `ffmpeg` must be present on the system
|
||||
*/
|
||||
|
||||
const process = require('process');
|
||||
const spawn = require('child_process').spawn;
|
||||
const log = require('@vladmandic/pilogger');
|
||||
// @ts-ignore pipe2jpeg is not installed by default
|
||||
// eslint-disable-next-line node/no-missing-require
|
||||
const Pipe2Jpeg = require('pipe2jpeg');
|
||||
// for NodeJS, `tfjs-node` or `tfjs-node-gpu` should be loaded before using Human
|
||||
// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars
|
||||
const tf = require('@tensorflow/tfjs-node'); // or const tf = require('@tensorflow/tfjs-node-gpu');
|
||||
// load specific version of Human library that matches TensorFlow mode
|
||||
const Human = require('../../dist/human.node.js').default; // or const Human = require('../dist/human.node-gpu.js').default;
|
||||
const log = require('@vladmandic/pilogger'); // eslint-disable-line node/no-unpublished-require
|
||||
// in nodejs environments tfjs-node is required to be loaded before human
|
||||
// const tf = require('@tensorflow/tfjs-node'); // eslint-disable-line node/no-unpublished-require
|
||||
// const human = require('@vladmandic/human'); // use this when human is installed as module (majority of use cases)
|
||||
const Pipe2Jpeg = require('pipe2jpeg'); // eslint-disable-line node/no-missing-require, import/no-unresolved
|
||||
// const human = require('@vladmandic/human'); // use this when human is installed as module (majority of use cases)
|
||||
const Human = require('../../dist/human.node.js'); // use this when using human in dev mode
|
||||
|
||||
let count = 0; // counter
|
||||
let busy = false; // busy flag
|
||||
const inputFile = './test.mp4';
|
||||
let inputFile = './test.mp4';
|
||||
if (process.argv.length === 3) inputFile = process.argv[2];
|
||||
|
||||
const humanConfig = {
|
||||
backend: 'tensorflow',
|
||||
modelBasePath: 'file://models/',
|
||||
debug: false,
|
||||
async: true,
|
||||
|
@ -45,7 +44,7 @@ const humanConfig = {
|
|||
object: { enabled: false },
|
||||
};
|
||||
|
||||
const human = new Human(humanConfig);
|
||||
const human = new Human.Human(humanConfig);
|
||||
const pipe2jpeg = new Pipe2Jpeg();
|
||||
|
||||
const ffmpegParams = [
|
||||
|
@ -62,18 +61,16 @@ const ffmpegParams = [
|
|||
'pipe:1', // output to unix pipe that is then captured by pipe2jpeg
|
||||
];
|
||||
|
||||
async function process(jpegBuffer) {
|
||||
async function detect(jpegBuffer) {
|
||||
if (busy) return; // skip processing if busy
|
||||
busy = true;
|
||||
const decoded = tf.node.decodeJpeg(jpegBuffer, 3); // decode jpeg buffer to raw tensor
|
||||
const tensor = tf.expandDims(decoded, 0); // almost all tf models use first dimension as batch number so we add it
|
||||
tf.dispose(decoded);
|
||||
|
||||
log.state('input frame:', ++count, 'size:', jpegBuffer.length, 'decoded shape:', tensor.shape);
|
||||
const tensor = human.tf.node.decodeJpeg(jpegBuffer, 3); // decode jpeg buffer to raw tensor
|
||||
const res = await human.detect(tensor);
|
||||
log.data('gesture', JSON.stringify(res.gesture));
|
||||
// do processing here
|
||||
tf.dispose(tensor); // must dispose tensor
|
||||
human.tf.dispose(tensor); // must dispose tensor
|
||||
// start custom processing here
|
||||
log.data('frame', { frame: ++count, size: jpegBuffer.length, shape: tensor.shape, face: res?.face?.length, body: res?.body?.length, hand: res?.hand?.length, gesture: res?.gesture?.length });
|
||||
if (res?.face?.[0]) log.data('person', { score: [res.face[0].boxScore, res.face[0].faceScore], age: res.face[0].age || 0, gender: [res.face[0].genderScore || 0, res.face[0].gender], emotion: res.face[0].emotion?.[0] });
|
||||
// at the of processing mark loop as not busy so it can process next frame
|
||||
busy = false;
|
||||
}
|
||||
|
||||
|
@ -81,8 +78,9 @@ async function main() {
|
|||
log.header();
|
||||
await human.tf.ready();
|
||||
// pre-load models
|
||||
log.info('human:', human.version);
|
||||
pipe2jpeg.on('jpeg', (jpegBuffer) => process(jpegBuffer));
|
||||
log.info({ human: human.version, tf: human.tf.version_core });
|
||||
log.info({ input: inputFile });
|
||||
pipe2jpeg.on('data', (jpegBuffer) => detect(jpegBuffer));
|
||||
|
||||
const ffmpeg = spawn('ffmpeg', ffmpegParams, { stdio: ['ignore', 'pipe', 'ignore'] });
|
||||
ffmpeg.on('error', (error) => log.error('ffmpeg error:', error));
|
||||
|
|
|
@ -2,20 +2,18 @@
|
|||
* Human demo for NodeJS
|
||||
* Unsupported sample of using external utility fswebcam to capture screenshot from attached webcam in regular intervals and process it using Human
|
||||
*
|
||||
* Note that node-webcam is not part of Human dependencies and should be installed manually
|
||||
* Working version of fswebcam must be present on the system
|
||||
* Note that [node-webcam](https://www.npmjs.com/package/node-webcam) is not part of Human dependencies and should be installed manually
|
||||
* Working version of `fswebcam` must be present on the system
|
||||
*/
|
||||
|
||||
let initial = true; // remember if this is the first run to print additional details
|
||||
const log = require('@vladmandic/pilogger');
|
||||
// @ts-ignore node-webcam is not installed by default
|
||||
// eslint-disable-next-line node/no-missing-require
|
||||
const nodeWebCam = require('node-webcam');
|
||||
// for NodeJS, `tfjs-node` or `tfjs-node-gpu` should be loaded before using Human
|
||||
// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars
|
||||
const tf = require('@tensorflow/tfjs-node'); // or const tf = require('@tensorflow/tfjs-node-gpu');
|
||||
// load specific version of Human library that matches TensorFlow mode
|
||||
const Human = require('../../dist/human.node.js').default; // or const Human = require('../dist/human.node-gpu.js').default;
|
||||
const log = require('@vladmandic/pilogger'); // eslint-disable-line node/no-unpublished-require
|
||||
const nodeWebCam = require('node-webcam'); // eslint-disable-line import/no-unresolved, node/no-missing-require
|
||||
|
||||
// in nodejs environments tfjs-node is required to be loaded before human
|
||||
const tf = require('@tensorflow/tfjs-node'); // eslint-disable-line node/no-unpublished-require
|
||||
// const human = require('@vladmandic/human'); // use this when human is installed as module (majority of use cases)
|
||||
const Human = require('../../dist/human.node.js'); // use this when using human in dev mode
|
||||
|
||||
// options for node-webcam
|
||||
const tempFile = 'webcam-snap'; // node-webcam requires writting snapshot to a file, recommended to use tmpfs to avoid excessive disk writes
|
||||
|
@ -27,10 +25,10 @@ const camera = nodeWebCam.create(optionsCamera);
|
|||
|
||||
// options for human
|
||||
const optionsHuman = {
|
||||
backend: 'tensorflow',
|
||||
modelBasePath: 'file://models/',
|
||||
};
|
||||
const human = new Human(optionsHuman);
|
||||
|
||||
const human = new Human.Human(optionsHuman);
|
||||
|
||||
function buffer2tensor(buffer) {
|
||||
return human.tf.tidy(() => {
|
||||
|
@ -62,18 +60,20 @@ async function detect() {
|
|||
} else {
|
||||
const tensor = buffer2tensor(data); // create tensor from image buffer
|
||||
if (initial) log.data('input tensor:', tensor.shape);
|
||||
// eslint-disable-next-line promise/no-promise-in-callback
|
||||
human.detect(tensor).then((result) => {
|
||||
if (result && result.face && result.face.length > 0) {
|
||||
for (let i = 0; i < result.face.length; i++) {
|
||||
const face = result.face[i];
|
||||
const emotion = face.emotion.reduce((prev, curr) => (prev.score > curr.score ? prev : curr));
|
||||
log.data(`detected face: #${i} boxScore:${face.boxScore} faceScore:${face.faceScore} age:${face.age} genderScore:${face.genderScore} gender:${face.gender} emotionScore:${emotion.score} emotion:${emotion.emotion} iris:${face.iris}`);
|
||||
human.detect(tensor) // eslint-disable-line promise/no-promise-in-callback
|
||||
.then((result) => {
|
||||
if (result && result.face && result.face.length > 0) {
|
||||
for (let i = 0; i < result.face.length; i++) {
|
||||
const face = result.face[i];
|
||||
const emotion = face.emotion?.reduce((prev, curr) => (prev.score > curr.score ? prev : curr));
|
||||
log.data(`detected face: #${i} boxScore:${face.boxScore} faceScore:${face.faceScore} age:${face.age} genderScore:${face.genderScore} gender:${face.gender} emotionScore:${emotion?.score} emotion:${emotion?.emotion} iris:${face.iris}`);
|
||||
}
|
||||
} else {
|
||||
log.data(' Face: N/A');
|
||||
}
|
||||
} else {
|
||||
log.data(' Face: N/A');
|
||||
}
|
||||
});
|
||||
return result;
|
||||
})
|
||||
.catch(() => log.error('human detect error'));
|
||||
}
|
||||
initial = false;
|
||||
});
|
||||
|
@ -82,6 +82,7 @@ async function detect() {
|
|||
}
|
||||
|
||||
async function main() {
|
||||
log.info('human:', human.version, 'tf:', tf.version_core);
|
||||
camera.list((list) => {
|
||||
log.data('detected camera:', list);
|
||||
});
|
||||
|
|
|
@ -1,25 +1,21 @@
|
|||
/**
|
||||
* Human demo for NodeJS
|
||||
*/
|
||||
*/
|
||||
|
||||
const log = require('@vladmandic/pilogger');
|
||||
const fs = require('fs');
|
||||
const path = require('path');
|
||||
const process = require('process');
|
||||
const log = require('@vladmandic/pilogger'); // eslint-disable-line node/no-unpublished-require
|
||||
|
||||
let fetch; // fetch is dynamically imported later
|
||||
|
||||
// for NodeJS, `tfjs-node` or `tfjs-node-gpu` should be loaded before using Human
|
||||
// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars
|
||||
const tf = require('@tensorflow/tfjs-node'); // or const tf = require('@tensorflow/tfjs-node-gpu');
|
||||
|
||||
// load specific version of Human library that matches TensorFlow mode
|
||||
const Human = require('../../dist/human.node.js').default; // or const Human = require('../dist/human.node-gpu.js').default;
|
||||
// in nodejs environments tfjs-node is required to be loaded before human
|
||||
const tf = require('@tensorflow/tfjs-node'); // eslint-disable-line node/no-unpublished-require
