redesign body and hand caching and interpolation

pull/193/head
Vladimir Mandic 2021-10-08 18:39:04 -04:00
parent 99b81c1e61
commit f7c189fd8a
20 changed files with 9185 additions and 2038 deletions

View File

@ -277,12 +277,10 @@ async function drawResults(input) {
}
// draw all results using interpolated results
if (ui.interpolated) {
const interpolated = human.next(result);
let interpolated;
if (ui.interpolated) interpolated = human.next(result);
else interpolated = result;
human.draw.all(canvas, interpolated, drawOptions);
} else {
human.draw.all(canvas, result, drawOptions);
}
// show tree with results
if (ui.results) {
@ -315,7 +313,7 @@ async function drawResults(input) {
document.getElementById('log').innerHTML = `
video: ${ui.camera.name} | facing: ${ui.camera.facing} | screen: ${window.innerWidth} x ${window.innerHeight} camera: ${ui.camera.width} x ${ui.camera.height} ${processing}<br>
backend: ${backend}<br>
performance: ${str(lastDetectedResult.performance)}ms ${fps}<br>
performance: ${str(interpolated.performance)}ms ${fps}<br>
${warning}<br>
`;
ui.framesDraw++;

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

572
dist/human.esm.js vendored
View File

@ -174,8 +174,8 @@ var config = {
hand: {
enabled: true,
rotation: true,
skipFrames: 14,
minConfidence: 0.5,
skipFrames: 1,
minConfidence: 0.55,
iouThreshold: 0.2,
maxDetected: -1,
landmarks: true,
@ -1033,27 +1033,27 @@ var require_long = __commonJS({
var INT_CACHE = {};
var UINT_CACHE = {};
function fromInt(value, unsigned) {
var obj, cachedObj, cache3;
var obj, cachedObj, cache4;
if (unsigned) {
value >>>= 0;
if (cache3 = 0 <= value && value < 256) {
if (cache4 = 0 <= value && value < 256) {
cachedObj = UINT_CACHE[value];
if (cachedObj)
return cachedObj;
}
obj = fromBits(value, (value | 0) < 0 ? -1 : 0, true);
if (cache3)
if (cache4)
UINT_CACHE[value] = obj;
return obj;
} else {
value |= 0;
if (cache3 = -128 <= value && value < 128) {
if (cache4 = -128 <= value && value < 128) {
cachedObj = INT_CACHE[value];
if (cachedObj)
return cachedObj;
}
obj = fromBits(value, value < 0 ? -1 : 0, false);
if (cache3)
if (cache4)
INT_CACHE[value] = obj;
return obj;
}
@ -72023,41 +72023,41 @@ var UV7 = VTX7.map((x) => UV468[x]);
// src/face/facemeshutil.ts
var createBox = (startEndTensor) => ({ startPoint: slice(startEndTensor, [0, 0], [-1, 2]), endPoint: slice(startEndTensor, [0, 2], [-1, 2]) });
var getBoxSize = (box4) => [Math.abs(box4.endPoint[0] - box4.startPoint[0]), Math.abs(box4.endPoint[1] - box4.startPoint[1])];
var getBoxCenter = (box4) => [box4.startPoint[0] + (box4.endPoint[0] - box4.startPoint[0]) / 2, box4.startPoint[1] + (box4.endPoint[1] - box4.startPoint[1]) / 2];
var getClampedBox = (box4, input2) => box4 ? [
Math.trunc(Math.max(0, box4.startPoint[0])),
Math.trunc(Math.max(0, box4.startPoint[1])),
Math.trunc(Math.min(input2.shape[2] || 0, box4.endPoint[0]) - Math.max(0, box4.startPoint[0])),
Math.trunc(Math.min(input2.shape[1] || 0, box4.endPoint[1]) - Math.max(0, box4.startPoint[1]))
var getBoxSize = (box6) => [Math.abs(box6.endPoint[0] - box6.startPoint[0]), Math.abs(box6.endPoint[1] - box6.startPoint[1])];
var getBoxCenter = (box6) => [box6.startPoint[0] + (box6.endPoint[0] - box6.startPoint[0]) / 2, box6.startPoint[1] + (box6.endPoint[1] - box6.startPoint[1]) / 2];
var getClampedBox = (box6, input2) => box6 ? [
Math.trunc(Math.max(0, box6.startPoint[0])),
Math.trunc(Math.max(0, box6.startPoint[1])),
Math.trunc(Math.min(input2.shape[2] || 0, box6.endPoint[0]) - Math.max(0, box6.startPoint[0])),
Math.trunc(Math.min(input2.shape[1] || 0, box6.endPoint[1]) - Math.max(0, box6.startPoint[1]))
] : [0, 0, 0, 0];
var getRawBox = (box4, input2) => box4 ? [
box4.startPoint[0] / (input2.shape[2] || 0),
box4.startPoint[1] / (input2.shape[1] || 0),
(box4.endPoint[0] - box4.startPoint[0]) / (input2.shape[2] || 0),
(box4.endPoint[1] - box4.startPoint[1]) / (input2.shape[1] || 0)
var getRawBox = (box6, input2) => box6 ? [
box6.startPoint[0] / (input2.shape[2] || 0),
box6.startPoint[1] / (input2.shape[1] || 0),
(box6.endPoint[0] - box6.startPoint[0]) / (input2.shape[2] || 0),
(box6.endPoint[1] - box6.startPoint[1]) / (input2.shape[1] || 0)
] : [0, 0, 0, 0];
var scaleBoxCoordinates = (box4, factor) => {
const startPoint = [box4.startPoint[0] * factor[0], box4.startPoint[1] * factor[1]];
const endPoint = [box4.endPoint[0] * factor[0], box4.endPoint[1] * factor[1]];
var scaleBoxCoordinates = (box6, factor) => {
const startPoint = [box6.startPoint[0] * factor[0], box6.startPoint[1] * factor[1]];
const endPoint = [box6.endPoint[0] * factor[0], box6.endPoint[1] * factor[1]];
return { startPoint, endPoint };
};
var cutBoxFromImageAndResize = (box4, image7, cropSize) => {
var cutBoxFromImageAndResize = (box6, image7, cropSize) => {
const h = image7.shape[1];
const w = image7.shape[2];
return image.cropAndResize(image7, [[box4.startPoint[1] / h, box4.startPoint[0] / w, box4.endPoint[1] / h, box4.endPoint[0] / w]], [0], cropSize);
return image.cropAndResize(image7, [[box6.startPoint[1] / h, box6.startPoint[0] / w, box6.endPoint[1] / h, box6.endPoint[0] / w]], [0], cropSize);
};
var enlargeBox = (box4, factor = 1.5) => {
const center = getBoxCenter(box4);
const size2 = getBoxSize(box4);
var enlargeBox = (box6, factor = 1.5) => {
const center = getBoxCenter(box6);
const size2 = getBoxSize(box6);
const halfSize = [factor * size2[0] / 2, factor * size2[1] / 2];
return { startPoint: [center[0] - halfSize[0], center[1] - halfSize[1]], endPoint: [center[0] + halfSize[0], center[1] + halfSize[1]], landmarks: box4.landmarks };
return { startPoint: [center[0] - halfSize[0], center[1] - halfSize[1]], endPoint: [center[0] + halfSize[0], center[1] + halfSize[1]], landmarks: box6.landmarks };
};
var squarifyBox = (box4) => {
const centers = getBoxCenter(box4);
const size2 = getBoxSize(box4);
var squarifyBox = (box6) => {
const centers = getBoxCenter(box6);
const size2 = getBoxSize(box6);
const halfSize = Math.max(...size2) / 2;
return { startPoint: [Math.round(centers[0] - halfSize), Math.round(centers[1] - halfSize)], endPoint: [Math.round(centers[0] + halfSize), Math.round(centers[1] + halfSize)], landmarks: box4.landmarks };
return { startPoint: [Math.round(centers[0] - halfSize), Math.round(centers[1] - halfSize)], endPoint: [Math.round(centers[0] + halfSize), Math.round(centers[1] + halfSize)], landmarks: box6.landmarks };
};
var calculateLandmarksBoundingBox = (landmarks) => {
const xs = landmarks.map((d) => d[0]);
@ -72125,8 +72125,8 @@ function generateAnchors(inputSize8) {
}
return anchors4;
}
function transformRawCoords(rawCoords, box4, angle, rotationMatrix, inputSize8) {
const boxSize = getBoxSize({ startPoint: box4.startPoint, endPoint: box4.endPoint });
function transformRawCoords(rawCoords, box6, angle, rotationMatrix, inputSize8) {
const boxSize = getBoxSize({ startPoint: box6.startPoint, endPoint: box6.endPoint });
const coordsScaled = rawCoords.map((coord) => [
boxSize[0] / inputSize8 * (coord[0] - inputSize8 / 2),
boxSize[1] / inputSize8 * (coord[1] - inputSize8 / 2),
@ -72135,21 +72135,21 @@ function transformRawCoords(rawCoords, box4, angle, rotationMatrix, inputSize8)
const coordsRotationMatrix = angle !== 0 ? buildRotationMatrix(angle, [0, 0]) : IDENTITY_MATRIX;
const coordsRotated = angle !== 0 ? coordsScaled.map((coord) => [...rotatePoint(coord, coordsRotationMatrix), coord[2]]) : coordsScaled;
const inverseRotationMatrix = angle !== 0 ? invertTransformMatrix(rotationMatrix) : IDENTITY_MATRIX;
const boxCenter = [...getBoxCenter({ startPoint: box4.startPoint, endPoint: box4.endPoint }), 1];
const boxCenter = [...getBoxCenter({ startPoint: box6.startPoint, endPoint: box6.endPoint }), 1];
return coordsRotated.map((coord) => [
Math.round(coord[0] + dot4(boxCenter, inverseRotationMatrix[0])),
Math.round(coord[1] + dot4(boxCenter, inverseRotationMatrix[1])),
Math.round(coord[2] || 0)
]);
}
function correctFaceRotation(box4, input2, inputSize8) {
const [indexOfMouth, indexOfForehead] = box4.landmarks.length >= meshLandmarks.count ? meshLandmarks.symmetryLine : blazeFaceLandmarks.symmetryLine;
const angle = computeRotation(box4.landmarks[indexOfMouth], box4.landmarks[indexOfForehead]);
const faceCenter = getBoxCenter({ startPoint: box4.startPoint, endPoint: box4.endPoint });
function correctFaceRotation(box6, input2, inputSize8) {
const [indexOfMouth, indexOfForehead] = box6.landmarks.length >= meshLandmarks.count ? meshLandmarks.symmetryLine : blazeFaceLandmarks.symmetryLine;
const angle = computeRotation(box6.landmarks[indexOfMouth], box6.landmarks[indexOfForehead]);
const faceCenter = getBoxCenter({ startPoint: box6.startPoint, endPoint: box6.endPoint });
const faceCenterNormalized = [faceCenter[0] / input2.shape[2], faceCenter[1] / input2.shape[1]];
const rotated = image.rotateWithOffset(input2, angle, 0, faceCenterNormalized);
const rotationMatrix = buildRotationMatrix(-angle, faceCenter);
const cut = cutBoxFromImageAndResize({ startPoint: box4.startPoint, endPoint: box4.endPoint }, rotated, [inputSize8, inputSize8]);
const cut = cutBoxFromImageAndResize({ startPoint: box6.startPoint, endPoint: box6.endPoint }, rotated, [inputSize8, inputSize8]);
const face5 = div(cut, 255);
dispose(cut);
dispose(rotated);
@ -72297,20 +72297,20 @@ var getLeftToRightEyeDepthDifference = (rawCoords) => {
return leftEyeZ - rightEyeZ;
};
var getEyeBox = (rawCoords, face5, eyeInnerCornerIndex, eyeOuterCornerIndex, flip = false, meshSize) => {
const box4 = squarifyBox(enlargeBox(calculateLandmarksBoundingBox([rawCoords[eyeInnerCornerIndex], rawCoords[eyeOuterCornerIndex]]), irisEnlarge));
const boxSize = getBoxSize(box4);
let crop = image.cropAndResize(face5, [[
box4.startPoint[1] / meshSize,
box4.startPoint[0] / meshSize,
box4.endPoint[1] / meshSize,
box4.endPoint[0] / meshSize
const box6 = squarifyBox(enlargeBox(calculateLandmarksBoundingBox([rawCoords[eyeInnerCornerIndex], rawCoords[eyeOuterCornerIndex]]), irisEnlarge));
const boxSize = getBoxSize(box6);
let crop2 = image.cropAndResize(face5, [[
box6.startPoint[1] / meshSize,
box6.startPoint[0] / meshSize,
box6.endPoint[1] / meshSize,
box6.endPoint[0] / meshSize
]], [0], [inputSize2, inputSize2]);
