added configuration validation

pull/356/head
Vladimir Mandic 2021-09-19 14:07:53 -04:00
parent cb1ff858e9
commit ccd5ba1e46
16 changed files with 153 additions and 45 deletions

View File

@ -9,8 +9,9 @@
## Changelog
### **HEAD -> main** 2021/09/17 mandic00@live.com
### **HEAD -> main** 2021/09/18 mandic00@live.com
- prevent validation failed on some model combinations
- webgl exception handling
### **2.2.2** 2021/09/17 mandic00@live.com

14
TODO.md
View File

@ -30,6 +30,15 @@ Feature is automatically disabled in NodeJS without user impact
<br>
### Face Emotion Detection
Face Emotion detection using WASM backend has reduced precision due to math errors in backend
- Backend WASM incorrect handling of `int32` tensors
<https://github.com/tensorflow/tfjs/issues/5641>
<br>
### Hand Detection
Enhanced rotation correction for hand detection is not working in NodeJS due to missing kernel op in TFJS
@ -38,7 +47,10 @@ Feature is automatically disabled in NodeJS without user impact
- Backend NodeJS missing kernel op `RotateWithOffset`
<https://github.com/tensorflow/tfjs/issues/5473>
Hand detection using WASM backend has reduced precision due to math rounding errors in backend
Hand detection using WASM backend has reduced precision due to math errors in backend
- Backend WASM incorrect handling of `int32` tensors
<https://github.com/tensorflow/tfjs/issues/5641>
<br>

View File

@ -66,11 +66,11 @@
"@tensorflow/tfjs-layers": "^3.9.0",
"@tensorflow/tfjs-node": "^3.9.0",
"@tensorflow/tfjs-node-gpu": "^3.9.0",
"@types/node": "^16.9.2",
"@types/node": "^16.9.3",
"@typescript-eslint/eslint-plugin": "^4.31.1",
"@typescript-eslint/parser": "^4.31.1",
"@vladmandic/build": "^0.5.1",
"@vladmandic/pilogger": "^0.3.2",
"@vladmandic/build": "^0.5.2",
"@vladmandic/pilogger": "^0.3.3",
"canvas": "^2.8.0",
"dayjs": "^1.10.7",
"esbuild": "^0.12.28",

View File

@ -21,6 +21,7 @@ function calculateSlope(point1x, point1y, point2x, point2y) {
// point1, point2 are 2d or 3d point arrays (xy[z])
// returns either a single scalar (2d) or array of two slopes (3d)
function getSlopes(point1, point2) {
if (!point1 || !point2) return [0, 0];
const slopeXY = calculateSlope(point1[0], point1[1], point2[0], point2[1]);
if (point1.length === 2) return slopeXY;
const slopeYZ = calculateSlope(point1[1], point1[2], point2[1], point2[2]);

View File

@ -124,7 +124,7 @@ export const hand = (res): GestureResult[] => {
for (let i = 0; i < res.length; i++) {
const fingers: Array<{ name: string, position: number }> = [];
for (const [finger, pos] of Object.entries(res[i]['annotations'])) {
if (finger !== 'palmBase' && Array.isArray(pos)) fingers.push({ name: finger.toLowerCase(), position: pos[0] }); // get tip of each finger
if (finger !== 'palmBase' && Array.isArray(pos) && pos[0]) fingers.push({ name: finger.toLowerCase(), position: pos[0] }); // get tip of each finger
}
if (fingers && fingers.length > 0) {
const closest = fingers.reduce((best, a) => (best.position[2] < a.position[2] ? best : a));

View File

@ -47,7 +47,8 @@ export class HandDetector {
const scores = await t.scores.data();
t.boxes = tf.slice(t.predictions, [0, 1], [-1, 4]);
t.norm = this.normalizeBoxes(t.boxes);
t.nms = await tf.image.nonMaxSuppressionAsync(t.norm, t.scores, 10 * config.hand.maxDetected, config.hand.iouThreshold, config.hand.minConfidence);
// box detection is flaky so we look for 3x boxes than we need results
t.nms = await tf.image.nonMaxSuppressionAsync(t.norm, t.scores, 3 * config.hand.maxDetected, config.hand.iouThreshold, config.hand.minConfidence);
const nms = await t.nms.array() as Array<number>;
const hands: Array<{ box: Tensor, palmLandmarks: Tensor, confidence: number }> = [];
for (const index of nms) {