|
||||
// const human = require('@vladmandic/human'); // use this when human is installed as module (majority of use cases)
|
||||
const Human = require('../../dist/human.node.js'); // use this when using human in dev mode
|
||||
|
||||
let human = null;
|
||||
|
||||
const myConfig = {
|
||||
backend: 'tensorflow',
|
||||
// backend: 'tensorflow',
|
||||
modelBasePath: 'file://models/',
|
||||
debug: true,
|
||||
async: false,
|
||||
|
@ -45,16 +41,17 @@ const myConfig = {
|
|||
|
||||
async function init() {
|
||||
// create instance of human
|
||||
human = new Human(myConfig);
|
||||
human = new Human.Human(myConfig);
|
||||
// wait until tf is ready
|
||||
await human.tf.ready();
|
||||
log.info('human:', human.version, 'tf:', tf.version_core);
|
||||
// pre-load models
|
||||
log.info('Human:', human.version);
|
||||
// log.info('Active Configuration', human.config);
|
||||
await human.load();
|
||||
const loaded = Object.keys(human.models).filter((a) => human.models[a]);
|
||||
log.info('Loaded:', loaded);
|
||||
log.info('Memory state:', human.tf.engine().memory());
|
||||
log.info('Loaded:', human.models.loaded());
|
||||
// log.info('Memory state:', human.tf.engine().memory());
|
||||
log.data(tf.backend().binding ? tf.backend().binding.TF_Version : null);
|
||||
}
|
||||
|
||||
async function detect(input) {
|
||||
|
@ -63,11 +60,12 @@ async function detect(input) {
|
|||
log.info('Loading image:', input);
|
||||
if (input.startsWith('http:') || input.startsWith('https:')) {
|
||||
const res = await fetch(input);
|
||||
if (res && res.ok) buffer = await res.buffer();
|
||||
if (res && res.ok) buffer = Buffer.from(await res.arrayBuffer());
|
||||
else log.error('Invalid image URL:', input, res.status, res.statusText, res.headers.get('content-type'));
|
||||
} else {
|
||||
buffer = fs.readFileSync(input);
|
||||
}
|
||||
log.data('Image bytes:', buffer?.length, 'buffer:', buffer?.slice(0, 32));
|
||||
|
||||
// decode image using tfjs-node so we don't need external depenencies
|
||||
// can also be done using canvas.js or some other 3rd party image library
|
||||
|
@ -87,14 +85,14 @@ async function detect(input) {
|
|||
});
|
||||
|
||||
// image shape contains image dimensions and depth
|
||||
log.state('Processing:', tensor['shape']);
|
||||
log.state('Processing:', tensor.shape);
|
||||
|
||||
// run actual detection
|
||||
let result;
|
||||
try {
|
||||
result = await human.detect(tensor, myConfig);
|
||||
} catch (err) {
|
||||
log.error('caught');
|
||||
log.error('caught', err);
|
||||
}
|
||||
|
||||
// dispose image tensor as we no longer need it
|
||||
|
@ -106,7 +104,7 @@ async function detect(input) {
|
|||
for (let i = 0; i < result.face.length; i++) {
|
||||
const face = result.face[i];
|
||||
const emotion = face.emotion.reduce((prev, curr) => (prev.score > curr.score ? prev : curr));
|
||||
log.data(` Face: #${i} boxScore:${face.boxScore} faceScore:${face.faceScore} age:${face.age} genderScore:${face.genderScore} gender:${face.gender} emotionScore:${emotion.score} emotion:${emotion.emotion} iris:${face.iris}`);
|
||||
log.data(` Face: #${i} boxScore:${face.boxScore} faceScore:${face.faceScore} age:${face.age} genderScore:${face.genderScore} gender:${face.gender} emotionScore:${emotion.score} emotion:${emotion.emotion} distance:${face.distance}`);
|
||||
}
|
||||
} else {
|
||||
log.data(' Face: N/A');
|
||||
|
@ -190,7 +188,6 @@ async function main() {
|
|||
log.configure({ inspect: { breakLength: 265 } });
|
||||
log.header();
|
||||
log.info('Current folder:', process.env.PWD);
|
||||
fetch = (await import('node-fetch')).default;
|
||||
await init();
|
||||
const f = process.argv[2];
|
||||
if (process.argv.length !== 3) {
|
||||
|
@ -198,20 +195,18 @@ async function main() {
|
|||
await test();
|
||||
} else if (!fs.existsSync(f) && !f.startsWith('http')) {
|
||||
log.error(`File not found: ${process.argv[2]}`);
|
||||
} else {
|
||||
if (fs.existsSync(f)) {
|
||||
const stat = fs.statSync(f);
|
||||
if (stat.isDirectory()) {
|
||||
const dir = fs.readdirSync(f);
|
||||
for (const file of dir) {
|
||||
await detect(path.join(f, file));
|
||||
}
|
||||
} else {
|
||||
await detect(f);
|
||||
} else if (fs.existsSync(f)) {
|
||||
const stat = fs.statSync(f);
|
||||
if (stat.isDirectory()) {
|
||||
const dir = fs.readdirSync(f);
|
||||
for (const file of dir) {
|
||||
await detect(path.join(f, file));
|
||||
}
|
||||
} else {
|
||||
await detect(f);
|
||||
}
|
||||
} else {
|
||||
await detect(f);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -1,76 +1,119 @@
|
|||
/**
|
||||
* Human demo for NodeJS
|
||||
*
|
||||
* Takes input and output folder names parameters and processes all images
|
||||
* found in input folder and creates annotated images in output folder
|
||||
*
|
||||
* Requires [canvas](https://www.npmjs.com/package/canvas) to provide Canvas functionality in NodeJS environment
|
||||
*/
|
||||
|
||||
const fs = require('fs');
|
||||
const path = require('path');
|
||||
const process = require('process');
|
||||
const log = require('@vladmandic/pilogger');
|
||||
const canvas = require('canvas');
|
||||
const tf = require('@tensorflow/tfjs-node'); // for nodejs, `tfjs-node` or `tfjs-node-gpu` should be loaded before using Human
|
||||
const Human = require('../../dist/human.node.js'); // this is 'const Human = require('../dist/human.node-gpu.js').default;'
|
||||
const log = require('@vladmandic/pilogger'); // eslint-disable-line node/no-unpublished-require
|
||||
const canvas = require('canvas'); // eslint-disable-line node/no-unpublished-require
|
||||
// for nodejs, `tfjs-node` or `tfjs-node-gpu` should be loaded before using Human
|
||||
const tf = require('@tensorflow/tfjs-node-gpu'); // eslint-disable-line node/no-unpublished-require
|
||||
const Human = require('../../dist/human.node-gpu.js'); // this is 'const Human = require('../dist/human.node-gpu.js').default;'
|
||||
|
||||
const config = { // just enable all and leave default settings
|
||||
modelBasePath: 'file://models',
|
||||
debug: true,
|
||||
async: false,
|
||||
cacheSensitivity: 0,
|
||||
face: { enabled: true, detector: { maxDetected: 20 } },
|
||||
object: { enabled: true },
|
||||
softwareKernels: true, // slower but enhanced precision since face rotation can work in software mode in nodejs environments
|
||||
cacheSensitivity: 0.01,
|
||||
face: { enabled: true, detector: { maxDetected: 100, minConfidence: 0.1 } },
|
||||
object: { enabled: true, maxDetected: 100, minConfidence: 0.1 },
|
||||
gesture: { enabled: true },
|
||||
hand: { enabled: true },
|
||||
body: { enabled: true, modelPath: 'https://vladmandic.github.io/human-models/models/movenet-multipose.json' },
|
||||
hand: { enabled: true, maxDetected: 100, minConfidence: 0.2 },
|
||||
body: { enabled: true, maxDetected: 100, minConfidence: 0.1, modelPath: 'https://vladmandic.github.io/human-models/models/movenet-multipose.json' },
|
||||
};
|
||||
|
||||
const poolSize = 4;
|
||||
|
||||
const human = new Human.Human(config); // create instance of human
|
||||
|
||||
async function saveFile(shape, buffer, result, outFile) {
|
||||
return new Promise(async (resolve, reject) => { // eslint-disable-line no-async-promise-executor
|
||||
const outputCanvas = new canvas.Canvas(shape[2], shape[1]); // create canvas
|
||||
const outputCtx = outputCanvas.getContext('2d');
|
||||
const inputImage = await canvas.loadImage(buffer); // load image using canvas library
|
||||
outputCtx.drawImage(inputImage, 0, 0); // draw input image onto canvas
|
||||
human.draw.all(outputCanvas, result); // use human build-in method to draw results as overlays on canvas
|
||||
const outStream = fs.createWriteStream(outFile); // write canvas to new image file
|
||||
outStream.on('finish', () => {
|
||||
log.data('Output image:', outFile, outputCanvas.width, outputCanvas.height);
|
||||
resolve();
|
||||
});
|
||||
outStream.on('error', (err) => {
|
||||
log.error('Output error:', outFile, err);
|
||||
reject();
|
||||
});
|
||||
const stream = outputCanvas.createJPEGStream({ quality: 0.5, progressive: true, chromaSubsampling: true });
|
||||
stream.pipe(outStream);
|
||||
});
|
||||
}
|
||||
|
||||
async function processFile(image, inFile, outFile) {
|
||||
const buffer = fs.readFileSync(inFile);
|
||||
const tensor = tf.tidy(() => {
|
||||
const decode = tf.node.decodeImage(buffer, 3);
|
||||
const expand = tf.expandDims(decode, 0);
|
||||
const cast = tf.cast(expand, 'float32');
|
||||
return cast;
|
||||
});
|
||||
log.state('Loaded image:', inFile, tensor.shape);
|
||||
|
||||
const result = await human.detect(tensor);
|
||||
human.tf.dispose(tensor);
|
||||
log.data(`Detected: ${image}:`, 'Face:', result.face.length, 'Body:', result.body.length, 'Hand:', result.hand.length, 'Objects:', result.object.length, 'Gestures:', result.gesture.length);
|
||||
|
||||
if (outFile) await saveFile(tensor.shape, buffer, result, outFile);
|
||||
}
|
||||
|
||||
async function main() {
|
||||
log.header();
|
||||
|
||||
globalThis.Canvas = canvas.Canvas; // patch global namespace with canvas library
|
||||
globalThis.ImageData = canvas.ImageData; // patch global namespace with canvas library
|
||||
|
||||
const human = new Human.Human(config); // create instance of human
|
||||
log.info('Human:', human.version);
|
||||
log.info('Human:', human.version, 'TF:', tf.version_core);
|
||||
const configErrors = await human.validate();
|
||||
if (configErrors.length > 0) log.error('Configuration errors:', configErrors);
|
||||
await human.load(); // pre-load models
|
||||
log.info('Loaded models:', Object.keys(human.models).filter((a) => human.models[a]));
|
||||
log.info('Loaded models:', human.models.loaded());
|
||||
|
||||
const inDir = process.argv[2];
|
||||
const outDir = process.argv[3];
|
||||
if (process.argv.length !== 4) {
|
||||
log.error('Parameters: <input-directory> <output-directory> missing');
|
||||
if (!inDir) {
|
||||
log.error('Parameters: <input-directory> missing');