if (flip && env2.kernels.includes("flipleftright")) {
const flipped = image.flipLeftRight(crop);
dispose(crop);
crop = flipped;
const flipped = image.flipLeftRight(crop2);
dispose(crop2);
crop2 = flipped;
}
return { box: box4, boxSize, crop };
return { box: box6, boxSize, crop: crop2 };
};
var getEyeCoords = (eyeData, eyeBox, eyeBoxSize, flip = false) => {
const eyeRawCoords = [];
@ -72405,7 +72405,7 @@ async function predict(input2, config3) {
const faces = [];
const newBoxes = [];
let id = 0;
for (let box4 of boxCache) {
for (let box6 of boxCache) {
let angle = 0;
let rotationMatrix;
const face5 = {
@ -72420,21 +72420,21 @@ async function predict(input2, config3) {
annotations: {}
};
if (((_d = config3.face.detector) == null ? void 0 : _d.rotation) && ((_e = config3.face.mesh) == null ? void 0 : _e.enabled) && env2.kernels.includes("rotatewithoffset")) {
[angle, rotationMatrix, face5.tensor] = correctFaceRotation(box4, input2, inputSize3);
[angle, rotationMatrix, face5.tensor] = correctFaceRotation(box6, input2, inputSize3);
} else {
rotationMatrix = IDENTITY_MATRIX;
const cut = cutBoxFromImageAndResize({ startPoint: box4.startPoint, endPoint: box4.endPoint }, input2, ((_f = config3.face.mesh) == null ? void 0 : _f.enabled) ? [inputSize3, inputSize3] : [size(), size()]);
const cut = cutBoxFromImageAndResize({ startPoint: box6.startPoint, endPoint: box6.endPoint }, input2, ((_f = config3.face.mesh) == null ? void 0 : _f.enabled) ? [inputSize3, inputSize3] : [size(), size()]);
face5.tensor = div(cut, 255);
dispose(cut);
}
face5.boxScore = Math.round(100 * box4.confidence) / 100;
face5.boxScore = Math.round(100 * box6.confidence) / 100;
if (!((_g = config3.face.mesh) == null ? void 0 : _g.enabled)) {
face5.box = getClampedBox(box4, input2);
face5.boxRaw = getRawBox(box4, input2);
face5.score = Math.round(100 * box4.confidence || 0) / 100;
face5.mesh = box4.landmarks.map((pt) => [
(box4.startPoint[0] + box4.endPoint[0]) / 2 + (box4.endPoint[0] + box4.startPoint[0]) * pt[0] / size(),
(box4.startPoint[1] + box4.endPoint[1]) / 2 + (box4.endPoint[1] + box4.startPoint[1]) * pt[1] / size()
face5.box = getClampedBox(box6, input2);
face5.boxRaw = getRawBox(box6, input2);
face5.score = Math.round(100 * box6.confidence || 0) / 100;
face5.mesh = box6.landmarks.map((pt) => [
(box6.startPoint[0] + box6.endPoint[0]) / 2 + (box6.endPoint[0] + box6.startPoint[0]) * pt[0] / size(),
(box6.startPoint[1] + box6.endPoint[1]) / 2 + (box6.endPoint[1] + box6.startPoint[1]) * pt[1] / size()
]);
face5.meshRaw = face5.mesh.map((pt) => [pt[0] / (input2.shape[2] || 0), pt[1] / (input2.shape[1] || 0), (pt[2] || 0) / inputSize3]);
for (const key of Object.keys(blazeFaceLandmarks))
@ -72452,28 +72452,28 @@ async function predict(input2, config3) {
dispose(contourCoords);
dispose(coordsReshaped);
if (faceConfidence < (((_h = config3.face.detector) == null ? void 0 : _h.minConfidence) || 1)) {
box4.confidence = faceConfidence;
box6.confidence = faceConfidence;
} else {
if ((_i = config3.face.iris) == null ? void 0 : _i.enabled)
rawCoords = await augmentIris(rawCoords, face5.tensor, config3, inputSize3);
face5.mesh = transformRawCoords(rawCoords, box4, angle, rotationMatrix, inputSize3);
face5.mesh = transformRawCoords(rawCoords, box6, angle, rotationMatrix, inputSize3);
face5.meshRaw = face5.mesh.map((pt) => [pt[0] / (input2.shape[2] || 0), pt[1] / (input2.shape[1] || 0), (pt[2] || 0) / inputSize3]);
box4 = { ...enlargeBox(calculateLandmarksBoundingBox(face5.mesh), 1.5), confidence: box4.confidence };
box6 = { ...enlargeBox(calculateLandmarksBoundingBox(face5.mesh), 1.5), confidence: box6.confidence };
for (const key of Object.keys(meshAnnotations))
face5.annotations[key] = meshAnnotations[key].map((index) => face5.mesh[index]);
if (((_j = config3.face.detector) == null ? void 0 : _j.rotation) && config3.face.mesh.enabled && ((_k = config3.face.description) == null ? void 0 : _k.enabled) && env2.kernels.includes("rotatewithoffset")) {
dispose(face5.tensor);
[angle, rotationMatrix, face5.tensor] = correctFaceRotation(box4, input2, inputSize3);
[angle, rotationMatrix, face5.tensor] = correctFaceRotation(box6, input2, inputSize3);
}
face5.box = getClampedBox(box4, input2);
face5.boxRaw = getRawBox(box4, input2);
face5.score = Math.round(100 * faceConfidence || 100 * box4.confidence || 0) / 100;
face5.box = getClampedBox(box6, input2);
face5.boxRaw = getRawBox(box6, input2);
face5.score = Math.round(100 * faceConfidence || 100 * box6.confidence || 0) / 100;
face5.faceScore = Math.round(100 * faceConfidence) / 100;
box4 = { ...squarifyBox(box4), confidence: box4.confidence, faceConfidence };
box6 = { ...squarifyBox(box6), confidence: box6.confidence, faceConfidence };
}
}
faces.push(face5);
newBoxes.push(box4);
newBoxes.push(box6);
}
if ((_l = config3.face.mesh) == null ? void 0 : _l.enabled)
boxCache = newBoxes.filter((a) => {
@ -72528,11 +72528,11 @@ function enhance(input2) {
const tensor2 = input2.image || input2.tensor || input2;
if (!(tensor2 instanceof Tensor))
return null;
const box4 = [[0.05, 0.15, 0.85, 0.85]];
const box6 = [[0.05, 0.15, 0.85, 0.85]];
if (!(model5 == null ? void 0 : model5.inputs[0].shape))
return null;
const crop = tensor2.shape.length === 3 ? image.cropAndResize(expandDims(tensor2, 0), box4, [0], [model5.inputs[0].shape[2], model5.inputs[0].shape[1]]) : image.cropAndResize(tensor2, box4, [0], [model5.inputs[0].shape[2], model5.inputs[0].shape[1]]);
const norm2 = mul(crop, 255);
const crop2 = tensor2.shape.length === 3 ? image.cropAndResize(expandDims(tensor2, 0), box6, [0], [model5.inputs[0].shape[2], model5.inputs[0].shape[1]]) : image.cropAndResize(tensor2, box6, [0], [model5.inputs[0].shape[2], model5.inputs[0].shape[1]]);
const norm2 = mul(crop2, 255);
return norm2;
});
return image7;
@ -72949,9 +72949,9 @@ function decode(offsets, scores, displacementsFwd, displacementsBwd, maxDetected
let keypoints3 = decodePose(root, scores, offsets, displacementsFwd, displacementsBwd);
keypoints3 = keypoints3.filter((a) => a.score > minConfidence2);
const score2 = getInstanceScore(poses, keypoints3);
const box4 = getBoundingBox(keypoints3);
const box6 = getBoundingBox(keypoints3);
if (score2 > minConfidence2)
poses.push({ keypoints: keypoints3, box: box4, score: Math.round(100 * score2) / 100 });
poses.push({ keypoints: keypoints3, box: box6, score: Math.round(100 * score2) / 100 });
}
return poses;
}
@ -72988,54 +72988,54 @@ async function load6(config3) {
}
// src/handpose/box.ts
function getBoxSize2(box4) {
function getBoxSize2(box6) {
return [
Math.abs(box4.endPoint[0] - box4.startPoint[0]),
Math.abs(box4.endPoint[1] - box4.startPoint[1])
Math.abs(box6.endPoint[0] - box6.startPoint[0]),
Math.abs(box6.endPoint[1] - box6.startPoint[1])
];
}
function getBoxCenter2(box4) {
function getBoxCenter2(box6) {
return [
box4.startPoint[0] + (box4.endPoint[0] - box4.startPoint[0]) / 2,
box4.startPoint[1] + (box4.endPoint[1] - box4.startPoint[1]) / 2
box6.startPoint[0] + (box6.endPoint[0] - box6.startPoint[0]) / 2,
box6.startPoint[1] + (box6.endPoint[1] - box6.startPoint[1]) / 2
];
}
function cutBoxFromImageAndResize2(box4, image7, cropSize) {
function cutBoxFromImageAndResize2(box6, image7, cropSize) {
const h = image7.shape[1];
const w = image7.shape[2];
const boxes = [[
box4.startPoint[1] / h,
box4.startPoint[0] / w,
box4.endPoint[1] / h,
box4.endPoint[0] / w
box6.startPoint[1] / h,
box6.startPoint[0] / w,
box6.endPoint[1] / h,
box6.endPoint[0] / w
]];
return image.cropAndResize(image7, boxes, [0], cropSize);
}
function scaleBoxCoordinates2(box4, factor) {
const startPoint = [box4.startPoint[0] * factor[0], box4.startPoint[1] * factor[1]];
const endPoint = [box4.endPoint[0] * factor[0], box4.endPoint[1] * factor[1]];
const palmLandmarks = box4.palmLandmarks.map((coord) => {
function scaleBoxCoordinates2(box6, factor) {
const startPoint = [box6.startPoint[0] * factor[0], box6.startPoint[1] * factor[1]];
const endPoint = [box6.endPoint[0] * factor[0], box6.endPoint[1] * factor[1]];
const palmLandmarks = box6.palmLandmarks.map((coord) => {
const scaledCoord = [coord[0] * factor[0], coord[1] * factor[1]];
return scaledCoord;
});
return { startPoint, endPoint, palmLandmarks, confidence: box4.confidence };
return { startPoint, endPoint, palmLandmarks, confidence: box6.confidence };
}
function enlargeBox2(box4, factor = 1.5) {
const center = getBoxCenter2(box4);
const size2 = getBoxSize2(box4);
function enlargeBox2(box6, factor = 1.5) {
const center = getBoxCenter2(box6);
const size2 = getBoxSize2(box6);
const newHalfSize = [factor * size2[0] / 2, factor * size2[1] / 2];
const startPoint = [center[0] - newHalfSize[0], center[1] - newHalfSize[1]];
const endPoint = [center[0] + newHalfSize[0], center[1] + newHalfSize[1]];
return { startPoint, endPoint, palmLandmarks: box4.palmLandmarks };
return { startPoint, endPoint, palmLandmarks: box6.palmLandmarks };
}
function squarifyBox2(box4) {
const centers = getBoxCenter2(box4);
const size2 = getBoxSize2(box4);
function squarifyBox2(box6) {
const centers = getBoxCenter2(box6);
const size2 = getBoxSize2(box6);
const maxEdge = Math.max(...size2);
const halfSize = maxEdge / 2;
const startPoint = [centers[0] - halfSize, centers[1] - halfSize];
const endPoint = [centers[0] + halfSize, centers[1] + halfSize];
return { startPoint, endPoint, palmLandmarks: box4.palmLandmarks };
return { startPoint, endPoint, palmLandmarks: box6.palmLandmarks };
}
// src/handpose/anchors.ts
@ -76669,24 +76669,24 @@ async function predict5(input2, config3) {
}
}
const keypoints3 = predictions[i].landmarks;
let box4 = [Number.MAX_SAFE_INTEGER, Number.MAX_SAFE_INTEGER, 0, 0];
let box6 = [Number.MAX_SAFE_INTEGER, Number.MAX_SAFE_INTEGER, 0, 0];
let boxRaw2 = [0, 0, 0, 0];
if (keypoints3 && keypoints3.length > 0) {
for (const pt of keypoints3) {
if (pt[0] < box4[0])
box4[0] = pt[0];
if (pt[1] < box4[1])
box4[1] = pt[1];
if (pt[0] > box4[2])
box4[2] = pt[0];
if (pt[1] > box4[3])
box4[3] = pt[1];
if (pt[0] < box6[0])
box6[0] = pt[0];
if (pt[1] < box6[1])
box6[1] = pt[1];
if (pt[0] > box6[2])
box6[2] = pt[0];
if (pt[1] > box6[3])
box6[3] = pt[1];
}
box4[2] -= box4[0];
box4[3] -= box4[1];