View File

@ -22,7 +22,7 @@ export class HandPipeline {
constructor(handDetector, handPoseModel) {
this.handDetector = handDetector;
this.handPoseModel = handPoseModel;
this.inputSize = this.handPoseModel.inputs[0].shape ? this.handPoseModel.inputs[0].shape[2] : 0;
this.inputSize = this.handPoseModel && this.handPoseModel.inputs[0].shape ? this.handPoseModel.inputs[0].shape[2] : 0;
this.storedBoxes = [];
this.skipped = 0;
this.detectedHands = 0;
@ -152,6 +152,7 @@ export class HandPipeline {
}
this.storedBoxes = this.storedBoxes.filter((a) => a !== null);
this.detectedHands = hands.length;
if (hands.length > config.hand.maxDetected) hands.length = config.hand.maxDetected;
return hands;
}
}

View File

@ -25,6 +25,23 @@ export const now = () => {
return parseInt((Number(process.hrtime.bigint()) / 1000 / 1000).toString());
};
// helper function: checks current config validity
export function validate(defaults, config, parent = 'config', msgs: Array<{ reason: string, where: string, expected?: string }> = []) {
for (const key of Object.keys(config)) {
if (typeof config[key] === 'object') {
validate(defaults[key], config[key], key, msgs);
} else {
const defined = (typeof defaults[key] !== 'undefined');
if (!defined) msgs.push({ reason: 'unknown property', where: `${parent}.${key} = ${config[key]}` });
const same = typeof defaults[key] === typeof config[key];
if (defined && !same) msgs.push({ reason: 'property type mismatch', where: `${parent}.${key} = ${config[key]}`, expected: typeof defaults[key] });
}
// ok = ok && defined && same;
}
if (config.debug && parent === 'config' && msgs.length > 0) log('invalid configuration', msgs);
return msgs;
}
// helper function: perform deep merge of multiple objects so it allows full inheriance with overrides
export function mergeDeep(...objects) {
const isObject = (obj) => obj && typeof obj === 'object';

View File

@ -2,7 +2,7 @@
* Human main module
*/
import { log, now, mergeDeep } from './helpers';
import { log, now, mergeDeep, validate } from './helpers';
import { Config, defaults } from './config';
import type { Result, FaceResult, HandResult, BodyResult, ObjectResult, GestureResult, PersonResult } from './result';
import * as tf from '../dist/tfjs.esm.js';
@ -173,7 +173,10 @@ export class Human {
defaults.backend = this.env.browser ? 'humangl' : 'tensorflow';
this.version = app.version; // expose version property on instance of class
Object.defineProperty(this, 'version', { value: app.version }); // expose version property directly on class itself
this.config = mergeDeep(defaults, userConfig || {});
this.config = JSON.parse(JSON.stringify(defaults));
Object.seal(this.config);
if (userConfig) this.config = mergeDeep(this.config, userConfig);
validate(defaults, this.config);
this.tf = tf;
this.state = 'idle';
this.#numTensors = 0;
@ -248,6 +251,12 @@ export class Human {
return null;
}
/** Reset configuration to default values */
reset = () => this.config = JSON.parse(JSON.stringify(defaults));
/** Validate current configuration schema */
validate = (userConfig?: Partial<Config>) => validate(defaults, userConfig || this.config);
/** Process input as return canvas and tensor
*
* @param input: {@link Input}

View File

@ -166,7 +166,7 @@ export function process(input: Input, config: Config): { tensor: Tensor | null,
let pixels;
if (outCanvas.data) { // if we have data, just convert to tensor
const shape = [outCanvas.height, outCanvas.width, 3];
pixels = tf.tensor3d(outCanvas.data, shape, 'int32');
pixels = tf.tensor3d(outCanvas.data, shape, 'float32');
} else if ((typeof ImageData !== 'undefined') && (outCanvas instanceof ImageData)) { // if input is imagedata, just use it
pixels = tf.browser ? tf.browser.fromPixels(outCanvas) : null;
} else if (config.backend === 'webgl' || config.backend === 'humangl') { // tf kernel-optimized method to get imagedata