|
||||
return;
|
||||
}
|
||||
if (!fs.existsSync(inDir) || !fs.statSync(inDir).isDirectory() || !fs.existsSync(outDir) || !fs.statSync(outDir).isDirectory()) {
|
||||
log.error('Invalid directory specified:', 'input:', fs.existsSync(inDir) ?? fs.statSync(inDir).isDirectory(), 'output:', fs.existsSync(outDir) ?? fs.statSync(outDir).isDirectory());
|
||||
if (inDir && (!fs.existsSync(inDir) || !fs.statSync(inDir).isDirectory())) {
|
||||
log.error('Invalid input directory:', fs.existsSync(inDir) ?? fs.statSync(inDir).isDirectory());
|
||||
return;
|
||||
}
|
||||
if (!outDir) {
|
||||
log.info('Parameters: <output-directory> missing, images will not be saved');
|
||||
}
|
||||
if (outDir && (!fs.existsSync(outDir) || !fs.statSync(outDir).isDirectory())) {
|
||||
log.error('Invalid output directory:', fs.existsSync(outDir) ?? fs.statSync(outDir).isDirectory());
|
||||
return;
|
||||
}
|
||||
|
||||
const dir = fs.readdirSync(inDir);
|
||||
const images = dir.filter((f) => fs.statSync(path.join(inDir, f)).isFile() && (f.toLocaleLowerCase().endsWith('.jpg') || f.toLocaleLowerCase().endsWith('.jpeg')));
|
||||
log.info(`Processing folder: ${inDir} entries:`, dir.length, 'images', images.length);
|
||||
for (const image of images) {
|
||||
const inFile = path.join(inDir, image);
|
||||
const buffer = fs.readFileSync(inFile);
|
||||
const tensor = human.tf.tidy(() => {
|
||||
const decode = human.tf.node.decodeImage(buffer, 3);
|
||||
const expand = human.tf.expandDims(decode, 0);
|
||||
const cast = human.tf.cast(expand, 'float32');
|
||||
return cast;
|
||||
});
|
||||
log.state('Loaded image:', inFile, tensor.shape);
|
||||
|
||||
const result = await human.detect(tensor);
|
||||
tf.dispose(tensor);
|
||||
log.data(`Detected: ${image}:`, 'Face:', result.face.length, 'Body:', result.body.length, 'Hand:', result.hand.length, 'Objects:', result.object.length, 'Gestures:', result.gesture.length);
|
||||
|
||||
const outputCanvas = new canvas.Canvas(tensor.shape[2], tensor.shape[1]); // create canvas
|
||||
const outputCtx = outputCanvas.getContext('2d');
|
||||
const inputImage = await canvas.loadImage(buffer); // load image using canvas library
|
||||
outputCtx.drawImage(inputImage, 0, 0); // draw input image onto canvas
|
||||
human.draw.all(outputCanvas, result); // use human build-in method to draw results as overlays on canvas
|
||||
const outFile = path.join(outDir, image);
|
||||
const outStream = fs.createWriteStream(outFile); // write canvas to new image file
|
||||
outStream.on('finish', () => log.state('Output image:', outFile, outputCanvas.width, outputCanvas.height));
|
||||
outStream.on('error', (err) => log.error('Output error:', outFile, err));
|
||||
const stream = outputCanvas.createJPEGStream({ quality: 0.5, progressive: true, chromaSubsampling: true });
|
||||
stream.pipe(outStream);
|
||||
const t0 = performance.now();
|
||||
const promises = [];
|
||||
for (let i = 0; i < images.length; i++) {
|
||||
const inFile = path.join(inDir, images[i]);
|
||||
const outFile = outDir ? path.join(outDir, images[i]) : null;
|
||||
promises.push(processFile(images[i], inFile, outFile));
|
||||
if (i % poolSize === 0) await Promise.all(promises);
|
||||
}
|
||||
await Promise.all(promises);
|
||||
const t1 = performance.now();
|
||||
log.info(`Processed ${images.length} images in ${Math.round(t1 - t0)} ms`);
|
||||
}
|
||||
|
||||
main();
|
||||
|
|
|
@ -24,13 +24,13 @@
|
|||
a:hover { color: lightskyblue; text-decoration: none; }
|
||||
.row { width: 90vw; margin: auto; margin-top: 100px; text-align: center; }
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div class="row text-center">
|
||||
<h1>
|
||||
<a href="/">Human: Offline</a><br>
|
||||
<img alt="icon" src="../assets/icon.png">
|
||||
</h1>
|
||||
</div>
|
||||
</body>
|
||||
</head>
|
||||
<body>
|
||||
<div class="row text-center">
|
||||
<h1>
|
||||
<a href="/">Human: Offline</a><br>
|
||||
<img alt="icon" src="../assets/icon.png">
|
||||
</h1>
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
||||
|
|
|
@ -0,0 +1,61 @@
|
|||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<meta http-equiv="content-type" content="text/html; charset=utf-8">
|
||||
<title>Human Demo</title>
|
||||
<meta name="viewport" content="width=device-width, shrink-to-fit=yes">
|
||||
<meta name="mobile-web-app-capable" content="yes">
|
||||
<meta name="application-name" content="Human Demo">
|
||||
<meta name="keywords" content="Human Demo">
|
||||
<meta name="description" content="Human Demo; Author: Vladimir Mandic <mandic00@live.com>">
|
||||
<link rel="manifest" href="../manifest.webmanifest">
|
||||
<link rel="shortcut icon" href="../favicon.ico" type="image/x-icon">
|
||||
<link rel="icon" sizes="256x256" href="../assets/icons/dash-256.png">
|
||||
<link rel="apple-touch-icon" href="../assets/icons/dash-256.png">
|
||||
<link rel="apple-touch-startup-image" href="../assets/icons/dash-256.png">
|
||||
<style>
|
||||
@font-face { font-family: 'CenturyGothic'; font-display: swap; font-style: normal; font-weight: 400; src: local('CenturyGothic'), url('../assets/century-gothic.ttf') format('truetype'); }
|
||||
html { font-size: 18px; }
|
||||
body { font-size: 1rem; font-family: "CenturyGothic", "Segoe UI", sans-serif; font-variant: small-caps; width: -webkit-fill-available; height: 100%; background: black; color: white; overflow: hidden; margin: 0; }
|
||||
select { font-size: 1rem; font-family: "CenturyGothic", "Segoe UI", sans-serif; font-variant: small-caps; background: gray; color: white; border: none; }
|
||||
</style>
|
||||
<script src="../segmentation/index.js" type="module"></script>
|
||||
</head>
|
||||
<body>
|
||||
<noscript><h1>javascript is required</h1></noscript>
|
||||
<nav>
|
||||
<div id="nav" class="nav"></div>
|
||||
</nav>
|
||||
<header>
|
||||
<div id="header" class="header" style="position: fixed; top: 0; right: 0; padding: 4px; margin: 16px; background: rgba(0, 0, 0, 0.5); z-index: 10; line-height: 2rem;">
|
||||
<label for="mode">mode</label>
|
||||
<select id="mode" name="mode">
|
||||
<option value="default">remove background</option>
|
||||
<option value="alpha">draw alpha channel</option>
|
||||
<option value="foreground">full foreground</option>
|
||||
<option value="state">recurrent state</option>
|
||||
</select><br>
|
||||
<label for="composite">composite</label>
|
||||
<select id="composite" name="composite"></select><br>
|
||||
<label for="ratio">downsample ratio</label>
|
||||
<input type="range" name="ratio" id="ratio" min="0.1" max="1" value="0.5" step="0.05">
|
||||
<div id="fps" style="margin-top: 8px"></div>
|
||||
</div>
|
||||
</header>
|
||||
<main>
|
||||
<div id="main" class="main">
|
||||
<video id="webcam" style="position: fixed; top: 0; left: 0; width: 50vw; height: 50vh"></video>
|
||||
<img id="background" alt="background" style="position: fixed; top: 0; right: 0; width: 50vw; height: 50vh" controls></img>
|
||||
<canvas id="output" style="position: fixed; bottom: 0; left: 0; height: 50vh"></canvas>
|
||||
<canvas id="merge" style="position: fixed; bottom: 0; right: 0; height: 50vh"></canvas>
|
||||
</div>
|
||||
</main>
|
||||
<footer>
|
||||
<div id="footer" class="footer"></div>
|
||||
</footer>
|
||||
<aside>
|
||||
<div id="aside" class="aside"></div>
|
||||
</aside>
|
||||
</body>
|
||||
</html>
|
|
@ -0,0 +1,99 @@
|
|||
/**
|
||||
* Human demo for browsers
|
||||
* @default Human Library
|
||||
* @summary <https://github.com/vladmandic/human>
|
||||
* @author <https://github.com/vladmandic>
|
||||
* @copyright <https://github.com/vladmandic>
|
||||
* @license MIT
|
||||
*/
|
||||
|
||||
import * as H from '../../dist/human.esm.js'; // equivalent of @vladmandic/Human
|
||||
|
||||
const humanConfig = { // user configuration for human, used to fine-tune behavior
|
||||
modelBasePath: 'https://vladmandic.github.io/human-models/models/',
|
||||
filter: { enabled: true, equalization: false, flip: false },
|
||||
face: { enabled: false },
|
||||
body: { enabled: false },
|
||||
hand: { enabled: false },
|
||||
object: { enabled: false },
|
||||
gesture: { enabled: false },
|
||||
segmentation: {
|
||||
enabled: true,
|
||||
modelPath: 'rvm.json', // can use rvm, selfie or meet
|
||||
ratio: 0.5,
|
||||
mode: 'default',
|
||||
},
|
||||
};
|
||||
|
||||
const backgroundImage = '../../samples/in/background.jpg';
|
||||
|
||||
const human = new H.Human(humanConfig); // create instance of human with overrides from user configuration
|
||||
|
||||
const log = (...msg) => console.log(...msg); // eslint-disable-line no-console
|
||||
|
||||
async function main() {
|
||||
// gather dom elements
|
||||
const dom = {
|
||||
background: document.getElementById('background'),
|
||||
webcam: document.getElementById('webcam'),
|
||||
output: document.getElementById('output'),
|
||||
merge: document.getElementById('merge'),
|
||||
mode: document.getElementById('mode'),
|
||||
composite: document.getElementById('composite'),
|
||||
ratio: document.getElementById('ratio'),
|
||||
fps: document.getElementById('fps'),
|
||||
};
|
||||
// set defaults
|
||||
dom.fps.innerText = 'initializing';
|
||||
dom.ratio.valueAsNumber = human.config.segmentation.ratio;
|
||||
dom.background.src = backgroundImage;
|
||||
dom.composite.innerHTML = ['source-atop', 'color', 'color-burn', 'color-dodge', 'copy', 'darken', 'destination-atop', 'destination-in', 'destination-out', 'destination-over', 'difference', 'exclusion', 'hard-light', 'hue', 'lighten', 'lighter', 'luminosity', 'multiply', 'overlay', 'saturation', 'screen', 'soft-light', 'source-in', 'source-out', 'source-over', 'xor'].map((gco) => `<option value="${gco}">${gco}</option>`).join(''); // eslint-disable-line max-len
|
||||
const ctxMerge = dom.merge.getContext('2d');
|
||||
|
||||
log('human version:', human.version, '| tfjs version:', human.tf.version['tfjs-core']);
|
||||
log('platform:', human.env.platform, '| agent:', human.env.agent);
|
||||
await human.load(); // preload all models