boxRaw2 = [box4[0] / (input2.shape[2] || 0), box4[1] / (input2.shape[1] || 0), box4[2] / (input2.shape[2] || 0), box4[3] / (input2.shape[1] || 0)];
box6[2] -= box6[0];
box6[3] -= box6[1];
boxRaw2 = [box6[0] / (input2.shape[2] || 0), box6[1] / (input2.shape[1] || 0), box6[2] / (input2.shape[2] || 0), box6[3] / (input2.shape[1] || 0)];
} else {
box4 = predictions[i].box ? [
box6 = predictions[i].box ? [
Math.trunc(Math.max(0, predictions[i].box.topLeft[0])),
Math.trunc(Math.max(0, predictions[i].box.topLeft[1])),
Math.trunc(Math.min(input2.shape[2] || 0, predictions[i].box.bottomRight[0]) - Math.max(0, predictions[i].box.topLeft[0])),
@ -76706,7 +76706,7 @@ async function predict5(input2, config3) {
boxScore: Math.round(100 * predictions[i].boxConfidence) / 100,
fingerScore: Math.round(100 * predictions[i].fingerConfidence) / 100,
label: "hand",
box: box4,
box: box6,
boxRaw: boxRaw2,
keypoints: keypoints3,
annotations: annotations2,
@ -76748,44 +76748,45 @@ async function load7(config3) {
}
// src/util/box.ts
function scale2(keypoints3, boxScaleFact2, outputSize2) {
function calc(keypoints3, outputSize2 = [1, 1]) {
const coords9 = [keypoints3.map((pt) => pt[0]), keypoints3.map((pt) => pt[1])];
const maxmin = [Math.max(...coords9[0]), Math.min(...coords9[0]), Math.max(...coords9[1]), Math.min(...coords9[1])];
const center = [(maxmin[0] + maxmin[1]) / 2, (maxmin[2] + maxmin[3]) / 2];
const diff = Math.max(center[0] - maxmin[1], center[1] - maxmin[3], -center[0] + maxmin[0], -center[1] + maxmin[2]) * boxScaleFact2;
const box4 = [
Math.trunc(center[0] - diff),
Math.trunc(center[1] - diff),
Math.trunc(2 * diff),
Math.trunc(2 * diff)
];
const boxRaw2 = [
box4[0] / outputSize2[0],
box4[1] / outputSize2[1],
box4[2] / outputSize2[0],
box4[3] / outputSize2[1]
];
const yxBox = [
boxRaw2[1],
boxRaw2[0],
boxRaw2[3] + boxRaw2[1],
boxRaw2[2] + boxRaw2[0]
];
return { box: box4, boxRaw: boxRaw2, yxBox };
const min7 = [Math.min(...coords9[0]), Math.min(...coords9[1])];
const max7 = [Math.max(...coords9[0]), Math.max(...coords9[1])];
const box6 = [min7[0], min7[1], max7[0] - min7[0], max7[1] - min7[1]];
const boxRaw2 = [box6[0] / outputSize2[0], box6[1] / outputSize2[1], box6[2] / outputSize2[0], box6[3] / outputSize2[1]];
return { box: box6, boxRaw: boxRaw2 };
}
function square4(keypoints3, outputSize2 = [1, 1]) {
const coords9 = [keypoints3.map((pt) => pt[0]), keypoints3.map((pt) => pt[1])];
const min7 = [Math.min(...coords9[0]), Math.min(...coords9[1])];
const max7 = [Math.max(...coords9[0]), Math.max(...coords9[1])];
const center = [(min7[0] + max7[0]) / 2, (min7[1] + max7[1]) / 2];
const dist = Math.max(center[0] - min7[0], center[1] - min7[1], -center[0] + max7[0], -center[1] + max7[1]);
const box6 = [Math.trunc(center[0] - dist), Math.trunc(center[1] - dist), Math.trunc(2 * dist), Math.trunc(2 * dist)];
const boxRaw2 = [box6[0] / outputSize2[0], box6[1] / outputSize2[1], box6[2] / outputSize2[0], box6[3] / outputSize2[1]];
return { box: box6, boxRaw: boxRaw2 };
}
function scale2(box6, scaleFact) {
const dist = [box6[2] * (scaleFact - 1), box6[3] * (scaleFact - 1)];
const newBox = [box6[0] - dist[0] / 2, box6[1] - dist[1] / 2, box6[2] + dist[0], box6[3] + dist[0]];
return newBox;
}
function crop(box6) {
const yxBox = [Math.max(0, box6[1]), Math.max(0, box6[0]), Math.min(1, box6[3] + box6[1]), Math.min(1, box6[2] + box6[0])];
return yxBox;
}
// src/hand/handtrack.ts
var boxScaleFact = 1.5;
var models = [null, null];
var modelOutputNodes = ["StatefulPartitionedCall/Postprocessor/Slice", "StatefulPartitionedCall/Postprocessor/ExpandDims_1"];
var inputSize4 = [[0, 0], [0, 0]];
var classes = ["hand", "fist", "pinch", "point", "face", "tip", "pinchtip"];
var boxExpandFact = 1.6;
var skipped4 = 0;
var outputSize = [0, 0];
var cache = {
handBoxes: [],
fingerBoxes: [],
tmpBoxes: []
boxes: [],
hands: []
};
var fingerMap = {
thumb: [1, 2, 3, 4],
@ -76844,35 +76845,28 @@ async function detectHands(input2, config3) {
t.boxes = squeeze(t.rawBoxes, [0, 2]);
t.scores = squeeze(t.rawScores, [0]);
const classScores = unstack(t.scores, 1);
classScores.splice(4, 1);
t.filtered = stack(classScores, 1);
dispose(...classScores);
t.max = max(t.filtered, 1);
t.argmax = argMax(t.filtered, 1);
let id = 0;
for (let i = 0; i < classScores.length; i++) {
if (i === 4)
continue;
t.nms = await image.nonMaxSuppressionAsync(t.boxes, classScores[i], config3.hand.maxDetected, config3.hand.iouThreshold, config3.hand.minConfidence);
t.nms = await image.nonMaxSuppressionAsync(t.boxes, t.max, config3.hand.maxDetected, config3.hand.iouThreshold, config3.hand.minConfidence);
const nms = await t.nms.data();
dispose(t.nms);
for (const res of Array.from(nms)) {
const boxSlice = slice(t.boxes, res, 1);
let yxBox = [0, 0, 0, 0];
if (config3.hand.landmarks) {
const detectedBox = await boxSlice.data();
const boxCenter = [(detectedBox[0] + detectedBox[2]) / 2, (detectedBox[1] + detectedBox[3]) / 2];
const boxDiff = [+boxCenter[0] - detectedBox[0], +boxCenter[1] - detectedBox[1], -boxCenter[0] + detectedBox[2], -boxCenter[1] + detectedBox[3]];
yxBox = [boxCenter[0] - boxScaleFact * boxDiff[0], boxCenter[1] - boxScaleFact * boxDiff[1], boxCenter[0] + boxScaleFact * boxDiff[2], boxCenter[1] + boxScaleFact * boxDiff[3]];
} else {
yxBox = await boxSlice.data();
}
const boxRaw2 = [yxBox[1], yxBox[0], yxBox[3] - yxBox[1], yxBox[2] - yxBox[0]];
const box4 = [Math.trunc(boxRaw2[0] * outputSize[0]), Math.trunc(boxRaw2[1] * outputSize[1]), Math.trunc(boxRaw2[2] * outputSize[0]), Math.trunc(boxRaw2[3] * outputSize[1])];
const scores = await t.max.data();
const classNum = await t.argmax.data();
for (const nmsIndex of Array.from(nms)) {
const boxSlice = slice(t.boxes, nmsIndex, 1);
const boxData = await boxSlice.data();
dispose(boxSlice);
const scoreSlice = slice(classScores[i], res, 1);
const score2 = (await scoreSlice.data())[0];
dispose(scoreSlice);
const hand3 = { id: id++, score: score2, box: box4, boxRaw: boxRaw2, label: classes[i], yxBox };
const boxInput = [boxData[1], boxData[0], boxData[3] - boxData[1], boxData[2] - boxData[0]];
const boxRaw2 = scale2(boxInput, 1.2);
const boxFull = [Math.trunc(boxRaw2[0] * outputSize[0]), Math.trunc(boxRaw2[1] * outputSize[1]), Math.trunc(boxRaw2[2] * outputSize[0]), Math.trunc(boxRaw2[3] * outputSize[1])];
const score2 = scores[nmsIndex];
const label = classes[classNum[nmsIndex]];
const hand3 = { id: id++, score: score2, box: boxFull, boxRaw: boxRaw2, boxCrop: crop(boxRaw2), label };
hands.push(hand3);
}
}
classScores.forEach((tensor2) => dispose(tensor2));
Object.keys(t).forEach((tensor2) => dispose(t[tensor2]));
hands.sort((a, b) => b.score - a.score);
if (hands.length > (config3.hand.maxDetected || 1))
@ -76892,11 +76886,9 @@ async function detectFingers(input2, h, config3) {
landmarks: {},
annotations: {}
};
if (input2 && models[1] && config3.hand.landmarks) {
if (input2 && models[1] && config3.hand.landmarks && h.score > (config3.hand.minConfidence || 0)) {
const t = {};
if (!h.yxBox)
return hand3;
t.crop = image.cropAndResize(input2, [h.yxBox], [0], [inputSize4[1][0], inputSize4[1][1]], "bilinear");
t.crop = image.cropAndResize(input2, [crop(h.boxRaw)], [0], [inputSize4[1][0], inputSize4[1][1]], "bilinear");
t.cast = cast(t.crop, "float32");
t.div = div(t.cast, 255);
[t.score, t.keypoints] = models[1].execute(t.div);
@ -76906,52 +76898,61 @@ async function detectFingers(input2, h, config3) {
hand3.fingerScore = score2;
t.reshaped = reshape(t.keypoints, [-1, 3]);
const rawCoords = await t.reshaped.array();
hand3.keypoints = rawCoords.map((coord) => [
h.box[2] * coord[0] / inputSize4[1][0] + h.box[0],
h.box[3] * coord[1] / inputSize4[1][1] + h.box[1],
(h.box[2] + h.box[3]) / 2 / inputSize4[1][0] * (coord[2] || 0)
hand3.keypoints = rawCoords.map((kpt4) => [
outputSize[0] * ((h.boxCrop[3] - h.boxCrop[1]) * kpt4[0] / inputSize4[1][0] + h.boxCrop[1]),
outputSize[1] * ((h.boxCrop[2] - h.boxCrop[0]) * kpt4[1] / inputSize4[1][1] + h.boxCrop[0]),
h.boxCrop[3] + h.boxCrop[3] / 2 * (kpt4[2] || 0)
]);
const updatedBox = scale2(hand3.keypoints, boxScaleFact, outputSize);
h.box = updatedBox.box;
h.boxRaw = updatedBox.boxRaw;
h.yxBox = updatedBox.yxBox;
hand3.box = h.box;
hand3.landmarks = analyze(hand3.keypoints);
for (const key of Object.keys(fingerMap)) {
hand3.annotations[key] = fingerMap[key].map((index) => hand3.landmarks && hand3.keypoints[index] ? hand3.keypoints[index] : null);
}
const ratioBoxFrame = Math.min(h.box[2] / (input2.shape[2] || 1), h.box[3] / (input2.shape[1] || 1));
if (ratioBoxFrame > 0.05)
cache.tmpBoxes.push(h);
}
Object.keys(t).forEach((tensor2) => dispose(t[tensor2]));
}
return hand3;
}
async function predict6(input2, config3) {
var _a, _b;
if (!models[0] || !models[1] || !((_a = models[0]) == null ? void 0 : _a.inputs[0].shape) || !((_b = models[1]) == null ? void 0 : _b.inputs[0].shape))
return [];
outputSize = [input2.shape[2] || 0, input2.shape[1] || 0];
let hands = [];
cache.tmpBoxes = [];
if (!config3.hand.landmarks)
cache.fingerBoxes = cache.handBoxes;
if (!config3.skipFrame)
cache.fingerBoxes = [];
if (skipped4 < (config3.hand.skipFrames || 0) && config3.skipFrame) {
skipped4++;
hands = await Promise.all(cache.fingerBoxes.map((hand3) => detectFingers(input2, hand3, config3)));
} else {
if (config3.skipFrame && skipped4 <= (config3.hand.skipFrames || 0)) {
return cache.hands;
}
return new Promise(async (resolve) => {
skipped4 = 0;
hands = await Promise.all(cache.fingerBoxes.map((hand3) => detectFingers(input2, hand3, config3)));
if (hands.length !== config3.hand.maxDetected) {
cache.handBoxes = await detectHands(input2, config3);
hands = await Promise.all(cache.handBoxes.map((hand3) => detectFingers(input2, hand3, config3)));
if (cache.boxes.length >= (config3.hand.maxDetected || 0)) {
cache.hands = await Promise.all(cache.boxes.map((handBox) => detectFingers(input2, handBox, config3)));
} else {
cache.hands = [];
}
if (cache.hands.length !== config3.hand.maxDetected) {
cache.boxes = await detectHands(input2, config3);
cache.hands = await Promise.all(cache.boxes.map((handBox) => detectFingers(input2, handBox, config3)));
}
const oldCache = [...cache.boxes];
cache.boxes.length = 0;