View File

@ -40,14 +40,16 @@ async function getImage(human, input) {
ctx.drawImage(img, 0, 0, img.width, img.height);
const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
const res = human.tf.tidy(() => {
const tensor = human.tf.tensor(Array.from(imageData.data), [canvas.height, canvas.width, 4], 'int32'); // create rgba image tensor from flat array
const tensor = human.tf.tensor(Array.from(imageData.data), [canvas.height, canvas.width, 4], 'float32'); // create rgba image tensor from flat array
const channels = human.tf.split(tensor, 4, 2); // split rgba to channels
const rgb = human.tf.stack([channels[0], channels[1], channels[2]], 2); // stack channels back to rgb
const reshape = human.tf.reshape(rgb, [1, canvas.height, canvas.width, 3]); // move extra dim from the end of tensor and use it as batch number instead
return reshape;
});
if (res && res.shape[0] === 1 && res.shape[3] === 3) log('state', 'passed: load image:', input, res.shape);
const sum = human.tf.sum(res);
if (res && res.shape[0] === 1 && res.shape[3] === 3) log('state', 'passed: load image:', input, res.shape, { checksum: sum.dataSync()[0] });
else log('error', 'failed: load image:', input, res);
human.tf.dispose(sum);
return res;
}
@ -98,10 +100,10 @@ async function testWarmup(human, title) {
// const count = human.tf.engine().state.numTensors;
// if (count - tensors > 0) log('warn', 'failed: memory', config.warmup, title, 'tensors:', count - tensors);
printResults(warmup);
return true;
} else {
log('error', 'failed: warmup:', config.warmup, title);
}
log('error', 'failed: warmup:', config.warmup, title);
return false;
return warmup;
}
async function testDetect(human, input, title) {
@ -124,10 +126,10 @@ async function testDetect(human, input, title) {
// const count = human.tf.engine().state.numTensors;
// if (count - tensors > 0) log('warn', 'failed: memory', config.warmup, title, 'tensors:', count - tensors);
printResults(detect);
return true;
} else {
log('error', 'failed: detect', input || 'random', title);
}
log('error', 'failed: detect', input || 'random', title);
return false;
return detect;
}
const evt = { image: 0, detect: 0, warmup: 0 };
async function events(event) {
@ -144,33 +146,94 @@ async function test(Human, inputConfig) {
return;
}
const t0 = process.hrtime.bigint();
let human;
let res;
// test event emitter
human = new Human(config);
const human = new Human(config);
human.events.addEventListener('warmup', () => events('warmup'));
human.events.addEventListener('image', () => events('image'));
human.events.addEventListener('detect', () => events('detect'));
// test configuration validation
let invalid = human.validate();
if (invalid.length === 0) log('state', 'passed: configuration default validation', invalid);
else log('error', 'failed: configuration default validation', invalid);
config.invalid = true;
invalid = human.validate(config);
if (invalid.length === 1) log('state', 'passed: configuration invalid validation', invalid);
else log('error', 'failed: configuration default validation', invalid);
delete config.invalid;
// test warmup sequences
await testInstance(human);
config.warmup = 'none';
await testWarmup(human, 'default');
res = await testWarmup(human, 'default');
if (res.error !== 'null') log('error', 'failed: warmup none result mismatch');
else log('state', 'passed: warmup none result match');
config.warmup = 'face';
await testWarmup(human, 'default');
res = await testWarmup(human, 'default');
if (!res || res?.face?.length !== 1 || res?.body?.length !== 1 || res?.hand?.length !== 0 || res?.gesture?.length !== 3) log('error', 'failed: warmup face result mismatch', res?.face?.length, res?.body?.length, res?.hand?.length, res?.gesture?.length);
else log('state', 'passed: warmup face result match');
config.warmup = 'body';
await testWarmup(human, 'default');
res = await testWarmup(human, 'default');
if (!res || res?.face?.length !== 1 || res?.body?.length !== 1 || res?.hand?.length !== 0 || res?.gesture?.length !== 3) log('error', 'failed: warmup body result mismatch', res?.face?.length, res?.body?.length, res?.hand?.length, res?.gesture?.length);
else log('state', 'passed: warmup body result match');
// test default config
log('info', 'test default');
human = new Human(config);
await testDetect(human, 'samples/ai-body.jpg', 'default');
human.reset();
config.cacheSensitivity = 0;
res = await testDetect(human, 'samples/ai-body.jpg', 'default');
if (!res || res?.face?.length !== 1 || res?.face[0].gender !== 'female') log('error', 'failed: default result face mismatch', res?.face?.length, res?.body?.length, res?.hand?.length, res?.gesture?.length);
else log('state', 'passed: default result face match');
// test default config
log('info', 'test object');
human.reset();
config.object = { enabled: true };
res = await testDetect(human, 'samples/ai-body.jpg', 'default');
if (!res || res?.object?.length !== 1 || res?.object[0]?.label !== 'person') log('error', 'failed: object result mismatch', res?.object?.length);
else log('state', 'passed: object result match');
// test sensitive config
log('info', 'test sensitive');
human.reset();
config.cacheSensitivity = 0;
config.face = { detector: { minConfidence: 0.0001, maxDetected: 1 } };
config.body = { minConfidence: 0.0001, maxDetected: 1 };
config.hand = { minConfidence: 0.0001, maxDetected: 3 };
res = await testDetect(human, 'samples/ai-body.jpg', 'default');
if (!res || res?.face?.length !== 1 || res?.body?.length !== 1 || res?.hand?.length !== 3 || res?.gesture?.length !== 9) log('error', 'failed: sensitive result mismatch', res?.face?.length, res?.body?.length, res?.hand?.length, res?.gesture?.length);
else log('state', 'passed: sensitive result match');
// test sensitive details face
const face = res && res.face ? res.face[0] : null;
if (!face || face?.box?.length !== 4 || face?.mesh?.length !== 478 || face?.emotion?.length !== 4 || face?.embedding?.length !== 1024 || face?.rotation?.matrix?.length !== 9) {
log('error', 'failed: sensitive face result mismatch', res?.face?.length, face?.box?.length, face?.mesh?.length, face?.emotion?.length, face?.embedding?.length, face?.rotation?.matrix?.length);
} else log('state', 'passed: sensitive face result match');
// test sensitive details body
const body = res && res.body ? res.body[0] : null;
if (!body || body?.box?.length !== 4 || body?.keypoints?.length !== 17) log('error', 'failed: sensitive body result mismatch', body);
else log('state', 'passed: sensitive body result match');
// test sensitive details hand
const hand = res && res.hand ? res.hand[0] : null;
if (!hand || hand?.box?.length !== 4 || hand?.keypoints?.length !== 21) log('error', 'failed: sensitive hand result mismatch', hand?.keypoints?.length);
else log('state', 'passed: sensitive hand result match');
// test detectors only
log('info', 'test detectors');
config.face = { mesh: { enabled: false }, iris: { enabled: false }, hand: { landmarks: false } };
human = new Human(config);
await testDetect(human, 'samples/ai-body.jpg', 'default');
human.reset();
config.face = { mesh: { enabled: false }, iris: { enabled: false }, description: { enabled: false }, emotion: { enabled: false } };
config.hand = { landmarks: false };
res = await testDetect(human, 'samples/ai-body.jpg', 'default');
if (!res || res?.face?.length !== 1 || res?.face[0]?.gender || res?.face[0]?.age || res?.face[0]?.embedding) log('error', 'failed: detectors result face mismatch', res?.face);
else log('state', 'passed: detector result face match');
if (!res || res?.hand?.length !== 1 || res?.hand[0]?.landmarks) log('error', 'failed: detectors result hand mismatch', res?.hand?.length);
else log('state', 'passed: detector result hand match');
// test posenet and movenet
log('info', 'test body variants');