|
||||
log('backend:', human.tf.getBackend(), '| available:', human.env.backends);
|
||||
log('models stats:', human.models.stats());
|
||||
log('models loaded:', human.models.loaded());
|
||||
await human.warmup(); // warmup function to initialize backend for future faster detection
|
||||
const numTensors = human.tf.engine().state.numTensors;
|
||||
|
||||
// initialize webcam
|
||||
dom.webcam.onplay = () => { // start processing on video play
|
||||
log('start processing');
|
||||
dom.output.width = human.webcam.width;
|
||||
dom.output.height = human.webcam.height;
|
||||
dom.merge.width = human.webcam.width;
|
||||
dom.merge.height = human.webcam.height;
|
||||
loop(); // eslint-disable-line no-use-before-define
|
||||
};
|
||||
|
||||
await human.webcam.start({ element: dom.webcam, crop: true, width: window.innerWidth / 2, height: window.innerHeight / 2 }); // use human webcam helper methods and associate webcam stream with a dom element
|
||||
if (!human.webcam.track) dom.fps.innerText = 'webcam error';
|
||||
|
||||
// processing loop
|
||||
async function loop() {
|
||||
if (!human.webcam.element || human.webcam.paused) return; // check if webcam is valid and playing
|
||||
human.config.segmentation.mode = dom.mode.value; // get segmentation mode from ui
|
||||
human.config.segmentation.ratio = dom.ratio.valueAsNumber; // get segmentation downsample ratio from ui
|
||||
const t0 = Date.now();
|
||||
const rgba = await human.segmentation(human.webcam.element, human.config); // run model and process results
|
||||
const t1 = Date.now();
|
||||
if (!rgba) {
|
||||
dom.fps.innerText = 'error';
|
||||
return;
|
||||
}
|
||||
dom.fps.innerText = `fps: ${Math.round(10000 / (t1 - t0)) / 10}`; // mark performance
|
||||
human.draw.tensor(rgba, dom.output); // draw raw output
|
||||
human.tf.dispose(rgba); // dispose tensors
|
||||
ctxMerge.globalCompositeOperation = 'source-over';
|
||||
ctxMerge.drawImage(dom.background, 0, 0); // draw original video to first stacked canvas
|
||||
ctxMerge.globalCompositeOperation = dom.composite.value;
|
||||
ctxMerge.drawImage(dom.output, 0, 0); // draw processed output to second stacked canvas
|
||||
if (numTensors !== human.tf.engine().state.numTensors) log({ leak: human.tf.engine().state.numTensors - numTensors }); // check for memory leaks
|
||||
requestAnimationFrame(loop);
|
||||
}
|
||||
}
|
||||
|
||||
window.onload = main;
|
|
@ -1,28 +0,0 @@
|
|||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<title>Human</title>
|
||||
<meta name="viewport" content="width=device-width" id="viewport">
|
||||
<meta name="keywords" content="Human">
|
||||
<meta name="application-name" content="Human">
|
||||
<meta name="description" content="Human: 3D Face Detection, Body Pose, Hand & Finger Tracking, Iris Tracking, Age & Gender Prediction, Emotion Prediction & Gesture Recognition; Author: Vladimir Mandic <https://github.com/vladmandic>">
|
||||
<meta name="msapplication-tooltip" content="Human: 3D Face Detection, Body Pose, Hand & Finger Tracking, Iris Tracking, Age & Gender Prediction, Emotion Prediction & Gesture Recognition; Author: Vladimir Mandic <https://github.com/vladmandic>">
|
||||
<meta name="theme-color" content="#000000">
|
||||
<link rel="manifest" href="../manifest.webmanifest">
|
||||
<link rel="shortcut icon" href="../../favicon.ico" type="image/x-icon">
|
||||
<link rel="apple-touch-icon" href="../../assets/icon.png">
|
||||
<script src="./index.js" type="module"></script>
|
||||
<style>
|
||||
@font-face { font-family: 'Lato'; font-display: swap; font-style: normal; font-weight: 100; src: local('Lato'), url('../assets/lato-light.woff2') }
|
||||
html { font-family: 'Lato', 'Segoe UI'; font-size: 16px; font-variant: small-caps; }
|
||||
body { margin: 0; background: black; color: white; overflow-x: hidden; width: 100vw; height: 100vh; text-align: center; }
|
||||
body::-webkit-scrollbar { display: none; }
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<canvas id="canvas" style="margin: 0 auto"></canvas>
|
||||
<video id="video" playsinline style="display: none"></video>
|
||||
<div id="fps" style="position: absolute; top: 20px; right: 20px; background-color: grey; padding: 8px"></div>
|
||||
</body>
|
||||
</html>
|
|
@ -1,107 +0,0 @@
|
|||
/**
|
||||
* Human demo for browsers
|
||||
*
|
||||
* @description Simple Human demo for browsers using WebCam or WebRTC
|
||||
*
|
||||
* @configuration
|
||||
* config={}: contains all model configuration used by human
|
||||
*/
|
||||
|
||||
import Human from '../../dist/human.esm.js'; // equivalent of @vladmandic/human
|
||||
import webRTC from '../helpers/webrtc.js'; // handle webrtc handshake and connects to webrtc stream
|
||||
|
||||
const config = { // use default values for everything just specify models location
|
||||
modelBasePath: '../../models',
|
||||
};
|
||||
|
||||
const human = new Human(config);
|
||||
|
||||
const webrtc = {
|
||||
enabled: false, // use webrtc or use webcam if disabled
|
||||
server: 'http://human.local:8002',
|
||||
stream: 'reowhite',
|
||||
};
|
||||
|
||||
// eslint-disable-next-line no-console
|
||||
const log = (...msg) => console.log(...msg);
|
||||
|
||||
/** @type {HTMLVideoElement} */
|
||||
// @ts-ignore
|
||||
const video = document.getElementById('video') || document.createElement('video'); // used as input
|
||||
/** @type {HTMLCanvasElement} */
|
||||
// @ts-ignore
|
||||
const canvas = document.getElementById('canvas') || document.createElement('canvas'); // used as output
|
||||
// @ts-ignore
|
||||
const fps = { detect: 0, draw: 0 };
|
||||
fps.el = document.getElementById('fps') || document.createElement('div'); // used as draw fps counter
|
||||
|
||||
async function webCam() {
|
||||
const constraints = { audio: false, video: { facingMode: 'user', resizeMode: 'none', width: { ideal: document.body.clientWidth } } }; // set preffered camera options
|
||||
const stream = await navigator.mediaDevices.getUserMedia(constraints); // get webcam stream that matches constraints
|
||||
const ready = new Promise((resolve) => { video.onloadeddata = () => resolve(true); }); // resolve when stream is ready
|
||||
video.srcObject = stream; // assign stream to video element
|
||||
video.play(); // start stream
|
||||
await ready; // wait until stream is ready
|
||||
canvas.width = video.videoWidth; // resize output canvas to match input
|
||||
canvas.height = video.videoHeight;
|
||||
log('video stream:', video.srcObject, 'track state:', video.srcObject.getVideoTracks()[0].readyState, 'stream state:', video.readyState);
|
||||
canvas.onclick = () => { // play or pause on mouse click
|
||||
if (video.paused) video.play();
|
||||
else video.pause();
|
||||
};
|
||||
}
|
||||
|
||||
// eslint-disable-next-line no-unused-vars
|
||||
let result;
|
||||
async function detectionLoop() {
|
||||
const t0 = performance.now();
|
||||
if (!video.paused) result = await human.detect(video); // updates result every time detection completes, skip if video is paused
|
||||
const t1 = performance.now();
|
||||
fps.detect = 1000 / (t1 - t0);
|
||||
// eslint-disable-next-line @typescript-eslint/no-unused-vars
|
||||
requestAnimationFrame(detectionLoop); // run in loop
|
||||
}
|
||||
|
||||
// eslint-disable-next-line no-unused-vars
|
||||
async function drawLoop() {
|
||||
const t0 = performance.now();
|
||||
if (!video.paused) { // skip redraw if video is paused
|
||||
const interpolated = await human.next(result); // interpolates results based on last known results
|
||||
await human.draw.canvas(video, canvas); // draw input video to output canvas
|
||||
await human.draw.all(canvas, interpolated); // draw results as overlay on output canvas
|
||||
}
|
||||
const t1 = performance.now();
|
||||
fps.draw = 1000 / (t1 - t0);
|
||||
fps.el.innerText = video.paused ? 'paused' : `${fps.detect.toFixed(1)} / ${fps.draw.toFixed(1)}`;
|
||||
// eslint-disable-next-line @typescript-eslint/no-unused-vars
|
||||
requestAnimationFrame(drawLoop); // run in loop
|
||||
}
|
||||
|
||||
// eslint-disable-next-line no-unused-vars
|
||||
async function singleLoop() {
|
||||
const t0 = performance.now();
|
||||
result = await human.detect(video); // updates result every time detection completes
|
||||
await human.draw.canvas(video, canvas); // draw input video to output canvas
|
||||
await human.draw.all(canvas, result); // draw results as overlay on output canvas
|
||||
const t1 = performance.now();
|
||||
fps.detect = 1000 / (t1 - t0);
|
||||
fps.el.innerText = video.paused ? 'paused' : `${fps.detect.toFixed(1)}`;
|
||||
// eslint-disable-next-line @typescript-eslint/no-unused-vars
|
||||
requestAnimationFrame(singleLoop); // run in loop
|
||||
}
|
||||
|
||||
async function main() {
|
||||
await human.load(); // not required, pre-loads all models
|
||||
await human.warmup(); // not required, warms up all models
|
||||
if (webrtc.enabled) await webRTC(webrtc.server, webrtc.stream, video); // setup webrtc as input stream, uses helper implementation in
|
||||
else await webCam(); // setup webcam as input stream
|
||||
|
||||
// preferred run in two loops, one for actual detection and one that draws interpolated results on screen so results appear much smoother
|
||||
await detectionLoop();
|
||||
await drawLoop();
|
||||
|
||||
// alternative run in single loop where we run detection and then draw results
|
||||
// await singleLoop();
|
||||
}
|
||||
|
||||
window.onload = main;
|
|
@ -0,0 +1,28 @@
|
|||
## Tracker
|
||||
|
||||
### Based on
|
||||
|
||||
<https://github.com/opendatacam/node-moving-things-tracker>
|
||||
|
||||
### Build
|
||||
|
||||
- remove reference to `lodash`:
|
||||
> `isEqual` in <tracker.js>
|
||||
- replace external lib:
|
||||
> curl https://raw.githubusercontent.com/ubilabs/kd-tree-javascript/master/kdTree.js -o lib/kdTree-min.js
|
||||
- build with `esbuild`:
|
||||
> node_modules/.bin/esbuild --bundle tracker.js --format=esm --platform=browser --target=esnext --keep-names --tree-shaking=false --analyze --outfile=/home/vlado/dev/human/demo/tracker/tracker.js --banner:js="/* eslint-disable */"