for (let i = 0; i < cache.hands.length; i++) {
const boxKpt = square4(cache.hands[i].keypoints, outputSize);
if (boxKpt.box[2] / (input2.shape[2] || 1) > 0.05 && boxKpt.box[3] / (input2.shape[1] || 1) > 0.05 && cache.hands[i].fingerScore && cache.hands[i].fingerScore > (config3.hand.minConfidence || 0)) {
const boxScale = scale2(boxKpt.box, boxExpandFact);
const boxScaleRaw = scale2(boxKpt.boxRaw, boxExpandFact);
const boxCrop = crop(boxScaleRaw);
cache.boxes.push({ ...oldCache[i], box: boxScale, boxRaw: boxScaleRaw, boxCrop });
}
}
cache.fingerBoxes = [...cache.tmpBoxes];
return hands;
resolve(cache.hands);
});
}
// src/body/blazeposecoords.ts
var blazeposecoords_exports = {};
__export(blazeposecoords_exports, {
connected: () => connected,
kpt: () => kpt
});
var kpt = [
"nose",
"leftEyeInside",
@ -77135,6 +77136,11 @@ async function predict7(input2, config3) {
}
// src/body/efficientposecoords.ts
var efficientposecoords_exports = {};
__export(efficientposecoords_exports, {
connected: () => connected2,
kpt: () => kpt2
});
var kpt2 = [
"head",
"neck",
@ -77165,7 +77171,7 @@ var connected2 = {
// src/body/efficientpose.ts
var model8;
var keypoints = [];
var box3 = [0, 0, 0, 0];
var box4 = [0, 0, 0, 0];
var boxRaw = [0, 0, 0, 0];
var score = 0;
var skipped6 = Number.MAX_SAFE_INTEGER;
@ -77201,7 +77207,7 @@ async function predict8(image7, config3) {
var _a;
if (skipped6 < (((_a = config3.body) == null ? void 0 : _a.skipFrames) || 0) && config3.skipFrame && Object.keys(keypoints).length > 0) {
skipped6++;
return [{ id: 0, score, box: box3, boxRaw, keypoints, annotations: {} }];
return [{ id: 0, score, box: box4, boxRaw, keypoints, annotations: {} }];
}
skipped6 = 0;
return new Promise(async (resolve) => {
@ -77246,7 +77252,7 @@ async function predict8(image7, config3) {
score = keypoints.reduce((prev, curr) => curr.score > prev ? curr.score : prev, 0);
const x = keypoints.map((a) => a.position[0]);
const y = keypoints.map((a) => a.position[1]);
box3 = [
box4 = [
Math.min(...x),
Math.min(...y),
Math.max(...x) - Math.min(...x),
@ -77271,11 +77277,16 @@ async function predict8(image7, config3) {
}
annotations2[name] = pt;
}
resolve([{ id: 0, score, box: box3, boxRaw, keypoints, annotations: annotations2 }]);
resolve([{ id: 0, score, box: box4, boxRaw, keypoints, annotations: annotations2 }]);
});
}
// src/body/movenetcoords.ts
var movenetcoords_exports = {};
__export(movenetcoords_exports, {
connected: () => connected3,
kpt: () => kpt3
});
var kpt3 = [
"nose",
"leftEye",
@ -77307,7 +77318,11 @@ var connected3 = {
// src/body/movenet.ts
var model9;
var inputSize6 = 0;
var cachedBoxes = [];
var boxExpandFact2 = 1.5;
var cache3 = {
boxes: [],
bodies: []
};
var skipped7 = Number.MAX_SAFE_INTEGER;
var keypoints2 = [];
async function load9(config3) {
@ -77327,25 +77342,6 @@ async function load9(config3) {
inputSize6 = 256;
return model9;
}
function createBox2(points) {
const x = points.map((a) => a.position[0]);
const y = points.map((a) => a.position[1]);
const box4 = [
Math.min(...x),
Math.min(...y),
Math.max(...x) - Math.min(...x),
Math.max(...y) - Math.min(...y)
];
const xRaw = points.map((a) => a.positionRaw[0]);
const yRaw = points.map((a) => a.positionRaw[1]);
const boxRaw2 = [
Math.min(...xRaw),
Math.min(...yRaw),
Math.max(...xRaw) - Math.min(...xRaw),
Math.max(...yRaw) - Math.min(...yRaw)
];
return [box4, boxRaw2];
}
async function parseSinglePose(res, config3, image7, inputBox) {
const kpt4 = res[0][0];
keypoints2.length = 0;
@ -77370,7 +77366,7 @@ async function parseSinglePose(res, config3, image7, inputBox) {
}
score2 = keypoints2.reduce((prev, curr) => curr.score > prev ? curr.score : prev, 0);
const bodies = [];
const [box4, boxRaw2] = createBox2(keypoints2);
const newBox = calc(keypoints2.map((pt) => pt.position), [image7.shape[2], image7.shape[1]]);
const annotations2 = {};
for (const [name, indexes] of Object.entries(connected3)) {
const pt = [];
@ -77382,7 +77378,7 @@ async function parseSinglePose(res, config3, image7, inputBox) {
}
annotations2[name] = pt;
}
bodies.push({ id: 0, score: score2, box: box4, boxRaw: boxRaw2, keypoints: keypoints2, annotations: annotations2 });
bodies.push({ id: 0, score: score2, box: newBox.box, boxRaw: newBox.boxRaw, keypoints: keypoints2, annotations: annotations2 });
return bodies;
}
async function parseMultiPose(res, config3, image7, inputBox) {
@ -77403,14 +77399,11 @@ async function parseMultiPose(res, config3, image7, inputBox) {
part: kpt3[i],
score: Math.round(100 * score2) / 100,
positionRaw,
position: [
Math.round((image7.shape[2] || 0) * positionRaw[0]),
Math.round((image7.shape[1] || 0) * positionRaw[1])
]
position: [Math.round((image7.shape[2] || 0) * positionRaw[0]), Math.round((image7.shape[1] || 0) * positionRaw[1])]
});
}
}
const [box4, boxRaw2] = createBox2(keypoints2);
const newBox = calc(keypoints2.map((pt) => pt.position), [image7.shape[2], image7.shape[1]]);
const annotations2 = {};
for (const [name, indexes] of Object.entries(connected3)) {
const pt = [];
@ -77422,7 +77415,7 @@ async function parseMultiPose(res, config3, image7, inputBox) {
}
annotations2[name] = pt;
}
bodies.push({ id, score: totalScore, boxRaw: boxRaw2, box: box4, keypoints: [...keypoints2], annotations: annotations2 });
bodies.push({ id, score: totalScore, box: newBox.box, boxRaw: newBox.boxRaw, keypoints: [...keypoints2], annotations: annotations2 });
}
}
bodies.sort((a, b) => b.score - a.score);
@ -77433,42 +77426,44 @@ async function parseMultiPose(res, config3, image7, inputBox) {
async function predict9(input2, config3) {
if (!model9 || !(model9 == null ? void 0 : model9.inputs[0].shape))
return [];
if (!config3.skipFrame)
cache3.boxes.length = 0;
skipped7++;
if (config3.skipFrame && skipped7 <= (config3.body.skipFrames || 0)) {
return cache3.bodies;
}
return new Promise(async (resolve) => {
const t = {};
let bodies = [];
if (!config3.skipFrame)
cachedBoxes.length = 0;
skipped7++;
for (let i = 0; i < cachedBoxes.length; i++) {
t.crop = image.cropAndResize(input2, [cachedBoxes[i]], [0], [inputSize6, inputSize6], "bilinear");
skipped7 = 0;
cache3.bodies = [];
if (cache3.boxes.length >= (config3.body.maxDetected || 0)) {
for (let i = 0; i < cache3.boxes.length; i++) {
t.crop = image.cropAndResize(input2, [cache3.boxes[i]], [0], [inputSize6, inputSize6], "bilinear");
t.cast = cast(t.crop, "int32");
t.res = await (model9 == null ? void 0 : model9.predict(t.cast));
const res = await t.res.array();
const newBodies = t.res.shape[2] === 17 ? await parseSinglePose(res, config3, input2, cachedBoxes[i]) : await parseMultiPose(res, config3, input2, cachedBoxes[i]);
bodies = bodies.concat(newBodies);
const newBodies = t.res.shape[2] === 17 ? await parseSinglePose(res, config3, input2, cache3.boxes[i]) : await parseMultiPose(res, config3, input2, cache3.boxes[i]);
cache3.bodies = cache3.bodies.concat(newBodies);
Object.keys(t).forEach((tensor2) => dispose(t[tensor2]));
}
if (bodies.length !== config3.body.maxDetected && skipped7 > (config3.body.skipFrames || 0)) {
}
if (cache3.bodies.length !== config3.body.maxDetected) {
t.resized = image.resizeBilinear(input2, [inputSize6, inputSize6], false);
t.cast = cast(t.resized, "int32");
t.res = await (model9 == null ? void 0 : model9.predict(t.cast));
const res = await t.res.array();
bodies = t.res.shape[2] === 17 ? await parseSinglePose(res, config3, input2, [0, 0, 1, 1]) : await parseMultiPose(res, config3, input2, [0, 0, 1, 1]);
cache3.bodies = t.res.shape[2] === 17 ? await parseSinglePose(res, config3, input2, [0, 0, 1, 1]) : await parseMultiPose(res, config3, input2, [0, 0, 1, 1]);
Object.keys(t).forEach((tensor2) => dispose(t[tensor2]));
cachedBoxes.length = 0;
skipped7 = 0;
}
if (config3.skipFrame) {
cachedBoxes.length = 0;
for (let i = 0; i < bodies.length; i++) {
if (bodies[i].keypoints.length > 10) {
const kpts = bodies[i].keypoints.map((kpt4) => kpt4.position);
const newBox = scale2(kpts, 1.5, [input2.shape[2], input2.shape[1]]);
cachedBoxes.push([...newBox.yxBox]);
cache3.boxes.length = 0;
for (let i = 0; i < cache3.bodies.length; i++) {
if (cache3.bodies[i].keypoints.length > kpt3.length / 2) {
const scaledBox = scale2(cache3.bodies[i].boxRaw, boxExpandFact2);
const cropBox = crop(scaledBox);
cache3.boxes.push(cropBox);
}
}
}
resolve(bodies);
resolve(cache3.bodies);
});
}
@ -77605,7 +77600,7 @@ async function process3(res, inputSize8, outputShape, config3) {
];
let boxRaw2 = [x, y, w, h];
boxRaw2 = boxRaw2.map((a) => Math.max(0, Math.min(a, 1)));
const box4 = [
const box6 = [
boxRaw2[0] * outputShape[0],
boxRaw2[1] * outputShape[1],
boxRaw2[2] * outputShape[0],
@ -77616,7 +77611,7 @@ async function process3(res, inputSize8, outputShape, config3) {
score: Math.round(100 * score2) / 100,
class: j + 1,
label: labels[j].label,
box: box4.map((a) => Math.trunc(a)),
box: box6.map((a) => Math.trunc(a)),
boxRaw: boxRaw2
};
results.push(result);
@ -77719,13 +77714,13 @@ async function process4(res, outputShape, config3) {
detections[0][id][2] / inputSize7 - x,
detections[0][id][3] / inputSize7 - y
];
const box4 = [
const box6 = [
Math.trunc(boxRaw2[0] * outputShape[0]),
Math.trunc(boxRaw2[1] * outputShape[1]),
Math.trunc(boxRaw2[2] * outputShape[0]),
Math.trunc(boxRaw2[3] * outputShape[1])
];
results.push({ id: i++, score: score2, class: classVal, label, box: box4, boxRaw: boxRaw2 });
results.push({ id: i++, score: score2, class: classVal, label, box: box6, boxRaw: boxRaw2 });
}
return results;
}
@ -78932,8 +78927,9 @@ var hand2 = (res) => {
// src/util/interpolate.ts
var bufferedResult = { face: [], body: [], hand: [], gesture: [], object: [], persons: [], performance: {}, timestamp: 0 };
function calc(newResult) {
var _a, _b, _c, _d, _e, _f, _g, _h, _i, _j, _k, _l, _m, _n, _o, _p, _q, _r, _s, _t, _u;
function calc2(newResult, config3) {
var _a, _b, _c, _d, _e, _f, _g, _h, _i, _j, _k, _l, _m, _n, _o, _p, _q, _r, _s, _t, _u, _v, _w, _x, _y, _z, _A;
const t0 = performance.now();
if (!newResult)
return { face: [], body: [], hand: [], gesture: [], object: [], persons: [], performance: {}, timestamp: 0 };
const elapsed = Date.now() - newResult.timestamp;
@ -78943,7 +78939,7 @@ function calc(newResult) {