View File

@ -8,7 +8,7 @@ const config = {
async: true,
face: {
enabled: true,
detector: { enabled: true, rotation: true },
detector: { rotation: true },
mesh: { enabled: true },
iris: { enabled: true },
description: { enabled: true },

View File

@ -19,7 +19,7 @@ const config = {
async: false,
face: {
enabled: true,
detector: { enabled: true, rotation: false },
detector: { rotation: false },
mesh: { enabled: true },
iris: { enabled: true },
description: { enabled: true },

View File

@ -5,19 +5,19 @@ const config = {
modelBasePath: 'file://models/',
backend: 'tensorflow',
debug: false,
async: false,
async: true,
face: {
enabled: true,
detector: { enabled: true, rotation: true },
detector: { rotation: true },
mesh: { enabled: true },
iris: { enabled: true },
description: { enabled: true },
emotion: { enabled: true },
},
hand: { enabled: false, rotation: true },
body: { enabled: false },
object: { enabled: false },
segmentation: { enabled: false },
hand: { enabled: true },
body: { enabled: true },
object: { enabled: true },
segmentation: { enabled: true },
filter: { enabled: false },
};

View File

@ -23,15 +23,18 @@ const ignoreMessages = [
'ExperimentalWarning',
];
const status = {
passed: 0,
failed: 0,
};
const status = {};
function logMessage(test, data) {
log[data[0]](test, ...data[1]);
if (data[1][0].startsWith('passed')) status.passed++;
if (data[1][0].startsWith('failed')) status.failed++;
if (!status[test]) status[test] = { passed: 0, failed: 0 };
if (log[data[0]]) {
log[data[0]](test, ...data[1]);
} else {
log.error('unknown facility', test, ...data[1]);
status[test].failed++;
}
if (data[1][0].startsWith('passed')) status[test].passed++;
if (data[1][0].startsWith('failed')) status[test].failed++;
}
function logStdIO(ok, test, buffer) {

2
wiki

@ -1 +1 @@
Subproject commit 740fcd1b5b2cc92bde0111b630e872cbf7670c81
Subproject commit b24eafa265bda331788e0d36cf5c854a494e33d6