|
||||
|
||||
### Usage
|
||||
|
||||
computeDistance(item1, item2)
|
||||
disableKeepInMemory()
|
||||
enableKeepInMemory()
|
||||
getAllTrackedItems()
|
||||
getJSONDebugOfTrackedItems(roundInt = true)
|
||||
getJSONOfAllTrackedItems()
|
||||
getJSONOfTrackedItems(roundInt = true)
|
||||
getTrackedItemsInMOTFormat(frameNb)
|
||||
reset()
|
||||
setParams(newParams)
|
||||
updateTrackedItemsWithNewFrame(detectionsOfThisFrame, frameNb)
|
|
@ -0,0 +1,65 @@
|
|||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<title>Human</title>
|
||||
<meta name="viewport" content="width=device-width" id="viewport">
|
||||
<meta name="keywords" content="Human">
|
||||
<meta name="application-name" content="Human">
|
||||
<meta name="description" content="Human: 3D Face Detection, Body Pose, Hand & Finger Tracking, Iris Tracking, Age & Gender Prediction, Emotion Prediction & Gesture Recognition; Author: Vladimir Mandic <https://github.com/vladmandic>">
|
||||
<meta name="msapplication-tooltip" content="Human: 3D Face Detection, Body Pose, Hand & Finger Tracking, Iris Tracking, Age & Gender Prediction, Emotion Prediction & Gesture Recognition; Author: Vladimir Mandic <https://github.com/vladmandic>">
|
||||
<meta name="theme-color" content="#000000">
|
||||
<link rel="manifest" href="../manifest.webmanifest">
|
||||
<link rel="shortcut icon" href="../../favicon.ico" type="image/x-icon">
|
||||
<link rel="apple-touch-icon" href="../../assets/icon.png">
|
||||
<script src="./index.js" type="module"></script>
|
||||
<style>
|
||||
html { font-family: 'Segoe UI'; font-size: 16px; font-variant: small-caps; }
|
||||
body { margin: 0; background: black; color: white; overflow-x: hidden; width: 100vw; height: 100vh; }
|
||||
body::-webkit-scrollbar { display: none; }
|
||||
input[type="file"] { font-family: 'Segoe UI'; font-size: 14px; font-variant: small-caps; }
|
||||
::-webkit-file-upload-button { background: #333333; color: white; border: 0; border-radius: 0; padding: 6px 16px; box-shadow: 4px 4px 4px #222222; font-family: 'Segoe UI'; font-size: 14px; font-variant: small-caps; }
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div style="display: flex">
|
||||
<video id="video" playsinline style="width: 25vw" controls controlslist="nofullscreen nodownload noremoteplayback" disablepictureinpicture loop></video>
|
||||
<canvas id="canvas" style="width: 75vw"></canvas>
|
||||
</div>
|
||||
<div class="uploader" style="padding: 8px">
|
||||
<input type="file" name="inputvideo" id="inputvideo" accept="video/*"></input>
|
||||
<input type="checkbox" id="interpolation" name="interpolation"></input>
|
||||
<label for="tracker">interpolation</label>
|
||||
</div>
|
||||
<form id="config" style="padding: 8px; line-height: 1.6rem;">
|
||||
tracker |
|
||||
<input type="checkbox" id="tracker" name="tracker" checked></input>
|
||||
<label for="tracker">enabled</label> |
|
||||
<input type="checkbox" id="keepInMemory" name="keepInMemory"></input>
|
||||
<label for="keepInMemory">keepInMemory</label> |
|
||||
<br>
|
||||
tracker source |
|
||||
<input type="radio" id="box-face" name="box" value="face" checked>
|
||||
<label for="box-face">face</label> |
|
||||
<input type="radio" id="box-body" name="box" value="body">
|
||||
<label for="box-face">body</label> |
|
||||
<input type="radio" id="box-object" name="box" value="object">
|
||||
<label for="box-face">object</label> |
|
||||
<br>
|
||||
tracker config |
|
||||
<input type="range" id="unMatchedFramesTolerance" name="unMatchedFramesTolerance" min="0" max="300" step="1", value="60"></input>
|
||||
<label for="unMatchedFramesTolerance">unMatchedFramesTolerance</label> |
|
||||
<input type="range" id="iouLimit" name="unMatchedFramesTolerance" min="0" max="1" step="0.01", value="0.1"></input>
|
||||
<label for="iouLimit">iouLimit</label> |
|
||||
<input type="range" id="distanceLimit" name="unMatchedFramesTolerance" min="0" max="1" step="0.01", value="0.1"></input>
|
||||
<label for="distanceLimit">distanceLimit</label> |
|
||||
<input type="radio" id="matchingAlgorithm-kdTree" name="matchingAlgorithm" value="kdTree" checked>
|
||||
<label for="matchingAlgorithm-kdTree">kdTree</label> |
|
||||
<input type="radio" id="matchingAlgorithm-munkres" name="matchingAlgorithm" value="munkres">
|
||||
<label for="matchingAlgorithm-kdTree">munkres</label> |
|
||||
</form>
|
||||
<pre id="status" style="position: absolute; top: 12px; right: 20px; background-color: grey; padding: 8px; box-shadow: 2px 2px black"></pre>
|
||||
<pre id="log" style="padding: 8px"></pre>
|
||||
<div id="performance" style="position: absolute; bottom: 0; width: 100%; padding: 8px; font-size: 0.8rem;"></div>
|
||||
</body>
|
||||
</html>
|
|
@ -0,0 +1,208 @@
|
|||
/**
|
||||
* Human demo for browsers
|
||||
* @default Human Library
|
||||
* @summary <https://github.com/vladmandic/human>
|
||||
* @author <https://github.com/vladmandic>
|
||||
* @copyright <https://github.com/vladmandic>
|
||||
* @license MIT
|
||||
*/
|
||||
|
||||
import * as H from '../../dist/human.esm.js'; // equivalent of @vladmandic/Human
|
||||
import tracker from './tracker.js';
|
||||
|
||||
const humanConfig: Partial<H.Config> = { // user configuration for human, used to fine-tune behavior
|
||||
debug: true,
|
||||
backend: 'webgl',
|
||||
// cacheSensitivity: 0,
|
||||
// cacheModels: false,
|
||||
// warmup: 'none',
|
||||
modelBasePath: 'https://vladmandic.github.io/human-models/models',
|
||||
filter: { enabled: true, equalization: false, flip: false },
|
||||
face: {
|
||||
enabled: true,
|
||||
detector: { rotation: false, maxDetected: 10, minConfidence: 0.3 },
|
||||
mesh: { enabled: true },
|
||||
attention: { enabled: false },
|
||||
iris: { enabled: false },
|
||||
description: { enabled: false },
|
||||
emotion: { enabled: false },
|
||||
antispoof: { enabled: false },
|
||||
liveness: { enabled: false },
|
||||
},
|
||||
body: { enabled: false, maxDetected: 6, modelPath: 'movenet-multipose.json' },
|
||||
hand: { enabled: false },
|
||||
object: { enabled: false, maxDetected: 10 },
|
||||
segmentation: { enabled: false },
|
||||
gesture: { enabled: false },
|
||||
};
|
||||
|
||||
interface TrackerConfig {
|
||||
unMatchedFramesTolerance: number, // number of frame when an object is not matched before considering it gone; ignored if fastDelete is set
|
||||
iouLimit: number, // exclude things from beeing matched if their IOU less than; 1 means total overlap; 0 means no overlap
|
||||
fastDelete: boolean, // remove new objects immediately if they could not be matched in the next frames; if set, ignores unMatchedFramesTolerance
|
||||
distanceLimit: number, // distance limit for matching; if values need to be excluded from matching set their distance to something greater than the distance limit
|
||||
matchingAlgorithm: 'kdTree' | 'munkres', // algorithm used to match tracks with new detections
|
||||
}
|
||||
|
||||
interface TrackerResult {
|
||||
id: number,
|
||||
confidence: number,
|
||||
bearing: number,
|
||||
isZombie: boolean,
|
||||
name: string,
|
||||
x: number,
|
||||
y: number,
|
||||
w: number,
|
||||
h: number,
|
||||
}
|
||||
|
||||
const trackerConfig: TrackerConfig = {
|
||||
unMatchedFramesTolerance: 100,
|
||||
iouLimit: 0.05,
|
||||
fastDelete: false,
|
||||
distanceLimit: 1e4,
|
||||
matchingAlgorithm: 'kdTree',
|
||||
};
|
||||
|
||||
const human = new H.Human(humanConfig); // create instance of human with overrides from user configuration
|
||||
|
||||
const dom = { // grab instances of dom objects so we dont have to look them up later
|
||||
video: document.getElementById('video') as HTMLVideoElement,
|
||||
canvas: document.getElementById('canvas') as HTMLCanvasElement,
|
||||
log: document.getElementById('log') as HTMLPreElement,
|
||||
fps: document.getElementById('status') as HTMLPreElement,
|
||||
tracker: document.getElementById('tracker') as HTMLInputElement,
|
||||
interpolation: document.getElementById('interpolation') as HTMLInputElement,
|
||||
config: document.getElementById('config') as HTMLFormElement,
|
||||
ctx: (document.getElementById('canvas') as HTMLCanvasElement).getContext('2d') as CanvasRenderingContext2D,
|
||||
};
|
||||
const timestamp = { detect: 0, draw: 0, tensors: 0, start: 0 }; // holds information used to calculate performance and possible memory leaks
|
||||
const fps = { detectFPS: 0, drawFPS: 0, frames: 0, averageMs: 0 }; // holds calculated fps information for both detect and screen refresh
|
||||
|
||||
const log = (...msg) => { // helper method to output messages
|
||||
dom.log.innerText += msg.join(' ') + '\n';
|
||||
console.log(...msg); // eslint-disable-line no-console
|
||||
};
|
||||
const status = (msg) => dom.fps.innerText = msg; // print status element
|
||||
|
||||
async function detectionLoop() { // main detection loop
|
||||
if (!dom.video.paused && dom.video.readyState >= 2) {
|
||||
if (timestamp.start === 0) timestamp.start = human.now();
|
||||
// log('profiling data:', await human.profile(dom.video));
|
||||
await human.detect(dom.video, humanConfig); // actual detection; were not capturing output in a local variable as it can also be reached via human.result
|
||||
const tensors = human.tf.memory().numTensors; // check current tensor usage for memory leaks
|
||||
if (tensors - timestamp.tensors !== 0) log('allocated tensors:', tensors - timestamp.tensors); // printed on start and each time there is a tensor leak
|
||||
timestamp.tensors = tensors;
|
||||
fps.detectFPS = Math.round(1000 * 1000 / (human.now() - timestamp.detect)) / 1000;
|
||||
fps.frames++;
|
||||
fps.averageMs = Math.round(1000 * (human.now() - timestamp.start) / fps.frames) / 1000;
|
||||
}
|
||||
timestamp.detect = human.now();
|
||||
requestAnimationFrame(detectionLoop); // start new frame immediately
|
||||
}
|
||||
|
||||
function drawLoop() { // main screen refresh loop
|
||||