bufferedResult.body = JSON.parse(JSON.stringify(newResult.body));
} else {
for (let i = 0; i < newResult.body.length; i++) {
const box4 = newResult.body[i].box.map((b, j) => ((bufferedFactor - 1) * bufferedResult.body[i].box[j] + b) / bufferedFactor);
const box6 = newResult.body[i].box.map((b, j) => ((bufferedFactor - 1) * bufferedResult.body[i].box[j] + b) / bufferedFactor);
const boxRaw2 = newResult.body[i].boxRaw.map((b, j) => ((bufferedFactor - 1) * bufferedResult.body[i].boxRaw[j] + b) / bufferedFactor);
const keypoints3 = newResult.body[i].keypoints.map((keypoint, j) => ({
score: keypoint.score,
@ -78957,56 +78953,75 @@ function calc(newResult) {
bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * bufferedResult.body[i].keypoints[j].positionRaw[1] + keypoint.positionRaw[1]) / bufferedFactor : keypoint.position[1]
]
}));
bufferedResult.body[i] = { ...newResult.body[i], box: box4, boxRaw: boxRaw2, keypoints: keypoints3 };
const annotations2 = {};
let coords9 = { connected: {} };
if ((_b = (_a = config3.body) == null ? void 0 : _a.modelPath) == null ? void 0 : _b.includes("efficientpose"))
coords9 = efficientposecoords_exports;
else if ((_d = (_c = config3.body) == null ? void 0 : _c.modelPath) == null ? void 0 : _d.includes("blazepose"))
coords9 = blazeposecoords_exports;
else if ((_f = (_e = config3.body) == null ? void 0 : _e.modelPath) == null ? void 0 : _f.includes("movenet"))
coords9 = movenetcoords_exports;
for (const [name, indexes] of Object.entries(coords9.connected)) {
const pt = [];
for (let j = 0; j < indexes.length - 1; j++) {
const pt0 = keypoints3.find((kp) => kp.part === indexes[j]);
const pt1 = keypoints3.find((kp) => kp.part === indexes[j + 1]);
if (pt0 && pt1 && pt0.score > (config3.body.minConfidence || 0) && pt1.score > (config3.body.minConfidence || 0))
pt.push([pt0.position, pt1.position]);
}
annotations2[name] = pt;
}
bufferedResult.body[i] = { ...newResult.body[i], box: box6, boxRaw: boxRaw2, keypoints: keypoints3, annotations: annotations2 };
}
}
if (!bufferedResult.hand || newResult.hand.length !== bufferedResult.hand.length) {
bufferedResult.hand = JSON.parse(JSON.stringify(newResult.hand));
} else {
for (let i = 0; i < newResult.hand.length; i++) {
const box4 = newResult.hand[i].box.map((b, j) => ((bufferedFactor - 1) * bufferedResult.hand[i].box[j] + b) / bufferedFactor);
const box6 = newResult.hand[i].box.map((b, j) => ((bufferedFactor - 1) * bufferedResult.hand[i].box[j] + b) / bufferedFactor);
const boxRaw2 = newResult.hand[i].boxRaw.map((b, j) => ((bufferedFactor - 1) * bufferedResult.hand[i].boxRaw[j] + b) / bufferedFactor);
if (bufferedResult.hand[i].keypoints.length !== newResult.hand[i].keypoints.length)
bufferedResult.hand[i].keypoints = newResult.hand[i].keypoints;
const keypoints3 = newResult.hand[i].keypoints && newResult.hand[i].keypoints.length > 0 ? newResult.hand[i].keypoints.map((landmark, j) => landmark.map((coord, k) => ((bufferedFactor - 1) * (bufferedResult.hand[i].keypoints[j][k] || 1) + (coord || 0)) / bufferedFactor)) : [];
const annotations2 = {};
if (Object.keys(bufferedResult.hand[i].annotations).length !== Object.keys(newResult.hand[i].annotations).length)
let annotations2 = {};
if (Object.keys(bufferedResult.hand[i].annotations).length !== Object.keys(newResult.hand[i].annotations).length) {
bufferedResult.hand[i].annotations = newResult.hand[i].annotations;
if (newResult.hand[i].annotations) {
annotations2 = bufferedResult.hand[i].annotations;
} else if (newResult.hand[i].annotations) {
for (const key of Object.keys(newResult.hand[i].annotations)) {
annotations2[key] = newResult.hand[i].annotations[key] && newResult.hand[i].annotations[key][0] ? newResult.hand[i].annotations[key].map((val, j) => val.map((coord, k) => ((bufferedFactor - 1) * bufferedResult.hand[i].annotations[key][j][k] + coord) / bufferedFactor)) : null;
}
}
bufferedResult.hand[i] = { ...newResult.hand[i], box: box4, boxRaw: boxRaw2, keypoints: keypoints3, annotations: annotations2 };
bufferedResult.hand[i] = { ...newResult.hand[i], box: box6, boxRaw: boxRaw2, keypoints: keypoints3, annotations: annotations2 };
}
}
if (!bufferedResult.face || newResult.face.length !== bufferedResult.face.length) {
bufferedResult.face = JSON.parse(JSON.stringify(newResult.face));
} else {
for (let i = 0; i < newResult.face.length; i++) {
const box4 = newResult.face[i].box.map((b, j) => ((bufferedFactor - 1) * bufferedResult.face[i].box[j] + b) / bufferedFactor);
const box6 = newResult.face[i].box.map((b, j) => ((bufferedFactor - 1) * bufferedResult.face[i].box[j] + b) / bufferedFactor);
const boxRaw2 = newResult.face[i].boxRaw.map((b, j) => ((bufferedFactor - 1) * bufferedResult.face[i].boxRaw[j] + b) / bufferedFactor);
const rotation = { matrix: [0, 0, 0, 0, 0, 0, 0, 0, 0], angle: { roll: 0, yaw: 0, pitch: 0 }, gaze: { bearing: 0, strength: 0 } };
rotation.matrix = (_a = newResult.face[i].rotation) == null ? void 0 : _a.matrix;
rotation.matrix = (_g = newResult.face[i].rotation) == null ? void 0 : _g.matrix;
rotation.angle = {
roll: ((bufferedFactor - 1) * (((_c = (_b = bufferedResult.face[i].rotation) == null ? void 0 : _b.angle) == null ? void 0 : _c.roll) || 0) + (((_e = (_d = newResult.face[i].rotation) == null ? void 0 : _d.angle) == null ? void 0 : _e.roll) || 0)) / bufferedFactor,
yaw: ((bufferedFactor - 1) * (((_g = (_f = bufferedResult.face[i].rotation) == null ? void 0 : _f.angle) == null ? void 0 : _g.yaw) || 0) + (((_i = (_h = newResult.face[i].rotation) == null ? void 0 : _h.angle) == null ? void 0 : _i.yaw) || 0)) / bufferedFactor,
pitch: ((bufferedFactor - 1) * (((_k = (_j = bufferedResult.face[i].rotation) == null ? void 0 : _j.angle) == null ? void 0 : _k.pitch) || 0) + (((_m = (_l = newResult.face[i].rotation) == null ? void 0 : _l.angle) == null ? void 0 : _m.pitch) || 0)) / bufferedFactor
roll: ((bufferedFactor - 1) * (((_i = (_h = bufferedResult.face[i].rotation) == null ? void 0 : _h.angle) == null ? void 0 : _i.roll) || 0) + (((_k = (_j = newResult.face[i].rotation) == null ? void 0 : _j.angle) == null ? void 0 : _k.roll) || 0)) / bufferedFactor,
yaw: ((bufferedFactor - 1) * (((_m = (_l = bufferedResult.face[i].rotation) == null ? void 0 : _l.angle) == null ? void 0 : _m.yaw) || 0) + (((_o = (_n = newResult.face[i].rotation) == null ? void 0 : _n.angle) == null ? void 0 : _o.yaw) || 0)) / bufferedFactor,
pitch: ((bufferedFactor - 1) * (((_q = (_p = bufferedResult.face[i].rotation) == null ? void 0 : _p.angle) == null ? void 0 : _q.pitch) || 0) + (((_s = (_r = newResult.face[i].rotation) == null ? void 0 : _r.angle) == null ? void 0 : _s.pitch) || 0)) / bufferedFactor
};
rotation.gaze = {
bearing: ((bufferedFactor - 1) * (((_o = (_n = bufferedResult.face[i].rotation) == null ? void 0 : _n.gaze) == null ? void 0 : _o.bearing) || 0) + (((_q = (_p = newResult.face[i].rotation) == null ? void 0 : _p.gaze) == null ? void 0 : _q.bearing) || 0)) / bufferedFactor,
strength: ((bufferedFactor - 1) * (((_s = (_r = bufferedResult.face[i].rotation) == null ? void 0 : _r.gaze) == null ? void 0 : _s.strength) || 0) + (((_u = (_t = newResult.face[i].rotation) == null ? void 0 : _t.gaze) == null ? void 0 : _u.strength) || 0)) / bufferedFactor
bearing: ((bufferedFactor - 1) * (((_u = (_t = bufferedResult.face[i].rotation) == null ? void 0 : _t.gaze) == null ? void 0 : _u.bearing) || 0) + (((_w = (_v = newResult.face[i].rotation) == null ? void 0 : _v.gaze) == null ? void 0 : _w.bearing) || 0)) / bufferedFactor,
strength: ((bufferedFactor - 1) * (((_y = (_x = bufferedResult.face[i].rotation) == null ? void 0 : _x.gaze) == null ? void 0 : _y.strength) || 0) + (((_A = (_z = newResult.face[i].rotation) == null ? void 0 : _z.gaze) == null ? void 0 : _A.strength) || 0)) / bufferedFactor
};
bufferedResult.face[i] = { ...newResult.face[i], rotation, box: box4, boxRaw: boxRaw2 };
bufferedResult.face[i] = { ...newResult.face[i], rotation, box: box6, boxRaw: boxRaw2 };
}
}
if (!bufferedResult.object || newResult.object.length !== bufferedResult.object.length) {
bufferedResult.object = JSON.parse(JSON.stringify(newResult.object));
} else {
for (let i = 0; i < newResult.object.length; i++) {
const box4 = newResult.object[i].box.map((b, j) => ((bufferedFactor - 1) * bufferedResult.object[i].box[j] + b) / bufferedFactor);
const box6 = newResult.object[i].box.map((b, j) => ((bufferedFactor - 1) * bufferedResult.object[i].box[j] + b) / bufferedFactor);
const boxRaw2 = newResult.object[i].boxRaw.map((b, j) => ((bufferedFactor - 1) * bufferedResult.object[i].boxRaw[j] + b) / bufferedFactor);
bufferedResult.object[i] = { ...newResult.object[i], box: box4, boxRaw: boxRaw2 };
bufferedResult.object[i] = { ...newResult.object[i], box: box6, boxRaw: boxRaw2 };
}
}
if (newResult.persons) {
@ -79015,14 +79030,15 @@ function calc(newResult) {
bufferedResult.persons = JSON.parse(JSON.stringify(newPersons));
} else {
for (let i = 0; i < newPersons.length; i++) {
bufferedResult.persons[i].box = newPersons[i].box.map((box4, j) => ((bufferedFactor - 1) * bufferedResult.persons[i].box[j] + box4) / bufferedFactor);
bufferedResult.persons[i].box = newPersons[i].box.map((box6, j) => ((bufferedFactor - 1) * bufferedResult.persons[i].box[j] + box6) / bufferedFactor);
}
}
}
if (newResult.gesture)
bufferedResult.gesture = newResult.gesture;
const t1 = performance.now();
if (newResult.performance)
bufferedResult.performance = newResult.performance;
bufferedResult.performance = { ...newResult.performance, interpolate: Math.round(t1 - t0) };
return bufferedResult;
}
@ -79097,10 +79113,10 @@ function join2(faces, bodies, hands, gestures, shape) {
}
const x = [];
const y = [];
const extractXY = (box4) => {
if (box4 && box4.length === 4) {
x.push(box4[0], box4[0] + box4[2]);
y.push(box4[1], box4[1] + box4[3]);
const extractXY = (box6) => {
if (box6 && box6.length === 4) {
x.push(box6[0], box6[0] + box6[2]);
y.push(box6[1], box6[1] + box6[3]);
}
};
extractXY((_k = person2.face) == null ? void 0 : _k.box);
@ -80094,7 +80110,7 @@ var Human = class {
this.performance.load = current;
}
next(result = this.result) {
return calc(result);
return calc2(result, this.config);
}
async warmup(userConfig) {
return warmup(this, userConfig);