if (!dom.video.paused && dom.video.readyState >= 2) {
|
||||
const res: H.Result = dom.interpolation.checked ? human.next(human.result) : human.result; // interpolate results if enabled
|
||||
let tracking: H.FaceResult[] | H.BodyResult[] | H.ObjectResult[] = [];
|
||||
if (human.config.face.enabled) tracking = res.face;
|
||||
else if (human.config.body.enabled) tracking = res.body;
|
||||
else if (human.config.object.enabled) tracking = res.object;
|
||||
else log('unknown object type');
|
||||
let data: TrackerResult[] = [];
|
||||
if (dom.tracker.checked) {
|
||||
const items = tracking.map((obj) => ({
|
||||
x: obj.box[0] + obj.box[2] / 2,
|
||||
y: obj.box[1] + obj.box[3] / 2,
|
||||
w: obj.box[2],
|
||||
h: obj.box[3],
|
||||
name: obj.label || (human.config.face.enabled ? 'face' : 'body'),
|
||||
confidence: obj.score,
|
||||
}));
|
||||
tracker.updateTrackedItemsWithNewFrame(items, fps.frames);
|
||||
data = tracker.getJSONOfTrackedItems(true) as TrackerResult[];
|
||||
}
|
||||
human.draw.canvas(dom.video, dom.canvas); // copy input video frame to output canvas
|
||||
for (let i = 0; i < tracking.length; i++) {
|
||||
// @ts-ignore
|
||||
const name = tracking[i].label || (human.config.face.enabled ? 'face' : 'body');
|
||||
dom.ctx.strokeRect(tracking[i].box[0], tracking[i].box[1], tracking[i].box[1], tracking[i].box[2]);
|
||||
dom.ctx.fillText(`id: ${tracking[i].id} ${Math.round(100 * tracking[i].score)}% ${name}`, tracking[i].box[0] + 4, tracking[i].box[1] + 16);
|
||||
if (data[i]) {
|
||||
dom.ctx.fillText(`t: ${data[i].id} ${Math.round(100 * data[i].confidence)}% ${data[i].name} ${data[i].isZombie ? 'zombie' : ''}`, tracking[i].box[0] + 4, tracking[i].box[1] + 34);
|
||||
}
|
||||
}
|
||||
}
|
||||
const now = human.now();
|
||||
fps.drawFPS = Math.round(1000 * 1000 / (now - timestamp.draw)) / 1000;
|
||||
timestamp.draw = now;
|
||||
status(dom.video.paused ? 'paused' : `fps: ${fps.detectFPS.toFixed(1).padStart(5, ' ')} detect | ${fps.drawFPS.toFixed(1).padStart(5, ' ')} draw`); // write status
|
||||
setTimeout(drawLoop, 30); // use to slow down refresh from max refresh rate to target of 30 fps
|
||||
}
|
||||
|
||||
async function handleVideo(file: File) {
|
||||
const url = URL.createObjectURL(file);
|
||||
dom.video.src = url;
|
||||
await dom.video.play();
|
||||
log('loaded video:', file.name, 'resolution:', [dom.video.videoWidth, dom.video.videoHeight], 'duration:', dom.video.duration);
|
||||
dom.canvas.width = dom.video.videoWidth;
|
||||
dom.canvas.height = dom.video.videoHeight;
|
||||
dom.ctx.strokeStyle = 'white';
|
||||
dom.ctx.fillStyle = 'white';
|
||||
dom.ctx.font = '16px Segoe UI';
|
||||
dom.video.playbackRate = 0.25;
|
||||
}
|
||||
|
||||
function initInput() {
|
||||
document.body.addEventListener('dragenter', (evt) => evt.preventDefault());
|
||||
document.body.addEventListener('dragleave', (evt) => evt.preventDefault());
|
||||
document.body.addEventListener('dragover', (evt) => evt.preventDefault());
|
||||
document.body.addEventListener('drop', async (evt) => {
|
||||
evt.preventDefault();
|
||||
if (evt.dataTransfer) evt.dataTransfer.dropEffect = 'copy';
|
||||
const file = evt.dataTransfer?.files?.[0];
|
||||
if (file) await handleVideo(file);
|
||||
log(dom.video.readyState);
|
||||
});
|
||||
(document.getElementById('inputvideo') as HTMLInputElement).onchange = async (evt) => {
|
||||
evt.preventDefault();
|
||||
const file = evt.target?.['files']?.[0];
|
||||
if (file) await handleVideo(file);
|
||||
};
|
||||
dom.config.onchange = () => {
|
||||
trackerConfig.distanceLimit = (document.getElementById('distanceLimit') as HTMLInputElement).valueAsNumber;
|
||||
trackerConfig.iouLimit = (document.getElementById('iouLimit') as HTMLInputElement).valueAsNumber;
|
||||
trackerConfig.unMatchedFramesTolerance = (document.getElementById('unMatchedFramesTolerance') as HTMLInputElement).valueAsNumber;
|
||||
trackerConfig.unMatchedFramesTolerance = (document.getElementById('unMatchedFramesTolerance') as HTMLInputElement).valueAsNumber;
|
||||
trackerConfig.matchingAlgorithm = (document.getElementById('matchingAlgorithm-kdTree') as HTMLInputElement).checked ? 'kdTree' : 'munkres';
|
||||
tracker.setParams(trackerConfig);
|
||||
if ((document.getElementById('keepInMemory') as HTMLInputElement).checked) tracker.enableKeepInMemory();
|
||||
else tracker.disableKeepInMemory();
|
||||
tracker.reset();
|
||||
log('tracker config change', JSON.stringify(trackerConfig));
|
||||
humanConfig.face!.enabled = (document.getElementById('box-face') as HTMLInputElement).checked; // eslint-disable-line @typescript-eslint/no-non-null-assertion
|
||||
humanConfig.body!.enabled = (document.getElementById('box-body') as HTMLInputElement).checked; // eslint-disable-line @typescript-eslint/no-non-null-assertion
|
||||
humanConfig.object!.enabled = (document.getElementById('box-object') as HTMLInputElement).checked; // eslint-disable-line @typescript-eslint/no-non-null-assertion
|
||||
};
|
||||
dom.tracker.onchange = (evt) => {
|
||||
log('tracker', (evt.target as HTMLInputElement).checked ? 'enabled' : 'disabled');
|
||||
tracker.setParams(trackerConfig);
|
||||
tracker.reset();
|
||||
};
|
||||
}
|
||||
|
||||
async function main() { // main entry point
|
||||
log('human version:', human.version, '| tfjs version:', human.tf.version['tfjs-core']);
|
||||
log('platform:', human.env.platform, '| agent:', human.env.agent);
|
||||
status('loading...');
|
||||
await human.load(); // preload all models
|
||||
log('backend:', human.tf.getBackend(), '| available:', human.env.backends);
|
||||
log('models loaded:', human.models.loaded());
|
||||
status('initializing...');
|
||||
await human.warmup(); // warmup function to initialize backend for future faster detection
|
||||
initInput(); // initialize input
|
||||
await detectionLoop(); // start detection loop
|
||||
drawLoop(); // start draw loop
|
||||
}
|
||||
|
||||
window.onload = main;
|
|
@ -0,0 +1,5 @@
|
|||
# Human Demo in TypeScript for Browsers
|
||||
|
||||
Simple demo app that can be used as a quick-start guide for use of `Human` in browser environments
|
||||
|
||||
- `index.ts` is compiled to `index.js` which is loaded from `index.html`
|
|
@ -18,16 +18,13 @@
|
|||
html { font-family: 'Lato', 'Segoe UI'; font-size: 16px; font-variant: small-caps; }
|
||||
body { margin: 0; background: black; color: white; overflow-x: hidden; width: 100vw; height: 100vh; }
|
||||
body::-webkit-scrollbar { display: none; }
|
||||
.status { position: absolute; width: 100vw; bottom: 10%; text-align: center; font-size: 3rem; font-weight: 100; text-shadow: 2px 2px #303030; }
|
||||
.log { position: absolute; bottom: 0; margin: 0.4rem 0.4rem 0 0.4rem; font-size: 0.9rem; }
|
||||
.video { display: none; }
|
||||
.canvas { margin: 0 auto; }
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div id="status" class="status"></div>
|
||||
<canvas id="canvas" class="canvas"></canvas>
|
||||
<video id="video" playsinline class="video"></video>
|
||||
<div id="log" class="log"></div>
|
||||
<canvas id="canvas" style="margin: 0 auto; width: 100vw"></canvas>
|
||||
<video id="video" playsinline style="display: none"></video>
|
||||
<pre id="status" style="position: absolute; top: 12px; right: 20px; background-color: grey; padding: 8px; box-shadow: 2px 2px black"></pre>
|
||||
<pre id="log" style="padding: 8px"></pre>
|
||||
<div id="performance" style="position: absolute; bottom: 0; width: 100%; padding: 8px; font-size: 0.8rem;"></div>
|
||||
</body>
|
||||
</html>
|
|
@ -0,0 +1,9 @@
|
|||
/*
|
||||
Human
|
||||
homepage: <https://github.com/vladmandic/human>
|
||||
author: <https://github.com/vladmandic>'
|
||||
*/
|
||||
|
||||
import*as m from"../../dist/human.esm.js";var v=1920,b={debug:!0,backend:"webgl",modelBasePath:"https://vladmandic.github.io/human-models/models/",filter:{enabled:!0,equalization:!1,flip:!1},face:{enabled:!0,detector:{rotation:!1},mesh:{enabled:!0},attention:{enabled:!1},iris:{enabled:!0},description:{enabled:!0},emotion:{enabled:!0},antispoof:{enabled:!0},liveness:{enabled:!0}},body:{enabled:!1},hand:{enabled:!1},object:{enabled:!1},segmentation:{enabled:!1},gesture:{enabled:!0}},e=new m.Human(b);e.env.perfadd=!1;e.draw.options.font='small-caps 18px "Lato"';e.draw.options.lineHeight=20;e.draw.options.drawPoints=!0;var a={video:document.getElementById("video"),canvas:document.getElementById("canvas"),log:document.getElementById("log"),fps:document.getElementById("status"),perf:document.getElementById("performance")},n={detect:0,draw:0,tensors:0,start:0},s={detectFPS:0,drawFPS:0,frames:0,averageMs:0},o=(...t)=>{a.log.innerText+=t.join(" ")+`
|
||||
`,console.log(...t)},i=t=>a.fps.innerText=t,g=t=>a.perf.innerText="tensors:"+e.tf.memory().numTensors.toString()+" | performance: "+JSON.stringify(t).replace(/"|{|}/g,"").replace(/,/g," | ");async function f(){if(!a.video.paused){n.start===0&&(n.start=e.now()),await e.detect(a.video);let t=e.tf.memory().numTensors;t-n.tensors!==0&&o("allocated tensors:",t-n.tensors),n.tensors=t,s.detectFPS=Math.round(1e3*1e3/(e.now()-n.detect))/1e3,s.frames++,s.averageMs=Math.round(1e3*(e.now()-n.start)/s.frames)/1e3,s.frames%100===0&&!a.video.paused&&o("performance",{...s,tensors:n.tensors})}n.detect=e.now(),requestAnimationFrame(f)}async function u(){var d,r,c;if(!a.video.paused){let l=e.next(e.result),w=await e.image(a.video);e.draw.canvas(w.canvas,a.canvas);let p={bodyLabels:`person confidence [score] and ${(c=(r=(d=e.result)==null?void 0:d.body)==null?void 0:r[0])==null?void 0:c.keypoints.length} keypoints`};await e.draw.all(a.canvas,l,p),g(l.performance)}let t=e.now();s.drawFPS=Math.round(1e3*1e3/(t-n.draw))/1e3,n.draw=t,i(a.video.paused?"paused":`fps: ${s.detectFPS.toFixed(1).padStart(5," ")} detect | ${s.drawFPS.toFixed(1).padStart(5," ")} draw`),setTimeout(u,30)}async function h(){let d=(await e.webcam.enumerate())[0].deviceId,r=await e.webcam.start({element:a.video,crop:!1,width:v,id:d});o(r),a.canvas.width=e.webcam.width,a.canvas.height=e.webcam.height,a.canvas.onclick=async()=>{e.webcam.paused?await e.webcam.play():e.webcam.pause()}}async function y(){o("human version:",e.version,"| tfjs version:",e.tf.version["tfjs-core"]),o("platform:",e.env.platform,"| agent:",e.env.agent),i("loading..."),await e.load(),o("backend:",e.tf.getBackend(),"| available:",e.env.backends),o("models stats:",e.models.stats()),o("models loaded:",e.models.loaded()),o("environment",e.env),i("initializing..."),await e.warmup(),await h(),await f(),await u()}window.onload=y;