File diff suppressed because one or more lines are too long

800
dist/human.js vendored

File diff suppressed because one or more lines are too long

580
dist/human.node-gpu.js vendored

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

580
dist/human.node.js vendored

File diff suppressed because it is too large Load Diff

View File

@ -1,6 +1,6 @@
/* eslint-disable no-multi-spaces */
export const kpt = [
export const kpt: Array<string> = [
'nose', // 0
'leftEyeInside', // 1
'leftEye', // 2
@ -42,7 +42,7 @@ export const kpt = [
'rightHand', // 38
];
export const connected = {
export const connected: Record<string, string[]> = {
leftLeg: ['leftHip', 'leftKnee', 'leftAnkle', 'leftHeel', 'leftFoot'],
rightLeg: ['rightHip', 'rightKnee', 'rightAnkle', 'rightHeel', 'rightFoot'],
torso: ['leftShoulder', 'rightShoulder', 'rightHip', 'leftHip', 'leftShoulder'],

View File

@ -1,4 +1,4 @@
export const kpt = [
export const kpt: Array<string> = [
'head',
'neck',
'rightShoulder',
@ -17,7 +17,7 @@ export const kpt = [
'leftAnkle',
];
export const connected = {
export const connected: Record<string, string[]> = {
leftLeg: ['leftHip', 'leftKnee', 'leftAnkle'],
rightLeg: ['rightHip', 'rightKnee', 'rightAnkle'],
torso: ['leftShoulder', 'rightShoulder', 'rightHip', 'leftHip', 'leftShoulder'],

View File

@ -5,7 +5,7 @@
*/
import { log, join } from '../util/util';
import { scale } from '../util/box';
import * as box from '../util/box';
import * as tf from '../../dist/tfjs.esm.js';
import * as coords from './movenetcoords';
import type { BodyKeypoint, BodyResult, Box, Point } from '../result';
@ -16,7 +16,15 @@ import { env } from '../util/env';
let model: GraphModel | null;
let inputSize = 0;
const cachedBoxes: Array<Box> = [];
const boxExpandFact = 1.5; // increase to 150%
const cache: {
boxes: Array<Box>,
bodies: Array<BodyResult>;
} = {
boxes: [],
bodies: [],
};
let skipped = Number.MAX_SAFE_INTEGER;
const keypoints: Array<BodyKeypoint> = [];
@ -34,26 +42,6 @@ export async function load(config: Config): Promise<GraphModel> {
return model;
}
function createBox(points): [Box, Box] {
const x = points.map((a) => a.position[0]);
const y = points.map((a) => a.position[1]);
const box: Box = [
Math.min(...x),
Math.min(...y),
Math.max(...x) - Math.min(...x),
Math.max(...y) - Math.min(...y),
];
const xRaw = points.map((a) => a.positionRaw[0]);
const yRaw = points.map((a) => a.positionRaw[1]);
const boxRaw: Box = [
Math.min(...xRaw),
Math.min(...yRaw),
Math.max(...xRaw) - Math.min(...xRaw),
Math.max(...yRaw) - Math.min(...yRaw),
];
return [box, boxRaw];
}
async function parseSinglePose(res, config, image, inputBox) {
const kpt = res[0][0];
keypoints.length = 0;
@ -78,7 +66,7 @@ async function parseSinglePose(res, config, image, inputBox) {
}
score = keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);
const bodies: Array<BodyResult> = [];
const [box, boxRaw] = createBox(keypoints);
const newBox = box.calc(keypoints.map((pt) => pt.position), [image.shape[2], image.shape[1]]);
const annotations: Record<string, Point[][]> = {};
for (const [name, indexes] of Object.entries(coords.connected)) {
const pt: Array<Point[]> = [];
@ -89,7 +77,7 @@ async function parseSinglePose(res, config, image, inputBox) {
}
annotations[name] = pt;
}
bodies.push({ id: 0, score, box, boxRaw, keypoints, annotations });
bodies.push({ id: 0, score, box: newBox.box, boxRaw: newBox.boxRaw, keypoints, annotations });
return bodies;
}
@ -111,14 +99,11 @@ async function parseMultiPose(res, config, image, inputBox) {
part: coords.kpt[i],
score: Math.round(100 * score) / 100,
positionRaw,
position: [
Math.round((image.shape[2] || 0) * positionRaw[0]),
Math.round((image.shape[1] || 0) * positionRaw[1]),
],
position: [Math.round((image.shape[2] || 0) * positionRaw[0]), Math.round((image.shape[1] || 0) * positionRaw[1])],
});
}
}
const [box, boxRaw] = createBox(keypoints);
const newBox = box.calc(keypoints.map((pt) => pt.position), [image.shape[2], image.shape[1]]);
// movenet-multipose has built-in box details
// const boxRaw: Box = [kpt[51 + 1], kpt[51 + 0], kpt[51 + 3] - kpt[51 + 1], kpt[51 + 2] - kpt[51 + 0]];
// const box: Box = [Math.trunc(boxRaw[0] * (image.shape[2] || 0)), Math.trunc(boxRaw[1] * (image.shape[1] || 0)), Math.trunc(boxRaw[2] * (image.shape[2] || 0)), Math.trunc(boxRaw[3] * (image.shape[1] || 0))];
@ -132,7 +117,7 @@ async function parseMultiPose(res, config, image, inputBox) {
}
annotations[name] = pt;
}
bodies.push({ id, score: totalScore, boxRaw, box, keypoints: [...keypoints], annotations });
bodies.push({ id, score: totalScore, box: newBox.box, boxRaw: newBox.boxRaw, keypoints: [...keypoints], annotations });
}
}
bodies.sort((a, b) => b.score - a.score);
@ -141,46 +126,44 @@ async function parseMultiPose(res, config, image, inputBox) {
}
export async function predict(input: Tensor, config: Config): Promise<BodyResult[]> {
if (!model || !model?.inputs[0].shape) return [];
if (!model || !model?.inputs[0].shape) return []; // something is wrong with the model
if (!config.skipFrame) cache.boxes.length = 0; // allowed to use cache or not
skipped++; // increment skip frames
if (config.skipFrame && (skipped <= (config.body.skipFrames || 0))) {
return cache.bodies; // return cached results without running anything
}
return new Promise(async (resolve) => {
const t: Record<string, Tensor> = {};
let bodies: Array<BodyResult> = [];
if (!config.skipFrame) cachedBoxes.length = 0; // allowed to use cache or not
skipped++;
for (let i = 0; i < cachedBoxes.length; i++) { // run detection based on cached boxes
t.crop = tf.image.cropAndResize(input, [cachedBoxes[i]], [0], [inputSize, inputSize], 'bilinear');
skipped = 0;
cache.bodies = []; // reset bodies result
if (cache.boxes.length >= (config.body.maxDetected || 0)) { // if we have enough cached boxes run detection using cache
for (let i = 0; i < cache.boxes.length; i++) { // run detection based on cached boxes
t.crop = tf.image.cropAndResize(input, [cache.boxes[i]], [0], [inputSize, inputSize], 'bilinear');
t.cast = tf.cast(t.crop, 'int32');
t.res = await model?.predict(t.cast) as Tensor;
const res = await t.res.array();
const newBodies = (t.res.shape[2] === 17) ? await parseSinglePose(res, config, input, cachedBoxes[i]) : await parseMultiPose(res, config, input, cachedBoxes[i]);
bodies = bodies.concat(newBodies);
const newBodies = (t.res.shape[2] === 17) ? await parseSinglePose(res, config, input, cache.boxes[i]) : await parseMultiPose(res, config, input, cache.boxes[i]);
cache.bodies = cache.bodies.concat(newBodies);
Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));
}
if ((bodies.length !== config.body.maxDetected) && (skipped > (config.body.skipFrames || 0))) { // run detection on full frame
}
if (cache.bodies.length !== config.body.maxDetected) { // did not find enough bodies based on cached boxes so run detection on full frame
t.resized = tf.image.resizeBilinear(input, [inputSize, inputSize], false);
t.cast = tf.cast(t.resized, 'int32');
t.res = await model?.predict(t.cast) as Tensor;
const res = await t.res.array();
bodies = (t.res.shape[2] === 17) ? await parseSinglePose(res, config, input, [0, 0, 1, 1]) : await parseMultiPose(res, config, input, [0, 0, 1, 1]);
cache.bodies = (t.res.shape[2] === 17) ? await parseSinglePose(res, config, input, [0, 0, 1, 1]) : await parseMultiPose(res, config, input, [0, 0, 1, 1]);
// cache.bodies = cache.bodies.map((body) => ({ ...body, box: box.scale(body.box, 0.5) }));
Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));
cachedBoxes.length = 0; // reset cache
skipped = 0;
}
if (config.skipFrame) { // create box cache based on last detections
cachedBoxes.length = 0;
for (let i = 0; i < bodies.length; i++) {
if (bodies[i].keypoints.length > 10) { // only update cache if we detected sufficient number of keypoints
const kpts = bodies[i].keypoints.map((kpt) => kpt.position);
const newBox = scale(kpts, 1.5, [input.shape[2], input.shape[1]]);
cachedBoxes.push([...newBox.yxBox]);
cache.boxes.length = 0; // reset cache
for (let i = 0; i < cache.bodies.length; i++) {
if (cache.bodies[i].keypoints.length > (coords.kpt.length / 2)) { // only update cache if we detected at least half keypoints
const scaledBox = box.scale(cache.bodies[i].boxRaw, boxExpandFact);
const cropBox = box.crop(scaledBox);
cache.boxes.push(cropBox);
}
}
}
resolve(bodies);
resolve(cache.bodies);
});
}