|
||||
//# sourceMappingURL=index.js.map
|
|
@ -0,0 +1,119 @@
|
|||
/**
|
||||
* Human demo for browsers
|
||||
* @default Human Library
|
||||
* @summary <https://github.com/vladmandic/human>
|
||||
* @author <https://github.com/vladmandic>
|
||||
* @copyright <https://github.com/vladmandic>
|
||||
* @license MIT
|
||||
*/
|
||||
|
||||
import * as H from '../../dist/human.esm.js'; // equivalent of @vladmandic/Human
|
||||
|
||||
const width = 1920; // used by webcam config as well as human maximum resultion // can be anything, but resolutions higher than 4k will disable internal optimizations
|
||||
|
||||
const humanConfig: Partial<H.Config> = { // user configuration for human, used to fine-tune behavior
|
||||
debug: true,
|
||||
backend: 'webgl',
|
||||
// cacheSensitivity: 0,
|
||||
// cacheModels: false,
|
||||
// warmup: 'none',
|
||||
// modelBasePath: '../../models',
|
||||
modelBasePath: 'https://vladmandic.github.io/human-models/models/',
|
||||
filter: { enabled: true, equalization: false, flip: false },
|
||||
face: { enabled: true, detector: { rotation: false }, mesh: { enabled: true }, attention: { enabled: false }, iris: { enabled: true }, description: { enabled: true }, emotion: { enabled: true }, antispoof: { enabled: true }, liveness: { enabled: true } },
|
||||
body: { enabled: false },
|
||||
hand: { enabled: false },
|
||||
object: { enabled: false },
|
||||
segmentation: { enabled: false },
|
||||
gesture: { enabled: true },
|
||||
};
|
||||
|
||||
const human = new H.Human(humanConfig); // create instance of human with overrides from user configuration
|
||||
|
||||
human.env.perfadd = false; // is performance data showing instant or total values
|
||||
human.draw.options.font = 'small-caps 18px "Lato"'; // set font used to draw labels when using draw methods
|
||||
human.draw.options.lineHeight = 20;
|
||||
human.draw.options.drawPoints = true; // draw points on face mesh
|
||||
// human.draw.options.fillPolygons = true;
|
||||
|
||||
const dom = { // grab instances of dom objects so we dont have to look them up later
|
||||
video: document.getElementById('video') as HTMLVideoElement,
|
||||
canvas: document.getElementById('canvas') as HTMLCanvasElement,
|
||||
log: document.getElementById('log') as HTMLPreElement,
|
||||
fps: document.getElementById('status') as HTMLPreElement,
|
||||
perf: document.getElementById('performance') as HTMLDivElement,
|
||||
};
|
||||
const timestamp = { detect: 0, draw: 0, tensors: 0, start: 0 }; // holds information used to calculate performance and possible memory leaks
|
||||
const fps = { detectFPS: 0, drawFPS: 0, frames: 0, averageMs: 0 }; // holds calculated fps information for both detect and screen refresh
|
||||
|
||||
const log = (...msg) => { // helper method to output messages
|
||||
dom.log.innerText += msg.join(' ') + '\n';
|
||||
console.log(...msg); // eslint-disable-line no-console
|
||||
};
|
||||
const status = (msg) => dom.fps.innerText = msg; // print status element
|
||||
const perf = (msg) => dom.perf.innerText = 'tensors:' + human.tf.memory().numTensors.toString() + ' | performance: ' + JSON.stringify(msg).replace(/"|{|}/g, '').replace(/,/g, ' | '); // print performance element
|
||||
|
||||
async function detectionLoop() { // main detection loop
|
||||
if (!dom.video.paused) {
|
||||
if (timestamp.start === 0) timestamp.start = human.now();
|
||||
// log('profiling data:', await human.profile(dom.video));
|
||||
await human.detect(dom.video); // actual detection; were not capturing output in a local variable as it can also be reached via human.result
|
||||
const tensors = human.tf.memory().numTensors; // check current tensor usage for memory leaks
|
||||
if (tensors - timestamp.tensors !== 0) log('allocated tensors:', tensors - timestamp.tensors); // printed on start and each time there is a tensor leak
|
||||
timestamp.tensors = tensors;
|
||||
fps.detectFPS = Math.round(1000 * 1000 / (human.now() - timestamp.detect)) / 1000;
|
||||
fps.frames++;
|
||||
fps.averageMs = Math.round(1000 * (human.now() - timestamp.start) / fps.frames) / 1000;
|
||||
if (fps.frames % 100 === 0 && !dom.video.paused) log('performance', { ...fps, tensors: timestamp.tensors });
|
||||
}
|
||||
timestamp.detect = human.now();
|
||||
requestAnimationFrame(detectionLoop); // start new frame immediately
|
||||
}
|
||||
|
||||
async function drawLoop() { // main screen refresh loop
|
||||
if (!dom.video.paused) {
|
||||
const interpolated = human.next(human.result); // smoothen result using last-known results
|
||||
const processed = await human.image(dom.video); // get current video frame, but enhanced with human.filters
|
||||
human.draw.canvas(processed.canvas as HTMLCanvasElement, dom.canvas);
|
||||
|
||||
const opt: Partial<H.DrawOptions> = { bodyLabels: `person confidence [score] and ${human.result?.body?.[0]?.keypoints.length} keypoints` };
|
||||
await human.draw.all(dom.canvas, interpolated, opt); // draw labels, boxes, lines, etc.
|
||||
perf(interpolated.performance); // write performance data
|
||||
}
|
||||
const now = human.now();
|
||||
fps.drawFPS = Math.round(1000 * 1000 / (now - timestamp.draw)) / 1000;
|
||||
timestamp.draw = now;
|
||||
status(dom.video.paused ? 'paused' : `fps: ${fps.detectFPS.toFixed(1).padStart(5, ' ')} detect | ${fps.drawFPS.toFixed(1).padStart(5, ' ')} draw`); // write status
|
||||
setTimeout(drawLoop, 30); // use to slow down refresh from max refresh rate to target of 30 fps
|
||||
}
|
||||
|
||||
async function webCam() {
|
||||
const devices = await human.webcam.enumerate();
|
||||
const id = devices[0].deviceId; // use first available video source
|
||||
const webcamStatus = await human.webcam.start({ element: dom.video, crop: false, width, id }); // use human webcam helper methods and associate webcam stream with a dom element
|
||||
log(webcamStatus);
|
||||
dom.canvas.width = human.webcam.width;
|
||||
dom.canvas.height = human.webcam.height;
|
||||
dom.canvas.onclick = async () => { // pause when clicked on screen and resume on next click
|
||||
if (human.webcam.paused) await human.webcam.play();
|
||||
else human.webcam.pause();
|
||||
};
|
||||
}
|
||||
|
||||
async function main() { // main entry point
|
||||
log('human version:', human.version, '| tfjs version:', human.tf.version['tfjs-core']);
|
||||
log('platform:', human.env.platform, '| agent:', human.env.agent);
|
||||
status('loading...');
|
||||
await human.load(); // preload all models
|
||||
log('backend:', human.tf.getBackend(), '| available:', human.env.backends);
|
||||
log('models stats:', human.models.stats());
|
||||
log('models loaded:', human.models.loaded());
|
||||
log('environment', human.env);
|
||||
status('initializing...');
|
||||
await human.warmup(); // warmup function to initialize backend for future faster detection
|
||||
await webCam(); // start webcam
|
||||
await detectionLoop(); // start detection loop
|
||||
await drawLoop(); // start draw loop
|
||||
}
|
||||
|
||||
window.onload = main;
|
|
@ -0,0 +1,58 @@
|
|||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<title>Human</title>
|
||||
<meta name="viewport" content="width=device-width" id="viewport">
|
||||
<meta name="keywords" content="Human">
|
||||
<meta name="description" content="Human: Demo; Author: Vladimir Mandic <https://github.com/vladmandic>">
|
||||
<link rel="manifest" href="../manifest.webmanifest">
|
||||
<link rel="shortcut icon" href="../../favicon.ico" type="image/x-icon">
|
||||
<style>
|
||||
@font-face { font-family: 'Lato'; font-display: swap; font-style: normal; font-weight: 100; src: local('Lato'), url('../../assets/lato-light.woff2') }
|
||||
body { font-family: 'Lato', 'Segoe UI'; font-size: 16px; font-variant: small-caps; margin: 0; background: black; color: white; overflow: hidden; width: 100vw; height: 100vh; }
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<canvas id="canvas" style="margin: 0 auto; width: 100%"></canvas>
|
||||
<pre id="log" style="padding: 8px; position: fixed; bottom: 0"></pre>
|
||||
<script type="module">
|
||||
import * as H from '../../dist/human.esm.js'; // equivalent of import @vladmandic/Human
|
||||
|
||||
const humanConfig = { // user configuration for human, used to fine-tune behavior
|
||||
modelBasePath: '../../models', // models can be loaded directly from cdn as well
|
||||
filter: { enabled: true, equalization: true, flip: false },
|
||||
face: { enabled: true, detector: { rotation: false }, mesh: { enabled: true }, attention: { enabled: false }, iris: { enabled: true }, description: { enabled: true }, emotion: { enabled: true } },
|
||||
body: { enabled: true },
|
||||
hand: { enabled: true },
|
||||
gesture: { enabled: true },
|
||||
object: { enabled: false },
|
||||
segmentation: { enabled: false },
|
||||
};
|
||||
const human = new H.Human(humanConfig); // create instance of human with overrides from user configuration
|
||||
const canvas = document.getElementById('canvas'); // output canvas to draw both webcam and detection results
|
||||
|
||||
async function drawLoop() { // main screen refresh loop
|
||||
const interpolated = human.next(); // get smoothened result using last-known results which are continously updated based on input webcam video
|
||||
human.draw.canvas(human.webcam.element, canvas); // draw webcam video to screen canvas // better than using procesed image as this loop happens faster than processing loop
|
||||
await human.draw.all(canvas, interpolated); // draw labels, boxes, lines, etc.
|
||||
setTimeout(drawLoop, 30); // use to slow down refresh from max refresh rate to target of 1000/30 ~ 30 fps
|
||||
}
|
||||
|
||||
async function main() { // main entry point
|
||||
document.getElementById('log').innerHTML = `human version: ${human.version} | tfjs version: ${human.tf.version['tfjs-core']}<br>platform: ${human.env.platform} | agent ${human.env.agent}`;
|
||||
await human.webcam.start({ crop: true }); // find webcam and start it
|
||||
human.video(human.webcam.element); // instruct human to continously detect video frames
|
||||
canvas.width = human.webcam.width; // set canvas resolution to input webcam native resolution
|
||||
canvas.height = human.webcam.height;
|
||||
canvas.onclick = async () => { // pause when clicked on screen and resume on next click
|
||||
if (human.webcam.paused) await human.webcam.play();
|
||||
else human.webcam.pause();
|
||||
};
|
||||
await drawLoop(); // start draw loop
|
||||
}
|
||||
|
||||
window.onload = main;
|
||||
</script>
|
||||
</body>
|
||||
</html>
|
|
@ -1,276 +0,0 @@
|
|||
/**
|
||||
* Human demo for browsers
|
||||
*
|
||||
* @description Experimental Demo app for Human using WebGPU
|
||||
*
|
||||
*/
|
||||
// @ts-nocheck // typescript checks disabled as this is pure javascript
|
||||
|
||||
import Human from '../../dist/human.esm.js';
|
||||
import GLBench from '../helpers/gl-bench.js';
|
||||
|
||||
const workerJS = './worker.js';
|
||||
|
||||
const backend = 'webgpu';
|
||||
|
||||
const config = {
|
||||
main: { // processes input and runs gesture analysis
|
||||
warmup: 'none',
|
||||
backend,
|
||||
modelBasePath: '../../models/',
|
||||
async: false,
|
||||
filter: { enabled: true },
|
||||
face: { enabled: false },
|
||||
object: { enabled: false },
|
||||
gesture: { enabled: true },
|
||||
hand: { enabled: false },
|
||||
body: { enabled: false },
|
||||
segmentation: { enabled: false },
|
||||
},
|
||||
face: { // runs all face models
|
||||
warmup: 'none',
|
||||
backend,
|
||||
modelBasePath: '../../models/',
|
||||
async: false,
|
||||
filter: { enabled: false },
|
||||
face: { enabled: true,
|
||||
detector: { return: false, rotation: false },
|
||||
mesh: { enabled: true },
|
||||
iris: { enabled: false },
|
||||
description: { enabled: true },
|
||||
emotion: { enabled: false },
|
||||
},
|
||||
object: { enabled: false },
|
||||
gesture: { enabled: false },
|
||||
hand: { enabled: false },
|
||||
body: { enabled: false },
|
||||
segmentation: { enabled: false },
|
||||
},
|
||||
body: { // runs body model
|
||||
warmup: 'none',
|
||||
backend,
|
||||
modelBasePath: '../../models/',
|
||||
async: false,
|
||||
filter: { enabled: false },
|
||||
face: { enabled: false },
|
||||
object: { enabled: false },
|
||||
gesture: { enabled: false },
|
||||
hand: { enabled: false },
|
||||
body: { enabled: true },
|
||||
segmentation: { enabled: false },
|
||||
},
|
||||
hand: { // runs hands model
|
||||
warmup: 'none',
|
||||
backend,
|
||||
modelBasePath: '../../models/',
|
||||
async: false,
|
||||
filter: { enabled: false },
|
||||
face: { enabled: false },
|
||||
object: { enabled: false },
|
||||
gesture: { enabled: false },
|
||||
hand: { enabled: true, rotation: false },
|
||||
body: { enabled: false },
|
||||
segmentation: { enabled: false },
|
||||
},
|
||||
object: { // runs object model
|
||||
warmup: 'none',
|
||||
backend,
|
||||
modelBasePath: '../../models/',
|
||||
async: false,
|
||||
filter: { enabled: false },
|
||||
face: { enabled: false },
|
||||
object: { enabled: false },
|
||||
gesture: { enabled: false },
|
||||
hand: { enabled: false },
|
||||
body: { enabled: false },
|
||||
segmentation: { enabled: false },
|
||||
},
|
||||
};
|
||||
|
||||
let human;
|
||||
let canvas;
|
||||
let video;
|
||||
let bench;
|
||||
|
||||
const busy = {
|
||||
face: false,
|
||||
hand: false,
|
||||
body: false,
|
||||
object: false,
|
||||
};
|
||||
|
||||
const workers = {
|
||||
face: null,
|
||||
body: null,
|
||||
hand: null,
|
||||
object: null,
|
||||
};
|
||||
|
||||
const time = {
|
||||
main: 0,
|
||||
draw: 0,
|
||||
face: '[warmup]',
|
||||
body: '[warmup]',
|
||||
hand: '[warmup]',
|
||||
object: '[warmup]',
|
||||
};
|
||||
|
||||
const start = {
|
||||
main: 0,
|
||||
draw: 0,
|
||||
face: 0,
|
||||
body: 0,
|
||||
hand: 0,
|
||||
object: 0,
|
||||
};
|
||||
|
||||
const result = { // initialize empty result object which will be partially filled with results from each thread
|
||||
performance: {},
|
||||
hand: [],
|
||||
body: [],
|
||||
face: [],
|
||||
object: [],
|
||||
};
|
||||
|
||||
function log(...msg) {
|
||||
const dt = new Date();
|
||||
const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;
|
||||
// eslint-disable-next-line no-console
|
||||
console.log(ts, ...msg);
|
||||
}
|
||||
|
||||
async function drawResults() {
|
||||
start.draw = performance.now();
|
||||
const interpolated = human.next(result);
|
||||
await human.draw.all(canvas, interpolated);
|
||||
time.draw = Math.round(1 + performance.now() - start.draw);
|
||||
const fps = Math.round(10 * 1000 / time.main) / 10;
|
||||
const draw = Math.round(10 * 1000 / time.draw) / 10;
|
||||
document.getElementById('log').innerText = `Human: version ${human.version} | Performance: Main ${time.main}ms Face: ${time.face}ms Body: ${time.body}ms Hand: ${time.hand}ms Object ${time.object}ms | FPS: ${fps} / ${draw}`;
|
||||
requestAnimationFrame(drawResults);
|
||||
}
|
||||
|
||||
async function receiveMessage(msg) {
|
||||
result[msg.data.type] = msg.data.result;
|
||||
busy[msg.data.type] = false;
|
||||
time[msg.data.type] = Math.round(performance.now() - start[msg.data.type]);
|
||||
}
|
||||
|
||||
async function runDetection() {
|
||||
start.main = performance.now();
|
||||
if (!bench) {
|
||||
bench = new GLBench(null, { trackGPU: false, chartHz: 20, chartLen: 20 });
|
||||
bench.begin();
|
||||
}
|
||||
const ctx = canvas.getContext('2d');
|
||||
// const image = await human.image(video);
|
||||
// ctx.drawImage(image.canvas, 0, 0, canvas.width, canvas.height);
|
||||
ctx.drawImage(video, 0, 0, canvas.width, canvas.height);
|
||||
const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
|
||||
if (!busy.face) {
|
||||
busy.face = true;
|
||||
start.face = performance.now();
|
||||
workers.face.postMessage({ image: imageData.data.buffer, width: canvas.width, height: canvas.height, config: config.face, type: 'face' }, [imageData.data.buffer.slice(0)]);
|
||||
}
|
||||
if (!busy.body) {
|
||||
busy.body = true;
|
||||
start.body = performance.now();
|
||||
workers.body.postMessage({ image: imageData.data.buffer, width: canvas.width, height: canvas.height, config: config.body, type: 'body' }, [imageData.data.buffer.slice(0)]);
|
||||
}
|
||||
if (!busy.hand) {
|
||||
busy.hand = true;
|
||||
start.hand = performance.now();
|
||||
workers.hand.postMessage({ image: imageData.data.buffer, width: canvas.width, height: canvas.height, config: config.hand, type: 'hand' }, [imageData.data.buffer.slice(0)]);
|
||||
}
|
||||
if (!busy.object) {
|
||||
busy.object = true;
|
||||
start.object = performance.now();
|
||||
workers.object.postMessage({ image: imageData.data.buffer, width: canvas.width, height: canvas.height, config: config.object, type: 'object' }, [imageData.data.buffer.slice(0)]);
|
||||
}
|
||||
|
||||
time.main = Math.round(performance.now() - start.main);
|
||||
|
||||
bench.nextFrame();
|
||||
requestAnimationFrame(runDetection);
|
||||
}
|
||||
|
||||
async function setupCamera() {
|
||||
video = document.getElementById('video');
|
||||
canvas = document.getElementById('canvas');
|
||||
const output = document.getElementById('log');
|
||||
let stream;
|
||||
const constraints = {
|
||||
audio: false,
|
||||
video: {
|
||||
facingMode: 'user',
|
||||
resizeMode: 'crop-and-scale',
|
||||
width: { ideal: document.body.clientWidth },
|
||||
// height: { ideal: document.body.clientHeight }, // not set as we're using aspectRation to get height instead
|
||||
aspectRatio: document.body.clientWidth / document.body.clientHeight,
|
||||
},
|
||||
};
|
||||
// enumerate devices for diag purposes
|
||||
navigator.mediaDevices.enumerateDevices().then((devices) => log('enumerated devices:', devices));
|
||||
log('camera constraints', constraints);
|
||||
try {
|
||||
stream = await navigator.mediaDevices.getUserMedia(constraints);
|
||||
} catch (err) {
|
||||
output.innerText += `\n${err.name}: ${err.message}`;
|
||||
status(err.name);
|
||||
log('camera error:', err);
|
||||
}
|
||||
const tracks = stream.getVideoTracks();
|
||||
log('enumerated viable tracks:', tracks);
|
||||
const track = stream.getVideoTracks()[0];
|
||||
const settings = track.getSettings();
|
||||
log('selected video source:', track, settings);
|
||||
const promise = !stream || new Promise((resolve) => {
|
||||
video.onloadeddata = () => {
|
||||
if (settings.width > settings.height) canvas.style.width = '100vw';
|
||||
else canvas.style.height = '100vh';
|
||||
canvas.width = video.videoWidth;
|
||||
canvas.height = video.videoHeight;
|
||||
video.play();
|
||||
resolve();
|
||||
};
|
||||
});
|
||||
// attach input to video element
|
||||
if (stream) video.srcObject = stream;
|
||||
return promise;
|
||||
}
|
||||
|
||||
async function startWorkers() {
|
||||
if (!workers.face) workers.face = new Worker(workerJS);
|
||||
if (!workers.body) workers.body = new Worker(workerJS);
|
||||
if (!workers.hand) workers.hand = new Worker(workerJS);
|
||||
if (!workers.object) workers.object = new Worker(workerJS);
|
||||
workers.face.onmessage = receiveMessage;
|
||||
workers.body.onmessage = receiveMessage;
|
||||
workers.hand.onmessage = receiveMessage;
|
||||
workers.object.onmessage = receiveMessage;
|
||||
}
|
||||
|
||||
async function main() {
|
||||
window.addEventListener('unhandledrejection', (evt) => {
|
||||
// eslint-disable-next-line no-console
|
||||
console.error(evt.reason || evt);
|
||||
document.getElementById('log').innerHTML = evt.reason.message || evt.reason || evt;
|
||||
status('exception error');
|
||||
evt.preventDefault();
|
||||
});
|
||||
|
||||
if (typeof Worker === 'undefined' || typeof OffscreenCanvas === 'undefined') {
|
||||
status('workers are not supported');
|
||||
return;
|
||||
}
|
||||
|
||||
human = new Human(config.main);
|
||||
document.getElementById('log').innerText = `Human: version ${human.version}`;
|
||||
|
||||
await startWorkers();
|
||||
await setupCamera();
|
||||
runDetection();
|
||||
drawResults();
|
||||
}
|
||||
|
||||
window.onload = main;
|
|
@ -1,21 +0,0 @@
|
|||
/// <reference lib="webworker" />
|
||||
|
||||
// import Human from '../../dist/human.esm'; // load Human using IIFE script as Chome Mobile does not support Modules as Workers
|
||||
self.importScripts('../../assets/tf.es2017.js');
|
||||
self.importScripts('../../assets/tf-backend-webgpu.es2017.js');
|
||||
self.importScripts('../../dist/human.js');
|
||||
|
||||
let human;
|
||||
|
||||
onmessage = async (msg) => {
|
||||
// received from index.js using:
|
||||
// worker.postMessage({ image: image.data.buffer, width: canvas.width, height: canvas.height, config }, [image.data.buffer]);
|
||||
|
||||
// @ts-ignore // Human is registered as global namespace using IIFE script
|
||||
// eslint-disable-next-line no-undef, new-cap
|
||||
if (!human) human = new Human.default(msg.data.config);
|
||||
const image = new ImageData(new Uint8ClampedArray(msg.data.image), msg.data.width, msg.data.height);
|
||||
let result = {};
|
||||
result = await human.detect(image, msg.data.config);
|
||||
postMessage({ result: result[msg.data.type], type: msg.data.type });
|
||||
};
|
|
@ -0,0 +1 @@
|
|||
export * from '../types/human';
|
|
@ -0,0 +1 @@
|
|||
export * from '../types/human';
|
|
@ -0,0 +1 @@
|
|||
export * from '../types/human';
|