View File

@ -1,4 +1,4 @@
export const kpt = [
export const kpt: Array<string> = [
'nose',
'leftEye',
'rightEye',
@ -18,7 +18,7 @@ export const kpt = [
'rightAnkle',
];
export const connected = {
export const connected: Record<string, string[]> = {
leftLeg: ['leftHip', 'leftKnee', 'leftAnkle'],
rightLeg: ['rightHip', 'rightKnee', 'rightAnkle'],
torso: ['leftShoulder', 'rightShoulder', 'rightHip', 'leftHip', 'leftShoulder'],

View File

@ -420,12 +420,12 @@ const config: Config = {
rotation: true, // use best-guess rotated hand image or just box with rotation as-is
// false means higher performance, but incorrect finger mapping if hand is inverted
// only valid for `handdetect` variation
skipFrames: 14, // how many max frames to go without re-running the hand bounding box detector
skipFrames: 1, // how many max frames to go without re-running the hand bounding box detector
// only used when cacheSensitivity is not zero
// e.g., if model is running st 25 FPS, we can re-use existing bounding
// box for updated hand skeleton analysis as the hand
// hasn't moved much in short time (10 * 1/25 = 0.25 sec)
minConfidence: 0.5, // threshold for discarding a prediction
minConfidence: 0.55, // threshold for discarding a prediction
iouThreshold: 0.2, // ammount of overlap between two detected objects before one object is removed
maxDetected: -1, // maximum number of hands detected in the input
// should be set to the minimum number for performance

View File

@ -7,7 +7,7 @@
*/
import { log, join } from '../util/util';
import { scale } from '../util/box';
import * as box from '../util/box';
import * as tf from '../../dist/tfjs.esm.js';
import type { HandResult, Box, Point } from '../result';
import type { GraphModel, Tensor } from '../tfjs/types';
@ -16,7 +16,6 @@ import { env } from '../util/env';
import * as fingerPose from './fingerpose';
import { fakeOps } from '../tfjs/backend';
const boxScaleFact = 1.5; // hand finger model prefers slighly larger box
const models: [GraphModel | null, GraphModel | null] = [null, null];
const modelOutputNodes = ['StatefulPartitionedCall/Postprocessor/Slice', 'StatefulPartitionedCall/Postprocessor/ExpandDims_1'];
@ -24,26 +23,26 @@ const inputSize = [[0, 0], [0, 0]];
const classes = ['hand', 'fist', 'pinch', 'point', 'face', 'tip', 'pinchtip'];
const boxExpandFact = 1.6; // increase to 160%
let skipped = 0;
let outputSize: Point = [0, 0];
let outputSize: [number, number] = [0, 0];
type HandDetectResult = {
id: number,
score: number,
box: Box,
boxRaw: Box,
boxCrop: Box,
label: string,
yxBox: Box,
}
const cache: {
handBoxes: Array<HandDetectResult>,
fingerBoxes: Array<HandDetectResult>
tmpBoxes: Array<HandDetectResult>
boxes: Array<HandDetectResult>,
hands: Array<HandResult>;
} = {
handBoxes: [],
fingerBoxes: [],
tmpBoxes: [],
boxes: [],
hands: [],
};
const fingerMap = {
@ -103,35 +102,29 @@ async function detectHands(input: Tensor, config: Config): Promise<HandDetectRes
[t.rawScores, t.rawBoxes] = await models[0].executeAsync(t.cast, modelOutputNodes) as Tensor[];
t.boxes = tf.squeeze(t.rawBoxes, [0, 2]);
t.scores = tf.squeeze(t.rawScores, [0]);
const classScores = tf.unstack(t.scores, 1);
const classScores = tf.unstack(t.scores, 1); // unstack scores based on classes
classScores.splice(4, 1); // remove faces
t.filtered = tf.stack(classScores, 1); // restack
tf.dispose(...classScores);
t.max = tf.max(t.filtered, 1); // max overall score
t.argmax = tf.argMax(t.filtered, 1); // class index of max overall score
let id = 0;
for (let i = 0; i < classScores.length; i++) {
if (i === 4) continue; // skip faces
t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, classScores[i], config.hand.maxDetected, config.hand.iouThreshold, config.hand.minConfidence);
t.nms = await tf.image.nonMaxSuppressionAsync(t.boxes, t.max, config.hand.maxDetected, config.hand.iouThreshold, config.hand.minConfidence);
const nms = await t.nms.data();
tf.dispose(t.nms);
for (const res of Array.from(nms)) { // generates results for each class
const boxSlice = tf.slice(t.boxes, res, 1);
let yxBox: Box = [0, 0, 0, 0];
if (config.hand.landmarks) { // scale box
const detectedBox: Box = await boxSlice.data();
const boxCenter: Point = [(detectedBox[0] + detectedBox[2]) / 2, (detectedBox[1] + detectedBox[3]) / 2];
const boxDiff: Box = [+boxCenter[0] - detectedBox[0], +boxCenter[1] - detectedBox[1], -boxCenter[0] + detectedBox[2], -boxCenter[1] + detectedBox[3]];
yxBox = [boxCenter[0] - boxScaleFact * boxDiff[0], boxCenter[1] - boxScaleFact * boxDiff[1], boxCenter[0] + boxScaleFact * boxDiff[2], boxCenter[1] + boxScaleFact * boxDiff[3]];
} else { // use box as-is
yxBox = await boxSlice.data();
}
const boxRaw: Box = [yxBox[1], yxBox[0], yxBox[3] - yxBox[1], yxBox[2] - yxBox[0]];
const box: Box = [Math.trunc(boxRaw[0] * outputSize[0]), Math.trunc(boxRaw[1] * outputSize[1]), Math.trunc(boxRaw[2] * outputSize[0]), Math.trunc(boxRaw[3] * outputSize[1])];
const scores = await t.max.data();
const classNum = await t.argmax.data();
for (const nmsIndex of Array.from(nms)) { // generates results for each class
const boxSlice = tf.slice(t.boxes, nmsIndex, 1);
const boxData = await boxSlice.data();
tf.dispose(boxSlice);
const scoreSlice = tf.slice(classScores[i], res, 1);
const score = (await scoreSlice.data())[0];
tf.dispose(scoreSlice);
const hand: HandDetectResult = { id: id++, score, box, boxRaw, label: classes[i], yxBox };
const boxInput: Box = [boxData[1], boxData[0], boxData[3] - boxData[1], boxData[2] - boxData[0]];
const boxRaw: Box = box.scale(boxInput, 1.2); // handtrack model returns tight box so we expand it a bit
const boxFull: Box = [Math.trunc(boxRaw[0] * outputSize[0]), Math.trunc(boxRaw[1] * outputSize[1]), Math.trunc(boxRaw[2] * outputSize[0]), Math.trunc(boxRaw[3] * outputSize[1])];
const score = scores[nmsIndex];
const label = classes[classNum[nmsIndex]];
const hand: HandDetectResult = { id: id++, score, box: boxFull, boxRaw, boxCrop: box.crop(boxRaw), label };
hands.push(hand);
}
}
classScores.forEach((tensor) => tf.dispose(tensor));
Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));
hands.sort((a, b) => b.score - a.score);
if (hands.length > (config.hand.maxDetected || 1)) hands.length = (config.hand.maxDetected || 1);
@ -139,7 +132,7 @@ async function detectHands(input: Tensor, config: Config): Promise<HandDetectRes
}
async function detectFingers(input: Tensor, h: HandDetectResult, config: Config): Promise<HandResult> {
const hand: HandResult = {
const hand: HandResult = { // initial values inherited from hand detect
id: h.id,
score: Math.round(100 * h.score) / 100,
boxScore: Math.round(100 * h.score) / 100,
@ -151,36 +144,27 @@ async function detectFingers(input: Tensor, h: HandDetectResult, config: Config)
landmarks: {} as HandResult['landmarks'],
annotations: {} as HandResult['annotations'],
};
if (input && models[1] && config.hand.landmarks) {
if (input && models[1] && config.hand.landmarks && h.score > (config.hand.minConfidence || 0)) {
const t: Record<string, Tensor> = {};
if (!h.yxBox) return hand;
t.crop = tf.image.cropAndResize(input, [h.yxBox], [0], [inputSize[1][0], inputSize[1][1]], 'bilinear');
t.crop = tf.image.cropAndResize(input, [box.crop(h.boxRaw)], [0], [inputSize[1][0], inputSize[1][1]], 'bilinear');
t.cast = tf.cast(t.crop, 'float32');
t.div = tf.div(t.cast, 255);
[t.score, t.keypoints] = models[1].execute(t.div) as Tensor[];
// const score = Math.round(100 * (await t.score.data())[0] / 100);
const rawScore = (await t.score.data())[0];
const score = (100 - Math.trunc(100 / (1 + Math.exp(rawScore)))) / 100; // reverse sigmoid value
if (score >= (config.hand.minConfidence || 0)) {
hand.fingerScore = score;
t.reshaped = tf.reshape(t.keypoints, [-1, 3]);
const rawCoords = await t.reshaped.array() as Point[];
hand.keypoints = (rawCoords as Point[]).map((coord) => [
(h.box[2] * coord[0] / inputSize[1][0]) + h.box[0],
(h.box[3] * coord[1] / inputSize[1][1]) + h.box[1],
(h.box[2] + h.box[3]) / 2 / inputSize[1][0] * (coord[2] || 0),
hand.keypoints = (rawCoords as Point[]).map((kpt) => [
outputSize[0] * ((h.boxCrop[3] - h.boxCrop[1]) * kpt[0] / inputSize[1][0] + h.boxCrop[1]),
outputSize[1] * ((h.boxCrop[2] - h.boxCrop[0]) * kpt[1] / inputSize[1][1] + h.boxCrop[0]),
(h.boxCrop[3] + h.boxCrop[3] / 2 * (kpt[2] || 0)),
]);
const updatedBox = scale(hand.keypoints, boxScaleFact, outputSize); // replace detected box with box calculated around keypoints
h.box = updatedBox.box;
h.boxRaw = updatedBox.boxRaw;
h.yxBox = updatedBox.yxBox;
hand.box = h.box;
hand.landmarks = fingerPose.analyze(hand.keypoints) as HandResult['landmarks']; // calculate finger landmarks
for (const key of Object.keys(fingerMap)) { // map keypoints to per-finger annotations
hand.annotations[key] = fingerMap[key].map((index) => (hand.landmarks && hand.keypoints[index] ? hand.keypoints[index] : null));
}
const ratioBoxFrame = Math.min(h.box[2] / (input.shape[2] || 1), h.box[3] / (input.shape[1] || 1));
if (ratioBoxFrame > 0.05) cache.tmpBoxes.push(h); // if finger detection is enabled, only update cache if fingers are detected and box is big enough
}
Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));
}
@ -188,22 +172,37 @@ async function detectFingers(input: Tensor, h: HandDetectResult, config: Config)
}
export async function predict(input: Tensor, config: Config): Promise<HandResult[]> {
if (!models[0] || !models[1] || !models[0]?.inputs[0].shape || !models[1]?.inputs[0].shape) return []; // something is wrong with the model
outputSize = [input.shape[2] || 0, input.shape[1] || 0];
let hands: Array<HandResult> = [];
cache.tmpBoxes = []; // clear temp cache
if (!config.hand.landmarks) cache.fingerBoxes = cache.handBoxes; // if hand detection only reset finger boxes cache
if (!config.skipFrame) cache.fingerBoxes = [];
if ((skipped < (config.hand.skipFrames || 0)) && config.skipFrame) { // just run finger detection while reusing cached boxes
skipped++;
hands = await Promise.all(cache.fingerBoxes.map((hand) => detectFingers(input, hand, config))); // run from finger box cache
} else { // calculate new boxes and run finger detection
skipped++; // increment skip frames
if (config.skipFrame && (skipped <= (config.hand.skipFrames || 0))) {
return cache.hands; // return cached results without running anything
}
return new Promise(async (resolve) => {
skipped = 0;
hands = await Promise.all(cache.fingerBoxes.map((hand) => detectFingers(input, hand, config))); // run from finger box cache
if (hands.length !== config.hand.maxDetected) { // re-run with hand detection only if we dont have enough hands in cache
cache.handBoxes = await detectHands(input, config);
hands = await Promise.all(cache.handBoxes.map((hand) => detectFingers(input, hand, config)));
if (cache.boxes.length >= (config.hand.maxDetected || 0)) {
cache.hands = await Promise.all(cache.boxes.map((handBox) => detectFingers(input, handBox, config))); // if we have enough cached boxes run detection using cache
} else {
cache.hands = []; // reset hands
}
if (cache.hands.length !== config.hand.maxDetected) { // did not find enough hands based on cached boxes so run detection on full frame
cache.boxes = await detectHands(input, config);
cache.hands = await Promise.all(cache.boxes.map((handBox) => detectFingers(input, handBox, config)));
}
const oldCache = [...cache.boxes];
cache.boxes.length = 0; // reset cache
for (let i = 0; i < cache.hands.length; i++) {
const boxKpt = box.square(cache.hands[i].keypoints, outputSize);
if (boxKpt.box[2] / (input.shape[2] || 1) > 0.05 && boxKpt.box[3] / (input.shape[1] || 1) > 0.05 && cache.hands[i].fingerScore && cache.hands[i].fingerScore > (config.hand.minConfidence || 0)) {
const boxScale = box.scale(boxKpt.box, boxExpandFact);
const boxScaleRaw = box.scale(boxKpt.boxRaw, boxExpandFact);
const boxCrop = box.crop(boxScaleRaw);
cache.boxes.push({ ...oldCache[i], box: boxScale, boxRaw: boxScaleRaw, boxCrop });
}
}
cache.fingerBoxes = [...cache.tmpBoxes]; // repopulate cache with validated hands
return hands as HandResult[];
resolve(cache.hands);
});
}

View File

@ -359,7 +359,7 @@ export class Human {
* @returns result: {@link Result}
*/
next(result: Result = this.result): Result {
return interpolate.calc(result) as Result;
return interpolate.calc(result, this.config) as Result;
}
/** Warmup method pre-initializes all configured models for faster inference

View File

@ -84,7 +84,7 @@ export interface BodyResult {
score: number,
box: Box,
boxRaw: Box,
annotations: Record<string, Point[][]>,
annotations: Record<string, Array<Point[]>>,
keypoints: Array<BodyKeypoint>
}

View File

@ -1,28 +1,32 @@
import type { Box } from '../result';
import type { Point, Box } from '../result';
// helper function: find box around keypoints, square it and scale it
export function scale(keypoints, boxScaleFact, outputSize) {
export function calc(keypoints: Array<Point>, outputSize: [number, number] = [1, 1]) {
const coords = [keypoints.map((pt) => pt[0]), keypoints.map((pt) => pt[1])]; // all x/y coords
const maxmin = [Math.max(...coords[0]), Math.min(...coords[0]), Math.max(...coords[1]), Math.min(...coords[1])]; // find min/max x/y coordinates
const center = [(maxmin[0] + maxmin[1]) / 2, (maxmin[2] + maxmin[3]) / 2]; // find center x and y coord of all fingers
const diff = Math.max(center[0] - maxmin[1], center[1] - maxmin[3], -center[0] + maxmin[0], -center[1] + maxmin[2]) * boxScaleFact; // largest distance from center in any direction
const box = [
Math.trunc(center[0] - diff),
Math.trunc(center[1] - diff),
Math.trunc(2 * diff),
Math.trunc(2 * diff),
] as Box;
const boxRaw = [ // work backwards
box[0] / outputSize[0],
box[1] / outputSize[1],
box[2] / outputSize[0],
box[3] / outputSize[1],
] as Box;
const yxBox = [ // work backwards
boxRaw[1],
boxRaw[0],
boxRaw[3] + boxRaw[1],
boxRaw[2] + boxRaw[0],
] as Box;
return { box, boxRaw, yxBox };
const min = [Math.min(...coords[0]), Math.min(...coords[1])];
const max = [Math.max(...coords[0]), Math.max(...coords[1])];
const box: Box = [min[0], min[1], max[0] - min[0], max[1] - min[1]];
const boxRaw: Box = [box[0] / outputSize[0], box[1] / outputSize[1], box[2] / outputSize[0], box[3] / outputSize[1]];
return { box, boxRaw };
}
export function square(keypoints: Array<Point>, outputSize: [number, number] = [1, 1]) {
const coords = [keypoints.map((pt) => pt[0]), keypoints.map((pt) => pt[1])]; // all x/y coords
const min = [Math.min(...coords[0]), Math.min(...coords[1])];
const max = [Math.max(...coords[0]), Math.max(...coords[1])];
const center = [(min[0] + max[0]) / 2, (min[1] + max[1]) / 2]; // find center x and y coord of all fingers
const dist = Math.max(center[0] - min[0], center[1] - min[1], -center[0] + max[0], -center[1] + max[1]); // largest distance from center in any direction
const box: Box = [Math.trunc(center[0] - dist), Math.trunc(center[1] - dist), Math.trunc(2 * dist), Math.trunc(2 * dist)];
const boxRaw: Box = [box[0] / outputSize[0], box[1] / outputSize[1], box[2] / outputSize[0], box[3] / outputSize[1]];
return { box, boxRaw };
}
export function scale(box: Box, scaleFact: number) {
const dist = [box[2] * (scaleFact - 1), box[3] * (scaleFact - 1)];
const newBox: Box = [box[0] - dist[0] / 2, box[1] - dist[1] / 2, box[2] + dist[0], box[3] + dist[0]];
return newBox;
}
export function crop(box: Box) { // [y1, x1, y2, x2] clamped to 0..1
const yxBox: Box = [Math.max(0, box[1]), Math.max(0, box[0]), Math.min(1, box[3] + box[1]), Math.min(1, box[2] + box[0])];
return yxBox;
}

View File

@ -3,10 +3,16 @@
*/
import type { Result, FaceResult, BodyResult, HandResult, ObjectResult, GestureResult, PersonResult, Box, Point } from '../result';
import type { Config } from '../config';
import * as moveNetCoords from '../body/movenetcoords';
import * as blazePoseCoords from '../body/blazeposecoords';
import * as efficientPoseCoords from '../body/efficientposecoords';
const bufferedResult: Result = { face: [], body: [], hand: [], gesture: [], object: [], persons: [], performance: {}, timestamp: 0 };
export function calc(newResult: Result): Result {
export function calc(newResult: Result, config: Config): Result {
const t0 = performance.now();
if (!newResult) return { face: [], body: [], hand: [], gesture: [], object: [], persons: [], performance: {}, timestamp: 0 };
// each record is only updated using deep clone when number of detected record changes, otherwise it will converge by itself
// otherwise bufferedResult is a shallow clone of result plus updated local calculated values
@ -46,7 +52,22 @@ export function calc(newResult: Result): Result {
bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * bufferedResult.body[i].keypoints[j].positionRaw[1] + keypoint.positionRaw[1]) / bufferedFactor : keypoint.position[1],
],
}))) as Array<{ score: number, part: string, position: [number, number, number?], positionRaw: [number, number, number?] }>;
bufferedResult.body[i] = { ...newResult.body[i], box, boxRaw, keypoints }; // shallow clone plus updated values
const annotations: Record<string, Point[][]> = {};
let coords = { connected: {} };
if (config.body?.modelPath?.includes('efficientpose')) coords = efficientPoseCoords;
else if (config.body?.modelPath?.includes('blazepose')) coords = blazePoseCoords;
else if (config.body?.modelPath?.includes('movenet')) coords = moveNetCoords;
for (const [name, indexes] of Object.entries(coords.connected as Record<string, string[]>)) {
const pt: Array<Point[]> = [];
for (let j = 0; j < indexes.length - 1; j++) {
const pt0 = keypoints.find((kp) => kp.part === indexes[j]);
const pt1 = keypoints.find((kp) => kp.part === indexes[j + 1]);
if (pt0 && pt1 && pt0.score > (config.body.minConfidence || 0) && pt1.score > (config.body.minConfidence || 0)) pt.push([pt0.position, pt1.position]);
}
annotations[name] = pt;
}
bufferedResult.body[i] = { ...newResult.body[i], box, boxRaw, keypoints, annotations: annotations as BodyResult['annotations'] }; // shallow clone plus updated values
}
}
@ -64,12 +85,16 @@ export function calc(newResult: Result): Result {
.map((landmark, j) => landmark
.map((coord, k) => (((bufferedFactor - 1) * (bufferedResult.hand[i].keypoints[j][k] || 1) + (coord || 0)) / bufferedFactor)) as Point)
: [];
const annotations = {};
if (Object.keys(bufferedResult.hand[i].annotations).length !== Object.keys(newResult.hand[i].annotations).length) bufferedResult.hand[i].annotations = newResult.hand[i].annotations; // reset annotations as previous frame did not have them
if (newResult.hand[i].annotations) {
let annotations = {};
if (Object.keys(bufferedResult.hand[i].annotations).length !== Object.keys(newResult.hand[i].annotations).length) {
bufferedResult.hand[i].annotations = newResult.hand[i].annotations; // reset annotations as previous frame did not have them
annotations = bufferedResult.hand[i].annotations;
} else if (newResult.hand[i].annotations) {
for (const key of Object.keys(newResult.hand[i].annotations)) { // update annotations
annotations[key] = newResult.hand[i].annotations[key] && newResult.hand[i].annotations[key][0]
? newResult.hand[i].annotations[key].map((val, j) => val.map((coord, k) => ((bufferedFactor - 1) * bufferedResult.hand[i].annotations[key][j][k] + coord) / bufferedFactor))
? newResult.hand[i].annotations[key]
.map((val, j) => val
.map((coord, k) => ((bufferedFactor - 1) * bufferedResult.hand[i].annotations[key][j][k] + coord) / bufferedFactor))
: null;
}
}
@ -134,7 +159,10 @@ export function calc(newResult: Result): Result {
// just copy latest gestures without interpolation
if (newResult.gesture) bufferedResult.gesture = newResult.gesture as GestureResult[];
if (newResult.performance) bufferedResult.performance = newResult.performance;
// append interpolation performance data
const t1 = performance.now();
if (newResult.performance) bufferedResult.performance = { ...newResult.performance, interpolate: Math.round(t1 - t0) };
return bufferedResult;
}

File diff suppressed because it is too large Load Diff